-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinary_XE_train_domAdap.py
312 lines (244 loc) · 13.9 KB
/
binary_XE_train_domAdap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
"""
Train CloGAN
"""
from tensorflow.python.keras.callbacks import configure_callbacks
from tqdm import tqdm
from _callbacks import get_callbacks
from datasets.cheXpert_dataset import read_dataset
from models.discriminator import make_discriminator_model
from utils._auc import AUC
from utils.visualization import *
from models.gan import *
# global local vars
TARGET_DATASET_FILENAME = CHESTXRAY_TRAIN_TARGET_TFRECORD_PATH
TARGET_DATASET_PATH = CHESTXRAY_DATASET_PATH
if __name__ == "__main__":
model = GANModel()
discriminator = make_discriminator_model()
# to initiate the graph
model.call_w_features(tf.zeros((1, IMAGE_INPUT_SIZE, IMAGE_INPUT_SIZE, 1)))
# get the dataset
train_dataset = read_dataset(TRAIN_TARGET_TFRECORD_PATH, DATASET_PATH,
use_augmentation=USE_AUGMENTATION,
use_patient_data=USE_PATIENT_DATA,
use_feature_loss=False,
use_preprocess_img=True)
val_dataset = read_dataset(VALID_TARGET_TFRECORD_PATH, DATASET_PATH,
use_patient_data=USE_PATIENT_DATA,
use_feature_loss=False,
use_preprocess_img=True)
test_dataset = read_dataset(TEST_TARGET_TFRECORD_PATH, DATASET_PATH,
use_patient_data=USE_PATIENT_DATA,
use_feature_loss=False,
use_preprocess_img=True)
train_target_dataset = read_dataset(TARGET_DATASET_FILENAME, TARGET_DATASET_PATH,
use_augmentation=False,
use_patient_data=USE_PATIENT_DATA,
use_feature_loss=False,
use_preprocess_img=True,
repeat=True)
# losses, optimizer, metrics
_XEloss = tf.keras.losses.BinaryCrossentropy(from_logits=False, reduction=tf.keras.losses.Reduction.AUTO)
# optimizer
_optimizer = tf.keras.optimizers.Adam(LEARNING_RATE, amsgrad=True)
_optimizer_disc = tf.keras.optimizers.Adam(DISC_LEARNING_RATE, amsgrad=True)
# _metric = AUC(name="auc", multi_label=True, num_classes=NUM_CLASSES) # give recall for metric it is more accurate
_metric = tf.keras.metrics.AUC(name="auc") # give recall for metric it is more accurate
_callbacks = get_callbacks()
# build CallbackList
_callbackList = configure_callbacks(_callbacks,
model,
do_validation=True,
epochs=MAX_EPOCHS,
mode=tf.estimator.ModeKeys.EVAL,
verbose=0)
# retrieve checkpoint
init_epoch = 0
if LOAD_WEIGHT_BOOL:
target_model_weight, init_epoch = get_max_acc_weight(MODELCKP_PATH)
if target_model_weight: # if weight is Found
model.load_weights(target_model_weight)
else:
print("[Load weight] No weight is found")
# set all the parameters
model_params = {
"optimizer": _optimizer,
"loss": _XEloss,
"metrics": [_metric]
}
model.compile(**model_params) # compile model
fit_params = {
"epochs": MAX_EPOCHS,
"validation_data": val_dataset,
"initial_epoch": init_epoch,
# "steps_per_epoch":2,
"callbacks": _callbacks,
"verbose": 1
}
# save checkpoints
checkpoint_dir = './checkpoints/disc'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(
optimizer=_optimizer,
optimizer_disc=_optimizer_disc,
discriminator_optimizer=_optimizer_disc,
discriminator=discriminator)
class TrainWorker:
def __init__(self, metric, _target_dataset, lambda_adv=0.001):
self.metric = metric
self.lambda_adv = lambda_adv
self._target_dataset = iter(_target_dataset)
self._eval_indices = tf.constant([1, 9, 8, 0, 2])
self._keras_eps = tf.keras.backend.epsilon()
def soft_entropy(self, y_true_range: list, y_pred):
y_true = tf.random.uniform(tf.shape(y_pred), minval=y_true_range[0], maxval=y_true_range[1])
return y_true * tf.math.log(y_pred + self._keras_eps) + (1. - y_true) * tf.math.log(
1. - y_pred + self._keras_eps)
# Notice the use of `tf.function`
# This annotation causes the function to be "compiled".
@tf.function
def gan_train_step(self, source_image_batch, source_label_batch):
target_data = next(self._target_dataset)
target_image_batch = target_data[0]
target_label_batch = target_data[1]
with tf.GradientTape(persistent=True) as g:
source_predictions = model.call_w_features(source_image_batch, training=True)
target_predictions = model.call_w_features(target_image_batch, training=True)
# input the predicted feature to the discriminator
# source_disc_output = discriminator(source_predictions, training=True)
# target_disc_output = discriminator(target_predictions, training=True)
# stop gradient for the output label
source_disc_output = discriminator([source_predictions[0], tf.stop_gradient(source_predictions[1])], training=True)
target_disc_output = discriminator([target_predictions[0], tf.stop_gradient(target_predictions[1])], training=True)
# calculate xe loss
source_xe_loss = _XEloss(source_label_batch, source_predictions[0])
target_xe_loss = _XEloss(tf.gather(target_label_batch, self._eval_indices, axis=-1),
tf.gather(target_predictions[0], self._eval_indices, axis=-1))
# define the label batch
target_label = tf.stop_gradient(target_predictions[0])
source_label = tf.stop_gradient(source_predictions[0])
# noisy label implementation
if USE_NOISY_LABEL: # it is flipping labels around 5% of batch 32
_target_label = tf.concat([source_label[0:NOISY_LABEL_PERCENTAGE], target_label[NOISY_LABEL_PERCENTAGE:]], axis=0)
source_label = tf.concat([target_label[0:NOISY_LABEL_PERCENTAGE], source_label[NOISY_LABEL_PERCENTAGE:]], axis=0)
_target_disc_output = tf.concat([source_disc_output[0:NOISY_LABEL_PERCENTAGE], target_disc_output[NOISY_LABEL_PERCENTAGE:]], axis=0)
source_disc_output = tf.concat([target_disc_output[0:NOISY_LABEL_PERCENTAGE], source_disc_output[NOISY_LABEL_PERCENTAGE:]], axis=0)
target_label = _target_label
target_disc_output = _target_disc_output
if USE_SOFT_LABEL_SMOOTHING:
gen_loss = source_label * self.soft_entropy(SL_UPPERBOUND, source_disc_output) + \
target_label * self.soft_entropy(SL_LOWERBOUND, target_disc_output) # BATCH * NUM_CLASSES
disc_loss = target_label * self.soft_entropy(SL_UPPERBOUND, target_disc_output) + \
source_label * self.soft_entropy(SL_LOWERBOUND, source_disc_output)
else:
gen_loss = source_label * tf.math.log(source_disc_output + self._keras_eps) + \
target_label * tf.math.log(1 - target_disc_output + self._keras_eps) # BATCH * NUM_CLASSES
disc_loss = target_label * tf.math.log(target_disc_output + self._keras_eps) + \
source_label * tf.math.log(1 - source_disc_output + self._keras_eps)
# reduce mean gen and disc
gen_loss = -tf.reduce_mean(gen_loss)
disc_loss = -tf.reduce_mean(disc_loss)
total_loss = source_xe_loss + self.lambda_adv * gen_loss
# total_loss = self.lambda_adv * gen_loss
gradients_of_model = g.gradient(total_loss, model.trainable_variables)
gradients_of_discriminator = g.gradient(disc_loss, discriminator.trainable_variables)
avg_grad_model = (tf.reduce_mean(tf.concat([tf.reshape(tf.math.abs(grad), [-1]) for grad in gradients_of_model], axis=-1)))
avg_grad_disc = (tf.reduce_mean(tf.concat([tf.reshape(tf.math.abs(grad), [-1]) for grad in gradients_of_discriminator], axis=-1)))
del g # delete the persistent gradientTape
_optimizer_disc.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
_optimizer.apply_gradients(zip(gradients_of_model, model.trainable_variables))
# calculate metrics
self.metric.update_state(source_label_batch, source_predictions[0])
return source_xe_loss, gen_loss, disc_loss, target_xe_loss, avg_grad_model, avg_grad_disc
@tf.function
def xe_train_step(self, source_image_batch, source_label_batch):
with tf.GradientTape(persistent=True) as g:
source_predictions = model(source_image_batch, training=True)
# calculate xe loss
source_xe_loss = _XEloss(source_label_batch, source_predictions)
gradients_of_model = g.gradient(source_xe_loss, model.trainable_variables)
avg_grad_model = (
tf.reduce_mean(tf.concat([tf.reshape(tf.math.abs(grad), [-1]) for grad in gradients_of_model], axis=-1)))
del g # delete the persistent gradientTape
_optimizer.apply_gradients(zip(gradients_of_model, model.trainable_variables))
# calculate metrics
self.metric.update_state(source_label_batch, source_predictions)
return source_xe_loss, 0, 0, 0, avg_grad_model, 0
# initiate worker
trainWorker = TrainWorker(_metric, _target_dataset=train_target_dataset, lambda_adv=LAMBDA_ADV)
## find initial epoch and load the weights too
init_epoch = 0
if LOAD_WEIGHT_BOOL:
target_model_weight, init_epoch = get_max_acc_weight(MODELCKP_PATH)
if target_model_weight: # if weight is Found
model.load_weights(target_model_weight)
else:
print("[Load weight] No weight is found")
# load disc and optimizer checkpoints
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
# training loop
_callbackList.on_train_begin()
# var for save checkpoint
_global_auc = 0.
num_losses = 7
losses = [tf.keras.metrics.Mean() for _ in range(num_losses)]
for epoch in range(init_epoch, fit_params["epochs"]):
print("Epoch %d/%d" % (epoch + 1, fit_params["epochs"]))
_callbackList.on_epoch_begin(epoch) # on epoch start
# reset losses mean
[loss.reset_states() for loss in losses]
# g = trainWorker.gan_train_step if USE_DOM_ADAP_NET and (epoch % 2) else trainWorker.xe_train_step
g = trainWorker.gan_train_step if USE_GAN else trainWorker.xe_train_step
# if USE_AUGMENTATION:
# if epoch % 2:
# train_dataset = noaug_train_dataset
# else:
# train_dataset = aug_train_dataset
# else:
# train_dataset = noaug_train_dataset
with tqdm(total=math.ceil(TRAIN_N / BATCH_SIZE),
postfix=[dict()]) as t:
for i_batch, (source_image_batch, source_label_batch) in enumerate(train_dataset):
_batch_size = tf.shape(source_image_batch)[0].numpy()
_callbackList.on_batch_begin(i_batch, {"size": _batch_size}) # on batch begin
_losses = g(source_image_batch, source_label_batch)
_auc = trainWorker.metric.result().numpy()
# update loss
[losses[i].update_state(_losses[i]) for i in range(num_losses - 1)]
losses[num_losses - 1].update_state(_auc)
# update tqdm
# t.postfix[0]["_g"] = update_gen
t.postfix[0]["xe_l"] = losses[0].result().numpy()
t.postfix[0]["g_l"] = losses[1].result().numpy()
t.postfix[0]["d_l"] = losses[2].result().numpy()
t.postfix[0]["txe_l"] = losses[3].result().numpy()
t.postfix[0]["avg_g_m"] = losses[4].result().numpy()
t.postfix[0]["avg_g_d"] = losses[5].result().numpy()
t.postfix[0]["AUC"] = losses[6].result().numpy()
t.update()
_callbackList.on_batch_end(i_batch, {"loss": losses[0].result()}) # on batch end
# epoch_end
print()
print("Validating...")
results = model.evaluate(val_dataset, callbacks=_callbacks)
_callbackList.on_epoch_end(epoch, {"loss": losses[0].result(),
"gen_loss": losses[1].result(),
"disc_loss": losses[2].result(),
"txe_loss": losses[3].result(),
"avg_grad_m": losses[4].result(),
"avg_grad_d": losses[5].result(),
"auc": _auc,
"val_loss": results[0],
"val_auc": results[1],
"lr": model.optimizer.lr}) # on epoch end
# reset states
trainWorker.metric.reset_states()
# save checkpoint
if USE_DOM_ADAP_NET:
if _auc > _global_auc:
_global_auc = _auc
checkpoint.save(file_prefix=checkpoint_prefix)
_callbackList.on_train_end()
# Evaluate the model on the test data using `evaluate`
results = model.evaluate(test_dataset)
print('test loss, test f1, test auc:', results)