Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RL results are worse than Mle results in Rouge-1,2 #26

Open
pengzhi123 opened this issue Apr 14, 2020 · 3 comments
Open

RL results are worse than Mle results in Rouge-1,2 #26

pengzhi123 opened this issue Apr 14, 2020 · 3 comments

Comments

@pengzhi123
Copy link

pengzhi123 commented Apr 14, 2020

hi, we found the best model (0050000.tar) for rl training after mle training, Although the rouge-L score improved, but the rouge-1 and rouge-2 score became very bad .
we show the eval:(we use rouge-1 for evaluation).
mle (official testset):
Training mle: yes, Training rl: no, mle weight: 1.00, rl weight: 0.00
intra_encoder: True intra_decoder: True
0005000.tar rouge_1: 0.3174
0010000.tar rouge_1: 0.3249
0015000.tar rouge_1: 0.3289
0020000.tar rouge_1: 0.3325
0025000.tar rouge_1: 0.3331
0030000.tar rouge_1: 0.3357
0035000.tar rouge_1: 0.3379
0040000.tar rouge_1: 0.3355
0045000.tar rouge_1: 0.3382
0050000.tar rouge_1: 0.3426
0055000.tar rouge_1: 0.3384
0060000.tar rouge_1: 0.3339
0065000.tar rouge_1: 0.3410
0070000.tar rouge_1: 0.3408
0075000.tar rouge_1: 0.3425
0080000.tar rouge_1: 0.3384
0085000.tar rouge_1: 0.3362
0090000.tar rouge_1: 0.3424
0095000.tar rouge_1: 0.3377
0100000.tar rouge_1: 0.3361
0105000.tar rouge_1: 0.3357
0110000.tar rouge_1: 0.3389
0115000.tar rouge_1: 0.3374
0120000.tar rouge_1: 0.3341
0125000.tar rouge_1: 0.3357
0130000.tar rouge_1: 0.3377
0135000.tar rouge_1: 0.3317
0140000.tar rouge_1: 0.3321
0145000.tar rouge_1: 0.3349
0150000.tar rouge_1: 0.3363
rl (official testset):
in_rl=yes --mle_weight=0.0 --load_model=0050000.tar --new_lr=0.0001
Training mle: no, Training rl: yes, mle weight: 0.00, rl weight: 1.00
intra_encoder: True intra_decoder: True
Loaded model at data/saved_models/0050000.tar
0050000.tar rouge_1: 0.3426
0055000.tar rouge_1: 0.2522
0060000.tar rouge_1: 0.2520
0065000.tar rouge_1: 0.2549
0070000.tar rouge_1: 0.2550
0075000.tar rouge_1: 0.2547
0080000.tar rouge_1: 0.2584
0085000.tar rouge_1: 0.2576
0090000.tar rouge_1: 0.2543
0095000.tar rouge_1: 0.2567
0100000.tar rouge_1: 0.2562
0105000.tar rouge_1: 0.2556
0110000.tar rouge_1: 0.2547
0115000.tar rouge_1: 0.2575
0120000.tar rouge_1: 0.2543
0125000.tar rouge_1: 0.2581
0130000.tar rouge_1: 0.2534
0135000.tar rouge_1: 0.2533
0140000.tar rouge_1: 0.2526
0145000.tar rouge_1: 0.2511
0150000.tar rouge_1: 0.2547

mle result:
0075000.tar scores: {'rouge-1': {'f': 0.3424728366572667, 'p': 0.39166721241721236, 'r': 0.31968494072078807}, 'rouge-2': {'f': 0.1732520206640223, 'p': 0.19845553983053968, 'r': 0.1623725413112666}, 'rouge-l': {'f': 0.32962985739519235, 'p': 0.3758193750693756, 'r': 0.3075168451832533}}

rl result:
0080000.tar scores: {'rouge-1': {'f': 0.2574669041724543, 'p': 0.21302155489848726, 'r': 0.34803503077209935}, 'rouge-2': {'f': 0.11896310475645827, 'p': 0.09758671687502977, 'r': 0.16587082443700088}, 'rouge-l': {'f': 0.35379459020991105, 'p': 0.39799812070645335, 'r': 0.33855028225319733}}

0125000.tar scores: {'rouge-1': {'f': 0.25674349158898563, 'p': 0.21440196978373974, 'r': 0.34277860517537473}, 'rouge-2': {'f': 0.11907341598225046, 'p': 0.09900864566338015, 'r': 0.16306397570581008}, 'rouge-l': {'f': 0.35462601354567735, 'p': 0.40579230645897313, 'r': 0.33368591052575747}}
thanks for your help!

@pengzhi123 pengzhi123 changed the title RL results are worse than Mle results RL results are worse than Mle results in Rouge-1 Apr 14, 2020
@pengzhi123 pengzhi123 changed the title RL results are worse than Mle results in Rouge-1 RL results are worse than Mle results in Rouge-1,2 Apr 14, 2020
@nkathireshan
Copy link

hi, we found the best model (0050000.tar) for rl training after mle training, Although the rouge-L score improved, but the rouge-1 and rouge-2 score became very bad .
we show the eval:(we use rouge-1 for evaluation).
mle (official testset):
Training mle: yes, Training rl: no, mle weight: 1.00, rl weight: 0.00
intra_encoder: True intra_decoder: True
0005000.tar rouge_1: 0.3174
0010000.tar rouge_1: 0.3249
0015000.tar rouge_1: 0.3289
0020000.tar rouge_1: 0.3325
0025000.tar rouge_1: 0.3331
0030000.tar rouge_1: 0.3357
0035000.tar rouge_1: 0.3379
0040000.tar rouge_1: 0.3355
0045000.tar rouge_1: 0.3382
0050000.tar rouge_1: 0.3426
0055000.tar rouge_1: 0.3384
0060000.tar rouge_1: 0.3339
0065000.tar rouge_1: 0.3410
0070000.tar rouge_1: 0.3408
0075000.tar rouge_1: 0.3425
0080000.tar rouge_1: 0.3384
0085000.tar rouge_1: 0.3362
0090000.tar rouge_1: 0.3424
0095000.tar rouge_1: 0.3377
0100000.tar rouge_1: 0.3361
0105000.tar rouge_1: 0.3357
0110000.tar rouge_1: 0.3389
0115000.tar rouge_1: 0.3374
0120000.tar rouge_1: 0.3341
0125000.tar rouge_1: 0.3357
0130000.tar rouge_1: 0.3377
0135000.tar rouge_1: 0.3317
0140000.tar rouge_1: 0.3321
0145000.tar rouge_1: 0.3349
0150000.tar rouge_1: 0.3363
rl (official testset):
in_rl=yes --mle_weight=0.0 --load_model=0050000.tar --new_lr=0.0001
Training mle: no, Training rl: yes, mle weight: 0.00, rl weight: 1.00
intra_encoder: True intra_decoder: True
Loaded model at data/saved_models/0050000.tar
0050000.tar rouge_1: 0.3426
0055000.tar rouge_1: 0.2522
0060000.tar rouge_1: 0.2520
0065000.tar rouge_1: 0.2549
0070000.tar rouge_1: 0.2550
0075000.tar rouge_1: 0.2547
0080000.tar rouge_1: 0.2584
0085000.tar rouge_1: 0.2576
0090000.tar rouge_1: 0.2543
0095000.tar rouge_1: 0.2567
0100000.tar rouge_1: 0.2562
0105000.tar rouge_1: 0.2556
0110000.tar rouge_1: 0.2547
0115000.tar rouge_1: 0.2575
0120000.tar rouge_1: 0.2543
0125000.tar rouge_1: 0.2581
0130000.tar rouge_1: 0.2534
0135000.tar rouge_1: 0.2533
0140000.tar rouge_1: 0.2526
0145000.tar rouge_1: 0.2511
0150000.tar rouge_1: 0.2547

mle result:
0075000.tar scores: {'rouge-1': {'f': 0.3424728366572667, 'p': 0.39166721241721236, 'r': 0.31968494072078807}, 'rouge-2': {'f': 0.1732520206640223, 'p': 0.19845553983053968, 'r': 0.1623725413112666}, 'rouge-l': {'f': 0.32962985739519235, 'p': 0.3758193750693756, 'r': 0.3075168451832533}}

rl result:
0080000.tar scores: {'rouge-1': {'f': 0.2574669041724543, 'p': 0.21302155489848726, 'r': 0.34803503077209935}, 'rouge-2': {'f': 0.11896310475645827, 'p': 0.09758671687502977, 'r': 0.16587082443700088}, 'rouge-l': {'f': 0.35379459020991105, 'p': 0.39799812070645335, 'r': 0.33855028225319733}}

0125000.tar scores: {'rouge-1': {'f': 0.25674349158898563, 'p': 0.21440196978373974, 'r': 0.34277860517537473}, 'rouge-2': {'f': 0.11907341598225046, 'p': 0.09900864566338015, 'r': 0.16306397570581008}, 'rouge-l': {'f': 0.35462601354567735, 'p': 0.40579230645897313, 'r': 0.33368591052575747}}
thanks for your help!

@pengzhi123 can you please let me know the system specification that you have used? I am trying to run this in windows machine with 32 GB RAM, I don't have CUDA enabled in my system.
I doubt this code won't run properly in a windows environment? please advise

@pengzhi123
Copy link
Author

嗨,我们找到了进行mle训练后rl训练的最佳模型(0050000.tar),尽管rouge-L得分有所提高,但rouge-1和rouge-2得分却很差。
我们显示eval :(我们使用rouge-1进行评估)。
mle(官方测试集):
训练mle:是,训练rl:否,mle权重:1.00,rl权重:0.00
intra_encoder:真正的intra_decoder:真正
0005000.tar rouge_1:0.3174
0010000.tar rouge_1:0.3249
0015000.tar rouge_1:0.3289
0020000 .tar rouge_1:0.3325
0025000.tar rouge_1:0.3331
0030000.tar rouge_1:0.3357
0035000.tar rouge_1:0.3379
0040000.tar rouge_1:0.3355
0045000.tar rouge_1:0.3382
0050000.tar rouge_1:0.3426
0055000.tar rouge_1:0.3384
0060000.tar rouge_1:0.3339
0065000.tar rouge_1:0.3410
0070000.tar rouge_1:0.3408
0075000.tar rouge_1:0.3425
0080000.tar rouge_1:0.3384
0085000.tar rouge_1:0.3362
0090000.tar rouge_1:0.3424
0095000。 tar rouge_1:0.3377
0100000.tar rouge_1:0.3361
0105000.tar rouge_1:0.3357
0110000.tar rouge_1:0.3389
0115000.tar rouge_1:0.3374
0120000.tar rouge_1:0.3341
0125000.tar rouge_1:0.3357
0130000.tar rouge_1:0.3377
0135000.tar rouge_1 :0.3317
0140000.tar rouge_1:0.3321
0145000.tar rouge_1:0.3349
0150000.tar rouge_1:0.3363
rl(官方测试集):
in_rl = yes --mle_weight = 0.0 --load_model = 0050000.tar --new_lr = 0.0001
Training mle:no,Training rl:yes,mle weight:0.00,rl weight:1.00
intra_encoder:True intra_decoder:True
在数据/处加载模型saved_models / 0050000.tar
0050000.tar rouge_1:0.3426
0055000.tar rouge_1:0.2522
0060000.tar rouge_1:0.2520
0065000.tar rouge_1:0.2549
0070000.tar rouge_1:0.2550
0075000.tar rouge_1:0.2547
0080000.tar rouge_1:0.2584
0085000.tar rouge_1:0.2576
0090000.tar rouge_1:0.2543
0095000.tar rouge_1:0.2567
0100000.tar rouge_1:0.2562
0105000.tar rouge_1:0.2556
0110000.tar rouge_1:0.2547
0115000.tar rouge_1:0.2575
0120000.tar rouge_1:0.2543
0125000.tar rouge_1:0.2581
0130000.tar rouge_1:0.2534
0135000.tar rouge_1:0.2533
0140000.tar rouge_1:0.2526
0145000.tar rouge_1:0.2511
0150000.tar rouge_1:0.2547
mle结果:
0075000.tar得分:{'rouge-1':{'f':0.3424728366572667,'p':0.39166721241721236,'r':0.31968494072078807},'rouge-2':{'f':0.1732520206640223,'p ':0.19845553983053968,'r':0.1623725413112666},'rouge-l':{'f':0.32962985739519235,'p':0.3758193750693756,'r':0.3075168451832533}}}
rl结果:
0080000.tar得分:{'rouge-1':{'f':0.2574669041724543,'p':0.21302155489848726,'r':0.34803503077209935},'rouge-2':{'f':0.11896310475645827,'p ':0.09758671687502977,'r':0.16587082443700088},'rouge-l':{'f':0.35379459020991105,'p':0.39799812070645335,'r':0.33855028225319733}}
0125000.tar得分:{'rouge-1':{'f':0.25674349158898563,'p':0.21440196978373974,'r':0.34277860517537473},'rouge-2':{'f':0.11907341598225046,'p':0.09900864566338015 ,'r':0.16306397570581008},'rouge-l':{'f':0.35462601354567735,'p':0.40579230645897313,'r':0.33368591052575747}}
感谢您的帮助!

@ pengzhi123 您可以让我知道您使用的系统规格吗?我试图在具有32 GB RAM的Windows计算机中运行此程序,但我的系统未启用CUDA。
我怀疑这段代码无法在Windows环境中正常运行吗?请指教

You should use ubuntu, not windows.

hi, we found the best model (0050000.tar) for rl training after mle training, Although the rouge-L score improved, but the rouge-1 and rouge-2 score became very bad .
we show the eval:(we use rouge-1 for evaluation).
mle (official testset):
Training mle: yes, Training rl: no, mle weight: 1.00, rl weight: 0.00
intra_encoder: True intra_decoder: True
0005000.tar rouge_1: 0.3174
0010000.tar rouge_1: 0.3249
0015000.tar rouge_1: 0.3289
0020000.tar rouge_1: 0.3325
0025000.tar rouge_1: 0.3331
0030000.tar rouge_1: 0.3357
0035000.tar rouge_1: 0.3379
0040000.tar rouge_1: 0.3355
0045000.tar rouge_1: 0.3382
0050000.tar rouge_1: 0.3426
0055000.tar rouge_1: 0.3384
0060000.tar rouge_1: 0.3339
0065000.tar rouge_1: 0.3410
0070000.tar rouge_1: 0.3408
0075000.tar rouge_1: 0.3425
0080000.tar rouge_1: 0.3384
0085000.tar rouge_1: 0.3362
0090000.tar rouge_1: 0.3424
0095000.tar rouge_1: 0.3377
0100000.tar rouge_1: 0.3361
0105000.tar rouge_1: 0.3357
0110000.tar rouge_1: 0.3389
0115000.tar rouge_1: 0.3374
0120000.tar rouge_1: 0.3341
0125000.tar rouge_1: 0.3357
0130000.tar rouge_1: 0.3377
0135000.tar rouge_1: 0.3317
0140000.tar rouge_1: 0.3321
0145000.tar rouge_1: 0.3349
0150000.tar rouge_1: 0.3363
rl (official testset):
in_rl=yes --mle_weight=0.0 --load_model=0050000.tar --new_lr=0.0001
Training mle: no, Training rl: yes, mle weight: 0.00, rl weight: 1.00
intra_encoder: True intra_decoder: True
Loaded model at data/saved_models/0050000.tar
0050000.tar rouge_1: 0.3426
0055000.tar rouge_1: 0.2522
0060000.tar rouge_1: 0.2520
0065000.tar rouge_1: 0.2549
0070000.tar rouge_1: 0.2550
0075000.tar rouge_1: 0.2547
0080000.tar rouge_1: 0.2584
0085000.tar rouge_1: 0.2576
0090000.tar rouge_1: 0.2543
0095000.tar rouge_1: 0.2567
0100000.tar rouge_1: 0.2562
0105000.tar rouge_1: 0.2556
0110000.tar rouge_1: 0.2547
0115000.tar rouge_1: 0.2575
0120000.tar rouge_1: 0.2543
0125000.tar rouge_1: 0.2581
0130000.tar rouge_1: 0.2534
0135000.tar rouge_1: 0.2533
0140000.tar rouge_1: 0.2526
0145000.tar rouge_1: 0.2511
0150000.tar rouge_1: 0.2547
mle result:
0075000.tar scores: {'rouge-1': {'f': 0.3424728366572667, 'p': 0.39166721241721236, 'r': 0.31968494072078807}, 'rouge-2': {'f': 0.1732520206640223, 'p': 0.19845553983053968, 'r': 0.1623725413112666}, 'rouge-l': {'f': 0.32962985739519235, 'p': 0.3758193750693756, 'r': 0.3075168451832533}}
rl result:
0080000.tar scores: {'rouge-1': {'f': 0.2574669041724543, 'p': 0.21302155489848726, 'r': 0.34803503077209935}, 'rouge-2': {'f': 0.11896310475645827, 'p': 0.09758671687502977, 'r': 0.16587082443700088}, 'rouge-l': {'f': 0.35379459020991105, 'p': 0.39799812070645335, 'r': 0.33855028225319733}}
0125000.tar scores: {'rouge-1': {'f': 0.25674349158898563, 'p': 0.21440196978373974, 'r': 0.34277860517537473}, 'rouge-2': {'f': 0.11907341598225046, 'p': 0.09900864566338015, 'r': 0.16306397570581008}, 'rouge-l': {'f': 0.35462601354567735, 'p': 0.40579230645897313, 'r': 0.33368591052575747}}
thanks for your help!

@pengzhi123 can you please let me know the system specification that you have used? I am trying to run this in windows machine with 32 GB RAM, I don't have CUDA enabled in my system.
I doubt this code won't run properly in a windows environment? please advise

You should use ubuntu, not windows.

@Berylv587
Copy link

hello, I met "stopIeration error' when runing eval.py. Have you ever met the same problem? If you have, please tell me how to sovle it.
image

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants