-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathnowcasting_all.py
234 lines (197 loc) · 8.21 KB
/
nowcasting_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# output : out/nowcasting.csv
# model : models/nowcasting_lstm.h5
# checkpoint: models/nowcasting.hdf5
import os
import time
import glob
import pandas as pd
import numpy as np
## Immport Libraries
from tensorflow.keras.preprocessing import image
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications.mobilenet import preprocess_input, decode_predictions
from tensorflow.keras import models, layers
from tensorflow.keras.callbacks import ModelCheckpoint
from sklearn import preprocessing
import matplotlib.pyplot as plt
# 氣象資料集路徑
dataPath = 'datasets/weather/observatory/'
# 選定一個氣象站資料做預測分析
## select Observatory ID # 台灣氣象觀測站名
#ObservatoryID = '466880' # BanQiao 板橋
#ObservatoryID = '466900' # TamSui 淡水
#ObservatoryID = '466910' # AnBu 鞍部
ObservatoryID = '466920' # Taipei 台北市
#ObservatoryID = '466930' # ZhuZiHu 竹子湖
#ObservatoryID = '466940' # KeeLung 基隆
#ObservatoryID = '466950' # PengJiaYu 彭佳嶼
#ObservatoryID = '466990' # HuaLien 花蓮
#ObservatoryID = '467060' # Su-Ao 蘇澳
#ObservatoryID = '467080' # YiLan 宜蘭
#ObservatoryID = '467110' # KinMen 金門
#ObservatoryID = '467300' # DongJiDao 東吉島
#ObservatoryID = '467350' # PengHu 澎湖
#ObservatoryID = '467410' # Tainan 台南市
#ObservatoryID = '467420' # YongKang 永康
#ObservatoryID = '467440' # KaoSiung 高雄
#ObservatoryID = '467480' # ChiaYi 嘉義市
#ObservatoryID = '467490' # Taichung 台中市
#ObservatoryID = '467530' # Alishan 阿里山
#ObservatoryID = '467540' # DaWu 大武
#ObservatoryID = '467550' # Yushan 玉山
#ObservatoryID = '467571' # HsinChu 新竹
#ObservatoryID = '467590' # HengChun 恆春
#ObservatoryID = '467610' # ChengGong 成功
#ObservatoryID = '467620' # LanYu 蘭嶼
#ObservatoryID = '467650' # SunMoonLake 日月潭
#ObservatoryID = '467660' # TaiTung 台東
#ObservatoryID = '467770' # WuQi 梧棲
#ObservatoryID = '467990' # MaTsu 馬祖
# Observatory Dataset : 2020-01-18 ~ 02/26
dateList = os.listdir(dataPath)
dateList.sort()
# .csv file list of one observatory
fList=[]
for date in dateList:
f = dataPath + date +'/'+ObservatoryID+'-'+date+'.csv'
fList.append(f)
# create the Dataframe Array for the observatory data of all stations
df = df0 = pd.DataFrame()
for file in fList:
print(file)
df0 = pd.read_csv(file)
df0 = df0.drop(columns=['ObsTime', 'SunShine', 'GloblRad', 'Visb', 'UVI', 'Cloud Amount'])
for i in range(len(df0)): # hour no. = 1~24
for key in df0.columns:
if df0.loc[i][key]=='T':
df0.at[i,key]=0.1
if df0.loc[i][key]=='V':
df0.at[i,key]=0
if df0.loc[i][key]=='/':
df0.at[i,key]=0
df = df.append(df0.loc[i], ignore_index=True)
# convert dataframe to numpy-array
dataX = df.to_numpy()
dataY = df.loc[:,'Temperature'].to_numpy()
print(dataX.shape)
print(dataY.shape)
# observing points are 24 hours
historyPoints = 48
batch_size = historyPoints
## Build Model
m_shape = (historyPoints, dataX.shape[1]) # 24 hrs, 12 observatory data
m_input = layers.Input(shape=m_shape, name='m_input')
units = historyPoints
# LSTM
m = layers.LSTM(units, name='m_lstm_0')(m_input)
t0 = layers.Dense(units, activation="sigmoid")(m)
t0 = layers.Dense(1, activation="linear", name='temp0')(t0)
t1 = layers.Dense(units, activation="sigmoid")(m)
t1 = layers.Dense(1, activation="linear", name='temp1')(t1)
t2 = layers.Dense(units, activation="sigmoid")(m)
t2 = layers.Dense(1, activation="linear", name='temp2')(t2)
t3 = layers.Dense(units, activation="sigmoid")(m)
t3 = layers.Dense(1, activation="linear", name='temp3')(t3)
t4 = layers.Dense(units, activation="sigmoid")(m)
t4 = layers.Dense(1, activation="linear", name='temp4')(t4)
t5 = layers.Dense(units, activation="sigmoid")(m)
t5 = layers.Dense(1, activation="linear", name='temp5')(t5)
model = models.Model(inputs=m_input, outputs=[t0, t1, t2, t3, t4, t5])
if os.path.exists('models/nowcasting_lstm.h5'):
model = models.load_model('models/nowcasting_lstm.h5')
model.summary()
# Compile Model
model.compile(loss='mse', optimizer='Adam', metrics=['accuracy'])
checkpoint = ModelCheckpoint("models/nowcasting.hdf5", monitor='loss', verbose=0, save_best_only=True, mode='auto', save_freq=1)
# Plot real vs predicted
def plot_nowcasting(observatoryId, title, period, real, pred):
fig = plt.figure()
plt.gcf().set_size_inches(21, 7, forward=True)
start = 0
end = -1
plt.plot(real[start:end], label='real')
plt.plot(pred[start:end], label='pred')
plt.title(observatoryId+' '+title+' Nowcasting ['+period+']')
plt.legend(['Real', 'Pred'])
#plt.show()
fig.savefig(observatoryId+title+'.png')
dfNowcast = pd.DataFrame(columns = ['incHour','loss','real0','pred0','diff0','real1','pred1','diff1','real2','pred2','diff2','real3','pred3','diff3','real4','pred4','diff4','real5','pred5','diff5'])
## Prepare Dataset
dataPeriod = '2020-01-18 ~ 02-07' # 21 days
#dataPeriod = '2020-01-18 ~ 02-14' # 28 days
#dataPeriod = '2020-01-21 ~ 02-21' # 35 days
trainDays = 21
### Begin of Incremental Training
numHour = 72
for incHour in range(0, numHour):
start, end = 0+incHour, 0+24*trainDays+incHour
# training dataset
trainX = np.array([dataX[i:i+ historyPoints] for i in range(start, end)])
trainY0 = np.array([dataY[i+ historyPoints+0] for i in range(start, end)])
trainY1 = np.array([dataY[i+ historyPoints+1] for i in range(start, end)])
trainY2 = np.array([dataY[i+ historyPoints+2] for i in range(start, end)])
trainY3 = np.array([dataY[i+ historyPoints+3] for i in range(start, end)])
trainY4 = np.array([dataY[i+ historyPoints+4] for i in range(start, end)])
trainY5 = np.array([dataY[i+ historyPoints+5] for i in range(start, end)])
print(trainX.shape)
trainY0 = trainY0.reshape(trainY0.shape[0], 1)
trainY1 = trainY1.reshape(trainY1.shape[0], 1)
trainY2 = trainY2.reshape(trainY2.shape[0], 1)
trainY3 = trainY3.reshape(trainY3.shape[0], 1)
trainY4 = trainY4.reshape(trainY4.shape[0], 1)
trainY5 = trainY5.reshape(trainY5.shape[0], 1)
print(trainY0.shape)
print(trainY1.shape)
print(trainY2.shape)
print(trainY3.shape)
print(trainY4.shape)
print(trainY5.shape)
# testing dataset
testX = np.array(dataX[end : end+historyPoints]) # 24 hours data
testY = np.array(dataY[end+historyPoints: end+historyPoints+6]) # 6 hours predicted
testX = testX.reshape(1, testX.shape[0], testX.shape[1])
print(testX.shape)
testY = testY.reshape(testY.shape[0], 1)
print(testY.shape)
# normalise X
trainX = trainX.astype('float') / 1024.0
testX = testX.astype('float') / 1024.0
## Train Model
if os.path.exists('models/nowcasting_lstm.h5'):
num_epochs = 20 # incremental training
else:
num_epochs = 8000 # new training
# target loss <0.1 (for temperature)
start_time = time.time()
history = model.fit(trainX, [trainY0, trainY1, trainY2, trainY3, trainY4, trainY5], batch_size=batch_size, epochs=num_epochs, verbose=2 #)
,callbacks=[checkpoint])
print("--- model trained : %s minutes ---" % str((time.time() - start_time)/60))
## Save Model
# if not os.path.exists('models/nowcasting_lstm.h5'):
# models.save_model(model, 'models/nowcasting_lstm.h5')
## Evaluate Model
# *show predicton using training dataset*
# loss = history.history['loss'][-1]
loss = min(history.history['loss'])
if os.path.exists('models/nowcasting.hdf5'):
model.load_weights("models/nowcasting.hdf5")
(predY0, predY1, predY2, predY3, predY4, predY5) = model.predict(trainX)
plot_nowcasting(ObservatoryID, '_Train_'+str(trainDays)+'days_+'+str(incHour)+'hour', dataPeriod, trainY0, predY0)
## Test Model
(preY0, predY1, predY2, predY3, predY4, predY5) = model.predict(testX)
real = testY
pred = [predY0[0], predY1[0], predY2[0], predY3[0], predY4[0], predY5[0]]
ll = []
ll.append(incHour)
ll.append(loss)
for i in range(6):
ll.append(real[i][0])
ll.append(pred[i][0])
ll.append(pred[i][0]-real[i][0])
print(ll)
dfNowcast.loc[len(dfNowcast)] = ll
dfNowcast.to_csv('out/nowcasting.csv',index=False)
# To fresh training the model
if os.path.exists('models/nowcasting.hdf5'):
os.remove('models/nowcasting.hdf5')
### End of Incremental Training