diff --git a/carculator_truck/__init__.py b/carculator_truck/__init__.py index 8974ff1..6122281 100644 --- a/carculator_truck/__init__.py +++ b/carculator_truck/__init__.py @@ -9,7 +9,7 @@ """ -_all_ = ( +__all__ = ( "TruckInputParameters", "fill_xarray_from_input_parameters", "TruckModel", diff --git a/carculator_truck/driving_cycles.py b/carculator_truck/driving_cycles.py index 0050c5b..6e92344 100644 --- a/carculator_truck/driving_cycles.py +++ b/carculator_truck/driving_cycles.py @@ -3,6 +3,13 @@ def get_driving_cycle(size: list, name: str) -> np.ndarray: + """ + Get driving cycle. + + :param size: List of vehicle sizes. + :param name: The name of the driving cycle. + :return: :meth:`ndarray` object + """ return get_standard_driving_cycle_and_gradient( vehicle_type="truck", vehicle_sizes=size, @@ -11,6 +18,13 @@ def get_driving_cycle(size: list, name: str) -> np.ndarray: def get_road_gradient(size: list, name: str) -> np.ndarray: + """ + Get road gradient data. + + :param size: List of vehicle sizes. + :param name: The name of the driving cycle. + :return: :meth:`ndarray` object + """ return get_standard_driving_cycle_and_gradient( vehicle_type="truck", vehicle_sizes=size, diff --git a/carculator_truck/inventory.py b/carculator_truck/inventory.py index 2d0c085..8d686f7 100644 --- a/carculator_truck/inventory.py +++ b/carculator_truck/inventory.py @@ -24,7 +24,7 @@ def fill_in_A_matrix(self): Fill-in the A matrix. Does not return anything. Modifies in place. Shape of the A matrix (values, products, activities). - :param array: :attr:`array` from :class:`CarModel` class + :attr:`array` from :class:`CarModel` class """ # Glider/Frame diff --git a/carculator_truck/model.py b/carculator_truck/model.py index 6f84632..5e524ce 100644 --- a/carculator_truck/model.py +++ b/carculator_truck/model.py @@ -29,7 +29,7 @@ class TruckModel(VehicleModel): This class represents the entirety of the vehicles considered, with useful attributes, such as an array that stores all the vehicles parameters. - :ivar array: multi-dimensional numpy-like array that contains parameters' value(s) + :ivar array: multidimensional numpy-like array that contains parameters' value(s) :vartype array: xarray.DataArray :ivar mappings: Dictionary with names correspondence :vartype mappings: dict @@ -44,18 +44,16 @@ def set_all(self, electric_utility_factor: float = None): efficiency of the vehicle, costs, etc. :meth:`set_component_masses()`, :meth:`set_vehicle_masses()` and :meth:`set_power_parameters()` and - :meth:`set_energy_stored_properties` relate to one another. + :meth:`set_energy_stored_properties` relate to one another. `powertrain_mass` depends on `power`, `curb_mass` is affected by changes in `powertrain_mass`, - `combustion engine mass`, `electric engine mass`. `energy battery mass` is influenced - by the `curb mass` but also + `combustion engine mass`, `electric engine mass`. `energy battery mass` is influencedby the `curb mass` but also by the `target range` the truck has. `power` is also varying with `curb_mass`. The current solution is to loop through the methods until the change in payload between - two iterations is - inferior to 0.1%. It is then assumed that the trucks are correctly sized. - - :returns: Does not return anything. Modifies ``self.array`` in place. + two iterations is inferior to 0.1%. It is then assumed that the trucks are correctly sized. + :param electric_utility_factor: the share of km driven in battery-depleting mode over the required range autonomy + :return: Does not return anything. Modifies ``self.array`` in place. """ diff = 1.0 @@ -173,7 +171,6 @@ def adjust_cost(self): """ This method adjusts costs of energy storage over time, to correct for the overly optimistic linear interpolation between years. - """ n_iterations = self.array.shape[-1] @@ -279,7 +276,6 @@ def set_battery_chemistry(self): def override_range(self): """ Set storage size or range for each powertrain. - :return: """ target_ranges = { @@ -322,7 +318,6 @@ def calculate_ttw_energy(self): auxiliary services as well as to move the vehicle. The sum is stored under the parameter label "TtW energy" in :attr:`self.array`. - """ self.energy = self.ecm.motive_energy_per_km( @@ -405,7 +400,7 @@ def calculate_ttw_energy(self): def set_battery_fuel_cell_replacements(self): """ - This methods calculates the number of replacement batteries needed + These methods calculates the number of replacement batteries needed to match the vehicle lifetime. Given the chemistry used, the cycle life is known. Given the lifetime kilometers and the kilometers per charge, the number of charge cycles can be inferred. @@ -415,7 +410,6 @@ def set_battery_fuel_cell_replacements(self): Also, the number of replacement is rounded up. This means that the entirety of the battery replacement is allocated to the vehicle (and not to its potential second life). - """ # Number of replacement of battery is rounded *up* @@ -464,13 +458,11 @@ def set_vehicle_masses(self): """ Define ``curb mass``, ``driving mass``, and ``cargo mass``. - * `curb mass `__ is the mass of the vehicle and fuel, without people or cargo. - * ``cargo mass`` is the mass of the cargo and passengers. - * ``driving mass`` is the ``curb mass`` plus ``cargo mass``. - - .. note:: - driving mass = cargo mass + driving mass + * `curb mass `__ is the mass of the vehicle and fuel, without people or cargo. + * ``cargo mass`` is the mass of the cargo and passengers. + * ``driving mass`` is the ``curb mass`` plus ``cargo mass``. + .. note:: driving mass = cargo mass + driving mass """ # Base components, common to all powertrains @@ -546,11 +538,8 @@ def set_component_masses(self): def set_electric_utility_factor(self, uf: float = None) -> None: """ - The electric utility factor - is the share of km driven in battery-depleting mode - over the required range autonomy. - Scania's PHEV tractor can drive 60 km in electric mode - :return: + The electric utility factor is the share of km driven in battery-depleting mode + over the required range autonomy. Scania's PHEV tractor can drive 60 km in electric mode """ if "PHEV-e" in self.array.coords["powertrain"].values: range = ( @@ -581,9 +570,7 @@ def set_electric_utility_factor(self, uf: float = None) -> None: def set_energy_stored_properties(self): """ First, fuel mass is defined. It is dependent on the range required. - Then batteries are sized, depending on the range - required and the energy consumption. - :return: + Then batteries are sized, depending on the range required and the energy consumption. """ _ = lambda x: np.where(x == 0, 1, x) @@ -848,13 +835,13 @@ def set_costs(self): def calculate_cost_impacts(self, sensitivity=False, scope=None): """ - This method returns an array with cost values per vehicle-km, sub-divided into the following groups: + This method returns an array with cost values per vehicle-km, subdivided into the following groups: - * Purchase - * Maintentance - * Component replacement - * Energy - * Total cost of ownership + * Purchase + * Maintenance + * Component replacement + * Energy + * Total cost of ownership :return: A xarray array with cost information per vehicle-km :rtype: xarray.core.dataarray.DataArray diff --git a/docs/_static/img/energy_model.png b/docs/_static/img/energy_model.png index c7f53b6..712904a 100644 Binary files a/docs/_static/img/energy_model.png and b/docs/_static/img/energy_model.png differ diff --git a/docs/_static/img/hybrid_efficiency.png b/docs/_static/img/hybrid_efficiency.png index 63ea7b8..337ede3 100644 Binary files a/docs/_static/img/hybrid_efficiency.png and b/docs/_static/img/hybrid_efficiency.png differ diff --git a/docs/media/image68.jpg b/docs/_static/img/image1.jpg similarity index 100% rename from docs/media/image68.jpg rename to docs/_static/img/image1.jpg diff --git a/docs/media/image79.png b/docs/_static/img/image10.png similarity index 100% rename from docs/media/image79.png rename to docs/_static/img/image10.png diff --git a/docs/_static/img/image11.png b/docs/_static/img/image11.png new file mode 100644 index 0000000..7dd30b2 Binary files /dev/null and b/docs/_static/img/image11.png differ diff --git a/docs/_static/img/image12.png b/docs/_static/img/image12.png new file mode 100644 index 0000000..45f1f6c Binary files /dev/null and b/docs/_static/img/image12.png differ diff --git a/docs/media/image61.png b/docs/_static/img/image13.png similarity index 100% rename from docs/media/image61.png rename to docs/_static/img/image13.png diff --git a/docs/media/image83.png b/docs/_static/img/image14.png similarity index 100% rename from docs/media/image83.png rename to docs/_static/img/image14.png diff --git a/docs/_static/img/image15.png b/docs/_static/img/image15.png new file mode 100644 index 0000000..07079cb Binary files /dev/null and b/docs/_static/img/image15.png differ diff --git a/docs/_static/img/image16.png b/docs/_static/img/image16.png new file mode 100644 index 0000000..6b9dde7 Binary files /dev/null and b/docs/_static/img/image16.png differ diff --git a/docs/_static/img/image17.png b/docs/_static/img/image17.png new file mode 100644 index 0000000..10142fe Binary files /dev/null and b/docs/_static/img/image17.png differ diff --git a/docs/_static/img/image18.png b/docs/_static/img/image18.png new file mode 100644 index 0000000..37622b6 Binary files /dev/null and b/docs/_static/img/image18.png differ diff --git a/docs/_static/img/image19.png b/docs/_static/img/image19.png new file mode 100644 index 0000000..607845a Binary files /dev/null and b/docs/_static/img/image19.png differ diff --git a/docs/media/image69.jpg b/docs/_static/img/image2.jpg similarity index 100% rename from docs/media/image69.jpg rename to docs/_static/img/image2.jpg diff --git a/docs/_static/img/image20.png b/docs/_static/img/image20.png new file mode 100644 index 0000000..04f2567 Binary files /dev/null and b/docs/_static/img/image20.png differ diff --git a/docs/_static/img/image21.png b/docs/_static/img/image21.png new file mode 100644 index 0000000..5021f30 Binary files /dev/null and b/docs/_static/img/image21.png differ diff --git a/docs/_static/img/image22.png b/docs/_static/img/image22.png new file mode 100644 index 0000000..afa6b1e Binary files /dev/null and b/docs/_static/img/image22.png differ diff --git a/docs/_static/img/image23.png b/docs/_static/img/image23.png new file mode 100644 index 0000000..3328086 Binary files /dev/null and b/docs/_static/img/image23.png differ diff --git a/docs/media/image75.png b/docs/_static/img/image24.png similarity index 100% rename from docs/media/image75.png rename to docs/_static/img/image24.png diff --git a/docs/_static/img/image3.png b/docs/_static/img/image3.png new file mode 100644 index 0000000..26eb4b0 Binary files /dev/null and b/docs/_static/img/image3.png differ diff --git a/docs/_static/img/image4.png b/docs/_static/img/image4.png new file mode 100644 index 0000000..117b57b Binary files /dev/null and b/docs/_static/img/image4.png differ diff --git a/docs/media/image72.jpg b/docs/_static/img/image5.jpg similarity index 100% rename from docs/media/image72.jpg rename to docs/_static/img/image5.jpg diff --git a/docs/media/image73.jpg b/docs/_static/img/image6.jpg similarity index 100% rename from docs/media/image73.jpg rename to docs/_static/img/image6.jpg diff --git a/docs/media/image74.jpg b/docs/_static/img/image7.jpg similarity index 100% rename from docs/media/image74.jpg rename to docs/_static/img/image7.jpg diff --git a/docs/_static/img/image8.png b/docs/_static/img/image8.png new file mode 100644 index 0000000..66392ac Binary files /dev/null and b/docs/_static/img/image8.png differ diff --git a/docs/_static/img/image9.png b/docs/_static/img/image9.png new file mode 100644 index 0000000..db0bb18 Binary files /dev/null and b/docs/_static/img/image9.png differ diff --git a/docs/media/image_cng_tanks.png b/docs/_static/img/image_cng_tanks.png similarity index 100% rename from docs/media/image_cng_tanks.png rename to docs/_static/img/image_cng_tanks.png diff --git a/docs/media/image_eff_fitting_1.png b/docs/_static/img/image_eff_fitting_1.png similarity index 100% rename from docs/media/image_eff_fitting_1.png rename to docs/_static/img/image_eff_fitting_1.png diff --git a/docs/media/image_eff_fitting_2.png b/docs/_static/img/image_eff_fitting_2.png similarity index 100% rename from docs/media/image_eff_fitting_2.png rename to docs/_static/img/image_eff_fitting_2.png diff --git a/docs/media/image_engine_downsizing.png b/docs/_static/img/image_engine_downsizing.png similarity index 100% rename from docs/media/image_engine_downsizing.png rename to docs/_static/img/image_engine_downsizing.png diff --git a/docs/media/image_noise_1.png b/docs/_static/img/image_noise_1.png similarity index 100% rename from docs/media/image_noise_1.png rename to docs/_static/img/image_noise_1.png diff --git a/docs/media/image_noise_2.png b/docs/_static/img/image_noise_2.png similarity index 100% rename from docs/media/image_noise_2.png rename to docs/_static/img/image_noise_2.png diff --git a/docs/media/image_sulfur_countries.png b/docs/_static/img/image_sulfur_countries.png similarity index 100% rename from docs/media/image_sulfur_countries.png rename to docs/_static/img/image_sulfur_countries.png diff --git a/docs/media/image_truck_resistance.png b/docs/_static/img/image_truck_resistance.png similarity index 100% rename from docs/media/image_truck_resistance.png rename to docs/_static/img/image_truck_resistance.png diff --git a/docs/_static/img/vecto_validation.png b/docs/_static/img/vecto_validation.png index d56c323..023d412 100644 Binary files a/docs/_static/img/vecto_validation.png and b/docs/_static/img/vecto_validation.png differ diff --git a/docs/_static/resources/examples.zip b/docs/_static/resources/examples.zip index 9528cdd..16a2366 100644 Binary files a/docs/_static/resources/examples.zip and b/docs/_static/resources/examples.zip differ diff --git a/docs/annexes.rst b/docs/annexes.rst index 99b9c63..0fd4f36 100644 --- a/docs/annexes.rst +++ b/docs/annexes.rst @@ -114,3 +114,5 @@ used to calibrate ``carculator_truck`` are shown in the table below. +------------------+--------+---------+------------+----------------------------+-------------------------------+-------------------+-------------------------+-------------------------+--------------------------------------+ | Class 8 Aero | DayCab | PHEV-d | 40 | 510 | 280 | 510 | 55% | | | +------------------+--------+---------+------------+----------------------------+-------------------------------+-------------------+-------------------------+-------------------------+--------------------------------------+ + + diff --git a/docs/api.rst b/docs/api.rst index 0bb2950..4bb80c0 100644 --- a/docs/api.rst +++ b/docs/api.rst @@ -12,7 +12,7 @@ Truck Input Parameter Array ----- -.. automodule:: carculator_truck.array +.. automodule:: carculator_utils.array :members: Driving cycle @@ -24,11 +24,11 @@ Driving cycle Energy consumption ------------------ -.. automodule:: carculator_truck.energy_consumption +.. automodule:: carculator_utils.energy_consumption :members: -Car Model ---------- +Truck Model +----------- .. automodule:: carculator_truck.model :members: @@ -36,13 +36,13 @@ Car Model Noise Model ----------- -.. automodule:: carculator_truck.noise_emissions +.. automodule:: carculator_utils.noise_emissions :members: Hot pollutants emissions ------------------------ -.. automodule:: carculator_truck.hot_emissions +.. automodule:: carculator_utils.hot_emissions :members: Inventory calculation @@ -54,7 +54,7 @@ Inventory calculation Inventory export ---------------- -.. automodule:: carculator_truck.export +.. automodule:: carculator_utils.export :members: Background systems diff --git a/docs/conf.py b/docs/conf.py index 7796b0a..ad1c14a 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -14,7 +14,7 @@ import sys # sys.path.insert(0, os.path.abspath('C:\Users\sacchi_r\Documents\GitHub\coarse\coarse')) -sys.path.insert(0, os.path.abspath("..")) +sys.path.append(os.path.abspath("..")) # -- Project information ----------------------------------------------------- @@ -24,7 +24,7 @@ author = "Romain Sacchi" # The full version, including alpha/beta/rc tags -release = "0.3.8" +release = "0.3.9" # -- General configuration --------------------------------------------------- @@ -36,7 +36,6 @@ "sphinx.ext.autodoc", "sphinxcontrib.bibtex", "sphinx_copybutton", - "sphinx_design", "sphinx_immaterial", ] diff --git a/docs/index.rst b/docs/index.rst index ae8401d..a8f6dd6 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -3,8 +3,8 @@ .. _intro: -Welcome to Carculator truck’s documentation -=========================================== +Carculator Truck +================ ``carculator_truck`` is a parameterized model that allows to generate and characterize life cycle inventories for different truck configurations, according to selected: diff --git a/docs/media/image70.png b/docs/media/image70.png deleted file mode 100644 index b1703f4..0000000 Binary files a/docs/media/image70.png and /dev/null differ diff --git a/docs/media/image71.png b/docs/media/image71.png deleted file mode 100644 index 5edd392..0000000 Binary files a/docs/media/image71.png and /dev/null differ diff --git a/docs/media/image76.png b/docs/media/image76.png deleted file mode 100644 index 54d5d05..0000000 Binary files a/docs/media/image76.png and /dev/null differ diff --git a/docs/media/image77.png b/docs/media/image77.png deleted file mode 100644 index 5e32a28..0000000 Binary files a/docs/media/image77.png and /dev/null differ diff --git a/docs/media/image78.png b/docs/media/image78.png deleted file mode 100644 index a8130f8..0000000 Binary files a/docs/media/image78.png and /dev/null differ diff --git a/docs/media/image80.png b/docs/media/image80.png deleted file mode 100644 index 4a845d1..0000000 Binary files a/docs/media/image80.png and /dev/null differ diff --git a/docs/media/image81.png b/docs/media/image81.png deleted file mode 100644 index 7e5df69..0000000 Binary files a/docs/media/image81.png and /dev/null differ diff --git a/docs/media/image82.png b/docs/media/image82.png deleted file mode 100644 index e943bf5..0000000 Binary files a/docs/media/image82.png and /dev/null differ diff --git a/docs/media/image84.png b/docs/media/image84.png deleted file mode 100644 index 740d07e..0000000 Binary files a/docs/media/image84.png and /dev/null differ diff --git a/docs/media/image85.png b/docs/media/image85.png deleted file mode 100644 index a4a91c2..0000000 Binary files a/docs/media/image85.png and /dev/null differ diff --git a/docs/media/image86.png b/docs/media/image86.png deleted file mode 100644 index ab9584a..0000000 Binary files a/docs/media/image86.png and /dev/null differ diff --git a/docs/media/image87.png b/docs/media/image87.png deleted file mode 100644 index c1c8f71..0000000 Binary files a/docs/media/image87.png and /dev/null differ diff --git a/docs/media/image88.png b/docs/media/image88.png deleted file mode 100644 index 3eb3677..0000000 Binary files a/docs/media/image88.png and /dev/null differ diff --git a/docs/media/image89.png b/docs/media/image89.png deleted file mode 100644 index 48a2563..0000000 Binary files a/docs/media/image89.png and /dev/null differ diff --git a/docs/media/image90.png b/docs/media/image90.png deleted file mode 100644 index 3c617b5..0000000 Binary files a/docs/media/image90.png and /dev/null differ diff --git a/docs/media/image91.png b/docs/media/image91.png deleted file mode 100644 index 3d6ae72..0000000 Binary files a/docs/media/image91.png and /dev/null differ diff --git a/docs/media/image92.png b/docs/media/image92.png deleted file mode 100644 index 8d5e8f7..0000000 Binary files a/docs/media/image92.png and /dev/null differ diff --git a/docs/modeling.rst b/docs/modeling.rst index b732537..6c9dddf 100644 --- a/docs/modeling.rst +++ b/docs/modeling.rst @@ -1,72 +1,18 @@ -Sections -******** +.. _model: -`1 Overview of carculator_truck modules <#overview-of-carculator_truck-modules>`__ +Modeling +======== -`2 Vehicle modelling <#vehicle-modelling>`__ - -`2.1 Size classes <#size-classes>`__ - -`2.2 Manufacture year and emission standard <#manufacture-year-and-emission-standard>`__ - -`2.3 Size and mass-related parameters and modeling <#size-and-mass-related-parameters-and-modeling>`__ - -`2.4 Electric energy storage <#electric-energy-storage>`__ - -`2.5 Fuel cell stack <#fuel-cell-stack>`__ - -`2.6 Light weighting <#light-weighting>`__ - -`2.7 Sizing of onboard energy storage <#sizing-of-onboard-energy-storage>`__ - -`2.7.1 Sizing of battery <#sizing-of-battery>`__ - -`2.8 Electric utility factor <#electric-utility-factor>`__ - -`3 Inventory modelling <#inventory-modelling>`__ - -`3.1 Road demand <#road-demand>`__ - -`3.2 Fuel properties <#fuel-properties>`__ - -`3.3 Exhaust emissions <#exhaust-emissions>`__ - -`3.3.1 NMHC speciation <#nmhc-speciation>`__ - -`3.4 Non-exhaust emissions <#non-exhaust-emissions>`__ - -`3.4.1 Engine wear emissions <#engine-wear-emissions>`__ - -`3.4.2 Abrasion emissions <#abrasion-emissions>`__ - -`3.4.3 Refrigerant emissions <#refrigerant-emissions>`__ - -`3.5 Noise emissions <#noise-emissions>`__ - -`3.6 Electricity mix calculation <#electricity-mix-calculation>`__ - -`3.7 Inventories for fuel pathways <#inventories-for-fuel-pathways>`__ - -`3.8 Inventories for energy storage components <#inventories-for-energy-storage-components>`__ - -`4 Life cycle impact assessment <#life-cycle-impact-assessment>`__ - -`References <#references>`__ - -This document intends to describe the ``carculator_truck`` model, assumptions +This document describes the ``carculator_truck`` model, assumptions and inventories as exhaustively as possible. + ``carculator_truck`` is an open-source Python library. Its code is publicly -available via its `Github -repository `__. There is -also `an examples -notebook `__, -to guide new users into performing life cycle analyses. +available via its `Github repository `__. You can also :download:`download an examples notebook <_static/resources/examples.zip>`, that guides new users into performing life cycle analyses. Overview of ``carculator_truck`` modules -************************************** +---------------------------------------- -The main module *model.py* builds -the vehicles and delegates the calculation of motive and auxiliary +The main module *model.py* builds the vehicles and delegates the calculation of motive and auxiliary energy, noise, abrasion and exhaust emissions to satellite modules. Once the vehicles are fully characterized, the set of calculated parameters are passed to *inventory.py* which derives life cycle inventories and @@ -75,14 +21,13 @@ can be passed to *export.py* to be exported to various LCA software. Vehicle modelling -***************** +----------------- The modelling of vehicles along powertrain types, time and size classes -is described in this section. It is also referred to as *foreground* -modelling. +is described in this section. It is also referred to as *foreground* modelling. Powertrain types ----------------- +**************** ``carculator_truck`` can model the following powertrain types: @@ -94,7 +39,7 @@ Powertrain types - Fuel cell electric vehicle (FCEV) Size classes ------------- +************ Several size classes are available for each powertrain type. They refer to the maximum permissible gross weight of the vehicle (e.g., 32 tons). @@ -122,75 +67,80 @@ to 400 km without significantly sacrificing the cargo carrying capacity. * 40t * 60t -Example of 3.5t truck, rigid, 2 axles, box body and 7.5t truck, rigid, 2 axles, box body +|br| -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image68.jpg - :width: 40% +.. image:: /_static/img/image1.jpg + :width: 45% +.. image:: /_static/img/image2.jpg + :width: 50% -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image69.jpg - :width: 40% +|s_caption| *Example of 3.5t truck, rigid, 2 axles, box body and 7.5t truck, rigid, 2 axles, box body* |e_caption| -Example of 18t truck, rigid, 2 axles, box body and 26t truck, rigid, 3 axles, box body -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image70.png - :width: 40% +.. image:: /_static/img/image3.png + :width: 45% +.. image:: /_static/img/image4.png + :width: 45% -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image71.png - :width: 40% +|s_caption| *Example of 18t truck, rigid, 2 axles, box body and 26t truck, rigid, 3 axles, box body* |e_caption| -Example of 32t truck, semi-trailer, 2+3 axles, curtain-sider and 40t truck, tipper-trailer, 2+4 axles +.. image:: /_static/img/image5.jpg + :width: 50% +.. image:: /_static/img/image6.jpg + :width: 45% -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image72.jpg - :width: 40% +|s_caption| *Example of 32t truck, semi-trailer, 2+3 axles, curtain-sider and 40t truck, tipper-trailer, 2+4 axles* |e_caption| -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image73.jpg - :width: 40% -Example of 60t truck, semi-trailer + trailer, 2+4+2 axles, curtain-sider +.. image:: /_static/img/image7.jpg + :width: 60% + :align: center -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image74.jpg - :width: 50% +|s_caption| *Example of 60t truck, semi-trailer + trailer, 2+4+2 axles, curtain-sider* |e_caption| Manufacture year and emission standard --------------------------------------- +************************************** For ICE vehicles, several emission standards are considered. For simplicity, it is assumed that the vehicle manufacture year corresponds -to the registration year. Those are presented in Table 1. - -Table 1 Emission standards and year of manufacture for medium and -heavy/duty trucks - -+------------+-----------------+-----------------+-----------------+ -| | **Start of | **End of | **Manufacture | -| | registration** | registration | year in this | -| | | (incl.)** | study** | -+------------+-----------------+-----------------+-----------------+ -| **EURO-3** | 2000 | 2004 | **2002** | -+------------+-----------------+-----------------+-----------------+ -| **EURO-4** | 2005 | 2007 | **2006** | -+------------+-----------------+-----------------+-----------------+ -| **EURO-5** | 2008 | 2012 | **2010** | -+------------+-----------------+-----------------+-----------------+ -| **EURO-6** | 2013 | | **2020** | -+------------+-----------------+-----------------+-----------------+ +to the registration year. Those are presented in :ref:`Table 1 `. + +.. _table-1: + +.. table:: Table 1: Emission standards and year of manufacture for medium and heavy/duty trucks + :widths: auto + :align: center + + +------------+-----------------+-----------------+-----------------+ + | | **Start of | **End of | **Manufacture | + | | registration** | registration | year in this | + | | | (incl.)** | study** | + +============+=================+=================+=================+ + | **EURO-3** | 2000 | 2004 | **2002** | + +------------+-----------------+-----------------+-----------------+ + | **EURO-4** | 2005 | 2007 | **2006** | + +------------+-----------------+-----------------+-----------------+ + | **EURO-5** | 2008 | 2012 | **2010** | + +------------+-----------------+-----------------+-----------------+ + | **EURO-6** | 2013 | | **2020** | + +------------+-----------------+-----------------+-----------------+ .. _modelling-considerations-applicable-to-all-vehicle-types-1: Modelling considerations applicable to all vehicle types --------------------------------------------------------- +******************************************************** .. _sizing-of-the-base-frame-1: Sizing of the base frame ~~~~~~~~~~~~~~~~~~~~~~~~ -The sizing of the base frame is based on p. 17-19 of (Hill et al. 2015). +The sizing of the base frame is based on p. 17-19 of :cite:`ct-1040`. Detailed weight composition is obtained for a **12t rigid truck** and a **40t articulated truck**. Curb mass and payload are obtained for all size classes, the rest being adjusted function of the gross mass. The -masses of the vehicles and their subsystems are detailed in Table 74. +masses of the vehicles and their subsystems are detailed in :ref:`Table 2 `. These truck models have 2010 as baseline year. A 2% and 5% weight reduction factors are applied on on rigid and articulated trucks respectively, as indicated in the same report. @@ -205,114 +155,128 @@ The following components are common to all powertrains: - Transmission - Other components -Table 2 Mass distribution of components for medium- and heavy-duty -trucks - -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| | | Rigid truck, 3.5t | Rigid truck, 7.5t | Rigid truck, 12t | Rigid truck, 18t | Rigid truck, 26t | Articulated truck, 32t | Articulated truck, 40t | Articulated truck, 60t | -+===========================+======================+===========================+===========================+===========================+===========================+===========================+=========================================+=========================================+=====================================================+ -| | Type | rigid, 2 axles, box body | rigid, 2 axles, box body | rigid, 2 axles, box body | rigid, 2 axles, box body | rigid, 3 axles, box body | semi-trailer, 2+3 axles, curtain-sider | semi-trailer, 2+4 axles, curtain-sider | semi-trailer + trailer, 2+4+2 axles, curtain-sider | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| in kilograms | Gross weight | 3500 | 7500 | 12000 | 18000 | 26000 | 32000 | 40000 | 60000 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| Powertrain | Engine system | 151 | 324 | 518 | 777 | 1122 | 899 | 1124 | 1686 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| | Coolant system | 11 | 23 | 37 | 56 | 80 | 112 | 140 | 210 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| | Fuel system | 14 | 29 | 47 | 71 | 102 | 64 | 80 | 120 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| | Exhaust system | 44 | 94 | 150 | 225 | 325 | 176 | 220 | 330 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| | Transmission system | 83 | 177 | 283 | 425 | 613 | 446 | 558 | 837 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| Electrical system | | 24 | 52 | 83 | 125 | 180 | 212 | 265 | 398 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| Chassis system | Frame | 120 | 256 | 410 | 615 | 888 | 2751 | 3439 | 5159 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| | Suspension | 310 | 665 | 1064 | 1596 | 2000 | 2125 | 2656 | 3984 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| | Braking system | 24 | 52 | 83 | 125 | 180 | 627 | 784 | 1176 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| | Wheels and tires | 194 | 416 | 665 | 998 | 1100 | 1138 | 1422 | 2133 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| Cabin | Cabin | 175 | 375 | 600 | 900 | 1300 | 922 | 1153 | 1730 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| | Body system/trailer | 583 | 1250 | 2000 | 3000 | 4333 | 1680 | 2100 | 3150 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| Other | | 119 | 256 | 409 | 614 | 886 | 847 | 1059 | 1589 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| Curb mass, incl. Trailer | | 1852 | 3968 | 6349 | 9524 | 13110 | 12000 | 15000 | 22500 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ -| Payload | | 1648 | 3532 | 5651 | 8477 | 12890 | 20000 | 25000 | 37500 | -+---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ +.. _table-2: + +.. table:: Table 2: Mass distribution of components for medium- and heavy-duty trucks + :widths: auto + :align: center + + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | | | Rigid truck, 3.5t | Rigid truck, 7.5t | Rigid truck, 12t | Rigid truck, 18t | Rigid truck, 26t | Articulated truck, 32t | Articulated truck, 40t | Articulated truck, 60t | + +===========================+======================+===========================+===========================+===========================+===========================+===========================+=========================================+=========================================+=====================================================+ + | | Type | rigid, 2 axles, box body | rigid, 2 axles, box body | rigid, 2 axles, box body | rigid, 2 axles, box body | rigid, 3 axles, box body | semi-trailer, 2+3 axles, curtain-sider | semi-trailer, 2+4 axles, curtain-sider | semi-trailer + trailer, 2+4+2 axles, curtain-sider | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | in kilograms | Gross weight | 3500 | 7500 | 12000 | 18000 | 26000 | 32000 | 40000 | 60000 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | Powertrain | Engine system | 151 | 324 | 518 | 777 | 1122 | 899 | 1124 | 1686 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | | Coolant system | 11 | 23 | 37 | 56 | 80 | 112 | 140 | 210 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | | Fuel system | 14 | 29 | 47 | 71 | 102 | 64 | 80 | 120 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | | Exhaust system | 44 | 94 | 150 | 225 | 325 | 176 | 220 | 330 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | | Transmission system | 83 | 177 | 283 | 425 | 613 | 446 | 558 | 837 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | Electrical system | | 24 | 52 | 83 | 125 | 180 | 212 | 265 | 398 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | Chassis system | Frame | 120 | 256 | 410 | 615 | 888 | 2751 | 3439 | 5159 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | | Suspension | 310 | 665 | 1064 | 1596 | 2000 | 2125 | 2656 | 3984 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | | Braking system | 24 | 52 | 83 | 125 | 180 | 627 | 784 | 1176 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | | Wheels and tires | 194 | 416 | 665 | 998 | 1100 | 1138 | 1422 | 2133 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | Cabin | Cabin | 175 | 375 | 600 | 900 | 1300 | 922 | 1153 | 1730 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | | Body system/trailer | 583 | 1250 | 2000 | 3000 | 4333 | 1680 | 2100 | 3150 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | Other | | 119 | 256 | 409 | 614 | 886 | 847 | 1059 | 1589 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | Curb mass, incl. Trailer | | 1852 | 3968 | 6349 | 9524 | 13110 | 12000 | 15000 | 22500 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ + | Payload | | 1648 | 3532 | 5651 | 8477 | 12890 | 20000 | 25000 | 37500 | + +---------------------------+----------------------+---------------------------+---------------------------+---------------------------+---------------------------+---------------------------+-----------------------------------------+-----------------------------------------+-----------------------------------------------------+ Other use and size-related parameters ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ HBEFA 4.1 is used as a source to estimate the calendar and kilometric lifetime -values for European diesel trucks. -Those are presented in Table 3. - -Table 3 Kilometric and calendar lifetimes for European trucks - -+---------------------------------------------+-------+-------------------+---------------------+---------------------+---------------------+----------------+----------------+---------------------------------+ -| Size class in this study | | 3.5t | 7.5t | 18t | 26t | 32t | 40t | Source | -+=============================================+=======+===================+=====================+=====================+=====================+================+================+=================================+ -| HBEFA vehicle segments | Unit | RigidTruck <7,5t | RigidTruck 7,5-12t | RigidTruck >14-20t | RigidTruck >26-28t | TT/AT >28-34t | TT/AT >34-40t | | -+---------------------------------------------+-------+-------------------+---------------------+---------------------+---------------------+----------------+----------------+---------------------------------+ -| Yearly mileage at Year 1 | Km | 32'526 | 47'421 | 37'602 | 69'278 | 31'189 | 118'253 | HBEFA 4.1 | -+---------------------------------------------+-------+-------------------+---------------------+---------------------+---------------------+----------------+----------------+---------------------------------+ -| Relative annual decrease in annual mileage | | 5.50% | | | | 7% | | Estimated from HBEFA 4.1 | -+---------------------------------------------+-------+-------------------+---------------------+---------------------+---------------------+----------------+----------------+---------------------------------+ -| Calendar lifetime | Year | 12 | | | | 12 | 8 | Estimated from HBEFA 4.1 | -+---------------------------------------------+-------+-------------------+---------------------+---------------------+---------------------+----------------+----------------+---------------------------------+ -| Kilometric lifetime | km | 272'000 | 397'000 | 315'000 | 580'000 | 227'000 | 710'000 | Calculated from the rows above | -+---------------------------------------------+-------+-------------------+---------------------+---------------------+---------------------+----------------+----------------+---------------------------------+ +values for European diesel trucks. Those are presented in :ref:`Table 3 `. + +.. _table-3: + +.. table:: Table 3: Kilometric and calendar lifetimes for European trucks + :widths: auto + :align: center + + +---------------------------------------------+-------+-------------------+---------------------+---------------------+---------------------+----------------+----------------+---------------------------------+ + | Size class in this study | | 3.5t | 7.5t | 18t | 26t | 32t | 40t | Source | + +=============================================+=======+===================+=====================+=====================+=====================+================+================+=================================+ + | HBEFA vehicle segments | Unit | RigidTruck <7,5t | RigidTruck 7,5-12t | RigidTruck >14-20t | RigidTruck >26-28t | TT/AT >28-34t | TT/AT >34-40t | | + +---------------------------------------------+-------+-------------------+---------------------+---------------------+---------------------+----------------+----------------+---------------------------------+ + | Yearly mileage at Year 1 | Km | 32'526 | 47'421 | 37'602 | 69'278 | 31'189 | 118'253 | HBEFA 4.1 | + +---------------------------------------------+-------+-------------------+---------------------+---------------------+---------------------+----------------+----------------+---------------------------------+ + | Relative annual decrease in annual mileage | | 5.50% | | | | 7% | | Estimated from HBEFA 4.1 | + +---------------------------------------------+-------+-------------------+---------------------+---------------------+---------------------+----------------+----------------+---------------------------------+ + | Calendar lifetime | Year | 12 | | | | 12 | 8 | Estimated from HBEFA 4.1 | + +---------------------------------------------+-------+-------------------+---------------------+---------------------+---------------------+----------------+----------------+---------------------------------+ + | Kilometric lifetime | km | 272'000 | 397'000 | 315'000 | 580'000 | 227'000 | 710'000 | Calculated from the rows above | + +---------------------------------------------+-------+-------------------+---------------------+---------------------+---------------------+----------------+----------------+---------------------------------+ Average loads for European trucks for long haul use are from the TRACCS -road survey data for the EU-28 (Papadimitriou et al. 2013). We +road survey data for the EU-28 :cite:`ct-1060`. We differentiate loads across driving cycles. To do so, we use correction factors based on the representative loads suggested in the Annex I of European Commission regulation 2019/1242. Such average loads are -presented in Table 4. - -Table 4 Default load for European medium- and heavy-duty trucks - -+---------------------------------+------+-------+-------+--------+--------+--------+--------+---------------------------------------------------------------------------+ -| Size class | | 3.5t | 7.5t | 18t | 26t | 32t | 40t | | -+=================================+======+=======+=======+========+========+========+========+===========================================================================+ -| Cargo carrying capacity | ton | ~1.3 | ~3.5 | ~10.1 | ~17.0 | ~20.1 | ~25.5 | Manufacturers’ data. | -+---------------------------------+------+-------+-------+--------+--------+--------+--------+---------------------------------------------------------------------------+ -| Cargo mass (urban delivery) | ton | 0.75 | 1.75 | 2.7 | 6.3 | 8.75 | 8.75 | Long haul cargo mass, further corrected based on EC regulation 2019/1242 | -+---------------------------------+------+-------+-------+--------+--------+--------+--------+---------------------------------------------------------------------------+ -| Cargo mass (regional delivery) | ton | 0.75 | 1.75 | 3.2 | 6.3 | 10.3 | 19.3 | Long haul cargo mass, further corrected based on EC regulation 2019/1242 | -+---------------------------------+------+-------+-------+--------+--------+--------+--------+---------------------------------------------------------------------------+ -| Cargo mass (long haul) | ton | 1.13 | 2.63 | 7.4 | 13.4 | 13.8 | 13.8 | TRACCS (Papadimitriou et al. 2013) for EU28 | -+---------------------------------+------+-------+-------+--------+--------+--------+--------+---------------------------------------------------------------------------+ +presented in :ref:`Table 4 `. + +.. _table-4: + +.. table:: Table 4: Default load for European medium- and heavy-duty trucks + :widths: auto + :align: center + + +---------------------------------+------+-------+-------+--------+--------+--------+--------+---------------------------------------------------------------------------+ + | Size class | | 3.5t | 7.5t | 18t | 26t | 32t | 40t | | + +=================================+======+=======+=======+========+========+========+========+===========================================================================+ + | Cargo carrying capacity | ton | ~1.3 | ~3.5 | ~10.1 | ~17.0 | ~20.1 | ~25.5 | Manufacturers’ data. | + +---------------------------------+------+-------+-------+--------+--------+--------+--------+---------------------------------------------------------------------------+ + | Cargo mass (urban delivery) | ton | 0.75 | 1.75 | 2.7 | 6.3 | 8.75 | 8.75 | Long haul cargo mass, further corrected based on EC regulation 2019/1242 | + +---------------------------------+------+-------+-------+--------+--------+--------+--------+---------------------------------------------------------------------------+ + | Cargo mass (regional delivery) | ton | 0.75 | 1.75 | 3.2 | 6.3 | 10.3 | 19.3 | Long haul cargo mass, further corrected based on EC regulation 2019/1242 | + +---------------------------------+------+-------+-------+--------+--------+--------+--------+---------------------------------------------------------------------------+ + | Cargo mass (long haul) | ton | 1.13 | 2.63 | 7.4 | 13.4 | 13.8 | 13.8 | TRACCS (Papadimitriou et al. 2013) for EU28 | + +---------------------------------+------+-------+-------+--------+--------+--------+--------+---------------------------------------------------------------------------+ The user can however easily change these values. -Other size-related parameters are listed in Table 5. Some of them have +Other size-related parameters are listed in :ref:`Table 5 `. Some of them have been obtained and/or calculated from manufacturers’ data, which is made -available in the Annex A-C of this report. - -Table 5 Size-related parameters common to European trucks (in 2020) - -+---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ -| Size class in this study | | 3.5t | 7.5t | 18t | 26t | 32t | 40t | Source | -+=================================+===============+=======+=======+========+========+========+========+==============================================+ -| Number of axles | unit | 2 | 2 | 2 | 3 | 5 | 6 | Manufacturers’ data. | -+---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ -| Rolling resistance coefficient | unitless | .0055 | .0055 | .0055 | .0055 | .0055 | .0055 | (Meszler et al. 2018) | -+---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ -| Frontal area | square meter | 4.1 | 5.3 | 7.5 | 7.5 | 10 | 10 | Manufacturers’ data. | -+---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ -| Passengers occupancy | unit | 1 | 1 | 1 | 1 | 1 | 1 | Inferred from Mobitool factors v.2.1 values | -+---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ -| Average passenger mass | kilogram | 75 | | | | | | Standard assumption | -+---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ +available in the :ref:`Annex A-C ` of this report. + +.. _table-5: + +.. table:: Table 5: Size-related parameters common to European trucks (in 2020) + :widths: auto + :align: center + + +---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ + | Size class in this study | | 3.5t | 7.5t | 18t | 26t | 32t | 40t | Source | + +=================================+===============+=======+=======+========+========+========+========+==============================================+ + | Number of axles | unit | 2 | 2 | 2 | 3 | 5 | 6 | Manufacturers’ data. | + +---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ + | Rolling resistance coefficient | unitless | .0055 | .0055 | .0055 | .0055 | .0055 | .0055 | (Meszler et al. 2018) | + +---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ + | Frontal area | square meter | 4.1 | 5.3 | 7.5 | 7.5 | 10 | 10 | Manufacturers’ data. | + +---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ + | Passengers occupancy | unit | 1 | 1 | 1 | 1 | 1 | 1 | Inferred from Mobitool factors v.2.1 values | + +---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ + | Average passenger mass | kilogram | 75 | | | | | | Standard assumption | + +---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ The user can however easily change these values. @@ -321,30 +285,33 @@ Time-dependent parameters Several parameters that affect the performances of trucks (e.g., drag coefficient, etc.) are time-dependent, and based on various projections found in the literature. -Table 6 lists some of them. +:ref:`Table 6 ` lists some of them. +.. _table-6: -Table 6 Non-exhaustive list of time-dependent parameters common to European trucks +.. table:: Table 6: Non-exhaustive list of time-dependent parameters common to European trucks + :widths: auto + :align: center -+---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ -| Size class in this study | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | Source | -+=================================+===============+=======+=======+========+========+========+========+==============================================+ -| Aerodynamic drag | unitless | 0.55 | 0.5 | 0.47 | 0.45 | 0.43 | 0.4 | ICCT, 2021 | -+---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ -| Rolling resistance coefficient | unitless | .0055 | .0055 | .0055 | .004 | .004 | .004 | ICCT, white paper, 2018, assumption | -+---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ -| NMC battery cycling life | unit | 3000 | 3000 | 3000 | 4000 | 4000 | 4000 | (Preger et al. 2020), assumption | -+---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ -| NMC cell energy density | kWh/kg | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | (Qiao et al., 2020, ScienceDaily, 2022) | -+---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ -| Fuel cell power density | mW/cm2 | 350 | 400 | 450 | 450 | 500 | 600 | (Cox et al. 2020) | -+---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ + +---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ + | Size class in this study | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | Source | + +=================================+===============+=======+=======+========+========+========+========+==============================================+ + | Aerodynamic drag | unitless | 0.55 | 0.5 | 0.47 | 0.45 | 0.43 | 0.4 | ICCT, 2021 | + +---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ + | Rolling resistance coefficient | unitless | .0055 | .0055 | .0055 | .004 | .004 | .004 | ICCT, white paper, 2018, assumption | + +---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ + | NMC battery cycling life | unit | 3000 | 3000 | 3000 | 4000 | 4000 | 4000 | (Preger et al. 2020), assumption | + +---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ + | NMC cell energy density | kWh/kg | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | (Qiao et al., 2020, ScienceDaily, 2022) | + +---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ + | Fuel cell power density | mW/cm2 | 350 | 400 | 450 | 450 | 500 | 600 | (Cox et al. 2020) | + +---------------------------------+---------------+-------+-------+--------+--------+--------+--------+----------------------------------------------+ .. _modelling-approach-applicable-to-internal-combustion-engine-vehicles-2: Modelling approach applicable to internal combustion engine vehicles --------------------------------------------------------------------- +******************************************************************** .. _traction-energy-2: @@ -366,68 +333,77 @@ is the sum of the following resistances: * The gradient resistance, calculated as driving mass * gravity * sin(gradient) * As well as the resistance from braking, calculated as the force from the vehicle inertia when negative. -Figure 2 shows the contribution of each type of resistance as calculated by -``carculator_truck`` for the first hundred seconds of the “Urban delivery” -driving cycle, for an 18t diesel truck. +:ref:`Figure 1 ` shows the contribution of each type of resistance as calculated by +``carculator_truck`` for the first hundred seconds of the “Urban delivery” driving cycle, for an 18t diesel truck. + +.. _figure-1: -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image_truck_resistance.png +.. figure:: _static/img/image_truck_resistance.png + :align: center -Figure 2 Resistance components at wheels level for the first hundred -seconds of the “Urban delivery” driving cycle, for an 18t diesel truck. + Figure 1: Resistance components at wheels level for the first hundred seconds of the “Urban delivery” driving cycle, for an 18t diesel truck. -Figure 3 shows the first two hundred seconds of the “Urban delivery” +:ref:`Figure 2 ` shows the first two hundred seconds of the “Urban delivery” driving cycle. It distinguishes the target speed from the actual speed managed by the different vehicles. The power-to-mass ratio influences the extent to which a vehicle manages to comply with the target speed. -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image76.png +.. _figure-2: -Figure 3 VECTO's "Urban delivery" driving cycle (first two hundred -seconds) +.. figure:: _static/img/image8.png + :align: center + + Figure 2: VECTO's "Urban delivery" driving cycle (first two hundred seconds) For regional delivery and long haul use, the “Regional delivery” and “Long haul” driving cycles of VECTO are used, respectively. They contain less stops and fewer fluctuations in terms of speed levels. The “Long haul” driving cycle has a comparatively higher average speed level and -lasts much longer. Figure 4 shows the first two hundred seconds of the +lasts much longer. :ref:`Figure 3 ` shows the first two hundred seconds of the “Long haul” driving cycle. -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image78.png +.. _figure-3: + +.. figure:: _static/img/image9.png + :align: center -Figure 4 VECTO's "Long haul" driving cycle (first two hundred seconds) + Figure 3: VECTO's "Long haul" driving cycle (first two hundred seconds) -Table 6 shows a few parameters about the three driving cycles +:ref:`Table 7 ` shows a few parameters about the three driving cycles considered. Value intervals are shown for some parameters as they vary across size classes. .. note:: - **Important remark**: unlike the modeling of passenger cars, the + **Important remark:** unlike the modeling of passenger cars, the vehicles are designed in order to satisfy a given range autonomy. The range autonomy specific to each driving cycle is specified in the last - column of Table 6. This is particularly relevant for battery electric + column of :ref:`Table 7 `. This is particularly relevant for battery electric vehicles: their energy storage unit is sized to allow them to drive the required distance on a single battery charge. While this also applies for other powertrain types (i.e., the diesel fuel tank or compressed gas cylinders are sized accordingly), the consequences in terms of vehicle design are not as significant. The required range autonomy shown in - Table 6 is not defined by VECTO, but set as desirable range values by + :ref:`Table 7 ` is not defined by VECTO, but set as desirable range values by the authors of the software. The target range autonomy can easily be changed by the user. -Table 6 Parameters of driving cycles used for medium- and heavy-duty -trucks +.. _table-7: -+--------------------+-----------------------+----------------+-------------------+------------------+------------------------------------+-------------------------------+ -| Driving cycle | Average speed [km/h] | Distance [km] | Driving time [s] | Idling time [s] | Mean positive acceleration [m.s2] | Required range autonomy [km] | -+====================+=======================+================+===================+==================+====================================+===============================+ -| Urban delivery | 9.9 - 10.7 | 28 | ~10’000 | 614 - 817 | 0.26 - 0.55 | 150 | -+--------------------+-----------------------+----------------+-------------------+------------------+------------------------------------+-------------------------------+ -| Regional delivery | 16.5 - 17.8 | 26 | ~5’500 | 110 - 220 | 0.21 - 0.52 | 400 | -+--------------------+-----------------------+----------------+-------------------+------------------+------------------------------------+-------------------------------+ -| Long haul | 19.4 - 21.8 | 108 | ~19’400 | 240 - 868 | 0.13 - 0.54 | 800 | -+--------------------+-----------------------+----------------+-------------------+------------------+------------------------------------+-------------------------------+ +.. table:: Table 7: Parameters of driving cycles used for medium- and heavy-duty trucks + :widths: auto + :align: center + + +--------------------+-----------------------+----------------+-------------------+------------------+------------------------------------+-------------------------------+ + | Driving cycle | Average speed [km/h] | Distance [km] | Driving time [s] | Idling time [s] | Mean positive acceleration [m.s2] | Required range autonomy [km] | + +====================+=======================+================+===================+==================+====================================+===============================+ + | Urban delivery | 9.9 - 10.7 | 28 | ~10’000 | 614 - 817 | 0.26 - 0.55 | 150 | + +--------------------+-----------------------+----------------+-------------------+------------------+------------------------------------+-------------------------------+ + | Regional delivery | 16.5 - 17.8 | 26 | ~5’500 | 110 - 220 | 0.21 - 0.52 | 400 | + +--------------------+-----------------------+----------------+-------------------+------------------+------------------------------------+-------------------------------+ + | Long haul | 19.4 - 21.8 | 108 | ~19’400 | 240 - 868 | 0.13 - 0.54 | 800 | + +--------------------+-----------------------+----------------+-------------------+------------------+------------------------------------+-------------------------------+ The energy consumption model is similar to that of passenger cars: different resistances at the wheels are calculated, after which @@ -446,43 +422,51 @@ VECTO uses a complex gearshift model combined with an engine-specific torque map are too complex to be implemented in ``carculator_truck``. Instead, the relation between transmission and engine efficiency on one end, and the relative power load (i.e., power load over the rated power output of the engine) on the other end, is used. -Such relations are shown in Figure 4, for a 40t diesel truck, where the efficiency of the +Such relations are shown in :ref:`Figure 4 `, for a 40t diesel truck, where the efficiency of the drivetrain (left) and engine (right) in relation to the power load is plotted for each second of the “Urban delivery” driving cycle, with a loading factor of 100%. -For example, Figure 4.a shows that the transmission efficiency (that is, from the +For example, :ref:`Figure 4.a ` shows that the transmission efficiency (that is, from the wheels to the output shaft of the engine) is close to 85% at a power load of 20%. In fact, most of the time when the truck is driving, the transmission operates at above -80% efficiency. Similarly, Figure 4.b shows that the peak engine efficiency is reached +80% efficiency. Similarly, :ref:`Figure 4.b ` shows that the peak engine efficiency is reached at about 40% power load, after which it remains more or less constant. A curve is fitted on the data points (red line). Using such fit removes some of the complexity considered in VECTO, depicted here by the measurements that deviate for the red curve. Nevertheless, it allows obtaining a reasonable estimate of the efficiency of these drivetrain components. -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image_eff_fitting_1.png +.. _figure-4: + +.. _figure-4a: + +.. image:: _static/img/image_eff_fitting_1.png :width: 45% -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image_eff_fitting_2.png +.. _figure-4b: + +.. image:: _static/img/image_eff_fitting_2.png :width: 45% +|s_caption| *Relation between transmission and engine efficiency on one end, and the relative power load on the other end* |e_caption| + Such calibration exercise with VECTO for the diesel-powered 40t truck is shown below, against the “Urban delivery” driving cycle. After calibration, the tank-to-wheel energy consumption value obtained from VECTO and from ``carculator_truck`` for diesel-powered trucks differ by less than 1 percent over the entire driving cycle. -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image79.png +.. _figure-5: -Figure 5 Calibration of carculator_truck energy model against VECTO -simulations for a 40t articulated truck diesel truck (first 1’500 -seconds shown) +.. figure:: _static/img/image10.png + :align: center + + Figure 5: Calibration of carculator_truck energy model against VECTO simulations for a 40t articulated truck diesel truck (first 1’500 seconds shown) Unfortunately, VECTO does not have a model for compressed gas-powered trucks. The calibrated model for diesel-powered buses is used and a penalty factor of 10% is applied, based on findings from a working paper -from the ICCT (Ragon and Rodríguez 2021) showing that compressed -gas-powered trucks have an engine efficiency between 8 to 13% lower than -that of diesel-powered trucks. +from the ICCT :cite:`ct-1068` showing that compressed gas-powered trucks +have an engine efficiency between 8 to 13% lower than that of diesel-powered trucks. .. _engine-downsizing: @@ -492,7 +476,7 @@ Engine downsizing Such approach allows also reflecting the effect of engine downsizing. As the relative power load observed during the driving cycle is higher as the rated maximum power output of the engine is reduced, it operates -at higher efficiency levels. Figure 6 compares the engine efficiency +at higher efficiency levels. :ref:`Figure 6 ` compares the engine efficiency between a conventional 40t diesel truck and a diesel hybrid truck of similar size, but where the power of the combustion engine is reduced by 25% in favor of an electric motor. This figure confirms that @@ -500,11 +484,12 @@ the combustion engine of hybrid-diesel truck (HEV-d) reaches higher efficiency levels. Of course, the difference in efficiency will be more pronounced on driving cycles with transient loads. +.. _figure-6: -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image_engine_downsizing.png +.. figure:: _static/img/image_engine_downsizing.png + :align: center -Figure 6 Engine efficiency comparison between a conventional (ICEV-d) -and hybrid (HEV-d) 40t diesel truck + Figure 6: Engine efficiency comparison between a conventional (ICEV-d) and hybrid (HEV-d) 40t diesel truck Compressed gas trucks ^^^^^^^^^^^^^^^^^^^^^ @@ -514,17 +499,17 @@ configuration, with each cylinder containing up to 57.6 kg of compressed gas – 320 liters at 200 bar. The relation between the mass of compressed gas and the cylinder mass is -depicted in Figure 11. This relation is based on manufacturers’ data – -mainly from (Daimler Trucks 2017; QTWW 2021). +depicted in :ref:`Figure 7 `. This relation is based on manufacturers’ data – +mainly from :cite:`ct-1017, ct-1066`. + +.. _figure-7: -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image_cng_tanks.png - :width: 50% +.. figure:: _static/img/image_cng_tanks.png + :align: center -Figure 11 Relation between mass of stored compressed gas and cylinder -mass + Figure 7: Relation between mass of stored compressed gas and cylinder mass -Inventories for a Type II 200 bar compressed gas tank, with a steel -liner, are from (Candelaresi et al. 2021). +Inventories for a Type II 200 bar compressed gas tank, with a steel liner, are from :cite:`ct-1010`. .. _exhaust-emissions-3: @@ -534,24 +519,22 @@ Exhaust emissions Other pollutants ^^^^^^^^^^^^^^^^ -Emission factors for CO\ :sub:`2` and SO\ :sub:`2` are detailed in Table -8-Table 9. Biofuel shares in the fuel blend are detailed in Table 10. +Emission factors for CO\ :sub:`2` and SO\ :sub:`2` are detailed in :ref:`Table 8 ` - :ref:`Table 9 `. +Biofuel shares in the fuel blend are detailed in :ref:`Table 10 `. -A number of fuel-related emissions other than CO\ :sub:`2` or -SO\ :sub:`2` are also considered. +A number of fuel-related emissions other than CO\ :sub:`2` or SO\ :sub:`2` are also considered. For trucks, two sources source of emissions are considered: - Exhaust emissions: emissions from the combustion of fuel during operation. Their concentration relates to the fuel consumption and the emission standard of the vehicle. - - Non-exhaust emissions: abrasion emissions such as brake, tire and road wear, but also emissions of refrigerant and noise. For exhaust emissions, factors based on the fuel consumption are derived by comparing emission data points for different traffic situations -(i.e., grams emitted per vehicle-km) in freeflowing driving conditions, +(i.e., grams emitted per vehicle-km) in free-flowing driving conditions, with the fuel consumption corresponding to each data point (i.e., MJ of fuel consumed per km), as illustrated in for a diesel-powered engine. The aim is to obtain emission factors expressed as grams of substance @@ -561,40 +544,42 @@ cycles and with different load factors. .. note:: - **Important remark**: the degradation of anti-pollution systems for + **Important remark:** the degradation of anti-pollution systems for EURO-6 diesel trucks (i.e., catalytic converters) is accounted for as indicated by HBEFA 4.1, by applying a degradation factor on the emission - factors for NO\ :sub:`x`. These factors are shown in Table 87 Table - 49for trucks with a mileage of 890’000 km. Since the trucks in this + factors for NO\ :sub:`x`. These factors are shown in :ref:`Table 8 ` + for trucks with a mileage of 890’000 km. Since the trucks in this study have a kilometric lifetime of 180-700’000 km, degradation factors are interpolated linearly (with a degradation factor of 1 at Km 0). The degradation factor corresponding to half of the vehicle kilometric lifetime is used, to obtain a lifetime-weighted average degradation factor. -Table 87 Degradation factors at 890'000 km for diesel trucks +.. _table-8: + +.. table:: Table 8: Degradation factors at 890'000 km for diesel trucks + :widths: auto + :align: center + + ==================================== ========= + **Degradation factor at 890’000 km** + ==================================== ========= + \ NOx + EURO-6 1.3 + ==================================== ========= -==================================== ========= -**Degradation factor at 890’000 km** -==================================== ========= -\ **NO\ x** -**EURO-6** 1.3 -==================================== ========= +.. _figure-8: -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image80.png - :width: 6.27014in - :height: 7.84756in +.. figure:: _static/img/image11.png + :align: center -Figure 6 Relation between emission factors and fuel consumption for a -diesel-powered truck for a number of “urban” and “rural” traffic -situations for different emission standards. + Figure 8: Relation between emission factors and fuel consumption for a diesel-powered truck for a number of “urban” and “rural” traffic situations for different emission standards. -Using these fuel-based emission factors, emissions for each second of -the driving cycle for each substance are calculated. +Using these fuel-based emission factors, emissions for each second of the driving cycle for each substance are calculated. To confirm that such approach does not yield kilometric emissions too different from the emission factors per vehicle-kilometer proposed by -HBEFA 4.1, Figure 7 compares the emissions obtained by +HBEFA 4.1, :ref:`Figure 9 ` compares the emissions obtained by ``carculator_truck`` using VECTO’s “Urban delivery” driving cycle over 1 vehicle-km (red dots) for a 18t rigid truck with the distribution of the emission factors across different “urban” traffic situations (green @@ -612,24 +597,22 @@ cycles using trucks of different size classes and HBEFA’s emission factors for “rural” and “motorway” traffic situations shows a similar picture. -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image81.png - :width: 6.27014in - :height: 5.70565in +.. _figure-9: -Figure 7 Validation of the exhaust emissions model with the emission -factors provided by HBEFA 4.1 for medium-duty trucks in traffic urban -and rural situations, for different levels of service. Box-and-whiskers: -distribution of HBEFA’s emission factors (box: 50% of the distribution, -whiskers: 90% of the distribution). Yellow dots: traffic -situations-weighted average emission factors. Red dots: modeled -emissions calculated by ``carculator_truck`` with the “Urban delivery” -driving cycle for an 18t rigid truck, using the relation between fuel -consumption and amounts emitted. +.. figure:: _static/img/image12.png + :align: center + + Figure 9: Validation of the exhaust emissions model with the emission factors provided by HBEFA 4.1 for medium-duty trucks in traffic urban and rural situations, for different levels of service. + +.. note:: + + Box-and-whiskers: distribution of HBEFA’s emission factors (box: 50% of the distribution, whiskers: 90% of the distribution). Yellow dots: traffic situations-weighted average emission factors. + Red dots: modeled emissions calculated by ``carculator_truck`` with the “Urban delivery” driving cycle for an 18t rigid truck, using the relation between fuel consumption and amounts emitted. .. _modelling-approach-applicable-to-electric-vehicles-2: Modelling approach applicable to electric vehicles --------------------------------------------------- +************************************************** .. _traction-energy-3: @@ -644,44 +627,49 @@ Electric vehicles VECTO does not have a model for battery or fuel cell electric buses that can be used. Therefore, similarly to the modeling of buses, static engine and drivetrain efficiency values are used. These values are based -on (Schwertner and Weidmann 2016) and are presented in Table 7-Table -8. - -Table 7 Efficiency values along the drivetrain of electric trucks in -driving mode - -===================== ================= =========== ============== -**Eff. of subsystem** **Fuel cell bus** **BEV bus** **Trolleybus** -Fuel tank 0.98 -Energy storage 0.92 -Fuel cell stack 0.55 -Converter 0.98 -Rectifier -Inverter 0.98 0.98 0.98 -Electric motor 0.93 0.93 0.93 -Reduction gear 0.95 0.95 0.95 -Drive axle 0.94 0.94 0.94 -Total 0.44 0.73 0.81 -===================== ================= =========== ============== - -Table 8 Efficiency values along the drivetrain of electric trucks in -recuperation mode - -===================== ================= =========== ============== -**Eff. of subsystem** **Fuel cell bus** **BEV bus** **BEV-motion** -Drive axle 0.94 0.94 0.94 -Reduction gear 0.95 0.95 0.95 -Electric motor 0.93 0.93 0.93 -Rectifier 0.98 0.98 0.98 -Converter 0.98 0.98 -Energy storage 0.85 0.85 0.85 -Converter 0.98 0.98 -Inverter 0.98 0.98 0.98 -Electric motor 0.93 0.93 0.93 -Reduction gear 0.95 0.95 0.95 -Drive axle 0.94 0.94 0.94 -Total 0.54 0.54 0.56 -===================== ================= =========== ============== +on :cite:`ct-1080` and are presented in :ref:`Table 9 `-:ref:`Table 10 `. + +.. _table-9: + +.. table:: Table 9: Efficiency values along the drivetrain of electric trucks in driving mode + :widths: auto + :align: center + + ===================== ================= =========== ============== + **Eff. of subsystem** **Fuel cell bus** **BEV bus** **Trolleybus** + Fuel tank 0.98 + Energy storage 0.92 + Fuel cell stack 0.55 + Converter 0.98 + Rectifier + Inverter 0.98 0.98 0.98 + Electric motor 0.93 0.93 0.93 + Reduction gear 0.95 0.95 0.95 + Drive axle 0.94 0.94 0.94 + Total 0.44 0.73 0.81 + ===================== ================= =========== ============== + +.. _table-10: + +.. table:: Table 10: Efficiency values along the drivetrain of electric trucks in recuperation mode + :widths: auto + :align: center + + ===================== ================= =========== ============== + **Eff. of subsystem** **Fuel cell bus** **BEV bus** **BEV-motion** + Drive axle 0.94 0.94 0.94 + Reduction gear 0.95 0.95 0.95 + Electric motor 0.93 0.93 0.93 + Rectifier 0.98 0.98 0.98 + Converter 0.98 0.98 + Energy storage 0.85 0.85 0.85 + Converter 0.98 0.98 + Inverter 0.98 0.98 0.98 + Electric motor 0.93 0.93 0.93 + Reduction gear 0.95 0.95 0.95 + Drive axle 0.94 0.94 0.94 + Total 0.54 0.54 0.56 + ===================== ================= =========== ============== .. _energy-storage-1: @@ -694,17 +682,17 @@ Battery electric trucks Battery electric vehicles can use different battery chemistry (Li-ion NMC, Li-ion LFP, Li-ion NCA and Li-LTO) depending on the manufacturer’s preference or the location of the battery supplier. Unless specified otherwise, all battery types are produced in China, as several sources, -among which BloombergNEF (Veronika Henze 2020), seem to indicate that more than 75% of +among which BloombergNEF :cite:`ct-1105`, seem to indicate that more than 75% of the world’s cell capacity is manufactured there. Accordingly, the electricity mix used for battery cells manufacture and drying, as well as the provision of heat are assumed to be representative of the country (i.e., the corresponding providers are selected from the LCI background database). -The battery-related parameters considered in this study are shown in Table 9. +The battery-related parameters considered in this study are shown in :ref:`Table 11 `. For LFP batteries, “blade battery” or “cell-to-pack” battery configurations are considered, -as introduced by CATL (Xinhua 2019) and BYD (Mark 2020), two major LFP battery suppliers in Asia. +as introduced by CATL :cite:`ct-1113` and BYD :cite:`ct-1049`, two major LFP battery suppliers in Asia. This greatly increases the cell-to-pack ratio and the gravimetric energy density at the pack level. -Overall, the gravimetric energy density values at the cell and system levels presented in Table 9 +Overall, the gravimetric energy density values at the cell and system levels presented in :ref:`Table 11 ` are considered conservative: some manufacturers perform significantly better than the average, and these values tend to change rapidly over time, as it is being the focus of much R&D. @@ -713,7 +701,7 @@ range autonomy, which is specific to each driving cycle (or defined by the user) .. note:: - **Important remark**: technically speaking ``carculator_truck`` will model + **Important remark:** technically speaking ``carculator_truck`` will model all trucks. However, if a vehicle has an energy storage unit mass leading to a reduction in the cargo carrying capacity beyond a reasonable extent, it will not be processed for LCI quantification. This @@ -722,37 +710,39 @@ range autonomy, which is specific to each driving cycle (or defined by the user) The expected battery lifetime (and the need for replacement) is based on the battery expected cycle life, based on theoretical values given by -(Göhlich et al. 2018) as well as some experimental ones from (Preger et -al. 2020). Although the specifications of the different battery -chemistry are presented in Table 9, they are also repeated in Table -90. - -Table 9 Parameters for different battery chemistry for current battery -electric trucks - -+-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ -| | Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) — NMC[1] | Lithium Iron Phosphate(LiFePO4) — LFP | Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) — NCA | Source | -+=============================================================================+==================================================================+========================================+==========================================================+=============================================================================================================================+ -| Cell energy density [kWh/kg] | 0.2 | 0.15 | 0.23 | (BatteryUniversity 2021) | -+-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ -| Cell-to-pack ratio | 0.6 | 0.8 | 0.6 | (Yang, Liu, and Wang 2021) | -+-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ -| Pack-level gravimetric energy density [kWh/kg] | 0.12 | 0.12 | 0.14 | Calcualted from the two rows above | -+-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ -| Share of cell mass in battery system [%] | 60 to 80% (others, depending on chemistry, see third row above) | | | (B. Cox et al. 2020; Yang, Liu, and Wang 2021) | -+-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ -| Maximum state of charge [%] | 100% | 100% | 100% | (Göhlich et al. 2018; BatteryUniversity 2021) | -+-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ -| Minimum state of charge [%] | 20% | 20% | 20% | | -+-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ -| Cycle life to reach 20% initial capacity loss (80%-20% SoC charge cycle) | 2’000 | 7’000+ | 1’000 | (Preger et al. 2020) | -+-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ -| Corrected cycle life | 3’000 | 7’000 | 1’500 | Assumption | -+-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ -| Charge efficiency | 85% | | | (Schwertner and Weidmann 2016) for buses and trucks. (Rantik 1999) for battery charge efficiency when ultra-fast charging. | -+-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ -| Discharge efficiency | 88% | | | (Schwertner and Weidmann 2016) | -+-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ +:cite:`ct-1034` as well as some experimental ones from :cite:`ct-1063`. +Although the specifications of the different battery chemistry are presented in :ref:`Table 11 `, +they are also repeated in :ref:`Table 12 `. + +.. _table-11: + +.. table:: Table 11: Parameters for different battery chemistry for current battery electric trucks + :widths: auto + :align: center + + +-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ + | | Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) — NMC[1] | Lithium Iron Phosphate(LiFePO4) — LFP | Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) — NCA | Source | + +=============================================================================+==================================================================+========================================+==========================================================+=============================================================================================================================+ + | Cell energy density [kWh/kg] | 0.2 | 0.15 | 0.23 | :cite:`ct-1005` | + +-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ + | Cell-to-pack ratio | 0.6 | 0.8 | 0.6 | :cite:`ct-1114` | + +-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ + | Pack-level gravimetric energy density [kWh/kg] | 0.12 | 0.12 | 0.14 | Calculated from the two rows above | + +-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ + | Share of cell mass in battery system [%] | 60 to 80% (others, depending on chemistry, see third row above) | | | :cite:`ct-1012, ct-1114` | + +-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ + | Maximum state of charge [%] | 100% | 100% | 100% | :cite:`ct-1034, ct-1005` | + +-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ + | Minimum state of charge [%] | 20% | 20% | 20% | | + +-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ + | Cycle life to reach 20% initial capacity loss (80%-20% SoC charge cycle) | 2’000 | 7’000+ | 1’000 | :cite:`ct-1063` | + +-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ + | Corrected cycle life | 3’000 | 7’000 | 1’500 | Assumption | + +-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ + | Charge efficiency | 85% | | | :cite:`ct-1080` for buses and trucks. :cite:`ct-1070` for battery charge efficiency when ultra-fast charging. | + +-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ + | Discharge efficiency | 88% | | | :cite:`ct-1080` | + +-----------------------------------------------------------------------------+------------------------------------------------------------------+----------------------------------------+----------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------+ The default NMC battery cell corresponds to a so-called NMC 6-2-2 chemistry: it exhibits three times the mass amount of Ni compared to Mn, and Co, while @@ -762,114 +752,115 @@ The user can also select NMC-1-1-1 or NMC-8-1-1. .. note:: - **Important remark**: the battery cell energy density is not the same - as the battery pack energy density. The latter is the product of the - cell energy density and the cell-to-pack ratio. - -.. note:: - - Changing the cell chemistry affects the caurb mass of the vehicle - and its cargo carrying capacity (since the range autonomy required - remains unchanged). - -Table 9 Parameters for different battery chemistry for future battery -electric trucks - -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) — NMC[1] | | Lithium Iron Phosphate(LiFePO4) — LFP | | Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) — NCA | | Source | -+============================================================================+==============================================================+========+========================================+=======+==========================================================+=======+=================================================================================================================================================+ -| Cell energy density [kWh/kg] | 2020 | 0.2 | 2020 | 0.15 | 2021 | 0.23 | (BatteryUniversity 2021; Yang, Liu, and Wang 2021; Qiao et al. 2020; ScienceDaily 2022; Office of Energy Efficiency and Renewable Energy 2020) | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2030 | 0.3 | 2030 | 0.17 | 2030 | 0.31 | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2040 | 0.4 | 2040 | 0.19 | 2040 | 0.4 | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2050 | 0.5 | 2050 | 0.21 | 2050 | 0.5 | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| Cell-to-pack ratio | 2020 | 0.6 | 2020 | 0.8 | 2021 | 0.6 | (Yang, Liu, and Wang 2021) | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2030 | 0.625 | 2030 | 0.85 | 2030 | 0.625 | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2040 | 0.65 | 2040 | 0.9 | 2040 | 0.65 | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2050 | 0.65 | 2050 | 0.9 | 2050 | 0.65 | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| Pack-level gravimetric energy density [kWh/kg] | 2020 | 0.12 | 2020 | 0.12 | 2021 | 0.14 | Calculated from the two parameters above | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2030 | 0.19 | 2030 | 0.14 | 2030 | 0.19 | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2040 | 0.26 | 2040 | 0.17 | 2040 | 0.26 | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2050 | 0.33 | 2050 | 0.19 | 2050 | 0.33 | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| Maximum state of charge [%] | 100% | | 100% | | 100% | | (Göhlich et al. 2018; BatteryUniversity 2021) | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| Minimum state of charge [%] | 20% | | 20% | | 20% | | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| Cycle life to reach 20% initial capacity loss (80%-20% SoC charge cycle) | 2’000 | | 7’000+ | | 1’000 | | (Preger et al. 2020) | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| Corrected cycle life | 3’000 | | 7’000 | | 1’500 | | Assumption | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| Charge efficiency | 2020 | 85% | | | | | (B. Cox et al. 2020; Brian Cox et al. 2020) for passenger cars. | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2030 | 86% | | | | | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2040 | 86% | | | | | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2050 | 86% | | | | | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| Discharge efficiency | 2020 | 88% | | | | | (B. Cox et al. 2020; Schwertner and Weidmann 2016) | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2030 | 89% | | | | | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2040 | 89% | | | | | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ -| | 2050 | 89% | | | | | | -+----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + * **Important remark:** the battery cell energy density is not the same + as the battery pack energy density. The latter is the product of the + cell energy density and the cell-to-pack ratio. + * Changing the cell chemistry affects the caurb mass of the vehicle + and its cargo carrying capacity (since the range autonomy required remains unchanged). + +.. _table-12: + +.. table:: Table 12: Parameters for different battery chemistry for future battery electric trucks + :widths: auto + :align: center + + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) — NMC[1] | | Lithium Iron Phosphate(LiFePO4) — LFP | | Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) — NCA | | Source | + +============================================================================+==============================================================+========+========================================+=======+==========================================================+=======+=================================================================================================================================================+ + | Cell energy density [kWh/kg] | 2020 | 0.2 | 2020 | 0.15 | 2021 | 0.23 | :cite:`ct-1005, ct-1114, ct-1065, ct-1081, ct-1059` | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2030 | 0.3 | 2030 | 0.17 | 2030 | 0.31 | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2040 | 0.4 | 2040 | 0.19 | 2040 | 0.4 | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2050 | 0.5 | 2050 | 0.21 | 2050 | 0.5 | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | Cell-to-pack ratio | 2020 | 0.6 | 2020 | 0.8 | 2021 | 0.6 | :cite:`ct-1114` | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2030 | 0.625 | 2030 | 0.85 | 2030 | 0.625 | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2040 | 0.65 | 2040 | 0.9 | 2040 | 0.65 | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2050 | 0.65 | 2050 | 0.9 | 2050 | 0.65 | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | Pack-level gravimetric energy density [kWh/kg] | 2020 | 0.12 | 2020 | 0.12 | 2021 | 0.14 | Calculated from the two parameters above | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2030 | 0.19 | 2030 | 0.14 | 2030 | 0.19 | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2040 | 0.26 | 2040 | 0.17 | 2040 | 0.26 | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2050 | 0.33 | 2050 | 0.19 | 2050 | 0.33 | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | Maximum state of charge [%] | 100% | | 100% | | 100% | | :cite:`ct-1034, ct-1005` | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | Minimum state of charge [%] | 20% | | 20% | | 20% | | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | Cycle life to reach 20% initial capacity loss (80%-20% SoC charge cycle) | 2’000 | | 7’000+ | | 1’000 | | :cite:`ct-1063` | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | Corrected cycle life | 3’000 | | 7’000 | | 1’500 | | Assumption | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | Charge efficiency | 2020 | 85% | | | | | :cite:`ct-1012, ct-1013` for passenger cars. | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2030 | 86% | | | | | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2040 | 86% | | | | | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2050 | 86% | | | | | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | Discharge efficiency | 2020 | 88% | | | | | :cite:`ct-1012, ct-1080` | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2030 | 89% | | | | | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2040 | 89% | | | | | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ + | | 2050 | 89% | | | | | | + +----------------------------------------------------------------------------+--------------------------------------------------------------+--------+----------------------------------------+-------+----------------------------------------------------------+-------+-------------------------------------------------------------------------------------------------------------------------------------------------+ For trucks, for which the mileage varies across size classes and application types, the number of battery replacements is calculated based on the required number of charge cycles (which is itself conditioned by the battery capacity and the total mileage over the lifetime), in relation with the cycle life of the battery -(which differs across chemistry – see Table 9). +(which differs across chemistry – see :ref:`Table 11 `). .. note:: Important assumption: The environmental burden associated with the manufacture - of spare batteries is entirely allocated to the vehicle use. - The number of battery replacements is rounded up. + of spare batteries is entirely allocated to the vehicle use. The number of battery replacements is rounded up. Given the energy consumption of the vehicle and the required battery capacity, ``carculator_truck`` calculates the number of charging cycles needed and the resulting number of battery replacements, given the cycle -life of the chemistry used. As discussed above, the expected cycle life -is corrected. +life of the chemistry used. As discussed above, the expected cycle life is corrected. Beyond the chemistry-specific resistance to degradation induced by charge-discharge cycles, the calendar aging of the cells for batteries that equip trucks is also considered: regardless of the charging type and -cycle life, there is a minimum of one replacement of the battery -during the vehicle lifetime. +cycle life, there is a minimum of one replacement of the battery during the vehicle lifetime. + +:ref:`Table 13 ` gives an overview of the number of battery replacements assumed for +the different electric vehicles in this study. -Table 10 gives an overview of the number of battery replacements assumed for the different electric vehicles in this study. +.. _table-13: -Table 10 Number of battery replacements assumed or calculated +.. table:: Table 13: Number of battery replacements assumed or calculated + :widths: auto + :align: center -+---------------------------------------------+------+------+------+ -| | NMC | LFP | NCA | -+=============================================+======+======+======+ -| Medium/heavy duty truck, urban delivery | 1 | 1 | 1 | -+---------------------------------------------+------+------+------+ -| Medium/heavy duty truck, regional delivery | 1 | 1 | 1 | -+---------------------------------------------+------+------+------+ + +---------------------------------------------+------+------+------+ + | | NMC | LFP | NCA | + +=============================================+======+======+======+ + | Medium/heavy duty truck, urban delivery | 1 | 1 | 1 | + +---------------------------------------------+------+------+------+ + | Medium/heavy duty truck, regional delivery | 1 | 1 | 1 | + +---------------------------------------------+------+------+------+ Plugin hybrid trucks ^^^^^^^^^^^^^^^^^^^^ The number of commercial models of plugin hybrid trucks is limited. In this study, plugin hybrid trucks are mostly modeled after Scania’s PHEV -tractor (Scania 2020). It comes with three 30 kWh battery packs, giving +tractor :cite:`ct-1077`. It comes with three 30 kWh battery packs, giving it a range autonomy in battery-depleting mode of 60 km, according to the manufacturer. These specifications in terms of battery capacity are used to model plugin hybrid trucks of different size classes (i.e., roughly @@ -883,28 +874,31 @@ battery-depleting mode in priority, resorting the combustion mode to complete the driving cycle (i.e., 150 km). This approach is used to calculate the *electric utility factor* for these vehicles. Energy storage capacities and electric utility factors for plugin hybrid trucks -are described in Table 91. - -Table 11 Energy storage and eletric utility factor of plugin hybrid trucks - - -+-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ -| Size class | Battery capacity | Range autonomy in battery-depleting mode | Required range autonomy | Electric utility factor | Comment | -+=============+===================+===========================================+==========================+==========================+=========================================================================================+ -| | kWh | km | km | % | The km driven in combustion mode complete the distance required by the range autonomy. | -+-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ -| 3.5t | 20 | 50 | 150 | 35 | | -+-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ -| 7.5t | 30 | 47 | | 33 | | -+-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ -| 18t | 70 | 50 | | 35 | | -+-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ -| 26t | 90 | 45 | | 33 | | -+-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ -| 32t | 95 | 45 | | 32 | | -+-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ -| 40t | 110 | 48 | | 33 | | -+-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ +are described in :ref:`Table 14 `. + +.. _table-14: + +.. table:: Table 14: Energy storage and electric utility factor of plugin hybrid trucks + :widths: auto + :align: center + + +-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ + | Size class | Battery capacity | Range autonomy in battery-depleting mode | Required range autonomy | Electric utility factor | Comment | + +=============+===================+===========================================+==========================+==========================+=========================================================================================+ + | | kWh | km | km | % | The km driven in combustion mode complete the distance required by the range autonomy. | + +-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ + | 3.5t | 20 | 50 | 150 | 35 | | + +-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ + | 7.5t | 30 | 47 | | 33 | | + +-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ + | 18t | 70 | 50 | | 35 | | + +-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ + | 26t | 90 | 45 | | 33 | | + +-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ + | 32t | 95 | 45 | | 32 | | + +-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ + | 40t | 110 | 48 | | 33 | | + +-------------+-------------------+-------------------------------------------+--------------------------+--------------------------+-----------------------------------------------------------------------------------------+ Fuel cell electric trucks @@ -912,7 +906,7 @@ Fuel cell electric trucks All fuel cell electric vehicles use a proton exchange membrane (PEM)-based fuel cell system. -Table 12 lists the specifications of the fuel cell stack and system used in ``carculator_truck``. +:ref:`Table 15 ` lists the specifications of the fuel cell stack and system used in ``carculator_truck``. The durability of the fuel cell stack, expressed in hours, is used to determine the number of replacements needed – the expected kilometric lifetime of the vehicle as well as the average speed specified by the driving cycle gives the number @@ -920,34 +914,38 @@ of hours of operation. The environmental burden associated with the manufacture spare fuel cell systems is entirely allocated to vehicle use as no reuse channels seem to be implemented for fuel cell stacks at the moment. -Table 12 Specifications for fuel cell stack systems - -+---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ -| | Trucks | Source | -+===========================================================================+===========+=========================================================================================================================================================================+ -| Power [kW] | 30 - 140 | Calculated. | -+---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ -| Fuel cell stack efficiency [%] | 55-58% | (B. Cox et al. 2020) | -+---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ -| Fuel cell stack own consumption [% of kW output] | 15% | | -+---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ -| Fuel cell system efficiency [%] | 45-50% | | -+---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ -| Power density [W/cm2 cell] | 0.45 | For passenger cars, (Simons and Bauer 2015). For trucks and buses, the power density is assumed to be half that of passenger cars, to reflect an increased durability. | -+---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ -| Specific mass [kg cell/W] | 1.02 | | -+---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ -| Platinum loading [mg/cm2] | 0.13 | | -+---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ -| Fuel cell stack durability [hours to reach 20% cell voltage degradation] | 17’000 | (Eudy and Post 2020; Kurtz et al. 2018) | -+---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ -| Fuel cell stack lifetime replacements [unit] | 0 - 2 | Calculated. | -+---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ +.. _table-15: + +.. table:: Table 15: Specifications for fuel cell stack systems + :widths: auto + :align: center + + +---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ + | | Trucks | Source | + +===========================================================================+===========+=========================================================================================================================================================================+ + | Power [kW] | 30 - 140 | Calculated. | + +---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ + | Fuel cell stack efficiency [%] | 55-58% | :cite:`ct-1012` | + +---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ + | Fuel cell stack own consumption [% of kW output] | 15% | | + +---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ + | Fuel cell system efficiency [%] | 45-50% | | + +---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ + | Power density [W/cm2 cell] | 0.45 | For passenger cars, :cite:`ct-1089`. For trucks and buses, the power density is assumed to be half that of passenger cars, to reflect an increased durability. | + +---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ + | Specific mass [kg cell/W] | 1.02 | | + +---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ + | Platinum loading [mg/cm2] | 0.13 | | + +---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ + | Fuel cell stack durability [hours to reach 20% cell voltage degradation] | 17’000 | :cite:`ct-1023, ct-1046` | + +---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ + | Fuel cell stack lifetime replacements [unit] | 0 - 2 | Calculated. | + +---------------------------------------------------------------------------+-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ The energy storage unit of fuel cell electric trucks is sized based on the required amount of hydrogen onboard (defined by the required range autonomy). The relation between hydrogen mass and tank mass is derived -from manufacturers’ specifications, as shown in Figure 41. +from manufacturers’ specifications, as shown in :ref:`Figure 10 `. We start from the basis that fuel cell electric trucks are equipped with 650 liters cylinders, which contain 14.4 kg hydrogen at 700 bar, for a @@ -960,24 +958,23 @@ The hydrogen tank is of type IV, a carbon fiber-resin (CF) composite-wrapped single tank system, with an aluminium liner capable of storing 5.6 kg usable hydrogen, weighting 119 kg per unit (of which 20 kg is carbon fiber), which has been scaled up to 178 kg for a storage -capacity of 14.4 kg to reflect current models on the market (Quantum -2019). The inventories are originally from (Hua et al. 2010). The -inventories for the supply of carbon fiber is from (Benitez et al. -2021). Note that alternative hydrogen tank designs exist, using +capacity of 14.4 kg to reflect current models on the market :cite:`ct-1067`. +The inventories are originally from :cite:`ct-1042`. The +inventories for the supply of carbon fiber is from :cite:`ct-1008`. +Note that alternative hydrogen tank designs exist, using substantially more carbon fiber (up to 70% by mass): this can -potentially impact end-results as carbon fiber is very energy-intensive -to produce. +potentially impact end-results as carbon fiber is very energy-intensive to produce. -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image61.png - :width: 5.01389in - :height: 3.00694in +.. _figure-10: -Figure 10 Relation between stored hydrogen mass and hydrogen storage -cylinder mass +.. figure:: _static/img/image13.png + :align: center + + Figure 10: Relation between stored hydrogen mass and hydrogen storage cylinder mass .. note:: - **Important remark**: a battery is also added to fuel cell electric + **Important remark:** a battery is also added to fuel cell electric trucks. Based on manufacturer’s specification, its storage capacity represents approximately 6% of the storage capacity of the hydrogen cylinders, with a minimum of 20 kWh. @@ -988,49 +985,53 @@ Charging stations ~~~~~~~~~~~~~~~~~ The parameters for the fast charging station used for battery electric -trucks are presented in Table 13. The number of vehicles serviced by the +trucks are presented in :ref:`Table 16 `. The number of vehicles serviced by the charging station daily is defined by the battery capacity of the vehicles it serves. Theoretically, level-3 chargers can fast-charge the equivalent of 2’100 kWh daily, if operated within a safe SoC amplitude, or about five trucks with a 350 kWh battery pack. -Table 13 Parameters of the charging station for battery electric trucks - -+----------------------------------+----------------------------------+ -| | **EV charger, level 3, plug-in** | -+----------------------------------+----------------------------------+ -| Vehicle type | BEV-depot | -+----------------------------------+----------------------------------+ -| Power [kW] | 200 | -+----------------------------------+----------------------------------+ -| Efficiency [%] | 95 | -+----------------------------------+----------------------------------+ -| Source for efficiency | (Chlebis et al. 2014) | -+----------------------------------+----------------------------------+ -| Lifetime [years] | 24 | -+----------------------------------+----------------------------------+ -| Number of trucks allocated per | 2’100 [kWh/day] / energy storage | -| charging system | cap. [kWh] | -+----------------------------------+----------------------------------+ -| Share of the charging station | 1 / (24 [years] \* no. trucks \* | -| allocated to the vehicle | annual mileage [km/day] \* cargo | -| | mass [ton]) | -+----------------------------------+----------------------------------+ -| Source for inventories | (ABB 2019; Nansai et al. 2001) | -+----------------------------------+----------------------------------+ -| Comment | Assumed lifetime of 24 years. It | -| | is upscaled to represent a 200 | -| | kW Level-3 charger by scaling | -| | the charger component up based | -| | on a mass of 1’290 kg given by | -| | AAB's 200 kW bus charger. | -+----------------------------------+----------------------------------+ +.. _table-16: + +.. table:: Table 16: Parameters of the charging station for battery electric trucks + :widths: auto + :align: center + + +----------------------------------+----------------------------------+ + | | **EV charger, level 3, plug-in** | + +----------------------------------+----------------------------------+ + | Vehicle type | BEV-depot | + +----------------------------------+----------------------------------+ + | Power [kW] | 200 | + +----------------------------------+----------------------------------+ + | Efficiency [%] | 95 | + +----------------------------------+----------------------------------+ + | Source for efficiency | :cite:`ct-1011` | + +----------------------------------+----------------------------------+ + | Lifetime [years] | 24 | + +----------------------------------+----------------------------------+ + | Number of trucks allocated per | 2’100 [kWh/day] / energy storage | + | charging system | cap. [kWh] | + +----------------------------------+----------------------------------+ + | Share of the charging station | 1 / (24 [years] \* no. trucks \* | + | allocated to the vehicle | annual mileage [km/day] \* cargo | + | | mass [ton]) | + +----------------------------------+----------------------------------+ + | Source for inventories | :cite:`ct-1001, ct-1056` | + +----------------------------------+----------------------------------+ + | Comment | Assumed lifetime of 24 years. It | + | | is up scaled to represent a 200 | + | | kW Level-3 charger by scaling | + | | the charger component up based | + | | on a mass of 1’290 kg given by | + | | AAB's 200 kW bus charger. | + +----------------------------------+----------------------------------+ Finding solutions ------------------ +***************** -Very much like ``carculator`` and ``carculator_bus``, ``carculator_truck`` -iterates on the sizing procedure until: +Very much like ``carculator`` and ``carculator_bus``, +``carculator_truck`` iterates on the sizing procedure until: - The change in curb mass of the vehicles between two modeling iterations is below 1%. This indicates that the vehicle model and the @@ -1042,7 +1043,6 @@ All while considering the **following constraints**: - For **all trucks**, the driving mass when fully occupied cannot be superior to the gross mass of the vehicle (this is specifically relevant for battery electric vehicles) - - Particularly relevant to battery electric vehicles, the curb mass (including the battery mass) should be so low as to allow it to retain at least 10% of the initial cargo carrying capacity, all while @@ -1051,126 +1051,118 @@ All while considering the **following constraints**: .. _validation-2: Validation ----------- +********** Diesel trucks ~~~~~~~~~~~~~ -Figure 12 compares the fuel economy of trucks of different size classes -modeled by ``carculator_truck`` with those found in HBEFA and ecoinvent -v.3. +:ref:`Figure 11 ` compares the fuel economy of trucks of different size classes +modeled by ``carculator_truck`` with those found in HBEFA and ecoinvent v.3. + +.. _figure-11: + +.. figure:: _static/img/image14.png + :align: center + Figure 11: Fuel consumption for diesel trucks in L diesel per 100 km, against literature data. -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image83.png - :width: 7.51138in - :height: 3.10833in +.. note:: -Figure 12 Fuel consumption for diesel trucks in L diesel per 100 km, -against literature data. Shaded areas: the upper bound is calculated -with the “Urban delivery” driving cycle with a load factor of 80%, the -lower bound is calculated with the “Long haul” driving cycle with a load -factor of 20%. + Shaded areas: the upper bound is calculated with the “Urban delivery” driving cycle with a load factor of 80%, the + lower bound is calculated with the “Long haul” driving cycle with a load factor of 20%. .. _battery-electric-trucks-1: Battery electric trucks ~~~~~~~~~~~~~~~~~~~~~~~ -Figure 13 compares some of the modeled parameters for battery electric -trucks with the specifications of some commercial models disclosed by -manufacturers. These manufacturers’ specifications can also be found in -Annex D. - -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image84.png - :width: 40% - -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image85.png - :width: 40% - -+----------------------------------+----------------------------------+ -| a) Maximum payload modeled | b) Engine peak power output | -| (shaded line) versus commercial | modeled (shaded line) versus | -| models, function of gross weight | commercial models, function of | -| | gross weight | -+----------------------------------+----------------------------------+ - -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image86.png - :width: 40% - -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image87.png - :width: 40% - -+----------------------------------+----------------------------------+ -| c) Battery capacity modeled | d) Tank-to-wheel energy | -| (shared area) versus commercial | consumption modeled (shaded | -| models, function of gross | line) versus commercial models, | -| weight. The lower bound of the | function of gross weight | -| shaded area represents a vehicle | | -| with a range autonomy of 150 km. | | -| The upper bound of the shaded | | -| area represent a vehicle a range | | -| autonomy of 400 km. | | -+----------------------------------+----------------------------------+ - -Figure 13 Comparison of modeled maximum payload, engine peak power, -battery capacity and tank-to-wheel fuel consumption with specification -of commercial models. +:ref:`Table 17 ` compares some of the modeled parameters for battery electric +trucks with the specifications of some commercial models disclosed by manufacturers. +These manufacturers’ specifications can also be found in :ref:`Annexes `. + +.. _table-17: + +.. table:: Table 17: Comparison of modeled maximum payload, engine peak power, battery capacity and tank-to-wheel fuel consumption with specification of commercial models. + :widths: 60 40 + + +-------------------+------------------------------------------------------------------------+ + | |figure-13-1| | Maximum payload modeled (shaded line) versus commercial models, | + | | function of gross weight | + +-------------------+------------------------------------------------------------------------+ + | |figure-13-2| | Engine peak power output modeled (shaded line) versus | + | | commercial models, function of gross weight | + +-------------------+------------------------------------------------------------------------+ + | |figure-13-3| | Battery capacity modeled (shared area) versus commercial models, | + | | function of gross weight. The lower bound of the shaded area | + | | represents a vehicle with a range autonomy of 150 km. The upper bound | + | | of the shaded area represent a vehicle a range autonomy of 400 km. | + +-------------------+------------------------------------------------------------------------+ + | |figure-13-4| | Tank-to-wheel energy consumption modeled (shaded line) versus | + | | commercial models, function of gross weight | + +-------------------+------------------------------------------------------------------------+ + +.. |figure-13-1| image:: _static/img/image15.png + :class: no-scaled-link + +.. |figure-13-2| image:: _static/img/image16.png + :class: no-scaled-link + +.. |figure-13-3| image:: _static/img/image17.png + :class: no-scaled-link + +.. |figure-13-4| image:: _static/img/image18.png + :class: no-scaled-link + .. _fuel-cell-electric-trucks-1: Fuel cell electric trucks ~~~~~~~~~~~~~~~~~~~~~~~~~ -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image88.png - :width: 40% - -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image89.png - :width: 40% - -+----------------------------------+----------------------------------+ -| a) Engine peak power output | b) Hydrogen tank capacity | -| modeled (shaded line) versus | modeled (shaded line) versus | -| commercial models, function of | commercial models, function of | -| gross weight. | gross weight. The lower bound of | -| | the shaded area represents a | -| | vehicle with a range autonomy of | -| | 150 km. The upper bound of the | -| | shaded area represent a vehicle | -| | a range autonomy of 800 km. | -+----------------------------------+----------------------------------+ - -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image90.png - :width: 40% - -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image91.png - :width: 40% - -+----------------------------------+----------------------------------+ -| c) Fuel cell stack power output | d) Battery capacity modeled | -| modeled (shaded line) versus | (shaded line) versus commercial | -| commercial models, function of | models, function of gross | -| gross weight. | weight. The lower bound of the | -| | shaded area represents a vehicle | -| | with a range autonomy of 150 km. | -| | The upper bound of the shaded | -| | area represent a vehicle a range | -| | autonomy of 800 km. | -+----------------------------------+----------------------------------+ - -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image92.png - :width: 40% - -+----------------------------------+----------------------------------+ -| e) Tank-to-wheel energy | | -| consumption modeled (shaded | | -| line) versus commercial models, | | -| function of gross weight. | | -+----------------------------------+----------------------------------+ - -Figure 14 Comparison of modeled engine peak power, fuel cell stack +.. _table-18: + +.. table:: Table 18: Comparison of modeled engine peak power, fuel cell stack. + :widths: 60 40 + + +-------------------+------------------------------------------------------------------------+ + | |figure-14-1| | Engine peak power output modeled (shaded line) versus commercial | + | | models, function of gross weight | + +-------------------+------------------------------------------------------------------------+ + | |figure-14-2| | Hydrogen tank capacity modeled (shaded line) versus commercial models, | + | | function of gross weight. The lower bound of the shaded area | + | | represents a vehicle with a range autonomy of 150 km. | + | | The upper bound of the shaded area represent a vehicle | + | | a range autonomy of 800 km. | + +-------------------+------------------------------------------------------------------------+ + | |figure-14-3| | Fuel cell stack power output modeled (shaded line) versus commercial | + | | models, function of gross weight. | + +-------------------+------------------------------------------------------------------------+ + | |figure-14-4| | Battery capacity modeled (shaded line) versus commercial | + | | models, function of gross weight. The lower bound of the shaded area | + | | represents a vehicle with a range autonomy of 150 km. The upper bound | + | | of the shaded area represent a vehicle a range autonomy of 800 km. | + +-------------------+------------------------------------------------------------------------+ + | |figure-14-5| | Tank-to-wheel energy consumption modeled (shaded line) versus | + | | commercial models, function of gross weight. | + +-------------------+------------------------------------------------------------------------+ + +.. |figure-14-1| image:: _static/img/image19.png + :class: no-scaled-link + +.. |figure-14-2| image:: _static/img/image20.png + :class: no-scaled-link + +.. |figure-14-3| image:: _static/img/image21.png + :class: no-scaled-link + +.. |figure-14-4| image:: _static/img/image22.png + :class: no-scaled-link + +.. |figure-14-5| image:: _static/img/image23.png + :class: no-scaled-link Inventory modelling -******************* +------------------- Once the vehicles are modeled, the calculated parameters of each of them is passed to the inventory.py calculation module to derive inventories. @@ -1179,15 +1171,13 @@ they can be normalized by the kilometric lifetime (i.e., vehicle-kilometer) or by the kilometric multiplied by the passenger occupancy (i.e., passenger-kilometer). Road demand ------------ +*********** The demand for construction and maintenance of roads and road-related infrastructure is calculated on the following basis: - Road construction: 5.37e-7 meter-year per kg of vehicle mass per km. - -- Road maintenance: 1.29e-3 meter-year per km, regardless of vehicle - mass. +- Road maintenance: 1.29e-3 meter-year per km, regardless of vehicle mass. The driving mass of the vehicle consists of the mass of the vehicle in running condition (including fuel) in addition to the mass of passengers @@ -1196,86 +1186,87 @@ and the average occupancy is 1.6 persons per vehicle. The demand rates used to calculate the amounts required for road construction and maintenance (based on vehicle mass per km and per km, -respectively) are taken from [25]_. +respectively) are taken from :cite:`ct-1091`. Because roads are maintained by removing surface layers older than those that are actually discarded, road infrastructure disposal is modeled in -ecoinvent as a renewal rate over the year in the road construction -dataset. +ecoinvent as a renewal rate over the year in the road construction dataset. Fuel properties ---------------- +*************** For all vehicles with an internal combustion engine, carbon dioxide (CO\ :sub:`2`) and sulfur dioxide (SO\ :sub:`2`) emissions are calculated based on the fuel consumption of the vehicle and the carbon and sulfur concentration of the fuel observed in Switzerland and Europe. -Sulfur concentration values are sourced from HBEFA 4.1 [26]_. Lower +Sulfur concentration values are sourced from HBEFA 4.1 :cite:`ct-1058`. Lower heating values and CO\ :sub:`2` emission factors for fuels are sourced -from p.86 and p.103 of [27]_. The fuel properties shown in Table 12 are -used for fuels purchased in Switzerland but should be applicable for other -areas/countries. - - -Table 12 Fuels characteristics - -+---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ -| | Volumetric mass density [kg/l] | Lower heating value [MJ/kg] | CO2 emission factor [kg CO2/kg] | SO2 emission factor [kg SO2/kg] | -+=======================================+=================================+==============================+==================================+==================================+ -+---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ -| Diesel | 0.85 | 43 | 3.15 | 8.85e-4 | -+---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ -| Biodiesel | 0.85 | 38 | 2.79 | 8.85e-4 | -+---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ -| Synthetic diesel | 0.85 | 43 | 3.15 | 0 | -+---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ -| Natural gas | | 47.5 | 2.68 | | -+---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ -| Bio-methane | | 47.5 | 2.68 | | -+---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ -| Synthetic methane | | 47.5 | 2.68 | | -+---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ - -Note that ``carculator_truck`` will adapt the sulfur concentration of the -fuel (and related SOx emissions) based on the country the user selects (see Figure 15). - - -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image_sulfur_countries.png - :width: 100% - -Figure 15 Region-specific sulfur concentration of diesel fuel. Source: -Xie, Y.; Posada, F.; Minjares, R. Diesel Sulfur Content Impacts on Euro VI Soot-Free Vehicles: -Considerations for Emerging Markets. 2020. https://doi.org/10.1007/s11783-016-0859-5. -Global progress toward soot-free diesel vehicles in 2019 | International Council on Clean Transportation -https://theicct.org/publications/global-progress-toward-soot-free-diesel-vehicles-2019 (accessed Jan 21, -2021). +from p.86 and p.103 of :cite:`ct-1096`. The fuel properties shown in :ref:`Table 19 ` are +used for fuels purchased in Switzerland but should be applicable for other areas/countries. + +.. _table-19: + +.. table:: Table 19: Fuels characteristics + :widths: auto + :align: center + + +---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ + | | Volumetric mass density [kg/l] | Lower heating value [MJ/kg] | CO2 emission factor [kg CO2/kg] | SO2 emission factor [kg SO2/kg] | + +=======================================+=================================+==============================+==================================+==================================+ + +---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ + | Diesel | 0.85 | 43 | 3.15 | 8.85e-4 | + +---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ + | Biodiesel | 0.85 | 38 | 2.79 | 8.85e-4 | + +---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ + | Synthetic diesel | 0.85 | 43 | 3.15 | 0 | + +---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ + | Natural gas | | 47.5 | 2.68 | | + +---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ + | Bio-methane | | 47.5 | 2.68 | | + +---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ + | Synthetic methane | | 47.5 | 2.68 | | + +---------------------------------------+---------------------------------+------------------------------+----------------------------------+----------------------------------+ + +.. note:: + + Note that ``carculator_truck`` will adapt the sulfur concentration of the + fuel (and related SOx emissions) based on the country the user selects (see :ref:`Figure 12 `). + +.. _figure-12: + +.. figure:: _static/img/image_sulfur_countries.png + :align: center + + Figure 12: Region-specific sulfur concentration of diesel fuel. Source :cite:`ct-1116, ct-1118` Exhaust emissions ------------------ +***************** Emissions of regulated and non-regulated substances during driving are -approximated using emission factors from HBEFA 4.1 [26]_. Emission +approximated using emission factors from HBEFA 4.1 :cite:`ct-1058`. Emission factors are typically given in gram per km. Emission factors representing free flowing driving conditions and urban and rural traffic situations are used. Additionally, cold start emissions as well as running, evaporation and diurnal losses are accounted for, also sourced -from HBEFA 4.1 [26]_. - +from HBEFA 4.1 :cite:`ct-1058`. For vehicles with an internal combustion engine, the sulfur concentration values in the fuel can slightly differ across regions - although this remains rather limited within Europe. The values provided by HBEFA 4.1 are used for Switzerland, France, Germany, Austria and -Sweden. For other countries, values from [28]_ are used. +Sweden. For other countries, values from :cite:`ct-1118` are used. -Table 13 Sulfur concentration values examples for on-road fuel in -Switzerland and average Europe +.. _table-20: -========================= =============== ========== -**Sulfur [ppm/fuel wt.]** **Switzerland** **Europe** -========================= =============== ========== -Diesel 10 8 -========================= =============== ========== +.. table:: Table 20: Sulfur concentration values examples for on-road fuel in Switzerland and average Europe + :widths: auto + :align: center + + ========================= =============== ========== + **Sulfur [ppm/fuel wt.]** **Switzerland** **Europe** + ========================= =============== ========== + Diesel 10 8 + ========================= =============== ========== The amount of sulfur dioxide released by the vehicle over one km [kg/km] is calculated as: @@ -1288,21 +1279,23 @@ where :math:`r_{S}` is the sulfur content per kg of fuel [kg SO2/kg fuel], and :math:`64/32` is the ratio between the molar mass of SO2 and the molar mass of O2. Country-specific fuel blends are sourced from the IEA's Extended World -Energy Balances database [29]_. By default, the biofuel used is assumed +Energy Balances database :cite:`ct-1045`. By default, the biofuel used is assumed to be produced from biomass residues (i.e., second-generation fuel): fermentation of crop residues for bioethanol, esterification of used -vegetable oil for biodiesel and anaerobic digestion of sewage sludge for -bio-methane. +vegetable oil for biodiesel and anaerobic digestion of sewage sludge for bio-methane. + +.. _table-21: -Table 14 Specification examples of fuel blends for Switzerland and -average Europe +.. table:: Table 21: Specification examples of fuel blends for Switzerland and average Europe + :widths: auto + :align: center -========================= =============== ========== -**Biofuel share [% wt.]** **Switzerland** **Europe** -========================= =============== ========== -Diesel blend 4.8 6 -Compressed gas blend 22 9 -========================= =============== ========== + ========================= =============== ========== + **Biofuel share [% wt.]** **Switzerland** **Europe** + ========================= =============== ========== + Diesel blend 4.8 6 + Compressed gas blend 22 9 + ========================= =============== ========== For exhaust emissions, factors based on the fuel consumption are derived @@ -1322,10 +1315,11 @@ calculated as follows: E(i,s) = F_ttw(s) \times X(i, e) -where :math:`E(i,s)` is the emission of substance i at second s of the driving cycle, -:math:`F_ttw(s)` is the fuel consumption of the vehicle at second s, -and :math:`X(i, e)` is the emission factor of substance i in the given driving conditions. +where: +- :math:`E(i,s)` is the emission of substance i at second s of the driving cycle, +- :math:`F_ttw(s)` is the fuel consumption of the vehicle at second s, +- and :math:`X(i, e)` is the emission factor of substance i in the given driving conditions. NMHC speciation @@ -1333,60 +1327,64 @@ NMHC speciation After NMHC emissions are quantified, EEA/EMEP's 2019 Air Pollutant Emission Inventory Guidebook provides factors to further specify some of -them into the substances listed in Table 16. - -Table 16 NMVOC sub-species as fractions of the mass emitted - -+----------------------+----------------------------+ -| | Trucks and buses (diesel) | -+======================+============================+ -| | Wt. % of NMVOC | -+----------------------+----------------------------+ -| Ethane | 0.03 | -+----------------------+----------------------------+ -| Propane | 0.1 | -+----------------------+----------------------------+ -| Butane | 0.15 | -+----------------------+----------------------------+ -| Pentane | 0.06 | -+----------------------+----------------------------+ -| Hexane | 0 | -+----------------------+----------------------------+ -| Cyclohexane | 0 | -+----------------------+----------------------------+ -| Heptane | 0.3 | -+----------------------+----------------------------+ -| Ethene | 0 | -+----------------------+----------------------------+ -| Propene | 0 | -+----------------------+----------------------------+ -| 1-Pentene | 0 | -+----------------------+----------------------------+ -| Toluene | 0.01 | -+----------------------+----------------------------+ -| m-Xylene | 0.98 | -+----------------------+----------------------------+ -| o-Xylene | 0.4 | -+----------------------+----------------------------+ -| Formaldehyde | 8.4 | -+----------------------+----------------------------+ -| Acetaldehyde | 4.57 | -+----------------------+----------------------------+ -| Benzaldehyde | 1.37 | -+----------------------+----------------------------+ -| Acetone | 0 | -+----------------------+----------------------------+ -| Methyl ethyl ketone | 0 | -+----------------------+----------------------------+ -| Acrolein | 1.77 | -+----------------------+----------------------------+ -| Styrene | 0.56 | -+----------------------+----------------------------+ -| NMVOC, unspecified | 81.3 | -+----------------------+----------------------------+ +them into the substances listed in :ref:`Table 22 `. + +.. _table-22: + +.. table:: Table 22: NMVOC sub-species as fractions of the mass emitted + :widths: auto + :align: center + + +----------------------+----------------------------+ + | | Trucks and buses (diesel) | + +======================+============================+ + | | Wt. % of NMVOC | + +----------------------+----------------------------+ + | Ethane | 0.03 | + +----------------------+----------------------------+ + | Propane | 0.1 | + +----------------------+----------------------------+ + | Butane | 0.15 | + +----------------------+----------------------------+ + | Pentane | 0.06 | + +----------------------+----------------------------+ + | Hexane | 0 | + +----------------------+----------------------------+ + | Cyclohexane | 0 | + +----------------------+----------------------------+ + | Heptane | 0.3 | + +----------------------+----------------------------+ + | Ethene | 0 | + +----------------------+----------------------------+ + | Propene | 0 | + +----------------------+----------------------------+ + | 1-Pentene | 0 | + +----------------------+----------------------------+ + | Toluene | 0.01 | + +----------------------+----------------------------+ + | m-Xylene | 0.98 | + +----------------------+----------------------------+ + | o-Xylene | 0.4 | + +----------------------+----------------------------+ + | Formaldehyde | 8.4 | + +----------------------+----------------------------+ + | Acetaldehyde | 4.57 | + +----------------------+----------------------------+ + | Benzaldehyde | 1.37 | + +----------------------+----------------------------+ + | Acetone | 0 | + +----------------------+----------------------------+ + | Methyl ethyl ketone | 0 | + +----------------------+----------------------------+ + | Acrolein | 1.77 | + +----------------------+----------------------------+ + | Styrene | 0.56 | + +----------------------+----------------------------+ + | NMVOC, unspecified | 81.3 | + +----------------------+----------------------------+ Non-exhaust emissions ---------------------- +********************* A number of emission sources besides exhaust emissions are considered. They are described in the following sub-sections. @@ -1396,37 +1394,39 @@ Engine wear emissions Metals and other substances are emitted during the combustion of fuel because of engine wear. These emissions are scaled based on the fuel -consumption, using the emission factors listed in Table 17, sourced from -[31]_. - -Table 17 Emission factors for engine wear as fractions of the fuel mass -combusted - -+--------------+----------------------------+ -| | Trucks (diesel) | -+==============+============================+ -| | kg/MJ fuel | -+--------------+----------------------------+ -| PAH | 1.82E-09 | -+--------------+----------------------------+ -| Arsenic | 2.33E-12 | -+--------------+----------------------------+ -| Selenium | 2.33E-12 | -+--------------+----------------------------+ -| Zinc | 4.05E-08 | -+--------------+----------------------------+ -| Copper | 4.93E-10 | -+--------------+----------------------------+ -| Nickel | 2.05E-10 | -+--------------+----------------------------+ -| Chromium | 6.98E-10 | -+--------------+----------------------------+ -| Chromium VI | 1.40E-12 | -+--------------+----------------------------+ -| Mercury | 1.23E-10 | -+--------------+----------------------------+ -| Cadmium | 2.02E-10 | -+--------------+----------------------------+ +consumption, using the emission factors listed in :ref:`Table 23 `, sourced from :cite:`ct-1028`. + +.. _table-23: + +.. table:: Table 23: Emission factors for engine wear as fractions of the fuel mass combusted + :widths: auto + :align: center + + +--------------+----------------------------+ + | | Trucks (diesel) | + +==============+============================+ + | | kg/MJ fuel | + +--------------+----------------------------+ + | PAH | 1.82E-09 | + +--------------+----------------------------+ + | Arsenic | 2.33E-12 | + +--------------+----------------------------+ + | Selenium | 2.33E-12 | + +--------------+----------------------------+ + | Zinc | 4.05E-08 | + +--------------+----------------------------+ + | Copper | 4.93E-10 | + +--------------+----------------------------+ + | Nickel | 2.05E-10 | + +--------------+----------------------------+ + | Chromium | 6.98E-10 | + +--------------+----------------------------+ + | Chromium VI | 1.40E-12 | + +--------------+----------------------------+ + | Mercury | 1.23E-10 | + +--------------+----------------------------+ + | Cadmium | 2.02E-10 | + +--------------+----------------------------+ Abrasion emissions @@ -1435,27 +1435,23 @@ Abrasion emissions We distinguish four types of abrasion emissions, besides engine wear emissions: -- brake wear emissions: from the wearing out of brake drums, discs and - pads - -- tires wear emissions: from the wearing out of rubber tires on the - asphalt - +- brake wear emissions: from the wearing out of brake drums, discs and pads +- tires wear emissions: from the wearing out of rubber tires on the asphalt - road wear emissions: from the wearing out of the road pavement and re-suspended road dust: dust on the road surface that is re-suspended as a result of passing traffic, "due either to shear forces at the tire/road surface interface, or air turbulence in the wake of a -moving vehicle" [32]_. +moving vehicle" :cite:`ct-1007`. -[32]_ provides an approach for estimating the mass and extent of these +:cite:`ct-1007` provides an approach for estimating the mass and extent of these abrasion emissions. They propose to disaggregate the abrasion emission -factors presented in the EMEP's 2019 Emission inventory guidebook [31]_ +factors presented in the EMEP's 2019 Emission inventory guidebook :cite:`ct-1028` for two-wheelers, passenger cars, buses and heavy good vehicles, to re-quantify them as a function of vehicle mass, but also traffic situations (urban, rural and motorway). Additionally, they present an approach to calculate re-suspended road dust according to the method -presented in [33]_ - such factors are not present in the EMEP's 2019 +presented in :cite:`ct-1103` - such factors are not present in the EMEP's 2019 Emission inventory guidebook - using representative values for dust load on European roads. @@ -1469,51 +1465,54 @@ emissions is the following: With: - :math:`EF` being the emission factor, in mg per vehicle-kilometer - - :math:`W` being the vehicle mass, in tons +- :math:`b` and :math:`c` being regression coefficients, whose values are presented in :ref:`Table 24 `. -- :math:`b` and :math:`c` being regression coefficients, whose values are presented - in Table 18. +.. _table-24: -Table 18 Regression coefficients to estimate abrasion emissions +.. table:: Table 24: Regression coefficients to estimate abrasion emissions + :widths: auto + :align: center -+--------+------------+------+--------+------+-----------+------+-------------+------+--------+------+-----------+------+------------+------+-------------------------+------+ -| | Tire wear | | | | | | Brake wear | | | | | | Road wear | | Re-suspended road dust | | -+========+============+======+========+======+===========+======+=============+======+========+======+===========+======+============+======+=========================+======+ -| | Urban | | Rural | | Motorway | | Urban | | Rural | | Motorway | | | | | | -+--------+------------+------+--------+------+-----------+------+-------------+------+--------+------+-----------+------+------------+------+-------------------------+------+ -| | b | c | b | c | b | c | b | c | b | c | b | c | b | c | b | c | -+--------+------------+------+--------+------+-----------+------+-------------+------+--------+------+-----------+------+------------+------+-------------------------+------+ -| PM 10 | 5.8 | 2.3 | 4.5 | 2.3 | 3.8 | 2.3 | 4.2 | 1.9 | 1.8 | 1.5 | 0.4 | 1.3 | 2.8 | 1.5 | 2 | 1.1 | -+--------+------------+------+--------+------+-----------+------+-------------+------+--------+------+-----------+------+------------+------+-------------------------+------+ -| PM 2.5 | 8.2 | 2.3 | 6.4 | 2.3 | 5.5 | 2.3 | 11 | 1.9 | 4.5 | 1.5 | 1 | 1.3 | 5.1 | 1.5 | 8.2 | 1.1 | -+--------+------------+------+--------+------+-----------+------+-------------+------+--------+------+-----------+------+------------+------+-------------------------+------+ + +--------+------------+------+--------+------+-----------+------+-------------+------+--------+------+-----------+------+------------+------+-------------------------+------+ + | | Tire wear | | | | | | Brake wear | | | | | | Road wear | | Re-suspended road dust | | + +========+============+======+========+======+===========+======+=============+======+========+======+===========+======+============+======+=========================+======+ + | | Urban | | Rural | | Motorway | | Urban | | Rural | | Motorway | | | | | | + +--------+------------+------+--------+------+-----------+------+-------------+------+--------+------+-----------+------+------------+------+-------------------------+------+ + | | b | c | b | c | b | c | b | c | b | c | b | c | b | c | b | c | + +--------+------------+------+--------+------+-----------+------+-------------+------+--------+------+-----------+------+------------+------+-------------------------+------+ + | PM 10 | 5.8 | 2.3 | 4.5 | 2.3 | 3.8 | 2.3 | 4.2 | 1.9 | 1.8 | 1.5 | 0.4 | 1.3 | 2.8 | 1.5 | 2 | 1.1 | + +--------+------------+------+--------+------+-----------+------+-------------+------+--------+------+-----------+------+------------+------+-------------------------+------+ + | PM 2.5 | 8.2 | 2.3 | 6.4 | 2.3 | 5.5 | 2.3 | 11 | 1.9 | 4.5 | 1.5 | 1 | 1.3 | 5.1 | 1.5 | 8.2 | 1.1 | + +--------+------------+------+--------+------+-----------+------+-------------+------+--------+------+-----------+------+------------+------+-------------------------+------+ The respective amounts of brake and tire wear emissions in urban, rural and motorway driving conditions are weighted, to represent the driving cycle used. The weight coefficients sum to 1 and the coefficients -considered are presented in Table *19*. They have been calculated by +considered are presented in :ref:`Table 25 `. They have been calculated by analyzing the speed profile of each driving cycle, with the exception of two-wheelers, for which no driving cycle is used (i.e., the energy consumption is from reported values) and where simple assumptions are made in that regard instead. -Table 19 Weighting coefficients to calculate representative abrasion -emissions given a type of use/driving cycle - -+--------------------+--------------------+-------+-------+----------+ -| | Driving cycle | Urban | Rural | Motorway | -+====================+====================+=======+=======+==========+ -+--------------------+--------------------+-------+-------+----------+ -| Truck, urban | Urban delivery | 1 | | | -| delivery | | | | | -+--------------------+--------------------+-------+-------+----------+ -| Truck, regional | Regional delivery | 0.16 | 0.32 | 0.52 | -| delivery | | | | | -+--------------------+--------------------+-------+-------+----------+ -| Truck, long haul | Long haul | | | 1 | -+--------------------+--------------------+-------+-------+----------+ +.. _table-25: + +.. table:: Table 25: Weighting coefficients to calculate representative abrasion emissions given a type of use/driving cycle + :widths: auto + :align: center + + +--------------------+--------------------+-------+-------+----------+ + | | Driving cycle | Urban | Rural | Motorway | + +====================+====================+=======+=======+==========+ + | Truck, urban | Urban delivery | 1 | | | + | delivery | | | | | + +--------------------+--------------------+-------+-------+----------+ + | Truck, regional | Regional delivery | 0.16 | 0.32 | 0.52 | + | delivery | | | | | + +--------------------+--------------------+-------+-------+----------+ + | Truck, long haul | Long haul | | | 1 | + +--------------------+--------------------+-------+-------+----------+ Finally, for electric and (plugin) hybrid vehicles (with the exception of two-wheelers), the amount of brake wear emissions is reduced. This @@ -1523,61 +1522,64 @@ resistance along the driving cycle. The logic is that the amount of negative resistance that could not be met by the regenerative braking system needs to be met with mechanical brakes. -Table 15 Approximate reduction factors for brake wear emissions. Values -differ slightly across size classes. - -+-------------+-------------+-------------+-------------+-------------+ -| | Driving | Reduction | Reduction | Reduction | -| | cycle | factor for | factor for | factor for | -| | | hybrid | plugin | battery and | -| | | vehicles | hybrid | fuel cell | -| | | | vehicles | electric | -| | | | | vehicles | -+=============+=============+=============+=============+=============+ -+-------------+-------------+-------------+-------------+-------------+ -| Truck, | Urban | -20% | -82% | -82% | -| urban | delivery | | | | -| delivery | | | | | -+-------------+-------------+-------------+-------------+-------------+ -| Truck, | Regional | -24% | -82% | -83% | -| regional | delivery | | | | -| delivery | | | | | -+-------------+-------------+-------------+-------------+-------------+ +.. _table-26: + +.. table:: Table 26: Approximate reduction factors for brake wear emissions. Values differ slightly across size classes. + :widths: auto + :align: center + + +-------------+-------------+-------------+-------------+-------------+ + | | Driving | Reduction | Reduction | Reduction | + | | cycle | factor for | factor for | factor for | + | | | hybrid | plugin | battery and | + | | | vehicles | hybrid | fuel cell | + | | | | vehicles | electric | + | | | | | vehicles | + +=============+=============+=============+=============+=============+ + | Truck, | Urban | -20% | -82% | -82% | + | urban | delivery | | | | + | delivery | | | | | + +-------------+-------------+-------------+-------------+-------------+ + | Truck, | Regional | -24% | -82% | -83% | + | regional | delivery | | | | + | delivery | | | | | + +-------------+-------------+-------------+-------------+-------------+ The sum of PM 2.5 and PM 10 emissions is used as the input for the -ecoinvent v.3.x LCI datasets indicated in Table 16. - -Table 16 LCI datasets used to approximate PM emissions composition and -emissions to air, soil and water - -+-------------+-------------+-------------+-------------+-------------+ -| | Tire wear | Brake wear | Road wear | R | -| | | | | e-suspended | -| | | | | road dust | -+=============+=============+=============+=============+=============+ -+-------------+-------------+-------------+-------------+-------------+ -| Truck | Tyre wear | Brake wear | Road wear | | -| | emissions, | emissions, | emissions, | | -| | lorrry | lorry | lorry | | -+-------------+-------------+-------------+-------------+-------------+ +ecoinvent v.3.x LCI datasets indicated in :ref:`Table 27 `. + +.. _table-27: + +.. table:: Table 27: LCI datasets used to approximate PM emissions composition and emissions to air, soil and water + :widths: auto + :align: center + + +-------------+-------------+-------------+-------------+--------------+ + | | Tire wear | Brake wear | Road wear | Re-suspended | + | | | | | road dust | + +=============+=============+=============+=============+==============+ + | Truck | Tyre wear | Brake wear | Road wear | | + | | emissions, | emissions, | emissions, | | + | | lorry | lorry | lorry | | + +-------------+-------------+-------------+-------------+--------------+ Finally, we assume that the composition of the re-suspended road dust is evenly distributed between brake, road and tire wear particles. -Figure 16 below shows the calculated abrasion emissions for trucks in mg per +:ref:`Figure 13 ` below shows the calculated abrasion emissions for trucks in mg per vehicle-kilometer, following the approach presented above. These amounts will differ across driving cycles. For example, the amount of brake wear emissions is higher for the urban delivery cycle than for the regional -delivery cycle, because the urban delivery cycle has a higher share of -braking events. +delivery cycle, because the urban delivery cycle has a higher share of braking events. -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/media/image75.png +.. _figure-13: +.. figure:: _static/img/image24.png + :align: center -Figure 16 Total particulate matter emissions (<2.5 µm and 2.5-10 µm) in -mg per vehicle-kilometer for trucks. + Figure 13: Total particulate matter emissions (<2.5 µm and 2.5-10 µm) in mg per vehicle-kilometer for trucks. Refrigerant emissions @@ -1586,26 +1588,28 @@ Refrigerant emissions The use of refrigerant for onboard air conditioning systems is considered for trucks until 2021. The supply of refrigerant gas R134a is accounted for. Similarly, the leakage of the refrigerant is also -considered. For this, the calculations from [34]_ are used. Such emission +considered. For this, the calculations from :cite:`ct-1093` are used. Such emission is included in the transportation dataset of the corresponding vehicle. The overall supply of refrigerant amounts to the initial charge plus the amount leaked throughout the lifetime of the vehicle, both listed in -Table 22. This is an important aspect, as the refrigerant gas R134a has -a Global Warming potential of 2'400 kg CO\ :sub:`2`-eq./kg released in -the atmosphere. +:ref:`Table 28 `. This is an important aspect, as the refrigerant gas R134a has +a Global Warming potential of 2'400 kg CO\ :sub:`2`-eq./kg released in the atmosphere. -Table 22 Use and loss of refrigerant gas for onboard air conditioning -systems +.. _table-28: -======================================== ======= -\ Trucks -Initial charge [kg per vehicle lifetime] 1.1 -Lifetime loss [kg per vehicle lifetime] 0.94 -======================================== ======= +.. table:: Table 28: Use and loss of refrigerant gas for onboard air conditioning systems + :widths: auto + :align: center + + ======================================== ======= + \ Trucks + Initial charge [kg per vehicle lifetime] 1.1 + Lifetime loss [kg per vehicle lifetime] 0.94 + ======================================== ======= .. note:: - **Important assumption**: it is assumed that electric and plug-in + **Important assumption:** it is assumed that electric and plug-in electric vehicles also use a compressor-like belt-driven air conditioning system, relying on the refrigerant gas R134a. In practice, an increasing, but still minor, share of electric vehicles now use a @@ -1619,66 +1623,74 @@ Noise emissions ~~~~~~~~~~~~~~~ Noise emissions along the driving cycle of the vehicle are quantified -using the method developed within the CNOSSOS project [35]_, which are +using the method developed within the CNOSSOS project :cite:`ct-1094`, which are expressed in joules, for each of the 8 octaves. Rolling and propulsion noise emissions are quantified separately. The sound power level of rolling noise is calculated using: -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/image_noise_1.png - :width: 3.45in - :height: 0.65in +.. image:: _static/img/image_noise_1.png + :align: center With: -- *V\ m* being the instant speed given by the driving cycle, in km/h - -- *V\ ref* being the reference speed of 70 km/h - -And *A\ R,i,m* and *B\ R,i,m*\ are unitless and given in Table 23. +- :math:`v_m` being the instant speed given by the driving cycle, in km/h +- :math:`v_{ref}` being the reference speed of 70 km/h +- and :math:`A_{P,i,m}` and :math:`B_{P,i,m}` are unit-less and given in :ref:`Table 29 `. The propulsion noise level is calculated using: -.. image:: https://github.com/romainsacchi/carculator_truck/raw/master/docs/image_noise_2.png - :width: 3.6in - :height: 0.625in +.. image:: _static/img/image_noise_2.png + :align: center With: -And *A\ P,i,m* and *B\ P,i,m*\ are unitless and given in Table 23. - -Table 23 Noise level coefficients for medium-duty trucks - -================================= ====== ====== ====== ====== -Octave band center frequency (Hz) *A\ R* *B\ R* *A\ P* *B\ P* -================================= ====== ====== ====== ====== -63 84 30 101 -1.9 -125 88.7 35.8 96.5 4.7 -250 91.5 32.6 98.8 6.4 -500 96.7 23.8 96.8 6.5 -1000 97.4 30.1 98.6 6.5 -2000 90.9 36.2 95.2 6.5 -4000 83.8 38.3 88.8 6.5 -8000 80.5 40.1 82.7 6.5 -================================= ====== ====== ====== ====== - -Table 24 Noise level coefficients for heavy-duty trucks - -================================= ====== ====== ====== ====== -Octave band center frequency (Hz) *A\ R* *B\ R* *A\ P* *B\ P* -================================= ====== ====== ====== ====== -63 87 30 104.4 0 -125 91.7 33.5 100.6 3 -250 94.1 31.3 101.7 4.6 -500 100.7 25.4 101 5 -1000 100.8 31.8 100.1 5 -2000 94.3 37.1 95.9 5 -4000 87.1 38.6 91.3 5 -8000 82.5 40.6 85.3 5 -================================= ====== ====== ====== ====== +- :math:`v_m` being the instant speed given by the driving cycle, in km/h +- :math:`v_{ref}` being the reference speed of 70 km/h +- and :math:`A_{P,i,m}` and :math:`B_{P,i,m}` are unit-less and given in :ref:`Table 29 `. + +.. _table-29: + +.. table:: Table 29: Noise level coefficients for medium-duty trucks + :widths: auto + :align: center + + ================================= ====== ====== ====== ====== + Octave band center frequency (Hz) *A\ R* *B\ R* *A\ P* *B\ P* + ================================= ====== ====== ====== ====== + 63 84 30 101 -1.9 + 125 88.7 35.8 96.5 4.7 + 250 91.5 32.6 98.8 6.4 + 500 96.7 23.8 96.8 6.5 + 1000 97.4 30.1 98.6 6.5 + 2000 90.9 36.2 95.2 6.5 + 4000 83.8 38.3 88.8 6.5 + 8000 80.5 40.1 82.7 6.5 + ================================= ====== ====== ====== ====== + +|br| + +.. _table-30: + +.. table:: Table 30: Noise level coefficients for heavy-duty trucks + :widths: auto + :align: center + + ================================= ====== ====== ====== ====== + Octave band center frequency (Hz) *A\ R* *B\ R* *A\ P* *B\ P* + ================================= ====== ====== ====== ====== + 63 87 30 104.4 0 + 125 91.7 33.5 100.6 3 + 250 94.1 31.3 101.7 4.6 + 500 100.7 25.4 101 5 + 1000 100.8 31.8 100.1 5 + 2000 94.3 37.1 95.9 5 + 4000 87.1 38.6 91.3 5 + 8000 82.5 40.6 85.3 5 + ================================= ====== ====== ====== ====== A correction factor for battery electric and fuel cell electric vehicles -is applied, and is sourced from [36]_. Also, electric vehicles are added +is applied, and is sourced from :cite:`ct-1119`. Also, electric vehicles are added a warning signal of 56 dB at speed levels below 20 km/h. Finally, hybrid vehicles are assumed to use an electric engine up to a speed level of 30 km/h, beyond which the combustion engine is used. @@ -1702,30 +1714,30 @@ thereby justifying the use of electric vehicles in that regard. Rolling noise become dominant above 50 km/h. The sound power [W] over time is expressed in joules [or W.s] over the course of the driving cycle. -The study from Cucurachi and Heijungs [37]_ provides compartment-specific +The study from :cite:`ct-1015` provides compartment-specific noise emission characterization factors against midpoint and endpoint indicators - expressed in Person-Pascal-second and Disability-Adjusted Life Year, respectively. Electricity mix calculation ---------------------------- +*************************** Electricity supply mix are calculated based on the weighting from the distribution the lifetime kilometers of the vehicles over the years of use. For example, should a BEV enter the fleet in Poland in 2020, most LCA models of trucks would use the electricity mix for Poland corresponding to that year, which corresponds to the row of the -year 2020 in Table 24, based on ENTSO-E's TYNDP 2020 projections -(National Trends scenario) [38]_. ``carculator_truck`` calculates instead the +year 2020 in :ref:`Table 31 `, based on ENTSO-E's TYNDP 2020 projections +(National Trends scenario) :cite:`ct-1120`. ``carculator_truck`` calculates instead the average electricity mix obtained from distributing the annual kilometers driven along the vehicle lifetime, assuming an equal number of kilometers is driven each year. Therefore, with a lifetime of 200,000 km and an annual mileage of 12,000 kilometers, the projected electricity -mixes to consider between 2020 and 2035 for Poland are shown in Table -24. Using the kilometer-distributed average of the projected mixes +mixes to consider between 2020 and 2035 for Poland are shown in :ref:`Table 31 `. +Using the kilometer-distributed average of the projected mixes between 2020 and 2035 results in the electricity mix presented in the -last row of Table 24. The difference in terms of technology contribution +last row of :ref:`Table 31 `. The difference in terms of technology contribution and unitary GHG-intensity between the electricity mix of 2020 and the electricity mix based on the annual kilometer distribution is significant (-23%). The merit of this approach ultimately depends on @@ -1733,186 +1745,196 @@ whether the projections will be realized or not. It is also important to remember that the unitary GHG emissions of each electricity-producing technology changes over time, as the background -database ecoinvent has been transformed by premise [39]_: for example, +database ecoinvent has been transformed by premise :cite:`ct-1121`: for example, photovoltaic panels become more efficient, as well as some of the combustion-based technologies (e.g., natural gas). For more information about the transformation performed on the background life cycle -database, refer to [39]_. - -Table 24 Example of calculation of the carbon intensity of a -km-distributed electricity supply mix for Poland, along with the per kWh -GHG-intensity, for a vehicle first driven in 2020 and driven for the -next 16 years. - -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| year | Biomass | Coal | Gas | Gas CCGT | Gas CHP | Hydro | Hydro, reservoir | Lignite | Nuclear | Oil | Solar | Waste | Wind | Wind, offshore | g CO2-eq./kWh | -+=======+==========+=======+======+===========+==========+========+===================+==========+==========+======+========+========+=======+=================+================+ -| 2020 | 3% | 46% | 2% | 3% | 0% | 3% | 1% | 29% | 3% | 0% | 0% | 0% | 9% | 0% | 863 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2021 | 2% | 43% | 2% | 4% | 1% | 3% | 1% | 29% | 2% | 0% | 1% | 3% | 9% | 0% | 841 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2022 | 2% | 41% | 1% | 5% | 1% | 3% | 1% | 28% | 2% | 0% | 2% | 5% | 9% | 0% | 807 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2023 | 1% | 38% | 1% | 5% | 2% | 2% | 1% | 28% | 1% | 0% | 3% | 8% | 10% | 0% | 781 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2024 | 1% | 36% | 0% | 6% | 2% | 2% | 0% | 27% | 1% | 0% | 3% | 11% | 10% | 0% | 745 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2025 | 0% | 33% | 0% | 7% | 3% | 2% | 0% | 27% | 0% | 0% | 4% | 13% | 10% | 0% | 724 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2026 | 0% | 31% | 0% | 8% | 3% | 2% | 0% | 25% | 0% | 0% | 5% | 13% | 11% | 2% | 684 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2027 | 0% | 28% | 0% | 9% | 4% | 2% | 0% | 24% | 0% | 0% | 6% | 12% | 12% | 3% | 652 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2028 | 0% | 25% | 0% | 9% | 5% | 2% | 0% | 23% | 0% | 0% | 6% | 12% | 13% | 5% | 614 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2029 | 0% | 23% | 0% | 10% | 6% | 2% | 0% | 21% | 0% | 0% | 7% | 11% | 14% | 6% | 580 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2030 | 0% | 20% | 0% | 11% | 6% | 2% | 0% | 20% | 0% | 0% | 8% | 10% | 15% | 8% | 542 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2031 | 0% | 19% | 0% | 11% | 7% | 2% | 0% | 18% | 1% | 0% | 9% | 10% | 16% | 8% | 514 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2032 | 0% | 17% | 0% | 10% | 8% | 2% | 0% | 16% | 3% | 0% | 9% | 9% | 17% | 9% | 470 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2033 | 0% | 16% | 0% | 10% | 8% | 2% | 0% | 14% | 4% | 0% | 10% | 8% | 17% | 10% | 437 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2034 | 0% | 15% | 0% | 10% | 9% | 2% | 0% | 12% | 5% | 0% | 10% | 8% | 18% | 11% | 408 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| 2035 | 0% | 13% | 0% | 9% | 10% | 2% | 0% | 11% | 7% | 0% | 11% | 7% | 19% | 12% | 377 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ -| Mix | 0% | 26% | 0% | 7% | 5% | 2% | 0% | 21% | 2% | 0% | 6% | 8% | 13% | 5% | 668 | -+-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ +database, refer to :cite:`ct-1121`. + +.. _table-31: + +.. table:: Table 31: Example of calculation of the carbon intensity of a km-distributed electricity supply mix for Poland, along with the per kWh GHG-intensity, for a vehicle first driven in 2020 and driven for the next 16 years. + :widths: auto + :align: center + + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | Year | Biomass | Coal | Gas | Gas CCGT | Gas CHP | Hydro | Hydro, reservoir | Lignite | Nuclear | Oil | Solar | Waste | Wind | Wind, offshore | g CO2-eq./kWh | + +=======+==========+=======+======+===========+==========+========+===================+==========+==========+======+========+========+=======+=================+================+ + | 2020 | 3% | 46% | 2% | 3% | 0% | 3% | 1% | 29% | 3% | 0% | 0% | 0% | 9% | 0% | 863 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2021 | 2% | 43% | 2% | 4% | 1% | 3% | 1% | 29% | 2% | 0% | 1% | 3% | 9% | 0% | 841 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2022 | 2% | 41% | 1% | 5% | 1% | 3% | 1% | 28% | 2% | 0% | 2% | 5% | 9% | 0% | 807 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2023 | 1% | 38% | 1% | 5% | 2% | 2% | 1% | 28% | 1% | 0% | 3% | 8% | 10% | 0% | 781 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2024 | 1% | 36% | 0% | 6% | 2% | 2% | 0% | 27% | 1% | 0% | 3% | 11% | 10% | 0% | 745 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2025 | 0% | 33% | 0% | 7% | 3% | 2% | 0% | 27% | 0% | 0% | 4% | 13% | 10% | 0% | 724 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2026 | 0% | 31% | 0% | 8% | 3% | 2% | 0% | 25% | 0% | 0% | 5% | 13% | 11% | 2% | 684 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2027 | 0% | 28% | 0% | 9% | 4% | 2% | 0% | 24% | 0% | 0% | 6% | 12% | 12% | 3% | 652 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2028 | 0% | 25% | 0% | 9% | 5% | 2% | 0% | 23% | 0% | 0% | 6% | 12% | 13% | 5% | 614 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2029 | 0% | 23% | 0% | 10% | 6% | 2% | 0% | 21% | 0% | 0% | 7% | 11% | 14% | 6% | 580 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2030 | 0% | 20% | 0% | 11% | 6% | 2% | 0% | 20% | 0% | 0% | 8% | 10% | 15% | 8% | 542 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2031 | 0% | 19% | 0% | 11% | 7% | 2% | 0% | 18% | 1% | 0% | 9% | 10% | 16% | 8% | 514 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2032 | 0% | 17% | 0% | 10% | 8% | 2% | 0% | 16% | 3% | 0% | 9% | 9% | 17% | 9% | 470 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2033 | 0% | 16% | 0% | 10% | 8% | 2% | 0% | 14% | 4% | 0% | 10% | 8% | 17% | 10% | 437 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2034 | 0% | 15% | 0% | 10% | 9% | 2% | 0% | 12% | 5% | 0% | 10% | 8% | 18% | 11% | 408 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | 2035 | 0% | 13% | 0% | 9% | 10% | 2% | 0% | 11% | 7% | 0% | 11% | 7% | 19% | 12% | 377 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ + | Mix | 0% | 26% | 0% | 7% | 5% | 2% | 0% | 21% | 2% | 0% | 6% | 8% | 13% | 5% | 668 | + +-------+----------+-------+------+-----------+----------+--------+-------------------+----------+----------+------+--------+--------+-------+-----------------+----------------+ Inventories for fuel pathways ------------------------------ +***************************** A number of inventories for fuel production and supply are used by ``carculator_truck``. They represent an update in comparison to the inventories -used in the passenger vehicles model initially published by Cox et -al.[5]_. The fuel pathways presented in Table 25 are from the literature +used in the passenger vehicles model initially published by :cite:`ct-1012`. +The fuel pathways presented in :ref:`Table 32 ` are from the literature and not present as generic ecoinvent datasets. -+-----------+---------------------------+---------------------------+ -| Author(s) | Fuel type | Description | -+===========+===========================+===========================+ -+-----------+---------------------------+---------------------------+ -| [40]_ | Biodiesel from | 2\ :sup:`nd` and | -| | micro-algae | 3\ :sup:`rd` generation | -| | | biofuels made from | -| | | biomass residues or | -| | | algae. | -+-----------+---------------------------+---------------------------+ -| | Biodiesel from used | | -| | cooking oil | | -+-----------+---------------------------+---------------------------+ -| [42]_ | e-Diesel | Diesel produced from | -| | (Fischer-Tropsch) | "blue crude" via a | -| | | Fischer-Tropsch process. | -| | | The H\ :sub:`2` is | -| | | produced via | -| | | electrolysis, while the | -| | | CO\ :sub:`2` comes from | -| | | direct air capture. Note | -| | | that two | -| | | allocation approaches at | -| | | the crude-to-fuel step | -| | | are possible between the | -| | | different co-products | -| | | (i.e., diesel, naphtha, | -| | | wax oil, kerosene): | -| | | energy or economic. | -+-----------+---------------------------+---------------------------+ -| [43]_ | Biomethane from sewage | Methane produced from the | -| | sludge | anaerobic digestion of | -| | | sewage sludge. The biogas | -| | | is upgraded to biomethane | -| | | (the CO\ :sub:`2` is | -| | | separated and vented out) | -| | | to a vehicle grade | -| | | quality. | -+-----------+---------------------------+---------------------------+ -| | Synthetic methane | Methane produced via an | -| | | electrochemical | -| | | methanation process, with | -| | | H\ :sub:`2` from | -| | | electrolysis and | -| | | CO\ :sub:`2` from direct | -| | | air capture. | -+-----------+---------------------------+---------------------------+ -| [44, 45]_ | Hydrogen from | The electricity | -| | electrolysis | requirement to operate | -| | | the electrolyzer changes | -| | | over time: from 58 kWh | -| | | per kg of H\ :sub:`2` in | -| | | 2010, down to 44 kWh in | -| | | 2050, according to [46]_. | -+-----------+---------------------------+---------------------------+ -| [45, 47]_ | Hydrogen from Steam | Available for natural gas | -| | Methane Reforming | and biomethane, with and | -| | | without Carbon Capture | -| | | and Storage (CCS). | -+-----------+---------------------------+---------------------------+ -| [44]_ | Hydrogen from woody | Available with and | -| | biomass gasification | without Carbon Capture | -| | | and Storage (CCS). | -+-----------+---------------------------+---------------------------+ - -Table 25 List of inventories for different fuel types +.. _table-32: + +.. table:: Table 32: List of inventories for different fuel types + :widths: auto + :align: center + + +--------------------+---------------------------+---------------------------+ + | Author(s) | Fuel type | Description | + +====================+===========================+===========================+ + | :cite:`ct-1122` | Biodiesel from | 2\ :sup:`nd` and | + | | micro-algae | 3\ :sup:`rd` generation | + | | | biofuels made from | + | | | biomass residues or | + | | | algae. | + +--------------------+---------------------------+---------------------------+ + | | Biodiesel from used | | + | | cooking oil | | + +--------------------+---------------------------+---------------------------+ + | :cite:`ct-1035` | e-Diesel | Diesel produced from | + | | (Fischer-Tropsch) | "blue crude" via a | + | | | Fischer-Tropsch process. | + | | | The H\ :sub:`2` is | + | | | produced via | + | | | electrolysis, while the | + | | | CO\ :sub:`2` comes from | + | | | direct air capture. Note | + | | | that two | + | | | allocation approaches at | + | | | the crude-to-fuel step | + | | | are possible between the | + | | | different co-products | + | | | (i.e., diesel, naphtha, | + | | | wax oil, kerosene): | + | | | energy or economic. | + +--------------------+---------------------------+---------------------------+ + | :cite:`ct-1125` | Bio-methane from sewage | Methane produced from the | + | | sludge | anaerobic digestion of | + | | | sewage sludge. The biogas | + | | | is upgraded to bio-methane| + | | | (the CO\ :sub:`2` is | + | | | separated and vented out) | + | | | to a vehicle grade | + | | | quality. | + +--------------------+---------------------------+---------------------------+ + | | Synthetic methane | Methane produced via an | + | | | electrochemical | + | | | methanation process, with | + | | | H\ :sub:`2` from | + | | | electrolysis and | + | | | CO\ :sub:`2` from direct | + | | | air capture. | + +--------------------+---------------------------+---------------------------+ + | :cite:`ct-1123`, | Hydrogen from | The electricity | + | :cite:`ct-1124` | electrolysis | requirement to operate | + | | | the electrolyzer changes | + | | | over time: from 58 kWh | + | | | per kg of H\ :sub:`2` in | + | | | 2010, down to 44 kWh in | + | | | 2050, according to | + | | | :cite:`ct-1006`. | + +--------------------+---------------------------+---------------------------+ + | :cite:`ct-1124`, | Hydrogen from Steam | Available for natural gas | + | :cite:`ct-1115` | Methane Reforming | and bio methane, with and | + | | | without Carbon Capture | + | | | and Storage (CCS). | + +--------------------+---------------------------+---------------------------+ + | :cite:`ct-1123`, | Hydrogen from woody | Available with and | + | | biomass gasification | without Carbon Capture | + | | | and Storage (CCS). | + +--------------------+---------------------------+---------------------------+ Inventories for energy storage components ------------------------------------------ - -The source for the inventories used to model energy storage components -are listed in Table 26. - -+-----------+---------------------------+---------------------------+ -| Author(s) | Energy storage type | Description | -+===========+===========================+===========================+ -| [48,49]_ | NMC-111/622/811 battery | Originally from [48]_, | -| | | then updated and | -| | | integrated in ecoinvent | -| | | v.3.8 (with some errors), | -| | | corrected and integrated | -| | | in the library. | -| | | Additionally, these | -| | | inventories relied | -| | | exclusively on synthetic | -| | | graphite. This is has too | -| | | been modified: the anode | -| | | production relies on a | -| | | 50:50 mix of natural and | -| | | synthetic graphite, as it | -| | | seems to be the current | -| | | norm in the industry | -| | | [50]_. Inventories for | -| | | natural graphite are from | -| | | [51]_. | -+-----------+---------------------------+ | -| | NCA battery | | -+-----------+---------------------------+ | -| | LFP battery | | -+-----------+---------------------------+---------------------------+ -| [52]_ | Type IV hydrogen tank, | Carbon fiber being one of | -| | default | the main components of | -| | | Type IV storage tanks, | -| | | new inventories for | -| | | carbon fiber | -| | | manufacturing have been | -| | | integrated to | -| | | ``carculator_truck``, | -| | | from [53]_. | -+-----------+---------------------------+---------------------------+ -| [54]_ | Type IV hydrogen tank, | | -| | LDPE liner | | -+-----------+---------------------------+---------------------------+ -| | Type IV hydrogen tank, | | -| | aluminium liner | | -+-----------+---------------------------+---------------------------+ - -Table 26 List of inventories for different energy storage solutions +***************************************** + +The source for the inventories used to model energy storage components are listed in :ref:`Table 33 `. + +.. _table-33: + +.. table:: Table 33: List of inventories for different energy storage solutions + :widths: auto + :align: center + + +---------------------+---------------------------+---------------------------+ + | Author(s) | Energy storage type | Description | + +=====================+===========================+===========================+ + | :cite:`ct-1016`, | NMC-111/622/811 battery | Originally from | + | :cite:`ct-1107` | | :cite:`ct-1016`, | + | | | then updated and | + | | | integrated in ecoinvent | + | | | v.3.8 (with some errors), | + | | | corrected and integrated | + | | | in the library. | + | | | Additionally, these | + | | | inventories relied | + | | | exclusively on synthetic | + | | | graphite. This is has too | + | | | been modified: the anode | + | | | production relies on a | + | | | 50:50 mix of natural and | + | | | synthetic graphite, as it | + | | | seems to be the current | + | | | norm in the industry | + | | | :cite:`ct-1126`. | + | | | Inventories for | + | | | natural graphite are from | + | | | :cite:`ct-1127`. | + +---------------------+---------------------------+ | + | | NCA battery | | + +---------------------+---------------------------+ | + | | LFP battery | | + +---------------------+---------------------------+---------------------------+ + | :cite:`ct-1089` | Type IV hydrogen tank, | Carbon fiber being one of | + | | default | the main components of | + | | | Type IV storage tanks, | + | | | new inventories for | + | | | carbon fiber | + | | | manufacturing have been | + | | | integrated to | + | | | ``carculator_truck``, | + | | | from :cite:`ct-1008`. | + +---------------------+---------------------------+---------------------------+ + | :cite:`ct-1128` | Type IV hydrogen tank, | | + | | LDPE liner | | + +---------------------+---------------------------+---------------------------+ + | | Type IV hydrogen tank, | | + | | aluminium liner | | + +---------------------+---------------------------+---------------------------+ Life cycle impact assessment -**************************** +---------------------------- To build the inventory of every vehicle, ``carculator_truck`` populates a three-dimensional array *A* (i.e., a tensor) such as: @@ -1949,224 +1971,7 @@ endpoint (i.e., human health, ecosystem impacts and resources use) indicators include those of the ReCiPe 2008 v.1.13 impact assessment method, as well as those of ILCD 2018. Additionally, it is possible to export the inventories in a format compatible with the LCA framework -Brightway2 [51] or Simapro [52], thereby allowing the characterization -of the results against a larger number of impact assessment methods. - - -References -********** - -.. [1] Thiel C, Schmidt J, Van Zyl A, Schmid E. Cost and well-to-wheel implications of the vehicle fleet CO2 emission regulation in the European Union. Transp Res Part A Policy Pract 2014;63:25-42. https://doi.org/10.1016/j.tra.2014.02.018. - -.. [2] Ducker Frontier. Aluminum Content in European Passenger Cars. Eur Alum 2019:13. - -.. [3] European Commission. Monitoring of CO2 emissions from passenger cars - Regulation (EU) 2019/631 — European Environment Agency 2021. https://www.eea.europa.eu/data-and-maps/data/co2-cars-emission-19 - -.. [4] European Environment Agency. Monitoring of CO2 emissions from passenger cars - Regulation (EC) No 443/2009 - European Environment Agency 2019. https://www.eea.europa.eu/data-and-maps/data/co2-cars-emission-16 - -.. [5] Cox B, Bauer C, Mendoza Beltran A, van Vuuren DP, Mutel C. Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios. Appl Energy2 2020. - -.. [6] Bauer C, Cox B, Heck T, Hirschberg S, Hofer J, Schenler W, et al. Opportunities and challenges for electric mobility: an interdisciplinary assessment of passenger vehicles Final report of the THELMA project in co-operation with the Swiss Competence Center for Energy Research "Efficient technologies and systems for mobility." 2016. - -.. [7] Sacchi R, Bauer C, Cox B, When, Where and How can battery-electric vehicles help reduce greenhouse gas emissions? Renew Sustain Energy Rev 2022. - -.. [8] Veronika Henze. China Dominates the Lithium-ion Battery Supply Chain, but Europe is on the Rise. BloombergNEF 2020. https://about.bnef.com/blog/china-dominates-the-lithium-ion-battery-supply-chain-but-europe-is-on-the-rise/ - -.. [9] Xinhua. China's CATL unveils cell-to-pack battery platform. 2019. http://www.xinhuanet.com/english/2019-09/13/c_138389934.htm (accessed November 14, 2021). - -.. [10] Mark K. BYD's New Blade Battery Set to Redefine EV safety Standards. INSIDEEVs 2020:1-2. - -.. [11] BatteryUniversity. BU-216: Summary Table of Lithium-based Batteries - Battery University 2021. https://batteryuniversity.com/article/bu-216-summary-table-of-lithium-based-batteries - -.. [12] Yang X-G, Liu T, Wang C-Y. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat Energy 2021 62 2021;6:176-85. https://doi.org/10.1038/s41560-020-00757-7. - -.. [13] Göhlich D, Fay TA, Jefferies D, Lauth E, Kunith A, Zhang X. Design of urban electric bus systems. Des Sci 2018;4. https://doi.org/10.1017/dsj.2018.10. - -.. [14] Preger Y, Barkholtz HM, Fresquez A, Campbell DL, Juba BW, Romàn-Kustas J, et al. Degradation of Commercial Lithium-Ion Cells as a Function of Chemistry and Cycling Conditions. J Electrochem Soc 2020;167:120532. https://doi.org/10.1149/1945-7111/abae37. - -.. [15] Cox B, Althaus H-J, Christian Bauer I, Sacchi R, Mutel C, Mireille Faist Emmenegger P, et al. Umweltauswirkungen von Fahrzeugen im urbanen Kontext Schlussbericht. 2020. - -.. [16] Schwertner M, Weidmann U. Comparison of well-to-wheel efficiencies for different drivetrain configurations of transit buses. Transp Res Rec 2016;2539:55-64. https://doi.org/10.3141/2539-07. - -.. [17] Simons A, Bauer C. A life-cycle perspective on automotive fuel cells. Appl Energy 2015;157:884-96. https://doi.org/10.1016/j.apenergy.2015.02.049. - -.. [18] Eudy L, Post M. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2020. 2020. - -.. [19] Kurtz J, Sprik S, Saur G, Onorato S. Fuel Cell Electric Vehicle Durability and Fuel Cell Performance. 2018. - -.. [20] Mock P. Footprint versus mass: How to best account for weight reduction in the european vehicle CO2 regulation. vol. 2020. 2017. - -.. [21] Sebastian BM, Thimons MA. Life Cycle Greenhouse Gas and Energy Study of Automotive Lightweighting. 2017. - -.. [22] Hottle T, Caffrey C, McDonald J, Dodder R. Critical factors affecting life cycle assessments of material choice for vehicle mass reduction. Transp Res Part D, Transp Environ 2017;56:241. https://doi.org/10.1016/J.TRD.2017.08.010. - -.. [23] World Steel Association. STEEL IN THE CIRCULAR ECONOMY A life cycle perspective. Worldsteel Asscociation 2015:16. - -.. [24] Plötz P, Moll C, Bieker G, Mock P, Li Y. REAL-WORLD USAGE OF PLUG-IN HYBRID ELECTRIC VEHICLES FUEL CONSUMPTION, ELECTRIC DRIVING, AND CO2 EMISSIONS. 2020. - -.. [25] Spielmann M, Dones R, Bauer C. Life Cycle Inventories of Transport Services. Final report. Dübendorf and Villigen, CH: 2007. - -.. [26] Notter B, Keller M, Cox B. Handbook emission factors for road transport 4.1 Quick reference. 2019. - -.. [27] Swiss Federal Office for the Environment. Switzerland's National Inventory Report 2021. 2021. - -.. [28] Miller J, Jin L. Global Progress Toward Soot-Free Diesel Vehicles in 2019. Icct, Ccac 2019:35. https://theicct.org/sites/default/files/publications/Global_progress_sootfree_diesel_2019_20190920.pdf - -.. [29] International Energy Agency (IEA). Extended world energy balances 2021. https://doi.org/https://doi.org/10.1787/data-00513-en. - -.. [30] INFRAS. Handbook Emission Factors for Road Transport 2019. https://www.hbefa.net/e/index.html. - -.. [31] European Environment Agency. Air pollutant emission inventory guidebook 2019 2019. https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view. - -.. [32] Beddows DCS, Harrison RM. PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: Dependence upon vehicle mass and implications for battery electric vehicles. Atmos Environ 2021;244:117886. https://doi.org/10.1016/J.ATMOSENV.2020.117886. - -.. [33] US EPA. Emission Factor Documentation for AP-42, Section 13.2.1: Paved Roads. Measurement Policy Group, Office of Air Quality Planning and Standards. 2011. - -.. [34] Stolz P, Messmer A, Frischknecht R. Life Cycle Inventories of Road and Non-Road Transport Services. 2016. - -.. [35] Stylianos Kephalopoulos, Marco Paviotti FA-L. Common Noise Assessment Methods in Europe (CNOSSOS-EU). vol. 122. 2012. - -.. [36] Pallas MA, Bérengier M, Chatagnon R, Czuka M, Conter M, Muirhead M. Towards a model for electric vehicle noise emission in the European prediction method CNOSSOS-EU. Appl Acoust 2016;113:89-101. https://doi.org/10.1016/j.apacoust.2016.06.012. - -.. [37] Cucurachi S, Schiess S, Froemelt A, Hellweg S. Noise footprint from personal land-based mobility. J Ind Ecol 2019;23:1028-38. https://doi.org/10.1111/jiec.12837. - -.. [38] Entso-e. ENTSO-E Ten-Year Network Development Plan 2020 - Main Report - November 2020 - Version for public consultation 2020. - -.. [39] Sacchi R, Terlouw T, Siala K, Dirnaichner A, Bauer C, Cox B, et al. PRospective EnvironMental Impact asSEment (premise): a streamlined approach to producing databases for prospective Life Cycle Assessment using Integrated Assessment Models. Renew Sustain Energy Rev 2022. - -.. [40] Cozzolini F. Life Cycle Assessment of Biofuels in EU/CH. 2018. - -.. [41] Hank C, Lazar L, Mantei F, Ouda M, White RJ, Smolinka T, et al. Comparative well-to-wheel life cycle assessment of OME3-5 synfuel production via the power-to-liquid pathway. Sustain Energy Fuels 2019;3:3219-33. https://doi.org/10.1039/c9se00658c. - -.. [42] Van Der Giesen C, Kleijn R, Kramer GJ. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO2. Environ Sci Technol 2014;48:7111-21. https://doi.org/10.1021/es500191g. - -.. [43] Zhang X, Witte J, Schildhauer T, Bauer C. Life cycle assessment of power-to-gas with biogas as the carbon source. Sustain Energy Fuels 2020. https://doi.org/10.1039/c9se00986h. - -.. [44] Antonini C, Treyer K, Moioli E, Bauer C, Mazzotti M. Hydrogen from wood gasification with CCS - a techno-environmental analysis of production and use as transport fuel. ChemRxiv 2020. https://doi.org/10.26434/chemrxiv.13213553.v1. - -.. [45] Antonini C, Treyer K, Streb A, van der Spek M, Bauer C, Mazzotti M. Hydrogen production from natural gas and biomethane with carbon capture and storage - A techno-environmental analysis. Sustain Energy Fuels 2020;4:2967-86. https://doi.org/10.1039/d0se00222d. - -.. [46] Bauer C, Desai H, Heck T, Schneider S, Terlouw T, Treyer K, et al. Electricity storage and hydrogen: Technologies, costs and environmental burdens. 2021. - -.. [47] Zhang X, Bauer C, Mutel CL, Volkart K. Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications. Appl Energy 2017;190:326-38. https://doi.org/10.1016/j.apenergy.2016.12.098. - -.. [48] Dai Q, Kelly JC, Gaines L, Wang M. Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications. Batter 2019, Vol 5, Page 48 2019;5:48. https://doi.org/10.3390/BATTERIES5020048. - -.. [49] Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B. The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 2016;21:1218-30. - -.. [50] Supply Chain Looms as Serious Threat to Batteries' Green Reputation \| Greentech Media n.d. https://www.greentechmedia.com/articles/read/graphite-the-biggest-threat-to-batteries-green-reputation - -.. [51] Engels P, Cerdas F, Dettmer T, Frey C, Hentschel J, Herrmann C, et al. Life cycle assessment of natural graphite production for lithium-ion battery anodes based on industrial primary data. J Clean Prod 2022;336:130474. https://doi.org/10.1016/J.JCLEPRO.2022.130474. - -.. [52] Simons A, Bauer C. A life-cycle perspective on automotive fuel cells. Appl Energy 2015;157:884-96. https://doi.org/10.1016/J.APENERGY.2015.02.049. - -.. [53] Benitez A, Wulf C, de Palmenaer A, Lengersdorf M, Röding T, Grube T, et al. Ecological assessment of fuel cell electric vehicles with special focus on type IV carbon fiber hydrogen tank. J Clean Prod 2021;278:123277. https://doi.org/10.1016/j.jclepro.2020.123277. - -.. [54] Evangelisti S, Tagliaferri C, Brett DJL, Lettieri P. Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles. J Clean Prod 2017;142:4339-55. https://doi.org/10.1016/j.jclepro.2016.11.159. - -Annex A -******* - -Specifications for commercial battery electric truck models -used to calibrate ``carculator_truck`` are shown in the table below. +`Brightway2 `_ or `SimaPro `_, +thereby allowing the characterization of the results against a larger number +of impact assessment methods. -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Brand | Model | GVW [ton] | Max. Payload [ton] | Engine power [kW] | Battery capacity [kWh] | Range [km] | TtW energy [kWh/km] | -+===============+======================+============+=====================+====================+=========================+=============+======================+ -| Freightliner | eCascadia | 36.2 | | 391 | 475 | 400 | 1.19 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Freightliner | eM2 | 11.8 | | 224 | 315 | 370 | 0.85 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Volvo | VNR electric | 29.9 | 19.2 | 400 | 300 | 120 | | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Volvo | VNR electric | 29.9 | 19.2 | 400 | 300 | 281 | 1.07 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Workhorse | C-650 | 5.7 | | | 70 | 160 | 0.44 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Tesla | Semi | 36.2 | 22 | 745 | 500 | 480 | 1.04 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Tesla | Semi | 36.2 | 12 | 745 | 1100 | 800 | 1.38 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| BYD | T3 | 2.8 | 0.8 | | 43 | 250 | 0.17 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| BYD | T5 | 7.3 | 2.6 | | 150 | 250 | 0.6 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| BYD | T7 | 10.8 | 5 | | 175 | 200 | 0.88 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| BYD | J9D | 36.2 | | | 175 | 100 | 1.75 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| BYD | T9 | 36.2 | | | 350 | 200 | 1.6 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Mercedes | eActros | 25 | 5 | 250 | 240 | 200 | 1.2 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Futuricum | Logistics 18E - 340 | 19 | 11 | 500 | 289 | 200 | 1.45 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Futuricum | Logistics 18E - 450 | 19 | 10.6 | 500 | 383 | 250 | 1.53 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Futuricum | Logistics 18E - 510 | 19 | 9.8 | 500 | 434 | 300 | 1.45 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Futuricum | Logistics 18E - 680 | 19 | 6.4 | 500 | 578 | 400 | 1.45 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Futuricum | Logistics 18E - 900 | 19 | 5.6 | 500 | 765 | 500 | 1.53 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Futuricum | FH Semi 40E - 680 | 44 | 32 | 500 | 578 | 400 | 1.45 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ -| Futuricum | FH Semi 40E - 680 | 44 | 31.2 | 500 | 765 | 500 | 1.53 | -+---------------+----------------------+------------+---------------------+--------------------+-------------------------+-------------+----------------------+ - -Annex B -******* - -Specifications for commercial fuel cell electric truck models -used to calibrate ``carculator_truck`` are shown in the table below. - -+----------+-------------+------------+--------------------+---------------------------------+------------------------------+-------------------------+-------------+----------------------+ -| Brand | Model | GVW [ton] | Engine power [kW] | Hydrogen tank capacity [kg H2] | Fuel cell stack output [kW] | Battery capacity [kWh] | Range [km] | TtW energy [kWh/km] | -+==========+=============+============+====================+=================================+==============================+=========================+=============+======================+ -| MAN | TGS 18.320 | 34 | 250 | 31 | 100 | 120 | 375 | 2.76 | -+----------+-------------+------------+--------------------+---------------------------------+------------------------------+-------------------------+-------------+----------------------+ -| Hyundai | Xcient | 36 | 350 | 34.5 | 190 | 73 | 400 | 2.88 | -+----------+-------------+------------+--------------------+---------------------------------+------------------------------+-------------------------+-------------+----------------------+ -| Renault | Maxity H2 | 4.5 | 47 | 4 | 20 | 42 | 200 | 0.67 | -+----------+-------------+------------+--------------------+---------------------------------+------------------------------+-------------------------+-------------+----------------------+ -| VDL | H2-Share | 27 | 210 | 30 | 88 | 84 | 400 | 2.5 | -+----------+-------------+------------+--------------------+---------------------------------+------------------------------+-------------------------+-------------+----------------------+ -| Scania | | 27 | 290 | 33 | 90 | 56 | 400 | 2.75 | -+----------+-------------+------------+--------------------+---------------------------------+------------------------------+-------------------------+-------------+----------------------+ -| Kenworth | T680 | 36 | 360 | 30 | 85 | 100 | 320 | 3.13 | -+----------+-------------+------------+--------------------+---------------------------------+------------------------------+-------------------------+-------------+----------------------+ -| UPS | H2 truck | 12 | | 10 | 31 | 45 | 200 | 1.67 | -+----------+-------------+------------+--------------------+---------------------------------+------------------------------+-------------------------+-------------+----------------------+ - - -Annex C -******* - -Specifications for commercial plugin and regular hybrid diesel truck models -used to calibrate ``carculator_truck`` are shown in the table below. - -+------------------+--------+---------+------------+----------------------------+-------------------------------+-------------------+-------------------------+-------------------------+--------------------------------------+ -| Brand | Model | Type | GVW [ton] | Electric motor power [kW] | Combustion engine power [kW] | Total power [kW] | Combustion power share | Battery capacity [kWh] | Range in batter-depleting mode [km] | -+==================+========+=========+============+============================+===============================+===================+=========================+=========================+======================================+ -| Scania | PHEV-d | PHEV-d | 29 | 130 | 280 | 410 | 68% | 90 | 60 | -+------------------+--------+---------+------------+----------------------------+-------------------------------+-------------------+-------------------------+-------------------------+--------------------------------------+ -| Class 2 Van | Light | HEV-d | 3.5 | 50 | 130 | 180 | 72% | | | -+------------------+--------+---------+------------+----------------------------+-------------------------------+-------------------+-------------------------+-------------------------+--------------------------------------+ -| Class 2 Van | Light | PHEV-d | 4 | 180 | 100 | 280 | 36% | | | -+------------------+--------+---------+------------+----------------------------+-------------------------------+-------------------+-------------------------+-------------------------+--------------------------------------+ -| Class 3 Van | Light | HEV-d | 5 | 70 | 140 | 210 | 67% | | | -+------------------+--------+---------+------------+----------------------------+-------------------------------+-------------------+-------------------------+-------------------------+--------------------------------------+ -| Class 3 Van | Light | PHEV-d | 6 | 200 | 135 | 335 | 40% | | | -+------------------+--------+---------+------------+----------------------------+-------------------------------+-------------------+-------------------------+-------------------------+--------------------------------------+ -| Class 5 Utility | Medium | HEV-d | 8 | 105 | 230 | 335 | 69% | | | -+------------------+--------+---------+------------+----------------------------+-------------------------------+-------------------+-------------------------+-------------------------+--------------------------------------+ -| Class 5 Utility | Medium | PHEV-d | 8 | 280 | 105 | 385 | 27% | | | -+------------------+--------+---------+------------+----------------------------+-------------------------------+-------------------+-------------------------+-------------------------+--------------------------------------+ -| Class 7 Tractor | DayCab | HEV-d | 26 | 60 | 240 | 300 | 80% | 5 | | -+------------------+--------+---------+------------+----------------------------+-------------------------------+-------------------+-------------------------+-------------------------+--------------------------------------+ -| Class 7 Aero | DayCab | PHEV-d | 26 | 480 | 260 | 480 | 54% | | | -+------------------+--------+---------+------------+----------------------------+-------------------------------+-------------------+-------------------------+-------------------------+--------------------------------------+ -| Class 8 Tractor | DayCab | HEV-d | 40 | 90 | 310 | 400 | 78% | 8 | | -+------------------+--------+---------+------------+----------------------------+-------------------------------+-------------------+-------------------------+-------------------------+--------------------------------------+ -| Class 8 Aero | DayCab | PHEV-d | 40 | 510 | 280 | 510 | 55% | | | -+------------------+--------+---------+------------+----------------------------+-------------------------------+-------------------+-------------------------+-------------------------+--------------------------------------+ diff --git a/docs/references/refs.bib b/docs/references/refs.bib index 5c2eecc..d3d30dc 100644 --- a/docs/references/refs.bib +++ b/docs/references/refs.bib @@ -1136,7 +1136,7 @@ @article{1121 url = {https://www.sciencedirect.com/science/article/pii/S136403212200226X}, } @misc{1122, - author = {Francesco Cozzolino}, + author = {Francesco Cozzolini}, month = {Dec}, title = {Life Cycle Assessment of Biofuels in EU/CH}, url = {https://www.psi.ch/sites/default/files/2019-09/Cozzolino_377125_%20Research%20Project%20Report.pdf}, diff --git a/docs/structure.rst b/docs/structure.rst index e0843ee..e67130f 100644 --- a/docs/structure.rst +++ b/docs/structure.rst @@ -1,14 +1,16 @@ +.. _structure: + Structure ========= -.. image:: https://github.com/romainsacchi/carculator/raw/master/docs/coarse.png +.. image:: https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/coarse.png?raw=true :width: 900 :alt: Alternative text Modules ------- -Composed of eight modules to build the car models: +Composed of eight modules to build the truck models: * Driving cycle module * Mass module @@ -24,31 +26,31 @@ Additionally, three modules are used to: * configure energy systems for the background model (background systems module) * build and solve the life cycle inventory of cars (inventory module) * export the life cycle inventory of cars (export module) - + Driving cycle module -------------------- -.. image:: https://github.com/romainsacchi/carculator/raw/master/docs/driving_cycle.png +.. image:: https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/driving_cycle.png?raw=true :width: 400 :alt: Alternative text - + Mass module ----------- -.. image:: https://github.com/romainsacchi/carculator/raw/master/docs/mass_module.png +.. image:: https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/mass_module.png?raw=true :width: 900 :alt: Alternative text - + Auxiliary energy module ----------------------- -.. image:: https://github.com/romainsacchi/carculator/raw/master/docs/aux_energy.png +.. image:: https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/aux_energy.png?raw=true :width: 900 :alt: Alternative text - + Motive energy module -------------------- -.. image:: https://github.com/romainsacchi/carculator/raw/master/docs/motive_energy.png +.. image:: https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/motive_energy.png?raw=true :width: 900 :alt: Alternative text diff --git a/docs/usage.rst b/docs/usage.rst index 07db7eb..b315b5b 100644 --- a/docs/usage.rst +++ b/docs/usage.rst @@ -1,6 +1,6 @@ .. _usage: -Using Carculator truck +Using Carculator Truck ====================== Static vs. Stochastic mode @@ -8,7 +8,8 @@ Static vs. Stochastic mode .. note:: - Many examples are given in this `notebook `_ which you can run directly on your computer. + Many examples are given in this :download:`examples.zip file <_static/resources/examples.zip>` which contains a Jupyter notebook + you can run directly on your computer. The inventories can be calculated using the most likely value of the given input parameters ("static" mode), but also using randomly-generated values based on a probability distribution for those ("stochastic" mode). diff --git a/docs/validity.rst b/docs/validity.rst index a8aa065..ed6a9f8 100644 --- a/docs/validity.rst +++ b/docs/validity.rst @@ -1,3 +1,5 @@ +.. _validity: + Validity tests ============== @@ -46,7 +48,7 @@ Manually, such parameters can be obtained the following way: acceleration = np.zeros_like(velocity) acceleration[1:-1] = (velocity[2:] - velocity[:-2])/2 -Using `carculator`, these parameters can be obtained the following way: +Using ``carculator``, these parameters can be obtained the following way: .. code-block:: python @@ -84,7 +86,9 @@ And the acceleration returned by carculator should equal the values given by the True -Which can be also be verified visually:: +Which can be also be verified visually: + +.. code-block:: python plt.plot(driving_cycle['m/s²'].values, label='UNECE') plt.plot(acceleration, label='Manually calculated') @@ -95,9 +99,10 @@ Which can be also be verified visually:: plt.savefig('comparison_driving_cycle.png') plt.show() -.. image:: https://github.com/romainsacchi/carculator/raw/master/docs/comparison_driving_cycle.png +.. image:: https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/comparison_driving_cycle.png?raw=true :width: 400 - :alt: Alternative text + :alt: Comparison driving cycle + :align: center Car and components masses ------------------------- @@ -142,9 +147,10 @@ However, most of the driving mass is explained by the curb mass: parameter=['total cargo mass', 'curb mass']).values).tolist(), labels=['Total cargo mass', 'Curb mass']) plt.show() -.. image:: https://github.com/romainsacchi/carculator/raw/master/docs/pie_total_mass.png +.. image:: https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/pie_total_mass.png?raw=true :width: 400 - :alt: Alternative text + :alt: Pie Total Mass + :align: center Here is a split between the components making up for the curb mass. One can see that, in the case of a battery electric SUV, most of the weight comes from the glider as well as the battery cells. @@ -204,10 +210,10 @@ On an equivalent diesel powertrain, the mass of the glider base is comparatively plt.subplots_adjust(wspace=1) plt.show() -.. image:: https://github.com/romainsacchi/carculator/raw/master/docs/pie_mass_components.png +.. image:: https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/pie_mass_components.png?raw=true :width: 900 - :alt: Alternative text - + :alt: Pie Mass Components + :align: center The `curb mass` returned by ``carculator`` for the year 2010 and 2020 is further calibrated against manufacturers' data, per vehicle size class and powertrain technology. @@ -215,6 +221,7 @@ For example, we use the car database `Car2db `_ and load al The same exercise is done with vehicles between 2008 and 2012 to calibrate the curb mass of given by carculator for vehicles in 2010. -.. image:: https://github.com/romainsacchi/carculator/raw/master/docs/mass_comparison.png +.. image:: https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/mass_comparison.png?raw=true :width: 900 - :alt: Alternative text \ No newline at end of file + :alt: Mass Comparison + :align: center \ No newline at end of file diff --git a/readthedocs.yml b/readthedocs.yml index 2384a82..a39b16f 100644 --- a/readthedocs.yml +++ b/readthedocs.yml @@ -5,23 +5,20 @@ # Required version: 2 +# Set the version of Python and other tools you might need +build: + os: ubuntu-22.04 + tools: + python: "3.10" + # Build documentation in the docs/ directory with Sphinx sphinx: configuration: docs/conf.py -# Build documentation with MkDocs -#mkdocs: -# configuration: mkdocs.yml - -# Optionally build your docs in additional formats such as PDF and ePub -formats: all - -# Optionally set the version of Python and requirements required to build your docs +# Set the requirements required to build your docs python: - version: "3.8" install: - - requirements: docs/docs_requirements.txt + - requirements: requirements.txt - method: pip path: . - extra_requirements: - - docs + - requirements: docs/docs_requirements.txt diff --git a/requirements.txt b/requirements.txt index fa13629..864a3e4 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,2 +1,2 @@ -carculator_utils +carculator-utils prettytable \ No newline at end of file