-
Notifications
You must be signed in to change notification settings - Fork 53
/
FVM_1D_Diffusion_Equation_Stadard_Wall_Function.py
287 lines (206 loc) · 7.64 KB
/
FVM_1D_Diffusion_Equation_Stadard_Wall_Function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import numpy as np
import matplotlib.pyplot as plt
print("\n")
print("Finite Volume Method\n")
print("Standard Wall Function Approach\n")
print("Solving 1D Heat Diffusion Equation with Dirichlet BC\n")
print("Discretization for Diffusion Term: Central Difference Scheme\n")
cond = 100
print("Conductivity of the Material:",cond,'W/m-K')
area = 0.1
print("Cross Section Area of Rod:",area,'m2')
barLength = 5
print("\nLength of the rod:",barLength,'m')
nCells = int(input('Enter the number of Cells for Meshing the Rod: '))
heatfluxLeftEnd = 100
print("Heat Flux at the Left End of the Rod:",heatfluxLeftEnd,'C/m')
TRightEnd = 200
print("Temperature at the Right End of the Rod:",TRightEnd,'C')
heatSourcePerVol = 1000
print("Heat Source in the Rod:",heatSourcePerVol,'W/m3')
print("\n")
density = 8000
print("Density of the Rod:",density,'Kg/m3')
cp = 500
print("Specific Heat Capacity of the Rod:",density,'J/kg-C')
yPlus = int(input('Enter the value of Target Y+: '))
Pr = 0.71
lineSingle = '------------------------------------------------'
lineDouble = '================================================'
print ('Creating Mesh')
print(lineSingle)
xFaces = np.linspace(0, barLength, nCells+1)
xCentroid = 0.5*(xFaces[1:] + xFaces[0:-1])
dCentroid = xCentroid[1:] - xCentroid [0:-1]
dLeft = 2*(xCentroid[0] - xFaces[0])
dRight = 2*(xFaces[-1] - xCentroid[-1])
dCentroids = np.hstack([dLeft, dCentroid, dRight])
dCentroidsLeft = dCentroids[0:-1]
dCentroidsRight = dCentroids[1:]
areaLeftFaces = area*np.ones(nCells)
areaRightFaces = area*np.ones(nCells)
cellLength = xFaces[1:] -xFaces[0:-1]
cellVolume = cellLength*area
print ('Computing Wall Function')
print(lineSingle)
Prt = 0.85
E = 9.7983
kappa = 0.4187
P_Pr = Pr/Prt
P = 9.24*(np.power(P_Pr, 0.75)-1)*(1 + 0.28*np.exp(-0.007*P_Pr))
yPlusL = 11.0
for i in range(10):
f = ((Pr*yPlusL) - (Prt*(np.log(E*yPlusL)/kappa + P)))
df = Pr - (Prt/(kappa*yPlusL))
yPlusLNew = yPlusL - f/df
if (np.abs(yPlusLNew - yPlusL) < 1e-6):
break
else:
yPlusL = yPlusLNew
alpha = cond/(density*cp)
if yPlus < yPlusL:
alphaWall = alpha
else:
alphaWall = alpha*((Pr*yPlus)/(Prt*(((1/kappa)*(np.log(E*yPlus))+P))))
print('Wall Function: Summmary')
print(lineSingle)
print('Pr = %6.3f'%Pr)
print('Prt = %6.3f'%Prt)
print('P = %5.3f'% P)
print('y+ = %5.3f'%yPlus)
print('y+_L = %5.3f'%yPlusL)
print('alphaWall/alpha = %6.3f'%(alphaWall/alpha))
print(lineSingle)
print (' Assigning Material Properties')
print(lineSingle)
conductivityFaces = cond*np.ones(nCells+1)
kWall = alphaWall*density*cp
conductivityFaces[-1] = kWall
conductivityLeftFaces = conductivityFaces[0:-1]
conductivityRightFaces = conductivityFaces[1:]
print (' Calculating Matrix Coefficients')
print(lineSingle)
DA_LeftFaces = np.divide(
np.multiply(conductivityLeftFaces, areaLeftFaces), dCentroidsLeft)
DA_RightFaces = np.divide(
np.multiply(conductivityRightFaces, areaRightFaces),dCentroidsRight)
Su = heatSourcePerVol*cellVolume
Su[0] = Su[0] - heatfluxLeftEnd*area
Su[-1] = Su[-1] + TRightEnd*(2*np.copy(DA_RightFaces[-1]))
Sp = np.zeros(nCells)
Sp[0] = 0
Sp[-1] = -2*np.copy(DA_RightFaces[-1])
aL = np.copy(DA_LeftFaces)
aR = np.copy(DA_RightFaces)
aL[0] = 0
aR[-1] = 0
aP = np.around(np.copy(aL) + np.copy(aR) - np.copy(Sp),decimals = 2)
print(' Assembling Matrices')
print(lineSingle)
Amatrix = np.zeros([nCells, nCells])
BVector = np.zeros(nCells)
for i in range(nCells):
if i == 0:
Amatrix[i,i] = aP[i]
Amatrix[i,i+1] = -aR[i]
if i == nCells-1:
Amatrix[i,i] = aP[i]
Amatrix[i,i-1] = -aL[i]
else:
Amatrix[i,i+1] = -aR[i]
Amatrix[i,i] = aP[i]
Amatrix[i,i-1] = -aL[i]
BVector[i] = np.around(Su[i],decimals = 2)
print (' Summary: Set Up')
print(lineSingle)
print ('Cell | aL | aR | ap | Sp | Su ')
print(lineSingle)
for i in range(nCells):
print('%4i %5.1f %5.1f %5.1f %5.1f %8.1f '
% (i+1, aL[i], aR[i], aP[i], Sp[i], Su[i]))
print(lineSingle)
np.set_printoptions(linewidth=np.inf)
print ('A matrix:')
print(lineSingle)
print(Amatrix)
print('B vector')
print(lineSingle)
print(BVector)
print(lineSingle)
print (' Solving ...')
print(lineSingle)
# Use the built-in python solution module
Tvector = np.around(np.linalg.solve(Amatrix, BVector),decimals = 2)
print (' Equations Solved')
print(lineSingle)
print (' Solution: Temperature Vector')
print(lineSingle)
print(Tvector)
print(lineSingle)
print (' Calculating Heat Fluxes ...')
print(lineSingle)
tempLeft = (Tvector[0] - (heatfluxLeftEnd*area)/(2*np.copy(DA_LeftFaces[0])))
temperatureStack = np.hstack([tempLeft, np.copy(Tvector), TRightEnd])
temperatureDifferenceLeft = temperatureStack[1:-1] - temperatureStack[0:-2]
temperatureDifferenceRight = temperatureStack[2:] - temperatureStack[1:-1]
normalsLeft = -1.0*np.ones(nCells)
normalsRight = np.ones(nCells)
heatFluxLeft = -1*np.prod([normalsLeft,temperatureDifferenceLeft,DA_LeftFaces],0)
heatFluxRight = -1*np.prod([normalsRight,temperatureDifferenceRight,DA_RightFaces],0)
heatFluxLeft[0] *= 2.0
heatFluxRight[-1] *= 2.0
heatSource = heatSourcePerVol*cellVolume*np.ones(nCells)
heatBalanceError = heatSource - heatFluxLeft - heatFluxRight
print(' Heat Fluxes')
print(lineSingle)
print ('Cell | QL | QR | SV | Error')
print(lineSingle)
for i in range(nCells):
print ('%4i %7.1f %7.1f %7.1f %7.1f' % (
i+1, heatFluxLeft[i], heatFluxRight[i],
heatSource[i], heatBalanceError[i]))
print(lineSingle)
print (' Plotting ...')
print (lineSingle)
xPlotting = np.hstack([xFaces[0], np.copy(xCentroid), xFaces[-1]])
fontSize = 11
fontSizeLegend = 11
lineWidth = 1.5
tickPad = 8
tickPad2 = 16
labelPadY = 3
labelPadX = 2
boxPad = 2
tickLength = 4
markerSize = 4
lightBlue = '#bfc8d1'
shadeBlue = '#8091a4'
darkBlue = '#002147'
plt.rc('font', family='serif')
plt.rcParams['axes.linewidth'] = 1.5
plt.rcParams["figure.figsize"] = (3.1,2.5)
fig1 = plt.figure(1)
ax = fig1.add_subplot(111)
fig1.tight_layout(pad=boxPad)
ax.plot(xPlotting, temperatureStack, 'b-o',markersize=markerSize,linewidth = 1.5, label='CFD', color=darkBlue)
plt.xlabel(r'$x$ [m]', fontsize=fontSize, labelpad = labelPadX)
plt.ylabel(r'$T$ [$^{\circ}$C]', fontsize=fontSize, labelpad = labelPadY)
plt.title('Temperature Distribution Along the Bar')
plt.yticks(fontsize = fontSize)
plt.xticks(np.linspace(xFaces[0], xFaces[-1], int(barLength)+1), fontsize = fontSize)
plt.xlim([xFaces[0], xFaces[-1]])
ax.tick_params(which = 'both', direction='in', length=tickLength,width=1.5, gridOn = False, pad=tickPad, color=darkBlue)
ax.yaxis.set_ticks_position('both')
ax.xaxis.set_ticks_position('both')
ax.spines['bottom'].set_color(darkBlue)
ax.spines['top'].set_color(darkBlue)
ax.spines['right'].set_color(darkBlue)
ax.spines['left'].set_color(darkBlue)
if yPlus < 11.0:
print("\n!!!!!!!!! ----- NOTE -----!!!!!!!!!")
print("\nTemperature Gradient is resolved as y+ is less than 11\n")
else:
print("\n!!!!!!!!! ----- NOTE -----!!!!!!!!!")
print("\nTemperature Gradient is not resolved as y+ is more than < 11")
print("Heat Flux is corrected by using Standard Wall Function.\n")
plt.show()