-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathfenwick_tree.hpp
56 lines (47 loc) · 1.37 KB
/
fenwick_tree.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#pragma once
/*
Code from https://github.com/spaghetti-source/algorithm/blob/master/data_structure/fenwick_tree.cc
*/
#include <vector>
template <class T>
struct fenwick_tree {
std::vector<T> x;
fenwick_tree(size_t n) : x(n+1) { }
// initialize by a constant
fenwick_tree(size_t n, T a) : x(n+1, a) {
x[0] = 0;
for (int k = 1; k+(k&-k) <= n; ++k) x[k+(k&-k)] += x[k];
}
// initialize by a std::vector
fenwick_tree(std::vector<T> y) : x(y.size()+1) {
for (int k = 0; k < y.size(); ++k) x[k+1] = y[k];
for (int k = 1; k+(k&-k) < x.size(); ++k) x[k+(k&-k)] += x[k];
}
// b[k] += a
void add(int k, T a) {
for (++k; k < x.size(); k += k&-k) x[k] += a;
}
// sum b[0,k)
T sum(int k) {
T s = 0;
for (++k; k > 0; k &= k-1) s += x[k];
return s;
}
// min { k : sum(k) >= a }; it requires b[k] >= 0
int lower_bound(T a) {
if (a <= 0) return 0;
int k = x.size()-1;
for (int s: {1,2,4,8,16}) k |= (k >> s);
for (int p = ++k; p > 0; p >>= 1, k |= p)
if (k < x.size() && x[k] < a) a -= x[k]; else k ^= p;
return k+1;
}
// max { k : sum(k) <= a }; it requires b[k] >= 0
int upper_bound(T a) {
int k = x.size()-1;
for (int s: {1,2,4,8,16}) k |= (k >> s);
for (int p = ++k; p > 0; p >>= 1, k |= p)
if (k < x.size() && x[k] <= a) a -= x[k]; else k ^= p;
return k;
}
};