Releases: sebp/scikit-survival
v0.10
This release adds the ties argument to sksurv.linear_model.CoxPHSurvivalAnalysis to choose between Breslow’s and Efron’s likelihood in the presence of tied event times. Moreover, sksurv.compare.compare_survival() has been added, which implements the log-rank hypothesis test for comparing the survival function of 2 or more groups.
Enhancements
- Update API doc of predict function of boosting estimators (#75).
- Clarify documentation for GradientBoostingSurvivalAnalysis (#78).
- Implement Efron’s likelihood for handling tied event times.
- Implement log-rank test for comparing survival curves.
- Add support for scipy 1.3.1 (#66).
Bug fixes
- Re-add baseline_survival_ and cum_baseline_hazard_ attributes to sksurv.linear_model.CoxPHSurvivalAnalysis (#76).
v0.9
This release adds support for sklearn 0.21 and pandas 0.24.
Enhancements
- Add reference to IPCRidge (#65).
- Use scipy.special.comb instead of deprecated scipy.misc.comb.
- Add support for pandas 0.24 and drop support for 0.20.
- Add support for scikit-learn 0.21 and drop support for 0.20 (#71).
- Explain use of intercept in ComponentwiseGradientBoostingSurvivalAnalysis (#68)
- Bump Eigen to 3.3.7.
Bug fixes
- Disallow scipy 1.3.0 due to scipy regression (#66).
v0.8
Enhancements
- Add
sksurv.linear_model.CoxnetSurvivalAnalysis.predict_survival_function
andsksurv.linear_model.CoxnetSurvivalAnalysis.predict_cumulative_hazard_function
(#46). - Add
sksurv.nonparametric.SurvivalFunctionEstimator
andsksurv.nonparametric.CensoringDistributionEstimator
that
wrapsksurv.nonparametric.kaplan_meier_estimator
and provide
apredict_proba
method for evaluating the estimated function on
test data. - Implement censoring-adjusted C-statistic proposed by Uno et al. (2011)
insksurv.metrics.concordance_index_ipcw
. - Add estimator of cumulative/dynamic AUC of Uno et al. (2007)
insksurv.metrics.cumulative_dynamic_auc
. - Add flchain dataset (see
sksurv.datasets.load_flchain
).
Bug fixes
- The
tied_time
return value ofsksurv.metrics.concordance_index_censored
now correctly reflects the number of comparable pairs that share the same time
and that are used in computing the concordance index. - Fix a bug in
sksurv.metrics.concordance_index_censored
where a
pair with risk estimates within tolerance was counted both as
concordant and tied.
v0.7
This release adds support for Python 3.7 and sklearn 0.20.
Changes:
v0.6.0
This release adds support for numpy 1.14 and pandas up to 0.23. In addition, the new class sksurv.util.Surv
makes it easier to construct a structured array from numpy arrays, lists, or a pandas data frame.
Changes:
- Support numpy 1.14 and pandas 0.22, 0.23 (#36).
- Enable support for cvxopt with Python 3.5+ on Windows (requires cvxopt >=1.1.9).
- Add
max_iter
parameter tosksurv.svm.MinlipSurvivalAnalysis
andsksurv.svm.HingeLossSurvivalSVM
. - Fix score function of
sksurv.svm.NaiveSurvivalSVM
to use concordance index. sksurv.linear_model.CoxnetSurvivalAnalysis
now throws an exception if coefficients get too large (#47).- Add
sksurv.util.Surv
class to ease constructing a structured array (#26).
v0.5
v0.4
This release adds sksurv.linear_model.CoxnetSurvivalAnalysis which implements an efficient algorithm to fit Cox's proportional hazards model with LASSO, ridge, and elastic net penalty. Moreover, it includes support for Windows with Python 3.5 and later by making the cvxopt package optional.
v0.3
This release adds predict_survival_function
and predict_cumulative_hazard_function
to sksurv.linear_model.CoxPHSurvivalAnalysis
, which return the survival function and cumulative hazard function using Breslow's estimator.
Moreover, it fixes a build error on Windows (#3) and adds the sksurv.preprocessing.OneHotEncoder
class, which can be used in a scikit-learn pipeline.