-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy path2D Poisson Equation.py
111 lines (78 loc) · 2.88 KB
/
2D Poisson Equation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import numpy #give mathamatical or matrix expressions like array
from matplotlib import pyplot, cm #plotting library that we will use to plot our results
from mpl_toolkits.mplot3d import Axes3D #To plot a projected 3D result, make sure that you have added the Axes3D library
lineSingle = '------------------------------------------------'
print("Solving Poisson Equation for Pressure using Finite Difference Method\n")
#meshing
nx = 60 #Grid Points along X direction
ny = 60 #Grid Points along Y direction
iteration = input('Enter the number of Iterations to Solve: ')
if iteration.isdigit() == False:
print("Please provide an integer\n")
else:
iteration = int(iteration)
#Grid Spacing
xmin = 0
xmax = 2
ymin = 0
ymax = 1
dx = (xmax - xmin) / (nx - 1)
dy = (ymax - ymin) / (ny - 1)
#initilization
p = numpy.zeros((ny,nx))
pd = numpy.zeros((ny,nx))
b = numpy.zeros((ny,nx))
x = numpy.linspace(xmin,xmax,nx)
y = numpy.linspace(ymin,ymax,ny)
#sourceterm on RHS of Poisson Equation
b[int(ny/4),int(nx/4)] = 100
b[int(3*ny/4),int(3*nx/4)] = -100
#Defining a Function for plotting initial & steady state solution
def plot2D(x, y, p):
fig = pyplot.figure(figsize=(11, 7), dpi=100)
ax = fig.gca(projection='3d')
#Generating 2D Mesh
X, Y = numpy.meshgrid(x, y)
surf = ax.plot_surface(X, Y, b, rstride=1, cstride=1, cmap=cm.viridis,linewidth=0, antialiased=False)
ax.view_init(30, 225)
ax.set_title('Initial Solution')
ax.set_xlabel('X Spacing')
ax.set_ylabel('Y Spacing')
ax.set_zlabel('Velocity')
print(lineSingle)
print("Plotting Innitial Solution")
print(lineSingle)
plot2D(x,y,p)
pyplot.show()
#Solving the Poisson Equation
print(lineSingle)
print("Calculating Numerical Solution......")
print(lineSingle)
for it in range(iteration):
pd = p.copy()
#Central Difference Scheme
p[1:-1,1:-1] = (((pd[1:-1,2:] + pd[1:-1,:-2])*dy**2 + (pd[2:,1:-1] + pd[:-2,1:-1])*dx**2
- b[1:-1,1:-1]*dx**2 * dy**2) / (2*(dx**2 + dy**2)))
#Boundary Condition
p[0,:] = 0
p[ny-1,:] = 0
p[:,0] = 0
p[:,nx-1] = 0
print(lineSingle)
print("Iterations Completed!")
print(lineSingle)
print(lineSingle)
print("Plotting Solution")
print(lineSingle)
def plot2D(x, y, p):
fig = pyplot.figure(figsize=(11, 7), dpi=100)
ax = fig.gca(projection='3d')
X, Y = numpy.meshgrid(x, y) #Generating 2D Mesh
surf = ax.plot_surface(X, Y, p[:], rstride=1, cstride=1, cmap=cm.viridis,linewidth=0, antialiased=False)
ax.view_init(30, 225)
ax.set_title('Steady State Solution')
ax.set_xlabel('X Spacing')
ax.set_ylabel('Y Spacing')
ax.set_zlabel('Velocity')
plot2D(x,y,p)
pyplot.show()