Skip to content

Latest commit

Β 

History

History
257 lines (140 loc) Β· 14.1 KB

hand_on_with_advanced_prompt_engineering.md

File metadata and controls

257 lines (140 loc) Β· 14.1 KB

Prompt Engineering Techniques

This guide to prompt engineering techniques is completely based on the amazing hands-on repository by NirDiamant. All credit for the content and Jupyter notebooks goes to the original repository: Prompt Engineering.

I have added this here are it is an amazing learning resourse and full credits to Prompt Engineering Repo

🌱 Fundamental Concepts

  1. Introduction to Prompt Engineering Open In Colab

    Overview πŸ”Ž

    A comprehensive introduction to the fundamental concepts of prompt engineering in the context of AI and language models.

    Implementation πŸ› οΈ

    Combines theoretical explanations with practical demonstrations, covering basic concepts, structured prompts, comparative analysis, and problem-solving applications.

  2. Basic Prompt Structures Open In Colab

    Overview πŸ”Ž

    Explores two fundamental types of prompt structures: single-turn prompts and multi-turn prompts (conversations).

    Implementation πŸ› οΈ

    Uses OpenAI's GPT model and LangChain to demonstrate single-turn and multi-turn prompts, prompt templates, and conversation chains.

  3. Prompt Templates and Variables Open In Colab

    Overview πŸ”Ž

    Introduces creating and using prompt templates with variables, focusing on Python and the Jinja2 templating engine.

    Implementation πŸ› οΈ

    Covers template creation, variable insertion, conditional content, list processing, and integration with the OpenAI API.

πŸ”§ Core Techniques

  1. Zero-Shot Prompting Open In Colab

    Overview πŸ”Ž

    Explores zero-shot prompting, allowing language models to perform tasks without specific examples or prior training.

    Implementation πŸ› οΈ

    Demonstrates direct task specification, role-based prompting, format specification, and multi-step reasoning using OpenAI and LangChain.

  2. Few-Shot Learning and In-Context Learning Open In Colab

    Overview πŸ”Ž

    Covers Few-Shot Learning and In-Context Learning techniques using OpenAI's GPT models and the LangChain library.

    Implementation πŸ› οΈ

    Implements basic and advanced few-shot learning, in-context learning, and best practices for example selection and evaluation.

  3. Chain of Thought (CoT) Prompting Open In Colab

    Overview πŸ”Ž

    Introduces Chain of Thought (CoT) prompting, encouraging AI models to break down complex problems into step-by-step reasoning processes.

    Implementation πŸ› οΈ

    Covers basic and advanced CoT techniques, applying them to various problem-solving scenarios and comparing results with standard prompts.

πŸ” Advanced Strategies

  1. Self-Consistency and Multiple Paths of Reasoning Open In Colab

    Overview πŸ”Ž

    Explores techniques for generating diverse reasoning paths and aggregating results to improve AI-generated answers.

    Implementation πŸ› οΈ

    Demonstrates designing diverse reasoning prompts, generating multiple responses, implementing aggregation methods, and applying self-consistency checks.

  2. Constrained and Guided Generation Open In Colab

    Overview πŸ”Ž

    Focuses on techniques to set up constraints for model outputs and implement rule-based generation.

    Implementation πŸ› οΈ

    Uses LangChain's PromptTemplate for structured prompts, implements constraints, and explores rule-based generation techniques.

  3. Role Prompting Open In Colab

    Overview πŸ”Ž

    Explores assigning specific roles to AI models and crafting effective role descriptions.

    Implementation πŸ› οΈ

    Demonstrates creating role-based prompts, assigning roles to AI models, and refining role descriptions for various scenarios.

πŸš€ Advanced Implementations

  1. Task Decomposition in Prompts Open In Colab

    Overview πŸ”Ž

    Explores techniques for breaking down complex tasks and chaining subtasks in prompts.

    Implementation πŸ› οΈ

    Covers problem analysis, subtask definition, targeted prompt engineering, sequential execution, and result synthesis.

  2. Prompt Chaining and Sequencing Open In Colab

    Overview πŸ”Ž

    Demonstrates how to connect multiple prompts and build logical flows for complex AI-driven tasks.

    Implementation πŸ› οΈ

    Explores basic prompt chaining, sequential prompting, dynamic prompt generation, and error handling within prompt chains.

  3. Instruction Engineering Open In Colab

    Overview πŸ”Ž

    Focuses on crafting clear and effective instructions for language models, balancing specificity and generality.

    Implementation πŸ› οΈ

    Covers creating and refining instructions, experimenting with different structures, and implementing iterative improvement based on model responses.

🎨 Optimization and Refinement

  1. Prompt Optimization Techniques Open In Colab

    Overview πŸ”Ž

    Explores advanced techniques for optimizing prompts, focusing on A/B testing and iterative refinement.

    Implementation πŸ› οΈ

    Demonstrates A/B testing of prompts, iterative refinement processes, and performance evaluation using relevant metrics.

  2. Handling Ambiguity and Improving Clarity Open In Colab

    Overview πŸ”Ž

    Focuses on identifying and resolving ambiguous prompts and techniques for writing clearer prompts.

    Implementation πŸ› οΈ

    Covers analyzing ambiguous prompts, implementing strategies to resolve ambiguity, and exploring techniques for writing clearer prompts.

  3. Prompt Length and Complexity Management Open In Colab

    Overview πŸ”Ž

    Explores techniques for managing prompt length and complexity when working with large language models.

    Implementation πŸ› οΈ

    Demonstrates techniques for balancing detail and conciseness, and strategies for handling long contexts including chunking, summarization, and iterative processing.

πŸ› οΈ Specialized Applications

  1. Negative Prompting and Avoiding Undesired Outputs Open In Colab

    Overview πŸ”Ž

    Explores negative prompting and techniques for avoiding undesired outputs from large language models.

    Implementation πŸ› οΈ

    Covers basic negative examples, explicit exclusions, constraint implementation using LangChain, and methods for evaluating and refining negative prompts.

  2. Prompt Formatting and Structure Open In Colab

    Overview πŸ”Ž

    Explores various prompt formats and structural elements, demonstrating their impact on AI model responses.

    Implementation πŸ› οΈ

    Demonstrates creating various prompt formats, incorporating structural elements, and comparing responses from different prompt structures.

  3. Prompts for Specific Tasks Open In Colab

    Overview πŸ”Ž

    Explores the creation and use of prompts for specific tasks: text summarization, question-answering, code generation, and creative writing.

    Implementation πŸ› οΈ

    Covers designing task-specific prompt templates, implementing them using LangChain, executing with sample inputs, and analyzing outputs for each task type.

🌍 Advanced Applications

  1. Multilingual and Cross-lingual Prompting Open In Colab

    Overview πŸ”Ž

    Explores techniques for designing prompts that work effectively across multiple languages and for language translation tasks.

    Implementation πŸ› οΈ

    Covers creating multilingual prompts, implementing language detection and adaptation, designing cross-lingual translation prompts, and handling various writing systems and scripts.

  2. Ethical Considerations in Prompt Engineering Open In Colab

    Overview πŸ”Ž

    Explores the ethical dimensions of prompt engineering, focusing on avoiding biases and creating inclusive and fair prompts.

    Implementation πŸ› οΈ

    Covers identifying biases in prompts, implementing strategies to create inclusive prompts, and methods to evaluate and improve the ethical quality of AI outputs.

  3. Prompt Security and Safety Open In Colab

    Overview πŸ”Ž

    Focuses on preventing prompt injections and implementing content filters in prompts for safe and secure AI applications.

    Implementation πŸ› οΈ

    Covers techniques for prompt injection prevention, content filtering implementation, and testing the effectiveness of security and safety measures.

  4. Evaluating Prompt Effectiveness Open In Colab

    Overview πŸ”Ž

    Explores methods and techniques for evaluating the effectiveness of prompts in AI language models.