-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsolver.py
192 lines (143 loc) · 4.63 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from transposition import Transposition
from moveSorter import MoveSorter
from board import Board
import copy
import math
EMPTY = 0
class Solver:
columnOrder = []
nodesvisited = 0
def __init__(self):
self.table = Transposition()
for i in range( Board.COLUMN_COUNT):
Solver.columnOrder.append(int(Board.COLUMN_COUNT/2) + (1-2*(i%2))*int((i+1)/2))
def negamax_solverr(self, board, alpha, beta):
Solver.nodesvisited +=1
next = board.possibleNonLoosingMoves()
if next ==0 :
return -(Board.COLUMN_COUNT* Board.ROW_COUNT - board.nbMoves())/2
if board.boardfilled():
return 0
min = -int((Board.COLUMN_COUNT* Board.ROW_COUNT -2 - board.move_number)/2)
if alpha < min :
alpha = min
if alpha >= beta:
return alpha
max = int((Board.COLUMN_COUNT* Board.ROW_COUNT -1 - board.move_number)/2)
if val := board.key() in self.table.ttable:
max = val + Board.MIN_SCORE -1
if beta > max:
beta = max
if alpha >= beta:
return beta
moves = MoveSorter()
for i in range(Board.COLUMN_COUNT-1,-1,-1):
if move:= next & Board.column_mask(Solver.columnOrder[i]):
moves.add(move, board.moveScore(move))
while (next := moves.getNext()):
board2 = copy.deepcopy(board)
board2.play(next)
new_score= self.negamax_solverr(board2 , -beta,-alpha)
new_score = -new_score
if new_score>= beta:
return new_score
if new_score> alpha:
alpha = new_score
self.table.put(board.key(), alpha - Board.MIN_SCORE+1)
return alpha
def window_eval(window, piece):
score = 0
# if window.count(piece) == 4:
# score += 80
if window.count(piece) == 3 and window.count(EMPTY) == 1:
score += 5
elif window.count(piece) == 2 and window.count(EMPTY) == 2:
score+= 1
elif window.count(piece) == 0 and window.count(EMPTY) == 1:
score -= 4
return score
def score_position( board , piece):
score = 0
if board.boardfilled():
return 0
boord = board.getArrayRep()
#score horizontal
for c in range(Board.COLUMN_COUNT-3):
for r in range(Board.ROW_COUNT):
window = [int(i) for i in boord[r, c:c+4]]
score += Solver.window_eval(window, piece)
#score vertical
for c in range(Board.COLUMN_COUNT):
for r in range(Board.ROW_COUNT-3):
window = [int(i) for i in boord[r:r+4,c]]
score += Solver.window_eval(window, piece)
#score l to r
for c in range(Board.COLUMN_COUNT-3):
for r in range(Board.ROW_COUNT-3):
window = [boord[r+i][c+i] for i in range(4)]
score += Solver.window_eval(window, piece)
#score r to l
for c in range(Board.COLUMN_COUNT-3):
for r in range(Board.ROW_COUNT-3):
window = [boord[r-i][c+i] for i in range(4)]
score += Solver.window_eval(window, piece)
return score
def minimax1(self,board:Board, depth,alpha, beta):
Solver.nodesvisited +=1
next = board.possibleNonLoosingMoves()
if depth == 0 or board.boardfilled():
return None , Board.popcount(board.winning_position())- Board.popcount(board.opponent_winning_position())
bestScore = -math.inf
bestcol = Solver.columnOrder[0]
for col in Solver.columnOrder:
if board.canPlay(col) :
if board.isWinningMove(col):
score = 100000* (1 + 0.001* depth)
return col ,score
for col in Solver.columnOrder:
if next & Board.column_mask(col) :
board2 = copy.deepcopy(board)
board2.drop_piece(col)
k ,new_score = self.minimax1(board2, depth-1,-beta,-alpha)
new_score = - new_score
if new_score> bestScore:
bestScore = new_score
bestcol = col
if new_score> alpha:
alpha = new_score
if alpha >= beta:
break
return bestcol, bestScore
def solve(self, board, weak = False):
if(board.canWinNext()):
return int((Board.COLUMN_COUNT* Board.ROW_COUNT +1 - board.move_number)/2)
min = int(-(Board.COLUMN_COUNT* Board.ROW_COUNT - board.move_number)/2)
max = int((Board.COLUMN_COUNT* Board.ROW_COUNT +1 - board.move_number)/2)
if weak:
min = -1
max = 1
while min < max:
med = min + int((max - min)/2)
if(med <= 0 and int(min/2) < med) :
med = int(min/2)
elif med >= 0 and int(max/2) > med:
med = int(max/2)
r = self.negamax_solverr(board, med, med+1 )
if(r <= med):
max = r
else:
min = r
return min
def analyze(self, board, weak = False):
score = {}
Solver.nodesvisited = 0
for col in Solver.columnOrder:
if board.canPlay(col):
board2 = copy.deepcopy(board)
board2.playCol(col)
score[col] = - self.solve(board2, weak)
if board.canWinNext():
if board.isWinningMove(col):
score[col] = int((Board.COLUMN_COUNT* Board.ROW_COUNT +1 - board.move_number)/2)
break
return score