-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy path1D Non Linear Convection Equationn.py
69 lines (47 loc) · 1.91 KB
/
1D Non Linear Convection Equationn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import numpy
from matplotlib import pyplot
lineSingle = '------------------------------------------------'
print("Solving 1D Non Linear Equation using Finite Difference Method\n")
while True:
nx = input('Enter the number of Grid Points: ') #grip points
if nx.isdigit() == False:
print("Please provide an integer\n")
continue
else:
nx = int(nx)
dx = 2/ (nx - 1) #grid spacing
nt = 20 #number of timesteps
cfl = 0.5
dt = cfl * dx #timestep size
#innitial condition
print(lineSingle)
print("Computing Innitial Solution...")
u = numpy.ones(nx)
u[int(0.5/dx):int(1/dx+1)] = 2 #Square Wave Profile
print("Printing Innitial Solution...")
print(lineSingle)
print(u)
pyplot.plot(numpy.linspace(0,2,nx), u, label='Initial Solution')
print(lineSingle)
print("Calculating Numerical Solution......")
print(lineSingle)
#discritization
un = numpy.ones(nx)
for n in range(nt): #time marching
un = u.copy()
for i in range(1,nx): #Space marching
u[i] = un[i] - un[i]*dt/dx* (un[i] - un[i-1]) #Backward Differnece Scheme
print(lineSingle)
print("Printing Numerical Solution......")
print(lineSingle)
print(u)
print(lineSingle)
print("Plotting Innitial & Numerical Solution")
print(lineSingle)
pyplot.plot(numpy.linspace(0,2,nx), u, label='Convected Solution')
pyplot.title('1D Non Linear Convecction')
pyplot.xlabel('Grid Space')
pyplot.ylabel('Velocity')
pyplot.legend()
pyplot.show()
break