-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualization.py
292 lines (226 loc) · 7.75 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import joblib
import numpy as np
import pandas as pd
def get_mse(ds, pred):
"""
:param ds:
:param pred:
:return:
"""
mse = []
mse_stds = []
for t in range(1, ds['t'].max() + 1):
stds = []
sl = (ds['t'] == t)
y = ds['effect'][sl]
p = pred[sl][:, t - 1]
mse.append(((y - p) ** 2).mean())
for _ in range(100):
idx = np.random.randint(0, p.shape[0], size=p.shape[0])
stds.append(((y[idx] - p[idx]) ** 2).mean())
mse_stds.append(np.std(stds, ddof=1))
return mse, mse_stds
def get_results_simple(
data, experiment, task, nstart=0, nstop=5, key='test',
selector_fn=lambda x: np.mean(x.values), weight=None
):
"""
:param data:
:param experiment:
:param task:
:param nstart:
:param nstop:
:param key:
:param selector_fn:
:param weight:
:return:
"""
res = {'AUUC': {}, 'MSE': {}, 'ATE': {}, 'ATE_ERR, %': {}, 'QINI': {}}
auuc = []
auuc_std = []
mses = []
mse_stds = []
for n in range(nstart, nstop):
# dataset for metrics'
data_ = data.split('/')[-1]
ds_name = key if key == 'test' else 'trian'
ds = joblib.load(f'datasets/{data}_{n}/{ds_name}.pkl')
# get best trial
study = joblib.load(f'{experiment}/{data_}_{n}/{task}/study.pkl')
best = max(study.trials, key=selector_fn)
# print(best.params)
# get all scores
scores = joblib.load(
f'{experiment}/{data_}_{n}/{task}/trial_{best.number}/scores.pkl'
)
pred = joblib.load(f'{experiment}/{data_}_{n}/{task}/trial_{best.number}/{key}_pred.pkl')
if weight is not None:
idx = np.searchsorted(np.linspace(0, 1, 11), weight)
sc = scores[f'{key}_ext_w'][:, idx, :]
pred = pred[idx]
else:
sc = scores[f'{key}_ext']
if len(pred) == 11:
pred = pred[5]
# calc all the additional metrics we need
# loop by treatments
if 'effect' in ds:
mse_, mse_stds_ = get_mse(ds, pred)
mses.append(np.array(mse_))
mse_stds.append(np.array(mse_stds_))
auuc.append(np.mean(sc, axis=0))
auuc_std.append(np.std(sc, axis=0, ddof=1))
# save auucs
if 'effect' in ds:
res['MSE']['mean'] = np.mean(mses, axis=0)
res['MSE']['std'] = np.mean(mse_stds, axis=0)
res['AUUC']['mean'] = np.mean(auuc, axis=0)
res['AUUC']['std'] = np.std(auuc_std, axis=0)
return res
def get_baselines_results(experiment, datasets, models, K=5):
"""
:param experiment:
:param datasets:
:param models:
:param K:
:return:
"""
res = []
for dataset in datasets:
for model in models:
D = get_results_simple(
dataset,
experiment,
model,
key='test',
nstop=K
)
for key in ['mean', 'std']:
df = pd.DataFrame({x: D[x][key] for x in D if key in D[x]}, )
df['treat'] = np.arange(df.shape[0])
df['data'] = dataset
df['model'] = model
df['stat'] = key
res.append(df)
return res
def get_pb_results(experiment, datasets, weights, K=5):
"""
:param experiment:
:param datasets:
:param weights:
:param K:
:return:
"""
res = []
for dataset in datasets:
for w in weights:
D = get_results_simple(
dataset,
experiment,
'pb-pb-pb_lc_f_t',
key='test',
nstop=K,
weight=round(w, 1)
)
for key in ['mean', 'std']:
df = pd.DataFrame({x: D[x][key] for x in D if key in D[x]}, )
df['treat'] = np.arange(df.shape[0])
df['data'] = dataset
df['model'] = 'pb-pb-pb_lc_f_t' + str(w)
df['stat'] = key
res.append(df)
return res
def get_pb_weighted_results(experiment, dataset, K=5):
"""
:param experiment:
:param dataset:
:param K:
:return:
"""
res = []
for w in np.linspace(0, 1, 11):
w = round(w, 1)
D = get_results_simple(
dataset,
experiment,
'pb-pb-pb_lc_f_t',
key='test',
nstop=K,
weight=w
)
for key in ['mean', 'std']:
df = pd.DataFrame({x: D[x][key] for x in D if key in D[x]}, )
df['treat'] = np.arange(df.shape[0])
df['data'] = dataset
df['model'] = 'pb-pb-pb_lc_f_t' + str(w)
df['stat'] = key
res.append(df)
res = pd.concat(res)
res['w'] = res['model'].map(lambda x: x[-3:]).astype(float)
return res
def replace_index(df, mapping):
df = df.loc[list(mapping.keys())]
df = df.reset_index()
df['model'] = df['model'].map(mapping)
df = df.set_index('model')
return df
def get_datasets_summary(res, stat, mapping=None, round_mean=3, round_std=4):
"""
:param res:
:param stat:
:param round_mean:
:param round_std:
:return:
"""
df_mean = res.query('stat == "mean"')[[stat, 'treat', 'data', 'model']]
df_mean = pd.pivot_table(
df_mean, values=stat, index='model', columns=['data', 'treat']
)
df_std = res.query('stat == "std"')[[stat, 'treat', 'data', 'model']]
df_std = pd.pivot_table(
df_std, values=stat, index='model', columns=['data', 'treat']
)
tot = df_mean.round(round_mean).astype(str) + '\u00b1' + df_std.round(round_std).astype(str)
if mapping is not None:
tot = replace_index(tot, mapping)
return tot
def get_rank_stats(res, mapping):
avg_rank = res.query('stat == "mean"').copy()
avg_rank['AUUC_rank'] = avg_rank.groupby(['data', 'treat'])['AUUC'].rank(method='dense', ascending=False)
avg_rank['AUUC_from_top'] = 1 - avg_rank['AUUC'] / avg_rank.groupby(['data', 'treat'])['AUUC'].transform('max')
avg_rank['AUUC_from_top'] = avg_rank['AUUC_from_top'] * 100
avg_rank['MSE_rank'] = avg_rank.groupby(['data', 'treat'])['MSE'].rank(method='dense', ascending=True)
avg_rank['MSE_from_top'] = avg_rank['MSE'] / avg_rank.groupby(['data', 'treat'])['MSE'].transform('min') - 1
avg_rank['MSE_from_top'] = avg_rank['MSE_from_top'] * 100
avg_rank = avg_rank.groupby('model')[['AUUC_rank', 'MSE_rank', 'AUUC_from_top', 'MSE_from_top']] \
.mean().round(1)
if mapping is not None:
avg_rank = replace_index(avg_rank, mapping)
return avg_rank
def to_latex(df, direction, is_str=True):
"""
:param df:
:param direction:
:return:
"""
df = df.copy()
best = []
for col in df.columns:
ser = df[col]
if is_str:
ser = ser.str.split('\u00b1').map(lambda x: x[0])
ser = ser.astype(float)
best.append(ser.max() if direction == 'max' else ser.min())
for n, col in enumerate(df.columns):
ser = df[col]
if is_str:
ser = ser.str.split('\u00b1').map(lambda x: x[0])
ser = ser.astype(float)
sl = ser == best[n]
df[col] = df[col].astype(str)
df[col].loc[sl] = "\\textbf{" + df[col].loc[sl].astype(str) + "}"
df = df.reset_index()
df['model'] = "\\textbf{" + df['model'] + "}"
df = df.apply(lambda x: ' & '.join(x), axis=1).tolist()
df = ' \\\\ \n'.join(df)
return df