-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy path1D Diffusion Equation.py
63 lines (42 loc) · 1.71 KB
/
1D Diffusion Equation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy #here we load numpy library that provides a bunch of useful matrix operations akin to MATLAB
from matplotlib import pyplot #2D plotting library that we will use to plot our results
lineSingle = '------------------------------------------------'
print("Solving 1D Diffusion Equation using Finite Difference Method\n")
#setting the grid
nx = 41 #grid points
dx = 2 / (nx - 1) #grid spacing
nt = 20 #number of timesteps
nu = 0.3 #viscosity
cfl = 0.4
dt = cfl*dx**2/nu #based on von neumaan stability analysis
#innitial condition
print(lineSingle)
print("Computing Innitial Solution...")
u = numpy.ones(nx)
u[int(0.5/dx):int(1/dx+1)] = 2 #Square Wave Profile
print("Printing Innitial Solution...")
print(lineSingle)
print(u)
pyplot.plot(numpy.linspace(0,2,nx), u, label='Initial Solution')
#discritization
print(lineSingle)
print("Calculating Numerical Solution......")
print(lineSingle)
un = numpy.ones(nx)
for n in range(nt+1): #time marching
un = u.copy()
for i in range(1, nx-1): #Space marching
u[i] = un[i] + nu * dt/dx**2 *(un[i+1] - 2*un[i] + un[i-1]) #Central Differnece Scheme
print(lineSingle)
print("Printing Numerical Solution......")
print(lineSingle)
print(u)
print(lineSingle)
print("Plotting Innitial & Numerical Solution")
print(lineSingle)
pyplot.plot(numpy.linspace(0,2,nx), u, label='Numerical Solution')
pyplot.title('1D Diffusion Convecction')
pyplot.xlabel('Grid Space')
pyplot.ylabel('Velocity')
pyplot.legend()
pyplot.show()