-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
86 lines (63 loc) · 2.77 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
import sys
import numpy as np
import pandas as pd
import joblib
import sklearn
from sklearn.model_selection import train_test_split
from lightgbm import LGBMClassifier
from sklearn.metrics import classification_report, accuracy_score, f1_score
from category_encoders import OrdinalEncoder
from sklearn.preprocessing import MinMaxScaler
SRC_FILE = './data/6 class csv.csv'
df = pd.read_csv(SRC_FILE)
print(df.head())
excluded_columns = ['star_type']
#Red Dwarf, Brown Dwarf, White Dwarf, Main Sequence , SuperGiants, HyperGiants
label_column = df['star_type']
numeric_columns = df.select_dtypes(include=['int64', 'float64']).columns.tolist()
categorical_columns = df.select_dtypes(include=['object']).columns.tolist()
numeric_features = [col for col in numeric_columns if col not in excluded_columns]
categorical_features = [col for col in categorical_columns if col not in excluded_columns]
features = numeric_features + categorical_features
df = df[features]
df = df.fillna(0)
X_train, X_valid, y_train, y_valid = train_test_split(df, label_column,
test_size=0.2, random_state=42, stratify = label_column)
le = OrdinalEncoder(categorical_features)
le.fit(X_train[categorical_features])
X_train[categorical_features] = le.transform(X_train[categorical_features])
X_valid[categorical_features] = le.transform(X_valid[categorical_features])
scaler = MinMaxScaler()
scaler.fit(X_train)
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
num_leaves = [10,20,30,40,50]
max_depth = [2,3,4,5,6,7,8]
learning_rate = [0.05, 0.01, 0.005, 0.001]
result = []
joblib.dump(le, './model/label_encoder.joblib')
joblib.dump(scaler, './model/minmax_scaler.joblib')
joblib.dump(features, './model/features.joblib')
joblib.dump(categorical_features, './model/categorical_features.joblib')
for num in num_leaves:
for depth in max_depth:
for lr in learning_rate:
clf = LGBMClassifier(random_state = 420,
num_leaves = num,
max_depth = depth,
learning_rate = lr)
clf.fit(X_train, y_train)
valid_prediction = clf.predict(X_valid)
accuracy = accuracy_score(valid_prediction, y_valid)
f1 = f1_score(valid_prediction, y_valid, average = 'weighted')
metadata = {"num_leaves ": num,
"max_depth": depth,
"learning_rate": lr,
"accuracy": accuracy,
"f1_score": f1}
print(metadata)
print(classification_report(y_valid,valid_prediction))
result.append(metadata)
joblib.dump(clf, f'./model/lgb_model_{f1}.joblib')
print(result)