forked from p5cao/quadTrajOpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulate_flight.py
200 lines (149 loc) · 8.74 KB
/
simulate_flight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import openmdao.api as om
import dymos as dm
import numpy as np
from quadrotorODE import Flightdynamics
from dymos.examples.plotting import plot_results
import matplotlib.pyplot as plt
from dymos.utils.testing_utils import assert_check_partials
# Instantiate the problem, add the driver, and allow it to use coloring
p = om.Problem(model=om.Group())
#p.driver = om.ScipyOptimizeDriver()
p.driver = om.pyOptSparseDriver()
p.driver.declare_coloring()
p.driver.options['optimizer'] = 'SNOPT'
# Instantiate a Dymos Trajectory and add it to the Problem model.
# Instantiate the trajectory and phase
traj = dm.Trajectory()
phase = dm.Phase(ode_class=Flightdynamics,
transcription=dm.Radau(num_segments=20, order = 3, compressed = False))
traj.add_phase('phase0', phase)
p.model.add_subsystem('traj', traj)
# add states
phase.set_time_options(fix_initial=True, units='s', duration_bounds=(.05, 10.0),duration_ref0 = 0.0, duration_ref=7.0)
phase.add_state('x', fix_initial=True, fix_final=True, units='m', rate_source='xdot',
lower = -5.0, upper = 40.0, ref0 = 0.0, ref = 35.0)
phase.add_state('y', fix_initial=True, fix_final=True, units='m', rate_source='ydot',
lower = -20.0, upper = 15.0, ref0 = -5.0, ref = 1.0)
phase.add_state('z', fix_initial=True, fix_final=True, units='m', rate_source='zdot',
lower = -2.5, upper = -0.5, ref0 = -2.5, ref = -1.0)
phase.add_state('u', fix_initial=True, fix_final=False, units='m/s', rate_source='udot',
lower = -3.0, upper = 3.0, ref0 = -2.0, ref = 2.0)
phase.add_state('v', fix_initial=True, fix_final=False, units='m/s', rate_source='vdot',
lower = -3.0, upper = 3.0, ref0 = -0.5, ref = 0.5)
phase.add_state('w', fix_initial=True, fix_final=False, units='m/s', rate_source='wdot',
lower = -1.0, upper = 1.0, ref0 = -0.5, ref = 0.5)
phase.add_state('phi', fix_initial=True, fix_final=False, units='rad', rate_source='phidot',
lower = -1/3*np.pi, upper = 1/3*np.pi, ref0 = -1/6*np.pi, ref = 1/6*np.pi)
phase.add_state('theta', fix_initial=True, fix_final=False, units='rad', rate_source='thetadot',
lower = -1/2*np.pi, upper = 1/2*np.pi, ref0 = -1/6*np.pi, ref = 1/6*np.pi)
phase.add_state('psi', fix_initial=True, fix_final=True, units='rad', rate_source='psidot',
lower = -1/2*np.pi, upper = 1/2*np.pi, ref0 = -1/3*np.pi, ref = 1/3*np.pi)
phase.add_state('p', fix_initial=True, fix_final=False, units='rad/s', rate_source='pdot',
lower = -1/2*np.pi/2, upper = 1/2*np.pi/2, ref0 = -1/3*np.pi/2, ref = 1/3*np.pi/2)
phase.add_state('q', fix_initial=True, fix_final=False, units='rad/s', rate_source='qdot',
lower = -1/2*np.pi/2, upper = 1/2*np.pi/2, ref0 = -1/3*np.pi/2, ref = 1/3*np.pi/2)
phase.add_state('r', fix_initial=True, fix_final=False, units='rad/s', rate_source='rdot',
lower = -1/2*np.pi/2, upper = 1/2*np.pi/2, ref0 = -1/3*np.pi/2, ref = 1/3*np.pi/2)
# add controls
phase.add_control('F_z', units = 'N', opt=True, lower = 0, upper = 10,
rate_continuity=True)
phase.add_control('tau_x', units = 'N*m', opt=True, lower =-1, upper = 1,
rate_continuity=True)
phase.add_control('tau_y', units = 'N*m', opt=True, lower =-1, upper = 1,
rate_continuity=True)
phase.add_control('tau_z', units = 'N*m', opt=True, lower =-1, upper = 1,
rate_continuity=True)
# add outputs
# phase.add_timeseries_output('x', shape=(1,))
# phase.add_timeseries_output('y', shape=(1,))
# phase.add_timeseries_output('z', shape=(1,))
# phase.add_timeseries_output('psi', shape=(1,))
phase.add_objective('time', loc='final', ref=1.0)
# phase.add_boundary_constraint('x', loc='final', equals=9.9932)
# phase.add_boundary_constraint('y', loc='final', equals=-0.2189)
# phase.add_boundary_constraint('z', loc='final', equals=-1.7839)
# phase.add_boundary_constraint('psi', loc='final', equals=0.3609)
# p.model.linear_solver = om.DirectSolver()
p.setup(check=True)
p.set_val('traj.phase0.t_initial', 0.0, units='s')
p.set_val('traj.phase0.t_duration', 10.0, units='s')
p.set_val('traj.phase0.states:x', phase.interp('x', [0.0, 34.0]), units = 'm')
p.set_val('traj.phase0.states:y', phase.interp('y', [0.0, -5.0]), units = 'm')
p.set_val('traj.phase0.states:z', phase.interp('z', [-2.0, -2.0]), units = 'm')
p.set_val('traj.phase0.states:psi', phase.interp('psi', [0.0, 0.0]), units = 'rad')
# p.set_val('traj.phase0.states:y', phase.interp('y', [0.0, -0.2189]), units = 'm')
# p.set_val('traj.phase0.states:z', phase.interp('z', [-2.0, -1.7839]), units = 'm')
p.set_val('traj.phase0.states:u', phase.interp('u', [0, 0]), units = 'm/s')
p.set_val('traj.phase0.states:v', phase.interp('v', [0, 0]), units = 'm/s')
p.set_val('traj.phase0.states:w', phase.interp('w', [0, 0]), units = 'm/s')
p.set_val('traj.phase0.states:phi', phase.interp('phi', [0.0, 0.0]), units = 'rad')
p.set_val('traj.phase0.states:theta', phase.interp('theta', [0.0, 0.0]), units = 'rad')
p.set_val('traj.phase0.states:psi', phase.interp('psi', [0.0, 0.0]), units = 'rad')
p.set_val('traj.phase0.states:p', phase.interp('p', [0.0, 0.0]), units = 'rad/s')
p.set_val('traj.phase0.states:q', phase.interp('q', [0.0, 0.0]), units = 'rad/s')
p.set_val('traj.phase0.states:r', phase.interp('r', [0.0, 0.0]), units = 'rad/s')
p.set_val('traj.phase0.controls:F_z', phase.interp('F_z', ys=[6.762, 6.762]), units='N')
p.set_val('traj.phase0.controls:tau_x', phase.interp('tau_x', ys=[0.0, 0.0]), units='N*m')
p.set_val('traj.phase0.controls:tau_y', phase.interp('tau_y', ys=[0.0, 0.0]), units='N*m')
p.set_val('traj.phase0.controls:tau_z', phase.interp('tau_z', ys=[0.0, 0.0]), units='N*m')
p.run_model()
#cpd = p.check_partials(method='cs', compact_print=True)
# cpd = p.check_partials(compact_print=False, out_stream=None)
# assert_check_partials(cpd, atol=1.0E-5, rtol=1.0E-4)
# simulate the system without controls
#Run the driver
dm.run_problem(p, simulate=True)
# p.run_driver()
#sim_out = traj.simulate(times_per_seg=50)
t_sol = p.get_val('traj.phase0.timeseries.time')
#t_sim = sim_out.get_val('traj.phase0.timeseries.time')
states =['x', 'y', 'z', 'psi']
fig, axes = plt.subplots(len(states), 1)
for i, state in enumerate(states):
sol = axes[i].plot(t_sol, p.get_val(f'traj.phase0.timeseries.states:{state}'), 'o')
#sim = axes[i].plot(t_sim, sim_out.get_val(f'traj.phase0.timeseries.states:{state}'), '-')
axes[i].set_ylabel(state)
axes[-1].set_xlabel('time (s)')
#fig.legend((sol[0], sim[0]), ('solution', 'simulation'), 'lower right', ncol=2)
plt.tight_layout()
plt.show()
sol = om.CaseReader('dymos_solution.db').get_case('final')
sim = om.CaseReader('dymos_simulation.db').get_case('final')
plot_results([('traj.phase0.timeseries.time', 'traj.phase0.timeseries.states:x',
'time (s)', 'x (m)'),
('traj.phase0.timeseries.time', 'traj.phase0.timeseries.states:y',
'time (s)', 'y (m)'),
('traj.phase0.timeseries.time', 'traj.phase0.timeseries.states:z',
'time (s)', 'z (m)'),
('traj.phase0.timeseries.time', 'traj.phase0.timeseries.states:psi',
'time (s)', 'psi (rad)'),
],
title='Quadrotor outputs',
p_sol=sol, p_sim = sim)
plt.show()
plot_results([('traj.phase0.timeseries.time', 'traj.phase0.timeseries.controls:F_z',
'time (s)', 'F_z (revs/s)'),
('traj.phase0.timeseries.time', 'traj.phase0.timeseries.controls:tau_x',
'time (s)', 'roll_torque (Nm)'),
('traj.phase0.timeseries.time', 'traj.phase0.timeseries.controls:tau_y',
'time (s)', 'pitch_torque (Nm)'),
('traj.phase0.timeseries.time', 'traj.phase0.timeseries.controls:tau_z',
'time (s)', 'yaw_torque (Nm)')],
title='Quadrotor control inputs',
p_sol=sol, p_sim = sim)
plt.show()
time_array = sim.get_val('traj.phase0.timeseries.time')
x_array = sim.get_val('traj.phase0.timeseries.states:x')
y_array = sim.get_val('traj.phase0.timeseries.states:y')
z_array = sim.get_val('traj.phase0.timeseries.states:z')
psi_array = sim.get_val('traj.phase0.timeseries.states:psi')
output_table = np.hstack((np.hstack((np.hstack((np.hstack((time_array, x_array)), y_array)), z_array)), psi_array))
output_table = np.delete(output_table, 0, 0)
# output_28to33 = output_table[0:601,:]
# mdic_out = {"output_all": output_table, "label": "output_table"}
# savemat("output_table_RVall.mat", mdic_out)
xline, yline, zline = output_table[:,1], output_table[:,2],-output_table[:,3]
# xline, yline, zline = x_array.flatten(), y_array.flatten(), -z_array.flatten()
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.plot3D(xline, yline, zline, 'gray')