forked from dominikbraun/graph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
collection.go
197 lines (158 loc) · 4.08 KB
/
collection.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
package graph
import (
"container/heap"
"errors"
)
// priorityQueue implements a minimum priority queue using a minimum binary heap
// that prioritizes smaller values over larger values.
type priorityQueue[T comparable] struct {
items *minHeap[T]
cache map[T]*priorityItem[T]
}
// priorityItem is an item on the binary heap consisting of a priority value and
// an actual payload value.
type priorityItem[T comparable] struct {
value T
priority float64
index int
}
func newPriorityQueue[T comparable]() *priorityQueue[T] {
return &priorityQueue[T]{
items: &minHeap[T]{},
cache: map[T]*priorityItem[T]{},
}
}
// Len returns the total number of items in the priority queue.
func (p *priorityQueue[T]) Len() int {
return p.items.Len()
}
// Push pushes a new item with the given priority into the queue. This operation
// may cause a re-balance of the heap and thus scales with O(log n).
func (p *priorityQueue[T]) Push(item T, priority float64) {
if _, ok := p.cache[item]; ok {
return
}
newItem := &priorityItem[T]{
value: item,
priority: priority,
index: 0,
}
heap.Push(p.items, newItem)
p.cache[item] = newItem
}
// Pop returns and removes the item with the lowest priority. This operation may
// cause a re-balance of the heap and thus scales with O(log n).
func (p *priorityQueue[T]) Pop() (T, error) {
if len(*p.items) == 0 {
var empty T
return empty, errors.New("priority queue is empty")
}
item := heap.Pop(p.items).(*priorityItem[T])
delete(p.cache, item.value)
return item.value, nil
}
// UpdatePriority updates the priority of a given item and sets it to the given
// priority. If the item doesn't exist, nothing happens. This operation may
// cause a re-balance of the heap and this scales with O(log n).
func (p *priorityQueue[T]) UpdatePriority(item T, priority float64) {
targetItem, ok := p.cache[item]
if !ok {
return
}
targetItem.priority = priority
heap.Fix(p.items, targetItem.index)
}
// minHeap is a minimum binary heap that implements heap.Interface.
type minHeap[T comparable] []*priorityItem[T]
func (m *minHeap[T]) Len() int {
return len(*m)
}
func (m *minHeap[T]) Less(i, j int) bool {
return (*m)[i].priority < (*m)[j].priority
}
func (m *minHeap[T]) Swap(i, j int) {
(*m)[i], (*m)[j] = (*m)[j], (*m)[i]
(*m)[i].index = i
(*m)[j].index = j
}
func (m *minHeap[T]) Push(item interface{}) {
i := item.(*priorityItem[T])
i.index = len(*m)
*m = append(*m, i)
}
func (m *minHeap[T]) Pop() interface{} {
old := *m
item := old[len(old)-1]
*m = old[:len(old)-1]
return item
}
type stack[T comparable] struct {
elements []T
registry map[T]struct{}
}
func newStack[T comparable]() *stack[T] {
return &stack[T]{
elements: make([]T, 0),
registry: make(map[T]struct{}),
}
}
func (s *stack[T]) push(t T) {
s.elements = append(s.elements, t)
s.registry[t] = struct{}{}
}
func (s *stack[T]) pop() (T, bool) {
element, ok := s.top()
if !ok {
return element, false
}
s.elements = s.elements[:len(s.elements)-1]
delete(s.registry, element)
return element, true
}
func (s *stack[T]) top() (T, bool) {
if s.isEmpty() {
var defaultValue T
return defaultValue, false
}
return s.elements[len(s.elements)-1], true
}
func (s *stack[T]) isEmpty() bool {
return len(s.elements) == 0
}
func (s *stack[T]) forEach(f func(T)) {
for _, e := range s.elements {
f(e)
}
}
func (s *stack[T]) contains(element T) bool {
_, ok := s.registry[element]
return ok
}
type stackOfStacks[T comparable] struct {
stacks []*stack[T]
}
func newStackOfStacks[T comparable]() *stackOfStacks[T] {
return &stackOfStacks[T]{
stacks: make([]*stack[T], 0),
}
}
func (s *stackOfStacks[T]) push(stack *stack[T]) {
s.stacks = append(s.stacks, stack)
}
func (s *stackOfStacks[T]) pop() (*stack[T], error) {
e, err := s.top()
if err != nil {
return &stack[T]{}, err
}
s.stacks = s.stacks[:len(s.stacks)-1]
return e, nil
}
func (s *stackOfStacks[T]) top() (*stack[T], error) {
if s.isEmpty() {
return &stack[T]{}, errors.New("no element in stack")
}
return s.stacks[len(s.stacks)-1], nil
}
func (s *stackOfStacks[T]) isEmpty() bool {
return len(s.stacks) == 0
}