forked from Ademfcan/deep_sort
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdeepsortYoloV8.py
60 lines (49 loc) · 2.08 KB
/
deepsortYoloV8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import cv2
from ultralytics import YOLO
import random;
from tracker import Tracker;
model = YOLO("..\\xbot\\Braindance\\bestV8.pt") # Open the model
colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for j in range(10)]
tracker = Tracker();
detection_threshold = 0.5
cap = None
def loop():
while True:
cap = cv2.VideoCapture("..\\xbot\\Braindance\\vid1.mp4") # path to your video
while cap.isOpened():
# Read a frame from the video
print("Reading")
success, frame = cap.read()
fps = cap.get(cv2.CAP_PROP_FPS)
if success:
results = model.predict(
frame, show_boxes=True, conf=0.8, show=False
) # images is a list of PIL images
for result in results:
detections = []
for r in result.boxes.data.tolist():
x1, y1, x2, y2, score, class_id = r
x1 = int(x1)
x2 = int(x2)
y1 = int(y1)
y2 = int(y2)
class_id = int(class_id)
if score > detection_threshold:
detections.append([x1, y1, x2, y2, score])
tracker.update(frame, detections)
for track in tracker.tracks:
bbox = track.bbox
x1, y1, x2, y2 = bbox
track_id = track.track_id
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (colors[track_id % len(colors)]), 3)
cv2.imshow("Frame",frame)
# Display the annotated frame
else:
# Break the loop if the end of the video is reached
break # Release the video capture object and close the display window
if cv2.waitKey(1) & 0xFF == ord("q"):
return
loop()
if cap:
cap.release()
cv2.destroyAllWindows()