-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_ace.py
128 lines (87 loc) · 5.83 KB
/
train_ace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/usr/bin/env python3
# Copyright © Niantic, Inc. 2022.
import os
import argparse
import logging
from distutils.util import strtobool
from pathlib import Path
from ace_trainer import TrainerACE
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def _strtobool(x):
return bool(strtobool(x))
if __name__ == '__main__':
# Setup logging levels.
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(
description='Fast training of a scene coordinate regression network.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('scene', type=Path,
help='path to a scene in the dataset folder, e.g. "datasets/Cambridge_GreatCourt"')
parser.add_argument('output_map_file', type=Path,
help='target file for the trained network')
parser.add_argument('--encoder_path', type=Path, default=Path(__file__).parent / "ace_encoder_pretrained.pt",
help='file containing pre-trained encoder weights')
parser.add_argument('--num_head_blocks', type=int, default=1,
help='depth of the regression head, defines the map size')
parser.add_argument('--learning_rate_min', type=float, default=0.0001,
help='lowest learning rate of 1 cycle scheduler')
parser.add_argument('--learning_rate_max', type=float, default=0.005,
help='highest learning rate of 1 cycle scheduler')
parser.add_argument('--training_buffer_size', type=int, default=8000000,
help='number of patches in the training buffer')
parser.add_argument('--samples_per_image', type=int, default=1024,
help='number of patches drawn from each image when creating the buffer')
parser.add_argument('--batch_size', type=int, default=5120,
help='number of patches for each parameter update (has to be a multiple of 512)')
parser.add_argument('--epochs', type=int, default=16,
help='number of runs through the training buffer')
parser.add_argument('--repro_loss_hard_clamp', type=int, default=1000,
help='hard clamping threshold for the reprojection losses')
parser.add_argument('--repro_loss_soft_clamp', type=int, default=50,
help='soft clamping threshold for the reprojection losses')
parser.add_argument('--repro_loss_soft_clamp_min', type=int, default=1,
help='minimum value of the soft clamping threshold when using a schedule')
parser.add_argument('--use_half', type=_strtobool, default=True,
help='train with half precision')
parser.add_argument('--use_homogeneous', type=_strtobool, default=True,
help='train with half precision')
parser.add_argument('--use_aug', type=_strtobool, default=True,
help='Use any augmentation.')
parser.add_argument('--aug_rotation', type=int, default=15,
help='max inplane rotation angle')
parser.add_argument('--aug_scale', type=float, default=1.5,
help='max scale factor')
parser.add_argument('--image_resolution', type=int, default=480,
help='base image resolution')
parser.add_argument('--repro_loss_type', type=str, default="dyntanh",
choices=["l1", "l1+sqrt", "l1+log", "tanh", "dyntanh"],
help='Loss function on the reprojection error. Dyn varies the soft clamping threshold')
parser.add_argument('--repro_loss_schedule', type=str, default="circle", choices=['circle', 'linear'],
help='How to decrease the softclamp threshold during training, circle is slower first')
parser.add_argument('--depth_min', type=float, default=0.1,
help='enforce minimum depth of network predictions')
parser.add_argument('--depth_target', type=float, default=10,
help='default depth to regularize training')
parser.add_argument('--depth_max', type=float, default=1000,
help='enforce maximum depth of network predictions')
# Clustering params, for the ensemble training used in the Cambridge experiments. Disabled by default.
parser.add_argument('--num_clusters', type=int, default=None,
help='split the training sequence in this number of clusters. disabled by default')
parser.add_argument('--cluster_idx', type=int, default=None,
help='train on images part of this cluster. required only if --num_clusters is set.')
# Params for the visualization. If enabled, it will slow down training considerably. But you get a nice video :)
parser.add_argument('--render_visualization', type=_strtobool, default=False,
help='create a video of the mapping process')
parser.add_argument('--render_target_path', type=Path, default='renderings',
help='target folder for renderings, visualizer will create a subfolder with the map name')
parser.add_argument('--render_flipped_portrait', type=_strtobool, default=False,
help='flag for wayspots dataset where images are sideways portrait')
parser.add_argument('--render_map_error_threshold', type=int, default=10,
help='reprojection error threshold for the visualisation in px')
parser.add_argument('--render_map_depth_filter', type=int, default=10,
help='to clean up the ACE point cloud remove points too far away')
parser.add_argument('--render_camera_z_offset', type=int, default=4,
help='zoom out of the scene by moving render camera backwards, in meters')
options = parser.parse_args()
trainer = TrainerACE(options)
trainer.train()