-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatbot.py
54 lines (35 loc) · 1.87 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
## but this chatbot is not able to remember context : like if i ask :
## q-1/ what is generative ai and then i ask q-2/ what are its applications then its not able to remember the context if 'its'
from dotenv import load_dotenv
load_dotenv() ## loading all the environment variables
import streamlit as st
import os
import google.generativeai as genai
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
## function to load Gemini Pro model and get repsonses
model=genai.GenerativeModel("gemini-pro")
chat = model.start_chat(history=[]) #This line starts a chat session with the model.
# The history=[] part means we are starting with an empty conversation history, so the model has no previous context.
def get_gemini_response(question):
response=chat.send_message(question,stream=True)
return response
##initialize our streamlit app
st.set_page_config(page_title="Q&A Demo")
st.header("Gemini LLM Application")
# Initialize session state for chat history if it doesn't exist
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
input=st.text_input("Input: ",key="input")
submit=st.button("Ask the question")
if submit and input:
response=get_gemini_response(input)
# Add user query and response to session state chat history
st.session_state['chat_history'].append(("You", input))
st.subheader("The Response is")
for chunk in response: #This is useful if the response is streamed in parts.
st.write(chunk.text)
st.session_state['chat_history'].append(("Bot", chunk.text))
st.subheader("The Chat History is")
for role, text in st.session_state['chat_history']:
st.write(f"{role}: {text}")
## notes: The session state is a place where Streamlit can store variables that persist across reruns of the app.