-
Notifications
You must be signed in to change notification settings - Fork 2
/
ortools_tsp.py
147 lines (114 loc) · 5.2 KB
/
ortools_tsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""Simple travelling salesman problem on a circuit board."""
from __future__ import print_function
import math
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
def get_index_cost(plan_output):
cost = 0
for i in range(len(plan_output)-1):
cost += math.pow(plan_output[i+1] - plan_output[i], 2)
return cost
def create_data_model(instances):
"""Stores the data for the problem."""
data = {'locations': instances, 'num_vehicles': 1, 'depot': 0}
# Locations in block units
return data
def compute_euclidean_distance_matrix(locations):
"""Creates callback to return distance between points."""
distances = {}
for from_counter, from_node in enumerate(locations):
distances[from_counter] = {}
for to_counter, to_node in enumerate(locations):
if from_counter == to_counter:
distances[from_counter][to_counter] = 0
else:
# Euclidean distance
distances[from_counter][to_counter] = (int(
math.hypot((from_node[0] - to_node[0]),
(from_node[1] - to_node[1]))))
return distances
def print_solution(manager, routing, solution):
"""Prints solution on console."""
print('Objective: {}'.format(solution.ObjectiveValue()))
index = routing.Start(0)
plan_output = 'Route:\n'
route_distance = 0
while not routing.IsEnd(index):
plan_output += ' {} ->'.format(manager.IndexToNode(index))
previous_index = index
index = solution.Value(routing.NextVar(index))
route_distance += routing.GetArcCostForVehicle(previous_index, index, 0)
plan_output += ' {}\n'.format(manager.IndexToNode(index))
print(plan_output)
plan_output += 'Objective: {}m\n'.format(route_distance)
def solve(instance):
"""Entry point of the program."""
# Instantiate the data problem.
data = create_data_model(instance)
# Create the routing index manager.
manager = pywrapcp.RoutingIndexManager(len(data['locations']),
data['num_vehicles'], data['depot'])
# Create Routing Model.
routing = pywrapcp.RoutingModel(manager)
distance_matrix = compute_euclidean_distance_matrix(data['locations'])
def distance_callback(from_index, to_index):
"""Returns the distance between the two nodes."""
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return distance_matrix[from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(distance_callback)
# Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# Setting first solution heuristic.
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
# Solve the problem.
solution = routing.SolveWithParameters(search_parameters)
# Get route
plan_output = []
index = routing.Start(0)
while not routing.IsEnd(index):
plan_output.append(manager.IndexToNode(index))
index = solution.Value(routing.NextVar(index))
plan_output.append(manager.IndexToNode(index))
# Print solution on console.
# if solution:
# print_solution(manager, routing, solution)
return solution.ObjectiveValue()
def my_solve(instance, city_indices):
"""Entry point of the program."""
# Instantiate the data problem.
data = create_data_model(instance)
# Create the routing index manager.
manager = pywrapcp.RoutingIndexManager(len(data['locations']),
data['num_vehicles'], data['depot'])
# Create Routing Model.
routing = pywrapcp.RoutingModel(manager)
distance_matrix = compute_euclidean_distance_matrix(data['locations'])
def distance_callback(from_index, to_index):
"""Returns the distance between the two nodes."""
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return distance_matrix[from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(distance_callback)
# Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# Setting first solution heuristic.
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
# Solve the problem.
solution = routing.SolveWithParameters(search_parameters)
# Get route
plan_output = []
index = routing.Start(0)
while not routing.IsEnd(index):
plan_output.append(city_indices[manager.IndexToNode(index)])
index = solution.Value(routing.NextVar(index))
plan_output.append(city_indices[manager.IndexToNode(index)])
# Print solution on console.
# print_solution(manager, routing, solution)
return plan_output, solution.ObjectiveValue()/1000