-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmetrics.py
192 lines (142 loc) · 5.22 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
import numpy as np
import json
import os
import shutil
from copy import deepcopy
import torch
import torch.nn as nn
from sklearn.utils import shuffle
# from tqdm import tqdm
import time
def tvd(predictions, targets): #accepts two numpy arrays of dimension: (num. instances, )
return (0.5 * np.abs(predictions - targets)).sum()
def batch_tvd(predictions, targets,reduce=True): #accepts two Torch tensors... " "
if reduce == False:
return (0.5 * torch.abs(predictions - targets))
else:
return (0.5 * torch.abs(predictions - targets)).sum()
def get_sorting_index_with_noise_from_lengths(lengths, noise_frac):
if noise_frac > 0:
noisy_lengths = [x + np.random.randint(np.floor(-x * noise_frac), np.ceil(x * noise_frac)) for x in lengths]
else:
noisy_lengths = lengths
return np.argsort(noisy_lengths)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def kld(a1, a2):
# (B, *, A), #(B, *, A)
a1 = torch.clamp(a1, 0, 1)
a2 = torch.clamp(a2, 0, 1)
log_a1 = torch.log(a1 + 1e-10)
log_a2 = torch.log(a2 + 1e-10)
kld = a1 * (log_a1 - log_a2)
kld = kld.sum(-1)
return kld
def jsd(p, q):
m = 0.5 * (p + q)
jsd = 0.5 * (kld(p, m) + kld(q, m)) # for each instance in the batch
return jsd.unsqueeze(-1) # jsd.squeeze(1).sum()
def tvd(predictions, targets): #accepts two numpy arrays of dimension: (num. instances, )
return (0.5 * np.abs(predictions - targets)).sum()
def batch_tvd(predictions, targets): #accepts two Torch tensors... " "
return (0.5 * torch.abs(predictions - targets)).sum()
def batch_jaccard_similarity(gt, pred):
intersection = torch.min(gt, pred).sum(dim=1)
union = torch.max(gt, pred).sum(dim=1)
similarity = intersection / union
return similarity
def jaccard_similarity(gt, pred, top_k=2):
gt_top_k = torch.topk(gt, top_k, dim=1).values
pred_top_k = torch.topk(pred, top_k, dim=1).values
jaccard_sim = batch_jaccard_similarity(gt_top_k, pred_top_k)
mean_similarity = jaccard_sim.mean()
return mean_similarity
def intersection_of_two_tensor(t1, t2):
combined = torch.cat((t1, t2))
uniques, counts = combined.unique(return_counts=True)
intersection = uniques[counts > 1]
return intersection
def topK_overlap_true_loss(a,b,K=2):
t1 = torch.argsort(a, descending=True)
t2 = torch.argsort(b, descending=True)
t1 = t1.detach().cpu().numpy()
t2 = t2.detach().cpu().numpy()
N = t1.shape[0]
loss = []
for i in range(N):
inset = np.intersect1d(t1[i,:K],t2[i,:K])
overlap = len(inset)/K
# print(overlap)
loss.append(overlap)
return np.mean(loss)
class AverageMeter():
def __init__(self):
self.cnt = 0
self.sum = 0
self.mean = 0
def update(self, val, cnt):
self.cnt += cnt
self.sum += val * cnt
self.mean = self.sum / self.cnt
def average(self):
return self.mean
def total(self):
return self.sum
def topk_overlap_loss(gt,pred,K=2,metric='l1'):
idx = torch.argsort(gt,dim=1,descending=True)
# print(idx)
idx = idx[:,:K]
pred_TopK_1 = pred.gather(1,idx)
gt_Topk_1 = gt.gather(1,idx)
idx_pred = torch.argsort(pred,dim=1,descending=True)
idx_pred = idx_pred[:,:K]
try:
gt_TopK_2 = gt.gather(1, idx_pred)
except Exception as e:
print(e)
print(gt.shape)
print(idx_pred.shape)
pred_TopK_2 = pred.gather(1, idx_pred)
gt_Topk_1_normed = torch.nn.functional.softmax(gt_Topk_1,dim=-1)
pred_TopK_1_normed = torch.nn.functional.softmax(pred_TopK_1,dim=-1)
gt_TopK_2_normed = torch.nn.functional.softmax(gt_TopK_2,dim=-1)
pred_TopK_2_normed = torch.nn.functional.softmax(pred_TopK_2,dim=-1)
def kl(a,b):
return torch.nn.functional.kl_div(a.log(), b, reduction="batchmean")
def jsd(a,b):
loss = kl(a,b) + kl(b,a)
loss /= 2
return loss
if metric == 'l1':
loss = torch.abs((pred_TopK_1 - gt_Topk_1)) + torch.abs(gt_TopK_2 - pred_TopK_2)
loss = loss/(2*K)
elif metric == "l2":
loss = torch.norm(pred_TopK_1 - gt_Topk_1, p=2) + torch.norm(gt_TopK_2 - pred_TopK_2, p=2)
loss = loss/(2*K)
elif metric == "kl-full":
loss = kl(gt,pred)
elif metric == "jsd-full":
loss = jsd(gt,pred)
elif metric == "kl-topk":
loss = kl(gt_Topk_1_normed,pred_TopK_1_normed) + kl(gt_TopK_2_normed,pred_TopK_2_normed)
loss /=2
elif metric == "jsd-topk":
loss = jsd(gt_Topk_1_normed, pred_TopK_1_normed) + jsd(gt_TopK_2_normed, pred_TopK_2_normed)
loss /= 2
return loss
if __name__ == '__main__':
from torch.autograd import gradcheck
import torch
import torch.nn as nn
# intersection_of_two_tensor(t1[i], t2[i])
t1 = torch.tensor(
np.array([[100, 2, 3, 4],
[2, 1, 3, 7]],),requires_grad=True, dtype=torch.double
)
print(t1.shape)
t2 = torch.tensor(
np.array([[1, 2, 3, 4],
[2, 4, 6, 7]]),requires_grad=True, dtype=torch.double
)
print(t2.shape)
print(topK_overlap_true_loss(torch.argsort(t1,descending=True),torch.argsort(t2,descending=True),K=2))