-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
82 lines (74 loc) · 2.78 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision.transforms as tvt
from PIL import Image
import config
from model import SplineModel
def spline_to_tensor(spl: np.ndarray):
"""
:param spl: Curve to be transformed
:return: Normalized tensor
"""
assert spl.shape[1] == 2, 'Please input 2D curves in the form of [num, dim]'
# Obtain image configs
w = config.Width
h = config.Height
dpi = config.Dpi
lw = config.Linewidth
# Plot the spline curve and save as a colorful png
fig, ax = plt.subplots(figsize=(w/dpi, h/dpi), dpi=dpi)
ax.plot(spl[:, 0], spl[:, 1], lw=lw)
plt.axis('off')
cache_path = '.\\Cache\\'
if not os.path.exists(cache_path):
os.makedirs(cache_path)
path = cache_path + 'cache.png'
plt.savefig(path, bbox_inches=0)
plt.close()
# Import the image as a grayscale image
img = Image.open('.\\Cache\\cache.png')
img = img.convert('L')
# Resize to 256*256 for standardization
img = img.resize((256, 256), Image.BOX)
# Transform into tensor and normalize
transform = tvt.Compose([tvt.ToTensor(), tvt.Normalize(0.5, 0.5)])
img = transform(img)
# Return the normalized tensor (1,1,256,256)
img = img[None, :]
return img
class SplineInference():
"""
A class to load trained model to predict number of control points
"""
def __init__(self, epoch: int, curve_type: str):
"""
:param epoch: Determine which model (after how many epochs) to be used
:param curve_type: Determine which model (for what kind of curves) to be used
"""
print('Start loading the trained network for ' + curve_type + ' after ' + str(epoch) + ' epoch(s).')
num_n = config.N_max - config.N_min + 1
self.net = SplineModel(num_n)
self.net.load_state_dict(torch.load('.\\Model\\' + curve_type + '\\SplineNet' + str(epoch) + '.pth'))
print('Successfully loaded the trained network.')
self.net.eval()
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.net = self.net.to(self.device)
print('Using ' + torch.cuda.get_device_name(self.device) + ' for the trained model.')
def __getitem__(self, spl: np.ndarray):
"""
:param spl: Curve to be predicted
:return: Prediction of number of control points
"""
# First get the normalized tensor
img = spline_to_tensor(spl)
# Move to assigned device if necessary
img = img.to(self.device)
# Get the model output
output = self.net(img)
_, prediction = torch.max(output, 1)
# Return the prediction
prediction = torch.squeeze(prediction)
prediction = prediction.cpu()
return prediction.item()