-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKalman_class.cs
658 lines (558 loc) · 22.5 KB
/
Kalman_class.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
using System;
using MathNet.Numerics.LinearAlgebra.Double;
public static class Kalman_class
{
public const double ACCLERATION_NOISE = 1;//20000;
public const double MAGNETIC_FIELD_NOISE = 1;
public const double ANGULAR_VELOCITY_NOISE = 0.001;
public struct Parameters
{
public double dT;
public double declination;
public double g;
public double accl_threshold;
public double field;
public double field_threshold;
public DenseVector accl_coefs;
public DenseVector magn_coefs;
public DenseVector gyro_coefs;
public double accl_noise;
public double magn_noise;
public double scale_noise;
public double skew_noise;
public Parameters(DenseVector Accl_coefs, DenseVector Magn_coefs, DenseVector Gyro_coefs)
{
dT = (double)1/100;
declination = (double)10 * Math.PI / 180;
g = (double) 1;
accl_threshold = (double) 0.002;
field = (double) 1;
field_threshold = (double) 0.1;
accl_coefs = Accl_coefs;
magn_coefs = Magn_coefs;
gyro_coefs = Gyro_coefs;
accl_noise = ACCLERATION_NOISE;
magn_noise = MAGNETIC_FIELD_NOISE;
scale_noise = (double) Math.Pow(10,-15);
skew_noise = (double) Math.Pow(10,-15);
}
}
public struct Sensors
{
public Matrix w;
public Matrix a;
public Matrix m;
public Sensors(Matrix W, Matrix A, Matrix M)
{
w = W;
a = A;
m = M;
}
}
public struct State
{
public Matrix R;
public Matrix Q;
public Matrix P;
public Matrix dw;
public Matrix dB;
public Matrix q;
public State(double accl_noise, double magn_noise, double angle_noise, double bias_noise, double scale_noise, double skew_noise, Matrix Quat)
{
System.Func<int, int, double> matrix_fill = (x, y) => 0;
R = new DiagonalMatrix(3, 3, accl_noise);
R.At(2, 2, magn_noise);
Q = DenseMatrix.Create(9, 9, matrix_fill);
Q.At(0, 0, angle_noise);
Q.At(1, 1, angle_noise);
Q.At(2, 2, angle_noise);
Q.At(3, 3, bias_noise);
Q.At(4, 4, bias_noise);
Q.At(5, 5, bias_noise);
Q.At(6, 6, scale_noise);
Q.At(7, 7, scale_noise);
Q.At(8, 8, scale_noise);
P = DenseMatrix.Create(9, 9, matrix_fill);
P.At(0, 0, (double)Math.Pow(10, -1));
P.At(1, 1, (double)Math.Pow(10, -1));
P.At(2, 2, (double)Math.Pow(10, -1));
P.At(3, 3, (double)Math.Pow(10, -3));
P.At(4, 4, (double)Math.Pow(10, -3));
P.At(5, 5, (double)Math.Pow(10, -3));
P.At(6, 6, (double)Math.Pow(10, -8));
P.At(7, 7, (double)Math.Pow(10, -8));
P.At(8, 8, (double)Math.Pow(10, -8));
dw = DenseMatrix.Create(3, 1, matrix_fill);
dB = DenseMatrix.Create(3, 1, matrix_fill);
q = Quat;
}
}
public static Tuple <Vector, Sensors, State> AHRS_LKF_EULER(Sensors Sense, State State, Parameters Param)
{
System.Func<int, double> vect_fill = (x) => 0;
System.Func<int, int, double> matrix_fill = (x, y) => 0;
Vector Attitude = DenseVector.Create(6, vect_fill);
bool restart = false;
// get sensor data
Matrix m = Sense.m;
Matrix a = Sense.a;
Matrix w = Sense.w;
// Correct magntometers using callibration coefficients
Matrix B = new DenseMatrix(3,3);
B.At(0, 0, Param.magn_coefs.At(0));
B.At(0, 1, Param.magn_coefs.At(3));
B.At(0, 2, Param.magn_coefs.At(4));
B.At(1, 0, Param.magn_coefs.At(5));
B.At(1, 1, Param.magn_coefs.At(1));
B.At(1, 2, Param.magn_coefs.At(6));
B.At(2, 0, Param.magn_coefs.At(7));
B.At(2, 1, Param.magn_coefs.At(8));
B.At(2, 2, Param.magn_coefs.At(2));
Matrix B0 = new DenseMatrix(3, 1);
B0.At(0, 0, Param.magn_coefs.At(9));
B0.At(1, 0, Param.magn_coefs.At(10));
B0.At(2, 0, Param.magn_coefs.At(11));
m = Matrix_Transpose(Matrix_Mult(Matrix_Minus(new DiagonalMatrix(3,3,1),B),Matrix_Minus(Matrix_Transpose(m),B0)));
// Correct accelerometers using callibration coefficients
B.At(0, 0, Param.accl_coefs.At(0));
B.At(0, 1, Param.accl_coefs.At(3));
B.At(0, 2, Param.accl_coefs.At(4));
B.At(1, 0, Param.accl_coefs.At(5));
B.At(1, 1, Param.accl_coefs.At(1));
B.At(1, 2, Param.accl_coefs.At(6));
B.At(2, 0, Param.accl_coefs.At(7));
B.At(2, 1, Param.accl_coefs.At(8));
B.At(2, 2, Param.accl_coefs.At(2));
B0.At(0, 0, Param.accl_coefs.At(9));
B0.At(1, 0, Param.accl_coefs.At(10));
B0.At(2, 0, Param.accl_coefs.At(11));
a = Matrix_Transpose(Matrix_Mult(Matrix_Minus(new DiagonalMatrix(3, 3, 1), B), Matrix_Minus(Matrix_Transpose(a), B0)));
// Correct gyroscopes using callibration coefficients
B.At(0, 0, Param.gyro_coefs.At(0));
B.At(0, 1, Param.gyro_coefs.At(3));
B.At(0, 2, Param.gyro_coefs.At(4));
B.At(1, 0, Param.gyro_coefs.At(5));
B.At(1, 1, Param.gyro_coefs.At(1));
B.At(1, 2, Param.gyro_coefs.At(6));
B.At(2, 0, Param.gyro_coefs.At(7));
B.At(2, 1, Param.gyro_coefs.At(8));
B.At(2, 2, Param.gyro_coefs.At(2));
B0.At(0, 0, Param.gyro_coefs.At(9));
B0.At(1, 0, Param.gyro_coefs.At(10));
B0.At(2, 0, Param.gyro_coefs.At(11));
w = Matrix_Transpose(Matrix_Mult(Matrix_Minus(new DiagonalMatrix(3, 3, 1), B), Matrix_Minus(Matrix_Transpose(w), B0)));
// Get State
Matrix q = State.q;
Matrix dB = State.dB;
Matrix dw = State.dw;
Matrix P = State.P;
Matrix Wb = Matrix_Transpose(w);
Matrix Ab = Matrix_Transpose(a);
Matrix Mb = Matrix_Transpose(m);
double dT = Param.dT;
//Correct Gyroscopes for estimate biases and scale factor
B.At(0, 0, dB.At(0, 0));
B.At(0, 1, 0);
B.At(0, 2, 0);
B.At(1, 0, 0);
B.At(1, 1, dB.At(1, 0));
B.At(1, 2, 0);
B.At(2, 0, 0);
B.At(2, 1, 0);
B.At(2, 2, dB.At(2, 0));
Matrix Omegab_ib;
Omegab_ib = Matrix_Minus(Matrix_Mult(Matrix_Minus(new DiagonalMatrix(3, 3, 1), B), Wb),dw);
if (q.At(0, 0).ToString() == "NaN")
{
restart = true;
}
//Quternion calculation
q = mrotate(q, Omegab_ib, dT);
if (q.At(0,0).ToString() == "NaN")
{
restart = true;
}
//DCM calculation
Matrix Cbn = quat_to_DCM(q);
//Gyro Angles
Matrix angles = dcm2angle(Cbn);
double Psi = (double) angles.At(0, 0);
double Theta = (double) angles.At(0, 1);
double Gamma = (double) angles.At(0, 2);
//Acceleration Angles
double ThetaAcc = (double)Math.Atan2(Ab.At(0, 0), Math.Sqrt(Ab.At(1, 0) * Ab.At(1, 0) + Ab.At(2, 0) * Ab.At(2, 0)));
double GammaAcc = (double)-Math.Atan2(Ab.At(1, 0), Math.Sqrt(Ab.At(0, 0) * Ab.At(0, 0) + Ab.At(2, 0) * Ab.At(2, 0)));
//Horizontal projection of magnetic field
angles.At(0, 0, 0);
angles.At(0, 1, ThetaAcc);
angles.At(0, 2, GammaAcc);
Matrix Cbh = angle2dcm(angles);
Matrix Mh = Matrix_Mult(Matrix_Transpose(Cbh), Mb);
//Magnetic Heading
double PsiMgn = (double)(-Math.Atan2(Mh.At(1,0),Mh.At(0,0)) + Param.declination);
//System matrix
Matrix A = DenseMatrix.Create(9, 9, matrix_fill);
Matrix I = new DiagonalMatrix (9, 9, 1);
A.At(0, 3, 1);
A.At(1, 4, 1);
A.At(2, 5, 1);
A.At(0, 6, 1);
A.At(1, 7, 1);
A.At(2, 8, 1);
Matrix F = Matrix_Plus(I, Matrix_Const_Mult(A,dT));
//Measurment Matrix
double dPsi = Psi - PsiMgn;
if (dPsi > Math.PI) dPsi = (double)(dPsi - 2 * Math.PI);
if (dPsi < -Math.PI) dPsi = (double)(dPsi + 2 * Math.PI);
double dTheta = Theta - ThetaAcc;
if (dTheta > Math.PI) dTheta = (double)(dTheta - 2 * Math.PI);
if (dTheta < -Math.PI) dTheta = (double)(dTheta + 2 * Math.PI);
double dGamma = Gamma - GammaAcc;
if (dGamma > Math.PI) dGamma = (double)(dGamma - 2 * Math.PI);
if (dGamma < -Math.PI) dGamma = (double)(dGamma + 2 * Math.PI);
Matrix z = DenseMatrix.Create(3,1,matrix_fill);
z[0, 0] = 1; z[1, 0] = 1; z[2, 0] = 1;
z.At(0, 0, dGamma);
z.At(1, 0, dTheta);
z.At(2, 0, dPsi);
Matrix H = DenseMatrix.Create(3,9,matrix_fill);
H.At(0, 0, 1);
H.At(1, 1, 1);
H.At(2, 2, 1); // MAGNETOMETER CORRECTION
if (Math.Abs(Math.Sqrt(Math.Pow(Ab.At(0, 0), 2) + Math.Pow(Ab.At(1, 0), 2) + Math.Pow(Ab.At(2, 0), 2))) - 1 > Param.accl_threshold)
{
H.At(0, 0, 0);
H.At(1, 1, 0);
}
if (Math.Abs(Math.Sqrt(Math.Pow(Mh.At(0, 0), 2) + Math.Pow(Mh.At(1, 0), 2) + Math.Pow(Mh.At(2, 0), 2))) - 1 > Param.field_threshold)
{
H.At(2, 2, 0);
}
H.At(2, 2, 0);
//Kalman Filter
Matrix Q = State.Q;
Matrix R = State.R;
P = Matrix_Plus(Matrix_Mult(Matrix_Mult(F, P), Matrix_Transpose(F)),Q);
if (P.At(0, 0).ToString() == "NaN")
{
P = new DiagonalMatrix(9, 9, (double)Math.Pow(10, -8));
P.At(0, 0, (double)Math.Pow(10, -1));
P.At(1, 1, (double)Math.Pow(10, -1));
P.At(2, 2, (double)Math.Pow(10, -1));
P.At(3, 3, (double)Math.Pow(10, -3));
P.At(4, 4, (double)Math.Pow(10, -3));
P.At(5, 5, (double)Math.Pow(10, -3));
restart = true;
}
Tuple<Matrix, Matrix> KF_result;
KF_result = KF_Cholesky_update(P,z,R,H);
Matrix xf = KF_result.Item1;
P = KF_result.Item2;
Matrix df_hat = DenseMatrix.Create(3,1,matrix_fill);;
df_hat.At(0, 0, xf.At(0, 0));
df_hat.At(1, 0, xf.At(1, 0));
df_hat.At(2, 0, xf.At(2, 0));
Matrix dw_hat = DenseMatrix.Create(3,1,matrix_fill);
dw_hat.At(0, 0, xf.At(3, 0));
dw_hat.At(1, 0, xf.At(4, 0));
dw_hat.At(2, 0, xf.At(5, 0));
Matrix dB_hat = DenseMatrix.Create(3,1,matrix_fill);
dB_hat.At(0, 0, xf.At(6, 0));
dB_hat.At(1, 0, xf.At(7, 0));
dB_hat.At(2, 0, xf.At(8, 0));
dw = Matrix_Plus(dw, dw_hat);
dB = Matrix_Plus(dB, dB_hat);
Matrix dCbn = DenseMatrix.Create(3,3,matrix_fill);
dCbn.At(0, 1, -df_hat.At(2, 0));
dCbn.At(0, 2, df_hat.At(1, 0));
dCbn.At(1, 0, df_hat.At(2, 0));
dCbn.At(1, 2, -df_hat.At(0, 0));
dCbn.At(2, 0, -df_hat.At(1, 0));
dCbn.At(2, 1, df_hat.At(0, 0));
Cbn = Matrix_Mult(Matrix_Plus(new DiagonalMatrix(3, 3, 1), dCbn), Cbn);
if (Cbn.At(0, 0).ToString() == "NaN")
{
restart = true;
}
if (dcm2quat(Cbn).At(0, 0).ToString() == "NaN")
{
restart = true;
}
q = dcm2quat(Cbn);
if (q.At(0, 0).ToString() == "NaN")
{
restart = true;
}
q = quat_norm(q);
if (q.At(0, 0).ToString() == "NaN")
{
restart = true;
}
Attitude.At(0, Psi);
Attitude.At(1, Theta);
Attitude.At(2, Gamma);
Attitude.At(3, PsiMgn);
Attitude.At(4, ThetaAcc);
Attitude.At(5, GammaAcc);
State.q = q;
State.dB = dB;
State.dw = dw;
State.P = P;
Sense.w = Matrix_Transpose(Omegab_ib);
Sense.a = Matrix_Mult(a, quat_to_DCM(q));
Sense.m = m;
if (restart)
{
Matrix Initia_quat = DenseMatrix.Create(1, 4, matrix_fill);
Initia_quat.At(0, 0, 1);
State = new Kalman_class.State(ACCLERATION_NOISE, MAGNETIC_FIELD_NOISE, ANGULAR_VELOCITY_NOISE,
Math.Pow(10, -6), Math.Pow(10, -15), Math.Pow(10, -15), Initia_quat);
}
return new Tuple <Vector, Sensors, State>(Attitude, Sense, State);
}
public static Matrix Matrix_Minus(Matrix A, Matrix B)
{
System.Func<int, int, double> matrix_fill = (x, y) => 0;
Matrix C = DenseMatrix.Create(A.RowCount,A.ColumnCount, matrix_fill);
int i, j;
if (A.RowCount != B.RowCount | A.ColumnCount != B.ColumnCount) return C;
for (i = 0; i < A.RowCount; i++)
{
for (j = 0; j < A.ColumnCount; j++)
{
C.At(i,j,A.At(i,j)-B.At(i,j));
}
}
return C;
}
public static Matrix Matrix_Plus(Matrix A, Matrix B)
{
System.Func<int, int, double> matrix_fill = (x, y) => 0;
Matrix C = DenseMatrix.Create(A.RowCount, A.ColumnCount, matrix_fill);
int i, j;
if (A.RowCount != B.RowCount | A.ColumnCount != B.ColumnCount) return C;
for (i = 0; i < A.RowCount; i++)
{
for (j = 0; j < A.ColumnCount; j++)
{
C.At(i, j, A.At(i, j) + B.At(i, j));
}
}
return C;
}
public static Matrix Matrix_Const_Mult(Matrix A, double B)
{
System.Func<int, int, double> matrix_fill = (x, y) => 0;
Matrix C = DenseMatrix.Create(A.RowCount, A.ColumnCount, matrix_fill);
int i, j;
for (i = 0; i < A.RowCount; i++)
{
for (j = 0; j < A.ColumnCount; j++)
{
C.At(i, j, A.At(i, j)*B);
}
}
return C;
}
public static Matrix Matrix_Mult(Matrix A, Matrix B)
{
System.Func<int, int, double> matrix_fill = (x, y) => 0;
Matrix C = DenseMatrix.Create(A.RowCount, B.ColumnCount, matrix_fill);
int i, j, k;
double el;
if (A.ColumnCount != B.RowCount) return C;
for (i = 0; i < A.RowCount; i++)
{
for (j = 0; j < B.ColumnCount; j++)
{
el = 0;
for (k = 0; k < B.RowCount; k++)
{
el = el + A.At(i, k) * B.At(k, j);
}
C.At(i, j, el);
}
}
return C;
}
public static Matrix Matrix_Transpose(Matrix A)
{
Matrix C = new DenseMatrix(A.ColumnCount, A.RowCount);
int i, j;
for (i = 0; i < A.RowCount; i++)
{
for (j = 0; j < A.ColumnCount; j++)
{
C.At(j, i, A.At(i, j));
}
}
return C;
}
public static Matrix mrotate(Matrix q, Matrix w, double dT)
{
System.Func<int, int, double> matrix_fill = (x, y) => 0;
double Fx = w.At(0, 0) * dT;
double Fy = w.At(1, 0) * dT;
double Fz = w.At(2, 0) * dT;
double Fm = (double)Math.Sqrt(Fx * Fx + Fy * Fy + Fz * Fz);
double sinFm2 = (double)Math.Sin(Fm / 2);
double cosFm2 = (double)Math.Cos(Fm / 2);
Matrix Nd = DenseMatrix.Create(1, 4, matrix_fill);
if (Fm != (double)0)
{
Nd.At(0, 0, cosFm2);
Nd.At(0, 1, (Fx / Fm) * sinFm2);
Nd.At(0, 2, (Fy / Fm) * sinFm2);
Nd.At(0, 3, (Fz / Fm) * sinFm2);
}
else Nd.At(0, 0, 1);
q = quat_multi(q, Nd);
return q;
}
public static Matrix quat_multi(Matrix A, Matrix B)
{
System.Func<int, int, double> matrix_fill = (x, y) => 0;
Matrix C = DenseMatrix.Create(A.RowCount, A.ColumnCount, matrix_fill);
if (A.RowCount != 1 | A.ColumnCount != 4) return C;
if (B.RowCount != 1 | B.ColumnCount != 4) return C;
C.At(0, 0, A.At(0, 0) * B.At(0, 0) - B.At(0, 1) * A.At(0, 1) - B.At(0, 2) * A.At(0, 2) - B.At(0, 3) * A.At(0, 3));
C.At(0, 1, A.At(0, 0) * B.At(0, 1) + B.At(0, 0) * A.At(0, 1) + B.At(0, 3) * A.At(0, 2) - B.At(0, 2) * A.At(0, 3));
C.At(0, 2, A.At(0, 0) * B.At(0, 2) + B.At(0, 0) * A.At(0, 2) - B.At(0, 3) * A.At(0, 1) + B.At(0, 1) * A.At(0, 3));
C.At(0, 3, A.At(0, 0) * B.At(0, 3) + B.At(0, 2) * A.At(0, 1) - B.At(0, 1) * A.At(0, 2) + B.At(0, 0) * A.At(0, 3));
return C;
}
public static Matrix quat_to_DCM(Matrix q)
{
System.Func<int, int, double> matrix_fill = (x, y) => 0;
Matrix DCM = DenseMatrix.Create(3, 3, matrix_fill);
q = quat_norm(q);
DCM.At(0, 0, (q.At(0, 0) * q.At(0, 0) + q.At(0, 1) * q.At(0, 1) - q.At(0, 2) * q.At(0, 2) - q.At(0, 3) * q.At(0, 3)));
DCM.At(0, 1, 2 * (q.At(0, 1) * q.At(0, 2) + q.At(0, 0) * q.At(0, 3)));
DCM.At(0, 2, 2 * (q.At(0, 1) * q.At(0, 3) - q.At(0, 0) * q.At(0, 2)));
DCM.At(1, 0, 2 * (q.At(0, 1) * q.At(0, 2) - q.At(0, 0) * q.At(0, 3)));
DCM.At(1, 1, (q.At(0, 0) * q.At(0, 0) - q.At(0, 1) * q.At(0, 1) + q.At(0, 2) * q.At(0, 2) - q.At(0, 3) * q.At(0, 3)));
DCM.At(1, 2, 2 * (q.At(0, 2) * q.At(0, 3) + q.At(0, 0) * q.At(0, 1)));
DCM.At(2, 0, 2 * (q.At(0, 1) * q.At(0, 3) + q.At(0, 0) * q.At(0, 2)));
DCM.At(2, 1, 2 * (q.At(0, 2) * q.At(0, 3) - q.At(0, 0) * q.At(0, 1)));
DCM.At(2, 2, (q.At(0, 0) * q.At(0, 0) - q.At(0, 1) * q.At(0, 1) - q.At(0, 2) * q.At(0, 2) + q.At(0, 3) * q.At(0, 3)));
return DCM;
}
public static Matrix quat_norm(Matrix q)
{
double Mod = (double) Math.Sqrt(q.At(0, 0) * q.At(0, 0) + q.At(0, 1) * q.At(0, 1) + q.At(0, 2) * q.At(0, 2) + q.At(0, 3) * q.At(0, 3));
q.At(0, 0, q.At(0, 0) / Mod);
q.At(0, 1, q.At(0, 1) / Mod);
q.At(0, 2, q.At(0, 2) / Mod);
q.At(0, 3, q.At(0, 3) / Mod);
return q;
}
public static Matrix dcm2angle(Matrix DCM)
{
System.Func<int, int, double> matrix_fill = (x, y) => 0;
Matrix angles = DenseMatrix.Create(1,3,matrix_fill);
if (DCM.RowCount != 3 | DCM.ColumnCount != 3) return angles;
angles.At(0, 0, (double)(Math.Atan2(DCM.At(0, 1), DCM.At(0, 0))));
angles.At(0, 1, (double)-(Math.Atan2(DCM.At(0, 2), Math.Sqrt(1 - DCM.At(0, 2) * DCM.At(0, 2)))));
angles.At(0, 2, (double)(Math.Atan2(DCM.At(1, 2), DCM.At(2, 2))));
return angles;
}
public static Matrix angle2dcm(Matrix angles)
{
System.Func<int, int, double> matrix_fill = (x, y) => 0;
Matrix DCM = DenseMatrix.Create(3, 3, matrix_fill);
if (angles.RowCount != 1 | angles.ColumnCount != 3) return DCM;
double Cos1 = (double)Math.Cos(angles.At(0, 0));
double Cos2 = (double)Math.Cos(angles.At(0, 1));
double Cos3 = (double)Math.Cos(angles.At(0, 2));
double Sin1 = (double)Math.Sin(angles.At(0, 0));
double Sin2 = (double)Math.Sin(angles.At(0, 1));
double Sin3 = (double)Math.Sin(angles.At(0, 2));
DCM.At(0, 0, Cos2 * Cos1);
DCM.At(0, 1, Cos2 * Sin1);
DCM.At(0, 2, -Sin2);
DCM.At(1, 0, Sin3 * Sin2 * Cos1 - Cos3 * Sin1);
DCM.At(1, 1, Sin3 * Sin2 * Sin1 + Cos3 * Cos1);
DCM.At(1, 2, Sin3 * Cos2);
DCM.At(2, 0, Cos3 * Sin2 * Cos1 + Sin3 * Sin1);
DCM.At(2, 1, Cos3 * Sin2 * Sin1 - Sin3 * Cos1);
DCM.At(2, 2, Cos3 * Cos2);
return DCM;
}
public static Matrix dcm2quat(Matrix DCM)
{
System.Func<int, int, double> matrix_fill = (x, y) => 0;
Matrix q = DenseMatrix.Create(1, 4, matrix_fill);
double tr = trace (DCM);
if (tr > 0)
{
double sqtrp1 = (double)Math.Sqrt(tr + 1);
q.At(0, 0, (double)0.5 * sqtrp1);
q.At(0, 1, (DCM.At(1, 2) - DCM.At(2, 1)) / (2 * sqtrp1));
q.At(0, 2, (DCM.At(2, 0) - DCM.At(0, 2)) / (2 * sqtrp1));
q.At(0, 3, (DCM.At(0, 1) - DCM.At(1, 0)) / (2 * sqtrp1));
return q;
}
else
{
Matrix d = DenseMatrix.Create(1,3,matrix_fill);
d.At(0, 0, DCM.At(0, 0));
d.At(0, 1, DCM.At(1, 1));
d.At(0, 2, DCM.At(2, 2));
if ((d.At(0,1)>d.At(0,0)&(d.At(0,1)>d.At(0,2))))
{
double sqdip1 = (double)Math.Sqrt(d.At(0, 1) - d.At(0, 0) - d.At(0, 2) + 1);
q.At(0, 2, 0.5 * sqdip1);
if (sqdip1 != 0)
{
sqdip1 = 0.5 / sqdip1;
}
q.At(0, 0, (DCM.At(2, 0) - DCM.At(0, 2)) * sqdip1);
q.At(0, 1, (DCM.At(0, 1) + DCM.At(1, 0)) * sqdip1);
q.At(0, 3, (DCM.At(1, 2) + DCM.At(2, 1)) * sqdip1);
}
else if (d.At(0, 2) > d.At(0, 0))
{
double sqdip1 = (double)Math.Sqrt(d.At(0, 2) - d.At(0, 0) - d.At(0, 1) + 1);
q.At(0, 3, 0.5 * sqdip1);
if (sqdip1 != 0)
{
sqdip1 = 0.5 / sqdip1;
}
q.At(0, 0, (DCM.At(0, 1) - DCM.At(1, 0)) * sqdip1);
q.At(0, 1, (DCM.At(2, 0) + DCM.At(0, 2)) * sqdip1);
q.At(0, 2, (DCM.At(1, 2) + DCM.At(2, 1)) * sqdip1);
}
else
{
double sqdip1 = (double)Math.Sqrt(d.At(0, 0) - d.At(0, 1) - d.At(0, 2) + 1);
q.At(0, 1, 0.5 * sqdip1);
if (sqdip1 != 0)
{
sqdip1 = 0.5 * sqdip1;
}
q.At(0, 0, (DCM.At(1, 2) - DCM.At(2, 1)) * sqdip1);
q.At(0, 2, (DCM.At(0, 1) + DCM.At(1, 0)) * sqdip1);
q.At(0, 3, (DCM.At(2, 1) + DCM.At(1, 2)) * sqdip1);
}
}
return q;
}
public static double trace (Matrix A)
{
double tr = (double)A.At(0, 0) + A.At(1, 1) + A.At(2, 2);
return tr;
}
public static Tuple<Matrix, Matrix> KF_Cholesky_update(Matrix P, Matrix v, Matrix R, Matrix H)
{
Matrix PHt = Matrix_Mult(P, Matrix_Transpose(H));
Matrix S = Matrix_Plus(Matrix_Mult(H, PHt), R);
S = Matrix_Const_Mult(Matrix_Plus(S, Matrix_Transpose(S)), (double)0.5);
var SChol = S.Cholesky();
var SCholInv = SChol.Factor.Inverse();
Matrix W1 = Matrix_Mult(PHt, (Matrix) SCholInv);
Matrix W = Matrix_Mult(W1,Matrix_Transpose((Matrix) SCholInv));
Matrix x = Matrix_Mult(W,v);
P = Matrix_Minus(P, Matrix_Mult(W1, Matrix_Transpose(W1)));
return new Tuple<Matrix, Matrix>(x, P);
}
}