-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathapp.py
184 lines (154 loc) · 8.08 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from utils import *
def onUpload():
return ""
def onClick(cloth_id, pose_image, pose_id, size, request: gr.Request):
if pose_image is None:
return None, "no pose image found !"
pose_id, cloth_id = pose_id['label'], cloth_id['label']
# print(pose_id, cloth_id, size, (pose_image is None), len(pose_id)>0)
if len(pose_id)>0:
res = get_result_example(cloth_id, pose_id)
# print(res)
assert os.path.exists(res), res
# res = cv2.imread(res)
return res, "Done! Use the pre-run results directly, the cloth size does not take effect "
else:
return None, "由于openXLab的demo在访问时无法获取访问者ip用于绑定推理结果,故该空间暂时无法提供推理服务。您可以在huggingface的同名space尝试自己上传图片"
try:
client_ip = request.client.host
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
if x_forwarded_for:
client_ip = x_forwarded_for
timeId = int( str(time.time()).replace(".", "") )+random.randint(1000, 9999)
isUpload = upload_pose_img(ApiUrl, OpenId, ApiKey, client_ip, timeId, pose_image)
if isUpload==0:
return None, "fail to upload"
elif isUpload==-1:
return None, "There is a running task already, please wait and check the history tab"
elif isUpload==-2:
return None, "can not creat task, you have exhausted free trial quota"
taskId = publicClothSwap(ApiUrl, OpenId, ApiKey, client_ip, cloth_id, timeId, size)
if taskId==0:
return None, "fail to public you task"
max_try = 1
wait_s = 30
for i in range(max_try):
time.sleep(wait_s)
state = getInfRes(ApiUrl, OpenId, ApiKey, client_ip, timeId)
if state=='stateIs-1':
return None, "task failed, it may be that no human was detected, or there may be illegal content, etc. "
elif state=='stateIs0':
return None, "task not public success"
elif len(state)>20:
return state, "task finished"
elif (not state.startswith('stateIs')):
# return None, 'task is in queue, position is '+str(state)
pass
else:
return None, state
return None, "task has been created successfully, you can refresh the page 5~15 mins latter, and check the following history tab"
except Exception as e:
print(e)
return None, "fail to create task"
def onLoad(request: gr.Request):
client_ip = request.client.host
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
if x_forwarded_for:
client_ip = x_forwarded_for
his_datas = [None for _ in range(10)]
return his_datas
# try:
# infs = getAllInfs(ApiUrl, OpenId, ApiKey, client_ip)
# print(client_ip, 'history infs: ', len(infs))
# # print(infs)
# for i, inf in enumerate(infs):
# if i>4: continue
# pose = inf['pose']
# res = inf['res']
# # his_datas[i*2] = f"[pose]({pose})"+f""
# # his_datas[i*2+1] = f"[res]({res})"+f""
# his_datas[i*2] = f"<img src=\"{pose}\" >"
# his_datas[i*2+1] = f"<img src=\"{res}\" >"
# time.sleep(3)
# except Exception as e:
# print(e)
# return his_datas
cloth_examples = get_cloth_examples()
pose_examples = get_pose_examples()
# Description
title = r"""
<h1 align="center">Outfit Anyone in the Wild: Get rid of Annoying Restrictions for Virtual Try-on Task</h1>
"""
description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/selfitcamera/Outfit-Anyone-in-the-Wild' target='_blank'><b>Outfit Anyone in the Wild: Get rid of Annoying Restrictions for Virtual Try-on Task</b></a>.<br>
1. Clothing models are fixed in this demo, but you can create your own in SelfitCamera WeChat applet (for Chainese users).
2. You can upload your own pose photo, then click the run button and wait for 3~5 minutes to see the results.
3. After submitting the task, feel free to leave this page. Everytime you refresh this page, completed tasks will be displayed on the history tab (bind with your ip address).
4. Share your try-on photo with your friends and enjoy! 😊"""
css = """
.gradio-container {width: 85% !important}
"""
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
with gr.Column():
# cloth_image = gr.Image(type="numpy", value=cloth_examples[0][1], label="")
cloth_image = gr.Image(sources='clipboard', type="filepath", label="",
value=None)
cloth_id = gr.Label(value=cloth_examples[0][0], label="Clothing 3D Model", visible=False)
example = gr.Examples(inputs=[cloth_id, cloth_image],
examples_per_page=3,
examples = cloth_examples)
with gr.Column():
with gr.Column():
# pose_image = gr.Image(source='upload', value=pose_examples[0][1],
# type="numpy", label="")
pose_image = gr.Image(value=None,
type="numpy", label="")
pose_id = gr.Label(value=pose_examples[0][0], label="Pose Image", visible=False)
example_pose = gr.Examples(inputs=[pose_id, pose_image],
examples_per_page=3,
examples=pose_examples)
size_slider = gr.Slider(-2.5, 2.5, value=1, interactive=True, label="clothes size")
with gr.Column():
with gr.Column():
run_button = gr.Button(value="Run")
init_res = get_result_example(cloth_examples[0][0], pose_examples[0][0])
res_image = gr.Image(label="result image", value=None, type="filepath")
# res_image = gr.Image(label="result image", value=None, type="numpy")
# res_image = gr.Image(label="result image", value=cv2.imread(init_res),
# type="numpy")
gr.Markdown("If image does not display successfully after button clicked in your browser(mostly Mac+Chrome), try modelscope's [demo](https://www.modelscope.cn/studios/selfitcamera/OutfitAnyoneInTheWild/summary) please")
info_text = gr.Textbox(value="", interactive=False,
label='runtime information')
with gr.Tab('history'):
with gr.Row():
his_pose_image1 = gr.HTML()
his_res_image1 = gr.HTML()
with gr.Row():
his_pose_image2 = gr.HTML()
his_res_image2 = gr.HTML()
with gr.Row():
his_pose_image3 = gr.HTML()
his_res_image3 = gr.HTML()
with gr.Row():
his_pose_image4 = gr.HTML()
his_res_image4 = gr.HTML()
with gr.Row():
his_pose_image5 = gr.HTML()
his_res_image5 = gr.HTML()
run_button.click(fn=onClick, inputs=[cloth_id, pose_image, pose_id, size_slider],
outputs=[res_image, info_text])
pose_image.upload(fn=onUpload, inputs=[], outputs=[pose_id],)
demo.load(onLoad, inputs=[], outputs=[his_pose_image1, his_res_image1,
his_pose_image2, his_res_image2, his_pose_image3, his_res_image3,
his_pose_image4, his_res_image4, his_pose_image5, his_res_image5,
])
if __name__ == "__main__":
demo.queue(max_size=30)
# demo.queue(concurrency_count=60)
# demo.launch(server_name='0.0.0.0', server_port=225)
demo.launch(server_name='0.0.0.0')