forked from himeshparashar/ai-recruiter-agency
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
461 lines (384 loc) · 16.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# Streamlit Web Application
import streamlit as st
import asyncio
import os
from datetime import datetime
from pathlib import Path
from streamlit_option_menu import option_menu
from agents.orchestrator import OrchestratorAgent
from utils.logger import setup_logger
from utils.exceptions import ResumeProcessingError
# Configure Streamlit page
st.set_page_config(
page_title="AI Recruiter Agency",
page_icon="🤖",
layout="wide",
initial_sidebar_state="expanded",
)
# Initialize logger
logger = setup_logger()
# Custom CSS
st.markdown(
"""
<style>
.stProgress .st-bo {
background-color: #00a0dc;
}
.success-text {
color: #00c853;
}
.warning-text {
color: #ffd700;
}
.error-text {
color: #ff5252;
}
.st-emotion-cache-1v0mbdj.e115fcil1 {
border: 1px solid #ddd;
border-radius: 10px;
padding: 20px;
}
</style>
""",
unsafe_allow_html=True,
)
async def process_resume(file_path: str) -> dict:
"""Process resume through the AI recruitment pipeline"""
try:
orchestrator = OrchestratorAgent()
resume_data = {
"file_path": file_path,
"submission_timestamp": datetime.now().isoformat(),
}
return await orchestrator.process_application(resume_data)
except Exception as e:
logger.error(f"Error processing resume: {str(e)}")
raise
def save_uploaded_file(uploaded_file) -> str:
"""Save uploaded file and return the file path"""
try:
# Create uploads directory if it doesn't exist
save_dir = Path("uploads")
save_dir.mkdir(exist_ok=True)
# Generate unique filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
file_path = save_dir / f"resume_{timestamp}_{uploaded_file.name}"
# Save the file
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
return str(file_path)
except Exception as e:
st.error(f"Error saving file: {str(e)}")
raise
def main():
# Sidebar navigation
with st.sidebar:
st.image(
"https://img.icons8.com/resume",
width=50,
)
st.title("AI Recruiter Agency")
selected = option_menu(
menu_title="Navigation",
options=["Upload Resume", "About"],
icons=["cloud-upload", "info-circle"],
menu_icon="cast",
default_index=0,
)
if selected == "Upload Resume":
st.header("📄 Resume Analysis")
st.write("Upload a resume to get AI-powered insights and job matches.")
uploaded_file = st.file_uploader(
"Choose a PDF resume file",
type=["pdf"],
help="Upload a PDF resume to analyze",
)
if uploaded_file:
try:
with st.spinner("Saving uploaded file..."):
file_path = save_uploaded_file(uploaded_file)
st.info("Resume uploaded successfully! Processing...")
# Create placeholder for progress bar
progress_bar = st.progress(0)
status_text = st.empty()
# Process resume
try:
status_text.text("Analyzing resume...")
progress_bar.progress(25)
# Run analysis asynchronously
result = asyncio.run(process_resume(file_path))
if result["status"] == "completed":
progress_bar.progress(100)
status_text.text("Analysis complete!")
# Display results in tabs
tab1, tab2, tab3, tab4 = st.tabs(
[
"📊 Analysis",
"💼 Job Matches",
"🎯 Screening",
"💡 Recommendation",
]
)
with tab1:
st.subheader("Skills Analysis")
st.write(result["analysis_results"]["skills_analysis"])
st.metric(
"Confidence Score",
f"{result['analysis_results']['confidence_score']:.0%}",
)
with tab2:
st.subheader("Matched Positions")
if not result["job_matches"]["matched_jobs"]:
st.warning("No suitable positions found.")
seen_titles = (
set()
) # Track seen job titles to avoid duplicates
for job in result["job_matches"]["matched_jobs"]:
if job["title"] in seen_titles:
continue
seen_titles.add(job["title"])
with st.container():
col1, col2, col3 = st.columns([2, 1, 1])
with col1:
st.write(f"**{job['title']}**")
with col2:
st.write(
f"Match: {job.get('match_score', 'N/A')}"
)
with col3:
st.write(f"📍 {job.get('location', 'N/A')}")
st.divider()
with tab3:
st.subheader("Screening Results")
st.metric(
"Screening Score",
f"{result['screening_results']['screening_score']}%",
)
st.write(result["screening_results"]["screening_report"])
with tab4:
st.subheader("Final Recommendation")
st.info(
result["final_recommendation"]["final_recommendation"],
icon="💡",
)
# Save results
output_dir = Path("results")
output_dir.mkdir(exist_ok=True)
output_file = (
output_dir
/ f"analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt"
)
with open(output_file, "w") as f:
f.write(str(result))
st.success(f"Results saved to: {output_file}")
else:
st.error(
f"Process failed at stage: {result['current_stage']}\n"
f"Error: {result.get('error', 'Unknown error')}"
)
except Exception as e:
st.error(f"Error processing resume: {str(e)}")
logger.error(f"Processing error: {str(e)}", exc_info=True)
finally:
# Cleanup uploaded file
try:
os.remove(file_path)
except Exception as e:
logger.error(f"Error removing temporary file: {str(e)}")
except Exception as e:
st.error(f"Error handling file upload: {str(e)}")
logger.error(f"Upload error: {str(e)}", exc_info=True)
elif selected == "About":
st.header("About AI Recruiter Agency")
st.write(
"""
Welcome to AI Recruiter Agency, a cutting-edge recruitment analysis system powered by:
- **Ollama (llama3.2)**: Advanced language model for natural language processing
- **Swarm Framework**: Coordinated AI agents for specialized tasks
- **Streamlit**: Modern web interface for easy interaction
Our system uses specialized AI agents to:
1. 📄 Extract information from resumes
2. 🔍 Analyze candidate profiles
3. 🎯 Match with suitable positions
4. 👥 Screen candidates
5. 💡 Provide detailed recommendations
Upload a resume to experience AI-powered recruitment analysis!
"""
)
if __name__ == "__main__":
main()
# == Command Line Interface (CLI) ==
# == to run use: python3 app.py resumes/sample_resume.pdf ==
# import asyncio
# import os
# import sys
# from datetime import datetime
# from rich.console import Console
# from rich.panel import Panel
# from rich.progress import Progress, SpinnerColumn, TextColumn
# from rich.table import Table
# from agents.orchestrator import OrchestratorAgent
# from utils.logger import setup_logger
# from utils.exceptions import ResumeProcessingError
# # Initialize Rich console for beautiful CLI output
# console = Console()
# logger = setup_logger()
# async def process_resume(file_path: str) -> None:
# """Process a resume through the AI recruitment pipeline"""
# try:
# # Validate input file
# if not os.path.exists(file_path):
# raise FileNotFoundError(f"Resume not found at {file_path}")
# if not file_path.lower().endswith(".pdf"):
# raise ValueError("Please provide a PDF resume file")
# logger.info(f"Starting recruitment process for: {os.path.basename(file_path)}")
# # Display welcome banner
# console.print(
# Panel.fit(
# "[bold blue]AI Recruitment Agency[/bold blue]\n"
# "[dim]Powered by Ollama (llama2) and Swarm Framework[/dim]",
# border_style="blue",
# )
# )
# # Initialize orchestrator
# orchestrator = OrchestratorAgent()
# # Prepare resume data
# resume_data = {
# "file_path": file_path,
# "submission_timestamp": datetime.now().isoformat(),
# }
# # Process with progress indication
# with Progress(
# SpinnerColumn(),
# TextColumn("[progress.description]{task.description}"),
# console=console,
# ) as progress:
# task = progress.add_task("[cyan]Processing resume...", total=None)
# result = await orchestrator.process_application(resume_data)
# progress.update(task, completed=True)
# if result["status"] == "completed":
# logger.info("Resume processing completed successfully")
# # Create results table
# table = Table(
# title="Analysis Summary", show_header=True, header_style="bold magenta"
# )
# table.add_column("Category", style="cyan")
# table.add_column("Details", style="white")
# # Add analysis results
# table.add_row(
# "Skills Analysis", str(result["analysis_results"]["skills_analysis"])
# )
# table.add_row(
# "Confidence Score",
# f"{result['analysis_results']['confidence_score']:.2%}",
# )
# console.print("\n", table)
# # Display job matches
# matches_table = Table(
# title="Job Matches", show_header=True, header_style="bold green"
# )
# matches_table.add_column("Position", style="cyan")
# matches_table.add_column("Match Score", style="white")
# matches_table.add_column("Location", style="white")
# for job in result["job_matches"]["matched_jobs"]:
# matches_table.add_row(
# job["title"],
# f"{job.get('match_score', 'N/A')}",
# job.get("location", "N/A"),
# )
# console.print("\n", matches_table)
# # Display screening results
# console.print(
# Panel(
# f"[bold]Screening Score:[/bold] {result['screening_results']['screening_score']}%\n\n"
# f"{result['screening_results']['screening_report']}",
# title="Screening Results",
# border_style="green",
# )
# )
# # Display final recommendation
# console.print(
# Panel(
# result["final_recommendation"]["final_recommendation"],
# title="Final Recommendation",
# border_style="blue",
# )
# )
# # Save results to file
# output_dir = "results"
# if not os.path.exists(output_dir):
# os.makedirs(output_dir)
# output_file = os.path.join(
# output_dir, f"analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt"
# )
# with open(output_file, "w") as f:
# f.write("AI Recruitment Analysis Results\n")
# f.write("=" * 50 + "\n\n")
# f.write(f"Resume: {os.path.basename(file_path)}\n")
# f.write(f"Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
# f.write("Analysis Summary\n")
# f.write("-" * 20 + "\n")
# f.write(
# f"Skills Analysis: {result['analysis_results']['skills_analysis']}\n"
# )
# f.write(
# f"Confidence Score: {result['analysis_results']['confidence_score']:.2%}\n\n"
# )
# f.write("Job Matches\n")
# f.write("-" * 20 + "\n")
# for job in result["job_matches"]["matched_jobs"]:
# f.write(f"\nPosition: {job['title']}\n")
# f.write(f"Match Score: {job.get('match_score', 'N/A')}\n")
# f.write(f"Location: {job.get('location', 'N/A')}\n")
# f.write("\nScreening Results\n")
# f.write("-" * 20 + "\n")
# f.write(f"Score: {result['screening_results']['screening_score']}%\n")
# f.write(
# f"Report: {result['screening_results']['screening_report']}\n\n"
# )
# f.write("Final Recommendation\n")
# f.write("-" * 20 + "\n")
# f.write(str(result["final_recommendation"]["final_recommendation"]))
# console.print(f"\n[green]✓[/green] Results saved to: {output_file}")
# else:
# error_msg = f"Process failed at stage: {result['current_stage']}"
# if "error" in result:
# error_msg += f"\nError: {result['error']}"
# logger.error(error_msg)
# console.print(f"\n[red]✗[/red] {error_msg}")
# except FileNotFoundError as e:
# logger.error(f"File error: {str(e)}")
# console.print(f"[red]Error:[/red] {str(e)}")
# except ValueError as e:
# logger.error(f"Validation error: {str(e)}")
# console.print(f"[red]Error:[/red] {str(e)}")
# except ResumeProcessingError as e:
# logger.error(f"Processing error: {str(e)}")
# console.print(f"[red]Error:[/red] {str(e)}")
# except Exception as e:
# logger.error(f"Unexpected error: {str(e)}", exc_info=True)
# console.print(f"[red]✗ An unexpected error occurred:[/red] {str(e)}")
# def main():
# """Main entry point for the AI recruitment system"""
# import argparse
# parser = argparse.ArgumentParser(
# description="AI Recruitment Agency - Resume Processing System",
# formatter_class=argparse.RawDescriptionHelpFormatter,
# epilog="""
# Examples:
# python main.py path/to/resume.pdf
# python main.py --help
# """,
# )
# parser.add_argument("resume_path", help="Path to the PDF resume file to process")
# parser.add_argument("--verbose", action="store_true", help="Enable verbose output")
# args = parser.parse_args()
# if args.verbose:
# console.print("[yellow]Running in verbose mode[/yellow]")
# try:
# asyncio.run(process_resume(args.resume_path))
# except KeyboardInterrupt:
# console.print("\n[yellow]Process interrupted by user[/yellow]")
# sys.exit(1)
# if __name__ == "__main__":
# main()