-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathnoise_cleaning.py
165 lines (141 loc) · 6.29 KB
/
noise_cleaning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/usr/bin/env python
import argparse
import os
import random
import tensorboard_logger as tb_logger
import json
import numpy as np
from PIL import Image, ImageFile
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from model import MoPro
from resnet import *
ImageFile.LOAD_TRUNCATED_IMAGES = True
parser = argparse.ArgumentParser(description='PyTorch WebVision Noise Correction')
parser.add_argument('--data', metavar='dir', default='../WebVision/dataset/',
help='path to webvision dataset')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50',choices=['resnet50',])
parser.add_argument('-j', '--workers', default=16, type=int,
help='number of data loading workers (default: 32)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
help='mini-batch size (default: 256)')
parser.add_argument('--resume', default='', type=str,
help='path to latest checkpoint (default: none)')
parser.add_argument('--gpu', default=0, type=int,
help='GPU id to use.')
parser.add_argument('--num-class', default=1000, type=int)
parser.add_argument('--low-dim', default=128, type=int,
help='embedding dimension')
parser.add_argument('--moco_queue', default=8192, type=int,
help='queue size; number of negative samples')
parser.add_argument('--pseudo_th', default=0.8, type=float,
help='threshold for pseudo labels')
parser.add_argument('--alpha', default=0.5, type=float,
help='weight to combine model prediction and prototype prediction')
parser.add_argument('--temperature', default=0.1, type=float,
help='contrastive temperature')
parser.add_argument('--annotation', default='./pseudo_label.json',
help='path to pseudo-label annotation')
class webvision_dataset(Dataset):
def __init__(self, root_dir):
self.root = root_dir
self.transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),(0.229, 0.224, 0.225)),
])
self.train_imgs = []
self.train_labels = {}
with open(self.root+'info/train_filelist_google.txt') as f:
lines=f.readlines()
for line in lines:
img, target = line.split()
target = int(target)
self.train_imgs.append(img)
self.train_labels[img]=target
with open(self.root+'info/train_filelist_flickr.txt') as f:
lines=f.readlines()
for line in lines:
img, target = line.split()
target = int(target)
self.train_imgs.append(img)
self.train_labels[img]=target
def __getitem__(self, index):
img_path = self.train_imgs[index]
target = self.train_labels[img_path]
image = Image.open(self.root+img_path).convert('RGB')
img = self.transform(image)
return img, target, img_path
def __len__(self):
return len(self.train_imgs)
def main():
args = parser.parse_args()
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
print("=> creating model '{}'".format(args.arch))
if args.arch == 'resnet50':
model = MoPro(resnet50,args,width=1)
elif args.arch == 'resnet50x2':
model = MoPro(resnet50,args,width=2)
elif args.arch == 'resnet50x4':
model = MoPro(resnet50,args,width=4)
else:
raise NotImplementedError('model not supported {}'.format(args.arch))
model = model.cuda(args.gpu)
model.eval()
# resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
state_dict = checkpoint['state_dict']
for k in list(state_dict.keys()):
if k.startswith('module'):
# remove prefix
state_dict[k[len("module."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
model.load_state_dict(state_dict)
print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# Data loading code
dataset = webvision_dataset(root_dir=args.data)
loader = DataLoader(dataset=dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True)
images = []
labels = []
print("=> performing noise cleaning on the training data")
with torch.no_grad():
for (img, target, img_path) in tqdm(loader):
img = img.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
output,feat = model.encoder_q(img)
logits = torch.mm(feat,model.prototypes.t())/args.temperature
soft_label = (F.softmax(output, dim=1)+F.softmax(logits,dim=1))/2
gt_score = soft_label[target>=0,target]
clean_idx = gt_score>(1/args.num_class)
max_score, hard_label = soft_label.max(1)
correct_idx = max_score>args.pseudo_th
target[correct_idx] = hard_label[correct_idx]
clean_idx = clean_idx | correct_idx
for clean,label,path in zip(clean_idx,target.cpu(),img_path):
if clean:
images.append(path)
labels.append(label.item())
json.dump({'images':images,'labels':labels},open(args.annotation,'w'))
print("=> pseudo-label annotation saved to {}".format(args.annotation))
if __name__ == '__main__':
main()