-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmtcnn_facemask_detection_cam.py
67 lines (55 loc) · 2.14 KB
/
mtcnn_facemask_detection_cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
### facemask_cnn.h5 downloaded from https://kaggle.com/rkuo2000/facemask-cnn/data to ~/tf/models
### make sure Kaggle Tensorflow version is the same as this local machine to run
# $pip install mtcnn
# $python mtcnn_facemask_cam.py
import cv2
import sys
import numpy as np
from mtcnn import MTCNN
from tensorflow.keras import models
# load MTCNN model
detector = MTCNN()
# load FaceMask-CNN model
model = models.load_model('models/facemask_cnn.h5')
labels = ['With Mask', 'Without Mask']
# get video
cap = cv2.VideoCapture(0)
while(cap.isOpened()):
ret, frame = cap.read()
faces = detector.detect_faces(frame)
# find bounding box of each face (with confidence>90%)
bbox = []
for face in faces:
box = face['box']
print(box)
keypoints= face['keypoints']
print(keypoints)
confidence= face['confidence']
print(confidence)
print()
if confidence>=0.9:
bbox.append(box)
for box in bbox:
# get coordinate
x,y,w,h = box
# get region of interest
roi = frame[y:y+h, x:x+w] # get face image
roi = cv2.resize(roi,(96,96)) # opencv resize to 96x96
roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
# normalized data & reshape it
x_test = roi/255.0 # convert to floating point
x_test = x_test.reshape(-1,96,96,3) # reshape for model input
# mask detection
preds = model.predict(x_test)
maxindex = int(np.argmax(preds))
txt = labels[maxindex]
acc = str(int(preds[0][maxindex] * 100))+'%'
# draw box for detected face on image
cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 2) # draw box, thickness=2
cv2.putText(frame, txt, (x,y+10), cv2.FONT_HERSHEY_SIMPLEX,1, (255,255,255), 2) # font scale=1, thickness=2
cv2.putText(frame, acc, (x,y+h), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2) # font scale=1, thickness=2
cv2.imshow('FaceMask Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()