-
Notifications
You must be signed in to change notification settings - Fork 539
/
decoder.py
324 lines (268 loc) · 9.73 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""
Decoder
"""
import theano
import theano.tensor as tensor
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
import cPickle as pkl
import numpy
from search import gen_sample
from collections import OrderedDict
def load_model(path_to_model, path_to_dictionary):
"""
Load a trained model for decoding
"""
# Load the worddict
with open(path_to_dictionary, 'rb') as f:
worddict = pkl.load(f)
# Create inverted dictionary
word_idict = dict()
for kk, vv in worddict.iteritems():
word_idict[vv] = kk
word_idict[0] = '<eos>'
word_idict[1] = 'UNK'
# Load model options
with open('%s.pkl'%path_to_model, 'rb') as f:
options = pkl.load(f)
if 'doutput' not in options.keys():
options['doutput'] = True
# Load parameters
params = init_params(options)
params = load_params(path_to_model, params)
tparams = init_tparams(params)
# Sampler.
trng = RandomStreams(1234)
f_init, f_next = build_sampler(tparams, options, trng)
# Pack everything up
dec = dict()
dec['options'] = options
dec['trng'] = trng
dec['worddict'] = worddict
dec['word_idict'] = word_idict
dec['tparams'] = tparams
dec['f_init'] = f_init
dec['f_next'] = f_next
return dec
def run_sampler(dec, c, beam_width=1, stochastic=False, use_unk=False):
"""
Generate text conditioned on c
"""
sample, score = gen_sample(dec['tparams'], dec['f_init'], dec['f_next'],
c.reshape(1, dec['options']['dimctx']), dec['options'],
trng=dec['trng'], k=beam_width, maxlen=1000, stochastic=stochastic,
use_unk=use_unk)
text = []
if stochastic:
sample = [sample]
for c in sample:
text.append(' '.join([dec['word_idict'][w] for w in c[:-1]]))
#Sort beams by their NLL, return the best result
lengths = numpy.array([len(s.split()) for s in text])
if lengths[0] == 0: # in case the model only predicts <eos>
lengths = lengths[1:]
score = score[1:]
text = text[1:]
sidx = numpy.argmin(score)
text = text[sidx]
score = score[sidx]
return text
def _p(pp, name):
"""
make prefix-appended name
"""
return '%s_%s'%(pp, name)
def init_tparams(params):
"""
initialize Theano shared variables according to the initial parameters
"""
tparams = OrderedDict()
for kk, pp in params.iteritems():
tparams[kk] = theano.shared(params[kk], name=kk)
return tparams
def load_params(path, params):
"""
load parameters
"""
pp = numpy.load(path)
for kk, vv in params.iteritems():
if kk not in pp:
warnings.warn('%s is not in the archive'%kk)
continue
params[kk] = pp[kk]
return params
# layers: 'name': ('parameter initializer', 'feedforward')
layers = {'ff': ('param_init_fflayer', 'fflayer'),
'gru': ('param_init_gru', 'gru_layer')}
def get_layer(name):
fns = layers[name]
return (eval(fns[0]), eval(fns[1]))
def init_params(options):
"""
Initialize all parameters
"""
params = OrderedDict()
# Word embedding
params['Wemb'] = norm_weight(options['n_words'], options['dim_word'])
# init state
params = get_layer('ff')[0](options, params, prefix='ff_state', nin=options['dimctx'], nout=options['dim'])
# Decoder
params = get_layer(options['decoder'])[0](options, params, prefix='decoder',
nin=options['dim_word'], dim=options['dim'])
# Output layer
if options['doutput']:
params = get_layer('ff')[0](options, params, prefix='ff_hid', nin=options['dim'], nout=options['dim_word'])
params = get_layer('ff')[0](options, params, prefix='ff_logit', nin=options['dim_word'], nout=options['n_words'])
else:
params = get_layer('ff')[0](options, params, prefix='ff_logit', nin=options['dim'], nout=options['n_words'])
return params
def build_sampler(tparams, options, trng):
"""
Forward sampling
"""
ctx = tensor.matrix('ctx', dtype='float32')
ctx0 = ctx
init_state = get_layer('ff')[1](tparams, ctx, options, prefix='ff_state', activ='tanh')
f_init = theano.function([ctx], init_state, name='f_init', profile=False)
# x: 1 x 1
y = tensor.vector('y_sampler', dtype='int64')
init_state = tensor.matrix('init_state', dtype='float32')
# if it's the first word, emb should be all zero
emb = tensor.switch(y[:,None] < 0, tensor.alloc(0., 1, tparams['Wemb'].shape[1]),
tparams['Wemb'][y])
# decoder
proj = get_layer(options['decoder'])[1](tparams, emb, init_state, options,
prefix='decoder',
mask=None,
one_step=True)
next_state = proj[0]
# output
if options['doutput']:
hid = get_layer('ff')[1](tparams, next_state, options, prefix='ff_hid', activ='tanh')
logit = get_layer('ff')[1](tparams, hid, options, prefix='ff_logit', activ='linear')
else:
logit = get_layer('ff')[1](tparams, next_state, options, prefix='ff_logit', activ='linear')
next_probs = tensor.nnet.softmax(logit)
next_sample = trng.multinomial(pvals=next_probs).argmax(1)
# next word probability
inps = [y, init_state]
outs = [next_probs, next_sample, next_state]
f_next = theano.function(inps, outs, name='f_next', profile=False)
return f_init, f_next
def linear(x):
"""
Linear activation function
"""
return x
def tanh(x):
"""
Tanh activation function
"""
return tensor.tanh(x)
def ortho_weight(ndim):
"""
Orthogonal weight init, for recurrent layers
"""
W = numpy.random.randn(ndim, ndim)
u, s, v = numpy.linalg.svd(W)
return u.astype('float32')
def norm_weight(nin,nout=None, scale=0.1, ortho=True):
"""
Uniform initalization from [-scale, scale]
If matrix is square and ortho=True, use ortho instead
"""
if nout == None:
nout = nin
if nout == nin and ortho:
W = ortho_weight(nin)
else:
W = numpy.random.uniform(low=-scale, high=scale, size=(nin, nout))
return W.astype('float32')
# Feedforward layer
def param_init_fflayer(options, params, prefix='ff', nin=None, nout=None, ortho=True):
"""
Affine transformation + point-wise nonlinearity
"""
if nin == None:
nin = options['dim_proj']
if nout == None:
nout = options['dim_proj']
params[_p(prefix,'W')] = norm_weight(nin, nout)
params[_p(prefix,'b')] = numpy.zeros((nout,)).astype('float32')
return params
def fflayer(tparams, state_below, options, prefix='rconv', activ='lambda x: tensor.tanh(x)', **kwargs):
"""
Feedforward pass
"""
return eval(activ)(tensor.dot(state_below, tparams[_p(prefix,'W')])+tparams[_p(prefix,'b')])
# GRU layer
def param_init_gru(options, params, prefix='gru', nin=None, dim=None):
"""
Gated Recurrent Unit (GRU)
"""
if nin == None:
nin = options['dim_proj']
if dim == None:
dim = options['dim_proj']
W = numpy.concatenate([norm_weight(nin,dim),
norm_weight(nin,dim)], axis=1)
params[_p(prefix,'W')] = W
params[_p(prefix,'b')] = numpy.zeros((2 * dim,)).astype('float32')
U = numpy.concatenate([ortho_weight(dim),
ortho_weight(dim)], axis=1)
params[_p(prefix,'U')] = U
Wx = norm_weight(nin, dim)
params[_p(prefix,'Wx')] = Wx
Ux = ortho_weight(dim)
params[_p(prefix,'Ux')] = Ux
params[_p(prefix,'bx')] = numpy.zeros((dim,)).astype('float32')
return params
def gru_layer(tparams, state_below, init_state, options, prefix='gru', mask=None, one_step=False, **kwargs):
"""
Feedforward pass through GRU
"""
nsteps = state_below.shape[0]
if state_below.ndim == 3:
n_samples = state_below.shape[1]
else:
n_samples = 1
dim = tparams[_p(prefix,'Ux')].shape[1]
if init_state == None:
init_state = tensor.alloc(0., n_samples, dim)
if mask == None:
mask = tensor.alloc(1., state_below.shape[0], 1)
def _slice(_x, n, dim):
if _x.ndim == 3:
return _x[:, :, n*dim:(n+1)*dim]
return _x[:, n*dim:(n+1)*dim]
state_below_ = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + tparams[_p(prefix, 'b')]
state_belowx = tensor.dot(state_below, tparams[_p(prefix, 'Wx')]) + tparams[_p(prefix, 'bx')]
U = tparams[_p(prefix, 'U')]
Ux = tparams[_p(prefix, 'Ux')]
def _step_slice(m_, x_, xx_, h_, U, Ux):
preact = tensor.dot(h_, U)
preact += x_
r = tensor.nnet.sigmoid(_slice(preact, 0, dim))
u = tensor.nnet.sigmoid(_slice(preact, 1, dim))
preactx = tensor.dot(h_, Ux)
preactx = preactx * r
preactx = preactx + xx_
h = tensor.tanh(preactx)
h = u * h_ + (1. - u) * h
h = m_[:,None] * h + (1. - m_)[:,None] * h_
return h
seqs = [mask, state_below_, state_belowx]
_step = _step_slice
if one_step:
rval = _step(*(seqs+[init_state, tparams[_p(prefix, 'U')], tparams[_p(prefix, 'Ux')]]))
else:
rval, updates = theano.scan(_step,
sequences=seqs,
outputs_info = [init_state],
non_sequences = [tparams[_p(prefix, 'U')],
tparams[_p(prefix, 'Ux')]],
name=_p(prefix, '_layers'),
n_steps=nsteps,
profile=False,
strict=True)
rval = [rval]
return rval