-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
96 lines (80 loc) · 3.84 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import json
import numpy
import csv
# load json data
with open('data/archetypes.json', 'r') as f:
archetypes_array = json.load(f)
archetypes = dict()
for archetype in archetypes_array:
archetypes[str(archetype["id"])] = archetype
with open('data/matchups.json', 'r') as f:
matchups = json.load(f)["series"]
total_games = matchups["metadata"]["totals"]["total_games"]
# get a list of deck_ids with a significant number of games and ensure deck_ids are not negative or non-numeric
real_deck_ids = [deck_id
for deck_id in matchups["metadata"]
if deck_id.isdigit()
and int(deck_id) >= 0
and matchups["metadata"][deck_id]["total_games"] / total_games > 0.01]
#sort real_deck_ids by archetypes[deck_id]["player_class"]
real_deck_ids = sorted(real_deck_ids, key=lambda deck_id: archetypes[deck_id]["player_class"])
# create a matchup table of winrates such that matchup_table[deck1][deck2] = winrate of deck1 vs deck2
matchup_table = dict()
for p1_deck_id in real_deck_ids:
matchup_table[p1_deck_id] = dict() # Initialize the inner dictionary
for p2_deck_id in real_deck_ids:
matchup_table[p1_deck_id][p2_deck_id] = matchups["data"][p1_deck_id][p2_deck_id]["win_rate"]
# write matchup table to a csv
with open('matchup_table.csv', 'w', newline='') as csvfile:
csvwriter = csv.writer(csvfile)
# Write header row
header = [''] + [archetypes[deck_id]["name"] for deck_id in real_deck_ids]
csvwriter.writerow(header)
# Write data rows
for p1_deck_id, row in matchup_table.items():
row = [archetypes[p1_deck_id]["name"]] + [row[p2_deck_id] / 100 for p2_deck_id in real_deck_ids]
csvwriter.writerow(row)
# filter classes from deck_ids
temp = list()
for deck_id in real_deck_ids:
if archetypes[deck_id]["player_class_name"] not in []:
temp.append(deck_id)
real_deck_ids = temp
# create the matchup table again but now with only the filtered classes
matchup_table = dict()
for p1_deck_id in real_deck_ids:
matchup_table[p1_deck_id] = dict() # Initialize the inner dictionary
for p2_deck_id in real_deck_ids:
matchup_table[p1_deck_id][p2_deck_id] = matchups["data"][p1_deck_id][p2_deck_id]["win_rate"]
# initialize popularity distribution of decks
popularity_distribution = dict()
for deck_id in real_deck_ids:
popularity_distribution[deck_id] = 1
# iterate popularity distribution from estimated winrates
std_dev = 1
while std_dev > 0.0325:
# calculate estimated winrates of decks with current probability distribution
estimated_winrates = dict()
for deck_id in real_deck_ids:
estimated_wr = 0
popularity_total = 0
for matchup in matchup_table[deck_id]:
estimated_wr += matchup_table[deck_id][matchup] * popularity_distribution[matchup]
popularity_total += popularity_distribution[matchup]
estimated_wr /= popularity_total
estimated_winrates[deck_id] = estimated_wr
played_estimated_winrates = list()
for deck_id, popularity in popularity_distribution.items():
if popularity > 0:
played_estimated_winrates.append(estimated_winrates[deck_id])
std_dev = numpy.std(played_estimated_winrates)
mean = numpy.mean(played_estimated_winrates)
for deck_id in real_deck_ids:
if estimated_winrates[deck_id] > mean:
popularity_distribution[deck_id] += 1
if estimated_winrates[deck_id] < mean - std_dev and popularity_distribution[deck_id] > 0:
popularity_distribution[deck_id] -= 1
sorted_decks = sorted(((deck_id, popularity, estimated_winrates[deck_id]) for deck_id, popularity in popularity_distribution.items()), key=lambda x: x[1], reverse=True)
for deck_id, popularity, ewr in sorted_decks:
if popularity > 0:
print(f"{archetypes[deck_id]['name']}: {popularity} (EWR: {ewr:.2f})")