forked from dbiir/UER-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_classifier.py
339 lines (281 loc) · 13.5 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""
This script provides an exmaple to wrap UER-py for classification.
"""
import random
import argparse
import torch
import torch.nn as nn
from uer.layers import *
from uer.encoders import *
from uer.utils.vocab import Vocab
from uer.utils.constants import *
from uer.utils import *
from uer.utils.optimizers import *
from uer.utils.config import load_hyperparam
from uer.utils.seed import set_seed
from uer.model_saver import save_model
from uer.opts import finetune_opts
class Classifier(nn.Module):
def __init__(self, args):
super(Classifier, self).__init__()
self.embedding = str2embedding[args.embedding](args, len(args.tokenizer.vocab))
self.encoder = str2encoder[args.encoder](args)
self.labels_num = args.labels_num
self.pooling = args.pooling
self.soft_targets = args.soft_targets
self.soft_alpha = args.soft_alpha
self.output_layer_1 = nn.Linear(args.hidden_size, args.hidden_size)
self.output_layer_2 = nn.Linear(args.hidden_size, self.labels_num)
def forward(self, src, tgt, seg, soft_tgt=None):
"""
Args:
src: [batch_size x seq_length]
tgt: [batch_size]
seg: [batch_size x seq_length]
"""
# Embedding.
emb = self.embedding(src, seg)
# Encoder.
output = self.encoder(emb, seg)
# Target.
if self.pooling == "mean":
output = torch.mean(output, dim=1)
elif self.pooling == "max":
output = torch.max(output, dim=1)[0]
elif self.pooling == "last":
output = output[:, -1, :]
else:
output = output[:, 0, :]
output = torch.tanh(self.output_layer_1(output))
logits = self.output_layer_2(output)
if tgt is not None:
if self.soft_targets and soft_tgt is not None:
loss = self.soft_alpha * nn.MSELoss()(logits, soft_tgt) + \
(1 - self.soft_alpha) * nn.NLLLoss()(nn.LogSoftmax(dim=-1)(logits), tgt.view(-1))
else:
loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(logits), tgt.view(-1))
return loss, logits
else:
return None, logits
def count_labels_num(path):
labels_set, columns = set(), {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.strip().split("\t")):
columns[column_name] = i
continue
line = line.strip().split("\t")
label = int(line[columns["label"]])
labels_set.add(label)
return len(labels_set)
def load_or_initialize_parameters(args, model):
if args.pretrained_model_path is not None:
# Initialize with pretrained model.
model.load_state_dict(torch.load(args.pretrained_model_path), strict=False)
else:
# Initialize with normal distribution.
for n, p in list(model.named_parameters()):
if "gamma" not in n and "beta" not in n:
p.data.normal_(0, 0.02)
def build_optimizer(args, model):
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
]
if args.optimizer in ["adamw"]:
optimizer = str2optimizer[args.optimizer](optimizer_grouped_parameters, lr=args.learning_rate, correct_bias=False)
else:
optimizer = str2optimizer[args.optimizer](optimizer_grouped_parameters, lr=args.learning_rate,
scale_parameter=False, relative_step=False)
if args.scheduler in ["constant"]:
scheduler = str2scheduler[args.scheduler](optimizer)
elif args.scheduler in ["constant_with_warmup"]:
scheduler = str2scheduler[args.scheduler](optimizer, args.train_steps*args.warmup)
else:
scheduler = str2scheduler[args.scheduler](optimizer, args.train_steps*args.warmup, args.train_steps)
return optimizer, scheduler
def batch_loader(batch_size, src, tgt, seg, soft_tgt=None):
instances_num = src.size()[0]
for i in range(instances_num // batch_size):
src_batch = src[i * batch_size : (i + 1) * batch_size, :]
tgt_batch = tgt[i * batch_size : (i + 1) * batch_size]
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
if soft_tgt is not None:
soft_tgt_batch = soft_tgt[i * batch_size : (i + 1) * batch_size, :]
yield src_batch, tgt_batch, seg_batch, soft_tgt_batch
else:
yield src_batch, tgt_batch, seg_batch, None
if instances_num > instances_num // batch_size * batch_size:
src_batch = src[instances_num // batch_size * batch_size :, :]
tgt_batch = tgt[instances_num // batch_size * batch_size :]
seg_batch = seg[instances_num // batch_size * batch_size :, :]
if soft_tgt is not None:
soft_tgt_batch = soft_tgt[instances_num // batch_size * batch_size :, :]
yield src_batch, tgt_batch, seg_batch, soft_tgt_batch
else:
yield src_batch, tgt_batch, seg_batch, None
def read_dataset(args, path):
dataset, columns = [], {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.strip().split("\t")):
columns[column_name] = i
continue
line = line[:-1].split("\t")
tgt = int(line[columns["label"]])
if args.soft_targets and "logits" in columns.keys():
soft_tgt = [float(value) for value in line[columns["logits"]].split(" ")]
if "text_b" not in columns: # Sentence classification.
text_a = line[columns["text_a"]]
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a))
seg = [1] * len(src)
else: # Sentence-pair classification.
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b) + [SEP_TOKEN])
src = src_a + src_b
seg = [1] * len(src_a) + [2] * len(src_b)
if len(src) > args.seq_length:
src = src[: args.seq_length]
seg = seg[: args.seq_length]
while len(src) < args.seq_length:
src.append(0)
seg.append(0)
if args.soft_targets and "logits" in columns.keys():
dataset.append((src, tgt, seg, soft_tgt))
else:
dataset.append((src, tgt, seg))
return dataset
def train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch, soft_tgt_batch=None):
model.zero_grad()
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
if soft_tgt_batch is not None:
soft_tgt_batch = soft_tgt_batch.to(args.device)
loss, _ = model(src_batch, tgt_batch, seg_batch, soft_tgt_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
if args.fp16:
with args.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
scheduler.step()
return loss
def evaluate(args, dataset, print_confusion_matrix=False):
src = torch.LongTensor([sample[0] for sample in dataset])
tgt = torch.LongTensor([sample[1] for sample in dataset])
seg = torch.LongTensor([sample[2] for sample in dataset])
batch_size = args.batch_size
correct = 0
# Confusion matrix.
confusion = torch.zeros(args.labels_num, args.labels_num, dtype=torch.long)
args.model.eval()
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
with torch.no_grad():
_, logits = args.model(src_batch, tgt_batch, seg_batch)
pred = torch.argmax(nn.Softmax(dim=1)(logits), dim=1)
gold = tgt_batch
for j in range(pred.size()[0]):
confusion[pred[j], gold[j]] += 1
correct += torch.sum(pred == gold).item()
if print_confusion_matrix:
print("Confusion matrix:")
print(confusion)
print("Report precision, recall, and f1:")
for i in range(confusion.size()[0]):
p = confusion[i, i].item() / confusion[i, :].sum().item()
r = confusion[i, i].item() / confusion[:, i].sum().item()
f1 = 2 * p * r / (p + r)
print("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i, p, r, f1))
print("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct / len(dataset), correct, len(dataset)))
return correct / len(dataset), confusion
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
parser.add_argument("--pooling", choices=["mean", "max", "first", "last"], default="first",
help="Pooling type.")
parser.add_argument("--tokenizer", choices=["bert", "char", "space"], default="bert",
help="Specify the tokenizer."
"Original Google BERT uses bert tokenizer on Chinese corpus."
"Char tokenizer segments sentences into characters."
"Space tokenizer segments sentences into words according to space."
)
parser.add_argument("--soft_targets", action='store_true',
help="Train model with logits.")
parser.add_argument("--soft_alpha", type=float, default=0.5,
help="Weight of the soft targets loss.")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Count the number of labels.
args.labels_num = count_labels_num(args.train_path)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
# Build classification model.
model = Classifier(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path)
random.shuffle(trainset)
instances_num = len(trainset)
batch_size = args.batch_size
src = torch.LongTensor([example[0] for example in trainset])
tgt = torch.LongTensor([example[1] for example in trainset])
seg = torch.LongTensor([example[2] for example in trainset])
if args.soft_targets:
soft_tgt = torch.FloatTensor([example[3] for example in trainset])
else:
soft_tgt = None
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
print("Batch size: ", batch_size)
print("The number of training instances:", instances_num)
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
total_loss, result, best_result = 0.0, 0.0, 0.0
print("Start training.")
for epoch in range(1, args.epochs_num + 1):
model.train()
for i, (src_batch, tgt_batch, seg_batch, soft_tgt_batch) in enumerate(batch_loader(batch_size, src, tgt, seg, soft_tgt)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch, soft_tgt_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, read_dataset(args, args.dev_path))
if result[0] > best_result:
best_result = result[0]
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
print("Test set evaluation.")
if torch.cuda.device_count() > 1:
model.module.load_state_dict(torch.load(args.output_model_path))
else:
model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path), True)
if __name__ == "__main__":
main()