-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathLBM_solver_flow_past_2Dcylinder.py
144 lines (97 loc) · 4.13 KB
/
LBM_solver_flow_past_2Dcylinder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#2D Flow around cylinder
#Lattice Boltzmann BKG Method
#
#
from numpy import *
import matplotlib.pyplot as plt
from matplotlib import cm
lineSingle = '------------------------------------------------'
lineDouble = '================================================'
print("\n")
print(lineDouble)
print("Lattice Boltzmann Method\n")
print("Solving 2D Heat flow around square/circular cylinder\n")
print("BKG Model")
print(lineSingle)
#flow defination
iterations = 150000 #total number of time iteration
print("\nNumber of iterations: ",iterations)
Re = 500 #flow reynolds number
print("Flow Reynolds Number: ",Re,"\n")
nx, ny = 420, 180 #number of lattice node
ly = ny-1 #height of the domain
#creating shape of the obstacle: cylinder
cx, cy = nx//4, ny//2 #cylinder coordinates
geometry = ""
while not (geometry == 'SQUARE CYLINDER' or geometry == 'CIRCULAR CYLINDER'):
geometry = input("Select the geometry: SQUARE CYLINDER or CIRCULAR CYLINDER: ").upper()
def obstacle_cylinder(x,y):
if geometry == "CIRCULAR CYLINDER":
r = ny//9 #circle radius
return (x-cx)**2 + (y-cy)**2<r**2
elif geometry == "SQUARE CYLINDER":
r = ny//6 #side of square
return abs((x-cx) + (y-cy)) + abs((x-cx) - (y-cy)) < r
obstacle = fromfunction(obstacle_cylinder, (nx,ny)) #forming the obstacle
if geometry == "CIRCULAR CYLINDER":
r = ny//9 #circle radius
elif geometry == "SQUARE CYLINDER":
r = ny//6 #side of square
in_velocity = 0.04 #inflow velocity
nu = in_velocity*r/Re; #fluid viscoisty
omega = 1 / (3*nu + 0.5); #relaxatation parameter
#defining lattice constants
v = array([ [1,1], [1,0], [1,-1], [0,1], [0,0], [0,-1], [-1,1], [-1,0], [-1,-1] ])
t = array([ 1/36, 1/9, 1/36, 1/9, 4/9, 1/9, 1/36, 1/9, 1/36])
col1 = array([0, 1, 2])
col2 = array([3, 4, 5])
col3 = array([6, 7, 8])
#defining macroscopic flow variable
def macroscopic(fin):
rho = sum(fin, axis = 0) #calculating density
u = zeros((2,nx,ny)) #calculating velocities
for i in range(9):
u[0,:,:] += v[i,0]*fin[i,:,:]
u[1,:,:] += v[i,1]*fin[i,:,:]
u /= rho
return rho, u
# Equilibrium distribution function.
def equilibrium(rho,u):
usqr = 3/2 * (u[0]**2 + u[1]**2)
eq = zeros((9,nx,ny))
for i in range(9):
cu = 3*(v[i,0]*u[0,:,:] + v[i,1]*u[1,:,:])
eq[i:,:] = rho*t[i]*(1 + cu + 0.5*cu**2 - usqr)
return eq
# Initial velocity field: almost zero, with a slight perturbation to trigger the instability.
def init_vel(d,x,y):
return (1-d) * in_velocity * (1 + 1e-4*sin(y/ly*2*pi))
vel = fromfunction(init_vel, (2,nx,ny))
# Initialization of the populations at equilibrium with the given velocity.
fin = equilibrium(1, vel)
print("\n")
print(lineDouble)
print(' Solving ...')
print(lineSingle)
#Time Loop
for time in range(iterations):
fin[col3,-1,:] = fin[col3,-2,:] #outflow BC
rho, u = macroscopic(fin) #compute velocity & density
u[:,0,:] = vel[:,0,:] #inflow BC
rho[0,:] = 1/(1-u[0,0,:])*(sum(fin[col2,0,:],axis=0) + 2*(sum(fin[col3,0,:],axis=0)))
#compute the population & equilibrium
feq = equilibrium(rho,u)
fin[[0,1,2],0,:] = feq[[0,1,2],0,:] + fin[[8,7,6],0,:] - feq[[8,7,6],0,:]
#collision Step
fout = fin - omega * (fin - feq)
#No slip/Bounce Back Condition for the cylinder wall
for i in range(9):
fout[i,obstacle] = fin[8-i,obstacle]
#Streaming Step
for i in range(9):
fin[i,:,:] = roll(roll(fout[i,:,:], v[i,0], axis=0), v[i,1], axis=1)
#Visualization of the velocity field
if (time%100==0):
plt.clf()
plt.imshow(sqrt(u[0]**2+u[1]**2).transpose(), cmap=cm.Reds)
plt.savefig("vel.{0:04d}.png".format(time//100),dpi=600)