From 790768ae76af029cee39449fea35f6cb828358d1 Mon Sep 17 00:00:00 2001 From: hoolich <469165171@qq.com> Date: Wed, 17 Aug 2022 14:17:01 +0800 Subject: [PATCH 01/12] 20220817 --- Part.1.E.5.strings.ipynb | 313 ++++++------------ Part.1.E.6.containers.ipynb | 209 ++++++------ Part.1.E.7.files.ipynb | 34 +- Part.1.F.deal-with-forward-references.ipynb | 4 +- Part.2.A.clumsy-and-patience.ipynb | 8 +- Part.2.B.deliberate-practicing.ipynb | 2 +- ...2.C.why-start-from-writing-functions.ipynb | 7 +- Part.2.D.1-args.ipynb | 16 + Part.2.D.2-aargs.ipynb | 192 ++++++++++- Part.2.D.3-lambda.ipynb | 251 +++++++++++++- 10 files changed, 675 insertions(+), 361 deletions(-) diff --git a/Part.1.E.5.strings.ipynb b/Part.1.E.5.strings.ipynb index aeff7632c..5ec5bfc2a 100644 --- a/Part.1.E.5.strings.ipynb +++ b/Part.1.E.5.strings.ipynb @@ -190,7 +190,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -199,7 +199,7 @@ "'\\nSimple is better than complex.\\nComplex is better than complicated.\\n'" ] }, - "execution_count": 5, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -342,25 +342,20 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 4, "metadata": {}, "outputs": [ { - "name": "stdin", - "output_type": "stream", - "text": [ - "Please tell me your age: 19\n" - ] - }, - { - "ename": "TypeError", - "evalue": "'<' not supported between instances of 'str' and 'int'", + "ename": "KeyboardInterrupt", + "evalue": "Interrupted by user", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Please tell me your age: '\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mage\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m18\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'I can not sell you drinks...'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Have a nice drink!'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: '<' not supported between instances of 'str' and 'int'" + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_14509/1388896846.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Please tell me your age: '\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mage\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m18\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'I can not sell you drinks...'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Have a nice drink!'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ipykernel/kernelbase.py\u001b[0m in \u001b[0;36mraw_input\u001b[0;34m(self, prompt)\u001b[0m\n\u001b[1;32m 1004\u001b[0m \u001b[0;34m\"raw_input was called, but this frontend does not support input requests.\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1005\u001b[0m )\n\u001b[0;32m-> 1006\u001b[0;31m return self._input_request(\n\u001b[0m\u001b[1;32m 1007\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprompt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1008\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parent_ident\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"shell\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ipykernel/kernelbase.py\u001b[0m in \u001b[0;36m_input_request\u001b[0;34m(self, prompt, ident, parent, password)\u001b[0m\n\u001b[1;32m 1049\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1050\u001b[0m \u001b[0;31m# re-raise KeyboardInterrupt, to truncate traceback\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1051\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Interrupted by user\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1052\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1053\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlog\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Invalid Message:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexc_info\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: Interrupted by user" ] } ], @@ -382,21 +377,18 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 5, "metadata": {}, "outputs": [ { - "name": "stdin", - "output_type": "stream", - "text": [ - "Please tell me your age: 19\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Have a nice drink!\n" + "ename": "ValueError", + "evalue": "invalid literal for int() with base 10: ''", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_14509/1650674318.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m age = int(input('''Please tell me your age: \n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0man\u001b[0m \u001b[0mint\u001b[0m \u001b[0mnumber\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mg\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;36m22\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m '''))\n\u001b[1;32m 4\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mage\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m18\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'I can not sell you drinks...'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: invalid literal for int() with base 10: ''" ] } ], @@ -433,7 +425,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -442,7 +434,7 @@ "'\\\\'" ] }, - "execution_count": 9, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -453,15 +445,15 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "metadata": {}, "outputs": [ { "ename": "SyntaxError", - "evalue": "EOL while scanning string literal (, line 1)", + "evalue": "EOL while scanning string literal (190624804.py, line 1)", "output_type": "error", "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m '\\'\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m EOL while scanning string literal\n" + "\u001b[0;36m File \u001b[0;32m\"/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_14509/190624804.py\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m '\\'\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m EOL while scanning string literal\n" ] } ], @@ -917,91 +909,20 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 8, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "10" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "9" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "13" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "'A'" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stdin", - "output_type": "stream", - "text": [ - "请照抄一遍这个数字 3.14: 3.14\n" - ] - }, - { - "data": { - "text/plain": [ - "3" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "28.26" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "4" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3.143.143.14\n" + "ename": "KeyboardInterrupt", + "evalue": "Interrupted by user", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_14509/602898412.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mord\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'\\r'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mchr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m65\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# 与 ord() 相对的函数\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0ms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'请照抄一遍这个数字 3.14: '\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'3'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;31m# int(s) 这一句会报错…… 所以暂时注释掉了\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ipykernel/kernelbase.py\u001b[0m in \u001b[0;36mraw_input\u001b[0;34m(self, prompt)\u001b[0m\n\u001b[1;32m 1004\u001b[0m \u001b[0;34m\"raw_input was called, but this frontend does not support input requests.\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1005\u001b[0m )\n\u001b[0;32m-> 1006\u001b[0;31m return self._input_request(\n\u001b[0m\u001b[1;32m 1007\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprompt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1008\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parent_ident\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"shell\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ipykernel/kernelbase.py\u001b[0m in \u001b[0;36m_input_request\u001b[0;34m(self, prompt, ident, parent, password)\u001b[0m\n\u001b[1;32m 1049\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1050\u001b[0m \u001b[0;31m# re-raise KeyboardInterrupt, to truncate traceback\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1051\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Interrupted by user\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1052\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1053\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlog\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Invalid Message:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexc_info\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: Interrupted by user" ] } ], @@ -1081,7 +1002,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -1090,7 +1011,7 @@ "'NOW IS BETTER THAN NEVER.'" ] }, - "execution_count": 24, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, @@ -1100,7 +1021,7 @@ "'now is better than never.'" ] }, - "execution_count": 24, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -1674,7 +1595,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -1716,7 +1637,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -1725,7 +1646,7 @@ "\"Special cases aren't special enough to break the rules.\"" ] }, - "execution_count": 5, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, @@ -1735,7 +1656,17 @@ "\"Special cases aren't special enough to break the rules.\"" ] }, - "execution_count": 5, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "\"Special cases aren't special enough to break the rules.\"" + ] + }, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -1747,7 +1678,8 @@ "# str.expandtabs(tabsize=8)\n", "s = \"Special\\tcases\\taren't\\tspecial\\tenough\\tto\\tbreak\\tthe\\trules.\"\n", "s.expandtabs()\n", - "s.expandtabs(2)" + "s.expandtabs(2)\n", + "s.expandtabs(1)" ] }, { @@ -1823,7 +1755,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -1832,27 +1764,27 @@ "'Simple is better than complex.'" ] }, - "execution_count": 4, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ - "'mple is better than comple'" + "'ple is better than comp'" ] }, - "execution_count": 4, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ - "' is better than co'" + "'mple is better than comple'" ] }, - "execution_count": 4, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -1863,8 +1795,8 @@ "\n", "s = \"Simple is better than complex.\"\n", "s\n", - "s.strip('Six.p') # p 全部处理完之后,p 并不在首尾,所以原字符串中的 p 字母不受影响;\n", - "s.strip('pSix.mle') # 这一次,首尾的 p 被处理了…… 参数中的字符顺序对结果没有影响,换成 Sipx.mle 也一样……" + "s.strip('Sim.lex') # p 全部处理完之后,p 并不在首尾,所以原字符串中的 p 字母不受影响;\n", + "s.strip('Si.x') # 这一次,首尾的 p 被处理了…… 参数中的字符顺序对结果没有影响,换成 Sipx.mle 也一样……" ] }, { @@ -1876,7 +1808,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 35, "metadata": { "button": false, "collapsed": true, @@ -1892,17 +1824,17 @@ "'Simple is better than complex.'" ] }, - "execution_count": 37, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ - "'mple is better than complex.'" + "'ple is better than complex.'" ] }, - "execution_count": 37, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" }, @@ -1912,7 +1844,7 @@ "' is better than complex.'" ] }, - "execution_count": 37, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -1924,7 +1856,7 @@ "# str.lstrip([chars])\n", "s = \"Simple is better than complex.\"\n", "s\n", - "s.lstrip('Six.p') # p 全部处理完之后,p 并不在首部,所以原字符串中的 p 字母不受影响;\n", + "s.lstrip('Sim.lex') # p 全部处理完之后,p 并不在首部,所以原字符串中的 p 字母不受影响;\n", "s.lstrip('pSix.mle') # 这一次,首部的 p 被处理了…… 参数中的字符顺序对结果没有影响,换成 Sipx.mle 也一样……" ] }, @@ -2073,7 +2005,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -2082,37 +2014,7 @@ "'Mike,22,San Francisco'" ] }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "['Mike,22,San', 'Francisco']" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "['Mike', '22', 'San Francisco']" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "['Mike', '22', 'San Francisco']" - ] - }, - "execution_count": 40, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" }, @@ -2122,17 +2024,7 @@ "['Mike', '22,San Francisco']" ] }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "['Mike,22,San Francisco']" - ] - }, - "execution_count": 40, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" }, @@ -2142,7 +2034,7 @@ "['Mike', '22', 'San Francisco']" ] }, - "execution_count": 40, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -2159,13 +2051,13 @@ "\n", "r = s.splitlines()[2] # 取出返回列表中索引值为 2 的那一行\n", "r\n", - "r.split() # 如果没有给 str.split() 传递参数,那么默认为用 None 分割(各种空白,比如,\\t 和 \\r 都被当作 None)\n", - "r.split(sep=',') \n", - "r.split(',') # 上一行可以这样写。\n", + "# r.split() # 如果没有给 str.split() 传递参数,那么默认为用 None 分割(各种空白,比如,\\t 和 \\r 都被当作 None)\n", + "# r.split(sep=',') \n", + "# r.split(',') # 上一行可以这样写。\n", "\n", "r.split(sep=',', maxsplit=1) # 第二个参数指定拆分几次\n", "# r.split(sep=',', 1) # 上一行不能这样写。\n", - "r.split(sep=',', maxsplit=0) # 0 次,即不拆分\n", + "# r.split(sep=',', maxsplit=0) # 0 次,即不拆分\n", "r.split(sep=',', maxsplit=-1) # 默认值是 -1,拆分全部" ] }, @@ -2243,7 +2135,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 46, "metadata": { "button": false, "new_sheet": false, @@ -2259,7 +2151,7 @@ "' Sparse Is Better Than Dense! '" ] }, - "execution_count": 42, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, @@ -2269,7 +2161,7 @@ "'================Sparse Is Better Than Dense!================'" ] }, - "execution_count": 42, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, @@ -2279,7 +2171,7 @@ "'Sparse Is Better Than Dense!'" ] }, - "execution_count": 42, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, @@ -2289,7 +2181,7 @@ "' Sparse Is Better Than Dense!'" ] }, - "execution_count": 42, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, @@ -2299,7 +2191,7 @@ "'................................Sparse Is Better Than Dense!'" ] }, - "execution_count": 42, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -2338,29 +2230,29 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "001.mp3\n", - "002.mp3\n", - "003.mp3\n", - "004.mp3\n", - "005.mp3\n", - "006.mp3\n", - "007.mp3\n", - "008.mp3\n", - "009.mp3\n", - "010.mp3\n" + "0001.mp3\n", + "0002.mp3\n", + "0003.mp3\n", + "0004.mp3\n", + "0005.mp3\n", + "0006.mp3\n", + "0007.mp3\n", + "0008.mp3\n", + "0009.mp3\n", + "0010.mp3\n" ] } ], "source": [ "for i in range(1, 11):\n", - " filename = str(i).zfill(3) + '.mp3'\n", + " filename = str(i).zfill(4) + '.mp3'\n", " print(filename)" ] }, @@ -2531,16 +2423,16 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'25 is John years old.'" + "'John is 25 years old.'" ] }, - "execution_count": 46, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -2548,7 +2440,7 @@ "source": [ "name = 'John'\n", "age = 25\n", - "'{1} is {0} years old.'.format(name, age)" + "'{0} is {1} years old.'.format(name, age)" ] }, { @@ -2574,7 +2466,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -2733,8 +2625,11 @@ } ], "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -2748,7 +2643,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.9.7" }, "toc-autonumbering": true }, diff --git a/Part.1.E.6.containers.ipynb b/Part.1.E.6.containers.ipynb index 057f7d7c7..40f695fb5 100644 --- a/Part.1.E.6.containers.ipynb +++ b/Part.1.E.6.containers.ipynb @@ -227,15 +227,15 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "a_list comprehends 10 random numbers: [52, 34, 7, 96, 33, 79, 95, 18, 37, 46]\n", - "... and it has 5 even numbers: [52, 34, 96, 18, 46]\n" + "a_list comprehends 10 random numbers: [2, 7, 8, 8, 2, 1, 5, 7, 6, 4]\n", + "... and it has 6 even numbers: [2, 8, 8, 2, 6, 4]\n" ] } ], @@ -245,7 +245,7 @@ "n = 10 \n", "\n", "# 生成一个 n 个元素的序列,每个元素是 1~100 之间的随机数\n", - "a_list = [random.randrange(1, 100) for i in range(n)]\n", + "a_list = [random.randrange(1, 10) for i in range(n)]\n", "print(f'a_list comprehends {len(a_list)} random numbers: {a_list}')\n", "\n", "# 从 a_list 里把偶数都挑出来\n", @@ -275,16 +275,16 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[1, 2, 3, 4, 5, 6, 4, 5, 6, 4, 5, 6]" + "[1, 9, 8, 4, 5, 6, 4, 5, 6, 4, 5, 6, 1, 9, 8]" ] }, - "execution_count": 2, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, @@ -294,7 +294,7 @@ "True" ] }, - "execution_count": 2, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, @@ -304,7 +304,7 @@ "False" ] }, - "execution_count": 2, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -313,9 +313,9 @@ "from IPython.core.interactiveshell import InteractiveShell\n", "InteractiveShell.ast_node_interactivity = \"all\"\n", "\n", - "a_list = [1, 2, 3]\n", + "a_list = [1, 9, 8]\n", "b_list = [4, 5, 6]\n", - "c_list = a_list + b_list * 3\n", + "c_list = a_list + b_list * 3+a_list\n", "c_list\n", "7 not in c_list\n", "a_list > b_list" @@ -337,51 +337,47 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[77, 66, 79]\n", - "[77, 66, 79, 'L', 'Z', 'R', 77, 66, 79, 77, 66, 79]\n", + "[89, 81, 89]\n", + "[89, 81, 89, 'V', 'U', 'V', 89, 81, 89, 89, 81, 89]\n", "\n", - "L\n", - "[77, 66, 79, 'L', 'Z', 'R', 77, 66, 79, 77, 66, 79]\n", - "['R', 77, 66, 79, 77, 66, 79]\n", - "[77, 66, 79]\n", - "[79, 'L', 'Z', 'R']\n", + "[89, 'V', 'U', 'V']\n", "\n", - "[77, 66, 79, 'Z', 'R', 77, 66, 79, 77, 66, 79]\n", - "[77, 66, 79, 'Z', 'R', 77, 66, 79]\n", + "[89, 81, 89, 'V', 'U', 'V', 89, 81, 89, 89, 81, 89]\n", + "[89, 81, 89, 81, 89, 89, 81, 89]\n", "\n", - "[77, 'a', 79, 2, 'R', 77, 66, 79]\n" + "[89, 'a', 89, 2, 89, 89, 81, 89]\n" ] } ], "source": [ "import random\n", "n = 3 \n", - "a_list = [random.randrange(65, 91) for i in range(n)]\n", - "b_list = [chr(random.randrange(65, 91)) for i in range(n)]\n", + "a_list = [random.randrange(77, 91) for i in range(n)]\n", + "b_list = [chr(random.randrange(77, 91)) for i in range(n)]\n", "print(a_list)\n", "c_list = a_list + b_list + a_list * 2\n", "print(c_list)\n", "\n", "print()\n", "# 根据索引提取(Slicing)\n", - "print(c_list[3]) # 返回索引值为 3 的元素值\n", - "print(c_list[:]) # 相当于 c_list,返回整个列表\n", - "print(c_list[5:]) # 从索引为 5 的值开始直到末尾\n", - "print(c_list[:3]) # 从索引 0 开始,直到索引 3 之前(不包括 3)\n", + "# print(c_list[3]) # 返回索引值为 3 的元素值\n", + "# print(c_list[:]) # 相当于 c_list,返回整个列表\n", + "# print(c_list[5:]) # 从索引为 5 的值开始直到末尾\n", + "# print(c_list[:3]) # 从索引 0 开始,直到索引 3 之前(不包括 3)\n", "print(c_list[2:6]) # 从索引 2 开始,直到索引 6 之前(不包括 6)\n", "\n", "print()\n", "# 根据索引删除\n", - "del c_list[3]\n", + "# del c_list[3]\n", "print(c_list) # del 是个命令,del c_list[3] 是一个语句;不能这么写:print(del c_list[3])\n", - "del c_list[5:8] \n", + "del c_list[2:6] \n", "print(c_list)\n", "\n", "print()\n", @@ -561,7 +557,7 @@ "source": [ "import random\n", "n = 10 \n", - "a_list = [random.randrange(1, 100) for i in range(n)]\n", + "a_list = [random.randrange(1,100)for i in range(n)]\n", "print(f'a_list comprehends {len(a_list)} random numbers:\\n', a_list)\n", "\n", "a_list.sort()\n", @@ -580,7 +576,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -588,18 +584,18 @@ "output_type": "stream", "text": [ "a_list comprehends 10 random string elements:\n", - " ['B', 'U', 'H', 'D', 'C', 'V', 'V', 'Q', 'U', 'P']\n", + " ['W', 'P', 'K', 'I', 'Z', 'M', 'R', 'B', 'L', 'G']\n", "the list sorted:\n", - " ['B', 'C', 'D', 'H', 'P', 'Q', 'U', 'U', 'V', 'V']\n", + " ['B', 'G', 'I', 'K', 'L', 'M', 'P', 'R', 'W', 'Z']\n", "the list sorted reversely:\n", - " ['V', 'V', 'U', 'U', 'Q', 'P', 'H', 'D', 'C', 'B']\n", + " ['Z', 'W', 'R', 'P', 'M', 'L', 'K', 'I', 'G', 'B']\n", "\n", "b_list comprehends 10 random string elements:\n", - " ['Nl', 'Mh', 'Ta', 'By', 'Ul', 'Nc', 'Gu', 'Rp', 'Pv', 'Bu']\n", + " ['Rra', 'Sym', 'Sxb', 'Izj', 'Bwt', 'Hin', 'Pso', 'Czt', 'Zen', 'Kbb']\n", "the sorted:\n", - " ['Bu', 'By', 'Gu', 'Mh', 'Nc', 'Nl', 'Pv', 'Rp', 'Ta', 'Ul']\n", + " ['Bwt', 'Czt', 'Hin', 'Izj', 'Kbb', 'Pso', 'Rra', 'Sxb', 'Sym', 'Zen']\n", "the sorted reversely:\n", - " ['Ul', 'Ta', 'Rp', 'Pv', 'Nl', 'Nc', 'Mh', 'Gu', 'By', 'Bu']\n" + " ['Zen', 'Sym', 'Sxb', 'Rra', 'Pso', 'Kbb', 'Izj', 'Hin', 'Czt', 'Bwt']\n" ] } ], @@ -620,7 +616,8 @@ "print()\n", "\n", "b_list = [chr(random.randrange(65, 91)) +\\\n", - " chr(random.randrange(97, 123))\\\n", + " chr(random.randrange(97, 123))+\\\n", + " chr(random.randrange(97, 123))\\\n", " for i in range(n)]\n", "# 可以在行末加上 \\ 符号,表示 “该行未完待续……”\n", "\n", @@ -629,7 +626,7 @@ "b_list.sort()\n", "print('the sorted:\\n', b_list)\n", "\n", - "b_list.sort(key=str.lower, reverse=True) \n", + "b_list.sort(key=str.upper, reverse=True) \n", "# key 参数,默认是 None\n", "# key=str.lower 的意思是,在比较的时候,先全都转换成小写再比较……\n", "# —— 但并不改变原有值\n", @@ -645,7 +642,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -655,14 +652,15 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0ma_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'a'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'c'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0ma_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0ma_list\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msort\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# 这一句会报错\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32m/Users/chenqiang/Documents/the-craft-of-selfteaching/Part.1.E.6.containers.ipynb Cell 36'\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m a_list \u001b[39m=\u001b[39m [\u001b[39m1\u001b[39m, \u001b[39m'\u001b[39m\u001b[39ma\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mc\u001b[39m\u001b[39m'\u001b[39m]\n\u001b[0;32m----> 2\u001b[0m a_list\u001b[39m.\u001b[39;49msort() \u001b[39m# 这一句会报错\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39m'\u001b[39m\u001b[39mthe sorted:\u001b[39m\u001b[39m\\n\u001b[39;00m\u001b[39m'\u001b[39m, a_list)\n", "\u001b[0;31mTypeError\u001b[0m: '<' not supported between instances of 'str' and 'int'" ] } ], "source": [ "a_list = [1, 'a', 'c']\n", - "a_list = a_list.sort() # 这一句会报错" + "a_list.sort() # 这一句会报错\n", + "print('the sorted:\\n', a_list)" ] }, { @@ -674,35 +672,36 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[90, 88, 73]\n", - "[90, 88, 73, 'T', 'N', 'Y', 90, 88, 73, 90, 88, 73]\n", - "[90, 88, 73, 'T', 'N', 'Y', 90, 88, 73, 90, 88, 73, '100']\n", + "[71, 68, 75]\n", + "['R', 'Y', 'U']\n", + "[71, 68, 75, 'R', 'Y', 'U', 71, 68, 75, 71, 68, 75]\n", + "[71, 68, 75, 'R', 'Y', 'U', 71, 68, 75, 71, 68, 75, '100']\n", "\n", - "[90, 88, 73]\n", + "[71, 68, 75]\n", "[]\n", "\n", - "[90, 88, 73, 'T', 'N', 'Y', 90, 88, 73, 90, 88, 73, '100']\n", - "[90, 88, 73, 'T', 'N', 'Y', 73, 90, 88, 73, '100']\n", - "[90, 88, 73, 'T', 'N', 'Y', 90, 88, 73, 90, 88, 73, '100']\n", + "[71, 68, 75, 'R', 'Y', 'U', 71, 68, 75, 71, 68, 75, '100']\n", + "[71, 68, 75, 'R', 'Y', 'U', 75, 71, 68, 75, '100']\n", + "[71, 68, 75, 'R', 'Y', 'U', 71, 68, 75, 71, 68, 75, '100']\n", "\n", - "[90, 88, 73, 'T', 'N', 'Y', 88, 73, '100']\n", - "[90, 88, 73, 'T', 'N', 'Y', 88, 73, '100']\n", + "[71, 68, 75, 'R', 'Y', 'U', 68, 75, '100']\n", + "[71, 68, 75, 'R', 'Y', 'U', 68, 75, '100']\n", "\n", "[]\n", - "[90, 88, 73, 'T', 'N', 'Y', 90, 88, 73, 90, 88, 73, '100']\n", + "[71, 68, 75, 'R', 'Y', 'U', 71, 68, 75, 71, 68, 75, '100']\n", "\n", - "[90, 88, 73, 'T', 'N', 'Y', 90, 88, 73, 90, 88, 73, '100']\n", - "[90, 'example', 88, 'example', 73, 'T', 'N', 'Y', 90, 88, 73, 90, 88, 73, '100']\n", + "[71, 68, 75, 'R', 'Y', 'U', 71, 68, 75, 71, 68, 75, '100']\n", + "[71, 'example', 68, 'example', 75, 'R', 'Y', 'U', 71, 68, 75, 71, 68, 75, '100']\n", "\n", - "[90, 'example', 88, 'example', 73, 'T', 'N', 'Y', 90, 88, 73, 90, 88, 73, '100']\n", - "['100', 73, 88, 90, 73, 88, 90, 'Y', 'N', 'T', 73, 'example', 88, 'example', 90]\n", + "[71, 'example', 68, 'example', 75, 'R', 'Y', 'U', 71, 68, 75, 71, 68, 75, '100']\n", + "['100', 75, 68, 71, 75, 68, 71, 'U', 'Y', 'R', 75, 'example', 68, 'example', 71]\n", "None\n" ] } @@ -713,6 +712,7 @@ "a_list = [random.randrange(65, 91) for i in range(n)]\n", "b_list = [chr(random.randrange(65, 91)) for i in range(n)]\n", "print(a_list)\n", + "print(b_list)\n", "c_list = a_list + b_list + a_list * 2\n", "print(c_list)\n", "\n", @@ -754,9 +754,9 @@ "a_list.insert(3, 'example') # 在索引 3 的位置插入 'example';\n", "print(a_list)\n", "\n", - "# 排序\n", + "# # 排序\n", "\n", - "# a_list.sort() 这一句会出错,因为当前列表中的元素,是 int 和 str 混合的。\n", + "# # a_list.sort() 这一句会出错,因为当前列表中的元素,是 int 和 str 混合的。\n", "\n", "print()\n", "print(a_list)\n", @@ -775,28 +775,29 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[88, 84, 69]\n", + "[80, 87, 65]\n", "\n", + "[80, 'example', 87, 65]\n", "\n", - "[88, 'example', 84, 69]\n", - "[88, 84, 69]\n", + "[80, 'example', 87, 65]\n", + "[80, 87, 65]\n", "\n", - "[88, 84, 69]\n", - "[88, 84]\n", - "69\n", + "[80, 87, 65]\n", + "[80, 87]\n", + "65\n", "\n", - "[88, 84, 'example', 'example']\n", - "[88, 84, 'example']\n", + "[80, 87, 'example', 'example']\n", + "[80, 87, 'example']\n", "\n", "None\n", - "[88, 84]\n" + "[80, 87]\n" ] } ], @@ -809,14 +810,15 @@ "# 插入\n", "print()\n", "a_list.insert(1, 'example') # 在索引 1 的位置插入 'example'\n", + "print(a_list)\n", "\n", - "# 删除\n", + "# # 删除\n", "print()\n", "print(a_list)\n", "a_list.remove('example') # 去除 'example' 这个元素,如果有多个 'example',只删除第一个\n", "print(a_list)\n", "\n", - "# pop() 删除并返回被删除的值\n", + "# # pop() 删除并返回被删除的值\n", "\n", "print()\n", "print(a_list)\n", @@ -824,7 +826,7 @@ "print(a_list)\n", "print(p)\n", "\n", - "# pop() 与 del,或者 remove() 的区别\n", + "# # pop() 与 del,或者 remove() 的区别\n", "print()\n", "a_list.insert(2, 'example')\n", "a_list.insert(2, 'example')\n", @@ -1423,18 +1425,19 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 38, "metadata": {}, "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAARsAAADqCAYAAACSlOEpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8XXW57/HPszOnadp0nls60jKDLSCjgIgIHEC8HI/AQT0O13OEq4jDddhsFRwA9YIDiogoqIDMICAIFShDkdLSCVo6D6FTmjRpkp1k7+f+sVZKGpo2016/tdZ+3q9XXkl3hvXsNPnmN63fT1QVY4zJtYTrAowx+cHCxhgTCAsbY0wgLGyMMYGwsDHGBMLCxhgTCAsbY0wgLGyMMYGwsDHGBMLCxhgTCAsbY0wgLGyMMYGwsDHGBMLCxhgTCAsbY0wgLGyMMYGwsDHGBMLCxhgTCAsbY0wgLGyMMYGwsDHGBMLCxhgTCAsbY0wgCl0XYPKLpKQYqAQGAiVAMVDkv25/uwgQQP2XLNAGZPzXTUCj/7IbaNSkNgX6REyPiR1SZ/qbpESAKmAYMBgvXDoGTC5k8cKnFqjxX3YAtZrUTI6uaXrAwsb0maRkADACGN7hdZHTot6VBerwgqca2KRJ3eW2pPxkYWN6TFJSBIwFxvsvFW4r6rEGYDOwCS98Gh3XkxcsbEy3SEoqgIn+yxjiNbmwE1gDrNak1rguJq4sbEyX/BbMFGA6MMpxOUGpBVYBK6271b8sbMx7SEpGAzOAyeT3jOVW4E284LFB5j6ysDEASEpKgJl4ITPIcTlh0wwsB5ZpUne7LiaqLGzynKSkHDgcL2jCMoMUVlm8sZ3FmtStrouJGgubPCUpqQSOwBuPKXBcThRtAV7VpG52XUhUWNjkGUnJIOAYvIFfcVxOHGwC5mtSt7kuJOwsbPKEf5vA0cChxGvaOizW4LV0al0XElYWNjHn3zowE3gfUOq4nLhTYAVeS8fu1erEwibGJCVjgeOBIa5ryTNp4GVN6luuCwkTC5sYkpSUAifgjcsYdzYDz2tS61wXEgYWNjEjKZkMnIh1mcIiA7wOLNSkZl0X45KFTUz4i/JOxFozYVUDPJPP915Z2MSAPzZzKjDAcSlm/zJ4YzlLXRfigoVNxElK3oc3pW2iYx3wrCa1xXUhQbKwiSh/3cxpwATXtZhe2QU8rUnd7rqQoFjYRJCkZDDwIeyGyajL4M1WrXBdSBAsbCJGUjIJ+AB202ScLNCk/st1EblmYRMhkpKj8VYCm/hZATwX5+lxC5uIkJS8H+++JhNfm4G/x3Xg2MIm5Px7m07B2wrCxF8N8IQmtcF1If3NwibEJCUFwOnAJMelmGDtBh6J2x7IFjYh5W82fibekSkm/zTgBU6960L6i+1rEkKSkkLgw1jQ5LMK4Bz/CJ1YsLAJGUlJAvgg+XN0iunaQLzAKXddSH+wsAmfU/FOmTQGvDPSYxE4FjYh4k9vT3VdhwmdwcDZ/jheZFnYhISk5ChsHY3p2hDgdH8pRCRZ2ISApGQGMNt1HSb0JgDHui6it2zquzdEBCgHyrr4CMU7RbGRA3yDJSUjgXOx4Dfd95wm9U3XRfSUhU1XRBJ4TdfheH3mAXjTkQPwgqY7zdks0Ii3ZqL9ZRewDaiRaygDLvS/njHdlQUe06RWuy6kJyxs2okU4U03j/ZfhpHDkyKzQuufLqT+uRGULBhAwcIBlGTEDo0z3dYMPBilVcb5HTYiBcBEvH17JxDgMbSL5rB7w5R3t/FMC5nF5aTnViIvV1CSTli3yhzQNuChqNwpnn9h43WPxuJNMU/Cwb4wmybQ9PoJXY730ArZJeU0PzCExOsD7JQEs19vaFJfdl1Ed+RP2HjdpFnAYTgcI2kqo+3Zc5BsYfdaUVsLaXm0irbHB1PabK0ds29/06RudF3EgcQ/bERK8NavHAqUOK6GeWfQtHN4162arqSFzJODaL5rGKWNBcF190wkNAL3alLTrgvZn/iGjUgZcDheayYUKy/XT6bxjWP71qpqFjIPV9F8z1DKbFzHdLBak/q06yL2J55hIzILmAMUuy6lXbqUtmfOQTJF/dMq2Z2g7a5htDxSZdPmZo+nNamrXRfRlXiFjcgQ4CRgpOtSOnv5AzRuH9X/wbC6hOYbRpPYUBKeYDXONAJ3a1JbXReyL/FohosUInIs3gK50AXNpok05SJoACanKb15LUWf3sruAiVGfzlML5QDx7guoivRb9mIDMfbOrPSdSn70lpE5h/noW3FFOb6WpuLSF8zjkR1cTjGqIwTWeA+TepO14V0Fu2WjcghwL8R0qABePMImoMIGoAxrZTcvJbEKbtoCuJ6JpQSwAmui9iXaIaNSAEip+F9U0P7HJrKaFs/uefT3H1RohR8pZqy/1NNo3Wr8tYYSUno9kUK7S9ql0TK8e6SDt03s7Olx9CiBW6+x6fvovzH62kuzRKJpeym3x3n72UdGtEKG5HBwAXACNelHMiuQbS8My7YVk1n05sp+39raR3cRpvLOowT5XhrzEIjOmHjBc058O7Ni2G2eDYZQnAX95hWSm5ai45NE8tTFs1+HRGm1k00wubdoInEArZtI2nuzS0JuVKVoejG9SQscPJOGSFq3YQ/bCIWNADLj3JdwXsNyFL4ow3I8FZCueDL5ExoWjfhDpsIBk3tENK7qsK5LcSgDEXXr0NtDCevhKZ1E96wESnFOxUyMkEDsOJQMq5r2J+hGYpvWEe2PBPuOk2/CkXrJpxh420ofjreiYCR0VxG29bR4Rmr6crINoqTG2kRW4eTL8rwdqN0Kpxh4x1XEblzrt+eRZqE+xmo7pjVTNnnt9Loug4TGOddqfCFjchUvH1oIqWtgOyGg8I5VtOVs2sZcJLd2pAvhktKhrksIFxhIzIUONl1Gb2xfirp/tqrJkhXvkOxzVDlDaetm/CEjbcR+WkQzE2L/W3ttBB9L3ugRCn4xiYbLM4TUyUlzvY9CtMvyBFAlesieqNhIC2NA93vb9xb09KU/luNjd/kgUJgmquLhyNsRCqBo12X0Vvrp0S/G3LZdkqtO5UXZri6cDjCxtvKM3LjHe02T4z+ZlXFSuKrm22xXx4YJilxsv+T+7ARmUYEp7nb1Q2mpbk8Hvv/HtxM2ewGm53KA07W3LgNG5Fi4HinNfTR+qnx6np8bgsFttgv9ia7uKjrls2hEK21KZ1Vj49Hq6bdyDaKz6q11k3MDZWUVAR9UXdh47VqIrd4r6PaKtItpdEfr+ns0u0UF9kOf3E3KegLumzZHEqIDpHrjS1j4zmgOjBL4Vl1NLuuw+TUxKAv6CZsRArxwibSto9y3g3NmfNrorm40nTbKElJoDPArn5ZphPxsRoFrauKdstsf0a0UXxsvY3dxFgBMDzIC7oKm8i3anYOoyVbGN21Qd1x8Y5o3MFuem1UkBcLvqksMgwYHPh1+9nWMbRBdG9R6I5paUpHt9AaqxM2N1HJQ1xMHRNJ0EYpO5jIQtZzBFfw8wN+/h85j0ms4CTeDKDaXIt52ETgvKfuiPN4TUdn1dJy+4iYhE0W+Av/m8m8xBe4FYBFjGMJR3Tr89sQLuXhHFYYtFGSEtFkMGdwBxs23g58zncM6ysFrRsc71ZNu5PrKbo99Kd0ddOLzEDIcAHP7XnsCDbSQDlbOZif8zkaGMMg1vM5biMBXMd1TGQe7zCLWTzLOg7lIN7gQyzgDi7gHY5AyDKcZXySv7p7cr1SjHfzc00QFwu6ZTOKiJz7tD+7B9KqBfEdHO5oWBvFU5pJryqNQbi+w1gGs36f72tgPJdxDeOo42d8lflM5TjeBqCAVq7iegBu8ccbt1FONUfxVb5DAtgR/u1guzCKgMIm6K5ALLpQdVX5tf/LmXXxXE+0l4GsZSK1FKBUsoEdDN3zvmP513s+fjDNJGjlVi7j7xzFgMieyTX0wB/SP4IOm4MCvl5O7KrKr9W1R+6OyZqbkWymlgn7fF+iQ6AKSrbD70b5PoKkiCxf5AdMZwGrOZJfcWX/FxyIwCZrggsb7wyoSK+tabdrcH5NCY9qpbgiDke/nMCbZCnkQU7c89hrTGQN03v8teoooZYyPsASPsrdNDC+P0sNUGBhE+RfrECn2XKpoTImf+m7KQFy9G5anquM7LiEJwFczK94mIv5AWeRoI0ytjOBhT0etainlL/wBbL+TN2R3NPv9QajTFJSoklN5/pCosHMeoHIKTjcJay/KOjfLkY1kR9T3+2eraTxJ6OjdWCg6baHNKlbcn2RIH9hRgZ4rZxpqKQ134IGYGZTvFdL57lAulLB/NJ4R+lGftUwQGNFDMYuemFYK0UFtqlWXA0K4iJBjT3EZVkYzWX5+QtXCIkxLbRsKIn4+qKnOJLXOXevxxoZyynczAdY6qgq1wJZ+xZU2DjZYDkX0tEeIu2TKc1kNkR9ad8HWcgHWbjn3w9yEqs5lpNZdsDPzQKKUBC7PziBzBIHFTaBb0GYK+nS2P2gdduUNNm5rovoT28xgqWcwyf4EQUod3MmG3gfWQoZw+tcwiOsZij3cgVDeYudTOYifslyprCED6MII1nM5dzv+qn0USBhE9RAZ+RvUWiXLsmvNTYdjWqN0XNPU8DD/BdHcy+TqOGfzKKOEXyZ67iK71HDRF7yD3RrYiRH8BJX830KybCQC7mMn/BlvsdOJvEURzp+Nn1lLZswaimN0S9cDw1ui9Fz/wvnMZDNfNi/FWE1s9jOLG7g2wBkKGErIxhJDSXUMJs1ALzFJIawglE0ADCZV9jINOjQNYueWIVNbFo2LSX5N+3drjITk+c+j+lUczSf5/t7PT6Tx7mA5/d6bDVDSfDugjeNUeC+q0hSktCk5vQ2nNz/8HjbSvQ6bIrgpq7edz1Mnwb/09uv3RutRX3/YTv3z/z6isf5VPu/020kPnoPN372kWCfS08NyMYgbLZTznNczmnczuAOITKZZaziBOr8u9vXM5hqBr7n82eyhhqms4UK2hDWMIfxrAis/tzJeesmiJZNMYTvr0EjJMrp+Q2Vmuj7cykQ0jVNjKlrpmhQKa33LWdmWSG1ff26uTYgE4OFfU9xMq0MZC6fYG6Hxw/jcSYyn1/zNQAKSHMev6Og08/IOOo4kge4gy/7A8RLOINFwT2BnMl5FgQRNn3+a5gBzoCPLvb2LtZL4G8/Y+/b/m+Fid+ES/8ItxwGu86Fj2+GsRlIfBoe+QEs+iwcPw8Oa4WiFihZCz/paS0q/ROckwaz5K/LOOzTR7Pg5Y3MmTmM+evqvAHJDXWUX/s8/1nfwvACoeVTR/HHUyexqavHH1jOtPuW8+/tJf7kQ1w/YgDp657nzOXbeV9WKZw6hNdTp/JIX2ouhIQo2l/fAyc+zhPAE/v5iGfe88jXSO3177OZz9nM79/CnMv5/2kQzeI+X+NrcNRaGL8Rvvsk/PQ2+OgrHVY93gyTvwWX3AO//BBsvwzOPhberIbr5sGNt8BFm/0zqtbBlIfg9rW9CBoA7af/kjMm8+pr1czelaawpolxM4f7A5DATfM5b1QFG+66kO+eN4MHfrvA63J19fgTqzjz4kP4050X8r2fncX1g0povXsJs7Y3MuKO87nujvP5XnU9Ex98059d6YPo96NMF2IRNn1+EvNh2ukwvxT0GKifAisf8g/Z2gajUnDpg/DzU/0dx5bArHvgrBHw7RPgK21Q+BIMAZgOy2ZCY19r6qtTJ7GpvoWhdyxizqTBLO74vup6pp43g5cBLprFW+kMA6rrKevq8fGVrLp3GR/78TxO27KbspJCsgu3MGvjLmZd9gDfvvxBvlWXZtT6ur6v5E7YLQtxlfOwCaIb1ecR7v39dFdAXRsUPQ4Tjsf7pVWQ38It58Ned7I+CQeVEp4d1aZWsejZNVx05bHcuKNpr0H09/zHJwTt6vFvncwT/1zL4hfWc+g1c/nGl4/jp6pw/Hge/9JxnWZX+igb5S6U2Z+c/xEJomXT57A5DlY+A7ObQRZBxWqYdgGsBSiDpsfg5l/B+dd7h99xGCz9MZzWfsfk7+m/jY2kH/9LLjqEeceN49FTJrGp4+NjBrLikRUcC3D/cqaXFNAwsoLmrh5/bTPDT5nEpm+ezJNDy1j71g5GHTWKZa9Xc8L2Rm92Zfk2Bq/auY/ZlR7KxCVsvtv1LGeeyvnuk6Fu2TRCogDafgiv/wsmj4PvAPopuG827Jrrb8h1DNTfC7/4KFwxEO74Ezx2Dlw80vt4qYIdl9ONM4G6QfqxG3HIcGoPGf7eAckvzuGRa5/n8k/cz3cKhJb/Oprb9/f4X5Zy+o0vMUOEbFUp1RfNYklFMW3r6hh15ePe7EphAekr5vA7qqjvbb1pIQMxmJEy+5Lzlk0wm2eJfIpeBNudMO5quLQafpCDqnrl6fNoaR4Q8Tufe2lHAa2XT43JGVLf5Sau5Gp+xxdooxylgKN5iDNYtOd+qCreZidTKGEnn+GXDKCVlQznb3ycFgZSQAsf5o/M5B3XT6cf/EGT2pzLCwS1griBHu5ncxmc/Bic9iXCtd1icQvaHJv10D1T33nNSdSV08rl/IoqmtlCBb/j65zmr5lpYgRncStH8Ed+wWeZy9F8hFd4lEs4m7uYwVZe5SCe4D+Y2buZzRBRIOfbggYVNrvpYdj8AZ6DDoeJhURxOj83z4IYhk0W4T4uoIZpgNLCYKr97VBK2c4RbARgKOuoYyh1lLCLKTzE5/Z8DY3FftTpIE7FDLJlEwvFOW1ohltNYcymvf/OHNJUcCXXUkKG67iOtN9NlL2OdsmSpZgsQiGNfJXvuSo5RwL5qQ5qjdbugK6TcyXNMfuF64ENxTF77s2UUUo9JWSYxwxaDnBgWxXNlLKDJzgG8KY+FjEugEpzLZCwsZZND5U2xWTqtxdWlcZkJqqVBEIbJzOfO/lvruf/MogNlHVjoPd8fsujfII3OBulgHG8uqe7FV2xCpudAV0n50ryuBu1ujQW4xOwjDGUsY2RNHAVP9rnx3S8H+pintrz9hR2cGXs1ujEKmy2QTzWaJQ05eftQc1CpqYwBmHzACezgtM4LlyznI71eu1VTwTzw6OaRWQbMTgVc+CuGPzC9cKmYlqJwR8LLgjnLKdjgWxvEuRf6ZyfuBeE0iYKC9ryb/p7UXkMn/NTHMk1/Jrl0f8j2EcWNmFV3kCr6xqC9mpFDFt0K5hDJW/zGrNdl+KQAnVBXCjIH6A4LOkGYGAt2fpYnO/ZPS1CdnlZzG7RqKOEWqZwETfyAP8NPMI8pjOfcymigQbGMIj1fI7bSADXcR0TeIlqDkcp4Fx+E5PbFOpzvfdwu+BaNqrN+PvNRF1l6Dfw7F+rS0jH5m7vdi9wJMNYygy2UkQjrzMBgAbGcy53czXX0Mgw5jN1z+eU0sDVXMtU/snzfNBV6f0ssJ/moGdWVgV8vZwYtDO/ZqReHBizxXwAq5jNTF4FYCKvssjvSg1kLROppQClkg3s6LDQbw6vAzCe9TQyLPiicyKwsAm6H/42RL9/XFkbw/GLLmRA/1FJ1A/d3dtWBrCTg3mBsbyA4v3RVaaxhMRetykoHU+UKPHfV0AWjc0fnK1BXSjYXxrVekS2ACMDvW4/K2mmsLiZ1pbSmGy3sB8rS2neVUi8Tjifx9GM4WU+w517HvsJX2Fthy5T/ghs3MlFOseiK1W1vcNfwBh7elAMu1BrmcM0v0vUbgIL2MgcRxW5skuTGth+3MFsnrXXFaUMuIQQniXVE2un0rhkNuWu68ilVsj+xzRoTsSmy2D2tkKTOjeoiwX/Q6TaBGwI/Lr9bMTm+HehXqik2YIm1gKdunf1g/SGo+v2m/JGioqb47u4Lwv656HxD9Q8lwdho7oZ7+bMSBuyLb7jNkvLaK4utrCJsSZNaqArxlw2kRc6vHa/GLE5hoOnvj8Pi/aYmjmgwIcy3IWN6hpgh7Pr94MR1RQTwxMiV5bQvLicUtd1mJxaF/QFXQ/+veb4+n1S2kRhZW14TtjsL78aaa2amMuQVy0bANW1RPwGzbFr47X1wvwBNK4si9mKYdPZRk1q4OONrls2AM8TwNGfuTJuDSVk49GVaoPsLSNtUDgPrHZxUfdho7oT/IPBIqgkTcHgmmD2cM21R6to2lZkYRNzGRyM10AYwsazgIA28MmFcWui37J5p4j074fHe0W0AWC9JtXJOGM4wkY1g9ediqSx6yiRbHS7ghnQH46B2O1ZY/ZluasLhyNsoH2h3wrXZfRGUSsFQ7dGtyv1aBVNq0ptUDgP7NKkOjvjKjxh43mBiO7mN2VZ6L6X3bKhmPTtw2O2hYTpirNWDYQtbFTbgL8Dadel9NTwLZSW10er7kYhkxxHwrpPeSELvOWygHCFDYDqLuAfEL1B1ynLo7PmJgP64zG02uxT3litSXXa1Q9f2ACobgR/f9gIGb+assKWaNycedcwml6rsFsS8sgy1wWEM2wAVBcSsV39EopMWBX+rtRTley+d6hNc+eRrZpU5yv1wxs2nmdxtACpt6YspzTM0+DzKmi8aTQDXNdhAvUv1wVA2MNGNQs8RYQCpyRNwej14ZwGX1BO44/G2MxTntnicrq7o3CHDXQMnLWOK+m2WQsplky4WjeLy2j67jjK1Gae8k1odlYIf9hAe+A8TUQCp7SJwolv0+S6jnbzKmj85nhKbYo774SmVQNRCRvoGDgrXZfSHQe/QVlBq/up8Aer2P3DsZRbiyYvhaZVA1EKG/ACR/VZYD4hX4dT2EZi6jJ3M1MZ0N8Op/G2ETYYnKc2h6lVA1ELm3betPjfIdy75E1ZTllJU/AnMNQnaPv2eNIPDbHp7TyVBea5LqKzaIYNgOo64H5gu+tSupJQ5OBFwYbNilKaPn8QYnsI57UlmtSdrovoLLphA+23NjyEdw5VKLtV49dQXhnA5loZ0L8OYfdVEynbVUhBrq9nQms3IRuraRf88bu5IjIMOBkY5rqUznZX0Dr3bAq0IDfhvr6Y5h+PIbGuhOJcfH0TKf/QpIZy5X18wgZARIBDgNkQrhsMVx5C41uH9+8YSlrI3DWM9AM2NmM8mzSpj7kuoiuFrgvoV15yLkFkDfB+4CDHFe0xdSllmybS3DCo72MpGdCXK2j6zUiKawotaAwAbXj7QYVWvFo2nXldqyPxQsf5OpP6Slqe+zCFmuhddyoLumAATb8ZQZEdjWs6madJXeq6iP2Jd9i0ExmMFzpTcTwo/ubh7H77kJ6tfcmAvj6Apj8Mo3BNqY3LmPfYqEn9m+siDiRe3aiuqNYCcxF5DTgML3ScTA3PeIPyd8aRbhh04D1/6wpofWoQLQ9VUVJr3SWzb83AXNdFdEd+tGw6E0kAY4EpeF2sQLskjeW0/vMjJDL7mKJOC5nF5aSfqUReGEip3WZgDuAJTep610V0R36GTUciBcAEvOAZC8GcMlA9jqbXTvK2e9idoG1ROa1zK2F+hd0wabptsSb1JddFdFd+dKP2xzuzao3/AiJDgNHACGA4MLi/rwjUjt7I1tcytN02hWkbvPUx9n9heqIaeMV1ET1hLZsDESkGBgEDgAr/dfvbpbw7y9X5G9kMNOzjpR7VVgBJiQAfwmtZGdNdu4AHXW9g3lMWNo5JSoqBC/ACzZgDacELmlrXhfRUtO+NigH/3OUnIJxbiZpQUeDpKAYNWNiEgia1Dngcgt+OwkTKi2Hbo6YnLGxCQpO6DW+PnlDtXWxCY0nYVwgfiIVNiGhSNwHPENLtMowzyzWpL7ouoq8sbEJGk7qaEO6yZpx5S5P6vOsi+oOFTQhpUpfh7bNs8ttK4DnXRfQXm/oOMUnJLOBE13UYJ1YBz2gyPr+gsWnZiMgkEVER6dVKXBFpEJHJ/V1XX/gtnGewQeN88zbwbJyCBmLUshGRSXi3HBSpapvbavqXpGQicAbY3sJ5YJEmNVK3IXRXbFo2caZJXYetw4k7BV6Ia9BABMJGRL4uIqtEpF5ElonIBf7jBSJyg4hsF5HVwEc6fd5cEfm+iLzod5EeEZGhInKXiOwSkVf91lD7x6uITPXf/r2I/EJEHvOv+4qITPHfJyLyUxHZKiJ1IvKGiBya6++DJnUz8Aje/VUmXtqAJ/1uc2yFPmzwBspOwrt3KAXcKSKjgc8A5wBHAe8DLtrH5/47cCnv7l3zEnA7MARYDiT3c92P+9erwutDX+s/fibeKQ7T8e4IvxjY0etn1wOa1O14Z2VtDuJ6JhBNwCNR2ZOmL0IfNqp6r6puVtWsqt6NNx04B/hfwM9UdYOq1gA/2Men366qq1T33A6wSlWf9sd07sULqq7cr6rz/Y+9C29bUfC6MgOBg/HGvJaranW/PNlu8O/0fQxYHNQ1Tc5sBR7wV4/HXujDRkQuE5GFIlIrIrXAoXhnQ40BNnT40HX7+PQtHd5u2se/K/Zz6Xc6vN3Y/rGq+gzwc+AXwBYR+Y2IVHb3+fQHTar6myY9i9cEN9GzDHhYk5o33eJQh42ITARuBf4HGKqqg4EleHvIVAPjO3x4YHvCqOpNqnoM3hlV04Grg7r2XnUkdSXwMN7+JiYaWvAOkntBk5pXSxpCHTZ4m1QpsA1ARD6J17IBuAe4QkTGiUgV8PUgChKR2SJyrIgU4R112gxkgrj2vvjjOPcBb7qqwXTbVuC+sJ5YmWuhDhtVXQbciDewuwXvZIT2+4ZuBZ4EFgEL8AZOg1DpX3snXtdtB3BDQNfeJ01qqyb1Oby7xptc1mL2KYt3/vbDmtR618W4EptFfcYjKSnFOw10qutaDOCN/T0X1Q2v+pOFTUz5q45PYP+D4CZ3WoBXNKnLXRcSFhY2MSYpKQCOwJu2t9MbgrMab1e9RteFhImFTR6QlJTjrU2a7rqWmNsGzPc3QTOdWNjkEUnJcLzxnJGua4mZWuBVTeoa14WEmYVNHpKUTMBbPW2h0zcNeLNMK+K2HUQuWNjkMUnJaLzQGee6lojZhbe4dLkm1dkaq6ixsDFISobhDSIfBHbO+H5swguZ9daS6TkLG7OHpGQgMANvINmmzD1teHf9L9ak7nRdTJRZ2Jj38M8gH4sXPJPIzx0Ct+KFzNtRO1M7rCxszH5JSkoi5h0hAAAEb0lEQVTwViNPwRtQjnM3qwZvjcwq/5RS048sbEy3+bdCTPRfxgJFbivqswzePXebgDV2S0FuWdiYXpGUJPBaOuP918MJ/yplBbbjhcsmYIsm47U5fphZ2Jh+4Y/zVAEjOrxU4a7bpUAd3l35Nf7rdzSpLY7qyXsWNiZnJCWFeFtyVOJtpdr5dV8HnlvwdlFsxNtbaDfeat4aYKetgQkXCxvjjB9GxXhjPx1fF/sfov5LFm8KOuO/bgIarQsULRY2xphAhHqnPmNMfFjYGGMCYWFjjAmEhY0xJhAWNsaYQFjYGGMCYWFj8pKI/F5Evu+6jnxiYWNMPxORy0XkBdd1hI2FjTE9ICI5v9k0iGu4YGFjQk1E1orI1SLyhojsFpHbRGSkiDwuIvUi8rR/1jsicp6ILBWRWhGZKyIzO3ydo0Rkgf85dwOlna5zjogs9D/3RRE5vFMNXxORN4DdIlIoIl8XkVX+11smIhf4HzsTuAU4XkQaRKTWf3yQiPxBRLaJyDoR+ZaIJPz3XS4i80TkpyJSA1wjIlNF5J8iUici2/2ao01V7cVeQvsCrAVextvGYizeDnoL8DZqLwGeAZJ4W5nuBj6Id4/VV/F22mu/12od8CX/fRcBrcD3/Wsc7X/dY/FuDv1P/7olHWpYiLedRpn/2MeAMXh/sC/2rz3af9/lwAudnscfgIfwbkCdBKwAPt3h49uAL+Jt01EG/Bn4pv/1S4ETXf9f9PXFWjYmCm5W1S2qugl4HnhFVV9X1TTwAF7wXAw8pqpPqWorcAPeL+37gePwQuZnqtqqqn8FXu3w9T8D/FpVX1HVjKreAaT9z2t3k6puUNUmAFW9V1U3q2pWVe8GVuIdBPgeIlLg1/cNVa1X1bXAjcClHT5ss6rerKpt/jVa8TYpG6Oqzaoa+TEgCxsTBVs6vN20j39X4LUy1rU/qKpZYANea2gMsEn9ZoRvXYe3JwJX+V2oWr/rM97/vHYbOhYkIpd16HbVAocCw7qofxjvtq46Xn9sV18fr2UmwHy/a/ipLr52ZMRyIMrkpc3AYe3/EBHBC4xNeNtUjBUR6RA4E4BV/tsbgGtV9dr9fP09QSUiE4FbgdOBl1Q1IyILeXejsM5bKWzn3ZbKsg7X73hM716fo6rv4LW4EJETgadF5DlVfXs/NYaatWxMXNwDfERETheRIuAqvK7Qi8BLeGMiV/iDuxeyd5fnVuDzInKseAaIyEdEZGAX1xqAFw7bAETkk3gtm3ZbgHEiUgygqhm/vmtFZKAfVl8G7uzqyYjIx0Sk/fDAnf71Ir0ZmIWNiQVVfQu4BLgZryVxLnCuqraoagtwId5A7E688ZP7O3zuv/BaET/33/+2/7FdXWsZ3pjLS3jBchgwr8OHPAMsBd4Rke3+Y1/EG0ReDbwA/An43X6e0mzgFRFpAB4GrlSN9lnitnmWMSYQ1rIxxgTCwsYYEwgLG2NMICxsjDGBsLAxxgTCwsYYEwgLG2NMICxsjDGBsLAxxgTi/wPAUfJk5AUPjAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "ename": "ModuleNotFoundError", + "evalue": "No module named 'matplotlib'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m/Users/chenqiang/Documents/the-craft-of-selfteaching/Part.1.E.6.containers.ipynb Cell 67'\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[39m# 这个 cell 集合运算图示需要安装 matplotlib 和 matplotlib-venn\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[39m# !pip install matplotlib\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[39m# !pip install matplotlib-venn\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mmatplotlib\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mpyplot\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mplt\u001b[39;00m\n\u001b[1;32m 5\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mmatplotlib_venn\u001b[39;00m \u001b[39mimport\u001b[39;00m venn2\n\u001b[1;32m 7\u001b[0m admins \u001b[39m=\u001b[39m {\u001b[39m'\u001b[39m\u001b[39mMoose\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mJoker\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mJoker\u001b[39m\u001b[39m'\u001b[39m}\n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'matplotlib'" + ] } ], "source": [ @@ -2123,7 +2126,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 46, "metadata": {}, "outputs": [ { @@ -2132,7 +2135,7 @@ "{'john': 9876, 'mike': 5603, 'stan': 6898, 'eric': 7898}" ] }, - "execution_count": 36, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, @@ -2142,7 +2145,7 @@ "{}" ] }, - "execution_count": 36, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, @@ -2152,7 +2155,7 @@ "{'john': 9876, 'mike': 5603, 'stan': 6898, 'eric': 7898}" ] }, - "execution_count": 36, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, @@ -2162,7 +2165,7 @@ "('zoe', 1225)" ] }, - "execution_count": 36, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, @@ -2172,7 +2175,7 @@ "{'ann': 6585, 'bob': 8982, 'joe': 2598}" ] }, - "execution_count": 36, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, @@ -2182,7 +2185,7 @@ "3538" ] }, - "execution_count": 36, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, @@ -2192,7 +2195,7 @@ "{'ann': 6585, 'bob': 8982, 'joe': 2598}" ] }, - "execution_count": 36, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, @@ -2202,7 +2205,7 @@ "3538" ] }, - "execution_count": 36, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, @@ -2212,7 +2215,7 @@ "{'ann': 6585, 'bob': 8982, 'joe': 2598}" ] }, - "execution_count": 36, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, @@ -2222,7 +2225,7 @@ "3538" ] }, - "execution_count": 36, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, @@ -2232,7 +2235,7 @@ "{'ann': 6585, 'bob': 8982, 'joe': 2598, 'adam': 3538}" ] }, - "execution_count": 36, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -2343,7 +2346,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 48, "metadata": {}, "outputs": [ { @@ -2368,7 +2371,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -2377,12 +2380,13 @@ "text": [ "0 0\n", "1 1\n", - "2 2\n" + "2 2\n", + "3 3\n" ] } ], "source": [ - "for i, v in enumerate(range(3)):\n", + "for i, v in enumerate(range(4)):\n", " print(i, v)" ] }, @@ -2411,7 +2415,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 51, "metadata": {}, "outputs": [ { @@ -2655,8 +2659,11 @@ } ], "metadata": { + "interpreter": { + "hash": "7e1998ff7f8aa20ada591c520b972326324e5ea05489af9e422744c7c09f6dad" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.10.0 64-bit", "language": "python", "name": "python3" }, @@ -2670,7 +2677,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.10.0" }, "toc-autonumbering": true }, diff --git a/Part.1.E.7.files.ipynb b/Part.1.E.7.files.ipynb index 0d179ba01..b07e6a430 100644 --- a/Part.1.E.7.files.ipynb +++ b/Part.1.E.7.files.ipynb @@ -108,7 +108,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -156,16 +156,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "first line\n", - "second line\n", - "third line\n", + "abc\n", + "bcd\n", + "efg\n", "\n" ] } ], "source": [ "f = open('/tmp/test-file.txt', 'w')\n", - "f.write('first line\\nsecond line\\nthird line\\n')\n", + "f.write('abc\\nbcd\\nefg\\n')\n", "f.close()\n", "\n", "f = open('/tmp/test-file.txt', 'r')\n", @@ -183,7 +183,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -193,6 +193,8 @@ "first line\n", "\n", "second line\n", + "\n", + "third line\n", "\n" ] } @@ -207,6 +209,8 @@ "print(s)\n", "s = f.readline() # 返回的是 'second line\\n'\n", "print(s)\n", + "s = f.readline() # 返回的是 'third line\\n'\n", + "print(s)\n", "f.close()" ] }, @@ -219,7 +223,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -227,13 +231,14 @@ "output_type": "stream", "text": [ "first line\n", - "second line\n" + "second line\n", + "third line\n" ] } ], "source": [ "f = open('/tmp/test-file.txt', 'w')\n", - "f.write('first line\\nsecond line\\nthird line\\n')\n", + "f.write('\\t\\t\\tfirst line\\nsecond line\\nthird line\\n')\n", "f.close()\n", "\n", "f = open('/tmp/test-file.txt', 'r')\n", @@ -241,6 +246,8 @@ "print(s)\n", "s = f.readline().strip() # 返回的是 'second line','\\n' 被去掉了……\n", "print(s)\n", + "s = f.readline().strip() # 返回的是 'second line','\\n' 被去掉了……\n", + "print(s)\n", "f.close()" ] }, @@ -372,7 +379,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -9681,8 +9688,11 @@ } ], "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -9696,7 +9706,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.9.7" } }, "nbformat": 4, diff --git a/Part.1.F.deal-with-forward-references.ipynb b/Part.1.F.deal-with-forward-references.ipynb index e3c343877..3611a79c2 100644 --- a/Part.1.F.deal-with-forward-references.ipynb +++ b/Part.1.F.deal-with-forward-references.ipynb @@ -317,11 +317,11 @@ "\n", "现在的你,不一样了 —— 你要跳出来。养成一个习惯:\n", "\n", - "> 不管怎么样,先用起来,反正,研究透原理,不可能马上做到,需要时间漫漫。\n", + "> 不管怎么样,先用起来,反正,研究透原理,不可能马上做到,需要时间漫漫。\n", "\n", "用错了没关系,改正就好。用得不好没关系,用多了就会好。只要开始用起来,理解速度就会加快 —— 实践出真知,不是空话。\n", "\n", - "有的时候,就是因为没有犯过错,所以不可能有机会改正,于是,就从未做对过。" + "有的时候,就是因为没有犯过错,所以不可能有机会改正,于是,就从未做对过。" ] }, { diff --git a/Part.2.A.clumsy-and-patience.ipynb b/Part.2.A.clumsy-and-patience.ipynb index 0dc13a983..f558b211f 100644 --- a/Part.2.A.clumsy-and-patience.ipynb +++ b/Part.2.A.clumsy-and-patience.ipynb @@ -24,7 +24,7 @@ "\n", "第一部分的内容,基本用来展示 “学” 的过程。**学,就需要重复**,甚至很多次重复,尤其是在面对充满了 “过早引用” 现象的知识结构的时候。\n", "\n", - "反复学,最锻炼的是 “归纳整理” 的能力。而且,最有意思的,这在大多数情况下还是自动发生的 —— 只要你不断重复,你的大脑会在不自主之间把那些已经掌握的知识点与当前尚未掌握的知识点区分开来,前者处理起来轻松容易,甚至可以跳过;后者需要投入更多的注意力去仔细处理…… 在这个过程中,绝大多数的归纳整理工作自动完成了。最后再加上一点 “刻意的、收尾性的归纳总结整理工作” —— 大功告成。\n", + "反复学,最锻炼的是 “归纳整理” 的能力。而且,最有意思的,这在大多数情况下还是自动发生的 —— 只要你不断重复,你的大脑会在不自主之间把那些已经掌握的知识点与当前尚未掌握的知识点区分开来,前者处理起来轻松容易,甚至可以跳过;后者需要投入更多的注意力去仔细处理…… 在这个过程中,绝大多数的归纳整理工作自动完成了。最后再加上一点 “刻意的、收尾性的归纳总结整理工作” —— 大功告成。\n", "\n", "\n", "\n", @@ -79,13 +79,13 @@ "\n", "离开学校之后,绝大多数人很难再有 “一看一下午”、“一练一整天”、“一玩一整夜” 的本钱。又由于生活的压力越来越大,对 “能够使用” 新技能的 “需求” 越来越紧迫,于是,对任何一次自学的 “时间精力投资” 都缩手缩脚,小里小气……\n", "\n", - "**预算观念**非常重要 —— 这个观念的存在与否,成熟与否,基本上决定一个人未来的盈利能力。\n", + "**预算观念**非常重要 —— 这个观念的存在与否,成熟与否,基本上决定一个人未来的盈利能力。\n", "\n", "大多数人对此不仅不成熟,甚至干脆没有预算观念!—— 这也是为什么绝大多数人不适合创业的最根本原因。\n", "\n", "不夸张地讲,未来的你只需要恪守一个原则,就很可能会因此超越 99% 的人:\n", "\n", - "> 绝对不做预算不够的事情。\n", + "> 绝对不做预算不够的事情。\n", "\n", "说来惭愧,我是四十多岁之后,在创业和投资中经历了大量的失败,付了不可想像的学费之后,才深刻理解这条看起来过分简单的原则 —— 亏得本科还是学会计毕业的呢!我的运气在于,在自学这件事上,从来给出的预算都很多……\n", "\n", @@ -149,7 +149,7 @@ "\n", "> 因为早已习惯了投入大量时间换取新技能……\n", "\n", - "等后来真的开始用这些技能做事,不断地做其他人因为时间白过了或者因为投入的 “预算” 不够而学不会做不到的事情 —— 并且还能充分明白,这并不是自己聪明、有天分的结果;只不过是做了该做的事情,投入了该投入的 “成本” 和 “预算” 而已……\n", + "等后来真的开始用这些技能做事,不断地做其他人因为时间白过了或者因为投入的 “预算” 不够而学不会做不到的事情 —— 并且还能充分明白,这并不是自己聪明、有天分的结果;只不过是做了该做的事情,投入了该投入的 “成本” 和 “预算” 而已……\n", "\n", "于是,就真的能够理解下面这句话背后的深意:\n", "\n", diff --git a/Part.2.B.deliberate-practicing.ipynb b/Part.2.B.deliberate-practicing.ipynb index 1b5c4d64d..e708228ba 100644 --- a/Part.2.B.deliberate-practicing.ipynb +++ b/Part.2.B.deliberate-practicing.ipynb @@ -53,7 +53,7 @@ "\n", "对,所谓的 “混”,解释很简单:\n", "\n", - "> **不做刻意练习的人就是在混时间**。\n", + "> **不做刻意练习的人就是在混时间**。\n", "\n" ] }, diff --git a/Part.2.C.why-start-from-writing-functions.ipynb b/Part.2.C.why-start-from-writing-functions.ipynb index 335f534ab..f71b04a0a 100644 --- a/Part.2.C.why-start-from-writing-functions.ipynb +++ b/Part.2.C.why-start-from-writing-functions.ipynb @@ -109,8 +109,11 @@ } ], "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -124,7 +127,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.9.7" } }, "nbformat": 4, diff --git a/Part.2.D.1-args.ipynb b/Part.2.D.1-args.ipynb index 46c032315..2d547aec4 100644 --- a/Part.2.D.1-args.ipynb +++ b/Part.2.D.1-args.ipynb @@ -541,6 +541,22 @@ "a, b" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 总结\n", + "这一章主要讲的是函数和参数:\n", + "- 函数:\n", + " - 函数的组成:输入和运算还有输出,输入指的是输入的值,也就是入参,运算其实就是逻辑,就是产品的加工过程,而输出其实就是加工好的结果,术语叫做返回值\n", + " - 函数命名是可以用下划线也可以用驼峰,建议是用下划线代替,数字是不能命名在开头\n", + " - 定义一个函数,开头可以声明为def,比如def do_something(): 函数后面必须要加括号,以便和变量区分\n", + "- 参数:\n", + " - 参数,即入参,也就是我们所说的变量\n", + " - 变量分全局变量和局部变量,函数内的变量算做变量,它是不会因运算而改变\n", + " - 当然需要考虑一个例外,那就是容器,当我们指定容器中的某个元素等于某个值时,那么这个元素会随之改变,比如: b[0] = 'What?!',我们可以调整下,通过copy的方式:b1=b.copy(),b1[0]='What?!'" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/Part.2.D.2-aargs.ipynb b/Part.2.D.2-aargs.ipynb index 40e956907..f6a1ead64 100644 --- a/Part.2.D.2-aargs.ipynb +++ b/Part.2.D.2-aargs.ipynb @@ -213,7 +213,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -258,7 +258,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -273,7 +273,7 @@ ], "source": [ "def say_hi(**names_greetings):\n", - " for name, greeting in names_greetings.items():\n", + " for name,greeting in names_greetings.items():\n", " print(f'{greeting}, {name}!')\n", " \n", "say_hi(mike='Hello', ann='Oh, my darling', john='Hi')" @@ -288,16 +288,13 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Hello, mike!\n", - "Oh, my darling, ann!\n", - "Hi, john!\n", "Hello, mike!\n", "Oh, my darling, ann!\n", "Hi, john!\n" @@ -396,7 +393,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -406,7 +403,6 @@ "Hi, mike!\n", "Hi, john!\n", "Hi, zeo!\n", - "\n", "Welcome, Mike!\n", "Welcome, John!\n", "Welcome, Zeo!\n" @@ -464,31 +460,31 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "hello, mike!\n", + "hello, john!\n", + "hello, zeo!\n", "Hello, mike!\n", "Hello, john!\n", - "Hello, zeo!\n", - "Hi, mike!\n", - "Hi, john!\n", - "Hi, zeo!\n" + "Hello, zeo!\n" ] } ], "source": [ - "def say_hi(*names, greeting='Hello', capitalized=False):\n", + "def say_hi(*names,greeting='hello',capitalized=False):\n", " for name in names:\n", " if capitalized:\n", " name = name.capitalize()\n", " print(f'{greeting}, {name}!')\n", "\n", "say_hi('mike', 'john', 'zeo')\n", - "say_hi('mike', 'john', 'zeo', greeting='Hi')" + "say_hi('mike', 'john', 'zeo',greeting='Hello')" ] }, { @@ -523,6 +519,163 @@ "Python 都会认为接收到的第一个值是 Positional Argument —— 因为在定义中,`greeting` 被放到了 Arbitrary Positional Arguments 之前。" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 总结\n", + "位置参数Postional Argument\n", + "\n", + "那么我们在定义*+参数时,其实定义为“Arbitrary Positional Arguments”,就是随意变换的位置参数。\n", + "\n", + "那么这个随意变换的位置参数有什么用呢?当我们需要输入一个数组的参数或者一个字典的参数时,觉得很麻烦,那么我们就可以用“Arbitrary Positional Arguments”,比如:def do_something(*names):\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['abc', '123', 'sb']\n" + ] + } + ], + "source": [ + "def do_sometings(*names):\n", + " for name in names:\n", + " print(f'{name}')\n", + "names=['abc','123','sb']\n", + "do_sometings(names)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然我们也可以搞成使用关键字参数,比如def do_somethings(**greetings_names):" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hello,mike\n", + "hi,david\n", + "welcome,andy\n" + ] + } + ], + "source": [ + "def do_sometings(**greetings_names):\n", + " for greeting,name in greetings_names.items():\n", + " print(f'{greeting},{name}')\n", + "a_dictionary={'hello':'mike','hi':'david','welcome':'andy'}\n", + "do_sometings(**a_dictionary)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然我们也可以换其他的方式表达" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I:mike,hello\n", + "I:david,hi\n", + "I:andy,welcome\n" + ] + } + ], + "source": [ + "def do_sometings(who='I:',**greetings_names):\n", + " for name in greetings_names:\n", + " print(f'{who}{greetings_names[name]},{name}')\n", + "a_dictionary={'hello':'mike','hi':'david','welcome':'andy'}\n", + "do_sometings(**a_dictionary)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "如果关键词参数和普通参数放在一起是怎么样的呢" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mikedavid\n", + "mikeandy\n" + ] + } + ], + "source": [ + "def do_sometings(who='I:',*names):\n", + " for name in names:\n", + " print(f'{who}{name}')\n", + "names=['mike','david','andy']\n", + "do_sometings(*names)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "我们发现这样做并不能输出我们想要的函数,所以根据以下的顺序,我们要做下调整\n", + "**Order of Arguments**\n", + "> 1. Positional\n", + "> 1. Arbitrary Positional\n", + "> 1. Keyword\n", + "> 1. Arbitrary Keyword" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I:mike\n", + "I:david\n", + "I:andy\n" + ] + } + ], + "source": [ + "def do_sometings(*names,who='I:'):\n", + " for name in names:\n", + " print(f'{who}{name}')\n", + "names=['mike','david','andy']\n", + "do_sometings(*names)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -532,8 +685,11 @@ } ], "metadata": { + "interpreter": { + "hash": "7e1998ff7f8aa20ada591c520b972326324e5ea05489af9e422744c7c09f6dad" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.10.0 64-bit", "language": "python", "name": "python3" }, @@ -547,7 +703,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.10.0" }, "toc-autonumbering": true }, diff --git a/Part.2.D.3-lambda.ipynb b/Part.2.D.3-lambda.ipynb index bd563434f..537b1115f 100644 --- a/Part.2.D.3-lambda.ipynb +++ b/Part.2.D.3-lambda.ipynb @@ -51,7 +51,7 @@ { "data": { "text/plain": [ - "4547071648" + "4352890848" ] }, "execution_count": 2, @@ -61,7 +61,7 @@ { "data": { "text/plain": [ - "4547071648" + "4352890848" ] }, "execution_count": 2, @@ -247,26 +247,26 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "42" + "43" ] }, - "execution_count": 22, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ - "43" + "44" ] }, - "execution_count": 22, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -275,7 +275,7 @@ "def make_incrementor(n):\n", " return lambda x: x + n\n", "\n", - "f = make_incrementor(42)\n", + "f = make_incrementor(43)\n", "f(0)\n", "\n", "f(1)" @@ -532,7 +532,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -541,7 +541,7 @@ "[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]" ] }, - "execution_count": 1, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -552,6 +552,230 @@ "pairs" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 总结\n", + "化名和匿名\n", + "- 化名:当我们给一个函数取名字,那么这个取名字的过程就是化名\n", + "- 匿名:也就是我们不想给这个名字取名,当想用这个函数的过程返回结果,那么这里就需要用到lambda表达式\n", + " - 如何用:首先还是需要举个例子,原来我们化名的例子是怎么取的,比如:def do_something(x,y): " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def do_something(x,y):\n", + " return x+y\n", + "do_something(1,2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "这里我们返回的是3,x=1,y=2,x+y=1+2=3,那么改造成lambda表达式又是怎么样呢?还是举个例子:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "4390204560" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "4390196352" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "function" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "function" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "add=lambda x,y:x+y\n", + "add(1,2)\n", + "id(add)\n", + "id(lambda x,y:x+y)\n", + "type(add)\n", + "type(lambda x,y:x+y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "这个就是lambda表达式的改造,可以看出add和```lambda x,y:x+y```之间的内存地址不同,但是他们同样是函数" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "### lambda的使用场景\n", + "1. 作为某函数的返回值" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "42" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "43" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def do_something(n):\n", + " return lambda x:x+n\n", + "f=do_something(42)\n", + "f(0)\n", + "f(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. 作为某函数的参数,比如我们用map()函数将原来数组翻倍" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[1, 2, 3, 4, 5, 6]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "[2, 4, 6, 8, 10, 12]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_list=list(range(1,7))\n", + "a_list\n", + "b_list=list(map(lambda x:x*2,a_list))\n", + "b_list" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然也可以在字典里做一些操作比如:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['ann', 'bob', 'joe', 'zoe']" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "phonebook1 = {'ann':6575, 'bob':8982, 'joe':2598, 'zoe':1225}\n", + "list(map(lambda x:x,phonebook1))" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -561,8 +785,11 @@ } ], "metadata": { + "interpreter": { + "hash": "7e1998ff7f8aa20ada591c520b972326324e5ea05489af9e422744c7c09f6dad" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.10.0 64-bit", "language": "python", "name": "python3" }, @@ -576,7 +803,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.10.0" } }, "nbformat": 4, From ce73c8e961ac291572d8b2c408408e232322093f Mon Sep 17 00:00:00 2001 From: hoolich <469165171@qq.com> Date: Sat, 20 Aug 2022 14:33:43 +0800 Subject: [PATCH 02/12] 20220820 --- Part.2.D.3-lambda.ipynb | 10 +- Part.2.D.4-recursion.ipynb | 133 +++++++- Part.2.D.5-docstrings.ipynb | 36 +-- Part.2.D.6-modules.ipynb | 227 +++++++++++-- Part.2.D.7-tdd.ipynb | 58 +++- Part.2.D.8-main.ipynb | 497 +++++++++++++++++++++++++++-- Part.2.E.deliberate-thinking.ipynb | 14 + 7 files changed, 875 insertions(+), 100 deletions(-) diff --git a/Part.2.D.3-lambda.ipynb b/Part.2.D.3-lambda.ipynb index 537b1115f..8a734e951 100644 --- a/Part.2.D.3-lambda.ipynb +++ b/Part.2.D.3-lambda.ipynb @@ -661,15 +661,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "这个就是lambda表达式的改造,可以看出add和```lambda x,y:x+y```之间的内存地址不同,但是他们同样是函数" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ + "这个就是lambda表达式的改造,可以看出add和```lambda x,y:x+y```之间的内存地址不同,但是他们同样是函数\n", "### lambda的使用场景\n", "1. 作为某函数的返回值" ] diff --git a/Part.2.D.4-recursion.ipynb b/Part.2.D.4-recursion.ipynb index 159bf0912..6d4663254 100644 --- a/Part.2.D.4-recursion.ipynb +++ b/Part.2.D.4-recursion.ipynb @@ -96,7 +96,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -590,6 +590,130 @@ "↑Back to Content↑" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 总结\n", + "好的递归函数需要符合三大原则:\n", + "1. 内部调用自己\n", + "2. 有一个退出条件\n", + "3. 可以逐步达到退出条件\n", + "不要因为递归而递归,递归只是让代码显得更加优雅,它是一种特殊算法,任何编程语言都可以做成递归\n", + "递归的例子n!=n*(n-1)*(n-2)*...*1\n", + "我们可以用for循环迭代也可以用递归的方式\n", + "比如" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "120" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def do_something(n):\n", + " sum=1\n", + " for i in range(n,1,-1):\n", + " sum=sum*i\n", + " return sum\n", + "do_something(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "也可以用递归的方式求,比如" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "120" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def do_something(n):\n", + " if n==1:\n", + " return 1\n", + " else:\n", + " return n*do_something(n-1)\n", + "do_something(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "试着加入一些输出语句看看底层的原理" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5\n", + "4\n", + "3\n", + "2\n", + "1\n", + "\tn = 1 return: 1\n", + "\tn = 2 return: 2\n", + "\tn = 3 return: 6\n", + "\tn = 4 return: 24\n", + "\tn = 5 return: 120\n" + ] + }, + { + "data": { + "text/plain": [ + "120" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def do_something(n):\n", + " print(n)\n", + " if n==1:\n", + " print('\\tn =', n, 'return:', 1)\n", + " return 1\n", + " else:\n", + " r = n * do_something(n-1)\n", + " print('\\tn =', n, 'return:', r)\n", + " return r\n", + "do_something(5)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -599,8 +723,11 @@ } ], "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -614,7 +741,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.9.7" } }, "nbformat": 4, diff --git a/Part.2.D.5-docstrings.ipynb b/Part.2.D.5-docstrings.ipynb index cc2c7764c..e0243af24 100644 --- a/Part.2.D.5-docstrings.ipynb +++ b/Part.2.D.5-docstrings.ipynb @@ -99,32 +99,9 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function is_prime in module __main__:\n", - "\n", - "is_prime(n)\n", - " Return a boolean value based upon whether the argument n is a prime number.\n", - "\n", - "Return a boolean value based upon whether the argument n is a prime number.\n" - ] - }, - { - "data": { - "text/plain": [ - "'Return a boolean value based upon whether the argument n is a prime number.'" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "def is_prime(n):\n", " \"\"\"Return a boolean value based upon whether the argument n is a prime number.\"\"\"\n", @@ -154,7 +131,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -354,8 +331,11 @@ } ], "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -369,7 +349,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.9.7" }, "toc-autonumbering": true }, diff --git a/Part.2.D.6-modules.ipynb b/Part.2.D.6-modules.ipynb index 5dfbefa6e..a431efa2f 100644 --- a/Part.2.D.6-modules.ipynb +++ b/Part.2.D.6-modules.ipynb @@ -76,7 +76,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -98,10 +98,6 @@ " :param capitalized: Whether name should be converted to capitalzed before print. False as default.\n", " :returns: None\n", "\n", - "'mycode'\n", - "\n", - "True\n", - "\n", "Hello, mike!\n", "Hello, zoe!\n" ] @@ -319,7 +315,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -328,7 +324,7 @@ "True" ] }, - "execution_count": 7, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -498,9 +494,97 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'A': 'N',\n", + " 'B': 'O',\n", + " 'C': 'P',\n", + " 'D': 'Q',\n", + " 'E': 'R',\n", + " 'F': 'S',\n", + " 'G': 'T',\n", + " 'H': 'U',\n", + " 'I': 'V',\n", + " 'J': 'W',\n", + " 'K': 'X',\n", + " 'L': 'Y',\n", + " 'M': 'Z',\n", + " 'N': 'A',\n", + " 'O': 'B',\n", + " 'P': 'C',\n", + " 'Q': 'D',\n", + " 'R': 'E',\n", + " 'S': 'F',\n", + " 'T': 'G',\n", + " 'U': 'H',\n", + " 'V': 'I',\n", + " 'W': 'J',\n", + " 'X': 'K',\n", + " 'Y': 'L',\n", + " 'Z': 'M',\n", + " 'a': 'n',\n", + " 'b': 'o',\n", + " 'c': 'p',\n", + " 'd': 'q',\n", + " 'e': 'r',\n", + " 'f': 's',\n", + " 'g': 't',\n", + " 'h': 'u',\n", + " 'i': 'v',\n", + " 'j': 'w',\n", + " 'k': 'x',\n", + " 'l': 'y',\n", + " 'm': 'z',\n", + " 'n': 'a',\n", + " 'o': 'b',\n", + " 'p': 'c',\n", + " 'q': 'd',\n", + " 'r': 'e',\n", + " 's': 'f',\n", + " 't': 'g',\n", + " 'u': 'h',\n", + " 'v': 'i',\n", + " 'w': 'j',\n", + " 'x': 'k',\n", + " 'y': 'l',\n", + " 'z': 'm'}" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Zen of Python, by Tim Peters\n", + "Beautiful is better than ugly.\n", + "Explicit is better than implicit.\n", + "Simple is better than complex.\n", + "Complex is better than complicated.\n", + "Flat is better than nested.\n", + "Sparse is better than dense.\n", + "Readability counts.\n", + "Special cases aren't special enough to break the rules.\n", + "Although practicality beats purity.\n", + "Errors should never pass silently.\n", + "Unless explicitly silenced.\n", + "In the face of ambiguity, refuse the temptation to guess.\n", + "There should be one-- and preferably only one --obvious way to do it.\n", + "Although that way may not be obvious at first unless you're Dutch.\n", + "Now is better than never.\n", + "Although never is often better than *right* now.\n", + "If the implementation is hard to explain, it's a bad idea.\n", + "If the implementation is easy to explain, it may be a good idea.\n", + "Namespaces are one honking great idea -- let's do more of those!\n" + ] + } + ], "source": [ "s = \"\"\"Gur Mra bs Clguba, ol Gvz Crgref\n", "Ornhgvshy vf orggre guna htyl.\n", @@ -526,9 +610,14 @@ "d = {}\n", "for c in (65, 97):\n", " for i in range(26):\n", + " # print(f'i:{i}')\n", + " # print(f'c:{c}')\n", + " # print(f'i+c:{i+c}')\n", + " # print(f'chr(i+c):{chr(i+c)}')\n", + " # print(f'chr((i+13) % 26 + c):{chr((i+13) % 26 + c)}')\n", " d[chr(i+c)] = chr((i+13) % 26 + c)\n", - "\n", - "print(\"\".join([d.get(c, c) for c in s]))" + "d\n", + "print(\"\".join([d.get(c,c) for c in s]))" ] }, { @@ -540,7 +629,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 8, "metadata": { "scrolled": true }, @@ -602,7 +691,7 @@ " 'z': 'm'}" ] }, - "execution_count": 19, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, @@ -612,7 +701,7 @@ "\"Gur Mra bs Clguba, ol Gvz Crgref\\n\\nOrnhgvshy vf orggre guna htyl.\\nRkcyvpvg vf orggre guna vzcyvpvg.\\nFvzcyr vf orggre guna pbzcyrk.\\nPbzcyrk vf orggre guna pbzcyvpngrq.\\nSyng vf orggre guna arfgrq.\\nFcnefr vf orggre guna qrafr.\\nErnqnovyvgl pbhagf.\\nFcrpvny pnfrf nera'g fcrpvny rabhtu gb oernx gur ehyrf.\\nNygubhtu cenpgvpnyvgl orngf chevgl.\\nReebef fubhyq arire cnff fvyragyl.\\nHayrff rkcyvpvgyl fvyraprq.\\nVa gur snpr bs nzovthvgl, ershfr gur grzcgngvba gb thrff.\\nGurer fubhyq or bar-- naq cersrenoyl bayl bar --boivbhf jnl gb qb vg.\\nNygubhtu gung jnl znl abg or boivbhf ng svefg hayrff lbh'er Qhgpu.\\nAbj vf orggre guna arire.\\nNygubhtu arire vf bsgra orggre guna *evtug* abj.\\nVs gur vzcyrzragngvba vf uneq gb rkcynva, vg'f n onq vqrn.\\nVs gur vzcyrzragngvba vf rnfl gb rkcynva, vg znl or n tbbq vqrn.\\nAnzrfcnprf ner bar ubaxvat terng vqrn -- yrg'f qb zber bs gubfr!\"" ] }, - "execution_count": 19, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -653,7 +742,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -671,14 +760,111 @@ " 'say_hi']" ] }, - "execution_count": 23, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "['__builtins__',\n", + " '__cached__',\n", + " '__doc__',\n", + " '__file__',\n", + " '__loader__',\n", + " '__name__',\n", + " '__package__',\n", + " '__spec__',\n", + " 'c',\n", + " 'd',\n", + " 'i',\n", + " 's']" + ] + }, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import mycode\n", - "dir(mycode)" + "import this\n", + "dir(mycode)\n", + "dir(this)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 总结\n", + "modules:\n", + " 当我们保存好的代码块文件就是modules,中文叫模块。而这些文件在同个目录下是可以引用的,比如:\n", + "```python\n", + "import mycode\n", + "```\n", + "而我们如果只想引入模块中的某个函数或者变量的话我们可以用\n", + "```python\n", + "from mycode import is_prime\n", + "或者\n", + "import mycode.is_prime\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "from mycode import is_prime\n", + "dir(is_prime)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然我们也可以通过\n", + "```python\n", + "from mycode import *\n", + "``` \n", + "这样就可以导入所有的函数和变量" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "from mycode import *\n", + "dir(is_prime)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然还可以这样\n", + "```python\n", + "from 目录 import *\n", + "或者\n", + "from 目录 import mycode\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "也可以使用化名\n", + "比如\n", + "```python\n", + "from mycode import mycode as myc\n", + "或者整个模块化名\n", + "import mycode as m\n", + "```" ] }, { @@ -690,8 +876,11 @@ } ], "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -705,7 +894,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.9.7" } }, "nbformat": 4, diff --git a/Part.2.D.7-tdd.ipynb b/Part.2.D.7-tdd.ipynb index 8dcb34e55..6ca4d8467 100644 --- a/Part.2.D.7-tdd.ipynb +++ b/Part.2.D.7-tdd.ipynb @@ -85,7 +85,7 @@ { "data": { "text/plain": [ - "False" + "True" ] }, "execution_count": 4, @@ -95,7 +95,7 @@ { "data": { "text/plain": [ - "False" + "True" ] }, "execution_count": 4, @@ -105,7 +105,7 @@ { "data": { "text/plain": [ - "False" + "True" ] }, "execution_count": 4, @@ -115,7 +115,7 @@ { "data": { "text/plain": [ - "False" + "True" ] }, "execution_count": 4, @@ -128,7 +128,13 @@ "InteractiveShell.ast_node_interactivity = \"all\"\n", "\n", "def is_leap(year):\n", - " pass\n", + " if year%4!=0:\n", + " return False\n", + " elif year%100==0 and year%400!=0:\n", + " return False\n", + " elif year%4==0:\n", + " return True\n", + " \n", "\n", "is_leap(4) is True\n", "is_leap(200) is False\n", @@ -155,7 +161,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -164,7 +170,7 @@ "False" ] }, - "execution_count": 13, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, @@ -174,7 +180,7 @@ "True" ] }, - "execution_count": 13, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, @@ -184,7 +190,7 @@ "False" ] }, - "execution_count": 13, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, @@ -194,7 +200,7 @@ "False" ] }, - "execution_count": 13, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -664,6 +670,31 @@ "> * [unittest —— Unit testing framework](https://docs.python.org/3/library/unittest.html)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 总结\n", + "我们在写函数的时候查查需要写备注写功能以及写测试\n", + "这里讲的就是异常捕获的环节\n", + "随着工程的不断壮大,代码行数变多,做这些确实是必要的\n", + "那么要怎么做呢?\n", + "异常捕获有哪些呢\n", + "```python\n", + "try:\n", + "do_something()\n", + "except error as name_of_error:\n", + " print('name_of_error')\n", + "else:#还是否有其他情况\n", + " #也可以嵌套\n", + " try:\n", + " do_something()\n", + " except error as name_of_error:\n", + " print('name_of_error')\n", + "finally:\n", + " do_something()" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -673,8 +704,11 @@ } ], "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -688,7 +722,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.9.7" } }, "nbformat": 4, diff --git a/Part.2.D.8-main.ipynb b/Part.2.D.8-main.ipynb index da4cb340b..cf819dcbd 100644 --- a/Part.2.D.8-main.ipynb +++ b/Part.2.D.8-main.ipynb @@ -16,21 +16,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 26, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Routine 1 done.\n", - "Sub-routine 1 done.\n", - "Sub-routine 2 done.\n", - "Routine 2 done.\n", - "This is the end of the program.\n" - ] - } - ], + "outputs": [], "source": [ "def routine_1():\n", " print('Routine 1 done.')\n", @@ -122,9 +110,37 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Zen of Python, by Tim Peters\n", + "\n", + "Beautiful is better than ugly.\n", + "Explicit is better than implicit.\n", + "Simple is better than complex.\n", + "Complex is better than complicated.\n", + "Flat is better than nested.\n", + "Sparse is better than dense.\n", + "Readability counts.\n", + "Special cases aren't special enough to break the rules.\n", + "Although practicality beats purity.\n", + "Errors should never pass silently.\n", + "Unless explicitly silenced.\n", + "In the face of ambiguity, refuse the temptation to guess.\n", + "There should be one-- and preferably only one --obvious way to do it.\n", + "Although that way may not be obvious at first unless you're Dutch.\n", + "Now is better than never.\n", + "Although never is often better than *right* now.\n", + "If the implementation is hard to explain, it's a bad idea.\n", + "If the implementation is easy to explain, it may be a good idea.\n", + "Namespaces are one honking great idea -- let's do more of those!\n" + ] + } + ], "source": [ "import this" ] @@ -138,9 +154,36 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Zen of Python, by Tim Peters\n", + " Beautiful is better than ugly.\n", + " Explicit is better than implicit.\n", + " Simple is better than complex.\n", + " Complex is better than complicated.\n", + " Flat is better than nested.\n", + " Sparse is better than dense.\n", + " Readability counts.\n", + " Special cases aren't special enough to break the rules.\n", + " Although practicality beats purity.\n", + " Errors should never pass silently.\n", + " Unless explicitly silenced.\n", + " In the face of ambiguity, refuse the temptation to guess.\n", + " There should be one-- and preferably only one --obvious way to do it.\n", + " Although that way may not be obvious at first unless you're Dutch.\n", + " Now is better than never.\n", + " Although never is often better than *right* now.\n", + " If the implementation is hard to explain, it's a bad idea.\n", + " If the implementation is easy to explain, it may be a good idea.\n", + " Namespaces are one honking great idea -- let's do more of those!\n" + ] + } + ], "source": [ "# %load that.py\n", "def main():\n", @@ -187,7 +230,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -203,9 +246,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Zen of Python, by Tim Peters\n", + " Beautiful is better than ugly.\n", + " Explicit is better than implicit.\n", + " Simple is better than complex.\n", + " Complex is better than complicated.\n", + " Flat is better than nested.\n", + " Sparse is better than dense.\n", + " Readability counts.\n", + " Special cases aren't special enough to break the rules.\n", + " Although practicality beats purity.\n", + " Errors should never pass silently.\n", + " Unless explicitly silenced.\n", + " In the face of ambiguity, refuse the temptation to guess.\n", + " There should be one-- and preferably only one --obvious way to do it.\n", + " Although that way may not be obvious at first unless you're Dutch.\n", + " Now is better than never.\n", + " Although never is often better than *right* now.\n", + " If the implementation is hard to explain, it's a bad idea.\n", + " If the implementation is easy to explain, it may be a good idea.\n", + " Namespaces are one honking great idea -- let's do more of those!\n" + ] + } + ], "source": [ "%%bash\n", "python that.py" @@ -213,9 +283,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Zen of Python, by Tim Peters\n", + " Beautiful is better than ugly.\n", + " Explicit is better than implicit.\n", + " Simple is better than complex.\n", + " Complex is better than complicated.\n", + " Flat is better than nested.\n", + " Sparse is better than dense.\n", + " Readability counts.\n", + " Special cases aren't special enough to break the rules.\n", + " Although practicality beats purity.\n", + " Errors should never pass silently.\n", + " Unless explicitly silenced.\n", + " In the face of ambiguity, refuse the temptation to guess.\n", + " There should be one-- and preferably only one --obvious way to do it.\n", + " Although that way may not be obvious at first unless you're Dutch.\n", + " Now is better than never.\n", + " Although never is often better than *right* now.\n", + " If the implementation is hard to explain, it's a bad idea.\n", + " If the implementation is easy to explain, it may be a good idea.\n", + " Namespaces are one honking great idea -- let's do more of those!\n" + ] + } + ], "source": [ "%%bash\n", "python -m that" @@ -230,9 +327,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Zen of Python, by Tim Peters\n", + " Beautiful is better than ugly.\n", + " Explicit is better than implicit.\n", + " Simple is better than complex.\n", + " Complex is better than complicated.\n", + " Flat is better than nested.\n", + " Sparse is better than dense.\n", + " Readability counts.\n", + " Special cases aren't special enough to break the rules.\n", + " Although practicality beats purity.\n", + " Errors should never pass silently.\n", + " Unless explicitly silenced.\n", + " In the face of ambiguity, refuse the temptation to guess.\n", + " There should be one-- and preferably only one --obvious way to do it.\n", + " Although that way may not be obvious at first unless you're Dutch.\n", + " Now is better than never.\n", + " Although never is often better than *right* now.\n", + " If the implementation is hard to explain, it's a bad idea.\n", + " If the implementation is easy to explain, it may be a good idea.\n", + " Namespaces are one honking great idea -- let's do more of those!\n" + ] + } + ], "source": [ "import that\n", "that.main()" @@ -247,9 +371,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on module that:\n", + "\n", + "NAME\n", + " that\n", + "\n", + "FUNCTIONS\n", + " main()\n", + "\n", + "FILE\n", + " /Users/chenqiang/Documents/the-craft-of-selfteaching/that.py\n", + "\n", + "\n" + ] + } + ], "source": [ "import that\n", "help(that)" @@ -264,11 +407,11 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ - "#!/usr/bin/env python\n", + "# !/usr/bin/env python 'words_alpha.txt' 'results1.txt'\n", "\n", "def sum_of_word(word):\n", " sum = 0\n", @@ -455,6 +598,302 @@ "> [Python Easter Eggs](https://github.com/OrkoHunter/python-easter-eggs)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 总结\n", + "```python\n", + "if __name__ == '__main__':\n", + " main()\n", + "```\n", + "我们在执行python文件时,会看到以上这个代码,其实就是为了判断到底是要执行的文件,还是import模块\n", + "- 当要import模块时,if 判断失败,那么就不会执行main()函数\n", + "- 当是要执行的python文件时,if判断成功,那么就会执行main()函数\n", + "举以下的例子" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Zen of Python, by Tim Peters\n", + "Beautiful is better than ugly.\n", + "Explicit is better than implicit.\n", + "Simple is better than complex.\n", + "Complex is better than complicated.\n", + "Flat is better than nested.\n", + "Sparse is better than dense.\n", + "Readability counts.\n", + "Special cases aren't special enough to break the rules.\n", + "Although practicality beats purity.\n", + "Errors should never pass silently.\n", + "Unless explicitly silenced.\n", + "In the face of ambiguity, refuse the temptation to guess.\n", + "There should be one-- and preferably only one --obvious way to do it.\n", + "Although that way may not be obvious at first unless you're Dutch.\n", + "Now is better than never.\n", + "Although never is often better than *right* now.\n", + "If the implementation is hard to explain, it's a bad idea.\n", + "If the implementation is easy to explain, it may be a good idea.\n", + "Namespaces are one honking great idea -- let's do more of those!\n" + ] + } + ], + "source": [ + "s = \"\"\"Gur Mra bs Clguba, ol Gvz Crgref\n", + "Ornhgvshy vf orggre guna htyl.\n", + "Rkcyvpvg vf orggre guna vzcyvpvg.\n", + "Fvzcyr vf orggre guna pbzcyrk.\n", + "Pbzcyrk vf orggre guna pbzcyvpngrq.\n", + "Syng vf orggre guna arfgrq.\n", + "Fcnefr vf orggre guna qrafr.\n", + "Ernqnovyvgl pbhagf.\n", + "Fcrpvny pnfrf nera'g fcrpvny rabhtu gb oernx gur ehyrf.\n", + "Nygubhtu cenpgvpnyvgl orngf chevgl.\n", + "Reebef fubhyq arire cnff fvyragyl.\n", + "Hayrff rkcyvpvgyl fvyraprq.\n", + "Va gur snpr bs nzovthvgl, ershfr gur grzcgngvba gb thrff.\n", + "Gurer fubhyq or bar-- naq cersrenoyl bayl bar --boivbhf jnl gb qb vg.\n", + "Nygubhtu gung jnl znl abg or boivbhf ng svefg hayrff lbh'er Qhgpu.\n", + "Abj vf orggre guna arire.\n", + "Nygubhtu arire vf bsgra orggre guna *evtug* abj.\n", + "Vs gur vzcyrzragngvba vf uneq gb rkcynva, vg'f n onq vqrn.\n", + "Vs gur vzcyrzragngvba vf rnfl gb rkcynva, vg znl or n tbbq vqrn.\n", + "Anzrfcnprf ner bar ubaxvat terng vqrn -- yrg'f qb zber bs gubfr!\"\"\"\n", + "\n", + "d = {}\n", + "for c in (65, 97):\n", + " for i in range(26):\n", + " d[chr(i+c)] = chr((i+13) % 26 + c)\n", + "\n", + "print(\"\".join([d.get(c, c) for c in s]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "这个是this的代码,我们执行的话,会立马返回结果,我们做下调整" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "def main():\n", + " s = \"\"\"Gur Mra bs Clguba, ol Gvz Crgref\n", + " Ornhgvshy vf orggre guna htyl.\n", + " Rkcyvpvg vf orggre guna vzcyvpvg.\n", + " Fvzcyr vf orggre guna pbzcyrk.\n", + " Pbzcyrk vf orggre guna pbzcyvpngrq.\n", + " Syng vf orggre guna arfgrq.\n", + " Fcnefr vf orggre guna qrafr.\n", + " Ernqnovyvgl pbhagf.\n", + " Fcrpvny pnfrf nera'g fcrpvny rabhtu gb oernx gur ehyrf.\n", + " Nygubhtu cenpgvpnyvgl orngf chevgl.\n", + " Reebef fubhyq arire cnff fvyragyl.\n", + " Hayrff rkcyvpvgyl fvyraprq.\n", + " Va gur snpr bs nzovthvgl, ershfr gur grzcgngvba gb thrff.\n", + " Gurer fubhyq or bar-- naq cersrenoyl bayl bar --boivbhf jnl gb qb vg.\n", + " Nygubhtu gung jnl znl abg or boivbhf ng svefg hayrff lbh'er Qhgpu.\n", + " Abj vf orggre guna arire.\n", + " Nygubhtu arire vf bsgra orggre guna *evtug* abj.\n", + " Vs gur vzcyrzragngvba vf uneq gb rkcynva, vg'f n onq vqrn.\n", + " Vs gur vzcyrzragngvba vf rnfl gb rkcynva, vg znl or n tbbq vqrn.\n", + " Anzrfcnprf ner bar ubaxvat terng vqrn -- yrg'f qb zber bs gubfr!\"\"\"\n", + "\n", + " d = {}\n", + " for c in (65, 97):\n", + " for i in range(26):\n", + " d[chr(i+c)] = chr((i+13) % 26 + c)\n", + "\n", + " print(\"\".join([d.get(c, c) for c in s]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "这样执行是无法执行出结果的,我们再调整下" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Zen of Python, by Tim Peters\n", + " Beautiful is better than ugly.\n", + " Explicit is better than implicit.\n", + " Simple is better than complex.\n", + " Complex is better than complicated.\n", + " Flat is better than nested.\n", + " Sparse is better than dense.\n", + " Readability counts.\n", + " Special cases aren't special enough to break the rules.\n", + " Although practicality beats purity.\n", + " Errors should never pass silently.\n", + " Unless explicitly silenced.\n", + " In the face of ambiguity, refuse the temptation to guess.\n", + " There should be one-- and preferably only one --obvious way to do it.\n", + " Although that way may not be obvious at first unless you're Dutch.\n", + " Now is better than never.\n", + " Although never is often better than *right* now.\n", + " If the implementation is hard to explain, it's a bad idea.\n", + " If the implementation is easy to explain, it may be a good idea.\n", + " Namespaces are one honking great idea -- let's do more of those!\n" + ] + } + ], + "source": [ + "def main():\n", + " s = \"\"\"Gur Mra bs Clguba, ol Gvz Crgref\n", + " Ornhgvshy vf orggre guna htyl.\n", + " Rkcyvpvg vf orggre guna vzcyvpvg.\n", + " Fvzcyr vf orggre guna pbzcyrk.\n", + " Pbzcyrk vf orggre guna pbzcyvpngrq.\n", + " Syng vf orggre guna arfgrq.\n", + " Fcnefr vf orggre guna qrafr.\n", + " Ernqnovyvgl pbhagf.\n", + " Fcrpvny pnfrf nera'g fcrpvny rabhtu gb oernx gur ehyrf.\n", + " Nygubhtu cenpgvpnyvgl orngf chevgl.\n", + " Reebef fubhyq arire cnff fvyragyl.\n", + " Hayrff rkcyvpvgyl fvyraprq.\n", + " Va gur snpr bs nzovthvgl, ershfr gur grzcgngvba gb thrff.\n", + " Gurer fubhyq or bar-- naq cersrenoyl bayl bar --boivbhf jnl gb qb vg.\n", + " Nygubhtu gung jnl znl abg or boivbhf ng svefg hayrff lbh'er Qhgpu.\n", + " Abj vf orggre guna arire.\n", + " Nygubhtu arire vf bsgra orggre guna *evtug* abj.\n", + " Vs gur vzcyrzragngvba vf uneq gb rkcynva, vg'f n onq vqrn.\n", + " Vs gur vzcyrzragngvba vf rnfl gb rkcynva, vg znl or n tbbq vqrn.\n", + " Anzrfcnprf ner bar ubaxvat terng vqrn -- yrg'f qb zber bs gubfr!\"\"\"\n", + "\n", + " d = {}\n", + " for c in (65, 97):\n", + " for i in range(26):\n", + " d[chr(i+c)] = chr((i+13) % 26 + c)\n", + "\n", + " print(\"\".join([d.get(c, c) for c in s]))\n", + "if __name__=='__main__':\n", + " main()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "这样就能输出结果了,我们把这个文件保存在that.py中,试着import that.py文件" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "import that" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "这样执行不出结果,可以直接执行that中的main函数" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Zen of Python, by Tim Peters\n", + " Beautiful is better than ugly.\n", + " Explicit is better than implicit.\n", + " Simple is better than complex.\n", + " Complex is better than complicated.\n", + " Flat is better than nested.\n", + " Sparse is better than dense.\n", + " Readability counts.\n", + " Special cases aren't special enough to break the rules.\n", + " Although practicality beats purity.\n", + " Errors should never pass silently.\n", + " Unless explicitly silenced.\n", + " In the face of ambiguity, refuse the temptation to guess.\n", + " There should be one-- and preferably only one --obvious way to do it.\n", + " Although that way may not be obvious at first unless you're Dutch.\n", + " Now is better than never.\n", + " Although never is often better than *right* now.\n", + " If the implementation is hard to explain, it's a bad idea.\n", + " If the implementation is easy to explain, it may be a good idea.\n", + " Namespaces are one honking great idea -- let's do more of those!\n" + ] + } + ], + "source": [ + "import that\n", + "that.main()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "那么试着python 下that.py文件,记得要在命令行里执行%%bash" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Zen of Python, by Tim Peters\n", + " Beautiful is better than ugly.\n", + " Explicit is better than implicit.\n", + " Simple is better than complex.\n", + " Complex is better than complicated.\n", + " Flat is better than nested.\n", + " Sparse is better than dense.\n", + " Readability counts.\n", + " Special cases aren't special enough to break the rules.\n", + " Although practicality beats purity.\n", + " Errors should never pass silently.\n", + " Unless explicitly silenced.\n", + " In the face of ambiguity, refuse the temptation to guess.\n", + " There should be one-- and preferably only one --obvious way to do it.\n", + " Although that way may not be obvious at first unless you're Dutch.\n", + " Now is better than never.\n", + " Although never is often better than *right* now.\n", + " If the implementation is hard to explain, it's a bad idea.\n", + " If the implementation is easy to explain, it may be a good idea.\n", + " Namespaces are one honking great idea -- let's do more of those!\n" + ] + } + ], + "source": [ + "%%bash\n", + "python -m that" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/Part.2.E.deliberate-thinking.ipynb b/Part.2.E.deliberate-thinking.ipynb index c5e71d183..122ab312d 100644 --- a/Part.2.E.deliberate-thinking.ipynb +++ b/Part.2.E.deliberate-thinking.ipynb @@ -100,6 +100,20 @@ "所谓的 “活学活用”,所谓的 “触类旁通”,也不过如此。" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 总结\n", + "刻意思考\n", + "- 多去想想什么地方可以用到,我现在学的这块未来在哪里可以用到,这是一个非常重要的过程,我们需要刻意思考我们在哪里可以练习到这些,之前我们认为的一些傻子,说的能者多劳,其实只有多劳动才能练的更多,才能进步的更快,因此要改叫劳者多能。\n", + "- 用用MoSCoW原则\n", + " - Must have 必须要做的\n", + " - Should have 需要去做的\n", + " - Could have 看时间是否允许去做\n", + " - Won‘t have 不去做的\n" + ] + }, { "cell_type": "markdown", "metadata": {}, From f653b5e0b504c47914bc10b3e867a6c3fcc9e1f9 Mon Sep 17 00:00:00 2001 From: hoolich <469165171@qq.com> Date: Sun, 21 Aug 2022 21:19:23 +0800 Subject: [PATCH 03/12] 20220821 --- Part.3.B.1.classes-1.ipynb | 17 ++ Part.3.B.2.classes-2.ipynb | 510 +++++++++++++++++++++++++++++++------ 2 files changed, 455 insertions(+), 72 deletions(-) diff --git a/Part.3.B.1.classes-1.ipynb b/Part.3.B.1.classes-1.ipynb index f4ed75e6c..aae544aa4 100644 --- a/Part.3.B.1.classes-1.ipynb +++ b/Part.3.B.1.classes-1.ipynb @@ -144,6 +144,23 @@ "对基本概念有了一定的了解之后,再去看 Python 语言是如何实现的,就感觉没那么难了。" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 总结\n", + "> * 对象,封装,抽象\n", + "> * 界面,属性,方法\n", + "> * 继承,类,子类,实例\n", + "- 对象其实就是object,比如我们说的动物就是对象。\n", + "- 对象和类之间的区别是什么,其实对象就是类和子类的统称\n", + "- 子类是继承了类的所有属性和方法,但也可以去重写属性和方法。\n", + "- 我们创建实例就相当于是创建某个类的实例,比如我们要创建狗,狗属于哺乳类这样\n", + "- 那抽象是有些类,我们不需要写明他具体是哪个类,我们在实例化时可以具体声明\n", + "- 封装指的是我们要把不需要给使用者看的东西封装好,不被他们看到,给他们看到就是个开关\n", + "- 界面就是由属性和方法组成,就是英文里头的动词和名词" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/Part.3.B.2.classes-2.ipynb b/Part.3.B.2.classes-2.ipynb index 111030a2f..fdfa0852a 100644 --- a/Part.3.B.2.classes-2.ipynb +++ b/Part.3.B.2.classes-2.ipynb @@ -50,7 +50,7 @@ { "data": { "text/plain": [ - "2019" + "2022" ] }, "execution_count": 2, @@ -60,7 +60,7 @@ { "data": { "text/plain": [ - ">" + ">" ] }, "execution_count": 2, @@ -202,16 +202,16 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - ">" + ">" ] }, - "execution_count": 2, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, @@ -228,17 +228,17 @@ "'Clay'" ] }, - "execution_count": 2, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ - "2019" + "2022" ] }, - "execution_count": 2, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, @@ -401,7 +401,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 12, "metadata": { "scrolled": true }, @@ -478,17 +478,17 @@ " 'say_hi']" ] }, - "execution_count": 4, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ - "{'name': 'Clay', 'built_year': 2019}" + "{'name': 'Clay', 'built_year': 2022}" ] }, - "execution_count": 4, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, @@ -498,7 +498,7 @@ "True" ] }, - "execution_count": 4, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -526,10 +526,10 @@ " print('Hey! Nice day, Huh?')\n", "\n", "rg = runningGolem('Clay')\n", - "help(rg)\n", - "dir(rg)\n", - "rg.__dict__\n", - "hasattr(rg, 'built_year')" + "help(rg)#查看帮助\n", + "dir(rg)#输出所有属性和方法\n", + "rg.__dict__#以字典的方式输出\n", + "hasattr(rg, 'name')#是否存在此属性" ] }, { @@ -562,7 +562,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -571,7 +571,7 @@ "True" ] }, - "execution_count": 5, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, @@ -581,7 +581,7 @@ "True" ] }, - "execution_count": 5, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, @@ -591,7 +591,7 @@ "False" ] }, - "execution_count": 5, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, @@ -601,7 +601,7 @@ "False" ] }, - "execution_count": 5, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, @@ -611,7 +611,7 @@ "False" ] }, - "execution_count": 5, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, @@ -621,7 +621,7 @@ "1" ] }, - "execution_count": 5, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, @@ -631,7 +631,7 @@ "10" ] }, - "execution_count": 5, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, @@ -641,39 +641,20 @@ "11" ] }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "10" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "10" - ] - }, - "execution_count": 5, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" + "ename": "AttributeError", + "evalue": "type object 'Golem' has no attribute '__life_span'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_5015/2149860634.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mGolem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 37\u001b[0m \u001b[0mGolem\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpopulation\u001b[0m \u001b[0;31m# 11\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 38\u001b[0;31m \u001b[0mGolem\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__life_span\u001b[0m \u001b[0;31m# 11\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 39\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcease\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_active\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mAttributeError\u001b[0m: type object 'Golem' has no attribute '__life_span'" + ] } ], "source": [ @@ -706,7 +687,7 @@ "g = Golem()\n", "hasattr(Golem, 'population') # True\n", "hasattr(g, 'population') # True\n", - "hasattr(Golem, '__life_span') # False\n", + "hasattr(Golem, '__life_span') # False 变成了非私有变量\n", "hasattr(g, '__life_span') # False\n", "hasattr(g, '__active') # False\n", "Golem.population # 1\n", @@ -714,7 +695,9 @@ "Golem.population # 10\n", "x = Golem()\n", "Golem.population # 11\n", + "Golem.__life_span # 私有变量,在外部作用域是没法用的\n", "x.cease()\n", + "x.is_active()\n", "Golem.population # 10\n", "getattr(g, 'population') # 10\n", "g.is_active()" @@ -733,7 +716,7 @@ "```\n", "—— 本地变量 `population` 尚未赋值,就已经提前被引用…… 为什么会这样呢?因为在你所创建 `g` 之后,马上执行的是 `__init()__` 这个初始化函数,而 `population` 是在这个函数之外定义的……\n", "\n", - "如果你足够细心,你会发现这个版本中,有些变量前面有两个下划线 `__`,比如,`__life_span` 和 `self.__active`。这是 Python 的定义,变量名前面加上一个以上下划线(Underscore)`_` 的话,那么该变量是 “私有变量”(Private Variables),不能被外部引用。而按照 Python 的惯例,我们会使用两个下划线起始,去命名私有变量,如:`__life_span`。你可以回去试试,把所有的 `__life_span` 改成 `_life_span`(即,变量名开头只有一个 `_`,那么,`hasattr(Golem, '_life_span')` 和 `hasattr(g, '_life_span')` 的返回值就都变成了 `True`。\n", + "如果你足够细心,你会发现这个版本中,有些变量前面有两个下划线 `__`,比如,`__life_span` 和 `self.__active`。这是 Python 的定义,变量名前面加上一个以上下划线(Underscore)`_` 的话,那么该变量是 “私有变量”(Private Variables),不能被外部引用。而按照 Python 的惯例,我们会使用两个下划线起始,去命名私有变量,如:`__life_span`。你可以回去试试,把所有的 `__life_span` 改成 `_life_span`(即,变量名开头只有一个 `_`,那么,`hasattr(Golem, '_life_span')` 和 `hasattr(g, '_life_span')` 的返回值就都变成了 `True`。\n", "\n", "看看下面的图示,理解起来更为直观一些,其中每个方框代表一个 Scope:\n", "\n", @@ -767,6 +750,83 @@ "> * `self.population` 总是去读取 `Golem` 类中 `population` 的初始值,即使后面通过 `setattr(Golem, 'population', 10)` 更改 `population` 的值后,`self.population` 的值仍为 `0`,但 `Golem.population` 值则为 `10`,你可以自己动手尝试一下。" ] }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "10" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.core.interactiveshell import InteractiveShell\n", + "InteractiveShell.ast_node_interactivity = \"all\"\n", + "import datetime\n", + "\n", + "class Golem:\n", + " population = 0\n", + " __life_span = 10\n", + " \n", + " def __init__(self, name=None):\n", + " self.name = name\n", + " self.built_year = datetime.date.today().year\n", + " self.__active = True\n", + " self.population += 1 # 执行一遍之后,试试把这句改成 population += 1\n", + " \n", + " def say_hi(self):\n", + " print('Hi!')\n", + " \n", + " def cease(self):\n", + " self.__active = False\n", + " Golem.population -= 1\n", + " \n", + " def is_active(self):\n", + " if datetime.date.today().year - self.built_year >= Golem.__life_span:\n", + " self.cease()\n", + " return self.__active\n", + "\n", + "g = Golem()\n", + "Golem.population # 1\n", + "setattr(Golem, 'population', 10) \n", + "Golem.population # 10\n", + "g.population # 10\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "其实一个是看的Golem类的属性,另一个是看的g这个实例的属性,所以我们可以看出同样都是population,但是输出出来就是不一样" + ] + }, { "cell_type": "markdown", "metadata": { @@ -959,36 +1019,36 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "1" + "0" ] }, - "execution_count": 8, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ - "101" + "100" ] }, - "execution_count": 8, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ - "101" + "100" ] }, - "execution_count": 8, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, @@ -1029,29 +1089,32 @@ "data": { "text/plain": [ "mappingproxy({'__module__': '__main__',\n", - " '_Golem__population': 101,\n", + " '_Golem__population': 100,\n", " '_Golem__life_span': 10,\n", " '__init__': ,\n", " 'say_hi': ,\n", " 'cease': ,\n", " 'is_active': ,\n", - " 'population': ,\n", + " 'population': ,\n", " '__dict__': ,\n", " '__weakref__': ,\n", " '__doc__': None})" ] }, - "execution_count": 8, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ - "{'name': 'Clay', 'built_year': 2019, '_Golem__active': True}" + "{'name': 'Clay',\n", + " 'built_year': 2022,\n", + " '_Golem__active': True,\n", + " '_Golem__population': 1}" ] }, - "execution_count": 8, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, @@ -1061,17 +1124,17 @@ "True" ] }, - "execution_count": 8, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 8, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, @@ -1081,7 +1144,7 @@ "10000" ] }, - "execution_count": 8, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -1136,6 +1199,309 @@ "g.population # 所以,在很多的情况下,不把数据封装在 Class 内部的话,后面会有很多麻烦。" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 总结\n", + "### 类的实现:\n", + "#### 如何去定义类\n", + " 举个例子:\n", + "```python\n", + "class Golem:\n", + "```\n", + "当然里面要有属性或者方法" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "class Golem:\n", + " population=0#共有变量,外界可以用\n", + " __life_span=10#私有变量,外界不可用\n", + " def __init__(self,name=None):#类似java中的构造方法,name默认参数为None\n", + " self.name=name\n", + " Golem.population+=1#每生成一个实例,该类的population就+1\n", + " self.__active = True\n", + " def no_active(self):\n", + " self.__active = False #可以将激活状态变成非激活\n", + " def is_active(self):\n", + " return self.__active\n", + "g=Golem('Tony')\n", + "g.population\n", + "g.is_active()\n", + "g.no_active()\n", + "g.is_active()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然我们也可以继承该类比如" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "跑\n" + ] + } + ], + "source": [ + "class Running_Golem(Golem):\n", + " def running(self):\n", + " print('跑')\n", + "r = Running_Golem('Dog')\n", + "r.running() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然我们也要考虑到共有变量老是会被篡改,所以我们要做的事要把类中的变量改成私有变量" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'Golem' object has no attribute '__population'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_5015/3111501231.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__active\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mg\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mGolem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Tony'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0mg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__population\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0mg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_active\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0mg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mno_active\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mAttributeError\u001b[0m: 'Golem' object has no attribute '__population'" + ] + } + ], + "source": [ + "class Golem:\n", + " __population=0#共有变量,外界可以用\n", + " __life_span=10#私有变量,外界不可用\n", + " def __init__(self,name=None):#类似java中的构造方法,name默认参数为None\n", + " self.name=name\n", + " Golem.__population+=1#每生成一个实例,该类的population就+1\n", + " self.__active = True\n", + " def no_active(self):\n", + " self.__active = False #可以将激活状态变成非激活\n", + " def is_active(self):\n", + " return self.__active\n", + "g=Golem('Tony')\n", + "g.__population\n", + "g.is_active()\n", + "g.no_active()\n", + "g.is_active()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "---------------------------------------------------------------------------\n", + "AttributeError Traceback (most recent call last)\n", + "/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_5015/3111501231.py in \n", + " 11 return self.__active\n", + " 12 g=Golem('Tony')\n", + "---> 13 g.__population\n", + " 14 g.is_active()\n", + " 15 g.no_active()\n", + "\n", + "AttributeError: 'Golem' object has no attribute '__population'\n", + "\n", + "AttributeError: type object 'Golem' has no attribute 'population'\n", + "\n", + "```\n", + "但是这样会报错\n", + "要怎么改造呢,我们可以在定义下函数,通过函数来查找" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "class Golem:\n", + " __population=0#共有变量,外界可以用\n", + " __life_span=10#私有变量,外界不可用\n", + " def __init__(self,name=None):#类似java中的构造方法,name默认参数为None\n", + " self.name=name\n", + " Golem.__population+=1#每生成一个实例,该类的population就+1\n", + " self.__active = True\n", + " def no_active(self):\n", + " self.__active = False #可以将激活状态变成非激活\n", + " def is_active(self):\n", + " return self.__active\n", + " @property#添加装饰器,能够让其返回属性\n", + " def population(self):\n", + " return Golem.__population\n", + " \n", + "g=Golem('Tony')\n", + "g.population\n", + "g.is_active()\n", + "g.no_active()\n", + "g.is_active()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然我们也可以set属性,比如" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "100" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "class Golem:\n", + " __population=0#共有变量,外界可以用\n", + " __life_span=10#私有变量,外界不可用\n", + " def __init__(self,name=None):#类似java中的构造方法,name默认参数为None\n", + " self.name=name\n", + " Golem.__population+=1#每生成一个实例,该类的population就+1\n", + " self.__active = True\n", + " def no_active(self):\n", + " self.__active = False #可以将激活状态变成非激活\n", + " def is_active(self):\n", + " return self.__active\n", + " @property#添加装饰器,能够让其返回属性\n", + " def population(self):\n", + " return Golem.__population\n", + " @population.setter\n", + " def population(self,value):\n", + " Golem.__population=value\n", + " \n", + "g=Golem('Tony')\n", + "g.population\n", + "g.population=100\n", + "g.population\n", + "g.is_active()\n", + "g.no_active()\n", + "g.is_active()" + ] + }, { "cell_type": "markdown", "metadata": {}, From d0bb036714b81112153d92a32c976b5c8805a64a Mon Sep 17 00:00:00 2001 From: hoolich <469165171@qq.com> Date: Mon, 22 Aug 2022 20:03:18 +0800 Subject: [PATCH 04/12] 20220822 --- Part.2.D.2-aargs.ipynb | 51 +- Part.3.B.2.classes-2.ipynb | 11 +- Part.3.B.3.decorator-iterator-generator.ipynb | 516 ++++++++++++++++-- 3 files changed, 512 insertions(+), 66 deletions(-) diff --git a/Part.2.D.2-aargs.ipynb b/Part.2.D.2-aargs.ipynb index f6a1ead64..fcc7b7825 100644 --- a/Part.2.D.2-aargs.ipynb +++ b/Part.2.D.2-aargs.ipynb @@ -586,7 +586,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "当然我们也可以换其他的方式表达" + "当然我们也可以换其他的方式表达,用关键字参数,关键字参数主要是用来通过传一个值来返回另一个值的,比如字典中我传个key,返回value" ] }, { @@ -616,7 +616,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "如果关键词参数和普通参数放在一起是怎么样的呢" + "如果位置参数和普通参数放在一起是怎么样的呢" ] }, { @@ -676,6 +676,53 @@ "do_sometings(*names)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "如果随意变换的位置参数和关键字参数放在一起又会是怎么样呢?\n", + "还是拿def do_somethings()举例:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mikehello,mike\n", + "mikehello,mike\n", + "mikehello,mike\n", + "davidhi,david\n", + "davidhi,david\n", + "davidhi,david\n", + "andywelcome,andy\n", + "andywelcome,andy\n", + "andywelcome,andy\n" + ] + } + ], + "source": [ + "def do_somethings(*names,**actions):\n", + " for name in names:\n", + " for action in actions:\n", + " print(f'{name}{actions[name]},{name}')\n", + "a_dictionary={'mike':'hello','david':'hi','andy':'welcome'} \n", + "names=['mike','david','andy']\n", + "do_somethings(*names,**a_dictionary)\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*args是位置参数,而**kwargs是关键字参数" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/Part.3.B.2.classes-2.ipynb b/Part.3.B.2.classes-2.ipynb index fdfa0852a..3677ae5c3 100644 --- a/Part.3.B.2.classes-2.ipynb +++ b/Part.3.B.2.classes-2.ipynb @@ -1305,7 +1305,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -1315,7 +1315,7 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_5015/3111501231.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__active\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mg\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mGolem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Tony'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0mg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__population\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0mg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_active\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0mg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mno_active\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_9175/3111501231.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__active\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mg\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mGolem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Tony'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0mg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__population\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0mg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_active\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0mg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mno_active\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mAttributeError\u001b[0m: 'Golem' object has no attribute '__population'" ] } @@ -1511,8 +1511,11 @@ } ], "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -1526,7 +1529,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.9.7" }, "toc-autonumbering": true }, diff --git a/Part.3.B.3.decorator-iterator-generator.ipynb b/Part.3.B.3.decorator-iterator-generator.ipynb index cff500d95..5735da6b9 100644 --- a/Part.3.B.3.decorator-iterator-generator.ipynb +++ b/Part.3.B.3.decorator-iterator-generator.ipynb @@ -218,59 +218,19 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 31, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "11" - ] - }, - "execution_count": 85, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "12" - ] - }, - "execution_count": 85, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": [ - "13" - ] - }, - "execution_count": 85, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "101\n", - "102\n", - "103\n", - "104\n", - "105\n" + "ename": "TypeError", + "evalue": "'Counter' object is not an iterator", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_3825/3796267106.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0mc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mCounter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m11\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 17\u001b[0m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: 'Counter' object is not an iterator" ] - }, - { - "data": { - "text/plain": [ - "type" - ] - }, - "execution_count": 85, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ @@ -372,7 +332,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -420,14 +380,14 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " at 0x107cc0048>\n", + " at 0x7fc61c9ed660>\n", "0\n", "2\n", "4\n", @@ -457,7 +417,7 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -516,7 +476,7 @@ }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -704,7 +664,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -742,7 +702,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -758,7 +718,7 @@ ".wrapper()>" ] }, - "execution_count": 8, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -794,7 +754,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -969,6 +929,40 @@ "装饰器的执行顺序是 “自下而上” —— 其实是 “由里到外” 更为准确。体会一下。\n" ] }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.\n" + ] + } + ], + "source": [ + "def uppercase(func):\n", + " def wrapper():\n", + " original_result = func()\n", + " modified_restult = original_result.upper()\n", + " return modified_restult\n", + " return wrapper\n", + "def strong(func):\n", + " def wrapper():\n", + " original_result = func()\n", + " modified_restult = ''+original_result+''\n", + " return modified_restult\n", + " return wrapper\n", + "\n", + "@uppercase\n", + "@strong\n", + "def an_output():\n", + " return 'The quick brown fox jumps over the lazy dog.'\n", + "print(an_output())" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1092,6 +1086,405 @@ "为什么有那么多人就是学不会呢?—— 只不过是因为在此之前,遇到 `*args` `**kwargs` 的时候,“一个星号、两个星号、直接晕倒”…… 而后并未再多挣扎一下。" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 总结\n", + "### 函数工具\n", + "#### 迭代器(iterator)\n", + " 迭代器叫做iterator,迭代是什么,以下面的代码作为例子。" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "0\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n", + "0\n", + "1\n", + "2\n", + "3\n", + "4\n", + "5\n", + "6\n", + "7\n", + "8\n", + "9\n" + ] + } + ], + "source": [ + "for i in range(10):\n", + " print(i)\n", + "for i in tuple(range(10)):\n", + " print(i)\n", + "for i in set(range(10)):\n", + " print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "我们在容器中不断循环输出的这个过程就叫做迭代,就是iterator\n", + "当然我们也可以把List、tuple、set这种任意一个容器加个迭代函数iter,比如" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "1\n", + "2\n", + "3\n" + ] + } + ], + "source": [ + "i=iter(range(10))\n", + "print(next(i))\n", + "print(next(i))\n", + "print(next(i))\n", + "print(next(i))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "这样写就可以迭代出每一个i的元素了,但是它有局限性,当超出容器范围时就会报错\n", + "```python\n", + "---------------------------------------------------------------------------\n", + "StopIteration Traceback (most recent call last)\n", + "/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_3825/1161027952.py in \n", + " 10 next(i)\n", + " 11 next(i)\n", + "---> 12 next(i)\n", + "\n", + "StopIteration: \n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "如何在类中添加迭代器呢,比如以下计数的例子" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "21,22,23,21,22,23," + ] + } + ], + "source": [ + "class Counter(object):\n", + " def __init__(self, start, stop):\n", + " self.current = start\n", + " self.stop = stop\n", + " def __iter__(self):\n", + " return self\n", + " def __next__(self):\n", + " if self.current > self.stop:\n", + " raise StopIteration\n", + " else:\n", + " c = self.current\n", + " self.current += 1\n", + " return c\n", + "for c in Counter(21,23):\n", + " print(c,end=',')\n", + "c = Counter(21,23)\n", + "while True:\n", + " try:\n", + " print(next(c),end=',')\n", + " except StopIteration:\n", + " break" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "其中__iter__(self)和__next__(self)组成了迭代器的元素,而__init__(self,start,stop),像这种带\"__\"的情况其实就是python中的定义的魔术方法,就是python自己定义的方法非我们自己定义的方法,首先变量的话我们知道就是私有变量,而带了\"__\"的函数其实就是python自己定义好的内部函数,也就是我们只能在此基础上进行重写,如果我们改了\"__iter__\"成\"__itera__\",或者把\"__next__\"改成\"__nexta__\"这样就会有问题,就无法形成迭代类了\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "'Counter' object is not iterable", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_3825/3635832865.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcurrent\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mc\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mCounter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m21\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m23\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 15\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m','\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0mc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mCounter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m21\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m23\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: 'Counter' object is not iterable" + ] + } + ], + "source": [ + "class Counter(object):\n", + " def __init__(self, start, stop):\n", + " self.current = start\n", + " self.stop = stop\n", + " def __itera__(self):\n", + " return self\n", + " def __next__(self):\n", + " if self.current > self.stop:\n", + " raise StopIteration\n", + " else:\n", + " c = self.current\n", + " self.current += 1\n", + " return c\n", + "for c in Counter(21,23):\n", + " print(c,end=',')\n", + "c = Counter(21,23)\n", + "while True:\n", + " try:\n", + " print(next(c),end=',')\n", + " except StopIteration:\n", + " break" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 生成器(Generator)\n", + "迭代器是用在类中成为类中的一个内置方法,让其类能达到迭代的效果,而生成器则是通过将函数进行改造,达到迭代的效果,如以下例子:" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "101\n", + "102\n", + "103\n", + "104\n", + "105\n" + ] + } + ], + "source": [ + "def counter(start, stop):\n", + " while start <= stop:\n", + " yield start\n", + " start += 1\n", + "for i in counter(101, 105):\n", + " print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "yield 是生成器在函数中重要的组成部分,相当于玩游戏的读档一样,当我们每次玩好一个关卡,保存好这个关卡,下次玩的时候就从这个关卡开始继续玩,直到这个游戏结束,return 相当于没有读档,返回即代表游戏结束\n", + "```\n", + "当然我们也可以转化成匿名表达式,也就是生成器表达式来替代,这样可以精简很多" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "101\n", + "102\n", + "103\n", + "104\n", + "105\n", + "101\n", + "102\n", + "103\n", + "104\n", + "105\n", + "\n", + "\n", + "140488877858880\n", + "140488878015088\n" + ] + } + ], + "source": [ + "l = [i for i in(range(101,106))]\n", + "for i in l:\n", + " print(i)\n", + "s = (i for i in(range(101,106)))\n", + "for i in s:\n", + " print(i)\n", + "print(type(l))\n", + "print(type(s))\n", + "print(id(l))\n", + "print(id(s))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "可以看出带“()”的才是真的生成器generator,而如果我们带“[]”这样就会变成列表List,从以上代码示例可以看出,生成器的作用就是将上一步的结果带到下一步中去,或者把函数中的内部函数所返回的结果带到函数中去比如以下例子:" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I'm fun_a\n", + "I'm fun_b\n" + ] + } + ], + "source": [ + "def fun_a():\n", + " def fun_b():\n", + " print(\"I'm fun_b\")\n", + " print(\"I'm fun_a\")\n", + " return fun_b()\n", + " \n", + "fun_a()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 装饰器(decorator)\n", + "装饰器是什么,装饰器其实就是将一个函数所返回的结果进行改变,如以下代码中的意思:" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I'M FUN_B\n" + ] + } + ], + "source": [ + "def fun_a(fun_b):\n", + " def fun_c():\n", + " origin_result=fun_b()\n", + " now_result=origin_result.upper()\n", + " return now_result\n", + " return fun_c\n", + "@fun_a\n", + "def fun_t():\n", + " return \"I'm fun_b\"\n", + "print(fun_t())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然我们也可以多用几个装饰器,比如" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I'M FUN_B\n" + ] + } + ], + "source": [ + "def fun_a(fun_b):\n", + " def fun_c():\n", + " origin_result=fun_b()\n", + " now_result=origin_result.upper()\n", + " return now_result\n", + " return fun_c\n", + "def fun_d(fun_b):\n", + " def fun_h():\n", + " origin_result=fun_b()\n", + " now_result=''+origin_result+''\n", + " return now_result\n", + " return fun_h\n", + "@fun_a\n", + "@fun_d\n", + "def fun_t():\n", + " return \"I'm fun_b\"\n", + "print(fun_t())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "装饰器还是有带参数的,比如" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1101,8 +1494,11 @@ } ], "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -1116,7 +1512,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.9.7" }, "toc-autonumbering": true }, From 56a1e743e6714931a980727c3edbde8ad1ed2c70 Mon Sep 17 00:00:00 2001 From: hoolich <469165171@qq.com> Date: Tue, 23 Aug 2022 15:03:03 +0800 Subject: [PATCH 05/12] 20220823 --- Part.3.B.3.decorator-iterator-generator.ipynb | 82 ++++++++++++++++ Part.3.B.4.regex.ipynb | 93 +++++++++++++++---- 2 files changed, 156 insertions(+), 19 deletions(-) diff --git a/Part.3.B.3.decorator-iterator-generator.ipynb b/Part.3.B.3.decorator-iterator-generator.ipynb index 5735da6b9..146fa6d40 100644 --- a/Part.3.B.3.decorator-iterator-generator.ipynb +++ b/Part.3.B.3.decorator-iterator-generator.ipynb @@ -1485,6 +1485,88 @@ "装饰器还是有带参数的,比如" ] }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Trace: You've called a function: say_hi(), with args: ('Hello',); kwargs: {'name': 'Jack'}\n", + "Trace: say_hi('Hello',) returned: Hello! Jack.\n", + "Hello! Jack.\n" + ] + } + ], + "source": [ + "def trace(func):\n", + " def wrapper(*args, **kwargs):\n", + " print(f\"Trace: You've called a function: {func.__name__}(),\",\n", + " f\"with args: {args}; kwargs: {kwargs}\")\n", + " \n", + " original_result = func(*args, **kwargs)\n", + " print(f\"Trace: {func.__name__}{args} returned: {original_result}\")\n", + " return original_result\n", + " return wrapper\n", + "\n", + "@trace\n", + "def say_hi(greeting, name=None):\n", + " return greeting + '! ' + name + '.'\n", + "\n", + "print(say_hi('Hello', name='Jack'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "如果在装饰器上带上参数会怎么样" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Trace: You've called a function: wrapper3(), with args: ('Hello',); kwargs: {'name': 'Jack'}\n", + "Trace: wrapper3('Hello',) returned: Hello! Jack.Hello! Jack.\n", + "Hello! Jack.Hello! Jack.\n" + ] + } + ], + "source": [ + "def trace(func):\n", + " def wrapper(*args, **kwargs):\n", + " print(f\"Trace: You've called a function: {func.__name__}(),\",\n", + " f\"with args: {args}; kwargs: {kwargs}\")\n", + " \n", + " original_result = func(*args, **kwargs)\n", + " print(f\"Trace: {func.__name__}{args} returned: {original_result}\")\n", + " return original_result\n", + " return wrapper\n", + "def trace2(try_times):\n", + " def wrapper2(func):\n", + " def wrapper3(*args, **kwargs):\n", + " original_result = try_times*func(*args, **kwargs)\n", + " return original_result\n", + " return wrapper3\n", + " return wrapper2\n", + " \n", + "\n", + "@trace\n", + "@trace2(try_times=2)\n", + "def say_hi(greeting, name=None):\n", + " return greeting + '! ' + name + '.'\n", + "\n", + "print(say_hi('Hello', name='Jack'))" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/Part.3.B.4.regex.ipynb b/Part.3.B.4.regex.ipynb index 37bcfa8b0..79d66472b 100644 --- a/Part.3.B.4.regex.ipynb +++ b/Part.3.B.4.regex.ipynb @@ -148,16 +148,16 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['begin', 'began', 'begun', 'begin']" + "['begin', 'began', 'begun', 'begins', 'begin']" ] }, - "execution_count": 5, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -936,26 +936,16 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 11, "metadata": {}, "outputs": [ - { - "data": { - "text/plain": [ - "['black']" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - }, { "data": { "text/plain": [ "'The black dog wears a black hat.'" ] }, - "execution_count": 24, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -1249,7 +1239,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -1261,7 +1251,43 @@ "Talk to the program by typing in plain English, using normal upper-\n", "and lower-case letters and punctuation. Enter \"quit\" when done.\n", "========================================================================\n", - "Hello. How are you feeling today?\n" + "Hello. How are you feeling today?\n", + "hello\n", + "Hi there... how are you today?\n", + "I need sb\n", + "Why do you need sb?\n", + "what\n", + "Can you elaborate on that?\n", + "why\n", + "How do you feel when you say that?\n", + "now\n", + "Can you elaborate on that?\n", + "tommorw\n", + "Very interesting.\n", + "dd\n", + "How do you feel when you say that?\n", + "dd\n", + "Let's change focus a bit... Tell me about your family.\n", + "dd\n", + "Let's change focus a bit... Tell me about your family.\n", + "dd\n", + "Please tell me more.\n", + "dd\n", + "How does that make you feel?\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "Interrupted by user", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_6563/1984203097.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 312\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 313\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m__name__\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"__main__\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 314\u001b[0;31m \u001b[0mcommand_interface\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_6563/1984203097.py\u001b[0m in \u001b[0;36mcommand_interface\u001b[0;34m()\u001b[0m\n\u001b[1;32m 302\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0ms\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'quit'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 303\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 304\u001b[0;31m \u001b[0ms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'> '\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 305\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mEOFError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 306\u001b[0m \u001b[0ms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'quit'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ipykernel/kernelbase.py\u001b[0m in \u001b[0;36mraw_input\u001b[0;34m(self, prompt)\u001b[0m\n\u001b[1;32m 1004\u001b[0m \u001b[0;34m\"raw_input was called, but this frontend does not support input requests.\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1005\u001b[0m )\n\u001b[0;32m-> 1006\u001b[0;31m return self._input_request(\n\u001b[0m\u001b[1;32m 1007\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprompt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1008\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parent_ident\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"shell\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ipykernel/kernelbase.py\u001b[0m in \u001b[0;36m_input_request\u001b[0;34m(self, prompt, ident, parent, password)\u001b[0m\n\u001b[1;32m 1049\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1050\u001b[0m \u001b[0;31m# re-raise KeyboardInterrupt, to truncate traceback\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1051\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Interrupted by user\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1052\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1053\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlog\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Invalid Message:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexc_info\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: Interrupted by user" ] } ], @@ -1615,6 +1641,32 @@ " " ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 总结\n", + "|正则元素|作用|举例|\n", + "|--|--|--|\n", + "|\\w|匹配字符||\n", + "|\\W|匹配非字符||\n", + "|\\d|匹配数字||\n", + "|\\D|匹配非数字||\n", + "|\\s|匹配空格||\n", + "|\\S|匹配非空格||\n", + "|+|匹配数量>=1||\n", + "|.*|匹配数量>=0||\n", + "|?|匹配数量<=1||\n", + "|{m,n}|匹配数量在m~n之间||\n", + "|{m,}|匹配数量在m以上||\n", + "|{n}|匹配数量为n|\n", + "|[]|匹配其中的元素|[er]可以匹配e也可以匹配r也可以匹配er|\n", + "|()|匹配一整个元素集合|(er)只匹配er,捕获匹配|\n", + "|^|开头||\n", + "|$|结尾||\n", + "|\\||或||" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1624,8 +1676,11 @@ } ], "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -1639,7 +1694,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.9.7" } }, "nbformat": 4, From 11887c4845d0c160cfcda610c65caf57ea7f8a6a Mon Sep 17 00:00:00 2001 From: hoolich <469165171@qq.com> Date: Fri, 2 Sep 2022 23:52:04 +0800 Subject: [PATCH 06/12] 20220902 --- Part.2.D.8-main.ipynb | 7 +- Part.3.B.4.regex.ipynb | 4 +- Part.3.C.breaking-good-and-bad.ipynb | 14 +- Part.3.D.indispensable-illusion.ipynb | 11 +- Part4.A.1.data-analyzer.ipynb | 468 ++++++++++++++++++++++++++ 5 files changed, 491 insertions(+), 13 deletions(-) create mode 100644 Part4.A.1.data-analyzer.ipynb diff --git a/Part.2.D.8-main.ipynb b/Part.2.D.8-main.ipynb index cf819dcbd..fdf244184 100644 --- a/Part.2.D.8-main.ipynb +++ b/Part.2.D.8-main.ipynb @@ -903,8 +903,11 @@ } ], "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -918,7 +921,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.9.7" } }, "nbformat": 4, diff --git a/Part.3.B.4.regex.ipynb b/Part.3.B.4.regex.ipynb index 79d66472b..bed2243ec 100644 --- a/Part.3.B.4.regex.ipynb +++ b/Part.3.B.4.regex.ipynb @@ -421,7 +421,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -430,7 +430,7 @@ "['542-', '270-']" ] }, - "execution_count": 8, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } diff --git a/Part.3.C.breaking-good-and-bad.ipynb b/Part.3.C.breaking-good-and-bad.ipynb index f8723692a..df2dd11b2 100644 --- a/Part.3.C.breaking-good-and-bad.ipynb +++ b/Part.3.C.breaking-good-and-bad.ipynb @@ -55,7 +55,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -68,14 +68,15 @@ " src=\"https://www.youtube.com/embed/OOsRMECWKAE?\"\n", " frameborder=\"0\"\n", " allowfullscreen\n", + " \n", " >\n", " " ], "text/plain": [ - "" + "" ] }, - "execution_count": 2, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -267,8 +268,11 @@ } ], "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -282,7 +286,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.9.7" } }, "nbformat": 4, diff --git a/Part.3.D.indispensable-illusion.ipynb b/Part.3.D.indispensable-illusion.ipynb index 6e5ad7176..6671bb2a8 100644 --- a/Part.3.D.indispensable-illusion.ipynb +++ b/Part.3.D.indispensable-illusion.ipynb @@ -230,7 +230,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -276,7 +276,7 @@ "> - [Part.3.F.social-selfteaching(**自学者的社交**)](Part.3.F.social-selfteaching.ipynb)\n", "> - [Part.3.G.the-golden-age-and-google(**这是自学者的黄金时代**)](Part.3.G.the-golden-age-and-google.ipynb)\n", "> - [Part.3.H.prevent-focus-drifting(**避免注意力漂移**)](Part.3.H.prevent-focus-drifting.ipynb)\n", - "> - [Q.good-communiation(**如何成为优秀沟通者**)](Q.good-communication.ipynb)\n", + "> - [Q.good-communication(**如何成为优秀沟通者**)](Q.good-communication.ipynb)\n", "> - [R.finale(**自学者的终点**)](R.finale.ipynb)\n", "> - [S.whats-next(**下一步干什么?**)](S.whats-next.ipynb)\n", "> - [T-appendix.editor.vscode(**Visual Studio Code 的安装与配置**)](T-appendix.editor.vscode.ipynb)\n", @@ -318,8 +318,11 @@ } ], "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -333,7 +336,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.9.7" } }, "nbformat": 4, diff --git a/Part4.A.1.data-analyzer.ipynb b/Part4.A.1.data-analyzer.ipynb new file mode 100644 index 000000000..8108a1519 --- /dev/null +++ b/Part4.A.1.data-analyzer.ipynb @@ -0,0 +1,468 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 数据分析" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "经常有人说不会数据分析就没有未来,所以数据分析的作用性非常大,在拥有数据分析的工具使用的基础后如果还有数据分析的思维以及能力,那么我们的稀缺性会更高,毕竟在目前公司里编程语言开发使用者占大多数,但能在使用的基础之上还能做到对于数据的分析研究并挖掘,这是比较稀缺的。\n", + "数据分析中用到的模块最多的就是numpy,pandas和matplotlib还有seaborn最后是re,接下来就一一讲解下其中的用法,以及对应的使用场景,毕竟要结合刻意思考,刻意练习还有以教代练。\n", + "pandas经常和其它工具一同使用,如数值计算工具NumPy和SciPy,分析库statsmodels和scikit-learn,和数据可视化库matplotlib。pandas是基于NumPy数组构建的,特别是基于数组的函数和不使用for循环的数据处理。\n", + "虽然pandas采用了大量的NumPy编码风格,但二者最大的不同是pandas是专门为处理表格和混杂数据设计的。而NumPy更适合处理统一的数值数组数据。\n", + "## pandas\n", + "数据分析中用到的模块最多的就是numpy,pandas和matplotlib还有seaborn最后是re,接下来就一一讲解下其中的用法,以及对应的使用场景,毕竟要结合刻意思考,刻意练习还有以教代练。\n", + "pandas经常和其它工具一同使用,如数值计算工具NumPy和SciPy,分析库statsmodels和scikit-learn,和数据可视化库matplotlib。pandas是基于NumPy数组构建的,特别是基于数组的函数和不使用for循环的数据处理。\n", + "虽然pandas采用了大量的NumPy编码风格,但二者最大的不同是pandas是专门为处理表格和混杂数据设计的。而NumPy更适合处理统一的数值数组数据。\n", + "那么如何使用pandas呢?\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd #给pandas别名,更好的使用这个模块" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### pandas的数据结构应用\n", + "#### Series\n", + "Series是一种类似于数组的对象,类似于Numpy,它由索引和数据所构成\n", + "比如以下例子:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 1\n", + "1 2\n", + "2 3\n", + "3 4\n", + "4 5\n", + "5 6\n", + "6 7\n", + "7 8\n", + "8 9\n", + "dtype: int64\n", + "[1 2 3 4 5 6 7 8 9]\n", + "RangeIndex(start=0, stop=9, step=1)\n" + ] + } + ], + "source": [ + "import pandas as pd #给pandas别名,更好的使用这个模块\n", + "obj = pd.Series(list(range(1,10)))\n", + "print(obj)\n", + "print(obj.values)\n", + "print(obj.index)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然我们也可以修改他们的索引,比如" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 1\n", + "3 2\n", + "5 3\n", + "7 4\n", + "9 5\n", + "11 6\n", + "13 7\n", + "15 8\n", + "17 9\n", + "dtype: int64\n", + "[1 2 3 4 5 6 7 8 9]\n", + "Int64Index([1, 3, 5, 7, 9, 11, 13, 15, 17], dtype='int64')\n", + "2\n", + "1 1\n", + "3 2\n", + "5 3\n", + "dtype: int64\n", + "1 1\n", + "3 2\n", + "5 3\n", + "7 4\n", + "9 5\n", + "11 6\n", + "13 7\n", + "15 8\n", + "17 9\n", + "dtype: int64\n", + "11 6\n", + "13 7\n", + "15 8\n", + "17 9\n", + "dtype: int64\n" + ] + }, + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd #给pandas别名,更好的使用这个模块\n", + "obj2 = pd.Series(list(range(1,10)),index=list(range(1,19,2)))\n", + "print(obj2)\n", + "print(obj2.values)\n", + "print(obj2.index)\n", + "print(obj2[3])#也可以拿到单个或者多个的值\n", + "print(obj2[[1,3,5]])#注意当中一定要有两次的[]\n", + "print(obj2[:10])#切片的话只会对value进行切片,因此要注意\n", + "print(obj2[obj2>5])#跟上面切片一样的,也是可以通过判断筛选出值\n", + "4 in obj2 #这里又是指的index索引" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "我们其实看上面例子可以看出来Series是带有索引的数组,那不是和字典类似吗?那我们是不是可以用来应用字典呢?答案是当然可以" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mike hello\n", + "david hi\n", + "andy welcome\n", + "dtype: object\n", + "david hi\n", + "mike hello\n", + "andy welcome\n", + "jack NaN\n", + "dtype: object\n", + "david False\n", + "mike False\n", + "andy False\n", + "jack True\n", + "dtype: bool\n", + "david False\n", + "mike False\n", + "andy False\n", + "jack True\n", + "dtype: bool\n" + ] + } + ], + "source": [ + "import pandas as pd #给pandas别名,更好的使用这个模块\n", + "a_dictionary={'mike':'hello','david':'hi','andy':'welcome'} \n", + "obj3 = pd.Series(a_dictionary)\n", + "print(obj3)\n", + "#当然也可以改变字典的顺序比如\n", + "obj4 = pd.Series(a_dictionary,index=['david','mike','andy','jack'])\n", + "print(obj4)\n", + "#我们发现当中有null值,可以通过isnull来判断\n", + "print(pd.isnull(obj4))\n", + "#也可以这样\n", + "print(obj4.isnull())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## DataFrame\n", + "DataFrame为表格型的数据结构。" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " state year pop\n", + "0 Ohio 2000 1.5\n", + "1 Ohio 2001 1.7\n", + "2 Ohio 2002 3.6\n", + "3 Nevada 2001 2.4\n", + "4 Nevada 2002 2.9\n", + "5 Nevada 2003 3.2\n", + " state year pop\n", + "0 Ohio 2000 1.5\n", + "1 Ohio 2001 1.7\n", + "2 Ohio 2002 3.6\n", + "3 Nevada 2001 2.4\n", + "4 Nevada 2002 2.9\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],\n", + " 'year': [2000, 2001, 2002, 2001, 2002, 2003],\n", + " 'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}\n", + "frame = pd.DataFrame(data)\n", + "print(frame)\n", + "print(frame.head())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然也可以指定列的顺序" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
popyearstate
01.52000Ohio
11.72001Ohio
23.62002Ohio
32.42001Nevada
42.92002Nevada
53.22003Nevada
\n", + "
" + ], + "text/plain": [ + " pop year state\n", + "0 1.5 2000 Ohio\n", + "1 1.7 2001 Ohio\n", + "2 3.6 2002 Ohio\n", + "3 2.4 2001 Nevada\n", + "4 2.9 2002 Nevada\n", + "5 3.2 2003 Nevada" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.DataFrame(data,columns=['pop','year','state'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然也可以在原来的数据中再加一列" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " pop year state debt\n", + "0 1.5 2000 Ohio NaN\n", + "1 1.7 2001 Ohio NaN\n", + "2 3.6 2002 Ohio NaN\n", + "3 2.4 2001 Nevada NaN\n", + "4 2.9 2002 Nevada NaN\n", + "5 3.2 2003 Nevada NaN\n", + " pop year state debt\n", + "1 1.5 2000 Ohio NaN\n", + "2 1.7 2001 Ohio NaN\n", + "3 3.6 2002 Ohio NaN\n", + "4 2.4 2001 Nevada NaN\n", + "5 2.9 2002 Nevada NaN\n", + "6 3.2 2003 Nevada NaN\n" + ] + } + ], + "source": [ + "data2=pd.DataFrame(data,columns=['pop','year','state','debt'])\n", + "print(data2)\n", + "data2=pd.DataFrame(data,columns=['pop','year','state','debt'],index=list(range(1,7)))\n", + "print(data2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然可以给null的值赋值" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " pop year state debt\n", + "1 1.5 2000 Ohio 1\n", + "2 1.7 2001 Ohio 2\n", + "3 3.6 2002 Ohio 3\n", + "4 2.4 2001 Nevada 4\n", + "5 2.9 2002 Nevada 5\n", + "6 3.2 2003 Nevada 6\n", + "1 1\n", + "2 2\n", + "3 3\n", + "4 4\n", + "5 5\n", + "6 6\n", + "Name: debt, dtype: int64\n", + "1 1\n", + "2 2\n", + "3 3\n", + "4 4\n", + "5 5\n", + "6 6\n", + "Name: debt, dtype: int64\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_36999/681092870.py:2: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " data2['debt'][i]=i\n" + ] + } + ], + "source": [ + "for i in range(1,7):\n", + " data2['debt'][i]=i\n", + "print(data2)\n", + "print(data2['debt'])\n", + "print(data2.debt)#这两种方式都是一样的" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, + "kernelspec": { + "display_name": "Python 3.9.7 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 286639ec76b49cbb5fb62b1df8a09ae347a93c54 Mon Sep 17 00:00:00 2001 From: hoolich <469165171@qq.com> Date: Fri, 9 Sep 2022 20:44:00 +0800 Subject: [PATCH 07/12] 20220909 --- Part4.A.1.data-analyzer.ipynb | 593 ++++++++++++++++++++++++++++++++-- 1 file changed, 573 insertions(+), 20 deletions(-) diff --git a/Part4.A.1.data-analyzer.ipynb b/Part4.A.1.data-analyzer.ipynb index 8108a1519..831b7a03f 100644 --- a/Part4.A.1.data-analyzer.ipynb +++ b/Part4.A.1.data-analyzer.ipynb @@ -77,12 +77,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "当然我们也可以修改他们的索引,比如" + "### 索引选取和过滤\n", + "#### 索引和过滤" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -120,18 +121,33 @@ "13 7\n", "15 8\n", "17 9\n", - "dtype: int64\n" + "dtype: int64\n", + "1 5\n", + "3 5\n", + "5 5\n", + "7 4\n", + "9 5\n", + "11 6\n", + "13 7\n", + "15 8\n", + "17 9\n", + "dtype: int64\n", + " one two three four\n", + "Ohio 0 1 2 3\n", + "Colorado 4 5 6 7\n", + "Utah 8 9 10 11\n", + "New York 12 13 14 15\n", + " one two three four\n", + "Ohio True True True True\n", + "Colorado True False False False\n", + "Utah False False False False\n", + "New York False False False False\n", + " one two three four\n", + "Ohio 5 5 5 5\n", + "Colorado 5 5 6 7\n", + "Utah 8 9 10 11\n", + "New York 12 13 14 15\n" ] - }, - { - "data": { - "text/plain": [ - "False" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ @@ -141,10 +157,19 @@ "print(obj2.values)\n", "print(obj2.index)\n", "print(obj2[3])#也可以拿到单个或者多个的值\n", - "print(obj2[[1,3,5]])#注意当中一定要有两次的[]\n", - "print(obj2[:10])#切片的话只会对value进行切片,因此要注意\n", - "print(obj2[obj2>5])#跟上面切片一样的,也是可以通过判断筛选出值\n", - "4 in obj2 #这里又是指的index索引" + "print(obj2[[1,3,5]])#注意当中一定要有两次的[],这样就能拿到对应的数据\n", + "print(obj2[:10])#切片的话优先会对value进行切片,因此要注意,除非其中没有value值才会对索引进行过滤\n", + "print(obj2[obj2>5])#跟上面切片一样的,也是可以通过判断筛选出对应的索引然后再选到对应的值\n", + "obj2[1,3,5]=5 #这样对应的是索引\n", + "print(obj2)\n", + "4 in obj2 #这里又是指的index索引\n", + "#再举个例子\n", + "data = pd.DataFrame(np.arange(16).reshape((4, 4)),index=['Ohio', 'Colorado', 'Utah', 'New York'],columns=['one', 'two', 'three', 'four'])\n", + "print(data)\n", + "print(data<5)#可以判断是否<5\n", + "#也可以通过选取<5的单元格进行值替换\n", + "data[(data<5)]=5\n", + "print(data)" ] }, { @@ -199,6 +224,42 @@ "print(obj4.isnull())" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "我们还可以对数据进行重新索引也可以进行填充,用method选项填充" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 blue\n", + "1 blue\n", + "2 purple\n", + "3 purple\n", + "4 yellow\n", + "5 yellow\n", + "dtype: object" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "obj3 = pd.Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])\n", + "obj3\n", + "obj3.reindex(range(6))#这样数据就会有部分为NaN\n", + "obj3.reindex(range(6),method='ffill')#可以进行填充" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -438,14 +499,506 @@ "print(data2['debt'])\n", "print(data2.debt)#这两种方式都是一样的" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然也可以添加一个计算列,比如根据判断state是否是'Ohio',如果是就返回True,如果不是就返回False" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
popyearstatedebtexp
01.52000OhioNaNTrue
11.72001OhioNaNTrue
23.62002OhioNaNTrue
32.42001NevadaNaNFalse
42.92002NevadaNaNFalse
53.22003NevadaNaNFalse
\n", + "
" + ], + "text/plain": [ + " pop year state debt exp\n", + "0 1.5 2000 Ohio NaN True\n", + "1 1.7 2001 Ohio NaN True\n", + "2 3.6 2002 Ohio NaN True\n", + "3 2.4 2001 Nevada NaN False\n", + "4 2.9 2002 Nevada NaN False\n", + "5 3.2 2003 Nevada NaN False" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],\n", + " 'year': [2000, 2001, 2002, 2001, 2002, 2003],\n", + " 'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}\n", + "data2=pd.DataFrame(data,columns=['pop','year','state','debt'])\n", + "\n", + "data2['exp']=data2.state == 'Ohio'\n", + "data2\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "也可以用del方法来删除某一列" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
popyearstatedebt
01.52000OhioNaN
11.72001OhioNaN
23.62002OhioNaN
32.42001NevadaNaN
42.92002NevadaNaN
53.22003NevadaNaN
\n", + "
" + ], + "text/plain": [ + " pop year state debt\n", + "0 1.5 2000 Ohio NaN\n", + "1 1.7 2001 Ohio NaN\n", + "2 3.6 2002 Ohio NaN\n", + "3 2.4 2001 Nevada NaN\n", + "4 2.9 2002 Nevada NaN\n", + "5 3.2 2003 Nevada NaN" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "del data2['exp']\n", + "data2\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然我们还可以对数据进行转置,类似excel的转置" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "data3=data2.T\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "我们也可以对DataFrame的数据进行重新索引" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " pop year state debt\n", + "0 1.5 2000.0 Ohio NaN\n", + "1 1.7 2001.0 Ohio NaN\n", + "2 3.6 2002.0 Ohio NaN\n", + "3 2.4 2001.0 Nevada NaN\n", + "4 2.9 2002.0 Nevada NaN\n", + "5 3.2 2003.0 Nevada NaN\n", + "6 NaN NaN NaN NaN\n", + "7 NaN NaN NaN NaN\n", + " year state debt pop exp\n", + "0 2000 Ohio NaN 1.5 NaN\n", + "1 2001 Ohio NaN 1.7 NaN\n", + "2 2002 Ohio NaN 3.6 NaN\n", + "3 2001 Nevada NaN 2.4 NaN\n", + "4 2002 Nevada NaN 2.9 NaN\n", + "5 2003 Nevada NaN 3.2 NaN\n", + "[[2000 'Ohio' nan 1.5 nan]\n", + " [2001 'Ohio' nan 1.7 nan]\n", + " [2002 'Ohio' nan 3.6 nan]\n", + " [2001 'Nevada' nan 2.4 nan]\n", + " [2002 'Nevada' nan 2.9 nan]\n", + " [2003 'Nevada' nan 3.2 nan]]\n" + ] + } + ], + "source": [ + "data4=data2.reindex(range(8))#这样数据就会有部分为NaN\n", + "print(data4)\n", + "data5=data2.reindex(columns=['year','state','debt','pop','exp'])#也可以对列进行索引\n", + "print(data5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 丢弃制定轴上的项\n", + "我们可以对数据对象的某一列的数据进行丢弃,比如以下例子:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a 0.0\n", + "b 1.0\n", + "c 2.0\n", + "d 3.0\n", + "e 4.0\n", + "dtype: float64\n", + "a 0.0\n", + "b 1.0\n", + "c 2.0\n", + "d 3.0\n", + "e 4.0\n", + "dtype: float64\n", + "a 0.0\n", + "b 1.0\n", + "d 3.0\n", + "e 4.0\n", + "dtype: float64\n", + "a 0.0\n", + "b 1.0\n", + "dtype: float64\n", + " one two three four\n", + "Ohio 0 1 2 3\n", + "Colorado 4 5 6 7\n", + "Utah 8 9 10 11\n", + "New York 12 13 14 15\n", + " one two three four\n", + "Utah 8 9 10 11\n", + "New York 12 13 14 15\n", + " one three four\n", + "Ohio 0 2 3\n", + "Colorado 4 6 7\n", + "Utah 8 10 11\n", + "New York 12 14 15\n", + " one three four\n", + "Ohio 0 2 3\n", + "Colorado 4 6 7\n", + "Utah 8 10 11\n", + "New York 12 14 15\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "obj = pd.Series(np.arange(5.), index=['a', 'b', 'c', 'd', 'e'])\n", + "print(obj)\n", + "obj.drop('c')#可以对某一列进行丢弃对其本身不会做任何修改\n", + "print(obj)\n", + "obj.drop('c',inplace=True)#可以对某一列进行丢弃对其本身会做任何修改,小心使用inplace,它会销毁所有被删除的数据。\n", + "print(obj)\n", + "#当然也可以对对象多个列进行操作\n", + "obj2=obj.drop(['e','d'])\n", + "print(obj2)\n", + "#再举个例子,DataFrame的例子\n", + "data=pd.DataFrame(np.arange(16).reshape(4,4),index=['Ohio', 'Colorado', 'Utah', 'New York'],columns=['one', 'two', 'three', 'four'])\n", + "print(data)\n", + "#我们可以删除索引\n", + "data2=data.drop(['Ohio','Colorado'])\n", + "print(data2)\n", + "#当然也可以删除对应的列,通过传递axis=1或axis='columns'可以删除列的值,下面两张方式效果是一样的\n", + "data3=data.drop('two',axis=1)\n", + "print(data3)\n", + "data4=data.drop('two',axis='columns')\n", + "print(data4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 用loc和iloc进行选取\n", + "轴标签(loc)或整数索引(iloc),可以通过他们两个从DataFrame选择行和列的子集\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " a b c d\n", + "1 0 1 2 3\n", + "2 4 5 6 7\n", + "3 8 9 10 11\n", + "4 12 13 14 15\n", + "b 1\n", + "c 2\n", + "Name: 1, dtype: int64\n", + "b 1\n", + "c 2\n", + "Name: 1, dtype: int64\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "data = pd.DataFrame(np.arange(16).reshape(4,4),index=['1','2','3','4'],columns=['a','b','c','d'])\n", + "print(data)\n", + "#我们要选取第1行第2列,第3列\n", + "print(data.loc['1',['b','c']])\n", + "#当然可以用iloc整数索引来选取,数据要从第0行或者第0列开始算\n", + "print(data.iloc[0,[1,2]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Numpy\n", + "Numpy是带一组索引的数组,我们可以对其进行加工运算。类似于Series。" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 1\n", + "1 2\n", + "2 3\n", + "3 4\n", + "4 5\n", + "5 6\n", + "6 7\n", + "7 8\n", + "8 9\n", + "dtype: int64\n", + "3 4\n", + "4 5\n", + "5 6\n", + "6 7\n", + "7 8\n", + "8 9\n", + "dtype: int64\n", + "0 2\n", + "1 4\n", + "2 6\n", + "3 8\n", + "4 10\n", + "5 12\n", + "6 14\n", + "7 16\n", + "8 18\n", + "dtype: int64\n" + ] + }, + { + "data": { + "text/plain": [ + "0 2.718282\n", + "1 7.389056\n", + "2 20.085537\n", + "3 54.598150\n", + "4 148.413159\n", + "5 403.428793\n", + "6 1096.633158\n", + "7 2980.957987\n", + "8 8103.083928\n", + "dtype: float64" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd #给pandas别名,更好的使用这个模块\n", + "import numpy as np\n", + "obj = pd.Series(list(range(1,10)))\n", + "print(obj)\n", + "print(obj[obj>3])#筛选出大于3的数组\n", + "print(obj*2)#将数组中的值全*2\n", + "np.exp(obj)" + ] } ], "metadata": { "interpreter": { - "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + "hash": "034c70736e9d25f3f57bc70ec9a2164e1c27bdcdecfc656ea6098a86262350a2" }, "kernelspec": { - "display_name": "Python 3.9.7 ('base')", + "display_name": "Python 3.9.12 ('myenv')", "language": "python", "name": "python3" }, @@ -459,7 +1012,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.12" }, "orig_nbformat": 4 }, From 032850c7505ebf042c5f94ad70b8410f6b462947 Mon Sep 17 00:00:00 2001 From: hoolich <469165171@qq.com> Date: Mon, 10 Oct 2022 17:43:21 +0800 Subject: [PATCH 08/12] 20221010 --- Part.1.A.better.teachyourself.ipynb | 6 +- Part4.A.1.data-analyzer.ipynb | 584 +- Part4.A.2data_summury_and_group.ipynb | 212 + Part5.A.fund-choice.ipynb | 93 + Part5.B.downloadcsv.ipynb | 1012 +++ fundchoiceresult.csv | 205 + fundrank.csv | 2250 +++++++ images/groupby.png | Bin 0 -> 24429 bytes maoyan.csv | 0 names.csv | 4 + ua_info.py | 14 + "\346\210\221\347\232\204\345\244\251.html" | 6659 +++++++++++++++++++ 12 files changed, 10985 insertions(+), 54 deletions(-) create mode 100644 Part4.A.2data_summury_and_group.ipynb create mode 100644 Part5.A.fund-choice.ipynb create mode 100644 Part5.B.downloadcsv.ipynb create mode 100644 fundchoiceresult.csv create mode 100644 fundrank.csv create mode 100644 images/groupby.png create mode 100644 maoyan.csv create mode 100644 names.csv create mode 100644 ua_info.py create mode 100644 "\346\210\221\347\232\204\345\244\251.html" diff --git a/Part.1.A.better.teachyourself.ipynb b/Part.1.A.better.teachyourself.ipynb index 74be6bdea..16adb9dab 100644 --- a/Part.1.A.better.teachyourself.ipynb +++ b/Part.1.A.better.teachyourself.ipynb @@ -60,7 +60,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAFfCAYAAAAGbRsLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8XGW9x/HPL+mSJk3SNE26pUn3jdKFlrILlEVZBQEFr4AIFK6CKyiboIheVNTL4lVRFGSTRXZZLZtQQFqgpStd0yVtszZt9u13/zgnZRrTdLpMJsv3/XrNKzNnzpz5zZkk853nec5zzN0RERERkfaVEO8CRERERLojhTARERGROFAIExEREYkDhTARERGROFAIExEREYkDhTARERGROFAIExEREYkDhTAR6bTM7MtmNs/MKsxsk5m9YGZHmtmPzOyBVtZ3MxsdXt9pnfC+j80sIWLZLWZ2b4ttpITP93wMX5qIdAMKYSLSKZnZd4H/BX4GDARygf8DPr8Pmx0CnLubdc4GaoETzWzwPjyXiHRzCmEi0umYWTpwM/ANd3/C3Svdvd7dn3X3q/dh078AfmxmPdpY50Lg98BC4L/24blEpJtTCBORzugwIAl4cj9v9wlgG/DV1u40s1zgGODB8HLBfn5+EelGFMJEpDPKBIrdvaGNdb5oZlsjL1Fs14EfAjeaWe9W7r8AWOjuS4CHgQPMbNoeVy8igkKYiHROJcCA3XQbPuru/SIv0WzY3Z8H1gGzW7n7AoIWMNy9AHiDoHtSRGSPKYSJSGf0DlADnBGj7d8AXA8kNy8ws8OBMcC1ZrbZzDYDhwDn7SYMioi0SiFMRDoddy8HbgR+a2ZnmFmymfU0s5PM7Bf7YfuvAx+zcyvXhcArwERganiZRBDUTtrX5xSR7kchTEQ6JXf/NfBdglarImA9cAXw1H56ihuA/gBmlgR8EbjT3TdHXNYA96MuSRHZC+bu8a5BREREpNtRS5iIiIhIHCiEiYiIiMSBQpiIiIhIHCiEiYiIiMSBQpjElJmNM7MPzWy7mX0z3vV0FGb2gpnpiLoOqCu+N2a22MyOiXcdsWBmPzKzB+Jdh8jeUAiTWPs+8Lq7p7r7HfEqwsz6m1mRmb0VsWyimc0zs7Lw8k8zm9jGNipaXBrN7M692Za7n+Tu9+3la7kifK5aM7u3lfsvMbOVYY0vmtmQFvcfZGZvhvdvMbNvRdw33MxeM7MqM1tmZse3Uce9ZnbL3ryG8PGLW+zPBjN7NuL+RDO7xcwKwhD/oZm1Ouu9md1mZivC9ZaZ2QUt7nczq4x4rj/tqq69fW/MrLeZ3WNm+RH1ntRinePC+qrC/ZwXcd8XzWxueN/rrWw/6v3Ryms6IJz7rFszs+ta/M5Vm1mTmQ1osd5//L9oZVvnmtlyMys3s0Izu8/M0iLun2Bmr4b3rzSzMyPuG2Zm75pZqZn9qsV2XzSzGfvzdUvHpRAmsZYHLN7VnWaW2E51/BxY2mJZAXA2wVxQA4BngL/tagPu3rf5AgwEqoHH9mZb+6gAuAX4c8s7zOxo4GfA58Na1hCc47D5/gHAi8AfCM6/OBp4OWITDwMfhvddDzxuZlmxeBFhMGjen6kEpwp6LGKVHwOHE5ysOw04n2CW/NZUAqcB6QRzdt1uwQz3kaZEvIeX7MeX0qwHwVxlR4d1/BB41MyGw459/0S4vD8wD3gk4vGlwP8Ct+5i+3uyP2LOOuFZAtz9Zy3+jn9O8CWxuMWqrf2/aOlt4Ah3TwdGErz/t8COffM08BzBez0beMDMxoaPvRa4DxgBnNEcuszsS8Bqd5+3jy9VOgt310WXmFyAV4FGgg+KCmAscC/wO+B5gg/O4wk+sP5KMOFmPsEkmQnhNr5K8M/uN8BWYDXBB9FXCT7wCoELd1PHYQSnubkIeGsX6/QAvgFURfnaLgxrsb3ZFvA6cEnEa3wLuA0oIwhOJ0VRwy3AvS2W3Qb8NuL2EIKTUo8Kb/8MuH8X2xsL1AKpEcv+BVzeyrqzgXqgLnxvnw2XTwhf21aC8H16lPvz6HA7KeHtjPD2qL383XsG+F7EbQdGR/nYfX5vIra1EDgrYp/NjbgvhSDIj2/xmEsIgkHksn3dH2uB48PrPwIeJfib2x6+TzMi1h1GEBaLCM7ReVfEvmj+WywFbgmXf40gsJQBLwF5Edu6neDvdBswHzgq4r6ZBEF0G7AF+HXEfYcCc8PfowXAMRH3jSA4Z+d2gjMY3AU8sBf7xIBVtPj/QRT/L1rZVt9wfz4f3p4Uvl8Wsc7LwE/C6y8A48LrfyOYCDiN4AtQv715j3XpnBe1hEnMuPssgg/xKzz45vlJeNeXgZ8StH68BdxJEMRGEnwYX0DwD7DZIQQfZpnAQwT/tA4maMX5CnCXmfVtrYawpe23BDOptzozsZltJQiKdxKElGhcCPzVw/+i+7gtCF7jcoJWtF8A95iZ7cHjd5QQXiJvQ/ChAMGHW2nY7VVoZs+aWW543wEE38K3Rzx+Qbh8J+5+N8GJrH8RvrenmVlP4FmCD5ts4ErgQTMbF0XdFwKPu3tlePtAoAE424LzNH5iZt+IYjuYWR+C34+WLbBvhtt6orl1Kkp79d6Y2UCCYNtcxwEE+xOA8LWuopX924q93h+7cDrB31E/gsB6V1hzIkHrTT4wHBjKzi26hxB8+cgGfmpmZwDXAV8Asgj+3h+OWP99gtM79Sf4233MgrMPQBDQbnf3NGAUQTDEzIYC/yD4ktEfuAr4e0SL7EMEgW4A8BP2/mwFRxG0aP+9eUE0/y8imdmRZlZOEAjPImjJhJ3/BolY1vx3uAg4IexOngEsIXgt/+vuW/fq1UinpBAm8fC0u7/t7k0ErSlfAq519+3uvhb4FUFXS7M17v4Xd28k6L4ZBtzs7rXu/jJBa8zoXTzXN4H33H3+ropx934EIfAKgm+ibQpDy9EE3Qn7tK0I+e7+x/A13gcMJviA2FPPA180s8lhGLmR4MOk+UTUOQQfWt8Cctm5u7IvUN5ie+UEYTkah4bbuNXd69z9VYIP9PPaepCZJRN05d4bsTiHYD+OJWj5OBv4kZmdEEUdvycIOy9FLDuaIFSMJ+jOfW4PutP2+L0JA+mDwH3uvixcvC/7d1/2R2vecvfnw9d0PzAlXD6ToPX0anevdPcad48cF1Xg7ne6e4O7VwOXAf/j7kvdvYHgi8fU5rFu7v6Au5eE6/8K6A00h/J6YLSZDXD3Cnd/N1z+FYIWpefdvcndXyFoMTs5/Ns7GPhh+Pf/JkHw3xvNwb8iYtlu/19Ecve3POiOzAF+SdDiCLCMoJX+agvOaXoiwe9g89/h/xCEwDcIQl9PYDLwrJk9ZMGYzSv28nVJJ6IQJvGwPuL6AKAXwTfvZvkE38CbbYm4Xg3g7i2X/UdLmAUD0r9JMLapTWGrxO+Bv5pZ9m5Wv4DgQ2zNfthWs80Rj68Kr7bautcWd58D3ETw7T6f4ENhO7AhXKUaeNLd33f3GsJxRmaWTtB9ktZik2nh46MxBFgfhutmLd/L1nyBoHvrjYhl1eHPm9292t0XErTInNzWhszslwStDV+MbKV09zfDYLiVIICOIOg6jcYevTdmlkAQbOoIwnizfdm/e7U/2rA54noVkBSG0mEEobNhF49b3+J2HsH4u61hK3ApQYvPUAAz+56ZLQ0Hp28lCJLNg+AvJgiVy8zsfTM7NWKb5zRvM3zckQThdwhQFtFiCjv/74hK+AXlHCK+SO3J/4uW3H0jwVjLv4W364EzgFMI9vX3CFr6NoT3l7r7l9x9CkGL4J0ELcfXELSSHQ9cbm0c3CNdg0KYxENkM38xwTfivIhlucDG/fA8Mwn+cS8xs80E/+xmht05rR0QkEDwTXV3oeECWmkF28tt7Xfu/lt3H+Pu2QRhrAfBP3YIunUj93/zdSPoNhtpZpEtM1PY9YEVLbtrCoBhYQhpFs172VrX7sJdPMcumdmPgZOAE919225Wd1rvMtonYTflPQQtZWeFH8bNFvNpixNmlkLQDbfLA1ci7PH+2Evrgdw2WglbPv964DJ37xdx6ePuc83sKOAHBOOdMsJW4nLC/e7uK9z9PIKuzZ8THASSEm7z/hbbTHH3W4FNQEa4XrNc9lxz8H89Ytme/r9oqQfB+0n4+ha6+9HunununyUYbvHvVh43G3jX3RcRdDvPc/c64GM+7b6ULkohTOIq7A55lGB8SWrYjfFdYH/M+/MCQRfU1PByI0EX4VR3bzSzE8xsmgWH/qcBvyYYXLzLo6LCI+6GsvNRfOzNtvaWmfUIx9UkAolm1tyKQXh9kgVygbsJxt2UhQ//C3CmmU0Nu8x+SNCqtzUcs/cRcFO4nTMJukj+3rKG0BaCD5Zm7xEcbPH9sAvmGIIjFnd5lKiZ5QDH0iLUuvsqgvFF11sw9cMEgm7r53axnWsJxhqe4O4lLe47IHy9ieHYwV8RBMP9/t4QHHQyATgt7K6L9CQwyczOCt+/G4GFzd2VYX1JBB/mCeF70BN2vz/M7Bgz2x8B7d8EQedWM0sJaziijfV/D1xrZgeEdaSb2TnhfakE49iKgB5mdiMRLYFm9hUzywpbTpvHQTUS/O2fZmafbd4n4evLcfd8gq7JH5tZLzM7kuB3bE+1Fvzb/H/RcgNm9l9mlhv+reURjHOdE3H/5LD2ZDO7iiDg3dtiG9kEB/H8KFy0Bjg2/D2dQTD+TrowhTDpCK4k+PBeTTBQ/yFamX5hT4VjRjY3Xwi+hdeH1yEYlPxwuHwVwbiyz4XddM1zCr3QYrMXAk+0GLy+223tZzcQdE9dQzB+pjpcBpBEsP8qCD5Q3yEIWgCE47SuIxj4XBjW+eWIbZ9L8M+/jGCqhLPdvWgXddwDTAy7jJ4Kv72fTtAaVQz8H3BBxJio1pwPvBOGjJbOI2ghLQnr/WHY3dr8ARjZgvQzghaRFfbpHFDXhfcNJBhLuI3gd2w4cGqLVqp9Fn4QX0bwAb45oo7/Agj341kEH9ZlBIPcz43YxPkE7+XvCMYLVQN/jLh/l/uDoBvxnX19DWHYOI3g92IdQffZl9pY/0mCVqy/mdk2ghbX5rnRXiIINp8QdBnWsHN35ueAxWZWQdDqdG44Bm09wRQr1xEEuPXA1Xz6efVlgn1XStD1/tc9eY0WDPyf1fJxu/t/EQauCvv0QJaJBEdwVhAcNbocuDRik+cTBNpC4DiCLwi1Lcq5jaCLuXlc2v+Eta0HnnFNVdHl2c5fBEREpLOxYPLZx9z9pd2uLCIdhkKYiIiISByoO1JEREQkDhTCREREROJAIUxEREQkDhTCREREROIg2tN2xNWAAQN8+PDh8S5DREREZLfmz59f7O5Zu1uvU4Sw4cOHM2+epksRERGRjs/MojqdlrojRUREROJAIUxEREQkDhTCREREROJAIUxEREQkDhTCREREROJAIUxEREQkDhTCREREROJAIUxEREQkDhTCREREROKgU8yYLyIiIrInGpucTeXVrCutYl1JFetKq8gvreLSo0YydVi/eJcHKISJiIhIJ1VR28D60iryS6pYX/pp0FpfWsWGsirqG33Huj0SjJyMPpRW1sax4p0phImIiEiH1NTkbNlew7qST8PVuojQVVJZt9P66X16kpeZzMQhaXxu0iBy+yeT1z+ZYf2TGZyeRI/EjjUKSyFMRERE4qa2oZENZdVB0CqpJD/sPmwOXbUNTTvWTTAY0q8PeZnJnHjAQHL7p5DbP3nHJT25ZxxfyZ5TCBMREZGYqq5rZF1pFWtLKskvqWRtGLjWFlexqbyapk97DenTM5G8zGRGDkjh2HFZ5Gam7GjRGprRh54drDVrXyiEiYiIyD6rbWhkfWkVq4sqWVMcXFYXB6Fry7adx2FlJPckLzOFg4dnkJuZQ17/ZPIyk8nNTCarb2/MLE6von0phImIiEhU3J3N22pYVVjJqqKKHUFrTXEFG8t2btEa0LcXwzNTOGpMFsMzk8nLTCEvM5m8/imdrtswVmIWwsxsHPBIxKKRwI1AP+BSoChcfp27Px+rOkRERGTP1Dc2kV9SxcrCClYVVbCqsIKV4c/KusYd66X0SmREVgpTh2Vw5rQcRg5IYcSAFIYPSCG9j4LW7sQshLn7cmAqgJklAhuBJ4GLgN+4+22xem4RERHZvcYmJ7+kkk+2VPDJlu0s37KdTzZvZ01xJQ0RzVqD0pIYnd2Xs6fnMDq7L6Oy+jIquy/Zqd2n6zAW2qs78jhglbvn680SERFpf4Xba1hSsI2lm7azIgxcKwsrdjr6MLd/MmMHpnL8xIGMiQhbfXtr9FIstNdePRd4OOL2FWZ2ATAP+J67l7VTHSIiIl1aY5OztqSSxQXbWFKwjSWbgp/FFZ8Ojh+cnsSYgakcPiqTsQNTGTcoldHZfUnupbDVnszdd7/WvjyBWS+gADjA3beY2UCgGHDgJ8Bgd/9aK4+bDcwGyM3NnZ6fnx/TOkVERDqbxiZnVVEFC9ZvZeGGchYVlLNs03aq64NxWz0TjTHZqUwcksbEwWkcMCSN8YPSNDA+xsxsvrvP2N167RF5TwI+cPctAM0/Aczsj8BzrT3I3e8G7gaYMWNGbJOiiIhIB+furCutYsGGchZGhK6qcKB83949OGBIGufNzN0RukZn96VXj64zr1ZX0x4h7DwiuiLNbLC7bwpvngksaocaREREOpWK2gYWrN/K/Pwy5ueX8dH6rZRX1wPQu0cCE4ek8cUZw5ick87knH6MHJBCQoLGXXcmMQ1hZpYMnABcFrH4F2Y2laA7cm2L+0RERLodd2dDWTUfrAsC17y1ZSzbvI0mBzMYNzCVkw8cxOScfkzOSWfswNQuNXN8dxXTEObuVUBmi2Xnx/I5RUREOjp3Z3VxJe+sKuGd1SW8v6aUwu3BwPmUXolMy83gilljmJ6XwdRh/TTnVhelwyBERERirHk8V3PoemdVyY7QNTg9icNGZTIjL4Ppef0ZNyiVRHUrdgsKYSIiIjFQUlHLmyuKeGtFCe+uLmHj1moABvTtzWGjMjl8VCaHjcwkLzNZE552UwphIiIi+0FTk7OooJzXlhXx2vJCFmzYintwsupDR2Zy2dEjOXxUJqOy+ip0CaAQJiIistfKq+v514oiXltWxBufFFJcUYcZTMnpx7ePG8ux47OYNCRdRy1KqxTCRERE9sCm8mpeXLSZFxdtZl5+GY1NTnqfnhw9Notjx2fxmTFZZPbtHe8ypRNQCBMREdmN/JJKXli0mRcWbWbB+q0AjB3Yl8uPHsms8dlMyelHD00ZIXtIIUxERKQFd2dFYQUvfLyZFxZtYtnm7QAcODSdqz87js9NGsSorL5xrlI6O4UwERGR0JriSp75qIBnFmxkVVElZjAjL4MbTpnA5yYNIicjOd4lSheiECYiIt3a5vIanltYwDMLCli4oRwzOGREf756xAg+O3Eg2WlJ8S5RuiiFMBER6Xa2VtXxwqLNPPNRAe+uKcE96Gq84ZQJnDp5CIPSFbwk9hTCRESkW6htaOTVpYX8/YONvPFJIfWNzsgBKXzruDGcPmUIIzXGS9qZQpiIiHRZ7s6H67fy9/kbeG7hJsqr68lO7c2Fhw3njGlDOWBImiZOlbhRCBMRkS5nfWkVT324kSc+3Mia4kqSeibwuQMG8YWDcjhi9ACdm1E6BIUwERHpEipqG3j+4038ff4G3ltTCsChI/vz38eM4uQDB9O3tz7ypGPRb6SIiHRaTU3Ou6tLeHz+Bl5YtJnq+kZGDEjhqhPHcsa0oZpSQjo0hTAREel01hZX8vcPNvDEBxvZuLWa1KQenHnQUM46KIeDcvtpnJd0CgphIiLSKWyrqef5hZt4fP4G5uWXkWBw1JgsrjlpPCdMHEhSz8R4lyiyRxTCRESkw2pobOJfK4p54sONvLJkMzX1TYzO7ssPPjeeM6cN1Xxe0qkphImISIfi7iwu2MbfP9jAswsKKK6oo19yT86ZPoyzpucwJSdd3Y3SJSiEiYhIh1CwtZqnPtrIkx9sZEVhBb0SEzhuQjZnThvKMeOy6dUjId4liuxXCmEiIhI3ZZV1vLh459MHzcjL4KdnTuLUA4eQntwz3iWKxIxCmIiItKvy6npeXryZ5xZu4u2VxTQ0OSPC0wedOW0oeZkp8S5RpF0ohImISMxV1DYwZ+kWnl1QwJufFFPX2ERORh8uOWokp04erNMHSbekECYiIjFRXlXPa8sLeWnxZl5dVkhtQxOD0pI4/7A8Tp08mKnDNJ+XdG8KYSIist+sL63in0u38MqSLby3ppTGJicrtTdfOngYp04ewoy8DBJ03kYRQCFMRET2QfN0Ei8vCYLX0k3bABid3ZfZnxnJCRMHMjWnn4KXSCsUwkREZI+UVNQyd1UJb60o5s0VRWwqryHBYHpeBtedPJ4TJg5ixAANrhfZHYUwERFpU019I++vLeWtFcW8tbKYxQVBa1daUg8OHzWA75yQzXHjs8ns2zvOlYp0LgphIiKyk9qGRhZtLOffa8p4a2UR768to66hiZ6JxkG5GVx14liOGD2AyTn9SFQ3o8hei1kIM7NxwCMRi0YCNwJ/DZcPB9YCX3T3sljVISIibSvaXsv8/DI+WFfG/PwyPt5QTl1jEwDjBqZy/qF5HDlmADOH9yelt767i+wvMftrcvflwFQAM0sENgJPAtcAc9z9VjO7Jrz9g1jVISIin6qpb2T55u18vLGcD/LLmL+ujPySKgB6JSZwYE46Xz1iOAflZjA9L4OsVHUxisRKe32lOQ5Y5e75ZvZ54Jhw+X3A6yiEiYjsV+5O0fZalmzaxpJN21i6aTtLCspZU1xJkwfrDOjbm+l5/fivQ3KZntefSUPT6N0jMb6Fi3Qj7RXCzgUeDq8PdPdNAO6+ycyy26kGEZEupzlsrSyqYHVRJauKKlhZWMGSgm2UVNbtWG9ovz5MGJzGKZOHMHFwKhMHpzOsfx9NlioSRzEPYWbWCzgduHYPHzcbmA2Qm5sbg8pERDqPqroG8kuqyC+pZFVRJasKK1hVXMnqwgq21zbsWK9Pz0RGZacwa3w2E4ekMWFwGhMGpelE2CIdUHu0hJ0EfODuW8LbW8xscNgKNhgobO1B7n43cDfAjBkzvB3qFBGJG3entLKOtSVVrCutJL+kinUlVeSXVpFfUkVxRe1O6w9OT2JkVgpnHjSUUVl9GZmVwqisvgxKS9LEqCKdRHuEsPP4tCsS4BngQuDW8OfT7VCDiEhcuTvl1fVsKKtmQ1kV60uDnxvKqlkf/qyqa9zpMYPTk8jtn8ys8VnkZaaQ2z+Z4ZkpjMhKoa+OUhTp9GL6V2xmycAJwGURi28FHjWzi4F1wDmxrEFEpD00NTlFFbVs3FrNxrLqnX4WhNcjuw0BUnv3IKd/MnmZKRwxegDDMpLJywwuORnJJPXUIHmRriymIczdq4DMFstKCI6WFBHpNGobGtlcXsPGsmo2hKGqYGsYtrZWs2lrzY65tZqlJfVgaEYQqA4dmUlORh9yMpLJyejDsIxkjdMS6ebUni0iQjB/VnNXYfAzCFcbyqrYWFZNUUUt3mJ0anZqb4Zm9OHAoel8btIghvbrE1wygp+pSQpZIrJrCmEi0i00NDZRsLWGdaVVOy7NY7E2llVRXFG30/o9E40hYag6emzWjmDVHLIGpSdpTi0R2ScKYSLSZdTUN5JfUsXqooodRxWuDwPXxq3VNDZ92pTVKzGBoRl9yMnow8SJA3d0Ew7tF3QZZqf21lGGIhJTCmEi0qm4O5u31bC6qJLVRRWsLq4MrhdXsKGseqcuw/4pvRjWP5mpw/px+pQh5GYmk9s/uGgqBxGJN4UwEemwtlbVsWzzdpZv3h7+3MYnWyqoiDjKMLlXIiMGpDB1WAZfmJazY76svMxkjckSkQ5NIUxE4q6xyVlTXMHHG8tZuunTwLVl26cTlPZL7sm4gamcddBQRmf3ZWQ4QemgtCSdekdEOqXdhjAzOwL4EZAXrm+Au/vI2JYmIl1RU5OztqSSjzeWs3BDOR9vLGfxxnIqw4lKe/VIYHRWX44YPYDxg1IZNyiN8YNSyU7trbAlIl1KNC1h9wDfAeYDjbtZV0RkJyUVtczPL2P+ujIWri9n0cbyHZOW9u6RwAFD0jh7eg4H5vTjwKHpjMpKoUdiQpyrFhGJvWhCWLm7vxDzSkSk03N31hRXMi+/jHlrS5mXX8bqokogOBpxwpA0zpg2lAOHpnNgTjpjsvsqcIlIt7XLEGZmB4VXXzOzXwJPADsGaLj7BzGuTUQ6uKYmZ+nmbbyzqoR/ryllfn4ZJZXBfFv9knsyIy+Dc6YP4+DhGUwamq7T8IiIRGirJexXLW7PiLjuwKz9X46IdHTrS6t4a2Uxb60s5p1VJZSGoWt4ZjLHjMtmxvAMDh6ewcgBfTUFhIhIG3YZwtz9WAAzG+nuqyPvMzMNyhfpJkor65i7qpi3w+C1vrQagIFpvTlmXBZHjh7A4aMGMCg9Kc6Vioh0LtGMCXscOKjFsseA6fu/HBGJN3dnRWEFryzZwpylW/hw/VbcITWpB4eNzOSSI0dyxOgBjMpK0dGKIiL7oK0xYeOBA4B0M/tCxF1pgL7yinQh9Y1NvL+mlFeWbmHO0kLWlVYBMDknnW8fN5bPjB3AgUPTNYheRGQ/aqslbBxwKtAPOC1i+Xbg0lgWJSKxV1nbwJxlhfxzyRZeW17I9poGevVI4MjRA7j86FEcNyGbgWn6viUiEittjQl72syeA37g7j9rx5pEJEZq6ht5fXkRzy4oYM6yLdTUN5GZ0ouTJg3i+AkDOXLMAJJ76UQaIiLtoc3/tu7eaGYnAAphIp1UfWMTc1eV8MxHBby8eDPbaxvITOnFOdOHcdqUIUzPyyBRRzGKiLS7aL7yzjWzu4BHgMrmhZonTKTjcnfeX1vGMws28vzHmymtrCO1dw8+O2kQp08ZwuGjMjW+S0QkzqIJYYeHP2+OWKZ5wkQ6oMJtNTw2fwOPzltPfkkVST0TOG7CQE6fMoSjx2ZpslQRkQ5ktyGseb4wEemYGhqbeOOTIv72/npeXVZIY5Mzc0R/vjlrDJ+bNIiU3hr8Z60SAAAgAElEQVTjJSLSEbU1RcVX3P0BM/tua/e7+69jV5aI7M66kioenbeex+avZ8u2Wgb07c0lR43gSzOGMTKrb7zLExGR3WjrK3JK+DO1PQoRkd1rbHJeWbKF+99dy9srS0gwOGZcNjd/fhizxmfTU+O8REQ6jbamqPhD+PPH7VeOiLRmW009j76/nnvnrmVDWTVD+/XhuyeM5ezpOQzp1yfe5YmIyF5oqzsyCfgSUAY8C1wNfAZYBfzE3YvbpUKRbmxNcSX3zV3LY/PWU1nXyMzh/bn+5AmcMHGgjm4UEenk2uqO/CtQT9At+T1gEXAXcCRwL8Fs+iKyn7k7c1eV8Oe31vDq8kJ6JBinTR7CRUeM4MCc9HiXJyIi+0lbIWyiu08ysx7ABnc/Olz+opktaIfaRLqVhsYmnl1YwB/eWM2yzdvJTOnFlbPG8JVDcsnW6YNERLqctkJYHYC7N5hZQYv7GmNXkkj3UtfQxBMfbOD/Xl/FutIqxg1M5RdnT+b0KUM0r5eISBfWVgjLMbM7AIu4Tnh7aMwrE+niauobeeT99fzhjVUUlNcwOSedG06ZzvETBpKg0wiJiHR5bYWwqyOuz2txX8vbIhKlqroGHnx3HXf/azVF22uZkZfB/5w1mc+MGYCZwpeISHfR1hQV9+3rxs2sH/AnYBLBqY6+BnwWuBQoCle7zt2f39fnEunoKmobuG/uWv70r9WUVdVzxOhM7jh3GoeO7K/wJSLSDcX6fCa3Ay+6+9lm1gtIJghhv3H322L83CIdQl1DEw+9l8+dr66kpLKOWeOz+caxo5melxHv0kREJI5iFsLMLI1gXrGvArh7HVCnb/zSXbg7zy3cxG0vLye/pIpDR/bnnpMmMHVYv3iXJiIiHUAsW8JGEnQ5/sXMpgDzgW+F911hZhcQjC37nruXxbAOkXY3d1Uxt76wjIUbyhk/KJW/XHQwx4zNUrejiIjsYO7e9gpmI4ArgeFEhDZ3P303j5sBvAsc4e7vmdntwDaCCV+LCcaI/QQY7O5fa+Xxs4HZALm5udPz8/Ojf1UicbJs8zZufWEZry8vYkh6Et89cRxnThtKoo52FBHpNsxsvrvP2N160bSEPQXcQ3DqoqY9qGEDwSSv74W3HweucfctEUX+EXiutQe7+93A3QAzZsxoOymKxNnm8hp++dJynvhwA6m9e3DtSeO58PDhmudLRER2KZoQVuPud+x+tZ25+2YzW29m49x9OXAcsMTMBrv7pnC1MwlOhyTSKdU1NPHnt9dwx5wVNDQ5lx41kq8fM4p+yb3iXZqIiHRw0YSw283sJuBloLZ5obt/EMVjrwQeDI+MXA1cBNxhZlMJuiPXApftadEiHcHbK4u58elFrCqq5PgJA7nptIkM658c77JERKSTiCaEHQicD8zi0+5ID2+3yd0/Alr2iZ6/JwWKdDSby2u45R9LeG7hJnL7J/Pnr85g1viB8S5LREQ6mWhC2JnAyHCKCZFuq66hib+8vYbb56ygscn5zvFjuezokRr3JSIieyWaELYA6AcUxrgWkQ5r7spibnxmMSsLK9T1KCIi+0U0IWwgsMzM3mfnMWFtTlEh0hWUVdZx83NLePLDjeT2T+aeC2dw3AR1PYqIyL6LJoTdFPMqRDqg5z/exI1PL2JrVT3fPG4MXz9mlLoeRURkv9ltCHP3N8xsIHBwuOjf7q6uSemyCrfXcONTi3lx8WYOHJrO/RcfwoTBafEuS0REupjdhjAz+yLwS+B1wIA7zexqd388xrWJtCt354kPNnLzc0uorm/kmpPGc8mRI+iRmBDv0kREpAuKpjvyeuDg5tYvM8sC/kkwA75Il1CwtZrrnvyY15cXMT0vg1+cPZlRWX3jXZaIiHRh0YSwhBbdjyWAmgakS2hqch5+fx3/8/wyGpucm06byAWHDde5HkVEJOaiCWEvmtlLwMPh7S8Bz8euJJH2sWVbDVc9toB/rSjm8FGZ3PqFyeRmatoJERFpH9EMzL/azL4AHEkwJuxud38y5pWJxNArS7bw/ccXUF3fyC1nTOK/DsnFTK1fIiLSftoMYWaWCLzk7scDT7RPSSKxU13XyC3/WMKD763jgCFp3H7uNEZna+yXiIi0vzZDmLs3mlmVmaW7e3l7FSUSC0sKtvHNv33IysIKZn9mJN87cSy9e2jeLxERiY9oxoTVAB+b2StAZfNCd/9mzKoS2Y+ampw/v72GX7y4nH7JPbn/4pkcNSYr3mWJiEg3F00I+0d4Eel0CrfX8L1Hg8H3x08YyC/Onkz/lF7xLktERGTXIczM5rj7ccBEd/9BO9Yksl+8tryQqx5dQGVdgwbfi4hIh9NWS9hgMzsaON3M/kZwZOQO7v5BTCsT2UtNTc7tc1Zw+5wVTBicxp3nTWV0dmq8yxIREdlJWyHsRuAaIAf4dYv7HJgVq6JE9lZ5VT3ffuRDXltexNnTc7jljEk66baIiHRIuwxh4bkhHzezH7r7T9qxJpG9sqRgG5c/MJ9N5dXqfhQRkQ4vmslaFcCkw3vyww1c+8TH9OvTi0cuO4yDcjPiXZKIiEibojk6UqTDqmto4mfPL+XeuWs5ZER/7vryQWSl9o53WSIiIrulECadVuG2Gr7+4AfMyy/jkiNHcM1J4+mRqHPLi4hI57DbEGZmtwF/cffF7VCPSFTmrS3lvx/8gMraBu48bxqnTRkS75JERET2SDQtYcuAu82sB/AX4GGdwkji6ZkFBVz16AKGZvThwUsOYexATT8hIiKdz277btz9T+5+BHABMBxYaGYPmdmxsS5OJJK787vXV/HNhz9kam4/nvr6EQpgIiLSaUU1gMbMEoHx4aUYWAB8N5zEVSTmGhqbuP6pRfz8xWWcPmUI9188k/TknvEuS0REZK9FMybs18DpwBzgZ+7+7/Cun5vZ8lgWJwJQWdvAFQ99wGvLi/j6MaO46sRxJCRo/i8REencohkTtgi4wd2rWrlv5n6uR2Qnhdtq+Np977OkYBs/PXMS/3VIXrxLEhER2S+iCWFlwI5+HzPrBxzj7k9pgL7E0idbtnPRX96nrKqOey48mGPHZ8e7JBERkf0mmjFhN0WGLXffCtwUu5JEYO6qYs763VzqGpt49LLDFMBERKTLiSaEtbZOVJO8mlk/M3vczJaZ2VIzO8zM+pvZK2a2Ivyp88vITp7+aCMX/vnfDEpL4smvH86koenxLklERGS/iyaEzTOzX5vZKDMbaWa/AeZHuf3bgRfdfTwwBVgKXAPMcfcxBIP9r9mbwqVrevLDDXz7kY84KDeDx//7cHIykuNdkoiISExEE8KuBOqAR4DHgBrgG7t7kJmlAZ8B7gFw97qwK/PzwH3havcBZ+x52dIVPbuggO89uoBDR2Ry70UzSe+jKShERKTr2m23ortXsnetVSOBIuAvZjaFoPXsW8BAd98UbnuTmWmwj/DCx5v49iMfMSOvP/d8dQZ9eiXGuyQREZGYimaesLHAVQSz5e9Y391nRbHtg4Ar3f09M7udPQhzZjYbmA2Qm5sb7cOkE3plyRaufPhDpuSk8+eLDia5l84rLyIiXV80n3aPAb8H/gQ07sG2NwAb3P298PbjBCFsi5kNDlvBBgOFrT3Y3e8G7gaYMWOG78HzSify2rJCvv7gfA4Yms69X5tJ394KYCIi0j1E84nX4O6/29MNu/tmM1tvZuPcfTlwHLAkvFwI3Br+fHpPty1dw5ufFHHZA/MZNyiVv35tJmlJGgMmIiLdRzQh7Fkz+zrwJFDbvNDdS6N47JXAg2bWC1gNXERwMMCjZnYxsA44Z4+rlk5v7spiLv3rPEZl9eWBiw/RIHwREel2oglhF4Y/r45Y5gQD79vk7h8BM1q567gonle6qPdWl3DxffPIy0zmgYtn0i+5V7xLEhERaXfRHB05oj0Kke5h3tpSLrr3fYb0S+LBSw4ls2/veJckIiISF9HOfD8JmAgkNS9z97/GqijpmtYWV/K1e99nYFoSD196KFmpCmAiItJ9RTNFxU3AMQQh7HngJOAtQCFMolZR28Ds++eRkGDcd9FMstOSdv8gERGRLiyaGfPPJhjDtdndLyI4/ZCaMCRqTU3O9x79iJWFFdx13kHkZupURCIiItGEsGp3bwIawlMRFRLFoHyRZr99bSUvLd7CdSdP4MgxA+JdjoiISIcQzZiweWbWD/gjwamHKoB/x7Qq6TL+uWQLv/7nJ5wxdQgXH6ljPERERJpFc3Tk18OrvzezF4E0d18Y27KkK1hZWMF3HvmIA4akcetZkzGzeJckIiLSYey2O9LM5jRfd/e17r4wcplIa7bV1DP7/nn06pHAH86fQVJPnZBbREQk0i5bwswsCUgGBphZBtDcjJEGDGmH2qSTampyvvO3j1hXUsUDlxzC0H594l2SiIhIh9NWd+RlwLcJAtd8Pg1h24Dfxrgu6cT+95+fMGdZITd//gAOHZkZ73JEREQ6pF2GMHe/HbjdzK509zvbsSbpxF5ctIk7Xl3JF2fkcP6hefEuR0REpMOKZoqKpvDoSADMLCM8obfITpZv3s53H13A1GH9uPnzkzQQX0REpA3RhLBL3X1r8w13LwMujV1J0hlV1TVw+QPzSendg99/ZboG4ouIiOxGNCEswSKaNMwsEegVu5KkM/r5C8tYU1zJHedOY1C6TkkkIiKyO9FM1voS8KiZ/R5w4HLgxZhWJZ3K2yuLue+dfC46YjiHjdJAfBERkWhEE8J+QHCk5H8THCH5MvCnWBYlncf2mnq+//hCRgxI4fufHR/vckRERDqNaGbMbzKze4FX3X157EuSzuSW55ayqbyaxy4/nD69NA5MREQkWtHMmH868BFhF6SZTTWzZ2JdmHR8ry0r5JF565n9mVFMz8uIdzkiIiKdSjQD828CZgJbAdz9I2B4DGuSTmBrVR0/+PtCxg7sy3dOGBPvckRERDqdaEJYg7uXx7wS6VR+9MxiSivr+PUXp9K7h7ohRURE9lQ0IWyRmX0ZSDSzMWZ2JzA3xnVJB/biok089VEB3zh2NJOGpse7HBERkU4pmhB2JXAAUAs8THDuyG/HsijpuEoqarn+yUUcMCSNK2aNjnc5IiIinVY0R0dWAdeb2c+Dm7499mVJR+Tu3PDUIrbXNPDQpVPpmRhNhhcREZHWRHN05MFm9jGwEPjYzBaY2fTYlyYdzTMLCnhh0Wa+c8JYxg1KjXc5IiIinVo0k7XeA3zd3f8FYGZHAn8BJseyMOlYtmyr4canFzMttx+zPzMy3uWIiIh0etH0J21vDmAA7v4WoC7JbsTdue6Jj6mpb+S2c6aQmGC7f5CIiIi0KZqWsH+b2R8IBuU78CXgdTM7CMDdP4hhfdIBvLR4M3OWFXLDKRMYldU33uWIiIh0CdGEsKnhz5taLD+cIJTN2q8VSYdSXdfIT55byvhBqXz18OHxLkdERKTLiOboyGPboxDpmH772ko2bq3mkdmH0kNHQ4qIiOw30Rwdeb+ZpUfczjOzOdFs3MzWmtnHZvaRmc0Ll/3IzDaGyz4ys5P3vnyJpTXFldz95mrOmDqEQ0ZmxrscERGRLiWa7si3gPfM7LvAUOBq4Ht78BzHuntxi2W/cffb9mAb0s7cnR8/u5hePRK47uQJ8S5HRESky4mmO/IPZrYYeA0oBqa5++aYVyZx9c+lhby+vIgbTplAdlpSvMsRERHpcqLpjjwf+DNwAXAv8LyZTYly+w68bGbzzWx2xPIrzGyhmf3ZzDL2tGiJrZr6Rn787GLGDuzLhRqMLyIiEhPRjLQ+CzjS3R9292uBy4H7otz+Ee5+EHAS8A0z+wzwO2AUwVGXm4BftfZAM5ttZvPMbF5RUVGUTyf7w+9eX8WGsmp+fPoknZpIREQkRnb7CevuZ7h7YcTtfwMzo9m4uxeEPwuBJ4GZ7r7F3RvdvQn446625e53u/sMd5+RlZUVzdPJfrCupIrfvbGK06YM4bBRGowvIiISK7sMYWb2aMT1n7e4+7ndbdjMUswstfk6cCKwyMwGR6x2JrBojyqWmLr5ucX0TDCu12B8ERGRmGprYP6YiOsnAD+IuB1N09RA4Ekza36eh9z9xXDKi6kE48XWApftUcUSM68u28I/lxZy7UnjGZSuwfgiIiKx1FYI8728L1jBfTXwHwP43f38KOqSdlZT38iPnlnCqKwULjpiRLzLERER6fLaCmHJZjaNoMuyT3jdwkuf9ihO2s/db65mXWkVD15yCL16aDC+iIhIrLUVwjYBvw6vb4643nxbuoj1pVX89rWVnHLgYI4YPSDe5YiIiHQLuwxhOmdk9/GT55aQYMb1p2gwvoiISHtRv1M3N3dlMS8v2cIVs0YzpJ96mUVERNqLQlg31tTk/PT5pQzt14eLj9RgfBERkfakENaNPfXRRhYXbOP7nxtHUs/EeJcjIiLSrURz7kgzs6+Y2Y3h7Vwzi2rGfOm4auobue2l5UzOSee0yUPiXY6IiEi3E01L2P8BhwHnhbe3A7+NWUXSLv789hoKymu47uQJJCRYvMsRERHpdtqaoqLZIe5+kJl9CODuZWbWK8Z1SQyVVNTyf6+t4oSJAzl0pM4PKSIiEg/RtITVm1ki4Sz5ZpYFNMW0Komp2+esoLq+kWtOGh/vUkRERLqtaELYHcCTQLaZ/RR4C/hZTKuSmFlVVMGD763jyzNzGZXVN97liIiIdFu77I40sxHuvsbdHzSz+cBxBKcsOsPdl7ZbhbJf3frCMvr0TORbx4/Z/coiIiISM22NCXscmG5mc9z9OGBZO9UkMfLu6hJeWbKFqz87jgF9e8e7HBERkW6trRCWYGY3AWPN7Lst73T3X7fyGOmgmpqcnz2/lMHpSZqYVUREpANoa0zYuUANQVBLbeUincizCwtYuKGcqz+riVlFREQ6grZO4L0c+LmZLXT3F9qxJtnPauob+cWLyzlgSBpnTB0a73JERESEtgfmf8XdHwAmmtmElverO7LzuHfuWjZureaXZ0/WxKwiIiIdRFtjwlLCn63NY+AxqEVioLSyjt++upLjxmdz+OgB8S5HREREQm11R/4h/PnjlveZ2bdjWZTsP3fMWUFVfSPXnqyJWUVERDqSaCZrbc1/HC0pHc/qogoeeDefLx08jNHZOpZCRESkI9nbEKaBRZ3Az19cRu8eCXzn+LHxLkVERERa2NsQpjFhHdy/15Ty0uIt/Pcxo8hK1cSsIiIiHU1bR0dup/WwZUCfmFUk+6ypyfnpP5YwKC2Ji48cGe9yREREpBVtDczXIKJO6tmFBSzYUM5t50yhTy9NzCoiItIR7W13pHRQzROzThycxhemaWJWERGRjkohrIu5L5yY9YZTJmhiVhERkQ5MIawLKa2s467XVjJLE7OKiIh0eAphXcgdc1ZQWdvAtSdpYlYREZGOTiGsi1hTXMkD7+Zz7sxcxgzUMRUiIiIdXVvnjtxnZrYW2A40Ag3uPsPM+gOPAMOBtcAX3b0slnV0B7e+sJTePRL49vFj4l2KiIiIRKE9WsKOdfep7j4jvH0NMMfdxwBzwtuyD5onZr386FFkpybFuxwRERGJQjy6Iz8P3Bdevw84Iw41dBmRE7NecpQmZhUREeksYh3CHHjZzOab2exw2UB33wQQ/syOcQ1d2nMfb2LBhnKu+uw4TcwqIiLSicR0TBhwhLsXmFk28IqZLYv2gWFomw2Qm5sbq/o6tZr6Rn7+wjImDk7jTE3MKiIi0qnEtCXM3QvCn4XAk8BMYIuZDQYIfxbu4rF3u/sMd5+RlZUVyzI7reaJWa8/ZQKJmphVRESkU4lZCDOzFDNLbb4OnAgsAp4BLgxXuxB4OlY1dGUlFbXc9dpKjh2XxRGamFVERKTTiWV35EDgSTNrfp6H3P1FM3sfeNTMLgbWAefEsIYu69YXllFd18j1p0yIdykiIiKyF2IWwtx9NTClleUlwHGxet7u4P21pTw2fwOXHz2K0dmamFVERKQz0oz5nUx9YxM3PLmIIelJfPO40fEuR0RERPZSrI+OlP3svrlrWb5lO384fzrJvfT2iYiIdFZqCetENpVX85tXPmHW+GxOnDgw3uWIiIjIPlAI60RueW4pDU3Oj047gPCABxEREemkFMI6iTc/KeIfH2/iimNHk5uZHO9yREREZB8phHUCNfWN3Pj0IkYMSGH20To/pIiISFegkd2dwN1vrmZtSRX3XzyT3j10fkgREZGuQC1hHVx+SSV3vbaSUycP5qgxOn2TiIhIV6EQ1oG5Oz96ZjG9EhP44akT412OiIiI7EcKYR3YS4u38NryIr5zwlgGpiXFuxwRERHZjxTCOqjK2gZufnYx4welcuFhefEuR0RERPYzhbAO6o5XV1BQXsNPz5xEj0S9TSIiIl2NPt07oEUby7nnX2v40oxhTM/rH+9yREREJAYUwjqYitoGrnz4Qwb07c01J42PdzkiIiISI5onrIO58alF5JdU8tClh5KR0ive5YiIiEiMqCWsA3l8/gae+HAj3zxuDIeOzIx3OSIiIhJDCmEdxKqiCn741CIOGdGfK2eNiXc5IiIiEmMKYR1ATX0j33jwA/r0SuT2c6eRmGDxLklERERiTGPCOoCfPb+UZZu38+evzmBQuiZlFRER6Q7UEhZnLy7azF/fyeeSI0cwa/zAeJcjIiIi7UQhLI42lFXx/ccXMDknne9/TtNRiIiIdCcKYXFS39jENx/+kCaHO8+bRq8eeitERES6E40Ji5PfvPIJH6zbyp3nTSMvMyXe5YiIiEg7U/NLHPxrRRG/e2MV5x48jNOmDIl3OSIiIhIHCmHtbFN5Nd95ZAGjs/py02kHxLscERERiROFsHa0qbyac+9+l9r6Ru768kH06ZUY75JEREQkThTC2knB1iCAlVbUcd/FMxk3KDXeJYmIiEgcaWB+O2gOYGWVdfz14plMy82Id0kiIiISZ2oJizEFMBEREWlNzEOYmSWa2Ydm9lx4+14zW2NmH4WXqbGuIV42RgSw+y85RAFMREREdmiP7shvAUuBtIhlV7v74+3w3HETBLB32FpVz/2XHMLUYf3iXZKIiIh0IDFtCTOzHOAU4E+xfJ6OJjKAPXCxApiIiIj8p1h3R/4v8H2gqcXyn5rZQjP7jZn1bu2BZjbbzOaZ2byioqIYl7n/bCir2imATVEAExERkVbELISZ2alAobvPb3HXtcB44GCgP/CD1h7v7ne7+wx3n5GVlRWrMverJQXbOO+P7yqAiYiIyG7FckzYEcDpZnYykASkmdkD7v6V8P5aM/sLcFUMa2gXFbUN/OaVT7h37loyknvy4CWHMDlHAUxERER2LWYhzN2vJWj1wsyOAa5y96+Y2WB332RmBpwBLIpVDbHm7rywaDM3P7uELdtrOG9mLj/47HjSk3vGuzQRERHp4OIxWeuDZpYFGPARcHkcathn+SWV3Pj0Yt74pIiJg9P43VcO0hQUIiIiErV2CWHu/jrwenh9Vns8Z6zUNjTyhzdW89vXVtIjwfjhqRO58LA8eiRq3lsRERGJnk5btAfeXlnMD59axOriSk45cDA/PHUig9KT4l2WiIiIdEIKYW2orG3gvTUlvPlJMf9aUcSqokryMpO596KDOWZcdrzLExERkU5MISxCU5OzZNM23lxRxJufFDE/v4z6RiepZwKHjMjk/EPzOHdmLkk9E+NdqoiIiHRyCmHAu6tLeOi9dby1spjSyjoAJg5O42tHjuAzY7KYnpeh4CUiIiL7lUIYsK60irmrSjhmbBZHjR3AkaOzyEptdSJ/ERERkf1CIQw4c9pQzpmeQzB1mYiIiEjsKYQBPTW9hIiIiLQzpQ8RERGROFAIExEREYkDhTARERGROFAIExEREYkDhTARERGROFAIExEREYkDhTARERGROFAIExEREYkDhTARERGROFAIExEREYkDc/d417BbZlYE5Mf4aQYAxTF+DgloX7cP7ef2o33dfrSv24f2877Jc/es3a3UKUJYezCzee4+I951dAfa1+1D+7n9aF+3H+3r9qH93D7UHSkiIiISBwphIiIiInGgEPapu+NdQDeifd0+tJ/bj/Z1+9G+bh/az+1AY8JERERE4kAtYSIiIiJxoBAmIiIiEgcKYSJdnJlZvGsQEZH/pDFhLZiZuXZKu9C+bn/a57Gl/Rs7ZpYJjAFqgDRgpbsXxLeqrsfMRhLs5yQgBZjn7p/Et6quSyGsDfqH2n60r/cfM0sADgcGA/2ArfD/7Z1prJ1VFYaft5VRQJBJ21KqCAWUsYAShmIhglBQMMgUNDIEMQKRKWEQGUVbSmQQS2USqVRBkUlEbEuDBWzLKLQWKBCgTKVAkaGUtq8/1i4eiRCTe+7dt99Zz69zz5fcvFnZZ+/1rb0G7rY9u6qwDiPXdPuQtDwwFugPPAW8CLwFPGJ7XE1tTULSCsCNwGLgH4CJPeQp4DLbcyrKayQd74RJ6gvsAQwA1iF+3LfafqKqsAaStu4ZJH0LOIA4pKYBawMrAPfavqqitMaRa7pnkHQksLvtPSWtCWwIbA4MAV4ATrf9bk2NTUDSEcCetodLWpXYOz4H7EhExk62/VZNjU3jY7UF9AIOBg4C7gNmED/sUZIeAi5Kz7+tpK17hu8BJ9meWK5wPg1sBOwjaXnbo+vKaxS5pnuGl4FXJK1QbDoHuEvSBsB5hJNwR02BDeEx4DVJq9ueS0TRZ0qaBlwM7A1cU1Ng08hImDQJGGH7VkkfJ7z9zxKb67O2R1YV2CDS1t1PScI/EVgRONf2/JZnmwIjgaMyx6M95JruGSR9EhgNvAlMBB4AZtp+T9LNwE22f1lTYxOQtCJwETAQuBOYRETQF0q6CbjFdjZxbSPphEmHAhsAZ7aGWSX1A34DHG97Wi19TSJt3TNIWp/YSOcBk4HJtu8rz14GBtl+u6LExiDpEE+FgVQAAAgMSURBVGAwuaZ7BEmHA+sRtzhrAqsBKwHDc023D0m7EHml6xIvFe8Ci4B9087tJZ0waR3gAmKxjQf+ZPtOSasAM4H1ctG1B0kDgEuI5NrxRO7MpLR19yBpX2BLoB+RO/M4UVF2QlVhDULSQOBCInIwgYgU5P7RRiT1J658ZxDXZWsQzteC8vlvtp+pp7B5lIh6P2B1Ijl/IGHneVWFNZCOdsIk9bG9uHzeGtgV2BbYmIggzLL9o4oSG4OkwbZnls9bA7sBOxBJn5OBJ9PWXaNEX74LbEZckU2WtBaxmc4HliOqyRZVlNlIJA0BdgaGEdHeXNNtoOwVPwPuAbYm1vFDwM2276qprUmUl4m9gIeB6bZfqSypY+hYJ0zSNsCPiTD2/PLd2kRp7jLAsrafrqewOUjaCpgCnE84By+X/JkFhIPgfJPtOpIuJQ6pucDngb8CmxCl5pdlu4T2USJdOxIvbtOAp4GXgFlEpaRz/+g6kkYBr9k+u/z9GWBf4NvAVOAw2wsrSmwEkq4mXt5uARYCTwIzbE8pxT0H2L64psam0slO2AXAPNunSdoC2J8IbT8HjMmeSu1D0k+ICr1XgeczWbl7kDQVGGr7bUmPA78j8sKGAs8Cx+bVWHuQ9AvgHeB5okVFP2AccLvtu2tqaxKSjgW2AX4IPG37vZZnVwOX2p5cS19TkPR74CZinxhC7Nd9gX8C3wDm2t6vnsLm0slO2B+Bs2zfJ+kWouJmNnEduRJwnO3Xa2psCpLuB3YnnNzRxI/7FMLmfYFFGaXpGqV30sXAI8RGeo7t/i3PJwEH2X6uksRGIWkKsNMSp1bSOKKNwk5Ekv71FeU1BknLAKcTeUnjgSeAhbZfkDQTONj2lIoSl3pKc+eBRFDitfLdIGArYBDhAA+1/WAliY2mk/uEXQWMkHQe0Mf2qPL9OEl3EYmf6YR1EUnbAc/YfpFoZLm9pOOA/YAXbU+vKrAh2J5Trm6OIJJp7y2J+X8hqps+kQ5Ye5C0BnH9eLCkW4lr9UG295e0GXCEpFttv1NT59LMkmkDpQXFOcDhwAlENH2upC8Q43TSAesCxc6LifX8PuUq/WlJOwDz0wHrPjoyEiapr+1Fko4mkmg3IZotXkFEwa6wvXFNjU1B0mDCyZ0hacVyVbYa8AOiqei5LQ5w0iZKT7DDifzGjYDf2r6krqrmUA6nQwgHbABwX0lt2BY4z/Z2VQUu5ZRJBF8irtJXBq61/bCkTYjWFLOBObZfrShzqafFzjsRV5B/sD2h5Xl/YHDrd0l76UgnrBVJQ4FdiHDsp4gRGONs/7mqsIbSOk9P0jCiACJt3QVK1/DBRMXpm8DYcmANISp9/07k0yyoKLNxlCub9Ygrsrm235R0DRH5PbmmtqWd0n/tEGJeZD/gQEDElftltt+oKK8xtNj5GuL8O5AYcXYFcGHpmp90Ix3nhJUDawMimfZ14gc9S9KytheUsS7zP/q/JP8PxdYbAl8F3gautP1Iy3NBlJHVUdgMJN1IVEBOBE4mmiw+SMx5m1hTW9NocXh3JUbnXLtk+kCJKmxDVJVlKkMXkHQ7MNr2DS3fDQGOJq4hL6omrkF8iJ23BL4P3J8Vkd1Pn9oCKjCSCL9eD3wRmC7pHmC30jcsHbD2MZI4lK4jyp+nSpoqaZ+WnI90wLpAaYC7vu1TbY8HDgVGEU1xDy7NiJP2MZLYN24grnAeljRN0t62F9m+Jx2wrlFeziYQe8b7OKY+nAh8s7S9SbrAR9j5fuAkYL+0c/fTUYn5LQfW18rfs4DDiM7WexHzyJ6tp7A5/A9bP0nYegYRGZtK2rod9AGmSBpQEu/XBba3fWrpqXSkpFPS2e06H7F/zAB2lzTNdq7pLmLbksYAYyRNAK4l8nQXETNR1wIeramxCaSdewedFgl7/8Aqfy85sH4NPEMcWKqmrll8mK3HEs5X2ro9PAs8BTxa2lB8h8ijgchvHJQOWNvINd0DlL6NuwBjgCuJHo7PSboOOIMY1p2Vp10k7dw76KhIGP99YD1YPrceWF/OA6ttpK17gGLDM0rz4T2AO1saDQ8HLq8mrnnkmu5mSj7ST4lh0e8Aj9neufTB25yIzLxQUWIjSDv3HjouMR9A0qp84MAqyc2X276pqriGkbbuPiQdQwxDH2v7oQ886w8MK1HepI3kmu4+JP2cmNl7vmLu6SVEe5XrJK0M7GP7V3VVLv2knXsPHXMdKekYSSMkbWb7ddtjWzbQ/sD1uYG2h7R1j3Ey0VrlMkmTJB1b7AuwBZBDeNtErukeYwvgbgDbLxORxkPLs6OALSvpahpp515Cx0TCJL1ElPCvR7RLuJHw/GdLGk6MzrmtpsamkLbufkoT3BHAQcBywDDg68CmwHSi0GRodhRvD7mmu5/S4mM74KnWAgfFXMM7iMHdx9t+oJLERpB27l10hBOWB1bPkbbuOSQtD9DaVkXSKsBZwFdsb1RLW5PINd2z6D8TTfrYXixpfeA2YrbhkNr6mkLauXfQEU4Y5IHVk6St67Ck95pihuQ822fW1tQUck3XocVROBt4KZu0dg9p53p0THXkB5uwlgPrDUkLif4oSZtIW9ehpTLvQmLQcdImck3XofSsAjitqpCGk3auR8dEwj4MSesCr9r+V20tTSdtnTSNXNNJknSFjnfCkiRJkiRJatAxLSqSJEmSJEl6E+mEJUmSJEmSVCCdsCRJkiRJkgqkE5YkSZIkSVKBdMKSJEmSJEkq8G+61bPBNHTv3gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAFfCAYAAAAGbRsLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8XGW9x/HPL+mSJk3SNE26pUn3jdKFlrILlEVZBQEFr4AIFK6CKyiboIheVNTL4lVRFGSTRXZZLZtQQFqgpStd0yVtszZt9u13/zgnZRrTdLpMJsv3/XrNKzNnzpz5zZkk853nec5zzN0RERERkfaVEO8CRERERLojhTARERGROFAIExEREYkDhTARERGROFAIExEREYkDhTARERGROFAIExEREYkDhTAR6bTM7MtmNs/MKsxsk5m9YGZHmtmPzOyBVtZ3MxsdXt9pnfC+j80sIWLZLWZ2b4ttpITP93wMX5qIdAMKYSLSKZnZd4H/BX4GDARygf8DPr8Pmx0CnLubdc4GaoETzWzwPjyXiHRzCmEi0umYWTpwM/ANd3/C3Svdvd7dn3X3q/dh078AfmxmPdpY50Lg98BC4L/24blEpJtTCBORzugwIAl4cj9v9wlgG/DV1u40s1zgGODB8HLBfn5+EelGFMJEpDPKBIrdvaGNdb5oZlsjL1Fs14EfAjeaWe9W7r8AWOjuS4CHgQPMbNoeVy8igkKYiHROJcCA3XQbPuru/SIv0WzY3Z8H1gGzW7n7AoIWMNy9AHiDoHtSRGSPKYSJSGf0DlADnBGj7d8AXA8kNy8ws8OBMcC1ZrbZzDYDhwDn7SYMioi0SiFMRDoddy8HbgR+a2ZnmFmymfU0s5PM7Bf7YfuvAx+zcyvXhcArwERganiZRBDUTtrX5xSR7kchTEQ6JXf/NfBdglarImA9cAXw1H56ihuA/gBmlgR8EbjT3TdHXNYA96MuSRHZC+bu8a5BREREpNtRS5iIiIhIHCiEiYiIiMSBQpiIiIhIHCiEiYiIiMSBQpjElJmNM7MPzWy7mX0z3vV0FGb2gpnpiLoOqCu+N2a22MyOiXcdsWBmPzKzB+Jdh8jeUAiTWPs+8Lq7p7r7HfEqwsz6m1mRmb0VsWyimc0zs7Lw8k8zm9jGNipaXBrN7M692Za7n+Tu9+3la7kifK5aM7u3lfsvMbOVYY0vmtmQFvcfZGZvhvdvMbNvRdw33MxeM7MqM1tmZse3Uce9ZnbL3ryG8PGLW+zPBjN7NuL+RDO7xcwKwhD/oZm1Ouu9md1mZivC9ZaZ2QUt7nczq4x4rj/tqq69fW/MrLeZ3WNm+RH1ntRinePC+qrC/ZwXcd8XzWxueN/rrWw/6v3Ryms6IJz7rFszs+ta/M5Vm1mTmQ1osd5//L9oZVvnmtlyMys3s0Izu8/M0iLun2Bmr4b3rzSzMyPuG2Zm75pZqZn9qsV2XzSzGfvzdUvHpRAmsZYHLN7VnWaW2E51/BxY2mJZAXA2wVxQA4BngL/tagPu3rf5AgwEqoHH9mZb+6gAuAX4c8s7zOxo4GfA58Na1hCc47D5/gHAi8AfCM6/OBp4OWITDwMfhvddDzxuZlmxeBFhMGjen6kEpwp6LGKVHwOHE5ysOw04n2CW/NZUAqcB6QRzdt1uwQz3kaZEvIeX7MeX0qwHwVxlR4d1/BB41MyGw459/0S4vD8wD3gk4vGlwP8Ct+5i+3uyP2LOOuFZAtz9Zy3+jn9O8CWxuMWqrf2/aOlt4Ah3TwdGErz/t8COffM08BzBez0beMDMxoaPvRa4DxgBnNEcuszsS8Bqd5+3jy9VOgt310WXmFyAV4FGgg+KCmAscC/wO+B5gg/O4wk+sP5KMOFmPsEkmQnhNr5K8M/uN8BWYDXBB9FXCT7wCoELd1PHYQSnubkIeGsX6/QAvgFURfnaLgxrsb3ZFvA6cEnEa3wLuA0oIwhOJ0VRwy3AvS2W3Qb8NuL2EIKTUo8Kb/8MuH8X2xsL1AKpEcv+BVzeyrqzgXqgLnxvnw2XTwhf21aC8H16lPvz6HA7KeHtjPD2qL383XsG+F7EbQdGR/nYfX5vIra1EDgrYp/NjbgvhSDIj2/xmEsIgkHksn3dH2uB48PrPwIeJfib2x6+TzMi1h1GEBaLCM7ReVfEvmj+WywFbgmXf40gsJQBLwF5Edu6neDvdBswHzgq4r6ZBEF0G7AF+HXEfYcCc8PfowXAMRH3jSA4Z+d2gjMY3AU8sBf7xIBVtPj/QRT/L1rZVt9wfz4f3p4Uvl8Wsc7LwE/C6y8A48LrfyOYCDiN4AtQv715j3XpnBe1hEnMuPssgg/xKzz45vlJeNeXgZ8StH68BdxJEMRGEnwYX0DwD7DZIQQfZpnAQwT/tA4maMX5CnCXmfVtrYawpe23BDOptzozsZltJQiKdxKElGhcCPzVw/+i+7gtCF7jcoJWtF8A95iZ7cHjd5QQXiJvQ/ChAMGHW2nY7VVoZs+aWW543wEE38K3Rzx+Qbh8J+5+N8GJrH8RvrenmVlP4FmCD5ts4ErgQTMbF0XdFwKPu3tlePtAoAE424LzNH5iZt+IYjuYWR+C34+WLbBvhtt6orl1Kkp79d6Y2UCCYNtcxwEE+xOA8LWuopX924q93h+7cDrB31E/gsB6V1hzIkHrTT4wHBjKzi26hxB8+cgGfmpmZwDXAV8Asgj+3h+OWP99gtM79Sf4233MgrMPQBDQbnf3NGAUQTDEzIYC/yD4ktEfuAr4e0SL7EMEgW4A8BP2/mwFRxG0aP+9eUE0/y8imdmRZlZOEAjPImjJhJ3/BolY1vx3uAg4IexOngEsIXgt/+vuW/fq1UinpBAm8fC0u7/t7k0ErSlfAq519+3uvhb4FUFXS7M17v4Xd28k6L4ZBtzs7rXu/jJBa8zoXTzXN4H33H3+ropx934EIfAKgm+ibQpDy9EE3Qn7tK0I+e7+x/A13gcMJviA2FPPA180s8lhGLmR4MOk+UTUOQQfWt8Cctm5u7IvUN5ie+UEYTkah4bbuNXd69z9VYIP9PPaepCZJRN05d4bsTiHYD+OJWj5OBv4kZmdEEUdvycIOy9FLDuaIFSMJ+jOfW4PutP2+L0JA+mDwH3uvixcvC/7d1/2R2vecvfnw9d0PzAlXD6ToPX0anevdPcad48cF1Xg7ne6e4O7VwOXAf/j7kvdvYHgi8fU5rFu7v6Au5eE6/8K6A00h/J6YLSZDXD3Cnd/N1z+FYIWpefdvcndXyFoMTs5/Ns7GPhh+Pf/JkHw3xvNwb8iYtlu/19Ecve3POiOzAF+SdDiCLCMoJX+agvOaXoiwe9g89/h/xCEwDcIQl9PYDLwrJk9ZMGYzSv28nVJJ6IQJvGwPuL6AKAXwTfvZvkE38CbbYm4Xg3g7i2X/UdLmAUD0r9JMLapTWGrxO+Bv5pZ9m5Wv4DgQ2zNfthWs80Rj68Kr7bautcWd58D3ETw7T6f4ENhO7AhXKUaeNLd33f3GsJxRmaWTtB9ktZik2nh46MxBFgfhutmLd/L1nyBoHvrjYhl1eHPm9292t0XErTInNzWhszslwStDV+MbKV09zfDYLiVIICOIOg6jcYevTdmlkAQbOoIwnizfdm/e7U/2rA54noVkBSG0mEEobNhF49b3+J2HsH4u61hK3ApQYvPUAAz+56ZLQ0Hp28lCJLNg+AvJgiVy8zsfTM7NWKb5zRvM3zckQThdwhQFtFiCjv/74hK+AXlHCK+SO3J/4uW3H0jwVjLv4W364EzgFMI9vX3CFr6NoT3l7r7l9x9CkGL4J0ELcfXELSSHQ9cbm0c3CNdg0KYxENkM38xwTfivIhlucDG/fA8Mwn+cS8xs80E/+xmht05rR0QkEDwTXV3oeECWmkF28tt7Xfu/lt3H+Pu2QRhrAfBP3YIunUj93/zdSPoNhtpZpEtM1PY9YEVLbtrCoBhYQhpFs172VrX7sJdPMcumdmPgZOAE919225Wd1rvMtonYTflPQQtZWeFH8bNFvNpixNmlkLQDbfLA1ci7PH+2Evrgdw2WglbPv964DJ37xdx6ePuc83sKOAHBOOdMsJW4nLC/e7uK9z9PIKuzZ8THASSEm7z/hbbTHH3W4FNQEa4XrNc9lxz8H89Ytme/r9oqQfB+0n4+ha6+9HunununyUYbvHvVh43G3jX3RcRdDvPc/c64GM+7b6ULkohTOIq7A55lGB8SWrYjfFdYH/M+/MCQRfU1PByI0EX4VR3bzSzE8xsmgWH/qcBvyYYXLzLo6LCI+6GsvNRfOzNtvaWmfUIx9UkAolm1tyKQXh9kgVygbsJxt2UhQ//C3CmmU0Nu8x+SNCqtzUcs/cRcFO4nTMJukj+3rKG0BaCD5Zm7xEcbPH9sAvmGIIjFnd5lKiZ5QDH0iLUuvsqgvFF11sw9cMEgm7r53axnWsJxhqe4O4lLe47IHy9ieHYwV8RBMP9/t4QHHQyATgt7K6L9CQwyczOCt+/G4GFzd2VYX1JBB/mCeF70BN2vz/M7Bgz2x8B7d8EQedWM0sJaziijfV/D1xrZgeEdaSb2TnhfakE49iKgB5mdiMRLYFm9hUzywpbTpvHQTUS/O2fZmafbd4n4evLcfd8gq7JH5tZLzM7kuB3bE+1Fvzb/H/RcgNm9l9mlhv+reURjHOdE3H/5LD2ZDO7iiDg3dtiG9kEB/H8KFy0Bjg2/D2dQTD+TrowhTDpCK4k+PBeTTBQ/yFamX5hT4VjRjY3Xwi+hdeH1yEYlPxwuHwVwbiyz4XddM1zCr3QYrMXAk+0GLy+223tZzcQdE9dQzB+pjpcBpBEsP8qCD5Q3yEIWgCE47SuIxj4XBjW+eWIbZ9L8M+/jGCqhLPdvWgXddwDTAy7jJ4Kv72fTtAaVQz8H3BBxJio1pwPvBOGjJbOI2ghLQnr/WHY3dr8ARjZgvQzghaRFfbpHFDXhfcNJBhLuI3gd2w4cGqLVqp9Fn4QX0bwAb45oo7/Agj341kEH9ZlBIPcz43YxPkE7+XvCMYLVQN/jLh/l/uDoBvxnX19DWHYOI3g92IdQffZl9pY/0mCVqy/mdk2ghbX5rnRXiIINp8QdBnWsHN35ueAxWZWQdDqdG44Bm09wRQr1xEEuPXA1Xz6efVlgn1XStD1/tc9eY0WDPyf1fJxu/t/EQauCvv0QJaJBEdwVhAcNbocuDRik+cTBNpC4DiCLwi1Lcq5jaCLuXlc2v+Eta0HnnFNVdHl2c5fBEREpLOxYPLZx9z9pd2uLCIdhkKYiIiISByoO1JEREQkDhTCREREROJAIUxEREQkDhTCREREROIg2tN2xNWAAQN8+PDh8S5DREREZLfmz59f7O5Zu1uvU4Sw4cOHM2+epksRERGRjs/MojqdlrojRUREROJAIUxEREQkDhTCREREROJAIUxEREQkDhTCREREROJAIUxEREQkDhTCREREROJAIUxEREQkDhTCREREROKgU8yYLyIiIrInGpucTeXVrCutYl1JFetKq8gvreLSo0YydVi/eJcHKISJiIhIJ1VR28D60iryS6pYX/pp0FpfWsWGsirqG33Huj0SjJyMPpRW1sax4p0phImIiEiH1NTkbNlew7qST8PVuojQVVJZt9P66X16kpeZzMQhaXxu0iBy+yeT1z+ZYf2TGZyeRI/EjjUKSyFMRERE4qa2oZENZdVB0CqpJD/sPmwOXbUNTTvWTTAY0q8PeZnJnHjAQHL7p5DbP3nHJT25ZxxfyZ5TCBMREZGYqq5rZF1pFWtLKskvqWRtGLjWFlexqbyapk97DenTM5G8zGRGDkjh2HFZ5Gam7GjRGprRh54drDVrXyiEiYiIyD6rbWhkfWkVq4sqWVMcXFYXB6Fry7adx2FlJPckLzOFg4dnkJuZQ17/ZPIyk8nNTCarb2/MLE6von0phImIiEhU3J3N22pYVVjJqqKKHUFrTXEFG8t2btEa0LcXwzNTOGpMFsMzk8nLTCEvM5m8/imdrtswVmIWwsxsHPBIxKKRwI1AP+BSoChcfp27Px+rOkRERGTP1Dc2kV9SxcrCClYVVbCqsIKV4c/KusYd66X0SmREVgpTh2Vw5rQcRg5IYcSAFIYPSCG9j4LW7sQshLn7cmAqgJklAhuBJ4GLgN+4+22xem4RERHZvcYmJ7+kkk+2VPDJlu0s37KdTzZvZ01xJQ0RzVqD0pIYnd2Xs6fnMDq7L6Oy+jIquy/Zqd2n6zAW2qs78jhglbvn680SERFpf4Xba1hSsI2lm7azIgxcKwsrdjr6MLd/MmMHpnL8xIGMiQhbfXtr9FIstNdePRd4OOL2FWZ2ATAP+J67l7VTHSIiIl1aY5OztqSSxQXbWFKwjSWbgp/FFZ8Ojh+cnsSYgakcPiqTsQNTGTcoldHZfUnupbDVnszdd7/WvjyBWS+gADjA3beY2UCgGHDgJ8Bgd/9aK4+bDcwGyM3NnZ6fnx/TOkVERDqbxiZnVVEFC9ZvZeGGchYVlLNs03aq64NxWz0TjTHZqUwcksbEwWkcMCSN8YPSNDA+xsxsvrvP2N167RF5TwI+cPctAM0/Aczsj8BzrT3I3e8G7gaYMWNGbJOiiIhIB+furCutYsGGchZGhK6qcKB83949OGBIGufNzN0RukZn96VXj64zr1ZX0x4h7DwiuiLNbLC7bwpvngksaocaREREOpWK2gYWrN/K/Pwy5ueX8dH6rZRX1wPQu0cCE4ek8cUZw5ick87knH6MHJBCQoLGXXcmMQ1hZpYMnABcFrH4F2Y2laA7cm2L+0RERLodd2dDWTUfrAsC17y1ZSzbvI0mBzMYNzCVkw8cxOScfkzOSWfswNQuNXN8dxXTEObuVUBmi2Xnx/I5RUREOjp3Z3VxJe+sKuGd1SW8v6aUwu3BwPmUXolMy83gilljmJ6XwdRh/TTnVhelwyBERERirHk8V3PoemdVyY7QNTg9icNGZTIjL4Ppef0ZNyiVRHUrdgsKYSIiIjFQUlHLmyuKeGtFCe+uLmHj1moABvTtzWGjMjl8VCaHjcwkLzNZE552UwphIiIi+0FTk7OooJzXlhXx2vJCFmzYintwsupDR2Zy2dEjOXxUJqOy+ip0CaAQJiIistfKq+v514oiXltWxBufFFJcUYcZTMnpx7ePG8ux47OYNCRdRy1KqxTCRERE9sCm8mpeXLSZFxdtZl5+GY1NTnqfnhw9Notjx2fxmTFZZPbtHe8ypRNQCBMREdmN/JJKXli0mRcWbWbB+q0AjB3Yl8uPHsms8dlMyelHD00ZIXtIIUxERKQFd2dFYQUvfLyZFxZtYtnm7QAcODSdqz87js9NGsSorL5xrlI6O4UwERGR0JriSp75qIBnFmxkVVElZjAjL4MbTpnA5yYNIicjOd4lSheiECYiIt3a5vIanltYwDMLCli4oRwzOGREf756xAg+O3Eg2WlJ8S5RuiiFMBER6Xa2VtXxwqLNPPNRAe+uKcE96Gq84ZQJnDp5CIPSFbwk9hTCRESkW6htaOTVpYX8/YONvPFJIfWNzsgBKXzruDGcPmUIIzXGS9qZQpiIiHRZ7s6H67fy9/kbeG7hJsqr68lO7c2Fhw3njGlDOWBImiZOlbhRCBMRkS5nfWkVT324kSc+3Mia4kqSeibwuQMG8YWDcjhi9ACdm1E6BIUwERHpEipqG3j+4038ff4G3ltTCsChI/vz38eM4uQDB9O3tz7ypGPRb6SIiHRaTU3Ou6tLeHz+Bl5YtJnq+kZGDEjhqhPHcsa0oZpSQjo0hTAREel01hZX8vcPNvDEBxvZuLWa1KQenHnQUM46KIeDcvtpnJd0CgphIiLSKWyrqef5hZt4fP4G5uWXkWBw1JgsrjlpPCdMHEhSz8R4lyiyRxTCRESkw2pobOJfK4p54sONvLJkMzX1TYzO7ssPPjeeM6cN1Xxe0qkphImISIfi7iwu2MbfP9jAswsKKK6oo19yT86ZPoyzpucwJSdd3Y3SJSiEiYhIh1CwtZqnPtrIkx9sZEVhBb0SEzhuQjZnThvKMeOy6dUjId4liuxXCmEiIhI3ZZV1vLh459MHzcjL4KdnTuLUA4eQntwz3iWKxIxCmIiItKvy6npeXryZ5xZu4u2VxTQ0OSPC0wedOW0oeZkp8S5RpF0ohImISMxV1DYwZ+kWnl1QwJufFFPX2ERORh8uOWokp04erNMHSbekECYiIjFRXlXPa8sLeWnxZl5dVkhtQxOD0pI4/7A8Tp08mKnDNJ+XdG8KYSIist+sL63in0u38MqSLby3ppTGJicrtTdfOngYp04ewoy8DBJ03kYRQCFMRET2QfN0Ei8vCYLX0k3bABid3ZfZnxnJCRMHMjWnn4KXSCsUwkREZI+UVNQyd1UJb60o5s0VRWwqryHBYHpeBtedPJ4TJg5ixAANrhfZHYUwERFpU019I++vLeWtFcW8tbKYxQVBa1daUg8OHzWA75yQzXHjs8ns2zvOlYp0LgphIiKyk9qGRhZtLOffa8p4a2UR768to66hiZ6JxkG5GVx14liOGD2AyTn9SFQ3o8hei1kIM7NxwCMRi0YCNwJ/DZcPB9YCX3T3sljVISIibSvaXsv8/DI+WFfG/PwyPt5QTl1jEwDjBqZy/qF5HDlmADOH9yelt767i+wvMftrcvflwFQAM0sENgJPAtcAc9z9VjO7Jrz9g1jVISIin6qpb2T55u18vLGcD/LLmL+ujPySKgB6JSZwYE46Xz1iOAflZjA9L4OsVHUxisRKe32lOQ5Y5e75ZvZ54Jhw+X3A6yiEiYjsV+5O0fZalmzaxpJN21i6aTtLCspZU1xJkwfrDOjbm+l5/fivQ3KZntefSUPT6N0jMb6Fi3Qj7RXCzgUeDq8PdPdNAO6+ycyy26kGEZEupzlsrSyqYHVRJauKKlhZWMGSgm2UVNbtWG9ovz5MGJzGKZOHMHFwKhMHpzOsfx9NlioSRzEPYWbWCzgduHYPHzcbmA2Qm5sbg8pERDqPqroG8kuqyC+pZFVRJasKK1hVXMnqwgq21zbsWK9Pz0RGZacwa3w2E4ekMWFwGhMGpelE2CIdUHu0hJ0EfODuW8LbW8xscNgKNhgobO1B7n43cDfAjBkzvB3qFBGJG3entLKOtSVVrCutJL+kinUlVeSXVpFfUkVxRe1O6w9OT2JkVgpnHjSUUVl9GZmVwqisvgxKS9LEqCKdRHuEsPP4tCsS4BngQuDW8OfT7VCDiEhcuTvl1fVsKKtmQ1kV60uDnxvKqlkf/qyqa9zpMYPTk8jtn8ys8VnkZaaQ2z+Z4ZkpjMhKoa+OUhTp9GL6V2xmycAJwGURi28FHjWzi4F1wDmxrEFEpD00NTlFFbVs3FrNxrLqnX4WhNcjuw0BUnv3IKd/MnmZKRwxegDDMpLJywwuORnJJPXUIHmRriymIczdq4DMFstKCI6WFBHpNGobGtlcXsPGsmo2hKGqYGsYtrZWs2lrzY65tZqlJfVgaEYQqA4dmUlORh9yMpLJyejDsIxkjdMS6ebUni0iQjB/VnNXYfAzCFcbyqrYWFZNUUUt3mJ0anZqb4Zm9OHAoel8btIghvbrE1wygp+pSQpZIrJrCmEi0i00NDZRsLWGdaVVOy7NY7E2llVRXFG30/o9E40hYag6emzWjmDVHLIGpSdpTi0R2ScKYSLSZdTUN5JfUsXqooodRxWuDwPXxq3VNDZ92pTVKzGBoRl9yMnow8SJA3d0Ew7tF3QZZqf21lGGIhJTCmEi0qm4O5u31bC6qJLVRRWsLq4MrhdXsKGseqcuw/4pvRjWP5mpw/px+pQh5GYmk9s/uGgqBxGJN4UwEemwtlbVsWzzdpZv3h7+3MYnWyqoiDjKMLlXIiMGpDB1WAZfmJazY76svMxkjckSkQ5NIUxE4q6xyVlTXMHHG8tZuunTwLVl26cTlPZL7sm4gamcddBQRmf3ZWQ4QemgtCSdekdEOqXdhjAzOwL4EZAXrm+Au/vI2JYmIl1RU5OztqSSjzeWs3BDOR9vLGfxxnIqw4lKe/VIYHRWX44YPYDxg1IZNyiN8YNSyU7trbAlIl1KNC1h9wDfAeYDjbtZV0RkJyUVtczPL2P+ujIWri9n0cbyHZOW9u6RwAFD0jh7eg4H5vTjwKHpjMpKoUdiQpyrFhGJvWhCWLm7vxDzSkSk03N31hRXMi+/jHlrS5mXX8bqokogOBpxwpA0zpg2lAOHpnNgTjpjsvsqcIlIt7XLEGZmB4VXXzOzXwJPADsGaLj7BzGuTUQ6uKYmZ+nmbbyzqoR/ryllfn4ZJZXBfFv9knsyIy+Dc6YP4+DhGUwamq7T8IiIRGirJexXLW7PiLjuwKz9X46IdHTrS6t4a2Uxb60s5p1VJZSGoWt4ZjLHjMtmxvAMDh6ewcgBfTUFhIhIG3YZwtz9WAAzG+nuqyPvMzMNyhfpJkor65i7qpi3w+C1vrQagIFpvTlmXBZHjh7A4aMGMCg9Kc6Vioh0LtGMCXscOKjFsseA6fu/HBGJN3dnRWEFryzZwpylW/hw/VbcITWpB4eNzOSSI0dyxOgBjMpK0dGKIiL7oK0xYeOBA4B0M/tCxF1pgL7yinQh9Y1NvL+mlFeWbmHO0kLWlVYBMDknnW8fN5bPjB3AgUPTNYheRGQ/aqslbBxwKtAPOC1i+Xbg0lgWJSKxV1nbwJxlhfxzyRZeW17I9poGevVI4MjRA7j86FEcNyGbgWn6viUiEittjQl72syeA37g7j9rx5pEJEZq6ht5fXkRzy4oYM6yLdTUN5GZ0ouTJg3i+AkDOXLMAJJ76UQaIiLtoc3/tu7eaGYnAAphIp1UfWMTc1eV8MxHBby8eDPbaxvITOnFOdOHcdqUIUzPyyBRRzGKiLS7aL7yzjWzu4BHgMrmhZonTKTjcnfeX1vGMws28vzHmymtrCO1dw8+O2kQp08ZwuGjMjW+S0QkzqIJYYeHP2+OWKZ5wkQ6oMJtNTw2fwOPzltPfkkVST0TOG7CQE6fMoSjx2ZpslQRkQ5ktyGseb4wEemYGhqbeOOTIv72/npeXVZIY5Mzc0R/vjlrDJ+bNIiU3hr8Z60SAAAgAElEQVTjJSLSEbU1RcVX3P0BM/tua/e7+69jV5aI7M66kioenbeex+avZ8u2Wgb07c0lR43gSzOGMTKrb7zLExGR3WjrK3JK+DO1PQoRkd1rbHJeWbKF+99dy9srS0gwOGZcNjd/fhizxmfTU+O8REQ6jbamqPhD+PPH7VeOiLRmW009j76/nnvnrmVDWTVD+/XhuyeM5ezpOQzp1yfe5YmIyF5oqzsyCfgSUAY8C1wNfAZYBfzE3YvbpUKRbmxNcSX3zV3LY/PWU1nXyMzh/bn+5AmcMHGgjm4UEenk2uqO/CtQT9At+T1gEXAXcCRwL8Fs+iKyn7k7c1eV8Oe31vDq8kJ6JBinTR7CRUeM4MCc9HiXJyIi+0lbIWyiu08ysx7ABnc/Olz+opktaIfaRLqVhsYmnl1YwB/eWM2yzdvJTOnFlbPG8JVDcsnW6YNERLqctkJYHYC7N5hZQYv7GmNXkkj3UtfQxBMfbOD/Xl/FutIqxg1M5RdnT+b0KUM0r5eISBfWVgjLMbM7AIu4Tnh7aMwrE+niauobeeT99fzhjVUUlNcwOSedG06ZzvETBpKg0wiJiHR5bYWwqyOuz2txX8vbIhKlqroGHnx3HXf/azVF22uZkZfB/5w1mc+MGYCZwpeISHfR1hQV9+3rxs2sH/AnYBLBqY6+BnwWuBQoCle7zt2f39fnEunoKmobuG/uWv70r9WUVdVzxOhM7jh3GoeO7K/wJSLSDcX6fCa3Ay+6+9lm1gtIJghhv3H322L83CIdQl1DEw+9l8+dr66kpLKOWeOz+caxo5melxHv0kREJI5iFsLMLI1gXrGvArh7HVCnb/zSXbg7zy3cxG0vLye/pIpDR/bnnpMmMHVYv3iXJiIiHUAsW8JGEnQ5/sXMpgDzgW+F911hZhcQjC37nruXxbAOkXY3d1Uxt76wjIUbyhk/KJW/XHQwx4zNUrejiIjsYO7e9gpmI4ArgeFEhDZ3P303j5sBvAsc4e7vmdntwDaCCV+LCcaI/QQY7O5fa+Xxs4HZALm5udPz8/Ojf1UicbJs8zZufWEZry8vYkh6Et89cRxnThtKoo52FBHpNsxsvrvP2N160bSEPQXcQ3DqoqY9qGEDwSSv74W3HweucfctEUX+EXiutQe7+93A3QAzZsxoOymKxNnm8hp++dJynvhwA6m9e3DtSeO58PDhmudLRER2KZoQVuPud+x+tZ25+2YzW29m49x9OXAcsMTMBrv7pnC1MwlOhyTSKdU1NPHnt9dwx5wVNDQ5lx41kq8fM4p+yb3iXZqIiHRw0YSw283sJuBloLZ5obt/EMVjrwQeDI+MXA1cBNxhZlMJuiPXApftadEiHcHbK4u58elFrCqq5PgJA7nptIkM658c77JERKSTiCaEHQicD8zi0+5ID2+3yd0/Alr2iZ6/JwWKdDSby2u45R9LeG7hJnL7J/Pnr85g1viB8S5LREQ6mWhC2JnAyHCKCZFuq66hib+8vYbb56ygscn5zvFjuezokRr3JSIieyWaELYA6AcUxrgWkQ5r7spibnxmMSsLK9T1KCIi+0U0IWwgsMzM3mfnMWFtTlEh0hWUVdZx83NLePLDjeT2T+aeC2dw3AR1PYqIyL6LJoTdFPMqRDqg5z/exI1PL2JrVT3fPG4MXz9mlLoeRURkv9ltCHP3N8xsIHBwuOjf7q6uSemyCrfXcONTi3lx8WYOHJrO/RcfwoTBafEuS0REupjdhjAz+yLwS+B1wIA7zexqd388xrWJtCt354kPNnLzc0uorm/kmpPGc8mRI+iRmBDv0kREpAuKpjvyeuDg5tYvM8sC/kkwA75Il1CwtZrrnvyY15cXMT0vg1+cPZlRWX3jXZaIiHRh0YSwhBbdjyWAmgakS2hqch5+fx3/8/wyGpucm06byAWHDde5HkVEJOaiCWEvmtlLwMPh7S8Bz8euJJH2sWVbDVc9toB/rSjm8FGZ3PqFyeRmatoJERFpH9EMzL/azL4AHEkwJuxud38y5pWJxNArS7bw/ccXUF3fyC1nTOK/DsnFTK1fIiLSftoMYWaWCLzk7scDT7RPSSKxU13XyC3/WMKD763jgCFp3H7uNEZna+yXiIi0vzZDmLs3mlmVmaW7e3l7FSUSC0sKtvHNv33IysIKZn9mJN87cSy9e2jeLxERiY9oxoTVAB+b2StAZfNCd/9mzKoS2Y+ampw/v72GX7y4nH7JPbn/4pkcNSYr3mWJiEg3F00I+0d4Eel0CrfX8L1Hg8H3x08YyC/Onkz/lF7xLktERGTXIczM5rj7ccBEd/9BO9Yksl+8tryQqx5dQGVdgwbfi4hIh9NWS9hgMzsaON3M/kZwZOQO7v5BTCsT2UtNTc7tc1Zw+5wVTBicxp3nTWV0dmq8yxIREdlJWyHsRuAaIAf4dYv7HJgVq6JE9lZ5VT3ffuRDXltexNnTc7jljEk66baIiHRIuwxh4bkhHzezH7r7T9qxJpG9sqRgG5c/MJ9N5dXqfhQRkQ4vmslaFcCkw3vyww1c+8TH9OvTi0cuO4yDcjPiXZKIiEibojk6UqTDqmto4mfPL+XeuWs5ZER/7vryQWSl9o53WSIiIrulECadVuG2Gr7+4AfMyy/jkiNHcM1J4+mRqHPLi4hI57DbEGZmtwF/cffF7VCPSFTmrS3lvx/8gMraBu48bxqnTRkS75JERET2SDQtYcuAu82sB/AX4GGdwkji6ZkFBVz16AKGZvThwUsOYexATT8hIiKdz277btz9T+5+BHABMBxYaGYPmdmxsS5OJJK787vXV/HNhz9kam4/nvr6EQpgIiLSaUU1gMbMEoHx4aUYWAB8N5zEVSTmGhqbuP6pRfz8xWWcPmUI9188k/TknvEuS0REZK9FMybs18DpwBzgZ+7+7/Cun5vZ8lgWJwJQWdvAFQ99wGvLi/j6MaO46sRxJCRo/i8REencohkTtgi4wd2rWrlv5n6uR2Qnhdtq+Np977OkYBs/PXMS/3VIXrxLEhER2S+iCWFlwI5+HzPrBxzj7k9pgL7E0idbtnPRX96nrKqOey48mGPHZ8e7JBERkf0mmjFhN0WGLXffCtwUu5JEYO6qYs763VzqGpt49LLDFMBERKTLiSaEtbZOVJO8mlk/M3vczJaZ2VIzO8zM+pvZK2a2Ivyp88vITp7+aCMX/vnfDEpL4smvH86koenxLklERGS/iyaEzTOzX5vZKDMbaWa/AeZHuf3bgRfdfTwwBVgKXAPMcfcxBIP9r9mbwqVrevLDDXz7kY84KDeDx//7cHIykuNdkoiISExEE8KuBOqAR4DHgBrgG7t7kJmlAZ8B7gFw97qwK/PzwH3havcBZ+x52dIVPbuggO89uoBDR2Ry70UzSe+jKShERKTr2m23ortXsnetVSOBIuAvZjaFoPXsW8BAd98UbnuTmWmwj/DCx5v49iMfMSOvP/d8dQZ9eiXGuyQREZGYimaesLHAVQSz5e9Y391nRbHtg4Ar3f09M7udPQhzZjYbmA2Qm5sb7cOkE3plyRaufPhDpuSk8+eLDia5l84rLyIiXV80n3aPAb8H/gQ07sG2NwAb3P298PbjBCFsi5kNDlvBBgOFrT3Y3e8G7gaYMWOG78HzSify2rJCvv7gfA4Yms69X5tJ394KYCIi0j1E84nX4O6/29MNu/tmM1tvZuPcfTlwHLAkvFwI3Br+fHpPty1dw5ufFHHZA/MZNyiVv35tJmlJGgMmIiLdRzQh7Fkz+zrwJFDbvNDdS6N47JXAg2bWC1gNXERwMMCjZnYxsA44Z4+rlk5v7spiLv3rPEZl9eWBiw/RIHwREel2oglhF4Y/r45Y5gQD79vk7h8BM1q567gonle6qPdWl3DxffPIy0zmgYtn0i+5V7xLEhERaXfRHB05oj0Kke5h3tpSLrr3fYb0S+LBSw4ls2/veJckIiISF9HOfD8JmAgkNS9z97/GqijpmtYWV/K1e99nYFoSD196KFmpCmAiItJ9RTNFxU3AMQQh7HngJOAtQCFMolZR28Ds++eRkGDcd9FMstOSdv8gERGRLiyaGfPPJhjDtdndLyI4/ZCaMCRqTU3O9x79iJWFFdx13kHkZupURCIiItGEsGp3bwIawlMRFRLFoHyRZr99bSUvLd7CdSdP4MgxA+JdjoiISIcQzZiweWbWD/gjwamHKoB/x7Qq6TL+uWQLv/7nJ5wxdQgXH6ljPERERJpFc3Tk18OrvzezF4E0d18Y27KkK1hZWMF3HvmIA4akcetZkzGzeJckIiLSYey2O9LM5jRfd/e17r4wcplIa7bV1DP7/nn06pHAH86fQVJPnZBbREQk0i5bwswsCUgGBphZBtDcjJEGDGmH2qSTampyvvO3j1hXUsUDlxzC0H594l2SiIhIh9NWd+RlwLcJAtd8Pg1h24Dfxrgu6cT+95+fMGdZITd//gAOHZkZ73JEREQ6pF2GMHe/HbjdzK509zvbsSbpxF5ctIk7Xl3JF2fkcP6hefEuR0REpMOKZoqKpvDoSADMLCM8obfITpZv3s53H13A1GH9uPnzkzQQX0REpA3RhLBL3X1r8w13LwMujV1J0hlV1TVw+QPzSendg99/ZboG4ouIiOxGNCEswSKaNMwsEegVu5KkM/r5C8tYU1zJHedOY1C6TkkkIiKyO9FM1voS8KiZ/R5w4HLgxZhWJZ3K2yuLue+dfC46YjiHjdJAfBERkWhEE8J+QHCk5H8THCH5MvCnWBYlncf2mnq+//hCRgxI4fufHR/vckRERDqNaGbMbzKze4FX3X157EuSzuSW55ayqbyaxy4/nD69NA5MREQkWtHMmH868BFhF6SZTTWzZ2JdmHR8ry0r5JF565n9mVFMz8uIdzkiIiKdSjQD828CZgJbAdz9I2B4DGuSTmBrVR0/+PtCxg7sy3dOGBPvckRERDqdaEJYg7uXx7wS6VR+9MxiSivr+PUXp9K7h7ohRURE9lQ0IWyRmX0ZSDSzMWZ2JzA3xnVJB/biok089VEB3zh2NJOGpse7HBERkU4pmhB2JXAAUAs8THDuyG/HsijpuEoqarn+yUUcMCSNK2aNjnc5IiIinVY0R0dWAdeb2c+Dm7499mVJR+Tu3PDUIrbXNPDQpVPpmRhNhhcREZHWRHN05MFm9jGwEPjYzBaY2fTYlyYdzTMLCnhh0Wa+c8JYxg1KjXc5IiIinVo0k7XeA3zd3f8FYGZHAn8BJseyMOlYtmyr4canFzMttx+zPzMy3uWIiIh0etH0J21vDmAA7v4WoC7JbsTdue6Jj6mpb+S2c6aQmGC7f5CIiIi0KZqWsH+b2R8IBuU78CXgdTM7CMDdP4hhfdIBvLR4M3OWFXLDKRMYldU33uWIiIh0CdGEsKnhz5taLD+cIJTN2q8VSYdSXdfIT55byvhBqXz18OHxLkdERKTLiOboyGPboxDpmH772ko2bq3mkdmH0kNHQ4qIiOw30Rwdeb+ZpUfczjOzOdFs3MzWmtnHZvaRmc0Ll/3IzDaGyz4ys5P3vnyJpTXFldz95mrOmDqEQ0ZmxrscERGRLiWa7si3gPfM7LvAUOBq4Ht78BzHuntxi2W/cffb9mAb0s7cnR8/u5hePRK47uQJ8S5HRESky4mmO/IPZrYYeA0oBqa5++aYVyZx9c+lhby+vIgbTplAdlpSvMsRERHpcqLpjjwf+DNwAXAv8LyZTYly+w68bGbzzWx2xPIrzGyhmf3ZzDL2tGiJrZr6Rn787GLGDuzLhRqMLyIiEhPRjLQ+CzjS3R9292uBy4H7otz+Ee5+EHAS8A0z+wzwO2AUwVGXm4BftfZAM5ttZvPMbF5RUVGUTyf7w+9eX8WGsmp+fPoknZpIREQkRnb7CevuZ7h7YcTtfwMzo9m4uxeEPwuBJ4GZ7r7F3RvdvQn446625e53u/sMd5+RlZUVzdPJfrCupIrfvbGK06YM4bBRGowvIiISK7sMYWb2aMT1n7e4+7ndbdjMUswstfk6cCKwyMwGR6x2JrBojyqWmLr5ucX0TDCu12B8ERGRmGprYP6YiOsnAD+IuB1N09RA4Ekza36eh9z9xXDKi6kE48XWApftUcUSM68u28I/lxZy7UnjGZSuwfgiIiKx1FYI8728L1jBfTXwHwP43f38KOqSdlZT38iPnlnCqKwULjpiRLzLERER6fLaCmHJZjaNoMuyT3jdwkuf9ihO2s/db65mXWkVD15yCL16aDC+iIhIrLUVwjYBvw6vb4643nxbuoj1pVX89rWVnHLgYI4YPSDe5YiIiHQLuwxhOmdk9/GT55aQYMb1p2gwvoiISHtRv1M3N3dlMS8v2cIVs0YzpJ96mUVERNqLQlg31tTk/PT5pQzt14eLj9RgfBERkfakENaNPfXRRhYXbOP7nxtHUs/EeJcjIiLSrURz7kgzs6+Y2Y3h7Vwzi2rGfOm4auobue2l5UzOSee0yUPiXY6IiEi3E01L2P8BhwHnhbe3A7+NWUXSLv789hoKymu47uQJJCRYvMsRERHpdtqaoqLZIe5+kJl9CODuZWbWK8Z1SQyVVNTyf6+t4oSJAzl0pM4PKSIiEg/RtITVm1ki4Sz5ZpYFNMW0Komp2+esoLq+kWtOGh/vUkRERLqtaELYHcCTQLaZ/RR4C/hZTKuSmFlVVMGD763jyzNzGZXVN97liIiIdFu77I40sxHuvsbdHzSz+cBxBKcsOsPdl7ZbhbJf3frCMvr0TORbx4/Z/coiIiISM22NCXscmG5mc9z9OGBZO9UkMfLu6hJeWbKFqz87jgF9e8e7HBERkW6trRCWYGY3AWPN7Lst73T3X7fyGOmgmpqcnz2/lMHpSZqYVUREpANoa0zYuUANQVBLbeUincizCwtYuKGcqz+riVlFREQ6grZO4L0c+LmZLXT3F9qxJtnPauob+cWLyzlgSBpnTB0a73JERESEtgfmf8XdHwAmmtmElverO7LzuHfuWjZureaXZ0/WxKwiIiIdRFtjwlLCn63NY+AxqEVioLSyjt++upLjxmdz+OgB8S5HREREQm11R/4h/PnjlveZ2bdjWZTsP3fMWUFVfSPXnqyJWUVERDqSaCZrbc1/HC0pHc/qogoeeDefLx08jNHZOpZCRESkI9nbEKaBRZ3Az19cRu8eCXzn+LHxLkVERERa2NsQpjFhHdy/15Ty0uIt/Pcxo8hK1cSsIiIiHU1bR0dup/WwZUCfmFUk+6ypyfnpP5YwKC2Ji48cGe9yREREpBVtDczXIKJO6tmFBSzYUM5t50yhTy9NzCoiItIR7W13pHRQzROzThycxhemaWJWERGRjkohrIu5L5yY9YZTJmhiVhERkQ5MIawLKa2s467XVjJLE7OKiIh0eAphXcgdc1ZQWdvAtSdpYlYREZGOTiGsi1hTXMkD7+Zz7sxcxgzUMRUiIiIdXVvnjtxnZrYW2A40Ag3uPsPM+gOPAMOBtcAX3b0slnV0B7e+sJTePRL49vFj4l2KiIiIRKE9WsKOdfep7j4jvH0NMMfdxwBzwtuyD5onZr386FFkpybFuxwRERGJQjy6Iz8P3Bdevw84Iw41dBmRE7NecpQmZhUREeksYh3CHHjZzOab2exw2UB33wQQ/syOcQ1d2nMfb2LBhnKu+uw4TcwqIiLSicR0TBhwhLsXmFk28IqZLYv2gWFomw2Qm5sbq/o6tZr6Rn7+wjImDk7jTE3MKiIi0qnEtCXM3QvCn4XAk8BMYIuZDQYIfxbu4rF3u/sMd5+RlZUVyzI7reaJWa8/ZQKJmphVRESkU4lZCDOzFDNLbb4OnAgsAp4BLgxXuxB4OlY1dGUlFbXc9dpKjh2XxRGamFVERKTTiWV35EDgSTNrfp6H3P1FM3sfeNTMLgbWAefEsIYu69YXllFd18j1p0yIdykiIiKyF2IWwtx9NTClleUlwHGxet7u4P21pTw2fwOXHz2K0dmamFVERKQz0oz5nUx9YxM3PLmIIelJfPO40fEuR0RERPZSrI+OlP3svrlrWb5lO384fzrJvfT2iYiIdFZqCetENpVX85tXPmHW+GxOnDgw3uWIiIjIPlAI60RueW4pDU3Oj047gPCABxEREemkFMI6iTc/KeIfH2/iimNHk5uZHO9yREREZB8phHUCNfWN3Pj0IkYMSGH20To/pIiISFegkd2dwN1vrmZtSRX3XzyT3j10fkgREZGuQC1hHVx+SSV3vbaSUycP5qgxOn2TiIhIV6EQ1oG5Oz96ZjG9EhP44akT412OiIiI7EcKYR3YS4u38NryIr5zwlgGpiXFuxwRERHZjxTCOqjK2gZufnYx4welcuFhefEuR0RERPYzhbAO6o5XV1BQXsNPz5xEj0S9TSIiIl2NPt07oEUby7nnX2v40oxhTM/rH+9yREREJAYUwjqYitoGrnz4Qwb07c01J42PdzkiIiISI5onrIO58alF5JdU8tClh5KR0ive5YiIiEiMqCWsA3l8/gae+HAj3zxuDIeOzIx3OSIiIhJDCmEdxKqiCn741CIOGdGfK2eNiXc5IiIiEmMKYR1ATX0j33jwA/r0SuT2c6eRmGDxLklERERiTGPCOoCfPb+UZZu38+evzmBQuiZlFRER6Q7UEhZnLy7azF/fyeeSI0cwa/zAeJcjIiIi7UQhLI42lFXx/ccXMDknne9/TtNRiIiIdCcKYXFS39jENx/+kCaHO8+bRq8eeitERES6E40Ji5PfvPIJH6zbyp3nTSMvMyXe5YiIiEg7U/NLHPxrRRG/e2MV5x48jNOmDIl3OSIiIhIHCmHtbFN5Nd95ZAGjs/py02kHxLscERERiROFsHa0qbyac+9+l9r6Ru768kH06ZUY75JEREQkThTC2knB1iCAlVbUcd/FMxk3KDXeJYmIiEgcaWB+O2gOYGWVdfz14plMy82Id0kiIiISZ2oJizEFMBEREWlNzEOYmSWa2Ydm9lx4+14zW2NmH4WXqbGuIV42RgSw+y85RAFMREREdmiP7shvAUuBtIhlV7v74+3w3HETBLB32FpVz/2XHMLUYf3iXZKIiIh0IDFtCTOzHOAU4E+xfJ6OJjKAPXCxApiIiIj8p1h3R/4v8H2gqcXyn5rZQjP7jZn1bu2BZjbbzOaZ2byioqIYl7n/bCir2imATVEAExERkVbELISZ2alAobvPb3HXtcB44GCgP/CD1h7v7ne7+wx3n5GVlRWrMverJQXbOO+P7yqAiYiIyG7FckzYEcDpZnYykASkmdkD7v6V8P5aM/sLcFUMa2gXFbUN/OaVT7h37loyknvy4CWHMDlHAUxERER2LWYhzN2vJWj1wsyOAa5y96+Y2WB332RmBpwBLIpVDbHm7rywaDM3P7uELdtrOG9mLj/47HjSk3vGuzQRERHp4OIxWeuDZpYFGPARcHkcathn+SWV3Pj0Yt74pIiJg9P43VcO0hQUIiIiErV2CWHu/jrwenh9Vns8Z6zUNjTyhzdW89vXVtIjwfjhqRO58LA8eiRq3lsRERGJnk5btAfeXlnMD59axOriSk45cDA/PHUig9KT4l2WiIiIdEIKYW2orG3gvTUlvPlJMf9aUcSqokryMpO596KDOWZcdrzLExERkU5MISxCU5OzZNM23lxRxJufFDE/v4z6RiepZwKHjMjk/EPzOHdmLkk9E+NdqoiIiHRyCmHAu6tLeOi9dby1spjSyjoAJg5O42tHjuAzY7KYnpeh4CUiIiL7lUIYsK60irmrSjhmbBZHjR3AkaOzyEptdSJ/ERERkf1CIQw4c9pQzpmeQzB1mYiIiEjsKYQBPTW9hIiIiLQzpQ8RERGROFAIExEREYkDhTARERGROFAIExEREYkDhTARERGROFAIExEREYkDhTARERGROFAIExEREYkDhTARERGROFAIExEREYkDc/d417BbZlYE5Mf4aQYAxTF+DgloX7cP7ef2o33dfrSv24f2877Jc/es3a3UKUJYezCzee4+I951dAfa1+1D+7n9aF+3H+3r9qH93D7UHSkiIiISBwphIiIiInGgEPapu+NdQDeifd0+tJ/bj/Z1+9G+bh/az+1AY8JERERE4kAtYSIiIiJxoBAmIiIiEgcKYSJdnJlZvGsQEZH/pDFhLZiZuXZKu9C+bn/a57Gl/Rs7ZpYJjAFqgDRgpbsXxLeqrsfMRhLs5yQgBZjn7p/Et6quSyGsDfqH2n60r/cfM0sADgcGA/2ArfD/7Z1prJ1VFYaft5VRQJBJ21KqCAWUsYAShmIhglBQMMgUNDIEMQKRKWEQGUVbSmQQS2USqVRBkUlEbEuDBWzLKLQWKBCgTKVAkaGUtq8/1i4eiRCTe+7dt99Zz69zz5fcvFnZZ+/1rb0G7rY9u6qwDiPXdPuQtDwwFugPPAW8CLwFPGJ7XE1tTULSCsCNwGLgH4CJPeQp4DLbcyrKayQd74RJ6gvsAQwA1iF+3LfafqKqsAaStu4ZJH0LOIA4pKYBawMrAPfavqqitMaRa7pnkHQksLvtPSWtCWwIbA4MAV4ATrf9bk2NTUDSEcCetodLWpXYOz4H7EhExk62/VZNjU3jY7UF9AIOBg4C7gNmED/sUZIeAi5Kz7+tpK17hu8BJ9meWK5wPg1sBOwjaXnbo+vKaxS5pnuGl4FXJK1QbDoHuEvSBsB5hJNwR02BDeEx4DVJq9ueS0TRZ0qaBlwM7A1cU1Ng08hImDQJGGH7VkkfJ7z9zxKb67O2R1YV2CDS1t1PScI/EVgRONf2/JZnmwIjgaMyx6M95JruGSR9EhgNvAlMBB4AZtp+T9LNwE22f1lTYxOQtCJwETAQuBOYRETQF0q6CbjFdjZxbSPphEmHAhsAZ7aGWSX1A34DHG97Wi19TSJt3TNIWp/YSOcBk4HJtu8rz14GBtl+u6LExiDpEE+FgVQAAAgMSURBVGAwuaZ7BEmHA+sRtzhrAqsBKwHDc023D0m7EHml6xIvFe8Ci4B9087tJZ0waR3gAmKxjQf+ZPtOSasAM4H1ctG1B0kDgEuI5NrxRO7MpLR19yBpX2BLoB+RO/M4UVF2QlVhDULSQOBCInIwgYgU5P7RRiT1J658ZxDXZWsQzteC8vlvtp+pp7B5lIh6P2B1Ijl/IGHneVWFNZCOdsIk9bG9uHzeGtgV2BbYmIggzLL9o4oSG4OkwbZnls9bA7sBOxBJn5OBJ9PWXaNEX74LbEZckU2WtBaxmc4HliOqyRZVlNlIJA0BdgaGEdHeXNNtoOwVPwPuAbYm1vFDwM2276qprUmUl4m9gIeB6bZfqSypY+hYJ0zSNsCPiTD2/PLd2kRp7jLAsrafrqewOUjaCpgCnE84By+X/JkFhIPgfJPtOpIuJQ6pucDngb8CmxCl5pdlu4T2USJdOxIvbtOAp4GXgFlEpaRz/+g6kkYBr9k+u/z9GWBf4NvAVOAw2wsrSmwEkq4mXt5uARYCTwIzbE8pxT0H2L64psam0slO2AXAPNunSdoC2J8IbT8HjMmeSu1D0k+ICr1XgeczWbl7kDQVGGr7bUmPA78j8sKGAs8Cx+bVWHuQ9AvgHeB5okVFP2AccLvtu2tqaxKSjgW2AX4IPG37vZZnVwOX2p5cS19TkPR74CZinxhC7Nd9gX8C3wDm2t6vnsLm0slO2B+Bs2zfJ+kWouJmNnEduRJwnO3Xa2psCpLuB3YnnNzRxI/7FMLmfYFFGaXpGqV30sXAI8RGeo7t/i3PJwEH2X6uksRGIWkKsNMSp1bSOKKNwk5Ekv71FeU1BknLAKcTeUnjgSeAhbZfkDQTONj2lIoSl3pKc+eBRFDitfLdIGArYBDhAA+1/WAliY2mk/uEXQWMkHQe0Mf2qPL9OEl3EYmf6YR1EUnbAc/YfpFoZLm9pOOA/YAXbU+vKrAh2J5Trm6OIJJp7y2J+X8hqps+kQ5Ye5C0BnH9eLCkW4lr9UG295e0GXCEpFttv1NT59LMkmkDpQXFOcDhwAlENH2upC8Q43TSAesCxc6LifX8PuUq/WlJOwDz0wHrPjoyEiapr+1Fko4mkmg3IZotXkFEwa6wvXFNjU1B0mDCyZ0hacVyVbYa8AOiqei5LQ5w0iZKT7DDifzGjYDf2r6krqrmUA6nQwgHbABwX0lt2BY4z/Z2VQUu5ZRJBF8irtJXBq61/bCkTYjWFLOBObZfrShzqafFzjsRV5B/sD2h5Xl/YHDrd0l76UgnrBVJQ4FdiHDsp4gRGONs/7mqsIbSOk9P0jCiACJt3QVK1/DBRMXpm8DYcmANISp9/07k0yyoKLNxlCub9Ygrsrm235R0DRH5PbmmtqWd0n/tEGJeZD/gQEDElftltt+oKK8xtNj5GuL8O5AYcXYFcGHpmp90Ix3nhJUDawMimfZ14gc9S9KytheUsS7zP/q/JP8PxdYbAl8F3gautP1Iy3NBlJHVUdgMJN1IVEBOBE4mmiw+SMx5m1hTW9NocXh3JUbnXLtk+kCJKmxDVJVlKkMXkHQ7MNr2DS3fDQGOJq4hL6omrkF8iJ23BL4P3J8Vkd1Pn9oCKjCSCL9eD3wRmC7pHmC30jcsHbD2MZI4lK4jyp+nSpoqaZ+WnI90wLpAaYC7vu1TbY8HDgVGEU1xDy7NiJP2MZLYN24grnAeljRN0t62F9m+Jx2wrlFeziYQe8b7OKY+nAh8s7S9SbrAR9j5fuAkYL+0c/fTUYn5LQfW18rfs4DDiM7WexHzyJ6tp7A5/A9bP0nYegYRGZtK2rod9AGmSBpQEu/XBba3fWrpqXSkpFPS2e06H7F/zAB2lzTNdq7pLmLbksYAYyRNAK4l8nQXETNR1wIeramxCaSdewedFgl7/8Aqfy85sH4NPEMcWKqmrll8mK3HEs5X2ro9PAs8BTxa2lB8h8ijgchvHJQOWNvINd0DlL6NuwBjgCuJHo7PSboOOIMY1p2Vp10k7dw76KhIGP99YD1YPrceWF/OA6ttpK17gGLDM0rz4T2AO1saDQ8HLq8mrnnkmu5mSj7ST4lh0e8Aj9neufTB25yIzLxQUWIjSDv3HjouMR9A0qp84MAqyc2X276pqriGkbbuPiQdQwxDH2v7oQ886w8MK1HepI3kmu4+JP2cmNl7vmLu6SVEe5XrJK0M7GP7V3VVLv2knXsPHXMdKekYSSMkbWb7ddtjWzbQ/sD1uYG2h7R1j3Ey0VrlMkmTJB1b7AuwBZBDeNtErukeYwvgbgDbLxORxkPLs6OALSvpahpp515Cx0TCJL1ElPCvR7RLuJHw/GdLGk6MzrmtpsamkLbufkoT3BHAQcBywDDg68CmwHSi0GRodhRvD7mmu5/S4mM74KnWAgfFXMM7iMHdx9t+oJLERpB27l10hBOWB1bPkbbuOSQtD9DaVkXSKsBZwFdsb1RLW5PINd2z6D8TTfrYXixpfeA2YrbhkNr6mkLauXfQEU4Y5IHVk6St67Ck95pihuQ822fW1tQUck3XocVROBt4KZu0dg9p53p0THXkB5uwlgPrDUkLif4oSZtIW9ehpTLvQmLQcdImck3XofSsAjitqpCGk3auR8dEwj4MSesCr9r+V20tTSdtnTSNXNNJknSFjnfCkiRJkiRJatAxLSqSJEmSJEl6E+mEJUmSJEmSVCCdsCRJkiRJkgqkE5YkSZIkSVKBdMKSJEmSJEkq8G+61bPBNHTv3gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -137,7 +137,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAFQCAYAAAB9FDCfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XlcVXX+x/HXlx1Rkc0FUUFT3FBcwExLNE3bNMuytEXNtG2mpsmp+Y2V1TQzZTU1TXuaOdZkWaNWtkwllbaIJmruC7iACoIoguzf3x8XGTQU1Iv3Au/n43EfcO75nnM+90Dy7nu+53uMtRYREREROXseri5AREREpL5QsBIRERFxEgUrERERESdRsBIRERFxEgUrERERESdRsBIRERFxEgUrEalgjJlhjJl3ivXrjTEJ57AkEZE6RcFKpIExxowzxqw0xhwxxuw1xnxqjBlYk22ttd2stYm1XCLGmO7GmM+NMQeMMb+abM8YE2mMWWKMOWiM2WeM+acxxqt83YXln63yyxpjrqm0/e/KtztsjJltjPE9wzp9jTGzjDE7jTG5xphkY8ylJ7S52BizyRiTb4xZaoxpV2nddcaY78vXJVaxf2uMyav0Od44kzpF5NxRsBJpQIwx9wHPAX8BWgBtgZeAUa6sqwrFwHvArSdZ/xKQAbQCYoFBwJ0A1trvrLWNj72AK4AjwGcAxpjhwIPAxUA7oD3w6BnW6QXsLj9+IDAdeM8YE1l+rFDgQ+AhIBhYCcyvtH02jp/H305xjJ6VPs/kM6xTRM4RBSuRBsIYEwg8Btxlrf3QWptnrS221n5krZ1WqamPMWZueQ/MemNM30r7SDXGDC3/foYx5r1TtH3QGLO9fN0GY8zomtZqrd1srZ0FrD9JkyjgPWttgbV2H47Q1O0kbW8BFlhr8yotz7LWrrfWHgQeBybUtLYT6syz1s6w1qZaa8ustR8DKUCf8iZXA+utte9bawuAGUBPY0zn8u2/tNa+B6SfyfFFxP0oWIk0HP0BP+A/1bQbCbwLNAMWA/88w7bbgQtx9OQ8CswzxrQCMMa0NcbkGGPansHnAEcvz/XGmEbGmNbApZT3SFVmjAkAxgBvVXq7G7Cm0vIaoIUxJuQMa6l8vBZAJ/4XCI87Vnm4287JQ2BVvi2/bPnhsZ4wEXFfClYiDUcIcMBaW1JNu2XW2iXW2lLgX0DPM2lb3kuTXt6TMx/YCsSXr9tlrW1mrd11hp/lWxzh5DCwB8cltoVVtLsaOAB8U+m9xsChSsvHvm9yhrUAYIzxBt4G3rLWbjrJsY4dr6bHGgREAp1x9Gp9fGwsmYi4JwUrkYYjCwitwR/mfZW+zwf8TrHNSdsaY24uH8ydY4zJAboDoWdYewVjjAeO3qkPgYDyfQYBT1bR/BZgrj3+afNHgKaVlo99n1vFsV6pNHD8/6qp6V9AEXD3KY517Hi/OlZVrLXfWmuLrLU5wD04LoF2qcm2IuIaClYiDccPQCFwVW0fqPzOt9dxhIwQa20z4BfAOGH3wTgG3f/TWltorc0C3gQuO6GGNkACMPeE7ddzfC9cT2B/+X6OY629vdLA8b9UVYwxxgCzcNwMcI21tvhkxyq/NNmBk48dq47FOedQRGqJgpVIA2GtPQQ8DLxojLmqfHyStzHmUmPMU04+XACOEJAJYIyZiKPHqkaMgx/gU77sd2xKBGvtARwDxO8wxngZY5rh6Jlae8JubgK+t9ZuP+H9ucCtxpiu5dtOB+ac5uer7GUcvUhXWmuPnrDuP0B3Y8w15Z/nYWDtsUuFxhjP8ve9AI/yz+ldvq6bMSa2vE1j4BkgDdh4FrWKSC1TsBJpQKy1zwD34QgTmTimCribqscnnc1xNuAIAj8A+4EYYPmx9eWD14+cYvB6O+Ao/+vZOQpsrrT+amBE+WfYhmN6ht+dsI+bOX7Q+rHaPgOeApYCu4CdwCOn8fEqlPfMTcUx5cO+SpcNx5cfKxO4BngCOAj0A66vtIubyj/byzgG+h/F0dMHjh6w+TjGke3AMdbqihN6xETEzZjjhx6IiIiIyJlSj5WIiIiIkyhYiYiIiDiJgpWIiIiIkyhYiYiIiDiJgpWIiIiIk7js0QihoaE2MjLSVYcXERERqbFVq1YdsNaGVdfOZcEqMjKSlStXuurwIiIiIjVmjNlZk3a6FCgiIiLiJApWIiIiIk6iYCUiIiLiJC4bY1WV4uJi9uzZQ0FBgatLEamWn58fEREReHt7u7oUERFxE24VrPbs2UOTJk2IjIzEGOPqckROylpLVlYWe/bsISoqytXliIiIm3CrS4EFBQWEhIQoVInbM8YQEhKi3lURETmOWwUrQKFK6gz9roqIyIncLli5WuPGjY9bnjNnDnfffbeLqjleZGQkMTExxMTE0LVrV6ZPn14rPSYnngN38Nxzz5Gfn1/luoSEhNOeE80dP6OIiNR9ClZ1zNKlS1m3bh0rVqxgx44dTJ061dUlnROnClYiIiLuQsHqNEyYMIEFCxZULB/r9UhMTGTQoEGMGjWK9u3b8+CDD/L2228THx9PTEwM27dvB+Cjjz6iX79+9OrVi6FDh7J//34AZsyYwaRJk0hISKB9+/b84x//qLaWxo0b88orr7Bw4UKys7MBmDlzJnFxcfTo0YNHHnkEgAcffJAXX3yxYrsZM2bw9NNPn7R9ZdZapk2bRvfu3YmJiWH+/PkVn/eiiy7i8ssvJzo6mttvv52ysrKKuqZNm0a3bt0YOnQoK1asqPhcixcvBqC0tJRp06ZVHPvVV1+t2G9CQgJjxoyhc+fOjB8/Hmst//jHP0hPT2fw4MEMHjy42vPypz/9iZ49e3L++edXnOOUlBT69+9PTEwM06dPP26bqs5DUlISPXr0oKCggLy8PLp168Yvv/xS7c9FRERq19JNGdz3XjKHC4pdXUqV3OquwMoe/Wg9G9IPO3WfXcOb8siV3U7Z5ujRo8TGxlYsZ2dnM3LkyGr3vWbNGjZu3EhwcDDt27dn8uTJrFixgueff54XXniB5557joEDB/Ljjz9ijOGNN97gqaee4plnngFg06ZNLF26lNzcXKKjo7njjjuqvY2/adOmREVFsXXrVg4dOsTWrVtZsWIF1lpGjhzJt99+y9ixY7n33nu56667AHjvvff4/PPP+eKLL6psf9FFF1Xs/8MPPyQ5OZk1a9Zw4MAB4uLiKtavWLGCDRs20K5dO0aMGMGHH37ImDFjyMvLY8iQIcycOZPRo0czffp0/vvf/7JhwwZuueUWRo4cyaxZswgMDCQpKYnCwkIGDBjAJZdcAsDq1atZv3494eHhDBgwgOXLl/Pb3/6WZ599lqVLlxIaGnrKc5KXl8f555/PE088wR/+8Adef/11pk+fzj333MMdd9zBzTfffFzQPNV5GDlyJNOnT+fo0aPceOONdO/evdrfAxERqT2FJaU89vEGjAE/L09Xl1Mltw1WruLv709ycnLF8pw5c2o0ficuLo5WrVoB0KFDh4qgEBMTw9KlSwHHdBJjx45l7969FBUVHXeb/uWXX46vry++vr40b96c/fv3ExERUe1xrbWAIyB88cUX9OrVC4AjR46wdetWbr31VjIyMkhPTyczM5OgoCDatGnD888/X2X7ysFq2bJl3HDDDXh6etKiRQsGDRpEUlISTZs2JT4+nvbt2wNwww03sGzZMsaMGYOPjw8jRoyo+Oy+vr54e3sTExNDampqRa1r166t6P07Fgp9fHyIj4+v+NyxsbGkpqYycODAas/DMT4+PlxxxRUA9OnTh//+978ALF++nA8++ACAm266iQceeOCU5+2iiy7i4YcfJi4uDj8/vxr1IoqISO16c3kqKQfymDMxDh8v97zo5rbBqrqeJVfw8vKquORVVlZGUVFRxTpfX9+K7z08PCqWPTw8KCkpAeA3v/kN9913HyNHjiQxMZEZM2ZUub2np2fFNqeSm5tLamoqnTp1wlrLH//4xyrHXF177bUsWLCAffv2MXbsWIBTtq+JE++IO7bs7e1d8f3JzoO1lhdeeIHhw4cft4/ExMQzOg+VVT7+idtXdRffqc5DVlYWR44cobi4mIKCAgICAk6rFhERcZ79hwt44autDO3SgoTo5q4u56TcM+65qcjISFatWgXA4sWLKS4+veu7hw4donXr1gC89dZbZ1XLkSNHuPPOO7nqqqsICgpi+PDhzJ49myNHjgCQlpZGRkYGAGPHjuXdd99lwYIFXHvttQCnbH/MhRdeyPz58yktLSUzM5Nvv/2W+Ph4wHEpMCUlhbKyMubPn39avUrDhw/n5Zdfrjh/W7ZsIS8v75TbNGnShNzc3Bof40QDBgzg3XffBeDtt98+rpaTnYepU6fy+OOPM378+IoeLhERcY0nP91EcanloSu6uLqUU3LbHit3dNtttzFq1Ch69uzJiBEjTrsHY8aMGVx77bUEBQUxZMgQUlJSTruGwYMHY62lrKyM0aNH89BDDwFwySWXsHHjRvr37w84BnHPmzeP5s2b061bN3Jzc2ndunXF5cpTtT9m9OjR/PDDD/Ts2RNjDE899RQtW7Zk06ZNxMXFcffdd7Nt2zYGDx7M6NGja/wZJk+eTGpqKr1798ZaS1hYGAsXLjzlNlOmTGHEiBGEh4dXXFo9Hc8//zzjxo3jySefZNSoURXvn+w8fPbZZ3h7ezNu3DhKS0u54IIL+PrrrxkyZMhpH1tERM7Oqp3ZfLg6jbsGd6BdiHtfPTDHxuica3379rUnjl3auHEjXbq4dxIVxyW7p59+mo8//tjVpbicfmdFRGpXaZnlqheXk5lbyFe/H0SAr2v6hIwxq6y1fatrp0uBIiIi4rbeX7mbdWmH+ONlnV0Wqk6H+1cobichIYGEhARXlyEiIvXcoaPFPPX5ZuIigxjZM9zV5dSIeqxERETELT335RZy8ouYMbJbnXk+q4KViIiIuJ0t+3OZ+8NObohvS7fwQFeXU2MKViIiIuJWrLU8+tF6Gvt68ftLol1dzmlRsBIRERG38vn6fSzflsXvL+lEcICPq8s5LQpWJzj2YOXKXnnlFebOnQs4nukXGxtLr169Kh6uXJ2EhASio6OJjY0lNjaWMWPGOLXmk3nuuefIz88/J8c60fvvv0+XLl2qfWjy2ZozZw5hYWHExsbSrVs3xowZU/GZK//cTrRw4UI2bNhQsZyQkFCjRxeJiEjtKigu5fGPN9K5ZRPGxbd1dTmnTcGqBm6//XZuvvlmwPEHecyYMaxevZoOHTrUeB9vv/02ycnJJCcnVzwjr7a5MljNmjWL119//VeTeZ7uI2pqYuzYsSQnJ7N+/Xp8fHyYP38+cPzP7cQaTgxWIiLiHl79ZgdpOUd55MpueHnWvZhS9yp2gRkzZvD000+zZMkSnnvuOV5++eWKnph58+YRHx9PbGwsU6dOpbS0tMb7HTVqVEWPyquvvsr48eMBR+/JPffcQ2xsLN27d2fFihUA5OXlMWnSJOLj4+nVqxeLFi0CoLS0lPvvv5/u3bvTo0cPXnjhBf7xj3+Qnp7O4MGDK2q944476Nu3L926deORRx6pqCMyMpJHHnmE3r17ExMTw6ZNmwDHY3MmTpxITEwMPXr04IMPPmD27Nnce++9Fdu+/vrr/O53vzvucz322GMsW7aMW2+9lWnTpjFnzhxGjhzJkCFDuPjii7HWMm3aNLp3705MTExFEEpMTGTQoEGMGjWK9u3b8+CDD/L2228THx9PTExMtT2EJSUl5OXlERQUdNzP7dg5vffee+nbty9PPvkkixcvZtq0acTGxlbs9/333yc+Pp5OnTrx3Xff1fjnKCIizrHnYD4vJW7j8h6t6N8hxNXlnBH3ncfq0wdh3zrn7rNlDFz6tzPe/LLLLuP222+ncePG3H///WzcuJH58+ezfPlyvL29ufPOO3n77ber7CUZP348/v7+AAwbNoyZM2fy2muvMWDAAKKionjmmWf48ccfK9rn5+eTnJzMt99+y6RJk/jll1944oknGDJkCLNnzyYnJ4f4+HiGDh3K3LlzSU1NJTk5GS8vL7KzswkODubZZ59l6dKlhIaGAvDEE08QHBxMaWkpF198MWvXrqVHjx4AhIaG8vPPP/PSSy/x9NNP88Ybb/D4448TGBjIunWOn8PBgwfx9vbmiSeeYObMmXh7e/Pmm2/y6quvHvdZH374Yb7++muefvpp+vbty5w5c/j5559Zu3YtwcHBfPDBByQnJ7NmzRoOHDhAXFwcF110EQBr1qxh48aNBAcH0759eyZPnsyKFSt4/vnneeGFF3juued+dW7nz5/PsmXL2Lt3L506deLKK6+s8udXVFRUcblv69atXHHFFcddli0pKWHFihUsWbKERx99lC+//LJmvxgiIuIUf12yCWPg/y6ru0+0qFGPlTFmhDFmszFmmzHmwSrWTzDGZBpjkstfk51fqvv56quvWLVqFXFxccTGxvLVV1+xY8eOKttWvhQ4c+ZMAFq0aMFjjz3G4MGDeeaZZwgODq5of8MNNwBw0UUXcfjwYXJycvjiiy/429/+RmxsLAkJCRQUFLBr1y6+/PJLpk6dipeXIydX3k9l7733Hr1796ZXr16sX7/+uEthV199NQB9+vQhNTUVgC+//JK77rqrok1QUBCNGzdmyJAhfPzxx2zatIni4mJiYmKqPVfDhg2rqGvZsmXccMMNeHp60qJFCwYNGkRSUhIAcXFxtGrVCl9fXzp06MAll1wCQExMTEVdJzp2KXDfvn3ExMRUnN+q2p1KVedARETOje+3H+CTdXu5M+E8Wjfzd3U5Z6zaHitjjCfwIjAM2AMkGWMWW2tPHKAy31p7t9MqO4uepXPFWsstt9zCX//61zPex7p16wgJCSE9Pf2490+cCM0Yg7WWDz74gOjo07/1NCUlhaeffpqkpCSCgoKYMGECBQUFFet9fX0B8PT0rHYc1OTJk/nLX/5C586dmThxYo2OX9MHVh+rA8DDw6Ni2cPDo9q6jDFceeWVvPDCCzz44K/yf7U1nM45EBER5ykpLePRxRuICPJnykXtXV3OWalJj1U8sM1au8NaWwS8C4yq3bLqhosvvpgFCxaQkZEBQHZ2Njt37qzx9itWrODTTz9l9erVPP3006SkpFSsOzbuaNmyZQQGBhIYGMjw4cN54YUXOPbg7NWrVwOO3qBXX321IgxkZ2cD0KRJE3JzcwE4fPgwAQEBBAYGsn//fj799NNq6xs2bBgvvvhixfLBgwcB6NevH7t37+add96p6Fk7HRdeeCHz58+ntLSUzMxMvv32W+Lj4097P1VZtmxZjW4qqHxuRETEtd7+aReb9+cy/fKu+Hl7urqcs1KTYNUa2F1peU/5eye6xhiz1hizwBjTxinVuUB+fj4REREVr2efffakbbt27cqf//xnLrnkEnr06MGwYcPYu3dvlW3Hjx9fMd3C0KFDKSws5LbbbmP27NmEh4fzzDPPMGnSpIrQ5OfnR69evbj99tuZNWsWAA899BDFxcX06NGDbt268dBDDwGOHqS2bdvSo0cPevbsyTvvvAPAlClTGDFiBIMHD6Znz5706tWLzp07M27cOAYMGFDtuZg+fToHDx6ke/fu9OzZ87g7/K677joGDBhQMVD8dIwePbqi1iFDhvDUU0/RsmXL097PMfPnzyc2NpYePXqwevXqivNyKtdffz0zZ848rWkzRETE+bLzinjmi80MPC+U4d1auLqcs2aO/SE/aQNjxgAjrLWTy5dvAvpVvuxnjAkBjlhrC40xU4Gx1tohVexrCjAFoG3btn1O7N3ZuHEjXbrU3QFrzpKQkFAx8NtdXXHFFfzud7/j4osvdnUpLqXfWRGRs/N//1nH/KTdfHbPhXRs0cTV5ZyUMWaVtbbaP8w16bFKAyr3QEWUv1fBWptlrS0sX3wD6FPVjqy1r1lr+1pr+4aFhdXg0OJucnJy6NSpE/7+/g0+VImIyNn5Je0Q/16xi1v6R7p1qDodNZluIQnoaIyJwhGorgfGVW5gjGllrT12DWwksNGpVTYwiYmJri7hpJo1a8aWLVtcXYaIiNRx1lpmLF5PcCMf7hna0dXlOE21wcpaW2KMuRv4HPAEZltr1xtjHgNWWmsXA781xowESoBsYEIt1iwiIiJ13OI16azceZAnr4kh0N/b1eU4TY0mCLXWLgGWnPDew5W+/yPwR2cUZK391VQDIu6ouvGJIiJStbzCEv6yZCM9IgK5tk+dvd+tSm71SBs/Pz+ysrL0B0vcnrWWrKws/Pz8XF2KiEid8+LSbew/XMgjV3bDw6N+daa41SNtIiIi2LNnD5mZma4uRaRafn5+REREuLoMEZE6JfVAHm98l8LVvVrTp93pT9nj7twqWHl7exMVFeXqMkRERKSW/PmTDXh7Gh64tLOrS6kVbnUpUEREROqvpZsz+HJjBr+5uCMtmtbPoRQKViIiIlLr9hzMZ/p/fiEqNICJAyJdXU6tcatLgSIiIlL/7Mg8wvg3fiKvsIR/3doPX6+6/TzAU1GwEhERkVqzce9hbpr1E9bCv6ecT7fwQFeXVKsUrERERKRWrN51kFtmr6CRjxfzJvfjvOaNXV1SrVOwEhEREaf7YXsWk99KIqSxL29P7keb4EauLumcULASERERp1q6KYPb562ibXAj5k3uV2/vAKyKgpWIiIg4zSdr93Lv/NVEt2zC3En9CA7wcXVJ55SClYiIiDjF+yt388AHa+ndNojZE+No6ld/Hq5cUwpWIiIictbm/pDKw4vWM/C8UF67uQ+NfBpmxGiYn1pERESc5qXEbTz12WaGdW3BCzf0ws+7/s5TVR0FKxERETljSzdl8NRnmxkVG87T1/bE27NhP9SlYX96EREROSsLVu0hJMBHoaqczoCIiIickdyCYr7cuJ8rerRSqCqnsyAiIiJn5Iv1+yksKWNkbGtXl+I2FKxERETkjCxak05EkD+92zZzdSluQ8FKRERETltmbiHLtx1gVGw4xhhXl+M2FKxERETktC1Zt5fSMssoXQY8joKViIiInLZFyWl0btmETi2auLoUt6JgJSIiIqdlV1Y+P+/KUW9VFRSsRERE5LR8tDYdgCt7tnJxJe5HwUpERERqzFrLwtVpxEUGERHUyNXluB0FKxEREamxTfty2ZpxRHNXnYSClYiIiNTYouR0vDwMl8foMmBVFKxERESkRsrKLB+tSefCjqEEB/i4uhy3pGAlIiIiNbJq10HSco7qbsBTULASERGRGlmUnIaftwfDurZwdSluS8FKREREqlVcWsYna/cyrGtLAny9XF2O21KwEhERkWot23qAg/nFjOoZ7upS3JqClYiIiFRrUXIagf7eXNQpzNWluDUFKxERETml/KISvtiwn8tiWuHjpehwKjo7IiIiclKHjhZz29yV5BeVck1v3Q1YHY0+ExERkSrtyspn4pwV7MrO5+lre9I3MtjVJbk9BSsRERH5lVU7s5kydxUlZZa5k/rRv0OIq0uqExSsRERE5DiL16Rz//trCA/0Y/aEONqHNXZ1SXWGgpWIiIgAYK3ln19v45n/biE+MphXbuqjR9ecJgUrERERobCklD9+sI4PV6cxuldr/nZNDL5enq4uq85RsBIREWngDuYVMXXeKlakZHPfsE78Zsh5GGNcXVadVKPpFowxI4wxm40x24wxD56i3TXGGGuM6eu8EkVERKS27Mg8wuiXlpO8K4fnr4/ltxd3VKg6C9X2WBljPIEXgWHAHiDJGLPYWrvhhHZNgHuAn2qjUBEREXGuH3dkcfu8VXgYwzu39dN0Ck5Qkx6reGCbtXaHtbYIeBcYVUW7x4EngQIn1iciIiK14INVe7hp1k+EBPjwnzsvUKhykpoEq9bA7krLe8rfq2CM6Q20sdZ+cqodGWOmGGNWGmNWZmZmnnaxIiIicnbKyizPfLGZ37+/hrjIYD68YwDtQgJcXVa9cdaD140xHsCzwITq2lprXwNeA+jbt68922OLiIhIzRUUl3L/+2v4eO1exvZtw59Hd8fbU0+3c6aaBKs0oE2l5Yjy945pAnQHEssHu7UEFhtjRlprVzqrUBERETlzB44UMmXuSn7elcMDIzpz+6D2GqReC2oSrJKAjsaYKByB6npg3LGV1tpDQOixZWNMInC/QpWIiIh72Lo/l0lvJZFxuJCXxvfmsphWri6p3qo2WFlrS4wxdwOfA57AbGvtemPMY8BKa+3i2i5SREREzswP27OY8q+V+Hp5Mn9qf2LbNHN1SfVajcZYWWuXAEtOeO/hk7RNOPuyRERE5GytTz/E5LeSaNXMnzkT44gIauTqkuo9zbwuIiJSD6XlHGXim0k09fdm3q39aBno5+qSGgTdCiAiIlLPHDpazMQ3V3C0qJQ3J8YpVJ1D6rESERGpRwpLSpn6r5WkHMjjrYnxdG7Z1NUl1Q5rIT8LDu2GgOYQ2Lr6bc4BBSsREZF6oqzM8ocFa/lxRzZ/H9uTC84LrX4jd1VwGA6nwaE9/3sdWz6cBofToaT8YS9DH4WB97q23nIKViIiIvXEzC82syg5nWnDoxndK8LV5Zza0YNwMBVydlV67Xb0QB3aDQWHjm9vPKFJK0fPVKtY6Hw5BLaBpq2hVQ+XfISqKFiJiIjUA/N+3MnLidu5Ib4tdyZ0cHU5DvnZcGArZG+HrO2Or9kpcDDl18HJtyk0a+sIS237Q2AENGsDTSMcYapxS/B0/9ji/hWKiIjIKX25YT8PL/qFIZ2b8/iobud+RvWjByFjI+xfDxkbIHMzHNgCeZWeC2w8HcEppANE9IWgSMerWTvH+/71Y34tBSsREZE6bM3uHH7z79V0Cw/khRt64VXbz/7Lz4a0VZC+Gvaugb1r4dCu/633DYTmnaHTCAjt5HiFnAdB7cDTu3ZrcwMKViIiInXUrqx8bn0riZDGPsya0JcAXyf/WbfWcSlv53LY9QPsSYLsHf9bH3Keo/ep70Ro0R1adHWMeWrAzyBUsBIREamDDuYVMeHNFRSXWt6dEk/zJk6aq+pQGuxYCtu/hpTvIC/D8X5Ac2gTD71vhtZ9ITwWfJs455j1iIKViIhIHVN2v6CKAAAgAElEQVRQXMrkuSvZk3OUtyf347zmjc98Z6UlsPsn2PIZbP0CMjc53m/cAtonQOQAaDfQMTaqAfdE1ZSClYiISB1SWmb53fxkft51kH/e0Ju4yODT30lhLmz7EjZ94ghTBYfAw9sRonrdCB2GQPOuClJnQMFKRESkDnnik418+ss+pl/ehct7tKr5hkcyYfMS2PQx7EiE0iJoFAKdr3AMNO8wWJf2nEDBSkREpI6YtSyF2ctTmHBBJLcOjKp+g+wdsGmJo2dq949gyxzTG8RPcUyw2aYfeHjWfuENiIKViIhIHfDpur38+ZMNDO/Wgoeu6Fr1XFVlpbBnJWz93BGoMjc63m/eDS6aBl2udNy9p0t8tUbBSkRExM2tTM3mnvnJxLZpxvPX98LTo1IwOrQHUr6FbV/B9q8ck3UaT2h3AfT+K0RfCsE16N0Sp1CwEhERcWPbM48wee5KwgP9eOOmPvjl7oLdKxzzSqV863hMDEBAGHS6FDoOc4yX8g9ybeENlIKViIiIOyorIyt9G7PmfsCddhs3huXQ6JUp/5tXyqeJo1cq7laIGuS4i8+jlmddl2opWImIiLhKaTHk7oWcXXAw1fHK3gEHtmAPbCOk5Ch/AazxwOR1ckyD0CbeMei8eRcNPHdDClYiIiK1oSjfEZpy9zm+Hk7/39fD6Y6xUUf2Oe7UO8Z4QmAEZaGd+G9+NIlZzbhq+CX0O/9C8Gnkus8iNaZgJSIicjqshbxMRzA6nAaH95YHqPLX4fIwVXjo19t6B0DTVtA03DEOqmlrCGztmAIhKBICI7AeXjy08BfeztjFY6O60a9/5Ln+hHIWFKxEREROVHwUslMga5tjcPjBVDi4E3J2OgJVadHx7T28oHFLR2gK6wTtB0GTltAkvPxrK8c636bVTnXwcuI23v5pF1Mvas/NClV1joKViIg0XGWljvC0dy1kbICMjY6vObsA+792jUIcvUqtejpmKg9s4+hpahru6HVqFOqUgeOLktN46rPNXNkznAdGdD7r/cm5p2AlIiINx6E02LMCdidB+s+OQFWc51jn4QUhHaF1H4gdByHnlb86nJNHvXy//QD3v7+GflHBPH1tDzw8NIlnXaRgJSIi9dexyTNTvoWU7+DwHsf7Xn6O3qdeN0J4LLTsAaGdwMvHJWVu3pfL1H+tIjIkgNdu6ouvl+72q6sUrEREpP4oLXZMnLnlc9j6BRzY4ni/UQhEXghtfwNt4qBFjMtC1In2Hy5g4psr8PP25M2JcQQ28nZ1SXIWFKxERKRuKy6A7V/DhkWw+VPH3XiePhA5EPpMcOvJM48UljDhzSQOHS1m/tT+RARpSoW6TsFKRETqnrIy2LkMkv8NGz+ColzwawZdroDOlzvClG9jV1d5SsWlZdwxbxVb9ucye0Ic3VsHurokcQIFKxERqTtydsPPc2HNv+HQbsf0BV1HQbfRjikOPOvGZTRrLf/34Tq+23qAp67pwaBOYa4uSZxEwUpERNxbWZnjUl/SG7D1c8d7HYbA0BmO3ilvf1dWd0ae/2or76/aw28v7sh1cW1cXY44kYKViIi4p+ICWDsfvn8BsrZCQBgMvM8xbqpZ3Q0j763czXNfbmVMnwh+N7Sjq8sRJ1OwEhER91KYCytehx9fhrwMx7QI18yCLiPd5k6+M/Xtlkz+78N1XNgxlL9eHYOpZhZ2qXsUrERExD0U5UPS67D8ecjPclzuG3CPYyB6PQgg69MPcce8VXRs0YSXxvfG29P97lKUs6dgJSIirlVaDKvmwDdPOXqoOlwMg/8EEX1cXZnTpOUcZeKbSTT19+bNCXE08asbg+zl9ClYiYiIa1gLm5fAfx92PK+v3UAY+y9oe76rK3OqQ0eLmfjmCo4Wl7Lg9gtoGejn6pKkFilYiYjIubd/AyyZ5piLKrQT3DAfOg2vF5f8KissKWXqv1aSciCPtybFE92y9p85KK6lYCUiIudOYS4k/s0xMN2vKVz+DPSeAJ71789RWZnlDwvW8uOObJ4bG8sFHUJdXZKcA/XvN1lERNzTpiXwye8hNx163wwXz4CAEFdXVWtmfrGZRcnpTBsezVW9Wru6HDlHFKxERKR25WfDpw/AuvegRXe4bq7jQcj1TGmZZe2eHBI3Z5K4JZM1u3MY168tdyZ0cHVpcg4pWImISO3ZtAQ+ugeOZkPCHx0TfNbxuagqO3CkkO+2ZpK4OZNvt2RyML8YY6BnRDMeGNGZ2y6M0lxVDUyNgpUxZgTwPOAJvGGt/dsJ628H7gJKgSPAFGvtBifXKiIidUVxAXwx3TEvVcsYuOlDx9c6rrTMkrw7h282Z5C4JZN1aYewFkICfBgc3ZxB0WFc1DGMoID6Ex7l9FQbrIwxnsCLwDBgD5BkjFl8QnB6x1r7Snn7kcCzwIhaqFdERNzdgW2wYALsWwf974aLH6nTvVSZuYV8syWTxM0ZfLf1AIeOFuNhoFfbIO4b2olB0WF0Dw/Ew0M9U1KzHqt4YJu1dgeAMeZdYBRQEaystYcrtQ8ArDOLFBGROmLjx/CfqeDp7ZhCIbru/T92SWkZybuPjZXK4Jc0x5+40Ma+DO3SgoToMC7sGEqzRnU3LErtqUmwag3srrS8B+h3YiNjzF3AfYAPMMQp1YmISN1gLfz4Enz+J2jdxzFAPbDu3AmXcbiAxC2ZfLM5k++2ZnK4oARPD0Pvts2YNjyaQZ3C6NqqqXqlpFpOG7xurX0ReNEYMw6YDtxyYhtjzBRgCkDbtm2ddWgREXGlslL47EFY8Rp0uRKufh28/V1d1SkVl5axelcOiZszSNycyYa9jl6p5k18GdG9JYM6NWdgx1AC/fXoGTk9NQlWaUCbSssR5e+dzLvAy1WtsNa+BrwG0LdvX10uFBGp60qKYMFE2PSxYzzVsMfBwz0fLrzvUAHfbHEEqWXbDpBbUIKXh6FPuyD+MCKahE7N6dKqie7ik7NSk2CVBHQ0xkThCFTXA+MqNzDGdLTWbi1fvBzYioiI1G9lpfCfKY5QNeJJOP92V1d0nOLSMlamHiRxSwbfbM5k075cAFo29ePymFYkRIdxwXmhNNUDkcWJqg1W1toSY8zdwOc4pluYba1db4x5DFhprV0M3G2MGQoUAwep4jKgiIjUI2VlsPi3sP4/jl4qNwlV6TlHK+7gW74tiyOFJXh7Gvq2C+aPl3ZmUHQY0S3UKyW1p0ZjrKy1S4AlJ7z3cKXv73FyXSIi4q6sdYypSp4Hgx6AAb91WSlFJWWsTM0msTxMbdl/BIDwQD+u7BlOQnQYA84LpbGv5sOWc0O/aSIicnqWPw8rXoXz73LMpn6O7TmYT+LmTL7Zksn32w6QV1SKt6chPiqYMX0iGBzdnPOaN1avlLiEgpWIiNTctq/gq0eh61Uw/Ak4B+GlsKSUpJSDjjv4tmSyLcPRK9W6mT9X9WpNQnRzLugQQoB6pcQN6LdQRERqJjsFFkyCsC5w1Uu1Gqp2Z+dXTIXw/fYsjhaX4uPpQb/2wVwf14aE6OZ0CAtQr5S4HQUrERGpXlEezL/R8f3188AnwKm7Lykt4/vtWRWzne/IzAOgTbA/Y/pEkBAdRv8OITTy0Z8tcW/6DRURkVOzFj66BzI2wPj3Ibi9U3efk1/E7fNW8eOObHy8PDi/fQg39mtHQnQYUaHqlZK6RcFKRERObe17sO59GDwdzhvq1F2nHshj0pwk9hw8yl9GxzC6V2v8fTydegyRc0nBSkRETu7gTlhyP7TtDxfe59RdJ6VmM2XuSgDmTe5HfFSwU/cv4goKViIiUrWyUvjPVMf3o18FD+f1JC1cncYfFqwlIsif2RPiiAx17pgtEVdRsBIRkaot+zvs+gFGvwZB7ZyyS2stz325lee/2sr57YN55cY+NGvk45R9i7gDBSsREfm19GRI/Ct0uxp6XOeUXRYUl/LAB2tZlJzONb0j+OvVMfh4uecDm0XOlIKViIgcr7QYFt0NjULhimedMl9V1pFCpv5rFSt3HmTa8GjuTOigu/2kXlKwEhGR4y17Dvavg+vfAf+gs97dtowjTJqTxL7DBfxzXC+u6BHuhCJF3JOClYiI/E/GRvjmScclwM6Xn/Xuvt92gNvnrcLHy4N3p5xP77ZnH9RE3JmClYiIOJSVOi4B+jaBy2ae9e7eW7mb//twHVGhAcyeEEeb4EZOKFLEvSlYiYiIw48vQ9pKuGYWBISe8W7Kyiwzv9jMy4nbubBjKC+O701TP28nFirivhSsREQEsrbD149Dp0uh+zVnvJuC4lLuey+ZJev2Ma5fWx4d2Q1vT935Jw2HgpWISENXVgaLfwuevmd1F2BmbiGT565k7Z4cpl/ehVsHRunOP2lwFKxERBq6VbNh5zIY+QI0PbM79jbvy2XSnCSy84p45cY+DO/W0slFitQNClYiIg1Zzi747yPQPgF63XRGu1i6KYPf/ns1/j6evDe1PzERgU4tUaQuUbASEWmorIWP7nV8vfIfp30JcGdWHn9dsonP1u+jc8smzJ4QR3gz/1oqVqRuULASEWmoVs2B7V/BpTNP61mAhwuKefHrbby5PBUvT8Pvh3Xitova4+ftvIc0i9RVClYiIg1R5mb47I/QfjDETa7RJqVllneTdvHsF1vIyitiTJ8Ipg2PpkVTv1ouVqTuULASEWloSgphwa3g0whGvwIe1U+HsHzbAR7/eAOb9uUSHxnMnIldNZZKpAoKViIiDc2XjzqeBXjDfGhy6rv3dmQe4S9LNvLlxgwigvx5aXxvLu3eUtMoiJyEgpWISEOy9Uv48UWInwLRI07a7FB+Mc9/tZW5P6Ti6+XBAyM6M3FApMZRiVRDwUpEpKHI3AwfTILmXWHYY1U2KS4t452fdvH3L7dw6GgxY/u24b5LOtG8icZRidSEgpWISENwJAPeHgOePnDDv8H719MiJG7O4M+fbGRbxhHObx/MQ1d0pVu4xlGJnA4FKxGR+q4oH/59PRzJhImfQFDkcau37s/lz59s5JstmbQLacSrN/Xhkq4tNI5K5AwoWImI1GelJfDhbZD2M1z/NrTuU7GquLSMJz7ZyL9+3Ekjb0/+dFkXbr6gHb5eGkclcqYUrERE6quCQ/D+RMckoCOehM6XH7f6vZW7mfN9KjfEt+X+SzoR0tjXRYWK1B8KViIi9dHBVHhnLGRtczyups8tx60uK7PMXpZC99ZN+cvo7rrsJ+IkClYiIvXN9qXwwWQoK4YbP4T2g37V5NutmWzPzOPvY3sqVIk4kYKViEh9kbYKvnocdiyF4PYw7j0I7Vhl09nLU2nexJfLY8LPcZEi9ZuClYhIXVVWChkbYfePsOUL2Po5NAqB4X+BvpOqnFIBHHcBfrslk/sv6YSPV/WPsxGRmlOwEhGpi756HFa8BoWHHctNWsHg6XD+7eDb5JSbzl7umE19XL9256BQkYZFwUpEpC4KjIDu10Db/tC2HzRrBzUYK5WdV8SHP+/h6t6tCQ7wOQeFijQsClYiInVR34lntNm/V+yisKSMiQOinFyQiADo4rqISANRVFLGW9+ncmHHUDq1OPXlQhE5MwpWIiINxJJ1e8nILWTSQPVWidQWBSsRkQbAWsusZSl0CAtgUMcwV5cjUm8pWImINAArdx5kXdohJg6IwsNDE4KK1JYaBStjzAhjzGZjzDZjzINVrL/PGLPBGLPWGPOVMUb38IqIuJFZ36UQ6O/NNb0jXF2KSL1WbbAyxngCLwKXAl2BG4wxXU9othroa63tASwAnnJ2oSIicmZ2Z+fzxYZ9jOvXFn8fT1eXI1Kv1aTHKh7YZq3dYa0tAt4FRlVuYK1daq3NL1/8EdD/EomIuIk536fiYQw399fFBJHaVpNg1RrYXWl5T/l7J3Mr8GlVK4wxU4wxK40xKzMzM2tepYiInJHcgmLmJ+3msphWtAqs+hE3IuI8Th28boy5EegLzKxqvbX2NWttX2tt37Aw3ZUiIlLb3l+5hyOFJZpiQeQcqcnM62lAm0rLEeXvHccYMxT4EzDIWlvonPJERORMlZZZ5nyfSp92QcS2aebqckQahJr0WCUBHY0xUcYYH+B6YHHlBsaYXsCrwEhrbYbzyxQRkdP15cb97MrO51b1VomcM9UGK2ttCXA38DmwEXjPWrveGPOYMWZkebOZQGPgfWNMsjFm8Ul2JyIi58jsZSm0bubPJV1buLoUkQajRg9httYuAZac8N7Dlb4f6uS6RETkLPySdoifUrL502Vd8PLUXNAi54r+axMRqYdmL0+hkY8n18W1qb6xiDiNgpWISD2TkVvAR2vSua5vGwL9vV1djkiDomAlIlLPzPthJyVllgkXRLq6FJEGR8FKRKQeKSguZd5Pu7i4cwsiQwNcXY5Ig6NgJSJSjyxKTiM7r4hJAyNdXYpIg6RgJSJST1hrmb0slS6tmtK/fYiryxFpkBSsRETqieXbsti8P5dJAyIxxri6HJEGScFKRKSemL08hdDGPoyMDXd1KSINloKViEg9sD3zCF9vyuDG89vh6+Xp6nJEGiwFKxGRemDO8lR8PD248fx2ri5FpEFTsBIRqeNy8otYsGoPo2LDCW3s6+pyRBo0BSsRkTru3aTdHC0uZdLAKFeXItLgKViJiNRhxaVlvPV9Khd0CKFLq6auLkekwfNydQEiIg3Jofxi7nxnFX5eniREh5EQ3Zw2wY3OeH+f/bKPvYcK+PNV3Z1YpYicKQUrEZFzpLCklCn/WsnqXTk0b+rLV5sygPW0DwsgoVNzEqLDiI8Kxs+75nf1zVqWQlRoAIOjm9de4SJSYwpWIiLnQFmZ5f731/JTSjbPXx/LyJ7h7DiQR+LmTBI3ZzDvp53MXp6Cv7cn/TuEMKhTGAnRYbQLOfnz/n7edZDk3Tk8NqobHh6aEFTEHShYiYicA09+vomP1qTzwIjOjIptDUCHsMZ0CGvMrQOjOFpUyo87skjcnEHilky+3pQBQFRoQEXIOr99yHG9WbOWpdDUz4treke45DOJyK8pWImI1LK5P6Ty6jc7uPH8ttw+qH2Vbfx9PBncuTmDOzsu6aUcyOOb8pD17xW7mPN9Kr5eHhW9WV1aNeWzX/YxeWAUAb76p1zEXei/RhGRWvTfDfuZsXg9Q7s0Z8aV3Wr8DL+o0ACiQqOYMCCKguJjvVmZfLMlk0c/2gCAp4fh5gsia7F6ETldClYiIrVk9a6D/ObfPxPTOpB/3NALL88zm+HGz9uThOjmJJQPUN+Zlcc3WzJp4udF62b+zixZRM6SgpWISC3YmZXH5LdW0ryJH7MmxNHIx3n/3LYLCeDm/icf1C4irqMJQkVEnCw7r4gJbyZRZi1zJsbpMTMiDYh6rEREnKiguJTJbyWRnnOUd27rR/uwxq4uSUTOIQUrEREnKS2z3PPualbvzuHl8b3p0y7Y1SWJyDmmS4EiIk5greXxjzfw+fr9PHR5V0Z0b+XqkkTEBRSsRESc4I3vUpjzfSq3Doxi0sAoV5cjIi6iYCUicpY+XpvOE0s2cllMS/50WRdXlyMiLqRgJSJyFlakZHPf/DX0bRfEs9fF6pl9Ig2cgpWIyBnalpHLbXNXEhHsz+s39z3uOX4i0jApWImInIGM3AJumZ2Et6fhrYnxBAX4uLokEXEDmm5BROQ05RWWMGlOEtl5Rcyfej5tghu5uiQRcRPqsRIROQ0lpWXc/c7PbEg/zD/H9aJHRDNXlyQibkQ9ViIiNWSt5aFFv7B0cyZPjO7OxV1auLokEXEzClYiItXYnZ3PouQ0Fiansy3jCHcmdGB8v3auLktE3JCClYhIFbLzivhkbToLk9NZtfMgAHGRQTx5TQzX9W3j4upExF0pWImIlDtaVMoXG/axKDmdb7dkUlJm6dSiMdOGRzMqNpyIIA1SF5FTU7ASkQatpLSMZdsOsCg5nc/X7yO/qJRWgX7cOjCKUbGt6dKqCcZo0k8RqRkFKxFpcKy1JO/OYVFyOh+vTefAkSKa+nkxsmc4o2Jb0y8qWDOoi8gZUbASkQZjR+YRFianszg5jdSsfHy8PLi4c3NGxbZmcOcwfL00c7qInB0FKxGp1zJyC/hozV4WJaexds8hjIH+7UO4M+E8RsS0pKmft6tLFJF6pEbByhgzAnge8ATesNb+7YT1FwHPAT2A6621C5xdqIhITR0pLOHzX/axMDmN5dsOUGahW3hT/nRZF67sGU7LQD9Xlygi9VS1wcoY4wm8CAwD9gBJxpjF1toNlZrtAiYA99dGkSIi1SkqKePbLZksTE7jy437KSguIyLInzsTzuOqXuGc17yJq0sUkQagJj1W8cA2a+0OAGPMu8AooCJYWWtTy9eV1UKNIiJVKiuzrNp1kIWr0/hk3V5y8osJauTNtX3acFWvcHq3DdIdfSJyTtUkWLUGdlda3gP0q51yRESqt2V/LgtXp7EoOZ20nKP4eXtwSdeWXNUrnAs7huHtqcegiohrnNPB68aYKcAUgLZt257LQ4tIHbf30FEWJztmQt+49zCeHoaB54Vy//BOXNK1JQG+uhdHRFyvJv8SpQGVn98QUf7eabPWvga8BtC3b197JvsQkYbj0NFiPl23l4XJafyUko210LNNMx65sitX9AgnrImvq0sUETlOTYJVEtDRGBOFI1BdD4yr1apEpMEqKC5l6aYMFiansXRTJkWlZUSFBnDPxR0ZFduaqNAAV5coInJS1QYra22JMeZu4HMc0y3MttauN8Y8Bqy01i42xsQB/wGCgCuNMY9aa7vVauUiUm8UlZSRlJrNouQ0Pv1lH7kFJYQ29mX8+W25KrY1PSICNQhdROqEGg1KsNYuAZac8N7Dlb5PwnGJUESkRtJyjvLN5kwSN2ewfNsB8opKCfDxZHj3llwV25oLOoTgpUHoIlLHaLSniJwThSWlrEw9SOLmDBI3Z7I14wgArZv5M6pXaxI6hXFhxzD8ffRYGRGpuxSsRKTW7M7OJ3FLJt9szuD77VnkF5Xi4+lBfFQwY+PakBAdRoewxrrMJyL1hoKViDhNQXEpSanZJJZf4tuemQdARJA/V/duTUKn5vTvEKKpEUSk3tK/biJyVvYfLuDz9ftI3JzJD9uzOFpcio+XB/2ighnXrx0J0WG0Dw1Qr5SINAgKViJy2g4XFPPZL/tYlJzG99uzsBbahTTiur4RDIoOo3/7UI2VEpEGScFKRGqksKSUxM2ZLEpO48uNGRSVlNEupBG/GdKRkT3DOa95Y1eXKCLicgpWInJSZWWWFeXzS32ydi+HC0oICfBhXHxbRsWGE9ummS7xiYhUomAlIr+yce9hFian8VFyOumHCmjk48nwbi0ZFRvOwPNCNb+UiMhJKFiJCABHCkv41w87Wbg6jc37c/HyMFzUKYwHLu3MsK4taOSjfy5ERKqjfylFhNW7DnLv/GR2ZuXTp10Qj4/qxmUxrQhprIcci4icDgUrkQastMzy0tJtPPfVVlo29eO9qf2Jjwp2dVkiInWWgpVIA7U7O5/73ksmKfUgI3uG8/hV3Qn093Z1WSIidZqClUgDtCg5jen/+QUL/H1sT0b30jPURUScQcFKpAE5XFDMwwt/YWFyOn3aBfHc2FjaBDdydVkiIvWGgpVIA7EyNZt73k1m3+ECfje0E3cN7qBpE0REnEzBSqSeKykt4x9fb+OfX2+ldZA/703tT592Qa4uS0SkXlKwEqnHdmblce/8ZFbvyuGa3hHMGNmVJn4aoC4iUlsUrETqIWstH/ycxiOLfsHDw/DCDb24sme4q8sSEan3FKwagKNFpezMziP1QB6pWfl4eRiiQgNoFxJAm2B/fL08XV2inKX8ohLSc46SllNA2sGjfLMlg8/X7yc+Kpi/j42ldTN/V5coItIgKFjVE/lFJezMyq8IT46veezMymff4YKTbudhILyZP5EhAUSGNiIyxBG4okIbERHUCD9vhS5XKyuzHMgrJL08NDkClOOVXv46mF983DY+Xh5MGx7N7YM64OmhhySLiJwrClZ1SF5heXjKcoSmyiEqI7fwuLahjX2IDAlgwHmhRIU2ol1IgCM0hTaitNSSkpXHzqw8Ug7ks7N8X4uT0zlcUFKxD2MgPNC/InA5QlcjokIDaBOs0OUsBcWl7D108tCUfqiAopKy47YJ8PGkdZA/rZv5E9umGeHN/IkI8ie8mePVoomv7vgTEXEBBSs3c6SwhNQDef8LUOXfp2Tlkfmr8ORLVGgjLuoUVn5pr1FF+KlugHJQgA+92/76zrCc/CJSjh3zgCN8pWbl88m6veRU6hU5FrrahTSq6OFyfA2grUJXBWstB/P/v707j7errM44/ntCEpILZGBOLpAIIgYBmVRUNIJUKCC1tLQFKvXDUOuAKFiLYCuD1gqCTEVAEEWjILZ8cAIUiYxWCJNMhjFhECEEQkhIyODTP9Z7k5OcmxDJufdN2Ov7T+69m5yzeLPu2Wu/77vXns8fZszhyZbCqadoemrGHJ6bNW+JvyPBhuusSfeIoWzTPZw937Ix3SOHMnp4FE3dI4cybMhApJyJSimlVU0WVhW8NHf+EoXTlJYlvOdmLVk8bbjOmoxdby1222qDRbNOY0sRs/aanf/nG9E1mB02G8wOyyi6pkzvmeFaPHN29b1Pty1FjRo+pG15cez6XYxZdy2GDn79FF3zFvyJZ2bOXVQ0tc84zWXO/IVL/J0hgwbQXWaWxo0atujrnlmnjYYNYfDAnG1KKaXVkWxXeeOdd97ZkyZN6rPXf+DpmVx22xN99vp/rpfmLih7nma3zVBsNGzNmO0pS3VvKIXImPW6WKsPiqe+8OLL85n6/OxFs109e7ymTH+Z52cv+f+78bAhq22RZZvps+ctKqCefekVlv4VWn/twUsUS90tf3aPHMrIrkE525RSSqsZSbfb3vnV/rvV46z9Gjz94hyuuPOp2mEsMnTQGq7kUDUAAA4fSURBVIxZr4s9xm20xNLZmPW66Bq8+v8zDO8axHZdI9hukxFtx16cM5/Hy3Lm1J4ZuumzuW7ys217h1YHI7sGMXrEUN6z5QZRLI1YvEQ3aviQXAZNKaUGe93OWKWUUkopdcqKzljlRo6UUkoppQ7JwiqllFJKqUOysEoppZRS6pAsrFJKKaWUOiQLq5RSSimlDsnCKqWUUkqpQ7KwSimllFLqkCysUkoppZQ6JAurlFJKKaUOycIqpZRSSqlDsrBKKaWUUuqQas8KlDQNmFrlzetYH3iudhCroByXdjkmvctxaZdj0rscl3Y5Jr37c8ZljO0NXu0/qlZYNY2kSSvy8MamyXFpl2PSuxyXdjkmvctxaZdj0ru+GJdcCkwppZRS6pAsrFJKKaWUOiQLq/5zQe0AVlE5Lu1yTHqX49Iux6R3OS7tckx61/FxyT1WKaWUUkodkjNWKaWUUkodkoVVSimllFKHZGHVTySpdgyrqhybtKIyV9KKylxJteQeq7RKkSRnUgI5Fq8mx2exHIvla/L4SFoP2BKYCwwDHrb9h7pR1Sdpc2JchgBrAZNsP9iR125orvUrSVsDGxMzhHOB+20/XzeqeiQNAN4FjAJGADOAW2w/VTWwVVhTTwyZK3++zJXMlR6ShgATgG7gMeCPwMvAPbYvrRlbTZKGAlcCfwLuAQyMJMbom7anrdTrN/D3r19JOgj4B6Jt/iRgIfELf73tX1cMrRpJhwAHArOJMdkI6AJ+Y/vbFUOrStIawD7AJsCmxIfgz2w/XDWwijJXepe50i5zpZ2kjwF72/6gpA2ANwNvBXYGngZOsP1KzRhrkPRR4IO295U0gsiVNwLvJWawjrM9+7W+/sDOhJmW49PAZ23fIKkb2BrYEThWUrftCXXDq+LjwOdtTyzT1KOAccD+kobYPq9ueNV8GDgYuB14ANgeOF3SXcDZK3sVtZrKXOld5kq7zJV2zwLPSRpacmIacKOkNwFfIwqJX9YMsJIHgRckrWd7OjHZMVnSJOAc4K+B773WF88Zqz4kaSDwFeLK4Bzb81qO7Q4cCXzc9tOVQux3ZUPp54gryf+yPafl2HbAqcCRnVrrXp1Iuh44xfbPJK1FXDltTpxEn7B9atUA+1lLrgwlcmVuy7HMlcyVRZb6XPlK5kqQtC5wHjALmAjcBfze9nxJPwF+bPubNWOsofzO/Dcx4zsRuB74P9sLJP0Y+Knt19w4NAurPiZpR+CrwG3E9PQ9th8qx6YBm7UWF00gaSvgLOIq4TfAjbZvL8eeBcbafrliiFVIOhR4E3By6zS0pNHA94mZz0m14quhXFmfTeTKzcBNtu8ox5qcK4cRG28zVwpJWxK58iKRKzfn50qQdASwBbFKtQGxn2htYN+mjgmApD2AXYnl9M2BV4jtOgeszLhkYdUPylXDocQGQhPT9rOAqbaPrBlbLZIGAfsRS6NbADsBDwGP2P7XmrHVImkzYhp6E+BaYs/M9ZKGAZOBLZr4IVhmI/6WyJFR5c8HaXaubAqcCYwBfgX83Pavm54rAJL+jviM7Wbx58rDTcuVsvXkYGKp+EFin+8IYH75+ibbj9eLsA5JGwP/CPzO9i8krQ+MJs7NmxEF+YyVeo8srPpG+cc6kFjD/nfgUeKk8BbiimogcFuTPvwkDQf+AvhLYvr1eWKj6XOAiDG5x/bCakGuAiS9HdiLuJLaArgFeNT2F6sG1o8kjSU2Z98H3G37BUnrsPi28cE0NFckDbD9p/L124A9gXcS+4lupnm5Mhr4F2JT9im2by4btbuJXFkTuLdJuVLy4gxiReBtxDjcDfzE9o01Y6tJ0vbA6cD9wHuAX9k+uuPvk4VV35D0DWJKEaJHxhXAO4AbbF9TLbCKJF1EjMkzwIZE+4lpwHW2r60ZW02lYNgd2B+40PaNkgYTV1CjAWxPrRhiv5N0MnA4ix+Qelf5cwvbX6sTVX2l6P5PYglnbvnZhkSuDAIG255SL8L+J+l8onCYTly4XgtsS9xGf2FDW0+cBrxg+0vl+zcABwD/RGxLOdz2goohViHpLGCa7ZMljQQuBq6w/Z1SoI+3/YOVfp8G5ly/kHQb8H7bMyU9TPTMGEDM2FwNHNu0xJZ0O7Cb7Znl+zcCewOfAC6x/eWa8dUi6Qxi0+18Ij++YfvrdaOqq7QTuAJ4kpjtHcniZY3zgFubdNNHD0lnAi/a/g9JO7C4lcuTwAVN7NlUPmvH235Z0kPAD4lVgfHAE8DRTVoZAJB0NPB2YrVkiu35LccuAc63fXOt+GqRdANwaE9bEkl7AUfY/htJJwKjbR+xsu+Tj7TpA5I2IfrK7C3pr4iryGNsf4ZY+98WWLdmjP2tNGS7BThH0rjSxPBh22cRPVXeVfaiNdF4op/MJ4APAAeUqXwkHSZpfNXo+lnJjYXACUTBcCbwDWL57y5imbSpn11jiIs0gJOJ2+l/SeydOan05GmMsuT3KHCMpI8AXbaPt32K7X2I5dEmfq6cDTxCzFDtKmlTSaPKsXcQF3GNImltYg/rQEUzWYj9iUMkvQ/YpRxf+ffKGau+IWk/4tbnacTdBicAvyX2AXzL9o71oqujfOh/HphHTNM/TpwYNgAutf2GiuFVIWkn4MTSqG5QuQ36k8Cmtv9N0p3AP9u+rXKo/a5sWj+WeGrB/cB+tveRNM72A3Wjq0PSh4g2LV8j2gfs3XLsRuAQ24/Viq+Gsjz6UeAl4u6uS4FriM/db9vevmJ4/apclLh83QUcQezBm07sad0G+KPtg+tF2f9ax2Xpn0nahWi3cJftd3Tk/bKw6ryWE+SGRGE1HjiI6Ge1K9Ejo5FLPaV/yIHENPU8ohPwAqLY/GHN2GooObINcAexxONyN895wOXAQbb3qhljbZI+TRRYn+nE/ofVlaQ1bC+U9CmiLce2RIPQbxG3zn/L9tY1Y6yt9Kw6gthvNg64zPa5daPqP2UJfRfinLMO8APbv5O0LXEB+xSxx6hRj1Qr4/JO4may0cD/2r6u5fjXgYc6lStZWHVYuXraB9gNOL7nDgxJ7yeKieuIu5zmLvtVXl9KL6I3EfuppgEX2X683DI+i3he08wmbjJdWs8dX+XkeQaxF++U2nH1l5Zc2YfoKXOh7Xsljbd9fd3oVh1leXgP4vbwjYmLtkttX101sH5UcmUrYml4FjChFBE7EW1cfkvsL5q3nJd5XSm98A5l8fMBDyqHziF+l2bWiq2mlnH5HnF3/kFEU92LiZ6KC4BX3KGekllYdZika4GfEne+bUdcIRwCfJfYXNrE5zJdSSz9TQS+QDwodRLwJeDqphZU5cTwZuLEMJeYcbi35fi5xN6rZyuF2O9acuU64Dhihvc24CRiPwQ9rQaaZKmCcwZxknxE0mDb8xSPbGnMxRq0fa4cR3yu3EU8521izdhqkXQNcJ7tK1p+thPwKWCS7bOrBVfRMsZlR+CTwJ22z25tY7LS79fQc1qfKJvWr7K9bfl+BrGE8ThwFHBlk6alYdGY/KJniaL0JzqcaGL4PqJweKJWfDX1UkS8G7gX+KrtH0kaafuFmjH2p+XkyoPEFP6JmStMBI4ncuUO4pFZP21asfkqnyu7AV9sWq6UPYmfA4baPmGpYxsRWws+49KNvilWcFyOdgefVNDUO2v6ykDgVkm7SDoGeNz2ebZ/Tmw4/bCi43iTDCDGpLt8PxbY1fZ3ganAx0riN0o5MWxp+wtlrf9w4DRi+W9PSZs2qagqlpUrlxAXJ5kr9q+IJY1TgXOJpxd0L+/vv04t73NlCg3MlTLzfwHwFknXSTqi7C2CaOeyEXETSKOs4Ljc18n3zMKqs6YCvwfOJ/7BbiqbtSEaQD7U2k+kIZ4AHgPuUzw49iPE+j/EvpCxDV0KXNaJYQIxZo07MZC5sizLKyKaWnBmrixF0ddsD6KIuJjocfakpMuBE4kHLjfqubRQZ1wGdvLFmq78Ip9a9sbMJRpfTi63zA8g+vE0ShmTExWNDfcBfu3FTQz3BS6qFlxdrSeGu8vXrSeG3Zp2YshcWabMlaVkriyp7Bc6hdiEPQd40Pb7FX2+tidmZJrYULfKuOQeqw6RdBRxG+f3bd/d8vM3EtP1P7M9uVZ8NZQx6Sbu1rl7qWPdwO7lqruxFL29ljgxlP00F9n+cdXg+lHmyqvLXAmZK+0knUM8I/L00sLlXKLVxOWKR2btb/s7daPsf7XGJZcCO+c4oivyhZImSjq67JN5mNh0umXd8Ko4jrgd/EJJ15cx6VnO2IF4+HLjSDpK0imS3mp7hu0JLSfKbuBHTTpRFpkrvchc6VXmSrsdiSdbUO4ingAcVo4dWY43UZVxyRmrDpC0FTHdeDDxJPXdgQ8R7RYmE1eZ73WDume/ypjcT8zijbd9a7UgK5H0DHF31xbAy8QjSi6z/ZSkfYGFtq+qGWN/ylxZtsyVJWWutCsbsd8NPNZ6J6Sk/yEed3QA8Fnbd1YKsYqa45KFVYdIGgLQ2ktG0jDieV4fsD2uVmy15Ji0yxND7zJX2mWu9C5zpXda3Jm/p8nwlsBVxBMddqodXy01xiU3r3eIl2rOJ0m2Z0paADTyMRw5Ju1sT5b09+XrWUQPlctbTgxTmnaihMyV3mSu9C5zpXeOB5dTioc1bD8k6VKiWXVj1RiXnLHqY5LGAM/bfql2LKuKHJMllRODJZ1GXEWdVDumVUXmypIyV5Ytc6WdpAHQzKcVLE9fj0sWVimtIvLEkFZU5kpKq64srFJKKaWUOiTbLaSUUkopdUgWVimllFJKHZKFVUoppZRSh2RhlVJKKaXUIVlYpZRSSil1yP8DozEKon7n66cAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAFQCAYAAAB9FDCfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XlcVXX+x/HXlx1Rkc0FUUFT3FBcwExLNE3bNMuytEXNtG2mpsmp+Y2V1TQzZTU1TXuaOdZkWaNWtkwllbaIJmruC7iACoIoguzf3x8XGTQU1Iv3Au/n43EfcO75nnM+90Dy7nu+53uMtRYREREROXseri5AREREpL5QsBIRERFxEgUrERERESdRsBIRERFxEgUrERERESdRsBIRERFxEgUrEalgjJlhjJl3ivXrjTEJ57AkEZE6RcFKpIExxowzxqw0xhwxxuw1xnxqjBlYk22ttd2stYm1XCLGmO7GmM+NMQeMMb+abM8YE2mMWWKMOWiM2WeM+acxxqt83YXln63yyxpjrqm0/e/KtztsjJltjPE9wzp9jTGzjDE7jTG5xphkY8ylJ7S52BizyRiTb4xZaoxpV2nddcaY78vXJVaxf2uMyav0Od44kzpF5NxRsBJpQIwx9wHPAX8BWgBtgZeAUa6sqwrFwHvArSdZ/xKQAbQCYoFBwJ0A1trvrLWNj72AK4AjwGcAxpjhwIPAxUA7oD3w6BnW6QXsLj9+IDAdeM8YE1l+rFDgQ+AhIBhYCcyvtH02jp/H305xjJ6VPs/kM6xTRM4RBSuRBsIYEwg8Btxlrf3QWptnrS221n5krZ1WqamPMWZueQ/MemNM30r7SDXGDC3/foYx5r1TtH3QGLO9fN0GY8zomtZqrd1srZ0FrD9JkyjgPWttgbV2H47Q1O0kbW8BFlhr8yotz7LWrrfWHgQeBybUtLYT6syz1s6w1qZaa8ustR8DKUCf8iZXA+utte9bawuAGUBPY0zn8u2/tNa+B6SfyfFFxP0oWIk0HP0BP+A/1bQbCbwLNAMWA/88w7bbgQtx9OQ8CswzxrQCMMa0NcbkGGPansHnAEcvz/XGmEbGmNbApZT3SFVmjAkAxgBvVXq7G7Cm0vIaoIUxJuQMa6l8vBZAJ/4XCI87Vnm4287JQ2BVvi2/bPnhsZ4wEXFfClYiDUcIcMBaW1JNu2XW2iXW2lLgX0DPM2lb3kuTXt6TMx/YCsSXr9tlrW1mrd11hp/lWxzh5DCwB8cltoVVtLsaOAB8U+m9xsChSsvHvm9yhrUAYIzxBt4G3rLWbjrJsY4dr6bHGgREAp1x9Gp9fGwsmYi4JwUrkYYjCwitwR/mfZW+zwf8TrHNSdsaY24uH8ydY4zJAboDoWdYewVjjAeO3qkPgYDyfQYBT1bR/BZgrj3+afNHgKaVlo99n1vFsV6pNHD8/6qp6V9AEXD3KY517Hi/OlZVrLXfWmuLrLU5wD04LoF2qcm2IuIaClYiDccPQCFwVW0fqPzOt9dxhIwQa20z4BfAOGH3wTgG3f/TWltorc0C3gQuO6GGNkACMPeE7ddzfC9cT2B/+X6OY629vdLA8b9UVYwxxgCzcNwMcI21tvhkxyq/NNmBk48dq47FOedQRGqJgpVIA2GtPQQ8DLxojLmqfHyStzHmUmPMU04+XACOEJAJYIyZiKPHqkaMgx/gU77sd2xKBGvtARwDxO8wxngZY5rh6Jlae8JubgK+t9ZuP+H9ucCtxpiu5dtOB+ac5uer7GUcvUhXWmuPnrDuP0B3Y8w15Z/nYWDtsUuFxhjP8ve9AI/yz+ldvq6bMSa2vE1j4BkgDdh4FrWKSC1TsBJpQKy1zwD34QgTmTimCribqscnnc1xNuAIAj8A+4EYYPmx9eWD14+cYvB6O+Ao/+vZOQpsrrT+amBE+WfYhmN6ht+dsI+bOX7Q+rHaPgOeApYCu4CdwCOn8fEqlPfMTcUx5cO+SpcNx5cfKxO4BngCOAj0A66vtIubyj/byzgG+h/F0dMHjh6w+TjGke3AMdbqihN6xETEzZjjhx6IiIiIyJlSj5WIiIiIkyhYiYiIiDiJgpWIiIiIkyhYiYiIiDiJgpWIiIiIk7js0QihoaE2MjLSVYcXERERqbFVq1YdsNaGVdfOZcEqMjKSlStXuurwIiIiIjVmjNlZk3a6FCgiIiLiJApWIiIiIk6iYCUiIiLiJC4bY1WV4uJi9uzZQ0FBgatLEamWn58fEREReHt7u7oUERFxE24VrPbs2UOTJk2IjIzEGOPqckROylpLVlYWe/bsISoqytXliIiIm3CrS4EFBQWEhIQoVInbM8YQEhKi3lURETmOWwUrQKFK6gz9roqIyIncLli5WuPGjY9bnjNnDnfffbeLqjleZGQkMTExxMTE0LVrV6ZPn14rPSYnngN38Nxzz5Gfn1/luoSEhNOeE80dP6OIiNR9ClZ1zNKlS1m3bh0rVqxgx44dTJ061dUlnROnClYiIiLuQsHqNEyYMIEFCxZULB/r9UhMTGTQoEGMGjWK9u3b8+CDD/L2228THx9PTEwM27dvB+Cjjz6iX79+9OrVi6FDh7J//34AZsyYwaRJk0hISKB9+/b84x//qLaWxo0b88orr7Bw4UKys7MBmDlzJnFxcfTo0YNHHnkEgAcffJAXX3yxYrsZM2bw9NNPn7R9ZdZapk2bRvfu3YmJiWH+/PkVn/eiiy7i8ssvJzo6mttvv52ysrKKuqZNm0a3bt0YOnQoK1asqPhcixcvBqC0tJRp06ZVHPvVV1+t2G9CQgJjxoyhc+fOjB8/Hmst//jHP0hPT2fw4MEMHjy42vPypz/9iZ49e3L++edXnOOUlBT69+9PTEwM06dPP26bqs5DUlISPXr0oKCggLy8PLp168Yvv/xS7c9FRERq19JNGdz3XjKHC4pdXUqV3OquwMoe/Wg9G9IPO3WfXcOb8siV3U7Z5ujRo8TGxlYsZ2dnM3LkyGr3vWbNGjZu3EhwcDDt27dn8uTJrFixgueff54XXniB5557joEDB/Ljjz9ijOGNN97gqaee4plnngFg06ZNLF26lNzcXKKjo7njjjuqvY2/adOmREVFsXXrVg4dOsTWrVtZsWIF1lpGjhzJt99+y9ixY7n33nu56667AHjvvff4/PPP+eKLL6psf9FFF1Xs/8MPPyQ5OZk1a9Zw4MAB4uLiKtavWLGCDRs20K5dO0aMGMGHH37ImDFjyMvLY8iQIcycOZPRo0czffp0/vvf/7JhwwZuueUWRo4cyaxZswgMDCQpKYnCwkIGDBjAJZdcAsDq1atZv3494eHhDBgwgOXLl/Pb3/6WZ599lqVLlxIaGnrKc5KXl8f555/PE088wR/+8Adef/11pk+fzj333MMdd9zBzTfffFzQPNV5GDlyJNOnT+fo0aPceOONdO/evdrfAxERqT2FJaU89vEGjAE/L09Xl1Mltw1WruLv709ycnLF8pw5c2o0ficuLo5WrVoB0KFDh4qgEBMTw9KlSwHHdBJjx45l7969FBUVHXeb/uWXX46vry++vr40b96c/fv3ExERUe1xrbWAIyB88cUX9OrVC4AjR46wdetWbr31VjIyMkhPTyczM5OgoCDatGnD888/X2X7ysFq2bJl3HDDDXh6etKiRQsGDRpEUlISTZs2JT4+nvbt2wNwww03sGzZMsaMGYOPjw8jRoyo+Oy+vr54e3sTExNDampqRa1r166t6P07Fgp9fHyIj4+v+NyxsbGkpqYycODAas/DMT4+PlxxxRUA9OnTh//+978ALF++nA8++ACAm266iQceeOCU5+2iiy7i4YcfJi4uDj8/vxr1IoqISO16c3kqKQfymDMxDh8v97zo5rbBqrqeJVfw8vKquORVVlZGUVFRxTpfX9+K7z08PCqWPTw8KCkpAeA3v/kN9913HyNHjiQxMZEZM2ZUub2np2fFNqeSm5tLamoqnTp1wlrLH//4xyrHXF177bUsWLCAffv2MXbsWIBTtq+JE++IO7bs7e1d8f3JzoO1lhdeeIHhw4cft4/ExMQzOg+VVT7+idtXdRffqc5DVlYWR44cobi4mIKCAgICAk6rFhERcZ79hwt44autDO3SgoTo5q4u56TcM+65qcjISFatWgXA4sWLKS4+veu7hw4donXr1gC89dZbZ1XLkSNHuPPOO7nqqqsICgpi+PDhzJ49myNHjgCQlpZGRkYGAGPHjuXdd99lwYIFXHvttQCnbH/MhRdeyPz58yktLSUzM5Nvv/2W+Ph4wHEpMCUlhbKyMubPn39avUrDhw/n5Zdfrjh/W7ZsIS8v75TbNGnShNzc3Bof40QDBgzg3XffBeDtt98+rpaTnYepU6fy+OOPM378+IoeLhERcY0nP91EcanloSu6uLqUU3LbHit3dNtttzFq1Ch69uzJiBEjTrsHY8aMGVx77bUEBQUxZMgQUlJSTruGwYMHY62lrKyM0aNH89BDDwFwySWXsHHjRvr37w84BnHPmzeP5s2b061bN3Jzc2ndunXF5cpTtT9m9OjR/PDDD/Ts2RNjDE899RQtW7Zk06ZNxMXFcffdd7Nt2zYGDx7M6NGja/wZJk+eTGpqKr1798ZaS1hYGAsXLjzlNlOmTGHEiBGEh4dXXFo9Hc8//zzjxo3jySefZNSoURXvn+w8fPbZZ3h7ezNu3DhKS0u54IIL+PrrrxkyZMhpH1tERM7Oqp3ZfLg6jbsGd6BdiHtfPTDHxuica3379rUnjl3auHEjXbq4dxIVxyW7p59+mo8//tjVpbicfmdFRGpXaZnlqheXk5lbyFe/H0SAr2v6hIwxq6y1fatrp0uBIiIi4rbeX7mbdWmH+ONlnV0Wqk6H+1cobichIYGEhARXlyEiIvXcoaPFPPX5ZuIigxjZM9zV5dSIeqxERETELT335RZy8ouYMbJbnXk+q4KViIiIuJ0t+3OZ+8NObohvS7fwQFeXU2MKViIiIuJWrLU8+tF6Gvt68ftLol1dzmlRsBIRERG38vn6fSzflsXvL+lEcICPq8s5LQpWJzj2YOXKXnnlFebOnQs4nukXGxtLr169Kh6uXJ2EhASio6OJjY0lNjaWMWPGOLXmk3nuuefIz88/J8c60fvvv0+XLl2qfWjy2ZozZw5hYWHExsbSrVs3xowZU/GZK//cTrRw4UI2bNhQsZyQkFCjRxeJiEjtKigu5fGPN9K5ZRPGxbd1dTmnTcGqBm6//XZuvvlmwPEHecyYMaxevZoOHTrUeB9vv/02ycnJJCcnVzwjr7a5MljNmjWL119//VeTeZ7uI2pqYuzYsSQnJ7N+/Xp8fHyYP38+cPzP7cQaTgxWIiLiHl79ZgdpOUd55MpueHnWvZhS9yp2gRkzZvD000+zZMkSnnvuOV5++eWKnph58+YRHx9PbGwsU6dOpbS0tMb7HTVqVEWPyquvvsr48eMBR+/JPffcQ2xsLN27d2fFihUA5OXlMWnSJOLj4+nVqxeLFi0CoLS0lPvvv5/u3bvTo0cPXnjhBf7xj3+Qnp7O4MGDK2q944476Nu3L926deORRx6pqCMyMpJHHnmE3r17ExMTw6ZNmwDHY3MmTpxITEwMPXr04IMPPmD27Nnce++9Fdu+/vrr/O53vzvucz322GMsW7aMW2+9lWnTpjFnzhxGjhzJkCFDuPjii7HWMm3aNLp3705MTExFEEpMTGTQoEGMGjWK9u3b8+CDD/L2228THx9PTExMtT2EJSUl5OXlERQUdNzP7dg5vffee+nbty9PPvkkixcvZtq0acTGxlbs9/333yc+Pp5OnTrx3Xff1fjnKCIizrHnYD4vJW7j8h6t6N8hxNXlnBH3ncfq0wdh3zrn7rNlDFz6tzPe/LLLLuP222+ncePG3H///WzcuJH58+ezfPlyvL29ufPOO3n77ber7CUZP348/v7+AAwbNoyZM2fy2muvMWDAAKKionjmmWf48ccfK9rn5+eTnJzMt99+y6RJk/jll1944oknGDJkCLNnzyYnJ4f4+HiGDh3K3LlzSU1NJTk5GS8vL7KzswkODubZZ59l6dKlhIaGAvDEE08QHBxMaWkpF198MWvXrqVHjx4AhIaG8vPPP/PSSy/x9NNP88Ybb/D4448TGBjIunWOn8PBgwfx9vbmiSeeYObMmXh7e/Pmm2/y6quvHvdZH374Yb7++muefvpp+vbty5w5c/j5559Zu3YtwcHBfPDBByQnJ7NmzRoOHDhAXFwcF110EQBr1qxh48aNBAcH0759eyZPnsyKFSt4/vnneeGFF3juued+dW7nz5/PsmXL2Lt3L506deLKK6+s8udXVFRUcblv69atXHHFFcddli0pKWHFihUsWbKERx99lC+//LJmvxgiIuIUf12yCWPg/y6ru0+0qFGPlTFmhDFmszFmmzHmwSrWTzDGZBpjkstfk51fqvv56quvWLVqFXFxccTGxvLVV1+xY8eOKttWvhQ4c+ZMAFq0aMFjjz3G4MGDeeaZZwgODq5of8MNNwBw0UUXcfjwYXJycvjiiy/429/+RmxsLAkJCRQUFLBr1y6+/PJLpk6dipeXIydX3k9l7733Hr1796ZXr16sX7/+uEthV199NQB9+vQhNTUVgC+//JK77rqrok1QUBCNGzdmyJAhfPzxx2zatIni4mJiYmKqPVfDhg2rqGvZsmXccMMNeHp60qJFCwYNGkRSUhIAcXFxtGrVCl9fXzp06MAll1wCQExMTEVdJzp2KXDfvn3ExMRUnN+q2p1KVedARETOje+3H+CTdXu5M+E8Wjfzd3U5Z6zaHitjjCfwIjAM2AMkGWMWW2tPHKAy31p7t9MqO4uepXPFWsstt9zCX//61zPex7p16wgJCSE9Pf2490+cCM0Yg7WWDz74gOjo07/1NCUlhaeffpqkpCSCgoKYMGECBQUFFet9fX0B8PT0rHYc1OTJk/nLX/5C586dmThxYo2OX9MHVh+rA8DDw6Ni2cPDo9q6jDFceeWVvPDCCzz44K/yf7U1nM45EBER5ykpLePRxRuICPJnykXtXV3OWalJj1U8sM1au8NaWwS8C4yq3bLqhosvvpgFCxaQkZEBQHZ2Njt37qzx9itWrODTTz9l9erVPP3006SkpFSsOzbuaNmyZQQGBhIYGMjw4cN54YUXOPbg7NWrVwOO3qBXX321IgxkZ2cD0KRJE3JzcwE4fPgwAQEBBAYGsn//fj799NNq6xs2bBgvvvhixfLBgwcB6NevH7t37+add96p6Fk7HRdeeCHz58+ntLSUzMxMvv32W+Lj4097P1VZtmxZjW4qqHxuRETEtd7+aReb9+cy/fKu+Hl7urqcs1KTYNUa2F1peU/5eye6xhiz1hizwBjTxinVuUB+fj4REREVr2efffakbbt27cqf//xnLrnkEnr06MGwYcPYu3dvlW3Hjx9fMd3C0KFDKSws5LbbbmP27NmEh4fzzDPPMGnSpIrQ5OfnR69evbj99tuZNWsWAA899BDFxcX06NGDbt268dBDDwGOHqS2bdvSo0cPevbsyTvvvAPAlClTGDFiBIMHD6Znz5706tWLzp07M27cOAYMGFDtuZg+fToHDx6ke/fu9OzZ87g7/K677joGDBhQMVD8dIwePbqi1iFDhvDUU0/RsmXL097PMfPnzyc2NpYePXqwevXqivNyKtdffz0zZ848rWkzRETE+bLzinjmi80MPC+U4d1auLqcs2aO/SE/aQNjxgAjrLWTy5dvAvpVvuxnjAkBjlhrC40xU4Gx1tohVexrCjAFoG3btn1O7N3ZuHEjXbrU3QFrzpKQkFAx8NtdXXHFFfzud7/j4osvdnUpLqXfWRGRs/N//1nH/KTdfHbPhXRs0cTV5ZyUMWaVtbbaP8w16bFKAyr3QEWUv1fBWptlrS0sX3wD6FPVjqy1r1lr+1pr+4aFhdXg0OJucnJy6NSpE/7+/g0+VImIyNn5Je0Q/16xi1v6R7p1qDodNZluIQnoaIyJwhGorgfGVW5gjGllrT12DWwksNGpVTYwiYmJri7hpJo1a8aWLVtcXYaIiNRx1lpmLF5PcCMf7hna0dXlOE21wcpaW2KMuRv4HPAEZltr1xtjHgNWWmsXA781xowESoBsYEIt1iwiIiJ13OI16azceZAnr4kh0N/b1eU4TY0mCLXWLgGWnPDew5W+/yPwR2cUZK391VQDIu6ouvGJIiJStbzCEv6yZCM9IgK5tk+dvd+tSm71SBs/Pz+ysrL0B0vcnrWWrKws/Pz8XF2KiEid8+LSbew/XMgjV3bDw6N+daa41SNtIiIi2LNnD5mZma4uRaRafn5+REREuLoMEZE6JfVAHm98l8LVvVrTp93pT9nj7twqWHl7exMVFeXqMkRERKSW/PmTDXh7Gh64tLOrS6kVbnUpUEREROqvpZsz+HJjBr+5uCMtmtbPoRQKViIiIlLr9hzMZ/p/fiEqNICJAyJdXU6tcatLgSIiIlL/7Mg8wvg3fiKvsIR/3doPX6+6/TzAU1GwEhERkVqzce9hbpr1E9bCv6ecT7fwQFeXVKsUrERERKRWrN51kFtmr6CRjxfzJvfjvOaNXV1SrVOwEhEREaf7YXsWk99KIqSxL29P7keb4EauLumcULASERERp1q6KYPb562ibXAj5k3uV2/vAKyKgpWIiIg4zSdr93Lv/NVEt2zC3En9CA7wcXVJ55SClYiIiDjF+yt388AHa+ndNojZE+No6ld/Hq5cUwpWIiIictbm/pDKw4vWM/C8UF67uQ+NfBpmxGiYn1pERESc5qXEbTz12WaGdW3BCzf0ws+7/s5TVR0FKxERETljSzdl8NRnmxkVG87T1/bE27NhP9SlYX96EREROSsLVu0hJMBHoaqczoCIiIickdyCYr7cuJ8rerRSqCqnsyAiIiJn5Iv1+yksKWNkbGtXl+I2FKxERETkjCxak05EkD+92zZzdSluQ8FKRERETltmbiHLtx1gVGw4xhhXl+M2FKxERETktC1Zt5fSMssoXQY8joKViIiInLZFyWl0btmETi2auLoUt6JgJSIiIqdlV1Y+P+/KUW9VFRSsRERE5LR8tDYdgCt7tnJxJe5HwUpERERqzFrLwtVpxEUGERHUyNXluB0FKxEREamxTfty2ZpxRHNXnYSClYiIiNTYouR0vDwMl8foMmBVFKxERESkRsrKLB+tSefCjqEEB/i4uhy3pGAlIiIiNbJq10HSco7qbsBTULASERGRGlmUnIaftwfDurZwdSluS8FKREREqlVcWsYna/cyrGtLAny9XF2O21KwEhERkWot23qAg/nFjOoZ7upS3JqClYiIiFRrUXIagf7eXNQpzNWluDUFKxERETml/KISvtiwn8tiWuHjpehwKjo7IiIiclKHjhZz29yV5BeVck1v3Q1YHY0+ExERkSrtyspn4pwV7MrO5+lre9I3MtjVJbk9BSsRERH5lVU7s5kydxUlZZa5k/rRv0OIq0uqExSsRERE5DiL16Rz//trCA/0Y/aEONqHNXZ1SXWGgpWIiIgAYK3ln19v45n/biE+MphXbuqjR9ecJgUrERERobCklD9+sI4PV6cxuldr/nZNDL5enq4uq85RsBIREWngDuYVMXXeKlakZHPfsE78Zsh5GGNcXVadVKPpFowxI4wxm40x24wxD56i3TXGGGuM6eu8EkVERKS27Mg8wuiXlpO8K4fnr4/ltxd3VKg6C9X2WBljPIEXgWHAHiDJGLPYWrvhhHZNgHuAn2qjUBEREXGuH3dkcfu8VXgYwzu39dN0Ck5Qkx6reGCbtXaHtbYIeBcYVUW7x4EngQIn1iciIiK14INVe7hp1k+EBPjwnzsvUKhykpoEq9bA7krLe8rfq2CM6Q20sdZ+cqodGWOmGGNWGmNWZmZmnnaxIiIicnbKyizPfLGZ37+/hrjIYD68YwDtQgJcXVa9cdaD140xHsCzwITq2lprXwNeA+jbt68922OLiIhIzRUUl3L/+2v4eO1exvZtw59Hd8fbU0+3c6aaBKs0oE2l5Yjy945pAnQHEssHu7UEFhtjRlprVzqrUBERETlzB44UMmXuSn7elcMDIzpz+6D2GqReC2oSrJKAjsaYKByB6npg3LGV1tpDQOixZWNMInC/QpWIiIh72Lo/l0lvJZFxuJCXxvfmsphWri6p3qo2WFlrS4wxdwOfA57AbGvtemPMY8BKa+3i2i5SREREzswP27OY8q+V+Hp5Mn9qf2LbNHN1SfVajcZYWWuXAEtOeO/hk7RNOPuyRERE5GytTz/E5LeSaNXMnzkT44gIauTqkuo9zbwuIiJSD6XlHGXim0k09fdm3q39aBno5+qSGgTdCiAiIlLPHDpazMQ3V3C0qJQ3J8YpVJ1D6rESERGpRwpLSpn6r5WkHMjjrYnxdG7Z1NUl1Q5rIT8LDu2GgOYQ2Lr6bc4BBSsREZF6oqzM8ocFa/lxRzZ/H9uTC84LrX4jd1VwGA6nwaE9/3sdWz6cBofToaT8YS9DH4WB97q23nIKViIiIvXEzC82syg5nWnDoxndK8LV5Zza0YNwMBVydlV67Xb0QB3aDQWHjm9vPKFJK0fPVKtY6Hw5BLaBpq2hVQ+XfISqKFiJiIjUA/N+3MnLidu5Ib4tdyZ0cHU5DvnZcGArZG+HrO2Or9kpcDDl18HJtyk0a+sIS237Q2AENGsDTSMcYapxS/B0/9ji/hWKiIjIKX25YT8PL/qFIZ2b8/iobud+RvWjByFjI+xfDxkbIHMzHNgCeZWeC2w8HcEppANE9IWgSMerWTvH+/71Y34tBSsREZE6bM3uHH7z79V0Cw/khRt64VXbz/7Lz4a0VZC+Gvaugb1r4dCu/633DYTmnaHTCAjt5HiFnAdB7cDTu3ZrcwMKViIiInXUrqx8bn0riZDGPsya0JcAXyf/WbfWcSlv53LY9QPsSYLsHf9bH3Keo/ep70Ro0R1adHWMeWrAzyBUsBIREamDDuYVMeHNFRSXWt6dEk/zJk6aq+pQGuxYCtu/hpTvIC/D8X5Ac2gTD71vhtZ9ITwWfJs455j1iIKViIhIHVN2v6CKAAAgAElEQVRQXMrkuSvZk3OUtyf347zmjc98Z6UlsPsn2PIZbP0CMjc53m/cAtonQOQAaDfQMTaqAfdE1ZSClYiISB1SWmb53fxkft51kH/e0Ju4yODT30lhLmz7EjZ94ghTBYfAw9sRonrdCB2GQPOuClJnQMFKRESkDnnik418+ss+pl/ehct7tKr5hkcyYfMS2PQx7EiE0iJoFAKdr3AMNO8wWJf2nEDBSkREpI6YtSyF2ctTmHBBJLcOjKp+g+wdsGmJo2dq949gyxzTG8RPcUyw2aYfeHjWfuENiIKViIhIHfDpur38+ZMNDO/Wgoeu6Fr1XFVlpbBnJWz93BGoMjc63m/eDS6aBl2udNy9p0t8tUbBSkRExM2tTM3mnvnJxLZpxvPX98LTo1IwOrQHUr6FbV/B9q8ck3UaT2h3AfT+K0RfCsE16N0Sp1CwEhERcWPbM48wee5KwgP9eOOmPvjl7oLdKxzzSqV863hMDEBAGHS6FDoOc4yX8g9ybeENlIKViIiIOyorIyt9G7PmfsCddhs3huXQ6JUp/5tXyqeJo1cq7laIGuS4i8+jlmddl2opWImIiLhKaTHk7oWcXXAw1fHK3gEHtmAPbCOk5Ch/AazxwOR1ckyD0CbeMei8eRcNPHdDClYiIiK1oSjfEZpy9zm+Hk7/39fD6Y6xUUf2Oe7UO8Z4QmAEZaGd+G9+NIlZzbhq+CX0O/9C8Gnkus8iNaZgJSIicjqshbxMRzA6nAaH95YHqPLX4fIwVXjo19t6B0DTVtA03DEOqmlrCGztmAIhKBICI7AeXjy08BfeztjFY6O60a9/5Ln+hHIWFKxEREROVHwUslMga5tjcPjBVDi4E3J2OgJVadHx7T28oHFLR2gK6wTtB0GTltAkvPxrK8c636bVTnXwcuI23v5pF1Mvas/NClV1joKViIg0XGWljvC0dy1kbICMjY6vObsA+792jUIcvUqtejpmKg9s4+hpahru6HVqFOqUgeOLktN46rPNXNkznAdGdD7r/cm5p2AlIiINx6E02LMCdidB+s+OQFWc51jn4QUhHaF1H4gdByHnlb86nJNHvXy//QD3v7+GflHBPH1tDzw8NIlnXaRgJSIi9dexyTNTvoWU7+DwHsf7Xn6O3qdeN0J4LLTsAaGdwMvHJWVu3pfL1H+tIjIkgNdu6ouvl+72q6sUrEREpP4oLXZMnLnlc9j6BRzY4ni/UQhEXghtfwNt4qBFjMtC1In2Hy5g4psr8PP25M2JcQQ28nZ1SXIWFKxERKRuKy6A7V/DhkWw+VPH3XiePhA5EPpMcOvJM48UljDhzSQOHS1m/tT+RARpSoW6TsFKRETqnrIy2LkMkv8NGz+ColzwawZdroDOlzvClG9jV1d5SsWlZdwxbxVb9ucye0Ic3VsHurokcQIFKxERqTtydsPPc2HNv+HQbsf0BV1HQbfRjikOPOvGZTRrLf/34Tq+23qAp67pwaBOYa4uSZxEwUpERNxbWZnjUl/SG7D1c8d7HYbA0BmO3ilvf1dWd0ae/2or76/aw28v7sh1cW1cXY44kYKViIi4p+ICWDsfvn8BsrZCQBgMvM8xbqpZ3Q0j763czXNfbmVMnwh+N7Sjq8sRJ1OwEhER91KYCytehx9fhrwMx7QI18yCLiPd5k6+M/Xtlkz+78N1XNgxlL9eHYOpZhZ2qXsUrERExD0U5UPS67D8ecjPclzuG3CPYyB6PQgg69MPcce8VXRs0YSXxvfG29P97lKUs6dgJSIirlVaDKvmwDdPOXqoOlwMg/8EEX1cXZnTpOUcZeKbSTT19+bNCXE08asbg+zl9ClYiYiIa1gLm5fAfx92PK+v3UAY+y9oe76rK3OqQ0eLmfjmCo4Wl7Lg9gtoGejn6pKkFilYiYjIubd/AyyZ5piLKrQT3DAfOg2vF5f8KissKWXqv1aSciCPtybFE92y9p85KK6lYCUiIudOYS4k/s0xMN2vKVz+DPSeAJ71789RWZnlDwvW8uOObJ4bG8sFHUJdXZKcA/XvN1lERNzTpiXwye8hNx163wwXz4CAEFdXVWtmfrGZRcnpTBsezVW9Wru6HDlHFKxERKR25WfDpw/AuvegRXe4bq7jQcj1TGmZZe2eHBI3Z5K4JZM1u3MY168tdyZ0cHVpcg4pWImISO3ZtAQ+ugeOZkPCHx0TfNbxuagqO3CkkO+2ZpK4OZNvt2RyML8YY6BnRDMeGNGZ2y6M0lxVDUyNgpUxZgTwPOAJvGGt/dsJ628H7gJKgSPAFGvtBifXKiIidUVxAXwx3TEvVcsYuOlDx9c6rrTMkrw7h282Z5C4JZN1aYewFkICfBgc3ZxB0WFc1DGMoID6Ex7l9FQbrIwxnsCLwDBgD5BkjFl8QnB6x1r7Snn7kcCzwIhaqFdERNzdgW2wYALsWwf974aLH6nTvVSZuYV8syWTxM0ZfLf1AIeOFuNhoFfbIO4b2olB0WF0Dw/Ew0M9U1KzHqt4YJu1dgeAMeZdYBRQEaystYcrtQ8ArDOLFBGROmLjx/CfqeDp7ZhCIbru/T92SWkZybuPjZXK4Jc0x5+40Ma+DO3SgoToMC7sGEqzRnU3LErtqUmwag3srrS8B+h3YiNjzF3AfYAPMMQp1YmISN1gLfz4Enz+J2jdxzFAPbDu3AmXcbiAxC2ZfLM5k++2ZnK4oARPD0Pvts2YNjyaQZ3C6NqqqXqlpFpOG7xurX0ReNEYMw6YDtxyYhtjzBRgCkDbtm2ddWgREXGlslL47EFY8Rp0uRKufh28/V1d1SkVl5axelcOiZszSNycyYa9jl6p5k18GdG9JYM6NWdgx1AC/fXoGTk9NQlWaUCbSssR5e+dzLvAy1WtsNa+BrwG0LdvX10uFBGp60qKYMFE2PSxYzzVsMfBwz0fLrzvUAHfbHEEqWXbDpBbUIKXh6FPuyD+MCKahE7N6dKqie7ik7NSk2CVBHQ0xkThCFTXA+MqNzDGdLTWbi1fvBzYioiI1G9lpfCfKY5QNeJJOP92V1d0nOLSMlamHiRxSwbfbM5k075cAFo29ePymFYkRIdxwXmhNNUDkcWJqg1W1toSY8zdwOc4pluYba1db4x5DFhprV0M3G2MGQoUAwep4jKgiIjUI2VlsPi3sP4/jl4qNwlV6TlHK+7gW74tiyOFJXh7Gvq2C+aPl3ZmUHQY0S3UKyW1p0ZjrKy1S4AlJ7z3cKXv73FyXSIi4q6sdYypSp4Hgx6AAb91WSlFJWWsTM0msTxMbdl/BIDwQD+u7BlOQnQYA84LpbGv5sOWc0O/aSIicnqWPw8rXoXz73LMpn6O7TmYT+LmTL7Zksn32w6QV1SKt6chPiqYMX0iGBzdnPOaN1avlLiEgpWIiNTctq/gq0eh61Uw/Ak4B+GlsKSUpJSDjjv4tmSyLcPRK9W6mT9X9WpNQnRzLugQQoB6pcQN6LdQRERqJjsFFkyCsC5w1Uu1Gqp2Z+dXTIXw/fYsjhaX4uPpQb/2wVwf14aE6OZ0CAtQr5S4HQUrERGpXlEezL/R8f3188AnwKm7Lykt4/vtWRWzne/IzAOgTbA/Y/pEkBAdRv8OITTy0Z8tcW/6DRURkVOzFj66BzI2wPj3Ibi9U3efk1/E7fNW8eOObHy8PDi/fQg39mtHQnQYUaHqlZK6RcFKRERObe17sO59GDwdzhvq1F2nHshj0pwk9hw8yl9GxzC6V2v8fTydegyRc0nBSkRETu7gTlhyP7TtDxfe59RdJ6VmM2XuSgDmTe5HfFSwU/cv4goKViIiUrWyUvjPVMf3o18FD+f1JC1cncYfFqwlIsif2RPiiAx17pgtEVdRsBIRkaot+zvs+gFGvwZB7ZyyS2stz325lee/2sr57YN55cY+NGvk45R9i7gDBSsREfm19GRI/Ct0uxp6XOeUXRYUl/LAB2tZlJzONb0j+OvVMfh4uecDm0XOlIKViIgcr7QYFt0NjULhimedMl9V1pFCpv5rFSt3HmTa8GjuTOigu/2kXlKwEhGR4y17Dvavg+vfAf+gs97dtowjTJqTxL7DBfxzXC+u6BHuhCJF3JOClYiI/E/GRvjmScclwM6Xn/Xuvt92gNvnrcLHy4N3p5xP77ZnH9RE3JmClYiIOJSVOi4B+jaBy2ae9e7eW7mb//twHVGhAcyeEEeb4EZOKFLEvSlYiYiIw48vQ9pKuGYWBISe8W7Kyiwzv9jMy4nbubBjKC+O701TP28nFirivhSsREQEsrbD149Dp0uh+zVnvJuC4lLuey+ZJev2Ma5fWx4d2Q1vT935Jw2HgpWISENXVgaLfwuevmd1F2BmbiGT565k7Z4cpl/ehVsHRunOP2lwFKxERBq6VbNh5zIY+QI0PbM79jbvy2XSnCSy84p45cY+DO/W0slFitQNClYiIg1Zzi747yPQPgF63XRGu1i6KYPf/ns1/j6evDe1PzERgU4tUaQuUbASEWmorIWP7nV8vfIfp30JcGdWHn9dsonP1u+jc8smzJ4QR3gz/1oqVqRuULASEWmoVs2B7V/BpTNP61mAhwuKefHrbby5PBUvT8Pvh3Xitova4+ftvIc0i9RVClYiIg1R5mb47I/QfjDETa7RJqVllneTdvHsF1vIyitiTJ8Ipg2PpkVTv1ouVqTuULASEWloSgphwa3g0whGvwIe1U+HsHzbAR7/eAOb9uUSHxnMnIldNZZKpAoKViIiDc2XjzqeBXjDfGhy6rv3dmQe4S9LNvLlxgwigvx5aXxvLu3eUtMoiJyEgpWISEOy9Uv48UWInwLRI07a7FB+Mc9/tZW5P6Ti6+XBAyM6M3FApMZRiVRDwUpEpKHI3AwfTILmXWHYY1U2KS4t452fdvH3L7dw6GgxY/u24b5LOtG8icZRidSEgpWISENwJAPeHgOePnDDv8H719MiJG7O4M+fbGRbxhHObx/MQ1d0pVu4xlGJnA4FKxGR+q4oH/59PRzJhImfQFDkcau37s/lz59s5JstmbQLacSrN/Xhkq4tNI5K5AwoWImI1GelJfDhbZD2M1z/NrTuU7GquLSMJz7ZyL9+3Ekjb0/+dFkXbr6gHb5eGkclcqYUrERE6quCQ/D+RMckoCOehM6XH7f6vZW7mfN9KjfEt+X+SzoR0tjXRYWK1B8KViIi9dHBVHhnLGRtczyups8tx60uK7PMXpZC99ZN+cvo7rrsJ+IkClYiIvXN9qXwwWQoK4YbP4T2g37V5NutmWzPzOPvY3sqVIk4kYKViEh9kbYKvnocdiyF4PYw7j0I7Vhl09nLU2nexJfLY8LPcZEi9ZuClYhIXVVWChkbYfePsOUL2Po5NAqB4X+BvpOqnFIBHHcBfrslk/sv6YSPV/WPsxGRmlOwEhGpi756HFa8BoWHHctNWsHg6XD+7eDb5JSbzl7umE19XL9256BQkYZFwUpEpC4KjIDu10Db/tC2HzRrBzUYK5WdV8SHP+/h6t6tCQ7wOQeFijQsClYiInVR34lntNm/V+yisKSMiQOinFyQiADo4rqISANRVFLGW9+ncmHHUDq1OPXlQhE5MwpWIiINxJJ1e8nILWTSQPVWidQWBSsRkQbAWsusZSl0CAtgUMcwV5cjUm8pWImINAArdx5kXdohJg6IwsNDE4KK1JYaBStjzAhjzGZjzDZjzINVrL/PGLPBGLPWGPOVMUb38IqIuJFZ36UQ6O/NNb0jXF2KSL1WbbAyxngCLwKXAl2BG4wxXU9othroa63tASwAnnJ2oSIicmZ2Z+fzxYZ9jOvXFn8fT1eXI1Kv1aTHKh7YZq3dYa0tAt4FRlVuYK1daq3NL1/8EdD/EomIuIk536fiYQw399fFBJHaVpNg1RrYXWl5T/l7J3Mr8GlVK4wxU4wxK40xKzMzM2tepYiInJHcgmLmJ+3msphWtAqs+hE3IuI8Th28boy5EegLzKxqvbX2NWttX2tt37Aw3ZUiIlLb3l+5hyOFJZpiQeQcqcnM62lAm0rLEeXvHccYMxT4EzDIWlvonPJERORMlZZZ5nyfSp92QcS2aebqckQahJr0WCUBHY0xUcYYH+B6YHHlBsaYXsCrwEhrbYbzyxQRkdP15cb97MrO51b1VomcM9UGK2ttCXA38DmwEXjPWrveGPOYMWZkebOZQGPgfWNMsjFm8Ul2JyIi58jsZSm0bubPJV1buLoUkQajRg9httYuAZac8N7Dlb4f6uS6RETkLPySdoifUrL502Vd8PLUXNAi54r+axMRqYdmL0+hkY8n18W1qb6xiDiNgpWISD2TkVvAR2vSua5vGwL9vV1djkiDomAlIlLPzPthJyVllgkXRLq6FJEGR8FKRKQeKSguZd5Pu7i4cwsiQwNcXY5Ig6NgJSJSjyxKTiM7r4hJAyNdXYpIg6RgJSJST1hrmb0slS6tmtK/fYiryxFpkBSsRETqieXbsti8P5dJAyIxxri6HJEGScFKRKSemL08hdDGPoyMDXd1KSINloKViEg9sD3zCF9vyuDG89vh6+Xp6nJEGiwFKxGRemDO8lR8PD248fx2ri5FpEFTsBIRqeNy8otYsGoPo2LDCW3s6+pyRBo0BSsRkTru3aTdHC0uZdLAKFeXItLgKViJiNRhxaVlvPV9Khd0CKFLq6auLkekwfNydQEiIg3Jofxi7nxnFX5eniREh5EQ3Zw2wY3OeH+f/bKPvYcK+PNV3Z1YpYicKQUrEZFzpLCklCn/WsnqXTk0b+rLV5sygPW0DwsgoVNzEqLDiI8Kxs+75nf1zVqWQlRoAIOjm9de4SJSYwpWIiLnQFmZ5f731/JTSjbPXx/LyJ7h7DiQR+LmTBI3ZzDvp53MXp6Cv7cn/TuEMKhTGAnRYbQLOfnz/n7edZDk3Tk8NqobHh6aEFTEHShYiYicA09+vomP1qTzwIjOjIptDUCHsMZ0CGvMrQOjOFpUyo87skjcnEHilky+3pQBQFRoQEXIOr99yHG9WbOWpdDUz4treke45DOJyK8pWImI1LK5P6Ty6jc7uPH8ttw+qH2Vbfx9PBncuTmDOzsu6aUcyOOb8pD17xW7mPN9Kr5eHhW9WV1aNeWzX/YxeWAUAb76p1zEXei/RhGRWvTfDfuZsXg9Q7s0Z8aV3Wr8DL+o0ACiQqOYMCCKguJjvVmZfLMlk0c/2gCAp4fh5gsia7F6ETldClYiIrVk9a6D/ObfPxPTOpB/3NALL88zm+HGz9uThOjmJJQPUN+Zlcc3WzJp4udF62b+zixZRM6SgpWISC3YmZXH5LdW0ryJH7MmxNHIx3n/3LYLCeDm/icf1C4irqMJQkVEnCw7r4gJbyZRZi1zJsbpMTMiDYh6rEREnKiguJTJbyWRnnOUd27rR/uwxq4uSUTOIQUrEREnKS2z3PPualbvzuHl8b3p0y7Y1SWJyDmmS4EiIk5greXxjzfw+fr9PHR5V0Z0b+XqkkTEBRSsRESc4I3vUpjzfSq3Doxi0sAoV5cjIi6iYCUicpY+XpvOE0s2cllMS/50WRdXlyMiLqRgJSJyFlakZHPf/DX0bRfEs9fF6pl9Ig2cgpWIyBnalpHLbXNXEhHsz+s39z3uOX4i0jApWImInIGM3AJumZ2Et6fhrYnxBAX4uLokEXEDmm5BROQ05RWWMGlOEtl5Rcyfej5tghu5uiQRcRPqsRIROQ0lpWXc/c7PbEg/zD/H9aJHRDNXlyQibkQ9ViIiNWSt5aFFv7B0cyZPjO7OxV1auLokEXEzClYiItXYnZ3PouQ0Fiansy3jCHcmdGB8v3auLktE3JCClYhIFbLzivhkbToLk9NZtfMgAHGRQTx5TQzX9W3j4upExF0pWImIlDtaVMoXG/axKDmdb7dkUlJm6dSiMdOGRzMqNpyIIA1SF5FTU7ASkQatpLSMZdsOsCg5nc/X7yO/qJRWgX7cOjCKUbGt6dKqCcZo0k8RqRkFKxFpcKy1JO/OYVFyOh+vTefAkSKa+nkxsmc4o2Jb0y8qWDOoi8gZUbASkQZjR+YRFianszg5jdSsfHy8PLi4c3NGxbZmcOcwfL00c7qInB0FKxGp1zJyC/hozV4WJaexds8hjIH+7UO4M+E8RsS0pKmft6tLFJF6pEbByhgzAnge8ATesNb+7YT1FwHPAT2A6621C5xdqIhITR0pLOHzX/axMDmN5dsOUGahW3hT/nRZF67sGU7LQD9Xlygi9VS1wcoY4wm8CAwD9gBJxpjF1toNlZrtAiYA99dGkSIi1SkqKePbLZksTE7jy437KSguIyLInzsTzuOqXuGc17yJq0sUkQagJj1W8cA2a+0OAGPMu8AooCJYWWtTy9eV1UKNIiJVKiuzrNp1kIWr0/hk3V5y8osJauTNtX3acFWvcHq3DdIdfSJyTtUkWLUGdlda3gP0q51yRESqt2V/LgtXp7EoOZ20nKP4eXtwSdeWXNUrnAs7huHtqcegiohrnNPB68aYKcAUgLZt257LQ4tIHbf30FEWJztmQt+49zCeHoaB54Vy//BOXNK1JQG+uhdHRFyvJv8SpQGVn98QUf7eabPWvga8BtC3b197JvsQkYbj0NFiPl23l4XJafyUko210LNNMx65sitX9AgnrImvq0sUETlOTYJVEtDRGBOFI1BdD4yr1apEpMEqKC5l6aYMFiansXRTJkWlZUSFBnDPxR0ZFduaqNAAV5coInJS1QYra22JMeZu4HMc0y3MttauN8Y8Bqy01i42xsQB/wGCgCuNMY9aa7vVauUiUm8UlZSRlJrNouQ0Pv1lH7kFJYQ29mX8+W25KrY1PSICNQhdROqEGg1KsNYuAZac8N7Dlb5PwnGJUESkRtJyjvLN5kwSN2ewfNsB8opKCfDxZHj3llwV25oLOoTgpUHoIlLHaLSniJwThSWlrEw9SOLmDBI3Z7I14wgArZv5M6pXaxI6hXFhxzD8ffRYGRGpuxSsRKTW7M7OJ3FLJt9szuD77VnkF5Xi4+lBfFQwY+PakBAdRoewxrrMJyL1hoKViDhNQXEpSanZJJZf4tuemQdARJA/V/duTUKn5vTvEKKpEUSk3tK/biJyVvYfLuDz9ftI3JzJD9uzOFpcio+XB/2ighnXrx0J0WG0Dw1Qr5SINAgKViJy2g4XFPPZL/tYlJzG99uzsBbahTTiur4RDIoOo3/7UI2VEpEGScFKRGqksKSUxM2ZLEpO48uNGRSVlNEupBG/GdKRkT3DOa95Y1eXKCLicgpWInJSZWWWFeXzS32ydi+HC0oICfBhXHxbRsWGE9ummS7xiYhUomAlIr+yce9hFian8VFyOumHCmjk48nwbi0ZFRvOwPNCNb+UiMhJKFiJCABHCkv41w87Wbg6jc37c/HyMFzUKYwHLu3MsK4taOSjfy5ERKqjfylFhNW7DnLv/GR2ZuXTp10Qj4/qxmUxrQhprIcci4icDgUrkQastMzy0tJtPPfVVlo29eO9qf2Jjwp2dVkiInWWgpVIA7U7O5/73ksmKfUgI3uG8/hV3Qn093Z1WSIidZqClUgDtCg5jen/+QUL/H1sT0b30jPURUScQcFKpAE5XFDMwwt/YWFyOn3aBfHc2FjaBDdydVkiIvWGgpVIA7EyNZt73k1m3+ECfje0E3cN7qBpE0REnEzBSqSeKykt4x9fb+OfX2+ldZA/703tT592Qa4uS0SkXlKwEqnHdmblce/8ZFbvyuGa3hHMGNmVJn4aoC4iUlsUrETqIWstH/ycxiOLfsHDw/DCDb24sme4q8sSEan3FKwagKNFpezMziP1QB6pWfl4eRiiQgNoFxJAm2B/fL08XV2inKX8ohLSc46SllNA2sGjfLMlg8/X7yc+Kpi/j42ldTN/V5coItIgKFjVE/lFJezMyq8IT46veezMymff4YKTbudhILyZP5EhAUSGNiIyxBG4okIbERHUCD9vhS5XKyuzHMgrJL08NDkClOOVXv46mF983DY+Xh5MGx7N7YM64OmhhySLiJwrClZ1SF5heXjKcoSmyiEqI7fwuLahjX2IDAlgwHmhRIU2ol1IgCM0hTaitNSSkpXHzqw8Ug7ks7N8X4uT0zlcUFKxD2MgPNC/InA5QlcjokIDaBOs0OUsBcWl7D108tCUfqiAopKy47YJ8PGkdZA/rZv5E9umGeHN/IkI8ie8mePVoomv7vgTEXEBBSs3c6SwhNQDef8LUOXfp2Tlkfmr8ORLVGgjLuoUVn5pr1FF+KlugHJQgA+92/76zrCc/CJSjh3zgCN8pWbl88m6veRU6hU5FrrahTSq6OFyfA2grUJXBWstB/P/v707j7errM44/ntCEpILZGBOLpAIIgYBmVRUNIJUKCC1tLQFKvXDUOuAKFiLYCuD1gqCTEVAEEWjILZ8cAIUiYxWCJNMhjFhECEEQkhIyODTP9Z7k5OcmxDJufdN2Ov7T+69m5yzeLPu2Wu/77vXns8fZszhyZbCqadoemrGHJ6bNW+JvyPBhuusSfeIoWzTPZw937Ix3SOHMnp4FE3dI4cybMhApJyJSimlVU0WVhW8NHf+EoXTlJYlvOdmLVk8bbjOmoxdby1222qDRbNOY0sRs/aanf/nG9E1mB02G8wOyyi6pkzvmeFaPHN29b1Pty1FjRo+pG15cez6XYxZdy2GDn79FF3zFvyJZ2bOXVQ0tc84zWXO/IVL/J0hgwbQXWaWxo0atujrnlmnjYYNYfDAnG1KKaXVkWxXeeOdd97ZkyZN6rPXf+DpmVx22xN99vp/rpfmLih7nma3zVBsNGzNmO0pS3VvKIXImPW6WKsPiqe+8OLL85n6/OxFs109e7ymTH+Z52cv+f+78bAhq22RZZvps+ctKqCefekVlv4VWn/twUsUS90tf3aPHMrIrkE525RSSqsZSbfb3vnV/rvV46z9Gjz94hyuuPOp2mEsMnTQGq7kUDUAAA4fSURBVIxZr4s9xm20xNLZmPW66Bq8+v8zDO8axHZdI9hukxFtx16cM5/Hy3Lm1J4ZuumzuW7ys217h1YHI7sGMXrEUN6z5QZRLI1YvEQ3aviQXAZNKaUGe93OWKWUUkopdcqKzljlRo6UUkoppQ7JwiqllFJKqUOysEoppZRS6pAsrFJKKaWUOiQLq5RSSimlDsnCKqWUUkqpQ7KwSimllFLqkCysUkoppZQ6JAurlFJKKaUOycIqpZRSSqlDsrBKKaWUUuqQas8KlDQNmFrlzetYH3iudhCroByXdjkmvctxaZdj0rscl3Y5Jr37c8ZljO0NXu0/qlZYNY2kSSvy8MamyXFpl2PSuxyXdjkmvctxaZdj0ru+GJdcCkwppZRS6pAsrFJKKaWUOiQLq/5zQe0AVlE5Lu1yTHqX49Iux6R3OS7tckx61/FxyT1WKaWUUkodkjNWKaWUUkodkoVVSimllFKHZGHVTySpdgyrqhybtKIyV9KKylxJteQeq7RKkSRnUgI5Fq8mx2exHIvla/L4SFoP2BKYCwwDHrb9h7pR1Sdpc2JchgBrAZNsP9iR125orvUrSVsDGxMzhHOB+20/XzeqeiQNAN4FjAJGADOAW2w/VTWwVVhTTwyZK3++zJXMlR6ShgATgG7gMeCPwMvAPbYvrRlbTZKGAlcCfwLuAQyMJMbom7anrdTrN/D3r19JOgj4B6Jt/iRgIfELf73tX1cMrRpJhwAHArOJMdkI6AJ+Y/vbFUOrStIawD7AJsCmxIfgz2w/XDWwijJXepe50i5zpZ2kjwF72/6gpA2ANwNvBXYGngZOsP1KzRhrkPRR4IO295U0gsiVNwLvJWawjrM9+7W+/sDOhJmW49PAZ23fIKkb2BrYEThWUrftCXXDq+LjwOdtTyzT1KOAccD+kobYPq9ueNV8GDgYuB14ANgeOF3SXcDZK3sVtZrKXOld5kq7zJV2zwLPSRpacmIacKOkNwFfIwqJX9YMsJIHgRckrWd7OjHZMVnSJOAc4K+B773WF88Zqz4kaSDwFeLK4Bzb81qO7Q4cCXzc9tOVQux3ZUPp54gryf+yPafl2HbAqcCRnVrrXp1Iuh44xfbPJK1FXDltTpxEn7B9atUA+1lLrgwlcmVuy7HMlcyVRZb6XPlK5kqQtC5wHjALmAjcBfze9nxJPwF+bPubNWOsofzO/Dcx4zsRuB74P9sLJP0Y+Knt19w4NAurPiZpR+CrwG3E9PQ9th8qx6YBm7UWF00gaSvgLOIq4TfAjbZvL8eeBcbafrliiFVIOhR4E3By6zS0pNHA94mZz0m14quhXFmfTeTKzcBNtu8ox5qcK4cRG28zVwpJWxK58iKRKzfn50qQdASwBbFKtQGxn2htYN+mjgmApD2AXYnl9M2BV4jtOgeszLhkYdUPylXDocQGQhPT9rOAqbaPrBlbLZIGAfsRS6NbADsBDwGP2P7XmrHVImkzYhp6E+BaYs/M9ZKGAZOBLZr4IVhmI/6WyJFR5c8HaXaubAqcCYwBfgX83Pavm54rAJL+jviM7Wbx58rDTcuVsvXkYGKp+EFin+8IYH75+ibbj9eLsA5JGwP/CPzO9i8krQ+MJs7NmxEF+YyVeo8srPpG+cc6kFjD/nfgUeKk8BbiimogcFuTPvwkDQf+AvhLYvr1eWKj6XOAiDG5x/bCakGuAiS9HdiLuJLaArgFeNT2F6sG1o8kjSU2Z98H3G37BUnrsPi28cE0NFckDbD9p/L124A9gXcS+4lupnm5Mhr4F2JT9im2by4btbuJXFkTuLdJuVLy4gxiReBtxDjcDfzE9o01Y6tJ0vbA6cD9wHuAX9k+uuPvk4VV35D0DWJKEaJHxhXAO4AbbF9TLbCKJF1EjMkzwIZE+4lpwHW2r60ZW02lYNgd2B+40PaNkgYTV1CjAWxPrRhiv5N0MnA4ix+Qelf5cwvbX6sTVX2l6P5PYglnbvnZhkSuDAIG255SL8L+J+l8onCYTly4XgtsS9xGf2FDW0+cBrxg+0vl+zcABwD/RGxLOdz2goohViHpLGCa7ZMljQQuBq6w/Z1SoI+3/YOVfp8G5ly/kHQb8H7bMyU9TPTMGEDM2FwNHNu0xJZ0O7Cb7Znl+zcCewOfAC6x/eWa8dUi6Qxi0+18Ij++YfvrdaOqq7QTuAJ4kpjtHcniZY3zgFubdNNHD0lnAi/a/g9JO7C4lcuTwAVN7NlUPmvH235Z0kPAD4lVgfHAE8DRTVoZAJB0NPB2YrVkiu35LccuAc63fXOt+GqRdANwaE9bEkl7AUfY/htJJwKjbR+xsu+Tj7TpA5I2IfrK7C3pr4iryGNsf4ZY+98WWLdmjP2tNGS7BThH0rjSxPBh22cRPVXeVfaiNdF4op/MJ4APAAeUqXwkHSZpfNXo+lnJjYXACUTBcCbwDWL57y5imbSpn11jiIs0gJOJ2+l/SeydOan05GmMsuT3KHCMpI8AXbaPt32K7X2I5dEmfq6cDTxCzFDtKmlTSaPKsXcQF3GNImltYg/rQEUzWYj9iUMkvQ/YpRxf+ffKGau+IWk/4tbnacTdBicAvyX2AXzL9o71oqujfOh/HphHTNM/TpwYNgAutf2GiuFVIWkn4MTSqG5QuQ36k8Cmtv9N0p3AP9u+rXKo/a5sWj+WeGrB/cB+tveRNM72A3Wjq0PSh4g2LV8j2gfs3XLsRuAQ24/Viq+Gsjz6UeAl4u6uS4FriM/db9vevmJ4/apclLh83QUcQezBm07sad0G+KPtg+tF2f9ax2Xpn0nahWi3cJftd3Tk/bKw6ryWE+SGRGE1HjiI6Ge1K9Ejo5FLPaV/yIHENPU8ohPwAqLY/GHN2GooObINcAexxONyN895wOXAQbb3qhljbZI+TRRYn+nE/ofVlaQ1bC+U9CmiLce2RIPQbxG3zn/L9tY1Y6yt9Kw6gthvNg64zPa5daPqP2UJfRfinLMO8APbv5O0LXEB+xSxx6hRj1Qr4/JO4may0cD/2r6u5fjXgYc6lStZWHVYuXraB9gNOL7nDgxJ7yeKieuIu5zmLvtVXl9KL6I3EfuppgEX2X683DI+i3he08wmbjJdWs8dX+XkeQaxF++U2nH1l5Zc2YfoKXOh7Xsljbd9fd3oVh1leXgP4vbwjYmLtkttX101sH5UcmUrYml4FjChFBE7EW1cfkvsL5q3nJd5XSm98A5l8fMBDyqHziF+l2bWiq2mlnH5HnF3/kFEU92LiZ6KC4BX3KGekllYdZika4GfEne+bUdcIRwCfJfYXNrE5zJdSSz9TQS+QDwodRLwJeDqphZU5cTwZuLEMJeYcbi35fi5xN6rZyuF2O9acuU64Dhihvc24CRiPwQ9rQaaZKmCcwZxknxE0mDb8xSPbGnMxRq0fa4cR3yu3EU8521izdhqkXQNcJ7tK1p+thPwKWCS7bOrBVfRMsZlR+CTwJ22z25tY7LS79fQc1qfKJvWr7K9bfl+BrGE8ThwFHBlk6alYdGY/KJniaL0JzqcaGL4PqJweKJWfDX1UkS8G7gX+KrtH0kaafuFmjH2p+XkyoPEFP6JmStMBI4ncuUO4pFZP21asfkqnyu7AV9sWq6UPYmfA4baPmGpYxsRWws+49KNvilWcFyOdgefVNDUO2v6ykDgVkm7SDoGeNz2ebZ/Tmw4/bCi43iTDCDGpLt8PxbY1fZ3ganAx0riN0o5MWxp+wtlrf9w4DRi+W9PSZs2qagqlpUrlxAXJ5kr9q+IJY1TgXOJpxd0L+/vv04t73NlCg3MlTLzfwHwFknXSTqi7C2CaOeyEXETSKOs4Ljc18n3zMKqs6YCvwfOJ/7BbiqbtSEaQD7U2k+kIZ4AHgPuUzw49iPE+j/EvpCxDV0KXNaJYQIxZo07MZC5sizLKyKaWnBmrixF0ddsD6KIuJjocfakpMuBE4kHLjfqubRQZ1wGdvLFmq78Ip9a9sbMJRpfTi63zA8g+vE0ShmTExWNDfcBfu3FTQz3BS6qFlxdrSeGu8vXrSeG3Zp2YshcWabMlaVkriyp7Bc6hdiEPQd40Pb7FX2+tidmZJrYULfKuOQeqw6RdBRxG+f3bd/d8vM3EtP1P7M9uVZ8NZQx6Sbu1rl7qWPdwO7lqruxFL29ljgxlP00F9n+cdXg+lHmyqvLXAmZK+0knUM8I/L00sLlXKLVxOWKR2btb/s7daPsf7XGJZcCO+c4oivyhZImSjq67JN5mNh0umXd8Ko4jrgd/EJJ15cx6VnO2IF4+HLjSDpK0imS3mp7hu0JLSfKbuBHTTpRFpkrvchc6VXmSrsdiSdbUO4ingAcVo4dWY43UZVxyRmrDpC0FTHdeDDxJPXdgQ8R7RYmE1eZ73WDume/ypjcT8zijbd9a7UgK5H0DHF31xbAy8QjSi6z/ZSkfYGFtq+qGWN/ylxZtsyVJWWutCsbsd8NPNZ6J6Sk/yEed3QA8Fnbd1YKsYqa45KFVYdIGgLQ2ktG0jDieV4fsD2uVmy15Ji0yxND7zJX2mWu9C5zpXda3Jm/p8nwlsBVxBMddqodXy01xiU3r3eIl2rOJ0m2Z0paADTyMRw5Ju1sT5b09+XrWUQPlctbTgxTmnaihMyV3mSu9C5zpXeOB5dTioc1bD8k6VKiWXVj1RiXnLHqY5LGAM/bfql2LKuKHJMllRODJZ1GXEWdVDumVUXmypIyV5Ytc6WdpAHQzKcVLE9fj0sWVimtIvLEkFZU5kpKq64srFJKKaWUOiTbLaSUUkopdUgWVimllFJKHZKFVUoppZRSh2RhlVJKKaXUIVlYpZRSSil1yP8DozEKon7n66cAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -213,7 +213,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAGRCAYAAACkIY5XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4W/WdLvD3SN7XOPtiRWSDhETZSIGo0BrCEvYl5ZZSWtqOKe1M0+ncTjttp50ytNNeOqWFGgoUk0LZCVC2QhKR4EAiQhKyKftqRY7jTbIly5Ks7dw/jmTLiePYiqXfOdL7eR49to8k6ysT/Pq3S7Isg4iIKBk60QUQEZF2MUSIiChpDBEiIkoaQ4SIiJLGECEioqQxRIiIKGkMESIiShpDhIiIksYQISKipDFEiIgoaQwRIiJKGkOEiIiSxhAhIqKkMUSIiChpDBEiIkoaQ4SIiJLGECEioqQxRIiIKGkMESIiShpDhIiIksYQISKipDFEiIgoaQwRIiJKGkOEiIiSxhAhIqKkMUSIiChpDBEiIkoaQ4SIiJLGECEioqQxRIiIKGkMESIiShpDhIiIksYQISKipDFEiIgoaQwRIiJKGkOEiIiSxhAhIqKkMUSIiChpOaILIEq16pq6HAAlAKSEy9IpD0v82l+7vMqX8sKIMoAky7LoGoiGpLqmLg/AVABTAIwBMBLAqAE+libxMgEA7QBcp9wSrzkBHAdwqHZ5lTP5d0SkXQwRUqVY62EKgBn93CYD0Iurrl/tAA4n3A7FP9Yur2oTWRhRKjFESLjqmroyAJfEbhcDmAXgPGROd2sHgIMAtgL4NHY7WLu8iv/zkeYxRCitqmvqdADmQAmMS2O3mci+SR7tADajN1Q+ZZcYaRFDhFKquqYuH8AXAFwBJTAWIbkximxwGEqgfAxgde3yqnqx5RCdHUOEhl11Td35AJbGbl8EUCS2Is06CGAVgNUA6jhjjNSIIULnrLqmTg/g8wBuAXAzgOliK8pIAQBrAbwN4J3a5VUnBddDBIAhQkmKTbO9HsBtAG6AMpWW0kOGMkj/JoAX2e1FIjFEaEiqa+ouAvANAF8Bg0MNZAAfAXgGwGu1y6u8YsuhbMMQobOqrqkbB+BuAPcAMAkuh86sC8AbAJ4FsI5TiCkdGCLUr1h31U1QWh1LkTlrNrLFcQDPAXi2dnnVIdHFUOZiiFAf1TV10wF8H8BdYHdVprACeBTAytrlVWHRxVBmYYgQAKC6pu4SAD+WZflWSZKybeFftrADeBhALcdOaLgwRLJYdU2dBOBGAD8CcLngcih92gE8CeBPnCpM54ohkoVi4x13A/h3KPtUUXYKAngewO9rl1ftE10MaRNDJItU19SVA/iuLMvflyRpguh6SDVkAO8B+F3t8qqPRBdD2sIQyQLVNXUFAH4gy/JPJEkqF10PqZoFwI9rl1ftEF0IaQNDJIPFdsz9uizLD0iSZBBdD2mGDOAFAD+vXV5lF10MqRtDJENV19RdK8vR30mSbq7oWkizugE8BuB/apdXuUQXQ+rEEMkw1TV182VZ/l9Jkq4SXQtljA4Av4UymysguhhSF4ZIhqiuqZssy/KvAXyV6zwoRRwAfgHgudrlVVHRxZA6MEQ0rrqmLk+W5Z8C+KkkSfmi66GssAVAde3yql2iCyHxGCIaVl1Td2k0EnlGp9dfILoWyjphAP8L4AF2cWU3hogGVdfUFUdCwd/rcnLvkyRJEl0PZbWDAL5du7xqvehCSAyGiMZ86+G1S2U5+ld9Tu540bUQxcgAagH8qHZ5lVt0MZReDBGNqK6pGxUOdT+ek5t/h+haiM6gEcD3apdX/V10IZQ+DBEN+NbDH9wF4DGdPmeE6FqIBuHvAP6FmztmB4aIilXX1JWFg4EXcvIKbhRdC9EQtQH4Wu3yqlWiC6HUYoio1Nd+9+7F+pzct3Jy8zn2QVolA/gdlO1TeBhWhuKiNBW684FXf5mbX2hlgJDGSQD+A8D66po67t2WodgSUZE7//uVEfrcvHcKSysuE10L0TBzAbindnnVu6ILoeHFEFGJ//PLF75QWFrxem5+0WjRtRCliAzgDwB+Wru8KiS6GBoeDBEVuPO/X7m/aMTon+t0er3oWojS4FMAX+Y285mBISLQHb94vjSvsPgfhaUVPN+csk07gK/ULq9aLboQOjccWBfkhu//cUZBcdkeBghlqQoA71bX1H1bdCF0btgSEeDa7/y/68ZPm/tKbkFRqehaiFTgdwB+Uru8ir+MNIghkkZGk1m6wHzTDyddcNH/6HPz8kTXQ6Qir0KZvcUdgTWGIZImRpNZP7vqS4+Onz7v2zqdnt2IRKezArildnlVm+hCaPAYImlgNJkL5y/9+htjJs9cKroWIpU7AuD62uVVB0UXQoPDEEmxhdfdM2bqRUssI8ZNnie6FiKNcAG4rXZ51UeiC6GzY4ik0KW3/8vMKfO/uKa4Yiy3fCAamiCAu2uXV60UXQgNjH3zKbLw+m8smrrwyvUMEKKk5AF4qbqm7suiC6GBMURSYO6SL191weIb3ysqHzVWdC1EGqYH8EJ1Td2doguhM2N31jAymsxSychxy+ZeddfjxSPGcA8souERgXI2yUuiC6HTsSUyTIwms1Q8YsyXGCBEw04P4Lnqmrq7RBdCp2OIDIN4gMy75u4/M0CIUkIP4G/VNXVfFV0I9cUQOUcMEKK00QN4lkGiLgyRc8AAIUq7eIvkbtGFkIIhkiSjySwVlIy4bd41dz/GACFKKx2UFsntogshhkhSjCazpNPn3jj3qq88UjxizBjR9RBlIR2U6b88SlowhsgQGU1mCcD1c6+686HysYZK0fUQZbECAG9X19TNEl1INmOIDN2Vsy679ddjjLNmiC6EiFABYFV1Td1E0YVkK4bIEBhN5oumzK+6v/LCi+eLroWIekwG8F51TV2J6EKyEUNkkIwm84xxU00PTF101WLRtRDRaeZB2WuLv9PSjD/wQTCazJPKxlTef+EXb79Sp9PpRddDRP26EcBDoovINgyRszCazCPyi8t+Ov+au6/Lyc0vEF0PEQ3oB9U1dd8RXUQ2YYgMwGgy50s6/fIFS++5Jb+4rEJ0PUQ0KDXVNXVXiC4iWzBEzsBoMusA3HPh5bfeXjpqAqfyEmlHDoAXq2vqxokuJBswRM7shgkz5n9pwvkLeawtkfaMh7IYkb/jUow/4H4YTeaLCstGfm3mZbeYJUmSRNdDRElZAuAXoovIdAyRUxhN5vGQpPvmX/v1S3Jy84tF10NE5+S/OD6SWgyRBEaTOR/Ad2d/Ydn8koqxk0XXQ0TnTAdlfGS86EIyFUMkJrYn1rLx0+ddPOH8BYtE10NEw4bjIynEH2qvhYWlI2+dddmtl3EchCjjXAngv0QXkYkYIgCMJvM4SNK35y/92sU5efncf4coM/2iuqbuStFFZJqsDxGjyZwH4DuzPn/z3JKKcUbR9RBRyugAPFddU1cuupBMkvUhAmBZ+VjD3IkzF3EchCjzTQTwv6KLyCRZHSJGk3k+gOvmXHHHIp1OnyO6HiJKi+rqmroq0UVkiqwNEaPJXAHg2zMuvW5cUfloTuclyh4SgKeqa+q4oeowyMoQiU3nvbOofHSp4cJLvyi6HiJKu+kA7hddRCbIyhABMBfAYtOSOxfpc3LzRRdDREL8sLqmboHoIrQu60LEaDIXA/iWcd4XystGT5wpuh4iEiYHwNPVNXUcDz0HWRciAG7LKyypmLqgivPFiWgBgB+KLkLLsipEjCbz+QCuNi25c3ZOXgEXFRIRANxfXVM3Q3QRWpU1IRLbXPGfxk+bV1QxYcpC0fUQkWoUAHhMdBFalTUhAmApgLHTL75mMbfGIqJTXF1dU3et6CK0KCtCxGgyGwDcMmXhFWWFpRWTRNdDRKr0IHf6HbqM/4HFz0rX6XOCk+eYq0TXQ0SqNQ/A10QXoTUZHyJQ/mHMOH/xDZPzCopHii6GiFTt11zJPjQZHSJGkzkXwF15BcWeCTPmc2U6EZ1NJYAfiC5CSzI6RACYAYyZefktc3Ny84tEF0NEmvCT6pq6UaKL0IqMDRGjyVwE4I7iirHeMZNnLRZdDxFpRjmAX4guQisyNkQALAFQPPPzNy/W6fW5ooshIk35bnVN3VTRRWhBRoZIbJv3m0dOmhasmHAeN1gjoqHKA/Ab0UVoQUaGCIAbAUjTP3eNWZJ0XFlIRMm4g9uhnF3GhYjRZJ4I4MqyMZW+sjGTZouuh4g0SwduznhWGRciAJYBCE5bdNXFbIUQ0Tm6p7qmbqzoItQso0Iktr3JwoKSER0jJ07lJotEdK4KACwXXYSaSbIsi65h2BhN5n8CcMmcK/7PtAkz5mfkeSEdzcfx4TMP9Hzd2XYSC6//JnzuNhzfbYUuJxdloyfi8rv+A/lFJYN67pwrvoTNbz2Jhn2bMWrSNHzxaz8DABzavAbdPg/mVH0pPW+OSJ1cACbXLq/qEl2IGmXMiV5Gk3kUALM+N79pjHHWV0TXkyojxk3Gbf9RCwCIRiN4+Rd3wDjvMribHVh0073Q6fXY/NaT2Gl5ARffct+gnhv0e9FybA9u/8nTqHv213A1HkXZ6Ek4tHkVln73d2l/j0QqMxLAPwH4k+hC1CiTurOqAMjTLloyJycvPysOnGo8sA2loyeidOR4VM76HHR6PQBg7HkXwtfROujnQtIhGglBlmWEQ0Ho9DmwrX0Zs79wO3T6jPk7g+hc/F8eo9u/jAiR2Lnp1wBS8/gZ882i60mXo9vWYdpFS067fnDT+6i88JJBPzevoAjnzfsC3vzdvSgdNR55BcVoPX4AxrmXpaRuIg0yArhDdBFqlCnJuhhArnHeZVPyC0tGiy4mHSLhEI7vtuJzN93b5/qO1c9Dp9dj2qKrhvTcuVd9BXOvUnoBP37xf7Hw+m/igPUfOLF/CyomTcOCa7lDNmW9HwF4SXQRaqP5lkhsp96bALRWzrw4a1ohDXs/xajK81FY1ru7/aFPV+H4nk9Q9fX/xECnN/b33Lg2xyEAQPnYShzasgZXfut+tJ88BndLw/C/CSJtWVBdU5eRE3bOheZDBMACAOWjKqcXF5WPMoouJl2ObFuHaRf1/ntu2LsZuz54GVff+z/IyRv4OIRTn5to23srsPCGbyIaiUCORgAAkiQhHAoMX/FE2lUtugC10XSIxE4tvBWAyzB78XzR9aRLOBhA4/7PcN68y3uuWV97BKFuH1b9+d/x9wersfGVPwAAutxtWP3ETwZ8blz9rg0YPXkmistHI7+oBGOnzMYbv/0WJEgYNWl66t8YkfrdWl1TVy66CDXR9DoRo8l8IYAfSzq9verr//lvOXkFpaJrIqKMd1/t8qq/iC5CLTTdEgFwJQBf5YWXTGWAEFGafEN0AWqi2RAxmsxlUMZD2iZMn5c1XVlEJNzi6pq680UXoRaaDREA8wFI+cVluaWjJ84UXQwRZZVviC5ALTQZIkaTWQJwFQD3eXMvn63jsmoiSq+vVdfUafL353DT6g9hEgADAPcY4yx2ZRFRulVC+UM262k1RC4GEKmYMGVkYdlIg+hiiCgrfUN0AWqguRAxmsw5AK4A0GaYs3ie6HqIKGvdWl1TVya6CNE0FyIALgBQAiBQMf48Hn9LRKIUAlgqugjRtBgilwMIVEyYMjKvsGSU6GKIKKvdKLoA0TQVIkaTuQTAIgBtE2bM5zxtIhLtumyfpaW1Nz8TSs2REePPmyG6GCLKeqMBDHx4T4bTWogsAhDIKyzJKyrLnh17iUjVsrpLSzMhEjs3ZD4A16SZi6ZKOp1edE1ERABuEF2ASJoJEQDnAcgFEB5VOYPjIUSkFvOqa+oqRRchipZCZDYAGZBQOmoCx0OISE2ytktLEyES2ytrMYD2sVMunJCTV1AiuiYiogQMEZUbDWAMgK5xU+awFUJEanNldU1doegiRNBKiPSMgZSPNfCcViJSm0IAZtFFiKCVELkEQJc+N19fUDJiouhiiIj6sVh0ASKoPkSMJnMBgAsBtI8xzhzPqb1EpFKXii5ABNWHCICpACQA0YoJU7N2Gh0RqV5WrlzXQoicF/+kdNR4hggRqdXo6pq6rJv4o4UQmQ3ACwBFZaMYIkSkZlnXpaXqEDGazHoA0wF4ispHF+UWFI0QXRMR0QAYIiozFkAOgMiY82axFUJEascQUZme4CgfO5khQkRqN7e6pq5IdBHppPYQOR9AGABKKsYyRIhI7XKgHFmRNdQeIhcC8EiSTuIiQyLSiKya6qvaEDGazEUAJgDwjRhvrNDn5OaLromIaBBMogtIJ9WGCIBJAGQActnYytGiiyEiGqRZogtIJzWHiAHKSnWUjBjHECEirbhAdAHppOYQmQHADwCFZRUMESLSitJsOulQzSEyGYAPAPKLyxkiRKQlM0UXkC45ogvoT2yl+jgAjQCQX1gySmxFRESnk+WoHOr2dwQ6O7py8gs2FJWN2gjgEICtomtLF1WGCIAKxHbuzS8qzdfn5mXV4h0iUg9ZluVwMOAJ+r3OQJfHFehsd3Z1tDg9bY0ud7OjPRoJRaGM4b5pt1nfEV1vuqk1REZDmZmFsjGV3C+LiFIuHAx0Bv1eV3dXp9Pf2e7scre6Op0nne7m4+3hYCA8wFP1AKIApqSpVFVRc4joAaBk5LgKwbUQUYYIh7p9IX+Xs9vX6fJ3tjt97jZnp6vJ1dFkd4YCXaEBnqqDcgRu/Nbn20LperelqGxVU2uITAAQAoDC0pEMESIatEg4FAj6u1zdPo8z4O1w+jxOl9fZ5Oxotju7uzzdAzxVQt+g0EFpYUixj80AjgBwxD53AnAB8NhtVjmFb0nV1BoiEwEEAKCgpJzdWUTURzQSDgb9Xa5uf6cz4HW7/B6n0+tqcrqbHS6fx+kb4KkSgHwARVCCIt4VJcXubwFwEIAdQBOUkHACcNtt1miq3o+WqTVExiMWIrkFxaWCayEiAaLRSDgU8Lm6fZ2u7i630+d2Or3tLS5Pq8PpdTV7z/L0xKDIBRCBEhQSlFA4CuA4gJOxr50AOuw2ayRV7ydTqS5EjCazDsAYxKb36nPzTu1/JKIMIUej0VC3r73b53V2d7mdPo/L1dXR4vS0nnB5Wk+4Y/NrziQPSkgUxT5PDIoOKN1ODgAN6O16ctlt1oEGyWmIVBciAMrQ2weJnByGCJGWKWspAh3KzCe30+9pd3Z1tLg8rSec7taGDjkaGSgpctE7RpGP2H56ULqhPFD+2EwMCieUoAim8j0NhcPhyAFwHpRdOGZAOeJiBoCdBoPhxwJLGxZqDJGSxC90ObkMESKVk2UZ8bUU3V0ep7+z3dXlbnV2tjY63S2Ojkg4OFA3UQ56g6IAvUGhg7L10YnY7TiANsTGKew2ayCV72koHA6HDspakcSQiN+mQAnDUxWnrcAUUmOIFCKhDatnS4RINcLBgDfo73J2+zwuf2eH0+dudXa2nXR1NB93hYP+s62lSAwKoDcouqEMYu9Bb1DEWxV+Nc18cjgcE3F6SJwPYCp639dgTRve6sRQa4hIAKDPzdfr9Pr+EpyIUiQSCvqCfq+r29fp9HvbnT53zxRZV9DvHaib6NS1FPFuaQnKeEUTlJlPx6HMgoqPU3hVFhRjcXpIzAAwHcPbehjvcDiKDAbDQLPJVE/VIVJYOoKtEKIUiIRD3aFAl7O7q9MZ6Opw+dxOp9fV5OpotjsDXvdA3UQSlL+44zOfTl1L0QLgGJSgiK+lcEJlaykcDkcFTg+J+K08jaUYAexL4+sNO1WHSH5xOUOEKEnRSDgUDPhcQZ/HGfAqM5+87c1Od/Nxp8/dNpi1FPGZT6eupWiD0qJwoHeKrAvKFFnVrKVwOBwl6D8kzgeglk1dx4EhMuzKoTR9kV9UyhAhGkBsLUV70NfpDHS5XX6Py+ltb3a6WxpcXldT51menhgUOegNivhainooLYpG9C66a1fTWgqHw1GAvgGRGBrjBZY2WONEF3Cu1BoiIQDIKyxhiFDW61lL4fe6urs8Tr/H5fK2tzg9bQ3OztZGjyxHB+omiq+liE+RjaJ3QNsNZWqsA8rsp8S1FAPtI5VWDocjF8ogdH9BUYneFpIWaSHoBqTGECmDsqEZcvOLGCKUFWRZlsPdfne3MkXW5e90Obs6Wp2dbY0ud4ujIxoJD9RNdKa1FDoAXigBEQ+LeIvCZbdZB9pHKq0cDoce/a+lmAFl3EAvrLjUYkskBUoRa4no9PpM/YdDWah3LUWXq9vndvo7O5y+jlZXp7PR2dF0vP0sayn06B3MPnUtRQC9i+4c6J0i67LbrP5UvqehcDgcEpS1FP2NUZxpLUWmY0skBUoRa4kQaVE42N0V9HudsV1kXV0dbc74uRShbt9gthsvwulrKYJQBrH3QhmnaEVvq8KnsplPE9B/UEzD0NdSZDq2RFKgBMDZBgSJhIqEg/74ortAZ0efcykGsZYicYrsqWspmgEchrKLbCt6xyk6VRYUY3DmtRQlAzyV+mKIpEAu4ivWZVk1/9NQ9omtpXB1+5Ttxn3uNmdsiqzL39k+UDdRfC1FvFWRuJZChrKWYi+UrqfE7cY9KpsiOwJnXkvBIxqGx2jRBZwrNYYIUdpEI5FQLChcgS630+dxOrtczS53S4Ozq6Ola4CnJq6lKETfKbKAMi5xGErXUxN6F925VTZFthhnXkuh+V9wGqD5/bMYIpS1fB7n8Y0v/+GvZ9luPDEoTt1uvB3KWgoHlIHteNdTu5q2G4+tpZiO/rufJggsjU4/aldz1Bgi7MKi9JBlOfbPLRe9YxR56LvdeAeUKbLx7cYTp8iqbS3FVPTf/WSAttdSZDKGSArIp31ClALRSCQfwGQAXVBaEsfR9wAjpwrXUhjRf/fTecjctRSZTOdwOPINBoNq/p0NlRpDhCgtCstG1gP4FxWupajEmddS5ImrjlKkCMp2+JrEEKGspc/J7RYVILG1FP2NUUxDBnRx0JAUQRlf0yR1hwin+JKGORyO0eh/jGI6lEW1RIDG/2hQdYiEuv2qOf6SqD8Oh6Mc/Y9RzABQIbA00g5Nr+JXdYgEA12q6aum7JWwlqK/7qcxAkujzKCadUPJUGOIyIhNRwz6PAwREsrhcBRC2QmXKFVUs6YoGTrRBfTDj9hUxUAXQ4SE4/oKSjXVrDdKhhpbIp1QDqYK+D3tmj7AnrTp6quvHglgPoDJJSUlU//0pz+JLokym6ZbImoMEQ9i5x+Hg/5wNBoJ63R6NdZJmasKwFcAtEWj0YF25CUaDpoOETV2Z3mQcDhNNBxilxaJ0A6gWZIkjodQqmm6O0uNIdKBhBCJhIIMESLKZGyJDDM3EvYACoeDHBchokzGlsgw6xMabIkQUQYLGQwGTf+hrMYQ8UM53AcAEO72D3QwEBGRlml2z6w4NYZIn1QOeDs0/0MmIjoDl+gCzpUaQ6RP91WXu80pqhAiohRjiKSADwmrhDvbGjX/QyYiOgPN/35TY4h0xD5KANDRfNwlc0t4IspMDJHhZrdZIwDaENseORLqjoSDAY/YqoiIUoIhkiInkHBQS9Dv5bgIEWUihkiKOKAcGQkACHR5NP+DJiLqR4PoAs6VWkPkJBJqC3S2syVCRJmoXnQB50qtIeJCwoLDLncrWyJElInqRRdwrtQaIk70meZ7kiFCRJkmAnZnpUzfab5Ndlc0GtH0TpdERKdoNBgMmt58EVBpiMSm+bYgNkMrGglFu73uk2KrIiIaVvWiCxgOqgyRmD7TfLs6WjXf7CMiSlAvuoDhoOYQOYaEab7uFgdDhIgySb3oAoaDmkOkPvGLNsfBE4LqICJKhX2iCxgOag6RBiTM0PK0NrjDwUCnwHqIiIbTLtEFDAc1h4gHyiytgvgFn8fF1ggRZYIggAOiixgOqg0Ru80qQ2nulcWveV3NHBchokywz2AwZMSyBdWGSMw+JLREOpqOMUSIKBNkRFcWoP4QaQDQc5ZIy7G9jbIc5dkiRKR1DJE0aYx91AFAqNsX6u7qbBZYDxHRcLCJLmC4qDpE7DZrEIAdQEn8Wqez8Yi4ioiIhgVbImm0B0Bp/IuW+n2HBNZCRHSuHAaDIWO2cdJCiBxBQp0nD20/HgmHAgLrISI6FxtEFzCctBAix6AsOpQAQI5GZK+r6bDYkoiIksYQSSe7zeqGMi7S06XlOnGEXVpEpFUMEQE2ARgR/6LxwGeHZVnmVF8i0poOALtFFzGctBIifTYq83mcvkBnO7dAISKtsRoMhujZH6YdWgmRBgBdAPLjFzqajx8UVw4RUVIyqisL0EiI2G3WKIDNAEbGrzUftTFEiEhrGCIC7QCQG/+i1b6vOdTt9wish4hoKDqhjO9mFC2FyGEo+2j11OxpbdgvrhwioiFZZzAYQqKLGG6aCRG7zeoHsB8Js7Qa9m3ZIa4iIqIhWSW6gFTQTIjEfIqEfbRaju0+2e3rbBFYDxHRYL0vuoBU0FqI7EPC6nUAcDoO7hRXDhHRoOw2GAx20UWkgqZCxG6ztgI4CKAifq1+18e75Gg0o+ZdE1HGeUd0AamiqRCJWYuELVC62lu83o4Wbg9PRGr2tugCUkWLIbIbQBhATvxCy9HdHGAnIrVqhrLOLSNpLkTsNqsPgBXAmN5rGw9we3giUqmVmbbVSSLNhUiMFUBe/ItIqDvS0Xw8ozY1I6KM8aLoAlJJqyFyGMpumIXxC437uWaEiFTnmMFg+ER0EamkyRCx26wRKAPso+PXmo7sOtHd5eGaESJSk5dEF5BqmgyRmC04pf6mI7sybl8aItK0F0QXkGqaDRG7zdoMpVurZ83I0W3rbOFQd5e4qoiIeuwyGAx7RReRapoNkZgPAJTFvwgHA2Gn4+BWgfUQEcVl9IB6nNZDZCcAPxIOqzq89YMt0WgkIq4kIiJEwBBRP7vNGoCyqdm4+DVfR2uXu/n4LnFVERHhHwaDwSG6iHTQdIjEbIByzog+fuHIZ2s3yrIsiyuJSP0aGxvx5S9/GVdeeSWWLFmCp59+GgDwz//8z1i6dCmWLl0Ks9mMpUuXnvbcQCCAm266Cddeey2WLFmChx56qOe+73//+7jmmmvw4IMpjZeXAAAbUUlEQVQP9lx75JFHsGbNmtS/KfX4s+gC0iXn7A9RN7vN2m40mTcAWAygEQDaG486O9sa95WNmXSh2OqI1Euv1+PnP/85TCYTvF4vbrjhBlx++eX48597f//96le/Qmlp6WnPzc/Px8svv4zi4mKEQiEsW7YMV1xxBQoLlaVba9aswbJly+DxeOD3+7Fjxw7867/+a9rem2CHAWRNYmZCSwRQBthzkbBF/LEddRl3ljHRcBo3bhxMJhMAoKSkBNOnT0dTU1PP/bIs491338Utt9xy2nMlSUJxcTEAIBwOIxwOQ5Ik5OTkIBAIIBqNIhQKQa/X46GHHsIPf/jD9LwpdXjSYDBkTU9IRoSI3WZ1ALAhYT+tlmN7Tnrbubsv0WA4HA7s2bMHCxYs6Lm2efNmjB49GlOmTOn3OZFIBEuXLsWCBQtw2WWXYcGCBZgxYwYmTpyI66+/HjfeeCPq6+sBAHPmzEnH21CDAIAVootIJ813ZyV4B8B/Jl6w7/zoo9lVX5omqB4iTejq6sJ9992HX/7yl326rt56661+WyFxer0eq1atgtvtxre//W0cOHAAF1xwAe6///6ex3zzm9/Eb3/7W9TU1GDv3r24/PLLcdddd6Xy7Yj2isFgcIkuIp0yoiUScxjAIQCj4hcaD2473uk8eUBcSUTqFgqFcN999+G2227Ddddd13M9HA5j1apVuOmmm876PcrLy3HppZeirq6uz/U1a9Zg7ty58Pv9OHDgAB5//HG88cYb8Pv9w/021CRrBtTjMiZE7DarDOAtJBxYBQAHN73/gSxHs6Z/kmiwZFnGj370I0yfPh333ntvn/s2bNiAadOmYcKECf0+1+l0wu12A1BmasUfHxcKhbBixQp85zvfgd/vhyQpw5XRaBTBYDBF70i4DQaDIWPPDTmTjAmRmL0AHEjYCsV14nBb+8n6beJKIlKnLVu24I033oDVau2Z0rtu3ToAwNtvv42bb765z+Obmppwzz33AABaWlpw55134pprrsGNN96Iyy+/HFdddVXPY5999lksW7YMhYWFmDVrFmRZxtVXX41FixahvLw8fW8yvX4jugARpExbTmE0mWcD+BGA+vi14oqxJZfe/r3v6/Q5ucIKIzVaX7u8qurUi1dfffXtAJYCaCwuLs6tqan5WdorI63ZbjAYFoouQoRMa4kASmtkDxJWsXe1t3hb7fus4koiogyXla0QIANDJDY28iqAAiS8v/0b37GGg9zhl4iGlyzL+wG8IboOUTIuRADAbrPaAWwEMD5+Lej3BhsPbqsTVhQRZSRJkh7M5DPUzyYjQyTmLSj7afWshTn06fvbuv3eNnElEVEmkWXZDuB50XWIlLEhYrdZW6Hs8NszRzEaCUeP2zZ+IK4qIsokkiT91mAwhEXXIVLGhkjMKgAhKOMjAID6HesPdLqaDokriYgygSzLBwA8LboO0TI6ROw2qxfASiTM1AKAvXWvvxuNhDN2xRMRpZ4kST/N9lYIkOEhErMBQDsSVrJ72k54Tuzfym4tIkqKLMufGAyGv4uuQw0yPkTsNms3gL9B2eG3Z6v4/Rvf2eLzuLLi5DEiGl6SJP276BrUIuNDJGYngE0AJvZekrHv4zff5nnsRDQUsiz/3WAwcPFyTFaESGwB4ksAwgAK49ddJw63tRzd/ZGwwohIU2RZDkuS9FPRdahJVoQIoByjC2U+9/jE63vWv7Ghu8vTIqYqItKYJw0GA4+XSJA1IRLzCYDdSAiSaCQUPfDJP96SM20nSiIaVtFotFWSpP88+yOzS1aFiN1mjUIZZM8BkBe/3nzU1uh0HPxUWGFEpHo6ne4HBoPBLboOtcmqEAEAu83aDGWDxomJ123rXl3Lbi0i6k8oFPrIYDC8KLoONcq6EIlZB+W8kdHxC+GgP7z7w5WvchEiESWKRqOh3Nzce8/+yOyUlSFit1nDAFYAKEbCBo2uxiNO+64N7worjIhUJxqNPmgwGA6KrkOtsjJEAMBusx4H8DoAQ+L1w1vW2NpPHtsupioiUpNQKGTPycn5teg61CxrQyTmfSiztSYkXtyx+vn3OD5ClN1kWZZzc3P/yWAwdIuuRc2yOkTsNmsEQC2AIBL21uL4CBF1d3c/aTAY1oquQ+2yOkSAnkWIf4YyyH7q+Mg/hBVGRMIEAgF7QUHBv4muQwuyPkQAwG6z7gPwGk4fH9nF8RGi7BKNRiMA7jAYDAHRtWgBQ6TXezjD+Eigy9MspiQiSrfOzs6HZsyYsUV0HVrBEIkZaHxk5+rnXgwHA53CiiOitOjq6tpbXl7+M9F1aAlDJMGZxkc8bSc8e+pef5ED7USZKxwOB3Nycm4zGAw8HmIIGCKniI2PxNeP9Bxi1VK/p+nQ5jWvyXKUGzUSZSCv1/uD6dOnc1HhEDFE+vcPAJtxykD7cduGQw17P31PTElElCpOp/N1k8n0uOg6tIgh0o/Y+MjTAI7hlIH2/Rvf2dpq389TzYgyhNvtrpdl+aui69AqhsgZ2G3WAIAaAJ1I2KgRAHasfs7iaT2xV0hhRDRsuru7/Y2NjdcvWLCAq9KTxBAZgN1m7QDwBwB6JMzYAmR89o+n/+73uBoElUZE5ygajcp2u/2+a665Zp/oWrSMIXIWdpu1EcDDAEYCKIhfDwcD4W3v/fWlYKDLJaw4IkpaQ0PDiiVLljwnug6tY4gMgt1mPQDgSSgHWfVM/fV5nL7t7z/7t1DA1yGsOCIaspaWlp3bt2/nGSHDgCEySHabdROUExEnI+Hn5mltcG97/5lnGCRE2tDR0dFSX1+/5Hvf+x6n6w8DhsjQvAfgQyhB0rOGhEFCpA0+n8+3c+fOpcuWLXOKriVTMESGwG6zRgE8D2ArGCREmhIOhyNbtmypvvvuu7mp6jBiiAyR3WYNAfgLgM/AICHShGg0Klut1l/dfffdL4muJdMwRJJgt1mDYJAQacaWLVuee+aZZx4QXUcmYogkiUFCpA27du368Mknn6y2WCwcSE8Bhsg5GEyQBP1eDuARCbJnz57PHn744ZstFktIdC2ZiiFyjs4WJJvffPxpn9t5XFR9RNlq7969ex599NGlFovFK7qWTMYQGQYDBYm/s92/6Y1H/+ZucewWVR9Rttm/f//hxx577IZ333237Vy/lyRJsiRJzyV8nSNJUqskSe+e5XmLJEn60zm87nmx1/5VwrXRkiSFJEl69CzPrZIkyTyI73/Ov5cYIsPklCA5Dwk/20ioO7L5zSdebzm252NB5RFljcOHD9c/8cQTt7z99tv2YfqWXQDmSJJUGPv6agAnzvYkWZa3yrL8/cG+iCRJOf1cPgrgxoSv7wCwZxDfrgrAgCEyXBgiwygWJE8AWAslSHJ775Wx0/LCOvuuDW/L0WhUSIFEGe7YsWMNTz755K2vv/76cO+y/T6AG2KffwVAz1RhSZIuliTJKknS9tjHC2LXq+KtFUmSRkqS9KYkSbskSdokSdLc2PX7JUn6iyRJawD8rZ/X9QPYJ0nSotjXX4ayc0b8tW+SJOnT2Gt/IEnSOEmSzgPwHQD/JknSDkmSLo9d/7skSTtjt3jA6CVJekqSpD2SJK1JCMpBY4gMM7vNGgbwHJR/ZJUA+vxHObjpve0HPnn3hUg4xK2niYaR3W5vfOqpp257+eWXd6bg278M4E5JkgoAzAXwacJ9+wF8QZblBQD+C8Bv+nn+fwPYLsvyXAA/Q9/AuAjALbIs33WW164EEAHQmHDfBgCXxl77ZQA/lmW5Hsofs3+UZXm+LMsfA/gTgPWyLM8DsBC9rZkZAB6TZXk2gA4Ay87+o+irv+YTnSO7zSoDeN9oMrcB+C6U/zie+P2OPZuO+js7Vsy54o6v5uYXlomqkyhTHDp0yP7444/fuXLlyq2p+P6yLO+K/YX/FSjbHyUqB/CsJEkzAMjo0wPR4zLEfkHLsrxOkqRRkiSVx+57W5Zl/wAvvwrArwA0A3jllPsqAbwiSdIEAHlQDtLrz5UAvh57/QgAtyRJFQCOybK8I/aYeFf8kLAlkkJ2m3ULgN8CyMcpB1u1Hd/fsvWdvzzl7+xo7PfJRDQoNpvt8B/+8Ievrly5clOKX+ptAL9HQldWzK8AfCjL8hwANyHhyIgEUj/X4utWugZ6UVmWg1B+wf8QwOun3F0D4FFZlk0A7jvDaw8ksUckgiQaFgyRFLPbrIeg/CPzQdlKvofX1ez9ZOXDK9ocBz/t98lENKDNmzfve+SRR6rffffdjWl4uRUAHpBl2XbK9XL0DrR/4wzP/QjAVwFlrARAmyzLnjM8tj8PAfgPWZZPXXeW+Nr3JFzvRJ+D9LAWSq8IJEnSS5I0bD0gDJE0sNusTQB+DaAep0wBjoSDke3vP7Pq8JY1r0TCoYCgEok0p66ubvsTTzxx7+rVq9en4/VkWW6QZfmRfu76HYDfSpK0EcopqH2eFvt4P4BFkiTtAvD/0PcX/mBee48sy8/2c9f9AFZKkvQxgMTpzO8AuC0+sA7gXwFcIUmSDUqrZvZQXn8gkixzJ4B0MZrM+QC+CWXqnQNAn1W05eMmjzBdeecdhaUjJvb3fBp262uXV1WdevHqq6++HcBSAI3FxcW5NTU1P0t7ZXRGsizj/fff/+S11177nsVi2Sa6njORJGkZgJtlWR5SYGgNWyJpZLdZu6GsJXkBwCQAIxLvdzcf72D3FtGZhcPh8Kuvvrr2tddeq1Z5gNwM4H+gnIia0RgiaWa3WaN2m3U1lO4tGUqY9Ih3bx3avJrdW0QJfD5f12OPPfbm6tWr77NYLMO9DmRYybL8tizLM2VZtoquJdUYIoLYbdbDAH4JYDeAKThlWmD9jvX7P3u39kl/Z/tZV8YSZbrW1tbW3/zmN6/s3Lnz3ywWyxHR9VAvhohAdpvVA2WK3gtQZm717d5qcXRYX314RfNR23qucqdsdejQoWMPPPDAc42NjT+zWCwNouuhvrjYULDYkbtrjCbzUQD/AqV7qxGxWR3RSCi664OX6sYYZ+2b+fmbby0oKR8vsFyitNqwYcOuv/71r8/JsvykxWLpFF0PnY4tEZVI6N6yQVk1mpd4f6t9X/PGVx56qunwzg/laDQioESitAmFQsGXX375oxUrVvxeluVHGCDqxRBRkVj31qMAngcwDsDYxPujkXDUtu6Vj7avevZJn4dnlFBmcrlcrQ8++OB7a9aseQDA8zxQSt3YnaUyse4ti9Fk3gNlTcn5ULq3erYncDYcat348h/+esHi6xdOmnXx1fqc3KFudUCkSjabbc/jjz++KRAIPGyxWHgGjwawJaJSdpu1EcrK1r9B2XdrXN9HyDjwyT+2bXrj0UfdzY5Tt2Eg0pRQKBRcuXLlh3/84x/fCwQCv2SAaAdbIipmt1kjANbGWiVfh7JVQTOUfbgAAL6O1q7Nbz3+xsQLLto6deGV1xSWVkw6w7cjUiWXy9X82GOPfXLs2DELgL/xOFttYYhogN1mbTKazL8HcDGUMBkJpYurZ9pv44HPjjce+Kx26sIrLzTMWbwkr6B4pKByiQZFlmV5+/btO5966qld3d3dzwBYb7FYOJVdYxgiGhEbK9lkNJn3AfgSgC9AOaekPfFxR7et21u/8+P95y++ftGEGfO/mJObXySgXKIBdXZ2up577rlPtm7duh/AoxaLpV50TZQchojG2G1WN4CnjSbzRgB3Q5kO3IqEMwmikVB0/4a3Nh/9bO2OmZfd/Pkxk2ct1un1/R2UQ5RWsizDZrNtfeKJJw4GAoENAJ5j95W2MUQ0ym6z7jeazL8E8DkAdwIwAmhCwiyuoN8b3GV58cOSkeO2XGC+6YqKCectkCRdf4fjEKWc1+ttf/7559dv3rzZCWWXhjqLxcJtxDWOIaJhsYH3TUaTeTuALwK4HcoeXCcBhOOP87qavZ+9W/vOyEnTP5m68MrPjxg32STpdKeee0CUErIsy7t37/7siSeeOOD3+/cBWGGxWE6KrouGB0MkA8S2mF9jNJk3AbgWylkYESgtk56BSteJw22uE4ffKhk5ft20RVddMqpyxkVcY0Kp1NbW1vD8889/smvXrk4o54Ovs1gs4bM9j7SDIZJBYiveVxpN5vUAboVy+JUfQAt6T1iD19XUuXPN8x/kFZZ8NP1z1ywcO2X2pbn5heViqqZMFAgEutatW/fha6+95gRwBMDTFoulUXRdNPwYIhnIbrO2APiL0WReA2Um1xwoYyXNSGiZBP3e4N6P3ti0f+Pbm6cuvHL2hPMXmAuKucEjJS8ajcp79+7d/PTTT+9xu90A8CqAtWx9ZC6GSAaz26z1RpP5IQAGKN1ci6G0SJqQcDRvNBKOHt6yxnZ4yxpb5YWXTjXMvmRx8Yix0yRJ4iA8DVpzc7P9hRdeWL97924JwD4AL7L1kfkYIhnObrPKAI4DeMpoMv8dQBWAq6EMwLdC6e7q0bB309GGvZuOlo6eWGY0XTZ3VOX0+XmFJaPSXTdpR0dHR/Pq1avXr169uguAG8pWPTs48yo7MESyiN1mbQPwmtFkXgWlVXIzlD25XAA8iY/tbGv07P7w1Q0ANoyfPr9y0syL5pePnTybA/EU19nZ6aqrq6t78803W2VZzgXwNoA1FovFf7bnUuZgiGQhu83qhbJT8HoAC6EMwhuhjJu0QpnZ1aPp8I6GpsM7GnLyClZNNn3+gnFT5swvrhgzjWtOspPP5/Ns3Lhx/cqVK4+Gw+GRULquXrZYLM2ia6P0Y4hkMbvNGoSyzmQzgJkALoeyeFEPpVuiI/Hx4WAgfPSztXuOfrZ2T8nIcSVG02VzR0yYMrOwdEQlAyXzBQKBri1btmx86aWX9gUCgRFQNgJ9GsBudl1lL4YIxffl2gtgr9FkfgHAXABXAZgCZSD+tLETr6vZu2f961YA1sLSisKJMxdNHzVx+oySUeOm63PyCtP8FiiFvF5v+6effmp9/fXXDwQCgZFQFrI+BmCbxWLhKZtZjiFCfcS6uqwArEaTeTyUlskSKKcsBqEESp/pmv7Odv+RLRbbEVhskk4vjZ8+r3LseReeXz6mckZ+cdm4U1+DtMHlcp3csGGD9Z133jkSiUTGQvl9sQLAJp42SHEMEToju83aBOAdo8n8HoDpAC4DcCmU7q4wACcS9uoCADkakU8e3OY4eXCbA8DastGTyiacv2DGiHHGqYVlIytz8wvL0vw2aAhkWZYdDsfBtWvXfvLxxx83Q/njoRTKXlcbLBZLQGyFpDYMETqr2B5dBwAcMJrMLwKYBmA+lPNN4i0NN5QZXn36xj1tJzyethOfAfgMAEpGji8dY5xVWT62srJ4xNjKgpIRE7jDsHh+v9+7f//+HatXr9528ODBEIBRAEoAvATAarFYugb+DpStGCI0JHab1Q9gN4DdsUCZBGAWgEugjKEAQADKtOHTVil7XU2dXlfTPigzeqDT5+hGGy4YO3LS1MrSURMrC8tHTcrLLxop6XQ8ujnFZFmWGxsbj2zatOmz1atXHwyHwyMAlEH5b7cCwGaLxdI98HehbMcQoaTFBuQdsdsao8lcDmAGgIsALICyoFGCEiqe2Mc+opFwtKV+T1NL/Z4mAFsBQKfP1ZWPrRxROnrSqOIRY0YWllaMyi8uG5lfWDIqJ7+wnCvpz43P5/Ps3r1726pVq7bX19d7oXRZTYayx9UKKLOtuE0JDQpDhIZN7MCsrQC2Gk3mHCitlHhLZRaUX1Tx7i4vlGA5bXZPNBKKtp885mo/ecx16n36nDx9+bjJFaWjJ4wsKhtdkVtQWJSTV1CYk1tQlJObV6jPzSvU5+QV6nJyC/U5ufkpequaEwgEfMeOHdu3devWPevXr6+PRqPFUI5ZLgewGYAFwDFO1aWhYohQStht1jAAe+xmBQCjyVwGoBLKaYyzoQzW50BprchQphH7oLRY+j1rOxIORmJb2redrQadPkdXUFpRWFBcXphXUJQv6fS6aCQ81jD70mcrJkxphzKOk7HiwbFly5Y9H3/8cX0kEtGht9XRDOB5AFstFotnwG9ENACGCKVNbKv6vbHbe0aTWQ/ll9okABOgbBRZGftcByVYdFACxZ9wG9Rfy9FIOOrraO3ydbQmDgrLzUdtn9ht1hPD867Uxefzeex2+8EtW7bsjQWHDKW1MRnKGJUVwMcAjlosln6DmmgoGCIkTGzW18nYrYfRZNYBGAGlu2UUlBlgRgAToYRMvOUSDxMp4RaBskNxOHaLPyb++Iw60TEcDoeamprqjxw5cmTr1q1H9uzZE2+hlUMJZQnAMQCvA9jOWVY03BgipDqxAXtX7HY48T6jySwByAdQGLsVJXxeCGV2UTmUECqCEhq6hFszNNyNFY1G5Y6Ojia73X7UZrMd+eSTT453d3fHx5XiLY54cLwFZZD8rF1/RMliiJCmxLa2D8Ru7YLLSblAINDV0tLS0NDQ0HDo0KGG7du3N3o8nmDs7hworbVCMDhIEIYIkUr4fL5Ot9vd2tra2lJfX3/CZrM1HDlyJHETTAlKS2s8lK65EAAblIWchxkcJAJDhCiNotFo1OfzuTs6OtqcTmfryZMnW48fP962f//+1o6OjlMX9umghEZZ7HMAqAewBsoOAse5noNEY4gQnaNIJBIJh8PdoVCoOxQKdXd3d/u9Xm+nx+PxdHR0eFwul6elpcVz8uTJzsbGRq8sn3FyWXxMJx+9EwHsADZAGRs6arFYvOl4T0SDxRAhGoDf7w+vWLHir7Isy9FoVI5Go3IwGAx7vd6g2+3udrvd3QkD24OVB2XQvxjKwH8USkvDBWWx5j4AJwA0crdcUjuGCNEAotGovGHDhuNDfJoeSmsifstDb8tCB6ALylYxx2If2wC0cNEfaRFDhKh/8a6l+PoTHZRw0EP5/ya+3kROuMUfG4KyTX4TlPNXmqHMJGuFEhhd3F6EMgVDhOh0hwHsh9LNFEHvTKiu2M0b+xiAcp5KN5SV9B4AnQACDAnKFtIAg3xEREQD4pkNRESUNIYIEREljSFCRERJY4gQEVHSGCJERJQ0hggRESWNIUJEREljiBARUdIYIkRElDSGCBERJY0hQkRESWOIEBFR0hgiRESUNIYIEREljSFCRERJY4gQEVHSGCJERJQ0hggRESWNIUJEREljiBARUdIYIkRElDSGCBERJY0hQkRESWOIEBFR0hgiRESUNIYIEREljSFCRERJY4gQEVHSGCJERJQ0hggRESWNIUJEREljiBARUdIYIkRElDSGCBERJY0hQkRESWOIEBFR0hgiRESUNIYIEREljSFCRERJY4gQEVHSGCJERJQ0hggRESWNIUJEREljiBARUdL+P0s+T90GGyBMAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAGRCAYAAACkIY5XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4W/WdLvD3SN7XOPtiRWSDhETZSIGo0BrCEvYl5ZZSWtqOKe1M0+ncTjttp50ytNNeOqWFGgoUk0LZCVC2QhKR4EAiQhKyKftqRY7jTbIly5Ks7dw/jmTLiePYiqXfOdL7eR49to8k6ysT/Pq3S7Isg4iIKBk60QUQEZF2MUSIiChpDBEiIkoaQ4SIiJLGECEioqQxRIiIKGkMESIiShpDhIiIksYQISKipDFEiIgoaQwRIiJKGkOEiIiSxhAhIqKkMUSIiChpDBEiIkoaQ4SIiJLGECEioqQxRIiIKGkMESIiShpDhIiIksYQISKipDFEiIgoaQwRIiJKGkOEiIiSxhAhIqKkMUSIiChpDBEiIkoaQ4SIiJLGECEioqQxRIiIKGkMESIiShpDhIiIksYQISKipDFEiIgoaQwRIiJKGkOEiIiSxhAhIqKkMUSIiChpOaILIEq16pq6HAAlAKSEy9IpD0v82l+7vMqX8sKIMoAky7LoGoiGpLqmLg/AVABTAIwBMBLAqAE+libxMgEA7QBcp9wSrzkBHAdwqHZ5lTP5d0SkXQwRUqVY62EKgBn93CYD0Iurrl/tAA4n3A7FP9Yur2oTWRhRKjFESLjqmroyAJfEbhcDmAXgPGROd2sHgIMAtgL4NHY7WLu8iv/zkeYxRCitqmvqdADmQAmMS2O3mci+SR7tADajN1Q+ZZcYaRFDhFKquqYuH8AXAFwBJTAWIbkximxwGEqgfAxgde3yqnqx5RCdHUOEhl11Td35AJbGbl8EUCS2Is06CGAVgNUA6jhjjNSIIULnrLqmTg/g8wBuAXAzgOliK8pIAQBrAbwN4J3a5VUnBddDBIAhQkmKTbO9HsBtAG6AMpWW0kOGMkj/JoAX2e1FIjFEaEiqa+ouAvANAF8Bg0MNZAAfAXgGwGu1y6u8YsuhbMMQobOqrqkbB+BuAPcAMAkuh86sC8AbAJ4FsI5TiCkdGCLUr1h31U1QWh1LkTlrNrLFcQDPAXi2dnnVIdHFUOZiiFAf1TV10wF8H8BdYHdVprACeBTAytrlVWHRxVBmYYgQAKC6pu4SAD+WZflWSZKybeFftrADeBhALcdOaLgwRLJYdU2dBOBGAD8CcLngcih92gE8CeBPnCpM54ohkoVi4x13A/h3KPtUUXYKAngewO9rl1ftE10MaRNDJItU19SVA/iuLMvflyRpguh6SDVkAO8B+F3t8qqPRBdD2sIQyQLVNXUFAH4gy/JPJEkqF10PqZoFwI9rl1ftEF0IaQNDJIPFdsz9uizLD0iSZBBdD2mGDOAFAD+vXV5lF10MqRtDJENV19RdK8vR30mSbq7oWkizugE8BuB/apdXuUQXQ+rEEMkw1TV182VZ/l9Jkq4SXQtljA4Av4UymysguhhSF4ZIhqiuqZssy/KvAXyV6zwoRRwAfgHgudrlVVHRxZA6MEQ0rrqmLk+W5Z8C+KkkSfmi66GssAVAde3yql2iCyHxGCIaVl1Td2k0EnlGp9dfILoWyjphAP8L4AF2cWU3hogGVdfUFUdCwd/rcnLvkyRJEl0PZbWDAL5du7xqvehCSAyGiMZ86+G1S2U5+ld9Tu540bUQxcgAagH8qHZ5lVt0MZReDBGNqK6pGxUOdT+ek5t/h+haiM6gEcD3apdX/V10IZQ+DBEN+NbDH9wF4DGdPmeE6FqIBuHvAP6FmztmB4aIilXX1JWFg4EXcvIKbhRdC9EQtQH4Wu3yqlWiC6HUYoio1Nd+9+7F+pzct3Jy8zn2QVolA/gdlO1TeBhWhuKiNBW684FXf5mbX2hlgJDGSQD+A8D66po67t2WodgSUZE7//uVEfrcvHcKSysuE10L0TBzAbindnnVu6ILoeHFEFGJ//PLF75QWFrxem5+0WjRtRCliAzgDwB+Wru8KiS6GBoeDBEVuPO/X7m/aMTon+t0er3oWojS4FMAX+Y285mBISLQHb94vjSvsPgfhaUVPN+csk07gK/ULq9aLboQOjccWBfkhu//cUZBcdkeBghlqQoA71bX1H1bdCF0btgSEeDa7/y/68ZPm/tKbkFRqehaiFTgdwB+Uru8ir+MNIghkkZGk1m6wHzTDyddcNH/6HPz8kTXQ6Qir0KZvcUdgTWGIZImRpNZP7vqS4+Onz7v2zqdnt2IRKezArildnlVm+hCaPAYImlgNJkL5y/9+htjJs9cKroWIpU7AuD62uVVB0UXQoPDEEmxhdfdM2bqRUssI8ZNnie6FiKNcAG4rXZ51UeiC6GzY4ik0KW3/8vMKfO/uKa4Yiy3fCAamiCAu2uXV60UXQgNjH3zKbLw+m8smrrwyvUMEKKk5AF4qbqm7suiC6GBMURSYO6SL191weIb3ysqHzVWdC1EGqYH8EJ1Td2doguhM2N31jAymsxSychxy+ZeddfjxSPGcA8souERgXI2yUuiC6HTsSUyTIwms1Q8YsyXGCBEw04P4Lnqmrq7RBdCp2OIDIN4gMy75u4/M0CIUkIP4G/VNXVfFV0I9cUQOUcMEKK00QN4lkGiLgyRc8AAIUq7eIvkbtGFkIIhkiSjySwVlIy4bd41dz/GACFKKx2UFsntogshhkhSjCazpNPn3jj3qq88UjxizBjR9RBlIR2U6b88SlowhsgQGU1mCcD1c6+686HysYZK0fUQZbECAG9X19TNEl1INmOIDN2Vsy679ddjjLNmiC6EiFABYFV1Td1E0YVkK4bIEBhN5oumzK+6v/LCi+eLroWIekwG8F51TV2J6EKyEUNkkIwm84xxU00PTF101WLRtRDRaeZB2WuLv9PSjD/wQTCazJPKxlTef+EXb79Sp9PpRddDRP26EcBDoovINgyRszCazCPyi8t+Ov+au6/Lyc0vEF0PEQ3oB9U1dd8RXUQ2YYgMwGgy50s6/fIFS++5Jb+4rEJ0PUQ0KDXVNXVXiC4iWzBEzsBoMusA3HPh5bfeXjpqAqfyEmlHDoAXq2vqxokuJBswRM7shgkz5n9pwvkLeawtkfaMh7IYkb/jUow/4H4YTeaLCstGfm3mZbeYJUmSRNdDRElZAuAXoovIdAyRUxhN5vGQpPvmX/v1S3Jy84tF10NE5+S/OD6SWgyRBEaTOR/Ad2d/Ydn8koqxk0XXQ0TnTAdlfGS86EIyFUMkJrYn1rLx0+ddPOH8BYtE10NEw4bjIynEH2qvhYWlI2+dddmtl3EchCjjXAngv0QXkYkYIgCMJvM4SNK35y/92sU5efncf4coM/2iuqbuStFFZJqsDxGjyZwH4DuzPn/z3JKKcUbR9RBRyugAPFddU1cuupBMkvUhAmBZ+VjD3IkzF3EchCjzTQTwv6KLyCRZHSJGk3k+gOvmXHHHIp1OnyO6HiJKi+rqmroq0UVkiqwNEaPJXAHg2zMuvW5cUfloTuclyh4SgKeqa+q4oeowyMoQiU3nvbOofHSp4cJLvyi6HiJKu+kA7hddRCbIyhABMBfAYtOSOxfpc3LzRRdDREL8sLqmboHoIrQu60LEaDIXA/iWcd4XystGT5wpuh4iEiYHwNPVNXUcDz0HWRciAG7LKyypmLqgivPFiWgBgB+KLkLLsipEjCbz+QCuNi25c3ZOXgEXFRIRANxfXVM3Q3QRWpU1IRLbXPGfxk+bV1QxYcpC0fUQkWoUAHhMdBFalTUhAmApgLHTL75mMbfGIqJTXF1dU3et6CK0KCtCxGgyGwDcMmXhFWWFpRWTRNdDRKr0IHf6HbqM/4HFz0rX6XOCk+eYq0TXQ0SqNQ/A10QXoTUZHyJQ/mHMOH/xDZPzCopHii6GiFTt11zJPjQZHSJGkzkXwF15BcWeCTPmc2U6EZ1NJYAfiC5CSzI6RACYAYyZefktc3Ny84tEF0NEmvCT6pq6UaKL0IqMDRGjyVwE4I7iirHeMZNnLRZdDxFpRjmAX4guQisyNkQALAFQPPPzNy/W6fW5ooshIk35bnVN3VTRRWhBRoZIbJv3m0dOmhasmHAeN1gjoqHKA/Ab0UVoQUaGCIAbAUjTP3eNWZJ0XFlIRMm4g9uhnF3GhYjRZJ4I4MqyMZW+sjGTZouuh4g0SwduznhWGRciAJYBCE5bdNXFbIUQ0Tm6p7qmbqzoItQso0Iktr3JwoKSER0jJ07lJotEdK4KACwXXYSaSbIsi65h2BhN5n8CcMmcK/7PtAkz5mfkeSEdzcfx4TMP9Hzd2XYSC6//JnzuNhzfbYUuJxdloyfi8rv+A/lFJYN67pwrvoTNbz2Jhn2bMWrSNHzxaz8DABzavAbdPg/mVH0pPW+OSJ1cACbXLq/qEl2IGmXMiV5Gk3kUALM+N79pjHHWV0TXkyojxk3Gbf9RCwCIRiN4+Rd3wDjvMribHVh0073Q6fXY/NaT2Gl5ARffct+gnhv0e9FybA9u/8nTqHv213A1HkXZ6Ek4tHkVln73d2l/j0QqMxLAPwH4k+hC1CiTurOqAMjTLloyJycvPysOnGo8sA2loyeidOR4VM76HHR6PQBg7HkXwtfROujnQtIhGglBlmWEQ0Ho9DmwrX0Zs79wO3T6jPk7g+hc/F8eo9u/jAiR2Lnp1wBS8/gZ882i60mXo9vWYdpFS067fnDT+6i88JJBPzevoAjnzfsC3vzdvSgdNR55BcVoPX4AxrmXpaRuIg0yArhDdBFqlCnJuhhArnHeZVPyC0tGiy4mHSLhEI7vtuJzN93b5/qO1c9Dp9dj2qKrhvTcuVd9BXOvUnoBP37xf7Hw+m/igPUfOLF/CyomTcOCa7lDNmW9HwF4SXQRaqP5lkhsp96bALRWzrw4a1ohDXs/xajK81FY1ru7/aFPV+H4nk9Q9fX/xECnN/b33Lg2xyEAQPnYShzasgZXfut+tJ88BndLw/C/CSJtWVBdU5eRE3bOheZDBMACAOWjKqcXF5WPMoouJl2ObFuHaRf1/ntu2LsZuz54GVff+z/IyRv4OIRTn5to23srsPCGbyIaiUCORgAAkiQhHAoMX/FE2lUtugC10XSIxE4tvBWAyzB78XzR9aRLOBhA4/7PcN68y3uuWV97BKFuH1b9+d/x9wersfGVPwAAutxtWP3ETwZ8blz9rg0YPXkmistHI7+oBGOnzMYbv/0WJEgYNWl66t8YkfrdWl1TVy66CDXR9DoRo8l8IYAfSzq9verr//lvOXkFpaJrIqKMd1/t8qq/iC5CLTTdEgFwJQBf5YWXTGWAEFGafEN0AWqi2RAxmsxlUMZD2iZMn5c1XVlEJNzi6pq680UXoRaaDREA8wFI+cVluaWjJ84UXQwRZZVviC5ALTQZIkaTWQJwFQD3eXMvn63jsmoiSq+vVdfUafL353DT6g9hEgADAPcY4yx2ZRFRulVC+UM262k1RC4GEKmYMGVkYdlIg+hiiCgrfUN0AWqguRAxmsw5AK4A0GaYs3ie6HqIKGvdWl1TVya6CNE0FyIALgBQAiBQMf48Hn9LRKIUAlgqugjRtBgilwMIVEyYMjKvsGSU6GKIKKvdKLoA0TQVIkaTuQTAIgBtE2bM5zxtIhLtumyfpaW1Nz8TSs2REePPmyG6GCLKeqMBDHx4T4bTWogsAhDIKyzJKyrLnh17iUjVsrpLSzMhEjs3ZD4A16SZi6ZKOp1edE1ERABuEF2ASJoJEQDnAcgFEB5VOYPjIUSkFvOqa+oqRRchipZCZDYAGZBQOmoCx0OISE2ytktLEyES2ytrMYD2sVMunJCTV1AiuiYiogQMEZUbDWAMgK5xU+awFUJEanNldU1doegiRNBKiPSMgZSPNfCcViJSm0IAZtFFiKCVELkEQJc+N19fUDJiouhiiIj6sVh0ASKoPkSMJnMBgAsBtI8xzhzPqb1EpFKXii5ABNWHCICpACQA0YoJU7N2Gh0RqV5WrlzXQoicF/+kdNR4hggRqdXo6pq6rJv4o4UQmQ3ACwBFZaMYIkSkZlnXpaXqEDGazHoA0wF4ispHF+UWFI0QXRMR0QAYIiozFkAOgMiY82axFUJEascQUZme4CgfO5khQkRqN7e6pq5IdBHppPYQOR9AGABKKsYyRIhI7XKgHFmRNdQeIhcC8EiSTuIiQyLSiKya6qvaEDGazEUAJgDwjRhvrNDn5OaLromIaBBMogtIJ9WGCIBJAGQActnYytGiiyEiGqRZogtIJzWHiAHKSnWUjBjHECEirbhAdAHppOYQmQHADwCFZRUMESLSitJsOulQzSEyGYAPAPKLyxkiRKQlM0UXkC45ogvoT2yl+jgAjQCQX1gySmxFRESnk+WoHOr2dwQ6O7py8gs2FJWN2gjgEICtomtLF1WGCIAKxHbuzS8qzdfn5mXV4h0iUg9ZluVwMOAJ+r3OQJfHFehsd3Z1tDg9bY0ud7OjPRoJRaGM4b5pt1nfEV1vuqk1REZDmZmFsjGV3C+LiFIuHAx0Bv1eV3dXp9Pf2e7scre6Op0nne7m4+3hYCA8wFP1AKIApqSpVFVRc4joAaBk5LgKwbUQUYYIh7p9IX+Xs9vX6fJ3tjt97jZnp6vJ1dFkd4YCXaEBnqqDcgRu/Nbn20LperelqGxVU2uITAAQAoDC0pEMESIatEg4FAj6u1zdPo8z4O1w+jxOl9fZ5Oxotju7uzzdAzxVQt+g0EFpYUixj80AjgBwxD53AnAB8NhtVjmFb0nV1BoiEwEEAKCgpJzdWUTURzQSDgb9Xa5uf6cz4HW7/B6n0+tqcrqbHS6fx+kb4KkSgHwARVCCIt4VJcXubwFwEIAdQBOUkHACcNtt1miq3o+WqTVExiMWIrkFxaWCayEiAaLRSDgU8Lm6fZ2u7i630+d2Or3tLS5Pq8PpdTV7z/L0xKDIBRCBEhQSlFA4CuA4gJOxr50AOuw2ayRV7ydTqS5EjCazDsAYxKb36nPzTu1/JKIMIUej0VC3r73b53V2d7mdPo/L1dXR4vS0nnB5Wk+4Y/NrziQPSkgUxT5PDIoOKN1ODgAN6O16ctlt1oEGyWmIVBciAMrQ2weJnByGCJGWKWspAh3KzCe30+9pd3Z1tLg8rSec7taGDjkaGSgpctE7RpGP2H56ULqhPFD+2EwMCieUoAim8j0NhcPhyAFwHpRdOGZAOeJiBoCdBoPhxwJLGxZqDJGSxC90ObkMESKVk2UZ8bUU3V0ep7+z3dXlbnV2tjY63S2Ojkg4OFA3UQ56g6IAvUGhg7L10YnY7TiANsTGKew2ayCV72koHA6HDspakcSQiN+mQAnDUxWnrcAUUmOIFCKhDatnS4RINcLBgDfo73J2+zwuf2eH0+dudXa2nXR1NB93hYP+s62lSAwKoDcouqEMYu9Bb1DEWxV+Nc18cjgcE3F6SJwPYCp639dgTRve6sRQa4hIAKDPzdfr9Pr+EpyIUiQSCvqCfq+r29fp9HvbnT53zxRZV9DvHaib6NS1FPFuaQnKeEUTlJlPx6HMgoqPU3hVFhRjcXpIzAAwHcPbehjvcDiKDAbDQLPJVE/VIVJYOoKtEKIUiIRD3aFAl7O7q9MZ6Opw+dxOp9fV5OpotjsDXvdA3UQSlL+44zOfTl1L0QLgGJSgiK+lcEJlaykcDkcFTg+J+K08jaUYAexL4+sNO1WHSH5xOUOEKEnRSDgUDPhcQZ/HGfAqM5+87c1Od/Nxp8/dNpi1FPGZT6eupWiD0qJwoHeKrAvKFFnVrKVwOBwl6D8kzgeglk1dx4EhMuzKoTR9kV9UyhAhGkBsLUV70NfpDHS5XX6Py+ltb3a6WxpcXldT51menhgUOegNivhainooLYpG9C66a1fTWgqHw1GAvgGRGBrjBZY2WONEF3Cu1BoiIQDIKyxhiFDW61lL4fe6urs8Tr/H5fK2tzg9bQ3OztZGjyxHB+omiq+liE+RjaJ3QNsNZWqsA8rsp8S1FAPtI5VWDocjF8ogdH9BUYneFpIWaSHoBqTGECmDsqEZcvOLGCKUFWRZlsPdfne3MkXW5e90Obs6Wp2dbY0ud4ujIxoJD9RNdKa1FDoAXigBEQ+LeIvCZbdZB9pHKq0cDoce/a+lmAFl3EAvrLjUYkskBUoRa4no9PpM/YdDWah3LUWXq9vndvo7O5y+jlZXp7PR2dF0vP0sayn06B3MPnUtRQC9i+4c6J0i67LbrP5UvqehcDgcEpS1FP2NUZxpLUWmY0skBUoRa4kQaVE42N0V9HudsV1kXV0dbc74uRShbt9gthsvwulrKYJQBrH3QhmnaEVvq8KnsplPE9B/UEzD0NdSZDq2RFKgBMDZBgSJhIqEg/74ortAZ0efcykGsZYicYrsqWspmgEchrKLbCt6xyk6VRYUY3DmtRQlAzyV+mKIpEAu4ivWZVk1/9NQ9omtpXB1+5Ttxn3uNmdsiqzL39k+UDdRfC1FvFWRuJZChrKWYi+UrqfE7cY9KpsiOwJnXkvBIxqGx2jRBZwrNYYIUdpEI5FQLChcgS630+dxOrtczS53S4Ozq6Ola4CnJq6lKETfKbKAMi5xGErXUxN6F925VTZFthhnXkuh+V9wGqD5/bMYIpS1fB7n8Y0v/+GvZ9luPDEoTt1uvB3KWgoHlIHteNdTu5q2G4+tpZiO/rufJggsjU4/aldz1Bgi7MKi9JBlOfbPLRe9YxR56LvdeAeUKbLx7cYTp8iqbS3FVPTf/WSAttdSZDKGSArIp31ClALRSCQfwGQAXVBaEsfR9wAjpwrXUhjRf/fTecjctRSZTOdwOPINBoNq/p0NlRpDhCgtCstG1gP4FxWupajEmddS5ImrjlKkCMp2+JrEEKGspc/J7RYVILG1FP2NUUxDBnRx0JAUQRlf0yR1hwin+JKGORyO0eh/jGI6lEW1RIDG/2hQdYiEuv2qOf6SqD8Oh6Mc/Y9RzABQIbA00g5Nr+JXdYgEA12q6aum7JWwlqK/7qcxAkujzKCadUPJUGOIyIhNRwz6PAwREsrhcBRC2QmXKFVUs6YoGTrRBfTDj9hUxUAXQ4SE4/oKSjXVrDdKhhpbIp1QDqYK+D3tmj7AnrTp6quvHglgPoDJJSUlU//0pz+JLokym6ZbImoMEQ9i5x+Hg/5wNBoJ63R6NdZJmasKwFcAtEWj0YF25CUaDpoOETV2Z3mQcDhNNBxilxaJ0A6gWZIkjodQqmm6O0uNIdKBhBCJhIIMESLKZGyJDDM3EvYACoeDHBchokzGlsgw6xMabIkQUQYLGQwGTf+hrMYQ8UM53AcAEO72D3QwEBGRlml2z6w4NYZIn1QOeDs0/0MmIjoDl+gCzpUaQ6RP91WXu80pqhAiohRjiKSADwmrhDvbGjX/QyYiOgPN/35TY4h0xD5KANDRfNwlc0t4IspMDJHhZrdZIwDaENseORLqjoSDAY/YqoiIUoIhkiInkHBQS9Dv5bgIEWUihkiKOKAcGQkACHR5NP+DJiLqR4PoAs6VWkPkJBJqC3S2syVCRJmoXnQB50qtIeJCwoLDLncrWyJElInqRRdwrtQaIk70meZ7kiFCRJkmAnZnpUzfab5Ndlc0GtH0TpdERKdoNBgMmt58EVBpiMSm+bYgNkMrGglFu73uk2KrIiIaVvWiCxgOqgyRmD7TfLs6WjXf7CMiSlAvuoDhoOYQOYaEab7uFgdDhIgySb3oAoaDmkOkPvGLNsfBE4LqICJKhX2iCxgOag6RBiTM0PK0NrjDwUCnwHqIiIbTLtEFDAc1h4gHyiytgvgFn8fF1ggRZYIggAOiixgOqg0Ru80qQ2nulcWveV3NHBchokywz2AwZMSyBdWGSMw+JLREOpqOMUSIKBNkRFcWoP4QaQDQc5ZIy7G9jbIc5dkiRKR1DJE0aYx91AFAqNsX6u7qbBZYDxHRcLCJLmC4qDpE7DZrEIAdQEn8Wqez8Yi4ioiIhgVbImm0B0Bp/IuW+n2HBNZCRHSuHAaDIWO2cdJCiBxBQp0nD20/HgmHAgLrISI6FxtEFzCctBAix6AsOpQAQI5GZK+r6bDYkoiIksYQSSe7zeqGMi7S06XlOnGEXVpEpFUMEQE2ARgR/6LxwGeHZVnmVF8i0poOALtFFzGctBIifTYq83mcvkBnO7dAISKtsRoMhujZH6YdWgmRBgBdAPLjFzqajx8UVw4RUVIyqisL0EiI2G3WKIDNAEbGrzUftTFEiEhrGCIC7QCQG/+i1b6vOdTt9wish4hoKDqhjO9mFC2FyGEo+2j11OxpbdgvrhwioiFZZzAYQqKLGG6aCRG7zeoHsB8Js7Qa9m3ZIa4iIqIhWSW6gFTQTIjEfIqEfbRaju0+2e3rbBFYDxHRYL0vuoBU0FqI7EPC6nUAcDoO7hRXDhHRoOw2GAx20UWkgqZCxG6ztgI4CKAifq1+18e75Gg0o+ZdE1HGeUd0AamiqRCJWYuELVC62lu83o4Wbg9PRGr2tugCUkWLIbIbQBhATvxCy9HdHGAnIrVqhrLOLSNpLkTsNqsPgBXAmN5rGw9we3giUqmVmbbVSSLNhUiMFUBe/ItIqDvS0Xw8ozY1I6KM8aLoAlJJqyFyGMpumIXxC437uWaEiFTnmMFg+ER0EamkyRCx26wRKAPso+PXmo7sOtHd5eGaESJSk5dEF5BqmgyRmC04pf6mI7sybl8aItK0F0QXkGqaDRG7zdoMpVurZ83I0W3rbOFQd5e4qoiIeuwyGAx7RReRapoNkZgPAJTFvwgHA2Gn4+BWgfUQEcVl9IB6nNZDZCcAPxIOqzq89YMt0WgkIq4kIiJEwBBRP7vNGoCyqdm4+DVfR2uXu/n4LnFVERHhHwaDwSG6iHTQdIjEbIByzog+fuHIZ2s3yrIsiyuJSP0aGxvx5S9/GVdeeSWWLFmCp59+GgDwz//8z1i6dCmWLl0Ks9mMpUuXnvbcQCCAm266Cddeey2WLFmChx56qOe+73//+7jmmmvw4IMpjZeXAAAbUUlEQVQP9lx75JFHsGbNmtS/KfX4s+gC0iXn7A9RN7vN2m40mTcAWAygEQDaG486O9sa95WNmXSh2OqI1Euv1+PnP/85TCYTvF4vbrjhBlx++eX48597f//96le/Qmlp6WnPzc/Px8svv4zi4mKEQiEsW7YMV1xxBQoLlaVba9aswbJly+DxeOD3+7Fjxw7867/+a9rem2CHAWRNYmZCSwRQBthzkbBF/LEddRl3ljHRcBo3bhxMJhMAoKSkBNOnT0dTU1PP/bIs491338Utt9xy2nMlSUJxcTEAIBwOIxwOQ5Ik5OTkIBAIIBqNIhQKQa/X46GHHsIPf/jD9LwpdXjSYDBkTU9IRoSI3WZ1ALAhYT+tlmN7Tnrbubsv0WA4HA7s2bMHCxYs6Lm2efNmjB49GlOmTOn3OZFIBEuXLsWCBQtw2WWXYcGCBZgxYwYmTpyI66+/HjfeeCPq6+sBAHPmzEnH21CDAIAVootIJ813ZyV4B8B/Jl6w7/zoo9lVX5omqB4iTejq6sJ9992HX/7yl326rt56661+WyFxer0eq1atgtvtxre//W0cOHAAF1xwAe6///6ex3zzm9/Eb3/7W9TU1GDv3r24/PLLcdddd6Xy7Yj2isFgcIkuIp0yoiUScxjAIQCj4hcaD2473uk8eUBcSUTqFgqFcN999+G2227Ddddd13M9HA5j1apVuOmmm876PcrLy3HppZeirq6uz/U1a9Zg7ty58Pv9OHDgAB5//HG88cYb8Pv9w/021CRrBtTjMiZE7DarDOAtJBxYBQAHN73/gSxHs6Z/kmiwZFnGj370I0yfPh333ntvn/s2bNiAadOmYcKECf0+1+l0wu12A1BmasUfHxcKhbBixQp85zvfgd/vhyQpw5XRaBTBYDBF70i4DQaDIWPPDTmTjAmRmL0AHEjYCsV14nBb+8n6beJKIlKnLVu24I033oDVau2Z0rtu3ToAwNtvv42bb765z+Obmppwzz33AABaWlpw55134pprrsGNN96Iyy+/HFdddVXPY5999lksW7YMhYWFmDVrFmRZxtVXX41FixahvLw8fW8yvX4jugARpExbTmE0mWcD+BGA+vi14oqxJZfe/r3v6/Q5ucIKIzVaX7u8qurUi1dfffXtAJYCaCwuLs6tqan5WdorI63ZbjAYFoouQoRMa4kASmtkDxJWsXe1t3hb7fus4koiogyXla0QIANDJDY28iqAAiS8v/0b37GGg9zhl4iGlyzL+wG8IboOUTIuRADAbrPaAWwEMD5+Lej3BhsPbqsTVhQRZSRJkh7M5DPUzyYjQyTmLSj7afWshTn06fvbuv3eNnElEVEmkWXZDuB50XWIlLEhYrdZW6Hs8NszRzEaCUeP2zZ+IK4qIsokkiT91mAwhEXXIVLGhkjMKgAhKOMjAID6HesPdLqaDokriYgygSzLBwA8LboO0TI6ROw2qxfASiTM1AKAvXWvvxuNhDN2xRMRpZ4kST/N9lYIkOEhErMBQDsSVrJ72k54Tuzfym4tIkqKLMufGAyGv4uuQw0yPkTsNms3gL9B2eG3Z6v4/Rvf2eLzuLLi5DEiGl6SJP276BrUIuNDJGYngE0AJvZekrHv4zff5nnsRDQUsiz/3WAwcPFyTFaESGwB4ksAwgAK49ddJw63tRzd/ZGwwohIU2RZDkuS9FPRdahJVoQIoByjC2U+9/jE63vWv7Ghu8vTIqYqItKYJw0GA4+XSJA1IRLzCYDdSAiSaCQUPfDJP96SM20nSiIaVtFotFWSpP88+yOzS1aFiN1mjUIZZM8BkBe/3nzU1uh0HPxUWGFEpHo6ne4HBoPBLboOtcmqEAEAu83aDGWDxomJ123rXl3Lbi0i6k8oFPrIYDC8KLoONcq6EIlZB+W8kdHxC+GgP7z7w5WvchEiESWKRqOh3Nzce8/+yOyUlSFit1nDAFYAKEbCBo2uxiNO+64N7worjIhUJxqNPmgwGA6KrkOtsjJEAMBusx4H8DoAQ+L1w1vW2NpPHtsupioiUpNQKGTPycn5teg61CxrQyTmfSiztSYkXtyx+vn3OD5ClN1kWZZzc3P/yWAwdIuuRc2yOkTsNmsEQC2AIBL21uL4CBF1d3c/aTAY1oquQ+2yOkSAnkWIf4YyyH7q+Mg/hBVGRMIEAgF7QUHBv4muQwuyPkQAwG6z7gPwGk4fH9nF8RGi7BKNRiMA7jAYDAHRtWgBQ6TXezjD+Eigy9MspiQiSrfOzs6HZsyYsUV0HVrBEIkZaHxk5+rnXgwHA53CiiOitOjq6tpbXl7+M9F1aAlDJMGZxkc8bSc8e+pef5ED7USZKxwOB3Nycm4zGAw8HmIIGCKniI2PxNeP9Bxi1VK/p+nQ5jWvyXKUGzUSZSCv1/uD6dOnc1HhEDFE+vcPAJtxykD7cduGQw17P31PTElElCpOp/N1k8n0uOg6tIgh0o/Y+MjTAI7hlIH2/Rvf2dpq389TzYgyhNvtrpdl+aui69AqhsgZ2G3WAIAaAJ1I2KgRAHasfs7iaT2xV0hhRDRsuru7/Y2NjdcvWLCAq9KTxBAZgN1m7QDwBwB6JMzYAmR89o+n/+73uBoElUZE5ygajcp2u/2+a665Zp/oWrSMIXIWdpu1EcDDAEYCKIhfDwcD4W3v/fWlYKDLJaw4IkpaQ0PDiiVLljwnug6tY4gMgt1mPQDgSSgHWfVM/fV5nL7t7z/7t1DA1yGsOCIaspaWlp3bt2/nGSHDgCEySHabdROUExEnI+Hn5mltcG97/5lnGCRE2tDR0dFSX1+/5Hvf+x6n6w8DhsjQvAfgQyhB0rOGhEFCpA0+n8+3c+fOpcuWLXOKriVTMESGwG6zRgE8D2ArGCREmhIOhyNbtmypvvvuu7mp6jBiiAyR3WYNAfgLgM/AICHShGg0Klut1l/dfffdL4muJdMwRJJgt1mDYJAQacaWLVuee+aZZx4QXUcmYogkiUFCpA27du368Mknn6y2WCwcSE8Bhsg5GEyQBP1eDuARCbJnz57PHn744ZstFktIdC2ZiiFyjs4WJJvffPxpn9t5XFR9RNlq7969ex599NGlFovFK7qWTMYQGQYDBYm/s92/6Y1H/+ZucewWVR9Rttm/f//hxx577IZ333237Vy/lyRJsiRJzyV8nSNJUqskSe+e5XmLJEn60zm87nmx1/5VwrXRkiSFJEl69CzPrZIkyTyI73/Ov5cYIsPklCA5Dwk/20ioO7L5zSdebzm252NB5RFljcOHD9c/8cQTt7z99tv2YfqWXQDmSJJUGPv6agAnzvYkWZa3yrL8/cG+iCRJOf1cPgrgxoSv7wCwZxDfrgrAgCEyXBgiwygWJE8AWAslSHJ775Wx0/LCOvuuDW/L0WhUSIFEGe7YsWMNTz755K2vv/76cO+y/T6AG2KffwVAz1RhSZIuliTJKknS9tjHC2LXq+KtFUmSRkqS9KYkSbskSdokSdLc2PX7JUn6iyRJawD8rZ/X9QPYJ0nSotjXX4ayc0b8tW+SJOnT2Gt/IEnSOEmSzgPwHQD/JknSDkmSLo9d/7skSTtjt3jA6CVJekqSpD2SJK1JCMpBY4gMM7vNGgbwHJR/ZJUA+vxHObjpve0HPnn3hUg4xK2niYaR3W5vfOqpp257+eWXd6bg278M4E5JkgoAzAXwacJ9+wF8QZblBQD+C8Bv+nn+fwPYLsvyXAA/Q9/AuAjALbIs33WW164EEAHQmHDfBgCXxl77ZQA/lmW5Hsofs3+UZXm+LMsfA/gTgPWyLM8DsBC9rZkZAB6TZXk2gA4Ay87+o+irv+YTnSO7zSoDeN9oMrcB+C6U/zie+P2OPZuO+js7Vsy54o6v5uYXlomqkyhTHDp0yP7444/fuXLlyq2p+P6yLO+K/YX/FSjbHyUqB/CsJEkzAMjo0wPR4zLEfkHLsrxOkqRRkiSVx+57W5Zl/wAvvwrArwA0A3jllPsqAbwiSdIEAHlQDtLrz5UAvh57/QgAtyRJFQCOybK8I/aYeFf8kLAlkkJ2m3ULgN8CyMcpB1u1Hd/fsvWdvzzl7+xo7PfJRDQoNpvt8B/+8Ievrly5clOKX+ptAL9HQldWzK8AfCjL8hwANyHhyIgEUj/X4utWugZ6UVmWg1B+wf8QwOun3F0D4FFZlk0A7jvDaw8ksUckgiQaFgyRFLPbrIeg/CPzQdlKvofX1ez9ZOXDK9ocBz/t98lENKDNmzfve+SRR6rffffdjWl4uRUAHpBl2XbK9XL0DrR/4wzP/QjAVwFlrARAmyzLnjM8tj8PAfgPWZZPXXeW+Nr3JFzvRJ+D9LAWSq8IJEnSS5I0bD0gDJE0sNusTQB+DaAep0wBjoSDke3vP7Pq8JY1r0TCoYCgEok0p66ubvsTTzxx7+rVq9en4/VkWW6QZfmRfu76HYDfSpK0EcopqH2eFvt4P4BFkiTtAvD/0PcX/mBee48sy8/2c9f9AFZKkvQxgMTpzO8AuC0+sA7gXwFcIUmSDUqrZvZQXn8gkixzJ4B0MZrM+QC+CWXqnQNAn1W05eMmjzBdeecdhaUjJvb3fBp262uXV1WdevHqq6++HcBSAI3FxcW5NTU1P0t7ZXRGsizj/fff/+S11177nsVi2Sa6njORJGkZgJtlWR5SYGgNWyJpZLdZu6GsJXkBwCQAIxLvdzcf72D3FtGZhcPh8Kuvvrr2tddeq1Z5gNwM4H+gnIia0RgiaWa3WaN2m3U1lO4tGUqY9Ih3bx3avJrdW0QJfD5f12OPPfbm6tWr77NYLMO9DmRYybL8tizLM2VZtoquJdUYIoLYbdbDAH4JYDeAKThlWmD9jvX7P3u39kl/Z/tZV8YSZbrW1tbW3/zmN6/s3Lnz3ywWyxHR9VAvhohAdpvVA2WK3gtQZm717d5qcXRYX314RfNR23qucqdsdejQoWMPPPDAc42NjT+zWCwNouuhvrjYULDYkbtrjCbzUQD/AqV7qxGxWR3RSCi664OX6sYYZ+2b+fmbby0oKR8vsFyitNqwYcOuv/71r8/JsvykxWLpFF0PnY4tEZVI6N6yQVk1mpd4f6t9X/PGVx56qunwzg/laDQioESitAmFQsGXX375oxUrVvxeluVHGCDqxRBRkVj31qMAngcwDsDYxPujkXDUtu6Vj7avevZJn4dnlFBmcrlcrQ8++OB7a9aseQDA8zxQSt3YnaUyse4ti9Fk3gNlTcn5ULq3erYncDYcat348h/+esHi6xdOmnXx1fqc3KFudUCkSjabbc/jjz++KRAIPGyxWHgGjwawJaJSdpu1EcrK1r9B2XdrXN9HyDjwyT+2bXrj0UfdzY5Tt2Eg0pRQKBRcuXLlh3/84x/fCwQCv2SAaAdbIipmt1kjANbGWiVfh7JVQTOUfbgAAL6O1q7Nbz3+xsQLLto6deGV1xSWVkw6w7cjUiWXy9X82GOPfXLs2DELgL/xOFttYYhogN1mbTKazL8HcDGUMBkJpYurZ9pv44HPjjce+Kx26sIrLzTMWbwkr6B4pKByiQZFlmV5+/btO5966qld3d3dzwBYb7FYOJVdYxgiGhEbK9lkNJn3AfgSgC9AOaekPfFxR7et21u/8+P95y++ftGEGfO/mJObXySgXKIBdXZ2up577rlPtm7duh/AoxaLpV50TZQchojG2G1WN4CnjSbzRgB3Q5kO3IqEMwmikVB0/4a3Nh/9bO2OmZfd/Pkxk2ct1un1/R2UQ5RWsizDZrNtfeKJJw4GAoENAJ5j95W2MUQ0ym6z7jeazL8E8DkAdwIwAmhCwiyuoN8b3GV58cOSkeO2XGC+6YqKCectkCRdf4fjEKWc1+ttf/7559dv3rzZCWWXhjqLxcJtxDWOIaJhsYH3TUaTeTuALwK4HcoeXCcBhOOP87qavZ+9W/vOyEnTP5m68MrPjxg32STpdKeee0CUErIsy7t37/7siSeeOOD3+/cBWGGxWE6KrouGB0MkA8S2mF9jNJk3AbgWylkYESgtk56BSteJw22uE4ffKhk5ft20RVddMqpyxkVcY0Kp1NbW1vD8889/smvXrk4o54Ovs1gs4bM9j7SDIZJBYiveVxpN5vUAboVy+JUfQAt6T1iD19XUuXPN8x/kFZZ8NP1z1ywcO2X2pbn5heViqqZMFAgEutatW/fha6+95gRwBMDTFoulUXRdNPwYIhnIbrO2APiL0WReA2Um1xwoYyXNSGiZBP3e4N6P3ti0f+Pbm6cuvHL2hPMXmAuKucEjJS8ajcp79+7d/PTTT+9xu90A8CqAtWx9ZC6GSAaz26z1RpP5IQAGKN1ci6G0SJqQcDRvNBKOHt6yxnZ4yxpb5YWXTjXMvmRx8Yix0yRJ4iA8DVpzc7P9hRdeWL97924JwD4AL7L1kfkYIhnObrPKAI4DeMpoMv8dQBWAq6EMwLdC6e7q0bB309GGvZuOlo6eWGY0XTZ3VOX0+XmFJaPSXTdpR0dHR/Pq1avXr169uguAG8pWPTs48yo7MESyiN1mbQPwmtFkXgWlVXIzlD25XAA8iY/tbGv07P7w1Q0ANoyfPr9y0syL5pePnTybA/EU19nZ6aqrq6t78803W2VZzgXwNoA1FovFf7bnUuZgiGQhu83qhbJT8HoAC6EMwhuhjJu0QpnZ1aPp8I6GpsM7GnLyClZNNn3+gnFT5swvrhgzjWtOspPP5/Ns3Lhx/cqVK4+Gw+GRULquXrZYLM2ia6P0Y4hkMbvNGoSyzmQzgJkALoeyeFEPpVuiI/Hx4WAgfPSztXuOfrZ2T8nIcSVG02VzR0yYMrOwdEQlAyXzBQKBri1btmx86aWX9gUCgRFQNgJ9GsBudl1lL4YIxffl2gtgr9FkfgHAXABXAZgCZSD+tLETr6vZu2f961YA1sLSisKJMxdNHzVx+oySUeOm63PyCtP8FiiFvF5v+6effmp9/fXXDwQCgZFQFrI+BmCbxWLhKZtZjiFCfcS6uqwArEaTeTyUlskSKKcsBqEESp/pmv7Odv+RLRbbEVhskk4vjZ8+r3LseReeXz6mckZ+cdm4U1+DtMHlcp3csGGD9Z133jkSiUTGQvl9sQLAJp42SHEMEToju83aBOAdo8n8HoDpAC4DcCmU7q4wACcS9uoCADkakU8e3OY4eXCbA8DastGTyiacv2DGiHHGqYVlIytz8wvL0vw2aAhkWZYdDsfBtWvXfvLxxx83Q/njoRTKXlcbLBZLQGyFpDYMETqr2B5dBwAcMJrMLwKYBmA+lPNN4i0NN5QZXn36xj1tJzyethOfAfgMAEpGji8dY5xVWT62srJ4xNjKgpIRE7jDsHh+v9+7f//+HatXr9528ODBEIBRAEoAvATAarFYugb+DpStGCI0JHab1Q9gN4DdsUCZBGAWgEugjKEAQADKtOHTVil7XU2dXlfTPigzeqDT5+hGGy4YO3LS1MrSURMrC8tHTcrLLxop6XQ8ujnFZFmWGxsbj2zatOmz1atXHwyHwyMAlEH5b7cCwGaLxdI98HehbMcQoaTFBuQdsdsao8lcDmAGgIsALICyoFGCEiqe2Mc+opFwtKV+T1NL/Z4mAFsBQKfP1ZWPrRxROnrSqOIRY0YWllaMyi8uG5lfWDIqJ7+wnCvpz43P5/Ps3r1726pVq7bX19d7oXRZTYayx9UKKLOtuE0JDQpDhIZN7MCsrQC2Gk3mHCitlHhLZRaUX1Tx7i4vlGA5bXZPNBKKtp885mo/ecx16n36nDx9+bjJFaWjJ4wsKhtdkVtQWJSTV1CYk1tQlJObV6jPzSvU5+QV6nJyC/U5ufkpequaEwgEfMeOHdu3devWPevXr6+PRqPFUI5ZLgewGYAFwDFO1aWhYohQStht1jAAe+xmBQCjyVwGoBLKaYyzoQzW50BprchQphH7oLRY+j1rOxIORmJb2redrQadPkdXUFpRWFBcXphXUJQv6fS6aCQ81jD70mcrJkxphzKOk7HiwbFly5Y9H3/8cX0kEtGht9XRDOB5AFstFotnwG9ENACGCKVNbKv6vbHbe0aTWQ/ll9okABOgbBRZGftcByVYdFACxZ9wG9Rfy9FIOOrraO3ydbQmDgrLzUdtn9ht1hPD867Uxefzeex2+8EtW7bsjQWHDKW1MRnKGJUVwMcAjlosln6DmmgoGCIkTGzW18nYrYfRZNYBGAGlu2UUlBlgRgAToYRMvOUSDxMp4RaBskNxOHaLPyb++Iw60TEcDoeamprqjxw5cmTr1q1H9uzZE2+hlUMJZQnAMQCvA9jOWVY03BgipDqxAXtX7HY48T6jySwByAdQGLsVJXxeCGV2UTmUECqCEhq6hFszNNyNFY1G5Y6Ojia73X7UZrMd+eSTT453d3fHx5XiLY54cLwFZZD8rF1/RMliiJCmxLa2D8Ru7YLLSblAINDV0tLS0NDQ0HDo0KGG7du3N3o8nmDs7hworbVCMDhIEIYIkUr4fL5Ot9vd2tra2lJfX3/CZrM1HDlyJHETTAlKS2s8lK65EAAblIWchxkcJAJDhCiNotFo1OfzuTs6OtqcTmfryZMnW48fP962f//+1o6OjlMX9umghEZZ7HMAqAewBsoOAse5noNEY4gQnaNIJBIJh8PdoVCoOxQKdXd3d/u9Xm+nx+PxdHR0eFwul6elpcVz8uTJzsbGRq8sn3FyWXxMJx+9EwHsADZAGRs6arFYvOl4T0SDxRAhGoDf7w+vWLHir7Isy9FoVI5Go3IwGAx7vd6g2+3udrvd3QkD24OVB2XQvxjKwH8USkvDBWWx5j4AJwA0crdcUjuGCNEAotGovGHDhuNDfJoeSmsifstDb8tCB6ALylYxx2If2wC0cNEfaRFDhKh/8a6l+PoTHZRw0EP5/ya+3kROuMUfG4KyTX4TlPNXmqHMJGuFEhhd3F6EMgVDhOh0hwHsh9LNFEHvTKiu2M0b+xiAcp5KN5SV9B4AnQACDAnKFtIAg3xEREQD4pkNRESUNIYIEREljSFCRERJY4gQEVHSGCJERJQ0hggRESWNIUJEREljiBARUdIYIkRElDSGCBERJY0hQkRESWOIEBFR0hgiRESUNIYIEREljSFCRERJY4gQEVHSGCJERJQ0hggRESWNIUJEREljiBARUdIYIkRElDSGCBERJY0hQkRESWOIEBFR0hgiRESUNIYIEREljSFCRERJY4gQEVHSGCJERJQ0hggRESWNIUJEREljiBARUdIYIkRElDSGCBERJY0hQkRESWOIEBFR0hgiRESUNIYIEREljSFCRERJY4gQEVHSGCJERJQ0hggRESWNIUJEREljiBARUdL+P0s+T90GGyBMAAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/Part4.A.1.data-analyzer.ipynb b/Part4.A.1.data-analyzer.ipynb index 831b7a03f..51d656355 100644 --- a/Part4.A.1.data-analyzer.ipynb +++ b/Part4.A.1.data-analyzer.ipynb @@ -884,7 +884,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -899,9 +899,41 @@ "b 1\n", "c 2\n", "Name: 1, dtype: int64\n", + "1 0\n", + "2 4\n", + "3 8\n", + "4 12\n", + "Name: a, dtype: int64\n", + "a 0\n", + "b 1\n", + "c 2\n", + "d 3\n", + "Name: 1, dtype: int64\n", + "1 0\n", + "2 4\n", + "3 8\n", + "4 12\n", + "Name: a, dtype: int64\n", + " a b c d\n", + "1 0 1 2 3\n", + "2 4 5 6 7\n", + "a 4\n", + "b 5\n", + "c 6\n", + "d 7\n", + "Name: 2, dtype: int64\n", "b 1\n", "c 2\n", - "Name: 1, dtype: int64\n" + "Name: 1, dtype: int64\n", + " a b c d\n", + "2 4 5 6 7\n", + "3 8 9 10 11\n", + " b c\n", + "1 1 2\n", + "2 5 6\n", + "3 9 10\n", + "4 13 14\n", + "4\n" ] } ], @@ -910,86 +942,536 @@ "import numpy as np\n", "data = pd.DataFrame(np.arange(16).reshape(4,4),index=['1','2','3','4'],columns=['a','b','c','d'])\n", "print(data)\n", - "#我们要选取第1行第2列,第3列\n", + "# 我们要选取第1行第2列,第3列\n", "print(data.loc['1',['b','c']])\n", - "#当然可以用iloc整数索引来选取,数据要从第0行或者第0列开始算\n", - "print(data.iloc[0,[1,2]])" + "print(data['a'])#只取第1列的数据\n", + "print(data.loc['1'])#只取第一行\n", + "print(data.loc[:,'a'])#只取第1列和data['a']作用一样\n", + "print(data.loc[['1','2']])#要注意是双[],取的是两行第一行和第二行\n", + "print(data.iloc[1])#只能取整数索引,从第0列开始算\n", + "print(data.iloc[0,[1,2]])#通过整数位置,同时选取行和列\n", + "print(data.iloc[[1,2]])#通过整数位置,从DataFrame选取单个行或行子集\n", + "print(data.iloc[:,[1,2]])#通过整数位置,从DataFrame选取单个列或列子集\n", + "print(data.at['2','a'])#通过行和列标签,选取单一的标量\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "|类型|说明|\n", + "|--|--|\n", + "|df[val]|从DataFrame选取单列或一组列:在特殊情况下比较便利:布尔型数组(过滤行)、切片(行切片)、或布尔类型DataFrame(根据条件设置值)|\n", + "|df.loc[val]|通过标签,选取DataFrame的单个行或一组行|\n", + "|df.loc[:,val]|通过标签,选取单列或列子集|\n", + "|df.loc[val1,val2]|通过标签,同时选取行和列|\n", + "|df.iloc[where]|通过整数位置,从DataFrame选取单个行或行子集|\n", + "|df.iloc[;,where]|通过整数位置,从DataFrame选取单个列或列子集|\n", + "|df.iloc[where_i,where_j]|通过整数位置,同时选取行和列|\n", + "|df.at[label_i,label_j]|通过行和列标签,选取单一的标量|\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Numpy\n", - "Numpy是带一组索引的数组,我们可以对其进行加工运算。类似于Series。" + "#### 算术运算和数据对齐\n", + "pandas最重要的一个功能是,它可以对不同索引的对象进行算术运算。在将对象相加时,如果存在不同的索引对,则结果的索引就是该索引对的并集。对于有数据库经验的用户,这就像在索引标签上进行自动外连接。看一个简单的例子:" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 52, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0 1\n", - "1 2\n", - "2 3\n", - "3 4\n", - "4 5\n", - "5 6\n", - "6 7\n", - "7 8\n", - "8 9\n", - "dtype: int64\n", - "3 4\n", - "4 5\n", - "5 6\n", - "6 7\n", - "7 8\n", - "8 9\n", - "dtype: int64\n", - "0 2\n", - "1 4\n", - "2 6\n", - "3 8\n", - "4 10\n", - "5 12\n", - "6 14\n", - "7 16\n", - "8 18\n", - "dtype: int64\n" + "a 7.3\n", + "b -2.5\n", + "c 3.4\n", + "d 1.5\n", + "dtype: float64\n", + "a -2.1\n", + "b -2.0\n", + "c 3.2\n", + "d 1.7\n", + "dtype: float64\n", + "a 5.2\n", + "b -4.5\n", + "c 6.6\n", + "d 3.2\n", + "dtype: float64\n", + "a 5.2\n", + "b NaN\n", + "c 1.4\n", + "d 4.7\n", + "e NaN\n", + "dtype: float64\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "s1 = pd.Series([7.3,-2.5,3.4,1.5],index=['a','b','c','d'])\n", + "print(s1)\n", + "s2 = pd.Series([-2.1,-2.0,3.2,1.7],index=['a','b','c','d'])\n", + "print(s2)\n", + "print(s1+s2)#会依照索引进行相加\n", + "s3= pd.Series([-2.1,-2.0,3.2,1.7],index=['a','c','d','e'])\n", + "print(s1+s3)#如果索引中的值为NaN,那么相加也会返回NaN" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "对于DataFrame,对齐操作会同时发生在行和列上:" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " b c d\n", + "Ohio 0.0 1.0 2.0\n", + "Texas 3.0 4.0 5.0\n", + "Colorado 6.0 7.0 8.0\n", + " b d e\n", + "Utah 0.0 1.0 2.0\n", + "Ohio 3.0 4.0 5.0\n", + "Texas 6.0 7.0 8.0\n", + "Colorado 9.0 10.0 11.0\n", + " b c d e\n", + "Colorado 15.0 NaN 18.0 NaN\n", + "Ohio 3.0 NaN 6.0 NaN\n", + "Texas 9.0 NaN 12.0 NaN\n", + "Utah NaN NaN NaN NaN\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "df1 = pd.DataFrame(np.arange(9.).reshape(3,3),columns=list('bcd'),index=['Ohio','Texas','Colorado'])\n", + "print(df1)\n", + "df2 = pd.DataFrame(np.arange(12.).reshape(4,3),columns=list('bde'),index=['Utah', 'Ohio','Texas','Colorado'])\n", + "print(df2)\n", + "print(df1+df2)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然也可以拿series和dataframe做算术运算,毕竟两者很类似。默认情况下,DataFrame和Series之间的算术运算会将Series的索引匹配到DataFrame的列,然后沿着行一直向下广播:" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a 7.3\n", + "b -2.5\n", + "c 3.4\n", + "d 1.5\n", + "dtype: float64\n", + " b d e\n", + "Utah 0.0 1.0 2.0\n", + "Ohio 3.0 4.0 5.0\n", + "Texas 6.0 7.0 8.0\n", + "Oregon 9.0 10.0 11.0\n", + " a b c d e\n", + "Utah NaN -2.5 NaN 2.5 NaN\n", + "Ohio NaN 0.5 NaN 5.5 NaN\n", + "Texas NaN 3.5 NaN 8.5 NaN\n", + "Oregon NaN 6.5 NaN 11.5 NaN\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "s1 = pd.Series([7.3,-2.5,3.4,1.5],index=['a','b','c','d'])\n", + "print(s1)\n", + "s2 = pd.DataFrame(np.arange(12.).reshape((4, 3)),columns=list('bde'),index=['Utah', 'Ohio', 'Texas', 'Oregon'])\n", + "print(s2)\n", + "print(s1+s2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 在算术方法中填充值\n", + "在对不同索引的对象进行算术运算时,你可能希望当一个对象中某个轴标签在另一个对象中找不到时填充一个特殊值(比如0):" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " a b c d e\n", + "0 0.0 1.0 2.0 3.0 4.0\n", + "1 5.0 6.0 7.0 8.0 9.0\n", + "2 10.0 11.0 12.0 13.0 14.0\n", + "3 15.0 16.0 17.0 18.0 19.0\n", + " a b c d e\n", + "0 0.0 1.0 2.0 3.0 4.0\n", + "1 5.0 NaN 7.0 8.0 9.0\n", + "2 10.0 11.0 12.0 13.0 14.0\n", + "3 15.0 16.0 17.0 18.0 19.0\n", + " a b c d\n", + "0 0.0 1.0 2.0 3.0\n", + "1 4.0 5.0 6.0 7.0\n", + "2 8.0 9.0 10.0 11.0\n", + " a b c d e\n", + "0 0.0 2.0 4.0 6.0 NaN\n", + "1 9.0 NaN 13.0 15.0 NaN\n", + "2 18.0 20.0 22.0 24.0 NaN\n", + "3 NaN NaN NaN NaN NaN\n", + " a b c d e\n", + "0 0.0 2.0 4.0 6.0 4.0\n", + "1 9.0 5.0 13.0 15.0 9.0\n", + "2 18.0 20.0 22.0 24.0 14.0\n", + "3 15.0 16.0 17.0 18.0 19.0\n", + " a b c d e\n", + "0 0.0 0.0 0.0 0.0 -4.0\n", + "1 -1.0 5.0 -1.0 -1.0 -9.0\n", + "2 -2.0 -2.0 -2.0 -2.0 -14.0\n", + "3 -15.0 -16.0 -17.0 -18.0 -19.0\n", + " a b c d e\n", + "0 NaN 1.000000 1.000000 1.000000 0.0\n", + "1 0.8 inf 0.857143 0.875000 0.0\n", + "2 0.8 0.818182 0.833333 0.846154 0.0\n", + "3 0.0 0.000000 0.000000 0.000000 0.0\n", + " a b c d e\n", + "0 NaN 1.0 1.0 1.0 0.0\n", + "1 0.0 inf 0.0 0.0 0.0\n", + "2 0.0 0.0 0.0 0.0 0.0\n", + "3 0.0 0.0 0.0 0.0 0.0\n", + " a b c d e\n", + "0 0.0 1.0 4.0 9.0 0.0\n", + "1 20.0 0.0 42.0 56.0 0.0\n", + "2 80.0 99.0 120.0 143.0 0.0\n", + "3 0.0 0.0 0.0 0.0 0.0\n", + " a b c d e\n", + "0 1.000000e+00 1.000000e+00 4.000000e+00 2.700000e+01 0.0\n", + "1 1.024000e+03 1.000000e+00 2.799360e+05 5.764801e+06 0.0\n", + "2 1.073742e+09 3.138106e+10 1.000000e+12 3.452271e+13 0.0\n", + "3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.0\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "df1 = pd.DataFrame(np.arange(12.).reshape((3, 4)),columns=list('abcd'))\n", + "df2 = pd.DataFrame(np.arange(20.).reshape((4, 5)),columns=list('abcde'))\n", + "print(df2)\n", + "df2.loc[1,'b']=np.nan\n", + "print(df2)\n", + "#将它们相加时,没有重叠的位置就会产生NA值:\n", + "print(df1)\n", + "print(df1+df2)\n", + "#使用df1的add方法,传入df2以及一个fill_value参数:\n", + "print(df1.add(df2,fill_value=0))\n", + "print(df1.sub(df2,fill_value=0))\n", + "print(df1.div(df2,fill_value=0))\n", + "print(df1.floordiv(df2,fill_value=0))\n", + "print(df1.mul(df2,fill_value=0))\n", + "print(df1.pow(df2,fill_value=0))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "以下是Series和DataFrame的算术方法\n", + "|方法|说明|用法|\n", + "|--|--|--|\n", + "|add,radd|用于加法(+)的方法|df1.add(df2)或者df1.add(df2,fill_value=0)将NaN的填充为0|\n", + "|sub,rsub|用于减法(-)的方法|df1.sub(df2)或者df1.sub(df2,fill_value=0)将NaN的填充为0|\n", + "|div,rdiv|用于除法(/)的方法|df1.rdiv(df2)或者df1.rdiv(df2,fill_value=0)将NaN的填充为0|\n", + "|floordiv,rfloordiv|用于底除(//)的方法|df1.floordiv(df2)或者df1.floordiv(df2,fill_value=0)将NaN的填充为0|\n", + "|mul,rmul|用于乘法(*)的方法|df1.mul(df2)或者df1.mul(df2,fill_value=0)将NaN的填充为0|\n", + "|pow,rpow|用于指数(**)的方法|df1.pow(df2)或者df1.pow(df2,fill_value=0)将NaN的填充为0|" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 函数应用和映射\n", + "NumPy的ufuncs(元素级数组方法)也可用于操作pandas对象,后面我们算数运算以及数据再加工都可以用到:" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " b d e\n", + "Utah 0.177277 0.478391 0.300703\n", + "Ohio 0.198568 0.248663 -0.646564\n", + "Texas -0.050653 1.121828 -0.571210\n", + "Oregon -0.157193 -1.688991 0.630852\n", + " b d e\n", + "Utah 0.177277 0.478391 0.300703\n", + "Ohio 0.198568 0.248663 0.646564\n", + "Texas 0.050653 1.121828 0.571210\n", + "Oregon 0.157193 1.688991 0.630852\n", + "b 0.355761\n", + "d 2.810819\n", + "e 1.277416\n", + "dtype: float64\n", + "Utah 0.301114\n", + "Ohio 0.895227\n", + "Texas 1.693038\n", + "Oregon 2.319843\n", + "dtype: float64\n", + " b d e\n", + "min -0.157193 -1.688991 -0.646564\n", + "max 0.198568 1.121828 0.630852\n", + " b d e\n", + "Utah 0.18 0.48 0.30\n", + "Ohio 0.20 0.25 -0.65\n", + "Texas -0.05 1.12 -0.57\n", + "Oregon -0.16 -1.69 0.63\n", + "Utah 0.30\n", + "Ohio -0.65\n", + "Texas -0.57\n", + "Oregon 0.63\n", + "Name: e, dtype: object\n" ] }, { "data": { "text/plain": [ - "0 2.718282\n", - "1 7.389056\n", - "2 20.085537\n", - "3 54.598150\n", - "4 148.413159\n", - "5 403.428793\n", - "6 1096.633158\n", - "7 2980.957987\n", - "8 8103.083928\n", + "Utah 0.318790\n", + "Ohio -0.066444\n", + "Texas 0.166655\n", + "Oregon -0.405110\n", "dtype: float64" ] }, - "execution_count": 4, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd #给pandas别名,更好的使用这个模块\n", - "import numpy as np\n", - "obj = pd.Series(list(range(1,10)))\n", - "print(obj)\n", - "print(obj[obj>3])#筛选出大于3的数组\n", - "print(obj*2)#将数组中的值全*2\n", - "np.exp(obj)" + "frame = pd.DataFrame(np.random.randn(4, 3), columns=list('bde'),index=['Utah', 'Ohio', 'Texas', 'Oregon'])\n", + "print(frame)#打印下frame\n", + "print(np.abs(frame))#打印frame的绝对值\n", + "f = lambda x: x.max() - x.min() #做一个算术运算逻辑,匿名方法lambda\n", + "print(frame.apply(f))\n", + "#当然也可以指定行\n", + "print(frame.apply(f, axis='columns'))\n", + "#许多最为常见的数组统计功能都被实现成DataFrame的方法(如sum和mean),因此无需使用apply方法。\n", + "#传递到apply的函数不是必须返回一个标量,还可以返回由多个值组成的Series:\n", + "def f(x):\n", + " return pd.Series([x.min(), x.max()], index=['min', 'max'])\n", + "print(frame.apply(f))\n", + "#元素级的Python函数也是可以用的。假如你想得到frame中各个浮点值的格式化字符串,使用applymap即可:\n", + "format = lambda x: '%.2f' % x\n", + "print(frame.applymap(format))\n", + "#之所以叫做applymap,是因为Series有一个用于应用元素级函数的map方法:\n", + "print(frame['e'].map(format))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 汇总和排序方法\n", + "当然除了这些运算外,像求最大值,求累计值,求排名和排序这些都会用到,我们就统一理一个表格来梳理下。\n", + "### 排序方法" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " b e d\n", + "2 -0.500263 0.702904 2.335214\n", + "3 3.252250 0.244196 0.171796\n", + "1 0.469565 -0.963382 -1.516873\n", + "4 -0.935815 0.306789 1.418025\n", + " b e d\n", + "1 0.469565 -0.963382 -1.516873\n", + "2 -0.500263 0.702904 2.335214\n", + "3 3.252250 0.244196 0.171796\n", + "4 -0.935815 0.306789 1.418025\n", + " b d e\n", + "2 -0.500263 2.335214 0.702904\n", + "3 3.252250 0.171796 0.244196\n", + "1 0.469565 -1.516873 -0.963382\n", + "4 -0.935815 1.418025 0.306789\n", + " e d b\n", + "2 0.702904 2.335214 -0.500263\n", + "3 0.244196 0.171796 3.252250\n", + "1 -0.963382 -1.516873 0.469565\n", + "4 0.306789 1.418025 -0.935815\n", + " b e d\n", + "3 3.252250 0.244196 0.171796\n", + "1 0.469565 -0.963382 -1.516873\n", + "2 -0.500263 0.702904 2.335214\n", + "4 -0.935815 0.306789 1.418025\n", + " b e d\n", + "2 -0.500263 0.702904 2.335214\n", + "4 -0.935815 0.306789 1.418025\n", + "3 3.252250 0.244196 0.171796\n", + "1 0.469565 -0.963382 -1.516873\n", + " b e d\n", + "2 2.0 4.0 4.0\n", + "3 4.0 2.0 2.0\n", + "1 3.0 1.0 1.0\n", + "4 1.0 3.0 3.0\n", + " b e d\n", + "2 1.0 2.0 3.0\n", + "3 3.0 2.0 1.0\n", + "1 3.0 2.0 1.0\n", + "4 1.0 2.0 3.0\n", + "2 -0.500263\n", + "3 0.171796\n", + "1 -1.516873\n", + "4 -0.935815\n", + "dtype: float64\n" + ] + } + ], + "source": [ + "import pandas as pd #给pandas别名,更好的使用这个模块\n", + "frame = pd.DataFrame(np.random.randn(4, 3), columns=list('bed'),index=['2', '3', '1', '4'])\n", + "print(frame)#打印下frame\n", + "print(frame.sort_index())#我们可以通过sort_index()来返回按照索引的排序\n", + "print(frame.sort_index(axis=1))#之前有说到过axis=0为索引为行,axis=1为列\n", + "print(frame.sort_index(axis=1,ascending=False))#当然我们也可以降序排序\n", + "print(frame.sort_values(by='b',ascending=False))#也可以按照值来排序,比如我们有时希望按照表中哪个字段排序\n", + "print(frame.sort_values(by=['d', 'b'],ascending=False))#也可以多个字段进行排序\n", + "print(frame.rank(axis=0))#按行排序\n", + "print(frame.rank(axis='columns'))#按列排序\n", + "print(frame.min(axis='columns'))#按列排序,求出最小值\n" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " b e d\n", + "2 -0.194546 2.271235 -1.216932\n", + "3 -1.058202 0.138722 -1.688732\n", + "1 -1.035652 -1.011013 1.142144\n", + "4 0.554035 -0.270207 -0.665943\n", + "b -1.734366\n", + "e 1.128737\n", + "d -2.429464\n", + "dtype: float64\n", + "b 4\n", + "e 4\n", + "d 4\n", + "dtype: int64\n", + "b 4\n", + "e 2\n", + "d 1\n", + "dtype: object\n", + " b e d\n", + "2 -0.194546 2.271235 -1.216932\n", + "3 -1.252749 2.409957 -2.905664\n", + "1 -2.288401 1.398944 -1.763520\n", + "4 -1.734366 1.128737 -2.429464\n", + "2 0.286585\n", + "3 -0.869404\n", + "1 -0.301507\n", + "4 -0.127372\n", + "dtype: float64\n", + " b e d\n", + "count 4.000000 4.000000 4.000000\n", + "mean -0.433591 0.282184 -0.607366\n", + "std 0.771398 1.408829 1.238970\n", + "min -1.058202 -1.011013 -1.688732\n", + "25% -1.041290 -0.455408 -1.334882\n", + "50% -0.615099 -0.065742 -0.941438\n", + "75% -0.007401 0.671850 -0.213922\n", + "max 0.554035 2.271235 1.142144\n" + ] + } + ], + "source": [ + "import pandas as pd #给pandas别名,更好的使用这个模块\n", + "frame = pd.DataFrame(np.random.randn(4, 3), columns=list('bed'),index=['2', '3', '1', '4'])\n", + "print(frame)#打印数据\n", + "print(frame.sum())#打印汇总数据\n", + "print(frame.count())#打印行数\n", + "# #这样看行数都是4\n", + "# #我们试着排除NA值看看\n", + "# frame2 =frame[frame<1.2]\n", + "# print(frame2)\n", + "\n", + "# print(frame2.count(skipna=True))#打印行数\n", + "print(frame.idxmax())#求出每一列中最大的索引值\n", + "print(frame.cumsum())#求出每一列的累计值\n", + "print(frame.mean(axis='columns', skipna=False))#求平均数\n", + "print(frame.describe())#描述一整个模型,如行数是多少,平均值是多少,分位数,最小值,最大值,标准差是多少" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "|方法|说明|\n", + "|--|--|\n", + "|count|非NA值的数量|\n", + "|describe|针对Series或各DataFrame列计算汇总统计|\n", + "|min、max|计算最小值和最大值|\n", + "|argmin、argmax|计算能够获取最小值和最大值的索引位置(整数)|\n", + "|idxmin、idxmax|计算能够获取到最小值和最大值的索引值|\n", + "|quantile|计算样本的分位数(0到1)|\n", + "|sum|值的总和|\n", + "|mean|值的平均数|\n", + "|median|值的算数中位数(50%分位数)|\n", + "|mad|根据平均值平均绝对离差|\n", + "|var|样本值的方差|\n", + "|std|样本值的标准差|\n", + "|skew|样本值的偏度(三阶矩)|\n", + "|kurt|样本值的偏度(四阶矩)|\n", + "|cumsum|样本值的累计和|\n", + "|cummin、cummax|样本值的累计最大值和累计最小值|\n", + "|cumprod|样本值的累计积|\n", + "|diff|计算一阶差分(对时间序列很有用)|\n", + "|pct_change|计算本分数变化|" ] } ], diff --git a/Part4.A.2data_summury_and_group.ipynb b/Part4.A.2data_summury_and_group.ipynb new file mode 100644 index 000000000..53abb4b25 --- /dev/null +++ b/Part4.A.2data_summury_and_group.ipynb @@ -0,0 +1,212 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 数据聚合与分组运算\n", + "对数据集进行分组并对各组应用一个函数(无论是聚合还是转换),通常是数据分析工作中的重要环节。在将数据集加载、融合、准备好之后,通常就是计算分组统计或生成透视表。pandas提供了一个灵活高效的gruopby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。\n", + "\n", + "关系型数据库和SQL(Structured Query Language,结构化查询语言)能够如此流行的原因之一就是其能够方便地对数据进行连接、过滤、转换和聚合。但是,像SQL这样的查询语言所能执行的分组运算的种类很有限。在本章中你将会看到,由于Python和pandas强大的表达能力,我们可以执行复杂得多的分组运算(利用任何可以接受pandas对象或NumPy数组的函数)。在本章中,你将会学到:\n", + "\n", + "* 使用一个或多个键(形式可以是函数、数组或DataFrame列名)分割pandas对象。\n", + "* 计算分组的概述统计,比如数量、平均值或标准差,或是用户定义的函数。\n", + "* 应用组内转换或其他运算,如规格化、线性回归、排名或选取子集等。\n", + "* 计算透视表或交叉表。\n", + "* 执行分位数分析以及其它统计分组分析。\n", + "## Group by机制\n", + "![how-to-groupby](images/groupby.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " key1 key2 data1 data2\n", + "0 a one -0.001708 -0.578242\n", + "1 a two 0.797194 -0.040421\n", + "2 b one 1.269027 0.322051\n", + "3 b two -0.519620 -0.760153\n", + "4 a one -0.478164 -1.497868\n", + "0 -0.001708\n", + "1 0.797194\n", + "2 1.269027\n", + "3 -0.519620\n", + "4 -0.478164\n", + "Name: data1, dtype: float64\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "df = pd.DataFrame({'key1' : ['a', 'a', 'b', 'b', 'a'],'key2' : ['one', 'two', 'one', 'two', 'one'],'data1' : np.random.randn(5),'data2' : np.random.randn(5)})\n", + "print(df)\n", + "# print(df.index)\n", + "# summmury = df['data1'].groupby(df['key1']).sum()#group by的写法\n", + "# print(summmury)\n", + "# summmury2 = df['data1'].groupby([df['key1'],df['key2']]).sum()#group by可以多个字段,注意group by([])\n", + "# print(summmury2)\n", + "# print(summmury2.unstack())#层次化索引,看的更清晰一些\n", + "# states = np.array(['Ohio', 'Ohio', 'California', 'California', 'Ohio'])\n", + "# years = np.array([2005, 2006, 2005, 2006, 2005])\n", + "#打印数据\n", + "print(df['data1'])\n", + "print(df['data1'].groupby(df['key1']).sum())\n", + "# print(states)\n", + "# print(years)\n", + "# print(df['data1'].groupby([states, years]).sum())#其中states就是key1,years就是key2,只是其中的内容变成了states和years,类似sql中的groupby sum\n", + "# print(df.groupby(['key1', 'key2']).size())#类似sql中的groupby count\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 对分组进行迭代\n", + "GroupBy对象支持迭代,可以产生一组二元元组(由分组名和数据块组成)。看下面的例子:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " key1 key2 data1 data2\n", + "0 a one -0.595198 -0.581745\n", + "1 a two -1.375262 0.054339\n", + "2 b one 1.261285 0.603038\n", + "3 b two -0.711359 1.013885\n", + "4 a one 0.021047 1.038116\n", + "a\n", + " key1 key2 data1 data2\n", + "0 a one -0.595198 -0.581745\n", + "1 a two -1.375262 0.054339\n", + "4 a one 0.021047 1.038116\n", + "b\n", + " key1 key2 data1 data2\n", + "2 b one 1.261285 0.603038\n", + "3 b two -0.711359 1.013885\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "df = pd.DataFrame({'key1' : ['a', 'a', 'b', 'b', 'a'],'key2' : ['one', 'two', 'one', 'two', 'one'],'data1' : np.random.randn(5),'data2' : np.random.randn(5)})\n", + "print(df)\n", + "for name, group in df.groupby('key1'):#迭代打印\n", + " print(name)#打印key1分组中分组名称\n", + " print(group)#打印分组信息" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "对于多重键的情况,元组的第一个元素将会是由键值组成的元组:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('a', 'one')\n", + " key1 key2 data1 data2\n", + "0 a one -0.595198 -0.581745\n", + "4 a one 0.021047 1.038116\n", + "('a', 'two')\n", + " key1 key2 data1 data2\n", + "1 a two -1.375262 0.054339\n", + "('b', 'one')\n", + " key1 key2 data1 data2\n", + "2 b one 1.261285 0.603038\n", + "('b', 'two')\n", + " key1 key2 data1 data2\n", + "3 b two -0.711359 1.013885\n" + ] + } + ], + "source": [ + "for (k1, k2), group in df.groupby(['key1', 'key2']):\n", + " print((k1, k2))\n", + " print(group)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "当然,你可以对这些数据片段做任何操作。有一个你可能会觉得有用的运算:将这些数据片段做成一个字典:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'a': key1 key2 data1 data2\n", + " 0 a one -0.595198 -0.581745\n", + " 1 a two -1.375262 0.054339\n", + " 4 a one 0.021047 1.038116,\n", + " 'b': key1 key2 data1 data2\n", + " 2 b one 1.261285 0.603038\n", + " 3 b two -0.711359 1.013885}" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pieces = dict(list(df.groupby('key1')))\n", + "pieces#还可以以key1为key" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, + "kernelspec": { + "display_name": "Python 3.9.7 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Part5.A.fund-choice.ipynb b/Part5.A.fund-choice.ipynb new file mode 100644 index 000000000..6be0726c4 --- /dev/null +++ b/Part5.A.fund-choice.ipynb @@ -0,0 +1,93 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 基金排行筛选\n", + "之前通过excel来筛选基金,但是太多的人工操作,希望通过导出excel,然后通过pandas来达到基金筛选的效果\n", + "4433法则筛选股票型基金\n", + "每项取top1/x:\n", + "\t\t1.选择1年期间排名 前top1/4\n", + "\t\t2.选择2/3/5年 前top1/4\n", + "\t\t3.近6个月 前top1/3\n", + "\t\t4.近3个月 前top1/3\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import re\n", + "import numpy as np\n", + "data = pd.read_csv(\"fundrank.csv\")\n", + "data\n", + "data2=data.drop([0])\n", + "# data2\n", + "# data2.loc[data2['近2年'] =='---', '近2年'] = '0%'#loc相当于sql 中的where和replace\n", + "def get_num(data2):\n", + " if data2=='---':\n", + " f=list('0')\n", + " else:\n", + " pat_K = r\"(.*)%\"\n", + " f=re.findall(pattern=pat_K, string=data2)\n", + " return f[0]\n", + "\n", + "data2['1y']= data2['近1年'].astype(str).apply(get_num).astype(float) # 先将数字转换成字符串用正则转换,转换完\n", + "data2['2y']= data2['近2年'].astype(str).apply(get_num).astype(float) # 先将数字转换成字符串用正则转换,转换完\n", + "data2['3y']= data2['近3年'].astype(str).apply(get_num).astype(float) # 先将数字转换成字符串用正则转换,转换完\n", + "data2['5y']= data2['近5年'].astype(str).apply(get_num).astype(float) # 先将数字转换成字符串用正则转换,转换完\n", + "data2['3m']= data2['近3月'].astype(str).apply(get_num).astype(float) # 先将数字转换成字符串用正则转换,转换完\n", + "data2['6m']= data2['近6月'].astype(str).apply(get_num).astype(float) # 先将数字转换成字符串用正则转换,转换完\n", + "data2['1y_rank']=data2['1y'].rank(method='dense',ascending=False)\n", + "data2['2y_rank']=data2['2y'].rank(method='dense',ascending=False)\n", + "data2['3y_rank']=data2['3y'].rank(method='dense',ascending=False)\n", + "data2['5y_rank']=data2['5y'].rank(method='dense',ascending=False)\n", + "data2['3m_rank']=data2['3m'].rank(method='dense',ascending=False)\n", + "data2['6m_rank']=data2['6m'].rank(method='dense',ascending=False)\n", + "data3=data2[['基金','基金简称','1y','2y','3y','5y','3m','6m','1y_rank','2y_rank','3y_rank','5y_rank','3m_rank','6m_rank']]\n", + "data4=data3[data3['1y_rank']<2248/4]\n", + "data4\n", + "data5=data4[data4['2y_rank']<2248/4]\n", + "data5\n", + "data6=data5[data5['3y_rank']<2248/4]\n", + "data6\n", + "data7=data6[data6['5y_rank']<2248/4]\n", + "data7\n", + "data8=data7[data7['3m_rank']<2248/3]\n", + "data8\n", + "data9=data8[data8['6m_rank']<2248/3]\n", + "data9\n", + "data9.to_csv('fundchoiceresult.csv')\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, + "kernelspec": { + "display_name": "Python 3.9.7 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Part5.B.downloadcsv.ipynb b/Part5.B.downloadcsv.ipynb new file mode 100644 index 000000000..a06fc59d1 --- /dev/null +++ b/Part5.B.downloadcsv.ipynb @@ -0,0 +1,1012 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 下载基金排行\n", + "需要下载http://fund.eastmoney.com/data/fundranking.html#tgp;c0;r;s1nzf;pn50;ddesc;qsd20210926;qed20220926;qdii;zq;gg;gzbd;gzfs;bbzt;sfbb\n", + "上的基金排行到fundrank.csv中" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "如何将网站上的信息down下来存放在csv中,首先需要了解爬虫,爬虫是如何从网站上爬下来数据,并将数据存放在csv中的。\n", + "需要了解下爬虫的知识点\n", + "## 编写爬虫的流程\n", + "爬虫程序与其他程序不同,它的的思维逻辑一般都是相似的, 所以无需我们在逻辑方面花费大量的时间。下面对 Python 编写爬虫程序的流程做简单地说明:\n", + "先由 urllib 模块的 request 方法打开 URL 得到网页 HTML 对象。\n", + "使用浏览器打开网页源代码分析网页结构以及元素节点。\n", + "通过 Beautiful Soup 或则正则表达式提取数据。\n", + "存储数据到本地磁盘或数据库。\n", + "## 前端知识\n", + "爬虫程序之所以可以抓取数据,是因为爬虫能够对网页进行分析,并在网页中提取出想要的数据。在学习 Python 爬虫模块前,我们有必要先熟悉网页的基本结构,这是编写爬虫程序的必备知识。\n", + "如果您熟悉前端语言,那么您可以轻松地掌握本节知识。\n", + "网页一般由三部分组成,分别是 HTML(超文本标记语言)、CSS(层叠样式表)和 JavaScript(简称“JS”动态脚本语言),它们三者在网页中分别承担着不同的任务。\n", + "* HTML 负责定义网页的内容\n", + "* CSS 负责描述网页的布局\n", + "* JavaScript 负责网页的行为\n", + "由于前端内容太多,爬数据其实爬的是网页内容,所以学习下HTML先" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "html" + } + }, + "outputs": [], + "source": [ + " \n", + "\n", + "\n", + "\n", + "编程帮\n", + "\n", + "\n", + "点击访问\n", + "

编程帮www.biancheng.net

\n", + "

Python爬虫

\n", + "
\n", + "

认识网页结构

\n", + "
    \n", + "
  • HTML
  • \n", + "
  • CSS
  • \n", + "
\n", + "
\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 最初的爬虫\n", + "一个完整的爬虫由request请求模块来打开网页并返回response\n", + "并需要提取响应内容,我们需要读取响应内容并打印内容,例子如下" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "\n", + "\n", + "\n", + " 开放式基金排行 _ 天天基金网\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "
\n", + "
\n", + " \n", + "

基金排行

\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

基 金

\n", + " \n", + "
\n", + "
\n", + "
    \n", + "
  • 基 金
  • \n", + "
  • 基金经理
  • \n", + "
  • 基金公司
  • \n", + "
\n", + "
\n", + "
\n", + "
\n", + "\n", + " \n", + " \n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "\n", + "
\n", + " 基金代码\n", + " 基金公司\n", + " 收藏本页\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + " \n", + "
\n", + " \n", + "
\n", + " \n", + "
\n", + " \n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "\n", + " 展开更多筛选 \n", + " 数据来源:东方财富Choice数据\n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + " \n", + " \n", + "
\n", + "
\n", + "
\n", + " 按基金公司筛选:\n", + " \n", + " \n", + " \n", + "\n", + "
\n", + " 页面放大\n", + "
\n", + "
\n", + "
    \n", + "
\n", + "\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
选择筛选条件,页面直接显示自定义的筛选结果
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
    \n", + "
  • 近1周涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
  • 近1月涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
  • 近3月涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
  • 近6月涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
  • 近1年涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
  • 近2年涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
  • 近3年涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
  • 今年涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
    \n", + "
  • 全部(0)
  • \n", + "
  • 股票型(0)
  • \n", + "
  • 混合型(0)
  • \n", + "
  • 债券型(0)
  • \n", + "
  • 指数型(0)
  • \n", + "
  • QDII(0)
  • \n", + "
  • ETF(0)
  • \n", + "
  • LOF(0)
  • \n", + "
  • FOF(0)
  • \n", + "
\n", + "
\n", + "
\n", + " QDII基金分类筛选:\n", + "

\n", + " 全部\n", + " 全球股票\n", + " 亚太股票\n", + " 大中华区股票\n", + " 新兴市场股票\n", + " 金砖国家股票\n", + " 成熟市场股票\n", + " 美国股票\n", + " 全球指数\n", + " QDII-ETF联接
\n", + " 股债混合\n", + " 债券\n", + " 商品\n", + "

\n", + "
\n", + "
\n", + " 分类:\n", + "

\n", + " 全部\n", + " 长期纯债\n", + " 短期纯债\n", + " 混合债基\n", + " 定期开放债券\n", + " 可转债\n", + " 定开债开放日一览\n", + "

\n", + "
\n", + "
\n", + " 杠杆比例\n", + "

\n", + " 全部\n", + " 0-100%\n", + " 100%-150%\n", + " 150%-200%\n", + " 200%以上\n", + "

\n", + "
\n", + "
\n", + " 跟踪标的:\n", + "

\n", + " 全部\n", + " 沪深指数\n", + " 行业主题\n", + " 大盘指数\n", + " 中小盘指数\n", + " 股票指数\n", + " 债券指数\n", + "

\n", + "
\n", + "
\n", + " 跟踪方式:\n", + "

\n", + " 全部\n", + " 被动指数型\n", + " 增强指数型\n", + "

\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + "  到 \n", + " \n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

\n", + " \n", + " 2021-10-032022-10-03\n", + " \n", + "

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
比较序号基金
\n", + " 代码
基金简称日期单位净值累计净值日增长率近1周近1月近3月近6月近1年近2年近3年今年来\n", + " 成立来\n", + " \n", + "
\n", + " 自定义\n", + " \n", + "
\n", + "
手续费\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + " \n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "郑重声明:天天基金网发布此信息目的在于传播更多信息,与本网站立场无关。天天基金网不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的准确性、真实性、完整性、有效性、及时性、原创性等。相关信息并未经过本网站证实,不对您构成任何投资决策建议,据此操作,风险自担。数据来源:东方财富Choice数据。\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "

将天天基金网设为上网首页吗?      将天天基金网添加到收藏夹吗?

\n", + "

关于我们|资质证明|研究中心|联系我们|安全指引|免责条款|隐私条款|风险提示函|意见建议|在线客服|诚聘英才

\n", + "

天天基金客服热线:95021 / 4001818188|客服邮箱:vip@1234567.com.cn|人工服务时间:工作日 7:30-21:30 双休日 9:00-21:30
郑重声明:天天基金系证监会批准的基金销售机构[000000303]。天天基金网所载文章、数据仅供参考,使用前请核实,风险自负。
中国证监会上海监管局网址:www.csrc.gov.cn/pub/shanghai
CopyRight  上海天天基金销售有限公司  2011-现在  沪ICP证:沪B2-20130026  网站备案号:沪ICP备11042629号-1

\n", + "

\n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "[]\n" + ] + } + ], + "source": [ + "#导包,发起请求使用urllib库的request请求模块\n", + "import urllib.request\n", + "# urlopen()向URL发请求,返回响应对象,注意url必须完整\n", + "import re\n", + "url='http://fund.eastmoney.com/data/fundranking.html#tgp;c0;r;sqjzf;pn10000;ddesc;qsd20210927;qed20220927;qdii;zq;gg;gzbd;gzfs;bbzt;sfbb'\n", + "headers = {'User-Agent':'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Mobile Safari/537.36'}\n", + "req = urllib.request.Request(url=url,headers=headers)\n", + "res = urllib.request.urlopen(req)\n", + "# res=urllib.request.urlopen(req)#先由 urllib 模块的 request 方法打开 URL 得到网页 HTML 对象。\n", + "# print(res)#打印返回结果\n", + "#提取响应内容\n", + "html = res.read().decode('utf-8')\n", + "#打印响应内容\n", + "print(html)#html篇幅过长\n", + "re_bds = '(.*?)'\n", + "pttn=re.compile(re_bds)\n", + "r_list = re.findall(pttn,html)\n", + "print(r_list)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 常用方法\n", + "在本节您认识了第一个爬虫库 urllib,下面关于 urllib 做简单总结。\n", + "1) urlopen()\n", + "表示向网站发起请求并获取响应对象,如下所示:\n", + "```python\n", + "urllib.request.urlopen(url,timeout)\n", + "```\n", + "urlopen() 有两个参数,说明如下:\n", + "url:表示要爬取数据的 url 地址。\n", + "timeout:设置等待超时时间,指定时间内未得到响应则抛出超时异常。\n", + "2) Request()\n", + "该方法用于创建请求对象、包装请求头,比如重构 User-Agent(即用户代理,指用户使用的浏览器)使程序更像人类的请求,而非机器。重构 User-Agent 是爬虫和反爬虫斗争的第一步。在下一节会做详细介绍。\n", + "```python\n", + "urllib.request.Request(url,headers)\n", + "```\n", + "参数说明如下:\n", + "url:请求的URL地址。\n", + "headers:重构请求头。\n", + "\n", + "3) html响应对象方法\n", + "```python\n", + "bytes = response.read() # read()返回结果为 bytes 数据类型\n", + "string = response.read().decode() # decode()将字节串转换为 string 类型\n", + "url = response.geturl() # 返回响应对象的URL地址\n", + "code = response.getcode() # 返回请求时的HTTP响应码\n", + "```\n", + "4) 编码解码操作\n", + "```python\n", + "#字符串转换为字节码\n", + "string.encode(\"utf-8\") \n", + "#字节码转换为字符串\n", + "bytes.decode(\"utf-8\") \n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "错误: HTTP Error 302: The HTTP server returned a redirect error that would lead to an infinite loop.\n", + "The last 30x error message was:\n", + "Found\n" + ] + } + ], + "source": [ + "from urllib import request\n", + "import re\n", + "import time\n", + "import random\n", + "import csv\n", + "from ua_info import ua_list\n", + "# 定义一个爬虫类\n", + "class MaoyanSpider(object): \n", + " # 初始化\n", + " # 定义初始页面url\n", + " def __init__(self):\n", + " self.url = 'https://www.maoyan.com/board/4?offset={}'\n", + " \n", + " # 请求函数\n", + " def get_html(self,url):\n", + " headers = {'User-Agent':random.choice(ua_list)}\n", + " req = request.Request(url=url,headers=headers)\n", + " res = request.urlopen(req)\n", + " html = res.read().decode()\n", + " # 直接调用解析函数\n", + " self.parse_html(html)\n", + " \n", + " # 解析函数\n", + " def parse_html(self,html):\n", + " # 正则表达式\n", + " # '
(.*?)

(.*?)

(.*?)

'\n", + " # '我不是药神'\n", + " re_bds = '
(.*?)

(.*?)

(.*?)

'\n", + " # 生成正则表达式对象\n", + " pattern = re.compile(re_bds,re.S)\n", + " # r_list: [('我不是药神','徐峥,周一围,王传君','2018-07-05'),...] 列表元组\n", + " r_list = pattern.findall(html)\n", + " self.save_html(r_list)\n", + " # 保存数据函数,使用python内置csv模块\n", + " def save_html(self,r_list):\n", + " #生成文件对象 \n", + " with open('maoyan.csv','a',newline='',encoding=\"utf-8\") as f:\n", + " #生成csv操作对象\n", + " writer = csv.writer(f)\n", + " #整理数据\n", + " for r in r_list:\n", + " name = r[0].strip()\n", + " star = r[1].strip()[3:]\n", + " # 上映时间:2018-07-05\n", + " # 切片截取时间\n", + " time = r[2].strip()[5:15]\n", + " L = [name,star,time]\n", + " # 写入csv文件\n", + " writer.writerow(L)\n", + " print(name,time,star)\n", + " # 主函数\n", + " def run(self):\n", + " #抓取第一页数据\n", + " for offset in range(0,11,10):\n", + " url = self.url.format(offset)\n", + " self.get_html(url)\n", + " #生成1-2之间的浮点数\n", + " time.sleep(random.uniform(1,2))\n", + "# 以脚本方式启动\n", + "if __name__ == '__main__':\n", + " #捕捉异常错误\n", + " try:\n", + " spider = MaoyanSpider()\n", + " spider.run()\n", + " except Exception as e:\n", + " print(\"错误:\",e)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "http://www.baidu.com/s?wd=%E5%A4%A9%E5%A4%A9\n" + ] + } + ], + "source": [ + "#导入parse模块\n", + "from urllib import parse\n", + "#构建查询字符串字典\n", + "query_string = {\n", + "'wd' : '天天'\n", + "}\n", + "#调用parse模块的urlencode()进行编码\n", + "result = parse.urlencode(query_string)\n", + "#使用format函数格式化字符串,拼接url地址\n", + "url = 'http://www.baidu.com/s?{}'.format(result)\n", + "print(url)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from urllib import request,parse\n", + "# 1.拼url地址\n", + "url = 'http://www.baidu.com/s?wd={}'\n", + "word = input('请输入搜索内容:')\n", + "params = parse.quote(word)\n", + "full_url = url.format(params)\n", + "# 2.发请求保存到本地\n", + "headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:6.0) Gecko/20100101 Firefox/6.0'}\n", + "req = request.Request(url=full_url,headers=headers)\n", + "res = request.urlopen(req)\n", + "html = res.read().decode('utf-8')\n", + "# 3.保存文件至当前目录\n", + "filename = word + '.html'\n", + "with open(filename,'w',encoding='utf-8') as f:\n", + " f.write(html)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "re模块常用方法\n", + "--------\n", + "\n", + "#### 1) re.compile()\n", + "\n", + "该方法用来生成正则表达式对象,其语法格式如下:\n", + "```python\n", + "regex=re.compile(pattern,flags=0)\n", + "```\n", + "参数说明:\n", + "\n", + "- pattern:正则表达式对象。\n", + "- flags:代表功能标志位,扩展正则表达式的匹配。\n", + "\n", + "#### 2) re.findall()\n", + "\n", + "根据正则表达式匹配目标字符串内容。\n", + "```python\n", + "re.findall(pattern,string,flags=0)\n", + "```\n", + "该函数的返回值是匹配到的内容列表,如果正则表达式有子组,则只能获取到子组对应的内容。参数说明如下:\n", + "\n", + "- pattern:正则表达式对象。\n", + "- string:目标字符串\n", + "- flags:代表功能标志位,扩展正则表达式的匹配。\n", + "\n", + "#### 3) regex.findall()\n", + "\n", + "该函数根据正则表达式对象匹配目标字符串内容。其语法格式如下:\n", + "```python\n", + "regex.findall(string,pos,endpos)\n", + "```\n", + "参数说明:\n", + "\n", + "- string 目标字符串。\n", + "- pos 截取目标字符串的开始匹配位置。\n", + "- endpos 截取目标字符串的结束匹配位置。\n", + "\n", + "#### 4) re.split()\n", + "\n", + "该函数使用正则表达式匹配内容,切割目标字符串。返回值是切割后的内容列表。参数说明:\n", + "```python\n", + "re.split(pattern,string,flags = 0)\n", + "```\n", + "参数说明:\n", + "\n", + "- pattern:正则表达式。\n", + "- string:目标字符串。\n", + "- flags:功能标志位,扩展正则表达式的匹配。\n", + "\n", + "5) re.sub\\\n", + "该函数使用一个字符串替换正则表达式匹配到的内容。返回值是替换后的字符串。其语法格式如下:\n", + "```python\n", + "re.sub(pattern,replace,string,max,flags = 0)\n", + "```\n", + "其参数说明:\n", + "\n", + "- pattern:正则表达式。\n", + "- replace:替换的字符串。\n", + "- string:目标字符串。\n", + "- max:最多替换几处,默认替换全部,\n", + "- flags:功能标志位,扩展正则表达式的匹配。\n", + "\n", + "#### 5) re.search()\n", + "\n", + "匹配目标字符串第一个符合的内容,返回值为匹配的对象。语法格式如下:\n", + "\n", + "```python\n", + "re.search(pattern,string,flags=0)\n", + "```\n", + "\n", + "参数说明:\n", + "\n", + "- pattern:正则表达式\n", + "- string:目标字符串\n", + "\n", + "flags功能标志位\n", + "----------\n", + "\n", + "功能标志位的作用是扩展正则表达的匹配功能。常用的 flag 如下所示:\n", + "\n", + "flag功能标志位\n", + "| 缩写元字符 | 说明 |\n", + "| A | 元字符只能匹配 ASCII码。 |\n", + "| I | 匹配忽略字母大小写。 |\n", + "| S | 使得`.`元字符可以匹配换行符。 |\n", + "| M | 使 ^ $ 可以匹配每一行的开头和结尾位置。 |\\\n", + "注意:可以同时使用福多个功能标志位,比如 flags=re.I|re.S。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "violation_ad_spend_amt_28d_total DECIMAL(18,2) COMMENT '违规广告近28日总消耗 - 大盘分子'\n", + "['28', '18', '2', '28']\n", + "['violation_ad_spend_amt_', 'd_total DECIMAL(', ',', \") COMMENT '违规广告近\", \"日总消耗 - 大盘分子'\"]\n", + "violation_ad_spend_amt_fuckd_total DECIMAL(fuck,2) COMMENT '违规广告近28日总消耗 - 大盘分子'\n", + "\n" + ] + } + ], + "source": [ + "import re\n", + "import regex\n", + "str ='violation_ad_spend_amt_28d_total DECIMAL(18,2) COMMENT \\'违规广告近28日总消耗 - 大盘分子\\''\n", + "pttn = re.compile(r'\\d+')\n", + "str2 = re.findall(pttn,str)#找到所有匹配元素\n", + "print(str)\n", + "print(str2)\n", + "str3= re.split(pttn,str,flags = 0)#按照正则进行分割\n", + "print(str3)\n", + "str4=re.sub(pttn,'fuck',str,2)\n", + "print(str4)\n", + "str5 = re.search(pttn,str,flags=0)#返回第一个匹配所在的位置\n", + "print(str5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## csv写入" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "import csv\n", + "with open('names.csv', 'w', newline='') as csvfile:\n", + " #构建字段名称,也就是key\n", + " fieldnames = ['first_name', 'last_name']\n", + " writer = csv.DictWriter(csvfile, fieldnames=fieldnames)\n", + " # 写入字段名,当做表头\n", + " writer.writeheader()\n", + " # 多行写入\n", + " writer.writerows([{'first_name': 'Baked', 'last_name': 'Beans'},{'first_name': 'Lovely', 'last_name': 'Spam'}])\n", + " # 单行写入\n", + " writer.writerow({'first_name': 'Wonderful', 'last_name': 'Spam'})" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, + "kernelspec": { + "display_name": "Python 3.9.7 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/fundchoiceresult.csv b/fundchoiceresult.csv new file mode 100644 index 000000000..5b19fad85 --- /dev/null +++ b/fundchoiceresult.csv @@ -0,0 +1,205 @@ +,基金,基金简称,1y,2y,3y,5y,3m,6m,1y_rank,2y_rank,3y_rank,5y_rank,3m_rank,6m_rank +1,1678,英大国企改革,19.96,53.24,105.13,14.71,9.33,34.28,1.0,36.0,64.0,9.0,12.0,1.0 +2,756,建信潜力新蓝,14.93,89.91,181.03,0.0,4.5,19.21,2.0,11.0,13.0,80.0,50.0,10.0 +3,161032,富国中证煤炭,13.52,128.26,133.16,7.83,9.98,24.65,3.0,3.0,39.0,23.0,8.0,2.0 +6,168204,中融中证煤炭,12.33,128.48,128.55,0.0,3.58,22.01,6.0,2.0,41.0,80.0,61.0,6.0 +8,729,建信中小盘先,11.44,98.44,216.35,0.0,4.51,16.22,8.0,8.0,3.0,80.0,49.0,20.0 +10,3298,嘉实物流产业,9.68,33.69,85.55,7.95,1.68,4.61,10.0,89.0,99.0,21.0,106.0,107.0 +12,3299,嘉实物流产业,9.17,32.44,83.25,7.43,1.59,4.36,12.0,90.0,104.0,30.0,110.0,113.0 +13,6195,国金量化多因,8.12,29.76,48.81,8.77,3.23,9.76,13.0,96.0,271.0,18.0,67.0,50.0 +14,991,工银战略转型,6.66,40.88,174.01,6.08,1.73,3.51,14.0,66.0,16.0,33.0,105.0,134.0 +16,161724,招商中证煤炭,5.89,122.11,134.35,1.28,4.35,18.89,16.0,6.0,36.0,59.0,53.0,12.0 +19,7671,建信中证红利,4.97,0.05,33.28,0.0,0.79,5.42,19.0,414.0,414.0,80.0,125.0,95.0 +21,7672,建信中证红利,4.55,-0.77,31.63,0.0,0.68,5.2,21.0,438.0,436.0,80.0,129.0,101.0 +25,501059,西部利得国企,3.57,36.68,77.34,0.59,3.48,13.14,25.0,76.0,119.0,70.0,65.0,28.0 +27,979,景顺长城沪港,3.24,12.69,38.89,0.0,4.84,6.35,27.0,209.0,353.0,80.0,44.0,75.0 +30,5561,创金合信中证,2.93,34.75,65.49,0.0,3.13,8.5,29.0,83.0,163.0,80.0,70.0,56.0 +31,5562,创金合信中证,2.72,34.22,64.54,0.0,3.08,8.39,30.0,86.0,168.0,80.0,72.0,59.0 +32,320020,诺安策略精选,2.52,22.86,55.48,1.54,-0.63,4.34,31.0,125.0,229.0,53.0,165.0,114.0 +36,1208,诺安低碳经济,2.2,25.99,76.57,1.43,-0.84,3.44,35.0,110.0,120.0,56.0,171.0,138.0 +37,7466,华泰柏瑞中证,2.2,26.24,48.69,-0.89,3.15,8.19,35.0,107.0,272.0,92.0,68.0,60.0 +39,7467,华泰柏瑞中证,1.95,25.61,47.43,-1.14,3.09,8.06,37.0,111.0,284.0,98.0,71.0,61.0 +42,1476,中银智能制造,1.45,69.48,211.48,1.5,4.83,11.85,40.0,19.0,4.0,54.0,45.0,35.0 +44,1473,建信大安全战,0.94,17.1,86.4,0.0,-0.62,0.37,42.0,168.0,96.0,80.0,164.0,265.0 +45,501029,华宝标普中国,0.89,16.94,39.53,-0.96,0.29,2.69,43.0,170.0,348.0,95.0,135.0,166.0 +46,3634,嘉实农业产业,0.82,-2.15,54.87,2.93,-4.89,0.75,44.0,483.0,232.0,45.0,419.0,249.0 +47,2236,大成360互,0.56,9.31,53.0,0.82,1.58,-1.95,45.0,244.0,243.0,67.0,111.0,386.0 +48,5125,华宝标普中国,0.49,16.01,37.86,-1.35,0.18,2.48,46.0,175.0,368.0,101.0,138.0,176.0 +51,2229,华夏经济转型,0.35,5.14,73.9,0.22,7.1,11.8,49.0,309.0,130.0,76.0,24.0,36.0 +54,4698,博时军工主题,0.05,24.17,103.94,-1.51,2.91,6.04,51.0,118.0,66.0,104.0,76.0,83.0 +56,160643,鹏华空天军工,0.0,23.81,73.0,0.0,7.41,8.47,52.0,120.0,133.0,80.0,20.0,57.0 +59,3359,大成360互,-0.06,7.98,50.19,0.19,1.37,-2.26,55.0,263.0,266.0,77.0,117.0,404.0 +60,164402,前海开源中航,-0.09,27.08,60.41,0.0,9.1,10.69,56.0,106.0,193.0,80.0,14.0,44.0 +63,1404,招商移动互联,-0.16,25.51,84.45,-1.93,13.1,9.36,59.0,112.0,102.0,110.0,5.0,55.0 +64,5161,华商上游产业,-0.17,56.5,133.27,0.0,-1.27,5.69,60.0,33.0,38.0,80.0,190.0,92.0 +69,1583,安信新常态股,-0.67,6.77,42.04,0.0,-2.43,-2.52,64.0,280.0,322.0,80.0,237.0,424.0 +74,596,前海开源中证,-1.21,19.18,63.8,0.0,6.39,5.97,69.0,149.0,172.0,80.0,35.0,85.0 +75,1521,国寿安保成长,-1.29,18.06,75.62,0.0,5.7,9.52,70.0,159.0,123.0,80.0,39.0,53.0 +76,2199,前海开源中证,-1.46,18.66,62.8,0.0,6.4,5.88,71.0,154.0,176.0,80.0,34.0,88.0 +77,1579,国泰大农业股,-1.55,-4.79,50.97,-0.5,-5.29,-0.46,72.0,553.0,264.0,88.0,454.0,306.0 +80,6712,前海开源MS,-1.83,8.3,57.03,0.0,-5.36,6.22,75.0,257.0,220.0,80.0,460.0,78.0 +83,6713,前海开源MS,-2.03,7.86,56.08,0.0,-5.41,6.11,78.0,266.0,225.0,80.0,465.0,81.0 +85,1042,华夏领先股票,-2.09,5.56,37.65,-1.73,1.79,4.46,80.0,301.0,372.0,107.0,102.0,111.0 +90,5235,银华食品饮料,-2.38,12.42,80.33,-0.1,-6.08,2.82,85.0,214.0,110.0,81.0,523.0,161.0 +91,1048,富国新兴产业,-2.57,28.01,70.96,-2.16,14.76,19.56,86.0,103.0,142.0,115.0,3.0,9.0 +92,1645,国泰大健康股,-2.67,2.51,90.54,-0.46,-0.96,-1.81,87.0,353.0,87.0,85.0,176.0,375.0 +95,5236,银华食品饮料,-2.78,11.53,78.2,-0.49,-6.17,2.61,89.0,224.0,115.0,87.0,530.0,171.0 +102,893,工银创新动力,-3.21,15.43,51.09,-3.83,-4.23,-1.63,95.0,180.0,261.0,145.0,362.0,363.0 +104,6868,华夏科技成长,-3.35,3.26,76.52,-3.84,5.66,9.98,97.0,338.0,121.0,146.0,40.0,48.0 +108,160630,鹏华国防A,-3.85,15.18,64.82,0.0,7.87,7.69,101.0,184.0,165.0,80.0,17.0,65.0 +112,1097,华泰柏瑞积极,-4.01,28.85,65.98,-1.91,1.74,3.84,104.0,98.0,160.0,109.0,104.0,125.0 +113,2871,华夏智胜价值,-4.12,21.02,56.4,-4.81,0.01,6.16,105.0,137.0,222.0,173.0,143.0,80.0 +115,6138,国联安价值优,-4.18,-4.69,38.75,-4.46,-5.75,-0.54,107.0,548.0,356.0,162.0,494.0,312.0 +118,2872,华夏智胜价值,-4.36,20.43,89.25,-5.06,-0.06,6.02,109.0,142.0,92.0,181.0,146.0,84.0 +119,161907,万家中证红利,-4.44,22.13,37.11,-5.56,1.43,4.08,110.0,130.0,377.0,194.0,116.0,119.0 +131,985,嘉实逆向策略,-4.87,36.07,95.31,-5.26,2.34,10.1,119.0,80.0,81.0,188.0,93.0,47.0 +133,326,南方中小盘成,-4.92,12.9,72.93,-4.69,-6.75,3.38,121.0,205.0,135.0,170.0,583.0,140.0 +134,4640,华夏节能环保,-5.02,39.76,168.15,-4.48,1.64,2.43,122.0,69.0,19.0,163.0,107.0,179.0 +137,90010,大成中证红利,-5.27,17.42,29.39,-6.5,1.55,3.55,124.0,165.0,472.0,228.0,113.0,132.0 +138,160919,大成产业升级,-5.3,24.58,102.22,-4.87,5.36,5.28,125.0,116.0,71.0,175.0,41.0,100.0 +140,1917,招商量化精选,-5.3,30.33,102.22,-5.62,0.0,5.39,125.0,94.0,71.0,195.0,144.0,96.0 +141,1725,汇添富高端制,-5.31,15.42,77.99,-6.02,-1.49,5.67,126.0,181.0,117.0,210.0,201.0,93.0 +142,7801,大成中证红利,-5.34,17.19,28.87,-6.57,1.56,3.47,127.0,166.0,479.0,230.0,112.0,137.0 +145,161725,招商中证白酒,-5.47,20.59,78.13,-2.21,-6.94,3.59,130.0,140.0,116.0,116.0,602.0,131.0 +146,628,大成高新技术,-5.47,17.84,79.15,-6.01,-5.72,-2.36,130.0,161.0,112.0,209.0,493.0,409.0 +154,7950,招商量化精选,-5.87,28.75,99.23,-6.18,-0.15,5.07,138.0,99.0,75.0,215.0,151.0,102.0 +156,418,景顺长城成长,-5.96,18.2,99.3,0.0,-0.07,5.73,140.0,158.0,74.0,80.0,147.0,90.0 +158,502003,易方达中证军,-6.09,13.19,63.37,-7.62,3.14,2.25,142.0,202.0,175.0,264.0,69.0,186.0 +161,5313,万家中证10,-6.23,22.21,69.2,-6.36,-0.79,0.59,144.0,129.0,148.0,222.0,170.0,253.0 +163,160632,鹏华酒A,-6.25,17.56,85.91,0.0,-6.62,1.86,146.0,163.0,98.0,80.0,570.0,206.0 +166,100032,富国中证红利,-6.3,17.16,30.15,-7.39,0.29,2.99,148.0,167.0,463.0,256.0,135.0,154.0 +167,450009,国富中小盘股,-6.32,9.43,62.41,-5.93,-2.65,1.57,149.0,242.0,179.0,205.0,253.0,218.0 +169,163115,申万菱信中证,-6.32,10.26,47.98,-7.83,3.05,1.89,149.0,234.0,279.0,273.0,73.0,203.0 +174,6748,富国中证价值,-6.53,13.47,45.87,-7.54,-4.94,-3.88,153.0,200.0,290.0,261.0,424.0,525.0 +175,1631,天弘中证食品,-6.62,-4.15,52.35,-4.41,-7.0,1.05,154.0,533.0,249.0,159.0,608.0,233.0 +176,5314,万家中证10,-6.62,21.21,67.06,-6.74,-0.89,0.38,154.0,133.0,156.0,236.0,173.0,264.0 +183,161024,富国中证军工,-6.73,8.28,38.94,-8.29,2.86,1.95,159.0,258.0,352.0,286.0,78.0,200.0 +187,1632,天弘中证食品,-6.81,-4.53,51.44,-4.6,-7.05,0.95,162.0,544.0,258.0,168.0,613.0,238.0 +189,1692,南方国策动力,-6.88,21.74,93.33,-7.77,-1.11,3.49,164.0,131.0,85.0,270.0,184.0,135.0 +191,7191,富国中证价值,-6.9,12.54,44.11,-7.9,-5.03,-4.07,166.0,212.0,299.0,276.0,431.0,538.0 +195,6165,建信中证10,-7.1,12.75,64.39,0.0,-1.45,0.57,170.0,207.0,169.0,80.0,199.0,255.0 +196,6751,富国互联科技,-7.12,20.4,113.93,-6.58,4.12,10.73,171.0,143.0,52.0,231.0,57.0,43.0 +206,110022,易方达消费行,-7.33,-3.82,35.63,-4.53,-4.3,7.05,180.0,524.0,391.0,165.0,369.0,70.0 +207,3017,广发中证军工,-7.33,7.39,39.64,-8.86,2.45,1.64,180.0,273.0,346.0,307.0,89.0,214.0 +215,6166,建信中证10,-7.48,11.85,62.43,0.0,-1.56,0.36,186.0,222.0,178.0,80.0,205.0,266.0 +216,6692,金信消费升级,-7.49,38.83,103.5,-8.93,4.55,5.31,187.0,70.0,67.0,310.0,47.0,99.0 +217,5693,广发中证军工,-7.51,6.96,38.78,-9.04,2.41,1.53,188.0,278.0,355.0,314.0,91.0,221.0 +226,519677,银河定投宝腾,-7.79,18.85,70.54,-9.28,-4.6,-4.16,196.0,151.0,147.0,322.0,395.0,545.0 +227,519714,交银消费新驱,-7.81,12.36,82.66,-5.81,-7.48,2.89,197.0,215.0,106.0,203.0,652.0,159.0 +229,4194,招商中证10,-7.83,10.55,63.56,-8.12,-3.95,-1.09,198.0,232.0,174.0,281.0,338.0,334.0 +230,501019,国泰国证航天,-7.83,12.34,52.8,-9.71,3.55,1.78,198.0,216.0,245.0,335.0,63.0,209.0 +231,3190,创金合信消费,-7.87,3.17,51.4,0.0,-6.6,-1.81,199.0,342.0,259.0,80.0,568.0,375.0 +236,7548,易方达ESG,-8.04,2.22,53.56,-6.02,-5.37,2.3,204.0,361.0,241.0,210.0,461.0,184.0 +239,577,安信价值精选,-8.09,3.19,53.64,0.0,-7.42,-5.04,206.0,341.0,239.0,80.0,646.0,622.0 +242,4195,招商中证10,-8.2,9.67,61.6,-8.48,-4.05,-1.29,209.0,241.0,186.0,294.0,347.0,342.0 +243,6693,金信消费升级,-8.23,36.64,98.73,-9.65,4.34,4.88,210.0,77.0,76.0,332.0,54.0,104.0 +245,835,华润元大富时,-8.25,-0.09,31.12,-6.95,-5.93,-1.77,212.0,421.0,446.0,244.0,512.0,373.0 +252,4997,广发高端制造,-8.44,30.15,182.38,-8.71,0.02,-3.43,218.0,95.0,11.0,302.0,142.0,488.0 +256,3191,创金合信消费,-8.53,1.73,48.07,0.0,-6.77,-2.16,221.0,378.0,277.0,80.0,585.0,397.0 +258,1577,嘉实低价策略,-8.56,2.62,77.82,-7.84,-2.53,-0.28,223.0,350.0,118.0,274.0,244.0,297.0 +262,916,前海开源股息,-8.66,19.5,53.6,0.0,-1.39,-0.73,227.0,148.0,240.0,80.0,195.0,322.0 +263,50024,博时上证自然,-8.67,69.26,79.03,-10.16,0.77,6.99,228.0,20.0,113.0,355.0,127.0,71.0 +264,6560,华夏四川国改,-8.67,34.65,57.68,-9.15,-3.51,1.85,228.0,85.0,212.0,318.0,307.0,207.0 +268,925,汇添富外延增,-8.79,1.81,59.08,-8.74,0.18,2.91,231.0,375.0,200.0,303.0,138.0,158.0 +274,2670,万家沪深30,-8.91,-0.33,38.82,-8.62,-3.24,0.78,235.0,428.0,354.0,300.0,286.0,246.0 +275,6561,华夏四川国改,-8.95,33.83,56.25,-9.42,-3.59,1.69,236.0,88.0,223.0,326.0,312.0,212.0 +277,1719,工银国家战略,-9.01,38.79,88.47,-8.44,0.78,-1.23,237.0,71.0,94.0,292.0,126.0,341.0 +279,1043,工银美丽城镇,-9.03,21.08,89.27,-9.43,-5.51,-3.64,238.0,136.0,91.0,327.0,475.0,505.0 +284,7431,浙商之江凤凰,-9.17,16.29,56.56,0.0,-3.95,-4.86,242.0,173.0,221.0,80.0,338.0,608.0 +285,3646,创金合信中证,-9.18,11.75,53.69,0.0,-3.51,0.63,243.0,223.0,238.0,80.0,307.0,251.0 +290,2671,万家沪深30,-9.27,-1.12,37.17,-8.98,-3.34,0.57,247.0,450.0,376.0,312.0,293.0,255.0 +292,3647,创金合信中证,-9.37,11.3,52.72,0.0,-3.56,0.52,249.0,226.0,246.0,80.0,310.0,257.0 +294,1542,国泰互联网+,-9.41,6.08,66.17,-6.91,-2.23,4.58,251.0,290.0,159.0,242.0,228.0,109.0 +296,161217,国投瑞银中证,-9.43,73.44,106.65,-10.97,-0.61,6.18,252.0,16.0,62.0,374.0,163.0,79.0 +300,1040,新华策略精选,-9.47,-4.54,73.47,0.0,5.0,16.82,256.0,545.0,132.0,80.0,43.0,19.0 +304,1672,国寿安保智慧,-9.56,12.02,79.68,0.0,-2.83,1.26,259.0,220.0,111.0,80.0,266.0,228.0 +308,6081,海富通电子传,-9.67,40.67,118.61,-9.85,9.46,6.39,263.0,67.0,47.0,344.0,11.0,74.0 +312,1036,嘉实企业变革,-9.75,3.82,56.08,-10.06,-2.24,1.35,266.0,329.0,225.0,352.0,229.0,226.0 +321,471,富国城镇发展,-9.92,5.85,64.07,-9.71,-4.85,-3.81,274.0,296.0,170.0,335.0,416.0,519.0 +325,971,诺安新经济股,-10.05,7.9,69.05,-9.07,-2.34,5.39,277.0,265.0,150.0,316.0,234.0,96.0 +336,6080,海富通电子传,-10.38,38.44,113.94,-10.56,9.24,5.97,286.0,72.0,51.0,364.0,13.0,85.0 +345,1726,汇添富新兴消,-10.61,0.31,47.15,-9.77,-7.77,-1.22,293.0,409.0,286.0,339.0,676.0,340.0 +347,4788,富荣沪深30,-10.72,6.25,82.77,-9.84,-8.02,-5.56,294.0,287.0,105.0,343.0,697.0,667.0 +348,5669,前海开源公用,-10.73,146.46,167.06,0.0,-8.51,-3.51,295.0,1.0,21.0,80.0,739.0,495.0 +349,368,汇添富沪深3,-10.73,3.84,43.2,-11.85,-6.07,-1.87,295.0,328.0,307.0,410.0,522.0,378.0 +350,1541,汇添富民营新,-10.74,-3.53,60.55,-11.61,-3.04,-1.1,296.0,517.0,192.0,399.0,275.0,335.0 +351,7130,中庚小盘价值,-10.76,50.34,112.09,-12.19,-2.66,0.41,297.0,40.0,55.0,423.0,254.0,262.0 +352,4789,富荣沪深30,-10.81,6.04,82.2,-9.92,-8.05,-5.61,298.0,291.0,107.0,346.0,699.0,672.0 +353,1637,嘉实量化精选,-10.82,14.75,61.32,-10.62,-5.36,-0.65,299.0,186.0,189.0,366.0,460.0,317.0 +360,6502,财通集成电路,-10.96,0.74,39.69,-12.29,7.89,1.6,305.0,399.0,344.0,426.0,16.0,217.0 +373,866,华宝制造股票,-11.45,21.2,102.59,-11.85,0.17,3.44,318.0,134.0,70.0,410.0,139.0,138.0 +375,1490,汇添富国企创,-11.52,12.11,93.84,-11.09,-2.41,-0.8,319.0,218.0,84.0,379.0,236.0,324.0 +378,5267,嘉实价值精选,-11.55,10.7,74.25,-11.27,-2.32,0.49,322.0,231.0,125.0,387.0,232.0,259.0 +382,162107,金鹰先进制造,-11.63,3.47,22.87,0.0,2.77,0.3,326.0,335.0,556.0,80.0,81.0,269.0 +384,6503,财通集成电路,-11.66,-0.86,36.37,-12.98,7.67,1.2,328.0,442.0,385.0,457.0,19.0,231.0 +400,6729,万家中证50,-12.21,10.79,57.95,-12.36,2.35,2.44,344.0,230.0,208.0,428.0,92.0,178.0 +402,1736,圆信永丰优加,-12.27,18.29,94.8,-13.03,-2.54,-2.22,346.0,157.0,83.0,459.0,245.0,401.0 +403,5870,鹏华沪深30,-12.27,1.45,28.72,0.0,-6.22,-1.62,346.0,387.0,482.0,80.0,535.0,362.0 +408,163114,申万菱信中证,-12.39,54.27,117.57,-13.11,-8.38,-4.45,350.0,35.0,49.0,462.0,726.0,571.0 +410,671030,西部利得事件,-12.41,34.68,72.76,-9.99,-3.88,2.88,352.0,84.0,137.0,348.0,332.0,160.0 +411,2210,创金合信量化,-12.42,11.43,58.17,0.0,-3.7,-0.92,353.0,225.0,206.0,80.0,318.0,326.0 +412,2289,华商改革创新,-12.46,19.5,68.55,0.0,-5.95,6.72,354.0,148.0,154.0,80.0,513.0,72.0 +415,501060,中金优选30,-12.55,5.57,35.34,0.0,-3.39,-2.76,356.0,300.0,394.0,80.0,298.0,438.0 +416,6730,万家中证50,-12.55,9.92,56.16,-12.7,2.24,2.24,356.0,238.0,224.0,446.0,94.0,187.0 +419,1397,建信精工制造,-12.57,13.31,61.67,0.0,-3.95,-2.5,358.0,201.0,185.0,80.0,338.0,422.0 +420,1396,建信互联网+,-12.6,13.49,63.9,0.0,-2.17,2.27,359.0,199.0,171.0,80.0,223.0,185.0 +430,867,华宝品质生活,-12.71,9.98,63.62,-11.8,-4.32,2.14,365.0,236.0,173.0,408.0,371.0,190.0 +431,501061,中金优选30,-12.77,5.05,34.33,0.0,-3.45,-2.89,366.0,310.0,400.0,80.0,303.0,449.0 +439,202025,南方上证38,-12.92,6.04,34.3,-13.37,-3.43,-1.91,372.0,291.0,401.0,475.0,301.0,382.0 +441,5829,建信MSCI,-12.95,0.8,26.95,0.0,-6.03,-4.11,373.0,398.0,509.0,80.0,519.0,541.0 +445,690008,民生中证内地,-13.05,60.43,65.77,-14.33,-2.61,4.18,375.0,29.0,161.0,522.0,250.0,116.0 +447,540007,汇丰晋信中小,-13.06,-3.18,48.23,0.0,-3.56,4.79,376.0,506.0,276.0,80.0,310.0,105.0 +449,3865,创金合信量化,-13.08,9.77,54.69,0.0,-3.88,-1.29,377.0,239.0,233.0,80.0,332.0,342.0 +452,502006,易方达中证国,-13.11,-1.88,33.6,-13.21,-4.8,-2.77,379.0,471.0,409.0,468.0,411.0,439.0 +459,4716,信诚量化阿尔,-13.23,-2.03,36.99,-12.75,-6.31,-5.09,385.0,480.0,380.0,448.0,544.0,627.0 +462,7571,南方上证38,-13.27,5.2,32.71,-13.71,-3.53,-2.11,387.0,306.0,421.0,494.0,309.0,393.0 +466,5830,建信MSCI,-13.31,-0.02,25.4,0.0,-6.13,-4.31,389.0,418.0,522.0,80.0,526.0,558.0 +469,6193,鑫元核心资产,-13.39,-0.36,34.74,0.0,-3.41,3.05,392.0,429.0,398.0,80.0,300.0,152.0 +472,161039,富国中证10,-13.42,10.19,62.36,-12.96,-5.11,-2.67,394.0,235.0,180.0,455.0,439.0,434.0 +485,164304,新华中证环保,-13.61,49.78,97.61,0.0,-8.53,-5.91,403.0,42.0,77.0,80.0,741.0,698.0 +488,6704,易方达MSC,-13.61,-0.49,33.81,-13.37,-6.15,-3.79,403.0,434.0,407.0,475.0,528.0,517.0 +490,5960,博时量化价值,-13.63,3.21,30.08,-14.67,-3.09,-2.91,404.0,340.0,464.0,542.0,279.0,451.0 +494,6705,易方达MSC,-13.7,-0.69,33.38,-13.45,-6.17,-3.85,406.0,436.0,412.0,481.0,530.0,522.0 +497,1409,工银互联网加,-13.77,2.41,54.15,-13.39,-3.41,0.85,409.0,355.0,236.0,477.0,300.0,242.0 +500,5009,申万菱信行业,-13.79,41.09,126.13,-14.76,-4.38,6.29,411.0,65.0,43.0,548.0,377.0,77.0 +502,6286,华泰MSCI,-13.81,-2.01,31.8,-13.19,-5.86,-3.6,413.0,479.0,434.0,467.0,505.0,501.0 +505,1714,工银文体产业,-13.83,0.51,70.75,-13.14,-5.34,-2.39,415.0,404.0,144.0,465.0,458.0,412.0 +508,7275,银河沪深30,-13.84,-0.97,32.18,-13.43,-6.62,-5.26,416.0,445.0,428.0,480.0,570.0,641.0 +512,6251,银华兴盛股票,-13.87,33.96,108.51,-14.24,-5.47,4.96,418.0,87.0,59.0,517.0,471.0,103.0 +526,5607,华宝中证50,-13.99,-4.86,25.76,-14.48,-1.78,-1.08,428.0,556.0,519.0,530.0,215.0,333.0 +528,160807,长盛沪深30,-14.0,-3.07,32.53,-13.47,-6.48,-4.05,429.0,505.0,423.0,482.0,559.0,536.0 +529,5802,汇添富智能制,-14.0,8.61,62.0,-13.8,-0.07,3.05,429.0,253.0,184.0,500.0,147.0,152.0 +532,656,前海开源沪深,-14.02,-1.86,33.67,0.0,-6.51,-4.54,431.0,469.0,408.0,80.0,562.0,579.0 +534,6293,华泰MSCI,-14.03,-2.49,30.66,-13.41,-5.92,-3.73,432.0,493.0,453.0,478.0,511.0,513.0 +537,6194,鑫元核心资产,-14.09,-1.94,31.51,0.0,-3.61,2.63,435.0,474.0,440.0,80.0,314.0,170.0 +538,5113,平安沪深30,-14.12,-2.41,30.3,-13.27,-5.5,-4.6,436.0,489.0,459.0,471.0,474.0,585.0 +554,7276,银河沪深30,-14.28,-1.96,30.17,-13.87,-6.74,-5.5,446.0,476.0,462.0,504.0,582.0,662.0 +557,160620,鹏华资源A,-14.3,52.02,73.97,0.0,-4.33,1.55,448.0,37.0,128.0,80.0,372.0,219.0 +559,5457,景顺长城量化,-14.3,12.19,57.06,0.0,-6.31,-5.4,448.0,217.0,219.0,80.0,544.0,654.0 +571,3318,景顺中证50,-14.42,3.87,29.71,0.0,-4.66,-4.44,455.0,326.0,468.0,80.0,400.0,570.0 +576,580008,东吴新产业精,-14.48,6.74,51.4,0.0,-2.46,-1.53,459.0,282.0,259.0,80.0,239.0,358.0 +579,1651,工银新蓝筹股,-14.51,1.79,59.03,-14.82,-4.81,-5.81,462.0,376.0,201.0,550.0,412.0,689.0 +583,460220,华泰柏瑞上证,-14.55,2.1,27.74,-14.95,-4.9,-3.2,465.0,367.0,495.0,558.0,420.0,472.0 +586,5114,平安沪深30,-14.55,-3.39,28.33,-13.7,-5.62,-4.84,465.0,511.0,489.0,493.0,486.0,606.0 +588,778,鹏华先进制造,-14.58,-3.82,57.51,0.0,-6.41,-2.76,466.0,524.0,214.0,80.0,553.0,438.0 +591,320014,诺安沪深30,-14.61,-2.68,26.1,-14.26,-6.79,-4.76,468.0,499.0,516.0,518.0,587.0,599.0 +593,2595,博时工业4.,-14.62,0.34,51.89,-14.84,-6.18,-3.76,469.0,408.0,253.0,551.0,531.0,514.0 +604,6034,富国MSCI,-14.79,8.88,51.85,-14.48,-6.24,-2.35,478.0,250.0,254.0,530.0,537.0,408.0 +610,206012,鹏华价值精选,-14.86,22.62,125.97,0.0,-1.32,-2.51,481.0,128.0,44.0,80.0,191.0,423.0 +617,3016,中金中证50,-14.91,10.82,57.17,0.0,-4.78,-4.22,485.0,229.0,217.0,80.0,410.0,550.0 +621,975,MSCI中国,-14.96,-3.29,23.56,-14.71,-6.55,-4.2,489.0,509.0,543.0,545.0,565.0,548.0 +628,7143,国投瑞银沪深,-15.03,-0.75,32.33,-14.69,-7.6,-5.08,494.0,437.0,427.0,544.0,660.0,626.0 +634,5660,嘉实资源精选,-15.1,47.14,126.17,-14.86,3.84,9.91,499.0,47.0,42.0,552.0,59.0,49.0 +635,163111,申万菱信中小,-15.15,-4.11,35.67,-14.66,-8.44,-5.37,500.0,532.0,390.0,541.0,732.0,651.0 +636,160638,鹏华中证一带,-15.16,25.4,51.94,0.0,-3.26,-0.06,501.0,113.0,252.0,80.0,288.0,286.0 +642,5735,MSCI中国,-15.23,-3.87,22.48,-14.97,-6.62,-4.35,504.0,527.0,560.0,559.0,570.0,562.0 +644,3578,中金中证50,-15.25,9.94,55.04,0.0,-4.88,-4.41,506.0,237.0,231.0,80.0,418.0,567.0 +646,5788,南方MSCI,-15.26,-4.09,29.22,-14.91,-6.78,-4.44,507.0,531.0,474.0,554.0,586.0,570.0 +647,1166,建信环保产业,-15.28,43.01,112.74,0.0,-6.86,-1.69,508.0,60.0,54.0,80.0,594.0,368.0 +654,160806,长盛同庆中证,-15.33,-1.86,30.31,-14.78,-6.78,-5.2,513.0,469.0,458.0,549.0,586.0,636.0 +668,7799,申万菱信中小,-15.41,-4.69,34.46,-14.92,-8.51,-5.51,521.0,548.0,399.0,555.0,739.0,663.0 +698,7593,鹏扬中证50,-15.69,10.79,61.55,0.0,-7.66,-4.44,537.0,230.0,187.0,80.0,665.0,570.0 +714,167503,安信中证一带,-15.82,28.42,43.17,0.0,-3.47,-0.53,548.0,101.0,308.0,80.0,304.0,311.0 +722,3145,中融竞争优势,-15.89,21.17,118.48,0.0,-0.58,0.68,552.0,135.0,48.0,80.0,162.0,250.0 +724,3624,创金合信资源,-15.91,61.16,159.21,0.0,-4.93,0.87,553.0,27.0,23.0,80.0,423.0,241.0 +734,7594,鹏扬中证50,-16.02,9.92,59.4,0.0,-7.76,-4.63,560.0,238.0,198.0,80.0,675.0,588.0 diff --git a/fundrank.csv b/fundrank.csv new file mode 100644 index 000000000..f03626668 --- /dev/null +++ b/fundrank.csv @@ -0,0 +1,2250 @@ +比较,序号,基金,基金简称,日期,单位净值,累计净值,日增长率,近1周,近1月,近3月,近6月,近1年,近2年,近3年,今年来,成立来,近5年,手续费,可购 +,,代码,,,,,,,,,,,,,,,,,全部 +,1,1678,英大国企改革,9月19日,1.5935,2.2435,-0.34%,-3.52%,4.11%,9.33%,34.28%,19.96%,53.24%,105.13%,28.26%,143.15%,14.71%,0.15%, +,2,756,建信潜力新蓝,9月19日,3.971,3.971,0.03%,-7.11%,-6.21%,4.50%,19.21%,14.93%,89.91%,181.03%,5.98%,297.10%,---,0.15%, +,3,161032,富国中证煤炭,9月20日,2.149,1.497,1.08%,-3.63%,3.02%,9.98%,24.65%,13.52%,128.26%,133.16%,38.56%,49.73%,7.83%,0.00%, +,4,13275,富国中证煤炭,9月20日,2.145,2.145,1.08%,-3.64%,3.03%,9.94%,24.49%,13.31%,---,---,38.30%,43.10%,7.63%,0.00%, +,5,8279,国泰中证煤炭,9月19日,2.1915,2.4915,0.80%,-5.82%,1.89%,3.56%,22.96%,12.34%,128.17%,---,37.31%,159.66%,7.82%,0.10%, +,6,168204,中融中证煤炭,9月19日,1.968,1.968,0.82%,-5.93%,1.71%,3.58%,22.01%,12.33%,128.48%,128.55%,35.63%,48.91%,---,0.00%, +,7,8280,国泰中证煤炭,9月19日,2.1722,2.4722,0.80%,-5.83%,1.86%,3.48%,22.77%,12.00%,126.82%,---,37.02%,157.64%,7.51%,0.00%, +,8,729,建信中小盘先,9月19日,4.334,4.334,0.00%,-7.27%,-6.47%,4.51%,16.22%,11.44%,98.44%,216.35%,2.58%,333.40%,---,0.15%, +,9,12724,国泰中证畜牧,9月19日,1.0164,1.0164,0.48%,-1.99%,-2.92%,-0.17%,1.18%,9.86%,---,---,-5.42%,1.64%,11.15%,0.10%, +,10,3298,嘉实物流产业,9月20日,2.607,2.607,-0.46%,-2.69%,0.58%,1.68%,4.61%,9.68%,33.69%,85.55%,1.56%,160.70%,7.95%,0.15%, +,11,12725,国泰中证畜牧,9月19日,1.0127,1.0127,0.48%,-2.00%,-2.96%,-0.26%,1.02%,9.52%,---,---,-5.62%,1.27%,10.83%,0.00%, +,12,3299,嘉实物流产业,9月20日,2.56,2.56,-0.43%,-2.66%,0.55%,1.59%,4.36%,9.17%,32.44%,83.25%,1.23%,156.00%,7.43%,0.00%, +,13,6195,国金量化多因,9月19日,1.7504,1.7504,-1.56%,-5.93%,-8.05%,3.23%,9.76%,8.12%,29.76%,48.81%,6.58%,75.04%,8.77%,0.15%, +,14,991,工银战略转型,9月20日,3.891,3.891,-1.49%,-3.06%,1.75%,1.73%,3.51%,6.66%,40.88%,174.01%,-0.69%,289.10%,6.08%,0.15%, +,15,11473,工银战略转型,9月20日,3.861,3.861,-1.48%,-3.06%,1.71%,1.61%,3.24%,6.13%,---,---,-1.03%,20.09%,5.55%,0.00%, +,16,161724,招商中证煤炭,9月20日,1.9754,1.3965,1.94%,-3.18%,0.38%,4.35%,18.89%,5.89%,122.11%,134.35%,33.01%,49.40%,1.28%,0.10%, +,17,13596,招商中证煤炭,9月20日,1.9734,1.9734,1.94%,-3.18%,0.37%,4.32%,18.83%,5.78%,---,---,32.92%,-0.19%,1.18%,0.00%, +,18,11229,创金合信数字,9月19日,1.5281,1.5281,-0.86%,-3.45%,-5.96%,0.69%,3.98%,5.28%,---,---,-9.10%,52.81%,---,0.15%, +,19,7671,建信中证红利,9月19日,1.3329,1.3329,0.41%,-1.63%,2.89%,0.79%,5.42%,4.97%,0.05%,33.28%,-2.96%,33.29%,---,0.12%, +,20,11230,创金合信数字,9月19日,1.5155,1.5155,-0.87%,-3.46%,-6.00%,0.57%,3.72%,4.76%,---,---,-9.42%,51.55%,---,0.00%, +,21,7672,建信中证红利,9月19日,1.3164,1.3164,0.40%,-1.64%,2.86%,0.68%,5.20%,4.55%,-0.77%,31.63%,-3.24%,31.64%,---,0.00%, +,22,8445,融通产业趋势,9月20日,1.4742,1.4742,2.32%,-5.63%,-8.71%,10.20%,15.88%,4.37%,28.61%,---,-4.07%,47.42%,4.04%,0.15%, +,23,8928,泰达消费红利,9月20日,1.7271,1.7271,1.07%,-3.27%,-2.65%,-4.70%,2.66%,4.22%,19.18%,---,-9.38%,72.71%,5.66%,0.12%, +,24,8929,泰达消费红利,9月20日,1.7165,1.7165,1.07%,-3.27%,-2.67%,-4.76%,2.53%,3.97%,18.58%,---,-9.54%,71.65%,5.40%,0.00%, +,25,501059,西部利得国企,9月19日,2.1002,2.1002,0.53%,-3.75%,2.92%,3.48%,13.14%,3.57%,36.68%,77.34%,13.38%,110.02%,0.59%,0.12%, +,26,9439,西部利得国企,9月19日,2.0533,2.0533,0.52%,-3.76%,2.89%,3.40%,12.97%,3.25%,35.84%,---,13.14%,62.48%,0.29%,0.00%, +,27,979,景顺长城沪港,9月19日,1.625,1.625,-0.49%,-2.34%,3.04%,4.84%,6.35%,3.24%,12.69%,38.89%,1.06%,62.50%,---,0.15%, +,28,160628,鹏华中证80,9月19日,1.019,1.75,0.49%,-2.95%,4.73%,6.70%,0.89%,3.24%,-17.76%,-0.85%,-2.11%,64.05%,---,0.12%, +,29,9891,融通产业趋势,9月20日,1.1154,1.1154,2.32%,-5.72%,-9.02%,9.59%,15.23%,3.04%,12.73%,---,-4.76%,11.54%,2.60%,0.15%, +,30,5561,创金合信中证,9月19日,1.6147,1.6147,0.00%,-3.62%,3.48%,3.13%,8.50%,2.93%,34.75%,65.49%,8.27%,61.47%,---,0.15%, +,31,5562,创金合信中证,9月19日,1.6011,1.6011,0.00%,-3.62%,3.47%,3.08%,8.39%,2.72%,34.22%,64.54%,8.12%,60.11%,---,0.00%, +,32,320020,诺安策略精选,9月20日,1.9676,2.868,-0.40%,-3.32%,-2.25%,-0.63%,4.34%,2.52%,22.86%,55.48%,-6.46%,186.80%,1.54%,0.15%, +,33,8114,天弘中证红利,9月19日,1.2735,1.2735,-0.33%,-3.64%,-0.94%,-1.58%,0.30%,2.51%,20.44%,---,-0.48%,27.35%,0.86%,0.10%, +,34,5505,前海开源中药,9月19日,1.9205,1.9205,-0.75%,-4.55%,-5.96%,-10.37%,-7.15%,2.37%,6.52%,29.61%,-16.55%,92.05%,---,0.15%, +,35,8115,天弘中证红利,9月19日,1.2662,1.2662,-0.34%,-3.65%,-0.96%,-1.63%,0.19%,2.30%,19.96%,---,-0.62%,26.62%,0.65%,0.00%, +,36,1208,诺安低碳经济,9月20日,2.133,2.133,-0.47%,-3.53%,-2.29%,-0.84%,3.44%,2.20%,25.99%,76.57%,-7.06%,113.30%,1.43%,0.15%, +,37,7466,华泰柏瑞中证,9月19日,1.5004,1.5004,0.06%,-3.37%,3.77%,3.15%,8.19%,2.20%,26.24%,48.69%,8.14%,50.04%,-0.89%,0.12%, +,38,5506,前海开源中药,9月19日,1.9044,1.9044,-0.76%,-4.56%,-5.98%,-10.43%,-7.26%,2.11%,5.99%,28.66%,-16.70%,90.44%,---,0.00%, +,39,7467,华泰柏瑞中证,9月19日,1.4864,1.4864,0.07%,-3.38%,3.76%,3.09%,8.06%,1.95%,25.61%,47.43%,7.95%,48.64%,-1.14%,0.00%, +,40,9476,建信食品饮料,9月19日,1.1328,1.1328,0.90%,1.02%,-0.74%,-1.32%,5.70%,1.78%,15.52%,---,-8.60%,13.28%,---,0.15%, +,41,10349,诺安低碳经济,9月20日,2.125,2.125,-0.42%,-3.54%,-2.34%,-0.93%,3.21%,1.72%,---,---,-7.41%,26.19%,0.90%,0.00%, +,42,1476,中银智能制造,9月20日,2.171,2.171,2.31%,-4.28%,-8.05%,4.83%,11.85%,1.45%,69.48%,211.48%,-5.16%,117.10%,1.50%,0.15%, +,43,12181,中银智能制造,9月20日,2.161,2.161,2.27%,-4.30%,-8.12%,4.70%,11.56%,0.98%,---,---,-5.47%,35.83%,1.08%,0.00%, +,44,1473,建信大安全战,9月19日,2.9934,2.9934,0.70%,-1.57%,-1.73%,-0.62%,0.37%,0.94%,17.10%,86.40%,-7.59%,199.34%,---,0.15%, +,45,501029,华宝标普中国,9月20日,1.3304,1.3604,0.19%,-3.45%,-0.53%,0.29%,2.69%,0.89%,16.94%,39.53%,-1.99%,36.75%,-0.96%,0.10%, +,46,3634,嘉实农业产业,9月20日,2.0337,2.0337,-0.16%,-4.12%,-6.29%,-4.89%,0.75%,0.82%,-2.15%,54.87%,-9.53%,103.37%,2.93%,0.15%, +,47,2236,大成360互,9月20日,1.608,1.608,0.94%,-5.24%,-7.64%,1.58%,-1.95%,0.56%,9.31%,53.00%,-8.22%,60.80%,0.82%,0.12%, +,48,5125,华宝标普中国,9月20日,1.3035,1.3335,0.18%,-3.45%,-0.56%,0.18%,2.48%,0.49%,16.01%,37.86%,-2.26%,23.56%,-1.35%,0.00%, +,49,160218,国泰国证房地,9月20日,0.8965,1.7522,-2.02%,-3.61%,1.09%,1.06%,-1.46%,0.46%,-22.47%,-10.90%,-5.16%,43.12%,-2.29%,0.10%, +,50,9179,嘉实中证主要,9月20日,1.2836,1.2836,0.45%,-1.19%,-1.62%,-4.09%,2.73%,0.37%,-0.48%,---,-12.15%,28.36%,2.81%,0.12%, +,51,2229,华夏经济转型,9月20日,2.292,2.456,0.53%,-3.13%,-3.94%,7.10%,11.80%,0.35%,5.14%,73.90%,-10.19%,162.69%,0.22%,0.15%, +,52,6809,泰康香港银行,9月19日,0.8597,0.8597,0.23%,-0.68%,-1.64%,-5.28%,-4.92%,0.35%,14.67%,-8.83%,-0.02%,-14.03%,---,0.10%, +,53,9180,嘉实中证主要,9月20日,1.2774,1.2774,0.45%,-1.20%,-1.64%,-4.14%,2.63%,0.16%,-0.88%,---,-12.28%,27.74%,2.60%,0.00%, +,54,4698,博时军工主题,9月20日,2.019,2.019,-0.30%,-1.37%,-2.09%,2.91%,6.04%,0.05%,24.17%,103.94%,-15.31%,101.90%,-1.51%,0.15%, +,55,501089,方正富邦消费,9月20日,1.3763,1.3763,1.08%,-3.40%,-2.81%,-5.96%,0.34%,0.05%,2.38%,---,-12.10%,37.63%,1.45%,0.12%, +,56,160643,鹏华空天军工,9月19日,1.5513,1.5513,-1.74%,-0.53%,-1.08%,7.41%,8.47%,0.00%,23.81%,73.00%,-17.34%,55.13%,---,0.12%, +,57,501025,鹏华香港银行,9月19日,0.9437,0.9937,0.23%,-0.63%,-1.63%,-5.27%,-4.96%,-0.02%,14.47%,-9.60%,0.17%,-1.83%,---,0.12%, +,58,6810,泰康香港银行,9月19日,0.8481,0.8481,0.22%,-0.69%,-1.67%,-5.38%,-5.11%,-0.05%,13.75%,-9.91%,-0.32%,-15.19%,---,0.00%, +,59,3359,大成360互,9月20日,1.556,1.556,0.91%,-5.24%,-7.71%,1.37%,-2.26%,-0.06%,7.98%,50.19%,-8.63%,38.07%,0.19%,0.00%, +,60,164402,前海开源中航,9月19日,1.145,1.145,-1.40%,-0.57%,-0.16%,9.10%,10.69%,-0.09%,27.08%,60.41%,-15.87%,18.20%,---,0.12%, +,61,10364,鹏华空天军工,9月19日,1.243,1.243,-1.75%,-0.53%,-1.09%,7.38%,8.42%,-0.10%,---,---,-17.40%,24.30%,---,0.00%, +,62,10365,鹏华香港银行,9月19日,1.0991,1.0991,0.24%,-0.63%,-1.63%,-5.29%,-5.01%,-0.12%,---,---,0.10%,9.91%,---,0.00%, +,63,1404,招商移动互联,9月20日,1.5475,1.5475,-0.36%,-3.20%,-4.49%,13.10%,9.36%,-0.16%,25.51%,84.45%,-7.94%,54.75%,-1.93%,0.15%, +,64,5161,华商上游产业,9月19日,2.231,2.231,0.20%,-5.45%,-3.00%,-1.27%,5.69%,-0.17%,56.50%,133.27%,-4.28%,123.10%,---,0.15%, +,65,10769,天弘中证农业,9月20日,0.9035,0.9035,-0.28%,-4.71%,-4.70%,-5.52%,1.45%,-0.29%,---,---,-7.55%,-9.65%,1.18%,0.10%, +,66,10770,天弘中证农业,9月20日,0.9004,0.9004,-0.29%,-4.72%,-4.73%,-5.58%,1.33%,-0.50%,---,---,-7.69%,-9.96%,0.96%,0.00%, +,67,11592,博时军工主题,9月20日,2.002,2.002,-0.30%,-1.33%,-2.10%,2.72%,5.76%,-0.50%,---,---,-15.63%,9.16%,-2.05%,0.00%, +,68,8088,华夏中证全指,9月20日,0.934,0.934,-1.35%,-3.13%,0.90%,0.00%,-2.10%,-0.59%,-12.39%,---,-4.77%,-6.60%,-3.01%,0.12%, +,69,1583,安信新常态股,9月19日,1.4724,1.804,-0.53%,-3.31%,1.40%,-2.43%,-2.52%,-0.67%,6.77%,42.04%,-3.70%,97.47%,---,0.15%, +,70,248,汇添富中证主,9月20日,2.7774,2.7774,0.45%,-1.19%,-1.73%,-4.68%,1.95%,-0.78%,-5.01%,38.14%,-13.03%,177.74%,1.64%,0.10%, +,71,8089,华夏中证全指,9月20日,0.9263,0.9263,-1.35%,-3.14%,0.87%,-0.08%,-2.25%,-0.89%,-12.91%,---,-4.98%,-7.37%,-3.29%,0.00%, +,72,12857,汇添富中证主,9月20日,2.7694,2.7694,0.45%,-1.20%,-1.75%,-4.74%,1.82%,-1.02%,---,---,-13.18%,-11.06%,1.40%,0.00%, +,73,11726,安信新常态股,9月19日,1.4638,1.4638,-0.53%,-3.32%,1.36%,-2.53%,-2.71%,-1.07%,---,---,-3.98%,-0.60%,---,0.00%, +,74,596,前海开源中证,9月19日,2.131,2.131,-1.71%,-1.02%,-1.21%,6.39%,5.97%,-1.21%,19.18%,63.80%,-16.30%,113.10%,---,0.12%, +,75,1521,国寿安保成长,9月19日,1.909,1.979,-0.99%,-5.26%,-10.59%,5.70%,9.52%,-1.29%,18.06%,75.62%,-9.57%,103.10%,---,0.15%, +,76,2199,前海开源中证,9月19日,1.081,2.041,-1.73%,-1.01%,-1.19%,6.40%,5.88%,-1.46%,18.66%,62.80%,-16.40%,6.86%,---,0.12%, +,77,1579,国泰大农业股,9月20日,2.3174,2.3174,0.08%,-4.10%,-5.69%,-5.29%,-0.46%,-1.55%,-4.79%,50.97%,-7.04%,131.74%,-0.50%,0.15%, +,78,9875,天弘甄选食品,9月20日,1.0806,1.0806,0.71%,-0.71%,-2.19%,-5.89%,3.48%,-1.68%,8.59%,---,-12.74%,8.06%,0.26%,0.12%, +,79,8234,光大消费主题,9月20日,1.4174,1.4174,1.32%,-0.88%,-1.56%,-3.03%,7.81%,-1.69%,5.91%,---,-12.57%,41.74%,-0.31%,0.15%, +,80,6712,前海开源MS,9月19日,2.1187,2.1187,0.78%,-1.15%,-5.31%,-5.36%,6.22%,-1.83%,8.30%,57.03%,-10.44%,111.87%,---,0.12%, +,81,4642,南方房地产E,9月20日,0.786,0.786,-1.37%,-3.24%,0.82%,-0.62%,-3.03%,-1.86%,-21.81%,-11.47%,-5.54%,-21.40%,-4.04%,0.12%, +,82,9876,天弘甄选食品,9月20日,1.076,1.076,0.71%,-0.71%,-2.20%,-5.93%,3.36%,-1.89%,8.14%,---,-12.87%,7.60%,0.06%,0.00%, +,83,6713,前海开源MS,9月19日,2.1029,2.1029,0.78%,-1.16%,-5.32%,-5.41%,6.11%,-2.03%,7.86%,56.08%,-10.58%,110.29%,---,0.00%, +,84,166402,浦银安盛沪港,9月19日,0.943,0.943,0.12%,-1.68%,1.27%,-1.51%,-0.65%,-2.06%,-1.87%,-12.69%,-0.56%,-5.70%,---,0.12%, +,85,1042,华夏领先股票,9月20日,0.797,0.797,1.01%,-6.01%,-10.65%,1.79%,4.46%,-2.09%,5.56%,37.65%,-10.95%,-20.30%,-1.73%,0.15%, +,86,7751,景顺中证红利,9月19日,1.0353,1.1136,-0.14%,-3.73%,-1.84%,-2.25%,0.20%,-2.11%,8.88%,11.29%,-1.15%,11.30%,---,0.12%, +,87,4643,南方房地产E,9月20日,0.7703,0.7703,-1.37%,-3.24%,0.79%,-0.72%,-3.23%,-2.25%,-22.43%,-12.53%,-5.81%,-22.97%,-4.42%,0.00%, +,88,10989,南方房地产E,9月20日,0.7703,0.7703,-1.37%,-3.24%,0.79%,-0.72%,-3.24%,-2.26%,---,---,-5.81%,-14.02%,-4.42%,0.00%, +,89,7760,景顺中证红利,9月19日,1.0316,1.1055,-0.15%,-3.73%,-1.86%,-2.31%,0.07%,-2.36%,8.34%,10.47%,-1.33%,10.48%,---,0.00%, +,90,5235,银华食品饮料,9月20日,2.2559,2.2559,1.04%,0.15%,-1.32%,-6.08%,2.82%,-2.38%,12.42%,80.33%,-15.38%,125.59%,-0.10%,0.15%, +,91,1048,富国新兴产业,9月20日,2.084,2.084,1.17%,-3.56%,-6.38%,14.76%,19.56%,-2.57%,28.01%,70.96%,0.29%,108.40%,-2.16%,0.15%, +,92,1645,国泰大健康股,9月19日,2.985,3.577,-0.90%,-6.13%,-6.81%,-0.96%,-1.81%,-2.67%,2.51%,90.54%,-9.13%,267.55%,-0.46%,0.15%, +,93,161721,招商沪深30,9月20日,0.7031,1.3732,-2.46%,-2.81%,1.12%,-1.04%,-5.64%,-2.70%,-27.87%,-12.85%,-8.09%,13.85%,-6.89%,0.10%, +,94,5106,银华农业产业,9月20日,2.0368,2.0368,-0.49%,-5.47%,-5.75%,-3.80%,3.11%,-2.78%,-8.30%,51.59%,-10.04%,103.68%,-0.86%,0.15%, +,95,5236,银华食品饮料,9月20日,2.2254,2.2254,1.04%,0.14%,-1.35%,-6.17%,2.61%,-2.78%,11.53%,78.20%,-15.62%,122.54%,-0.49%,0.00%, +,96,13273,招商沪深30,9月20日,0.7025,0.7025,-2.46%,-2.81%,1.11%,-1.07%,-5.68%,-2.78%,---,---,-8.16%,-3.78%,-6.97%,0.00%, +,97,12712,建信沪深30,9月19日,0.9568,0.9568,0.05%,-2.59%,1.30%,-1.25%,1.91%,-2.82%,---,---,-0.97%,-4.32%,---,0.15%, +,98,11966,招商中证光伏,9月20日,1.0053,1.0053,2.87%,-7.01%,-14.22%,-2.24%,3.42%,-2.94%,---,---,-7.76%,0.53%,-4.14%,0.12%, +,99,11321,国泰大健康股,9月19日,2.966,2.966,-0.90%,-6.14%,-6.82%,-1.03%,-2.02%,-3.04%,---,---,-9.38%,3.31%,-0.82%,0.00%, +,100,12713,建信沪深30,9月19日,0.9539,0.9539,0.05%,-2.59%,1.27%,-1.32%,1.76%,-3.11%,---,---,-1.18%,-4.61%,---,0.00%, +,101,501011,汇添富中证中,9月20日,1.0373,1.0373,1.06%,-4.62%,-4.74%,-12.07%,-12.91%,-3.17%,3.37%,30.53%,-21.32%,3.73%,-3.21%,0.10%, +,102,893,工银创新动力,9月20日,0.905,0.905,0.00%,-4.13%,-3.62%,-4.23%,-1.63%,-3.21%,15.43%,51.09%,-6.41%,-9.50%,-3.83%,0.15%, +,103,11967,招商中证光伏,9月20日,1.0001,1.0001,2.86%,-7.02%,-14.24%,-2.33%,3.21%,-3.33%,---,---,-8.03%,0.01%,-4.52%,0.00%, +,104,6868,华夏科技成长,9月20日,1.8178,1.8178,0.60%,-3.43%,-5.07%,5.66%,9.98%,-3.35%,3.26%,76.52%,-12.98%,81.78%,-3.84%,0.15%, +,105,160716,嘉实基本面5,9月20日,1.5916,1.5916,-1.06%,-1.65%,2.23%,-1.69%,0.29%,-3.41%,-1.67%,0.63%,-3.40%,60.86%,-4.83%,0.12%, +,106,501012,汇添富中证中,9月20日,1.019,1.019,1.05%,-4.62%,-4.78%,-12.16%,-13.09%,-3.57%,2.55%,28.99%,-21.56%,1.90%,-3.60%,0.00%, +,107,160725,嘉实基本面5,9月20日,1.1052,1.1052,-1.06%,-1.66%,2.20%,-1.79%,0.08%,-3.80%,-2.45%,-0.59%,-3.68%,9.83%,-5.21%,0.00%, +,108,160630,鹏华国防A,9月19日,1.275,1.32,-1.77%,-0.86%,-1.32%,7.87%,7.69%,-3.85%,15.18%,64.82%,-18.69%,20.24%,---,0.12%, +,109,7287,合煦智远消费,9月19日,1.0856,1.0856,-0.05%,-2.58%,-5.29%,-1.24%,2.33%,-3.98%,-15.88%,7.73%,-13.55%,8.56%,-1.34%,0.15%, +,110,12041,鹏华国防C,9月19日,1.157,1.157,-1.87%,-0.94%,-1.36%,7.83%,7.53%,-3.98%,---,---,-18.81%,15.70%,---,0.00%, +,111,12126,泰达宏利新能,9月20日,1.4288,1.4288,3.31%,-5.40%,-12.55%,-4.01%,12.11%,-4.00%,---,---,0.65%,42.88%,-5.18%,0.15%, +,112,1097,华泰柏瑞积极,9月20日,1.076,1.076,2.09%,-6.56%,-12.82%,1.74%,3.84%,-4.01%,28.85%,65.98%,-9.84%,5.40%,-1.91%,0.15%, +,113,2871,华夏智胜价值,9月20日,1.414,1.414,1.07%,-5.06%,-6.06%,0.01%,6.16%,-4.12%,21.02%,56.40%,-4.33%,41.40%,-4.81%,0.15%, +,114,7605,嘉实沪深30,9月20日,1.0772,1.0772,-0.57%,-3.04%,-0.30%,-2.80%,-1.42%,-4.13%,2.27%,---,-4.82%,7.72%,-5.64%,0.12%, +,115,6138,国联安价值优,9月20日,1.7688,1.7688,-0.22%,-3.69%,-3.93%,-5.75%,-0.54%,-4.18%,-4.69%,38.75%,-8.49%,77.27%,-4.46%,0.15%, +,116,9069,大成睿鑫股票,9月20日,1.0448,1.0448,0.10%,-3.30%,-4.81%,-4.00%,1.46%,-4.18%,3.45%,---,-16.01%,4.48%,-4.26%,0.15%, +,117,12127,泰达宏利新能,9月20日,1.4232,1.4232,3.31%,-5.40%,-12.57%,-4.08%,11.93%,-4.28%,---,---,0.43%,42.32%,-5.46%,0.00%, +,118,2872,华夏智胜价值,9月20日,1.4044,1.4044,1.07%,-5.07%,-6.08%,-0.06%,6.02%,-4.36%,20.43%,89.25%,-4.50%,40.44%,-5.06%,0.00%, +,119,161907,万家中证红利,9月19日,2.2877,2.2877,0.09%,-4.33%,-0.35%,1.43%,4.08%,-4.44%,22.13%,37.11%,0.22%,128.77%,-5.56%,0.15%, +,120,7288,合煦智远消费,9月19日,1.0673,1.0673,-0.05%,-2.60%,-5.32%,-1.34%,2.09%,-4.44%,-16.68%,6.06%,-13.84%,6.73%,-1.81%,0.00%, +,121,12548,华宝中证细分,9月20日,0.8239,0.8239,1.01%,-0.48%,-2.16%,-6.50%,1.99%,-4.44%,---,---,-15.21%,-17.61%,-2.06%,0.10%, +,122,9240,泰康蓝筹优势,9月19日,0.996,0.996,-0.49%,-3.74%,3.90%,-1.63%,3.07%,-4.46%,-0.52%,---,-10.69%,-0.40%,---,0.15%, +,123,7606,嘉实沪深30,9月20日,1.0652,1.0652,-0.57%,-3.05%,-0.34%,-2.89%,-1.62%,-4.51%,1.46%,---,-5.09%,6.52%,-6.02%,0.00%, +,124,8163,南方大盘红利,9月20日,1.1532,1.2032,-0.32%,-3.13%,-0.13%,-2.25%,-0.52%,-4.53%,11.88%,---,-5.59%,20.40%,-7.19%,0.12%, +,125,9070,大成睿鑫股票,9月20日,1.036,1.036,0.09%,-3.30%,-4.84%,-4.09%,1.25%,-4.57%,2.63%,---,-16.26%,3.60%,-4.64%,0.00%, +,126,1576,国泰智能装备,9月20日,2.667,2.667,2.14%,-7.33%,-14.46%,-11.95%,-7.14%,-4.61%,26.22%,133.54%,-21.14%,166.70%,-4.13%,0.15%, +,127,1047,光大国企改革,9月20日,1.746,1.746,-0.06%,-2.13%,-0.96%,6.46%,11.42%,-4.64%,-11.33%,36.51%,-10.46%,74.60%,-3.75%,0.15%, +,128,12549,华宝中证细分,9月20日,0.8219,0.8219,1.00%,-0.50%,-2.19%,-6.55%,1.88%,-4.64%,---,---,-15.34%,-17.81%,-2.26%,0.00%, +,129,9051,易方达中证红,9月20日,1.1767,1.2237,0.09%,-3.70%,-0.39%,1.82%,3.83%,-4.74%,21.00%,---,0.47%,22.33%,-6.02%,0.06%, +,130,9052,易方达中证红,9月20日,1.174,1.221,0.09%,-3.71%,-0.40%,1.79%,3.77%,-4.84%,20.75%,---,0.39%,22.05%,-6.11%,0.00%, +,131,985,嘉实逆向策略,9月20日,2.539,2.539,1.36%,-5.40%,-12.15%,2.34%,10.10%,-4.87%,36.07%,95.31%,-12.87%,153.90%,-5.26%,0.15%, +,132,8164,南方大盘红利,9月20日,1.1407,1.1907,-0.32%,-3.14%,-0.16%,-2.34%,-0.72%,-4.91%,11.01%,---,-5.87%,19.13%,-7.56%,0.00%, +,133,326,南方中小盘成,9月20日,1.369,2.053,0.53%,-3.90%,-6.52%,-6.75%,3.38%,-4.92%,12.90%,72.93%,-9.17%,109.78%,-4.69%,0.15%, +,134,4640,华夏节能环保,9月20日,2.2482,2.2482,3.51%,-7.13%,-14.55%,1.64%,2.43%,-5.02%,39.76%,168.15%,-15.95%,124.82%,-4.48%,0.15%, +,135,11322,国泰智能装备,9月20日,2.648,2.648,2.12%,-7.35%,-14.50%,-12.06%,-7.35%,-5.02%,---,---,-21.38%,-1.49%,-4.54%,0.00%, +,136,12885,华夏中证光伏,9月20日,0.9103,0.9103,2.86%,-7.06%,-14.37%,-2.56%,2.92%,-5.17%,---,---,-8.46%,-8.97%,-6.36%,0.12%, +,137,90010,大成中证红利,9月20日,2.157,2.313,0.09%,-3.71%,-0.51%,1.55%,3.55%,-5.27%,17.42%,29.39%,-0.05%,136.34%,-6.50%,0.12%, +,138,160919,大成产业升级,9月20日,2.732,4.718,0.48%,-3.80%,-4.94%,5.36%,5.28%,-5.30%,24.58%,102.22%,-14.30%,157.95%,-4.87%,0.15%, +,139,11102,天弘中证光伏,9月20日,1.2612,1.2612,2.86%,-7.05%,-14.41%,-2.81%,2.50%,-5.30%,---,---,-8.77%,26.12%,-6.49%,0.10%, +,140,1917,招商量化精选,9月20日,2.0218,2.0918,1.23%,-5.30%,-7.33%,0.00%,5.39%,-5.30%,30.33%,102.22%,0.39%,115.09%,-5.62%,0.15%, +,141,1725,汇添富高端制,9月20日,2.515,2.515,0.32%,-2.71%,-3.79%,-1.49%,5.67%,-5.31%,15.42%,77.99%,-14.57%,151.50%,-6.02%,0.15%, +,142,7801,大成中证红利,9月20日,2.147,2.147,0.09%,-3.72%,-0.51%,1.56%,3.47%,-5.34%,17.19%,28.87%,-0.14%,32.37%,-6.57%,0.00%, +,143,11319,国泰上证综合,9月19日,0.9767,0.9767,-0.54%,-4.25%,-3.68%,-2.07%,0.40%,-5.35%,---,---,-8.57%,-2.33%,-5.39%,0.10%, +,144,12886,华夏中证光伏,9月20日,0.9074,0.9074,2.87%,-7.07%,-14.39%,-2.62%,2.76%,-5.44%,---,---,-8.64%,-9.26%,-6.63%,0.00%, +,145,161725,招商中证白酒,9月20日,1.122,2.8381,1.44%,-0.11%,-1.35%,-6.94%,3.59%,-5.47%,20.59%,78.13%,-14.24%,353.80%,-2.21%,0.10%, +,146,628,大成高新技术,9月20日,3.316,3.316,-0.12%,-3.86%,-5.20%,-5.72%,-2.36%,-5.47%,17.84%,79.15%,-18.24%,231.60%,-6.01%,0.15%, +,147,11103,天弘中证光伏,9月20日,1.2571,1.2571,2.86%,-7.05%,-14.42%,-2.86%,2.40%,-5.49%,---,---,-8.90%,25.71%,-6.67%,0.00%, +,148,8303,宝盈龙头优选,9月20日,0.9845,0.9845,0.60%,-2.19%,0.42%,-4.56%,3.60%,-5.51%,-15.15%,---,-10.69%,-1.55%,-3.40%,0.15%, +,149,9379,中银成长优选,9月20日,1.0578,1.0578,2.57%,-5.60%,-12.06%,-0.77%,4.16%,-5.55%,---,---,-12.22%,5.78%,-6.26%,0.15%, +,150,12414,招商中证白酒,9月20日,1.1206,1.2056,1.44%,-0.11%,-1.36%,-6.97%,3.54%,-5.56%,---,---,-14.30%,-17.45%,-2.30%,0.00%, +,151,11320,国泰上证综合,9月19日,0.9719,0.9719,-0.55%,-4.26%,-3.71%,-2.14%,0.25%,-5.64%,---,---,-8.77%,-2.81%,-5.67%,0.00%, +,152,11506,建信高端装备,9月19日,1.1369,1.1369,-0.92%,-6.59%,-13.83%,-4.35%,1.87%,-5.71%,---,---,-15.93%,13.69%,---,0.15%, +,153,11066,大成高新技术,9月20日,3.294,3.294,-0.09%,-3.85%,-5.24%,-5.78%,-2.54%,-5.83%,---,---,-18.47%,6.57%,-6.37%,0.00%, +,154,7950,招商量化精选,9月20日,1.9903,1.9903,1.23%,-5.30%,-7.38%,-0.15%,5.07%,-5.87%,28.75%,99.23%,-0.05%,101.41%,-6.18%,0.00%, +,155,6675,宝盈品牌消费,9月20日,1.2327,1.2327,0.77%,-1.91%,0.90%,-3.14%,5.39%,-5.89%,-15.86%,15.91%,-8.09%,23.27%,-4.03%,0.15%, +,156,418,景顺长城成长,9月19日,4.247,4.247,-0.91%,-2.17%,-3.15%,-0.07%,5.73%,-5.96%,18.20%,99.30%,-9.96%,324.70%,---,0.15%, +,157,12763,华泰紫金中证,9月19日,0.9164,0.9164,0.88%,-0.30%,-3.20%,-6.81%,0.84%,-6.01%,---,---,-16.77%,-8.36%,---,0.06%, +,158,502003,易方达中证军,9月20日,1.3713,0.8815,0.07%,-3.71%,-3.88%,3.14%,2.25%,-6.09%,13.19%,63.37%,-18.88%,-9.30%,-7.62%,0.10%, +,159,11507,建信高端装备,9月19日,1.1306,1.1306,-0.93%,-6.60%,-13.86%,-4.45%,1.67%,-6.10%,---,---,-16.17%,13.06%,---,0.00%, +,160,12764,华泰紫金中证,9月19日,0.9156,0.9156,0.88%,-0.30%,-3.21%,-6.84%,0.79%,-6.10%,---,---,-16.82%,-8.44%,---,0.00%, +,161,5313,万家中证10,9月19日,1.2343,1.8702,-0.92%,-6.66%,-8.85%,-0.79%,0.59%,-6.23%,22.21%,69.20%,-8.20%,112.77%,-6.36%,0.15%, +,162,12364,广发中证光伏,9月20日,1.0979,1.0979,2.89%,-6.96%,-14.43%,-2.90%,1.98%,-6.24%,---,---,-9.39%,9.79%,-7.42%,0.12%, +,163,160632,鹏华酒A,9月19日,0.494,2.298,1.02%,-0.20%,-2.95%,-6.62%,1.86%,-6.25%,17.56%,85.91%,-16.13%,257.60%,---,0.12%, +,164,8304,宝盈龙头优选,9月20日,0.9651,0.9651,0.60%,-2.20%,0.36%,-4.74%,3.18%,-6.26%,-16.50%,---,-11.19%,-3.49%,-4.15%,0.00%, +,165,8975,富国中证消费,9月20日,1.3497,1.3497,0.15%,-1.52%,-0.13%,-4.25%,2.51%,-6.30%,-9.17%,---,-14.76%,34.97%,-3.72%,0.12%, +,166,100032,富国中证红利,9月20日,1.047,3.053,0.10%,-3.59%,-0.66%,0.29%,2.99%,-6.30%,17.16%,30.15%,-0.03%,296.74%,-7.39%,0.15%, +,167,450009,国富中小盘股,9月20日,2.459,3.473,0.00%,-3.11%,-1.17%,-2.65%,1.57%,-6.32%,9.43%,62.41%,-11.55%,344.65%,-5.93%,0.15%, +,168,12842,易方达中证军,9月20日,1.3675,1.3675,0.07%,-3.71%,-3.89%,3.08%,2.13%,-6.32%,---,---,-19.02%,0.98%,-7.84%,0.00%, +,169,163115,申万菱信中证,9月20日,1.1436,1.9623,0.07%,-3.69%,-3.92%,3.05%,1.89%,-6.32%,10.26%,47.98%,-19.03%,62.65%,-7.83%,0.10%, +,170,12365,广发中证光伏,9月20日,1.0953,1.0953,2.89%,-6.96%,-14.45%,-2.95%,1.88%,-6.42%,---,---,-9.52%,9.53%,-7.60%,0.00%, +,171,8871,大成睿裕六月,9月20日,1.2149,1.2149,-0.10%,-3.63%,-4.60%,-4.93%,2.46%,-6.49%,7.74%,---,-14.87%,21.49%,-6.80%,0.15%, +,172,8298,华夏中证银行,9月19日,1.0807,1.0807,0.35%,-0.53%,1.48%,-4.02%,-4.24%,-6.52%,4.76%,---,-5.13%,8.07%,-5.65%,0.12%, +,173,8682,富国中证红利,9月20日,1.038,1.298,0.10%,-3.62%,-0.67%,0.29%,2.81%,-6.52%,16.50%,---,-0.22%,29.88%,-7.68%,0.00%, +,174,6748,富国中证价值,9月20日,1.7307,1.7307,0.13%,-4.52%,-3.91%,-4.94%,-3.88%,-6.53%,13.47%,45.87%,-8.17%,73.07%,-7.54%,0.12%, +,175,1631,天弘中证食品,9月20日,2.7741,2.8522,0.98%,-0.72%,-2.19%,-7.00%,1.05%,-6.62%,-4.15%,52.35%,-16.48%,191.97%,-4.41%,0.10%, +,176,5314,万家中证10,9月19日,1.2296,1.8393,-0.92%,-6.67%,-8.88%,-0.89%,0.38%,-6.62%,21.21%,67.06%,-8.46%,107.66%,-6.74%,0.00%, +,177,9116,东兴中证消费,9月20日,1.2785,1.2785,0.10%,-1.65%,-0.23%,-4.54%,2.04%,-6.62%,-4.16%,---,-15.10%,27.85%,-4.72%,0.06%, +,178,8934,大成科技消费,9月20日,0.9323,0.9323,1.05%,-2.38%,-5.59%,2.43%,12.24%,-6.62%,-7.76%,---,-6.23%,-6.64%,-6.37%,0.15%, +,179,6676,宝盈品牌消费,9月20日,1.2005,1.2005,0.76%,-1.93%,0.84%,-3.33%,4.96%,-6.65%,-17.21%,13.15%,-8.62%,20.05%,-4.79%,0.00%, +,180,4098,前海开源港股,9月19日,0.9005,0.9005,-0.74%,-4.19%,-2.37%,-0.14%,-0.44%,-6.66%,-0.21%,-3.63%,-4.08%,-9.95%,---,0.15%, +,181,8976,富国中证消费,9月20日,1.3362,1.3362,0.14%,-1.53%,-0.16%,-4.35%,2.30%,-6.68%,-9.90%,---,-15.01%,33.62%,-4.11%,0.00%, +,182,9117,东兴中证消费,9月20日,1.2754,1.2754,0.11%,-1.65%,-0.24%,-4.56%,2.00%,-6.71%,-4.35%,---,-15.16%,27.54%,-4.81%,0.00%, +,183,161024,富国中证军工,9月20日,1.151,1.774,0.09%,-3.76%,-4.00%,2.86%,1.95%,-6.73%,8.28%,38.94%,-19.28%,74.78%,-8.29%,0.12%, +,184,11179,浙商智选食品,9月19日,0.8715,0.8715,-0.01%,-2.00%,-4.49%,-3.48%,6.32%,-6.74%,---,---,-12.03%,-12.85%,---,0.15%, +,185,8299,华夏中证银行,9月19日,1.0718,1.0718,0.35%,-0.54%,1.46%,-4.10%,-4.38%,-6.80%,4.13%,---,-5.33%,7.18%,-5.93%,0.00%, +,186,160631,鹏华银行A,9月19日,0.917,1.044,0.44%,-0.54%,1.55%,-3.88%,-4.28%,-6.81%,-1.01%,1.03%,-5.27%,5.44%,---,0.12%, +,187,1632,天弘中证食品,9月20日,2.7317,2.8093,0.98%,-0.72%,-2.20%,-7.05%,0.95%,-6.81%,-4.53%,51.44%,-16.60%,187.52%,-4.60%,0.00%, +,188,11971,东财银行A,9月20日,0.869,0.869,-0.90%,-2.17%,0.66%,-3.90%,-4.66%,-6.86%,---,---,-5.57%,-13.10%,-4.92%,0.12%, +,189,1692,南方国策动力,9月20日,2.492,2.522,0.81%,-5.14%,-7.74%,-1.11%,3.49%,-6.88%,21.74%,93.33%,-10.42%,155.26%,-7.77%,0.15%, +,190,13035,富国中证军工,9月20日,1.148,1.148,0.09%,-3.69%,-3.93%,2.78%,1.86%,-6.89%,---,---,-19.38%,-0.35%,-8.45%,0.00%, +,191,7191,富国中证价值,9月20日,1.7057,1.7057,0.14%,-4.52%,-3.94%,-5.03%,-4.07%,-6.90%,12.54%,44.11%,-8.43%,35.67%,-7.90%,0.00%, +,192,11149,创金合信ES,9月19日,1.0317,1.0317,-0.89%,-3.42%,-7.50%,-0.93%,5.95%,-6.95%,---,---,-7.23%,3.17%,---,0.15%, +,193,12042,鹏华银行C,9月19日,0.894,0.894,0.34%,-0.56%,1.48%,-3.97%,-4.39%,-6.97%,---,---,-5.40%,-10.60%,---,0.00%, +,194,8872,大成睿裕六月,9月20日,1.1982,1.1982,-0.10%,-3.65%,-4.66%,-5.07%,2.15%,-7.06%,6.44%,---,-15.24%,19.82%,-7.37%,0.00%, +,195,6165,建信中证10,9月19日,1.9022,2.1066,-1.14%,-7.71%,-10.89%,-1.45%,0.57%,-7.10%,12.75%,64.39%,-9.97%,112.86%,---,0.15%, +,196,6751,富国互联科技,9月20日,2.7988,2.7988,1.70%,-4.84%,-8.44%,4.12%,10.73%,-7.12%,20.40%,113.93%,-5.72%,179.88%,-6.58%,0.15%, +,197,6803,嘉实互通精选,9月20日,1.2461,1.2461,0.05%,-2.32%,-5.83%,-2.92%,4.42%,-7.14%,0.64%,19.24%,-12.40%,24.61%,-6.67%,0.15%, +,198,11220,南方匠心优选,9月20日,0.726,0.726,0.12%,-5.38%,-4.08%,-3.79%,0.68%,-7.15%,---,---,-13.34%,-27.40%,-5.23%,0.15%, +,199,161029,富国中证银行,9月19日,1.176,1.262,0.34%,-0.51%,1.47%,-3.92%,-4.31%,-7.18%,0.26%,10.53%,-5.39%,28.41%,---,0.12%, +,200,4597,南方银行ET,9月19日,1.2089,1.2089,0.36%,-0.53%,1.54%,-4.23%,-4.38%,-7.20%,1.04%,8.61%,-5.50%,20.89%,-6.05%,0.12%, +,201,11180,浙商智选食品,9月19日,0.865,0.865,-0.02%,-2.03%,-4.55%,-3.61%,6.04%,-7.22%,---,---,-12.35%,-13.50%,---,0.00%, +,202,11972,东财银行C,9月20日,0.8642,0.8642,-0.91%,-2.17%,0.63%,-4.00%,-4.84%,-7.22%,---,---,-5.85%,-13.58%,-5.30%,0.00%, +,203,10680,华夏新兴成长,9月20日,0.8426,0.8426,0.33%,-2.84%,-2.88%,2.13%,4.67%,-7.26%,---,---,-15.56%,-15.74%,-7.38%,0.15%, +,204,160222,国泰国证食品,9月19日,1.0389,2.8119,0.77%,-0.66%,-3.56%,-7.60%,-0.24%,-7.28%,-5.60%,47.62%,-17.72%,337.97%,-4.11%,0.00%, +,205,160517,博时中证银行,9月20日,1.1728,1.3199,-0.90%,-2.19%,0.60%,-4.12%,-5.05%,-7.31%,1.42%,15.96%,-5.97%,31.99%,-5.42%,0.10%, +,206,110022,易方达消费行,9月20日,4.008,4.008,0.68%,-0.87%,0.65%,-4.30%,7.05%,-7.33%,-3.82%,35.63%,-14.43%,300.80%,-4.53%,0.15%, +,207,3017,广发中证军工,9月20日,1.1298,1.1298,0.07%,-3.76%,-4.03%,2.45%,1.64%,-7.33%,7.39%,39.64%,-19.58%,12.98%,-8.86%,0.12%, +,208,165312,建信央视财经,9月19日,1.0795,2.286,-0.10%,-1.90%,-2.12%,-3.94%,-3.15%,-7.34%,-5.78%,20.38%,-13.38%,161.72%,---,0.12%, +,209,8935,大成科技消费,9月20日,0.9161,0.9161,1.05%,-2.40%,-5.65%,2.22%,11.79%,-7.38%,-9.23%,---,-6.77%,-8.26%,-7.11%,0.00%, +,210,11150,创金合信ES,9月19日,1.0228,1.0228,-0.90%,-3.44%,-7.55%,-1.06%,5.67%,-7.42%,---,---,-7.56%,2.28%,---,0.00%, +,211,13330,富国中证银行,9月19日,1.173,1.173,0.34%,-0.59%,1.38%,-4.01%,-4.40%,-7.42%,---,---,-5.56%,-7.64%,---,0.00%, +,212,160418,华安中证银行,9月19日,0.8845,1.0385,0.36%,-0.52%,1.49%,-4.25%,-4.81%,-7.43%,-1.79%,4.95%,-5.72%,2.88%,---,0.12%, +,213,13442,建信中证10,9月19日,1.8742,1.9753,-1.14%,-7.72%,-10.92%,-1.55%,0.37%,-7.46%,---,---,-10.22%,-7.40%,---,0.00%, +,214,1027,前海开源中证,9月19日,1.2212,1.2212,0.47%,-3.14%,-4.32%,-6.94%,0.10%,-7.48%,-10.27%,30.19%,-12.58%,22.12%,---,0.12%, +,215,6166,建信中证10,9月19日,1.8738,2.0759,-1.14%,-7.73%,-10.92%,-1.56%,0.36%,-7.48%,11.85%,62.43%,-10.23%,109.65%,---,0.00%, +,216,6692,金信消费升级,9月20日,1.7997,2.4071,0.10%,-1.98%,-8.20%,4.55%,5.31%,-7.49%,38.83%,103.50%,-1.04%,158.03%,-8.93%,0.15%, +,217,5693,广发中证军工,9月20日,1.1238,1.1238,0.07%,-3.76%,-4.04%,2.41%,1.53%,-7.51%,6.96%,38.78%,-19.69%,57.22%,-9.04%,0.00%, +,218,10709,安信医药健康,9月19日,1.1426,1.1426,-1.00%,-6.86%,-10.83%,-9.10%,-11.69%,-7.52%,---,---,-20.01%,14.26%,---,0.15%, +,219,4598,南方银行ET,9月19日,1.184,1.184,0.36%,-0.55%,1.50%,-4.32%,-4.58%,-7.57%,0.24%,7.31%,-5.78%,18.40%,---,0.00%, +,220,12547,南方银行ET,9月19日,1.203,1.203,0.36%,-0.54%,1.50%,-4.32%,-4.57%,-7.57%,---,---,-5.77%,-14.14%,---,0.00%, +,221,8134,鹏华优选价值,9月19日,1.1043,1.1043,-0.72%,-2.35%,-3.36%,-4.73%,-2.92%,-7.58%,-3.79%,---,-13.52%,10.43%,---,0.15%, +,222,11126,富国互联科技,9月20日,2.7709,2.7709,1.70%,-4.85%,-8.49%,3.96%,10.39%,-7.67%,---,---,-6.12%,8.17%,-7.13%,0.00%, +,223,11221,南方匠心优选,9月20日,0.7189,0.7189,0.13%,-5.40%,-4.13%,-3.93%,0.36%,-7.72%,---,---,-13.73%,-28.11%,-5.80%,0.00%, +,224,161121,易方达中证银,9月20日,1.0572,1.1734,-0.91%,-2.19%,0.59%,-4.37%,-5.35%,-7.75%,0.47%,11.58%,-6.16%,20.61%,-5.95%,0.10%, +,225,11384,南方远见回报,9月20日,0.863,0.863,0.13%,-5.37%,-4.14%,-4.02%,0.02%,-7.76%,---,---,-14.15%,-13.70%,-5.87%,0.15%, +,226,519677,银河定投宝腾,9月20日,2.698,2.698,0.86%,-5.80%,-6.32%,-4.60%,-4.16%,-7.79%,18.85%,70.54%,-11.63%,169.80%,-9.28%,0.00%, +,227,519714,交银消费新驱,9月20日,1.782,4.379,0.79%,-1.87%,-5.01%,-7.48%,2.89%,-7.81%,12.36%,82.66%,-14.66%,449.74%,-5.81%,0.15%, +,228,161723,招商中证银行,9月20日,1.0931,1.2208,-0.91%,-2.19%,0.58%,-4.23%,-5.22%,-7.83%,-0.45%,6.33%,-6.13%,24.29%,-5.94%,0.10%, +,229,4194,招商中证10,9月20日,1.4485,1.4485,1.07%,-5.79%,-9.85%,-3.95%,-1.09%,-7.83%,10.55%,63.56%,-11.78%,44.85%,-8.12%,0.12%, +,230,501019,国泰国证航天,9月19日,1.3086,1.3086,-1.75%,-3.02%,-4.10%,3.55%,1.78%,-7.83%,12.34%,52.80%,-19.09%,30.86%,-9.71%,0.12%, +,231,3190,创金合信消费,9月19日,2.3812,2.2662,0.74%,-1.67%,-3.74%,-6.60%,-1.81%,-7.87%,3.17%,51.40%,-15.58%,126.62%,---,0.15%, +,232,5051,上投标普港股,9月19日,0.809,0.809,-0.65%,-2.09%,-1.84%,-3.60%,-3.48%,-7.89%,5.19%,-14.50%,-4.25%,-19.10%,---,0.10%, +,233,10681,华夏新兴成长,9月20日,0.8328,0.8328,0.35%,-2.85%,-2.94%,1.96%,4.30%,-7.91%,---,---,-15.98%,-16.72%,-8.02%,0.00%, +,234,10710,安信医药健康,9月19日,1.1331,1.1331,-1.00%,-6.86%,-10.88%,-9.22%,-11.91%,-7.98%,---,---,-20.29%,13.31%,---,0.00%, +,235,9860,易方达中证银,9月20日,1.0505,1.0505,-0.91%,-2.20%,0.56%,-4.45%,-5.50%,-8.03%,-0.14%,---,-6.36%,2.69%,-6.23%,0.00%, +,236,7548,易方达ESG,9月20日,1.5368,1.5368,0.81%,-1.23%,-0.88%,-5.37%,2.30%,-8.04%,2.22%,53.56%,-12.56%,53.68%,-6.02%,0.15%, +,237,6926,长城量化精选,9月20日,1.332,1.332,1.69%,-0.27%,-2.84%,-8.71%,0.10%,-8.04%,-1.97%,30.96%,-18.26%,33.20%,-5.25%,0.15%, +,238,1594,天弘中证银行,9月20日,1.1661,1.1661,-0.92%,-2.21%,0.56%,-4.33%,-5.36%,-8.08%,-3.49%,-1.27%,-6.16%,16.61%,-6.18%,0.10%, +,239,577,安信价值精选,9月19日,4.331,4.331,0.46%,-2.70%,-5.27%,-7.42%,-5.04%,-8.09%,3.19%,53.64%,-14.73%,333.10%,---,0.15%, +,240,970042,国海量化优选,9月20日,1.6992,1.8335,0.97%,-5.26%,-7.27%,-2.20%,2.94%,-8.14%,---,---,-2.72%,-1.79%,-8.82%,0.10%, +,241,12722,平安中证光伏,9月19日,0.9956,0.9956,-0.96%,-9.87%,-16.52%,-4.35%,-0.52%,-8.15%,---,---,-11.49%,-0.44%,-6.71%,0.12%, +,242,4195,招商中证10,9月20日,1.4326,1.4326,1.07%,-5.80%,-9.89%,-4.05%,-1.29%,-8.20%,9.67%,61.60%,-12.04%,43.26%,-8.48%,0.00%, +,243,6693,金信消费升级,9月20日,1.8481,2.4357,0.10%,-1.99%,-8.27%,4.34%,4.88%,-8.23%,36.64%,98.73%,-1.60%,150.72%,-9.65%,0.00%, +,244,11349,淳厚现代服务,9月19日,0.9169,0.9169,-0.48%,-4.35%,-5.12%,-1.38%,-0.04%,-8.24%,---,---,-14.48%,-8.31%,---,--, +,245,835,华润元大富时,9月20日,2.6066,2.6066,-0.08%,-3.16%,-3.44%,-5.93%,-1.77%,-8.25%,-0.09%,31.12%,-12.41%,160.66%,-6.95%,0.12%, +,246,164205,天弘文化新兴,9月20日,2.1966,2.5542,0.53%,-1.72%,-1.85%,-6.79%,2.13%,-8.27%,-6.62%,42.07%,-15.63%,155.42%,-6.23%,0.15%, +,247,1595,天弘中证银行,9月20日,1.147,1.147,-0.92%,-2.22%,0.53%,-4.38%,-5.47%,-8.27%,-3.89%,-1.87%,-6.31%,14.70%,-6.38%,0.00%, +,248,11385,南方远见回报,9月20日,0.8553,0.8553,0.13%,-5.39%,-4.20%,-4.16%,-0.28%,-8.32%,---,---,-14.52%,-14.47%,-6.43%,0.00%, +,249,5052,上投标普港股,9月19日,0.7917,0.7917,-0.65%,-2.10%,-1.88%,-3.72%,-3.72%,-8.36%,4.14%,-15.72%,-4.60%,-20.83%,---,0.00%, +,250,12723,平安中证光伏,9月19日,0.9926,0.9926,-0.96%,-9.88%,-16.54%,-4.42%,-0.65%,-8.38%,---,---,-11.65%,-0.74%,-6.94%,0.00%, +,251,12043,鹏华酒C,9月19日,0.818,0.898,1.24%,-0.12%,-2.85%,-6.51%,1.87%,-8.39%,---,---,-16.10%,-11.51%,---,0.00%, +,252,4997,广发高端制造,9月20日,2.8839,2.8839,2.77%,-5.60%,-9.40%,0.02%,-3.43%,-8.44%,30.15%,182.38%,-13.52%,188.36%,-8.71%,0.15%, +,253,501090,华宝中证消费,9月20日,1.288,1.288,0.65%,-2.11%,-2.44%,-5.63%,2.46%,-8.45%,-8.26%,---,-15.77%,28.80%,-6.15%,0.10%, +,254,11463,长城量化精选,9月20日,1.3213,1.3213,1.69%,-0.27%,-2.88%,-8.83%,-0.15%,-8.48%,---,---,-18.55%,-3.31%,-5.70%,0.00%, +,255,12461,东财家电A,9月19日,0.8474,0.8474,-0.14%,-3.35%,-2.27%,0.47%,5.90%,-8.48%,---,---,-12.97%,-15.26%,---,0.12%, +,256,3191,创金合信消费,9月19日,2.3123,2.1832,0.74%,-1.69%,-3.80%,-6.77%,-2.16%,-8.53%,1.73%,48.07%,-16.00%,118.32%,---,0.00%, +,257,10573,华润元大富时,9月20日,2.5919,2.5919,-0.08%,-3.16%,-3.46%,-6.01%,-1.93%,-8.54%,---,---,-12.61%,-6.60%,-7.24%,0.00%, +,258,1577,嘉实低价策略,9月20日,2.116,2.116,-0.89%,-3.02%,0.91%,-2.53%,-0.28%,-8.56%,2.62%,77.82%,-12.63%,111.60%,-7.84%,0.15%, +,259,7153,汇添富中证银,9月20日,0.9746,0.9746,-0.90%,-2.19%,0.52%,-4.52%,-5.47%,-8.57%,-3.81%,-3.36%,-6.58%,-2.54%,-6.68%,0.10%, +,260,240019,华宝中证银行,9月20日,1.0815,1.6463,-0.91%,-2.16%,0.55%,-4.75%,-5.85%,-8.62%,-4.16%,-1.46%,-6.65%,69.23%,-6.75%,0.10%, +,261,7154,汇添富中证银,9月20日,0.972,0.972,-0.90%,-2.18%,0.52%,-4.54%,-5.51%,-8.65%,-3.99%,-3.61%,-6.64%,-2.80%,-6.77%,0.00%, +,262,916,前海开源股息,9月19日,1.771,2.072,-0.17%,-4.11%,-0.90%,-1.39%,-0.73%,-8.66%,19.50%,53.60%,-6.25%,128.73%,---,0.15%, +,263,50024,博时上证自然,9月20日,1.1141,1.1141,1.20%,-5.13%,-1.26%,0.77%,6.99%,-8.67%,69.26%,79.03%,5.34%,11.41%,-10.16%,0.12%, +,264,6560,华夏四川国改,9月20日,1.6116,1.6116,1.09%,-3.54%,-3.38%,-3.51%,1.85%,-8.67%,34.65%,57.68%,-13.11%,61.16%,-9.15%,0.12%, +,265,9329,华宝中证消费,9月20日,1.2807,1.2807,0.65%,-2.11%,-2.46%,-5.69%,2.33%,-8.68%,-8.71%,---,-15.92%,38.72%,-6.38%,0.00%, +,266,13105,华安中证光伏,9月19日,0.8477,0.8477,-0.95%,-9.83%,-16.38%,-4.47%,-0.28%,-8.68%,---,---,-11.02%,-15.23%,---,0.05%, +,267,7178,浙商中华预期,9月19日,1.0995,1.0995,-2.35%,-5.02%,-1.94%,-8.01%,-11.44%,-8.73%,18.43%,---,-7.50%,9.95%,---,0.12%, +,268,925,汇添富外延增,9月20日,1.629,1.629,0.43%,-3.61%,-4.51%,0.18%,2.91%,-8.79%,1.81%,59.08%,-11.08%,62.90%,-8.74%,0.15%, +,269,11350,淳厚现代服务,9月19日,0.911,0.911,-0.48%,-4.37%,-5.17%,-1.53%,-0.35%,-8.79%,---,---,-14.84%,-8.90%,---,0.00%, +,270,6697,华宝中证银行,9月20日,1.07,1.07,-0.91%,-2.17%,0.53%,-4.80%,-5.95%,-8.80%,-4.55%,-2.20%,-6.79%,7.00%,-6.94%,0.00%, +,271,10160,广发高端制造,9月20日,2.8618,2.8618,2.77%,-5.61%,-9.43%,-0.08%,-3.62%,-8.80%,29.15%,---,-13.77%,30.73%,-9.07%,0.00%, +,272,6743,中融央视财经,9月19日,1.237,1.237,-0.02%,-1.68%,-1.80%,-4.24%,-4.71%,-8.82%,-8.19%,17.14%,-14.12%,23.70%,---,0.12%, +,273,12462,东财家电C,9月19日,0.8434,0.8434,-0.14%,-3.36%,-2.29%,0.38%,5.69%,-8.83%,---,---,-13.21%,-15.66%,---,0.00%, +,274,2670,万家沪深30,9月19日,1.3869,1.5449,-0.09%,-3.70%,-2.72%,-3.24%,0.78%,-8.91%,-0.33%,38.82%,-9.42%,53.66%,-8.62%,0.10%, +,275,6561,华夏四川国改,9月20日,1.5938,1.5938,1.08%,-3.55%,-3.41%,-3.59%,1.69%,-8.95%,33.83%,56.25%,-13.31%,59.38%,-9.42%,0.00%, +,276,13106,华安中证光伏,9月19日,0.8451,0.8451,-0.95%,-9.83%,-16.39%,-4.54%,-0.42%,-8.95%,---,---,-11.20%,-15.49%,---,0.00%, +,277,1719,工银国家战略,9月20日,2.322,2.322,-1.98%,-4.52%,2.52%,0.78%,-1.23%,-9.01%,38.79%,88.47%,-5.76%,132.20%,-8.44%,0.15%, +,278,6744,中融央视财经,9月19日,1.2215,1.2215,-0.03%,-1.68%,-1.82%,-4.29%,-4.82%,-9.01%,-8.59%,16.19%,-14.25%,22.15%,---,0.00%, +,279,1043,工银美丽城镇,9月20日,2.487,2.487,0.00%,-3.75%,-5.18%,-5.51%,-3.64%,-9.03%,21.08%,89.27%,-13.31%,148.70%,-9.43%,0.15%, +,280,7216,浙商中华预期,9月19日,1.0888,1.0888,-2.35%,-5.02%,-1.97%,-8.09%,-11.60%,-9.04%,17.63%,---,-7.72%,8.88%,---,0.00%, +,281,11457,新华行业龙头,9月19日,1.007,1.007,-1.01%,-6.86%,-10.73%,4.30%,17.56%,-9.04%,---,---,-8.10%,0.70%,---,0.15%, +,282,5825,申万菱信智能,9月20日,3.4141,3.4141,0.90%,-5.60%,-10.49%,-4.24%,-6.49%,-9.08%,45.04%,148.39%,-19.62%,241.41%,-9.22%,0.15%, +,283,11424,汇添富外延增,9月20日,1.616,1.616,0.44%,-3.64%,-4.55%,0.06%,2.67%,-9.16%,---,---,-11.35%,-15.04%,-9.16%,0.00%, +,284,7431,浙商之江凤凰,9月19日,1.5612,1.5612,-0.67%,-5.83%,-5.44%,-3.95%,-4.86%,-9.17%,16.29%,56.56%,-5.43%,56.12%,---,0.08%, +,285,3646,创金合信中证,9月19日,1.5294,1.5294,-0.89%,-7.03%,-11.05%,-3.51%,0.63%,-9.18%,11.75%,53.69%,-13.50%,52.94%,---,0.15%, +,286,5063,广发中证全指,9月20日,1.1628,1.1628,0.41%,-3.93%,-2.81%,-1.40%,7.63%,-9.20%,-9.99%,17.70%,-14.08%,16.28%,-7.28%,0.12%, +,287,8713,国泰中证全指,9月19日,1.1127,1.1127,-0.34%,-3.58%,-3.65%,0.33%,7.81%,-9.20%,-11.91%,---,-13.59%,11.27%,-6.88%,0.10%, +,288,1223,鹏华文化传媒,9月19日,1.142,1.142,-1.89%,-6.16%,-10.36%,-2.48%,-4.75%,-9.22%,-21.35%,4.01%,-20.08%,14.20%,---,0.15%, +,289,501305,汇添富中证港,9月20日,0.8071,0.8071,0.29%,-2.55%,-0.91%,-4.72%,-3.13%,-9.26%,-4.38%,-8.77%,-2.69%,-19.29%,-7.73%,0.10%, +,290,2671,万家沪深30,9月19日,1.7351,1.9351,-0.10%,-3.71%,-2.75%,-3.34%,0.57%,-9.27%,-1.12%,37.17%,-9.68%,92.33%,-8.98%,0.00%, +,291,9726,招商中证50,9月20日,1.1984,1.1984,0.87%,-4.24%,-5.65%,-2.13%,0.83%,-9.34%,---,---,-8.10%,19.84%,-9.56%,0.15%, +,292,3647,创金合信中证,9月19日,1.5095,1.5095,-0.89%,-7.04%,-11.07%,-3.56%,0.52%,-9.37%,11.30%,52.72%,-13.63%,50.95%,---,0.00%, +,293,5064,广发中证全指,9月20日,1.154,1.154,0.42%,-3.94%,-2.83%,-1.45%,7.52%,-9.38%,-10.34%,16.99%,-14.21%,15.40%,-7.47%,0.00%, +,294,1542,国泰互联网+,9月19日,2.898,3.057,-0.21%,-5.20%,-7.74%,-2.23%,4.58%,-9.41%,6.08%,66.17%,-8.52%,219.01%,-6.91%,0.15%, +,295,11923,大成消费精选,9月19日,0.8291,0.8291,-0.11%,-2.04%,-3.94%,-5.29%,0.93%,-9.41%,---,---,-15.54%,-17.09%,-7.14%,0.15%, +,296,161217,国投瑞银中证,9月20日,1.306,1.306,1.71%,-4.39%,-1.14%,-0.61%,6.18%,-9.43%,73.44%,106.65%,3.57%,30.60%,-10.97%,0.12%, +,297,12210,申万菱信智能,9月20日,0.9805,0.9805,0.57%,-5.53%,-9.49%,2.87%,-0.26%,-9.44%,---,---,-15.93%,-1.95%,-9.82%,0.15%, +,298,12679,华泰柏瑞光伏,9月19日,0.8652,0.8652,-0.96%,-9.69%,-16.45%,-4.50%,-1.48%,-9.45%,---,---,-12.52%,-13.48%,---,0.12%, +,299,217027,招商央视财经,9月20日,2.5677,2.5677,-0.46%,-3.20%,-2.52%,-5.47%,-5.41%,-9.46%,-8.34%,18.40%,-15.55%,156.77%,-8.77%,0.12%, +,300,1040,新华策略精选,9月19日,2.0972,2.0972,-1.16%,-6.96%,-11.13%,5.00%,16.82%,-9.47%,-4.54%,73.47%,-8.55%,109.72%,---,0.15%, +,301,8714,国泰中证全指,9月19日,1.1047,1.1047,-0.34%,-3.58%,-3.67%,0.26%,7.65%,-9.47%,-12.42%,---,-13.78%,10.47%,-7.15%,0.00%, +,302,11478,工银美丽城镇,9月20日,2.469,2.469,0.04%,-3.74%,-5.22%,-5.62%,-3.89%,-9.49%,---,---,-13.61%,-13.06%,-9.86%,0.00%, +,303,12680,华泰柏瑞光伏,9月19日,0.8643,0.8643,-0.96%,-9.69%,-16.45%,-4.53%,-1.53%,-9.54%,---,---,-12.57%,-13.57%,---,0.00%, +,304,1672,国寿安保智慧,9月19日,1.855,2.077,-0.70%,-6.31%,-11.96%,-2.83%,1.26%,-9.56%,12.02%,79.68%,-19.10%,119.79%,---,0.15%, +,305,9341,易方达均衡成,9月20日,1.1405,1.1405,1.61%,-2.15%,-4.22%,-3.31%,0.51%,-9.59%,9.02%,---,-14.79%,14.05%,-8.92%,0.15%, +,306,501306,汇添富中证港,9月20日,0.7921,0.7921,0.29%,-2.55%,-0.94%,-4.82%,-3.33%,-9.63%,-5.16%,-9.86%,-2.96%,-20.79%,-8.10%,0.00%, +,307,10673,兴全中证80,9月20日,0.8962,0.8962,0.36%,-3.42%,-2.61%,-3.25%,-2.68%,-9.66%,---,---,-12.69%,-10.38%,-9.05%,0.12%, +,308,6081,海富通电子传,9月19日,2.9173,2.9173,-1.39%,-7.24%,-8.83%,9.46%,6.39%,-9.67%,40.67%,118.61%,-15.71%,191.73%,-9.85%,0.15%, +,309,160639,鹏华中证高铁,9月19日,0.801,0.355,-0.25%,-4.76%,-4.53%,-3.84%,-4.42%,-9.70%,-6.75%,0.57%,-9.59%,-65.33%,---,0.12%, +,310,240016,华宝上证18,9月20日,2.084,2.114,-0.76%,-3.61%,-0.14%,-3.38%,-4.27%,-9.71%,-0.95%,14.32%,-8.15%,114.25%,-9.98%,0.15%, +,311,1133,广发中证全指,9月20日,0.8821,0.8821,1.10%,-4.05%,-5.06%,-5.81%,4.03%,-9.71%,-5.47%,25.03%,-13.53%,-11.79%,-8.33%,0.12%, +,312,1036,嘉实企业变革,9月20日,1.654,1.654,-0.12%,-3.10%,-7.23%,-2.24%,1.35%,-9.75%,3.82%,56.08%,-17.08%,65.60%,-10.06%,0.15%, +,313,530010,建信上证社会,9月19日,2.3645,2.3645,0.03%,-2.80%,-0.25%,-5.13%,-4.31%,-9.77%,-3.73%,18.50%,-11.36%,136.45%,---,0.15%, +,314,12211,申万菱信智能,9月20日,0.9755,0.9755,0.57%,-5.55%,-9.53%,2.76%,-0.47%,-9.81%,---,---,-16.18%,-2.45%,-10.19%,0.00%, +,315,4410,招商央视财经,9月20日,2.5144,2.5144,-0.46%,-3.20%,-2.55%,-5.56%,-5.60%,-9.82%,-9.08%,16.96%,-15.79%,39.15%,-9.13%,0.00%, +,316,7782,大成MSCI,9月20日,1.1783,1.1783,0.20%,-3.28%,-2.73%,-4.35%,-0.05%,-9.83%,-8.71%,---,-10.22%,17.83%,-10.00%,0.12%, +,317,10409,富国消费精选,9月20日,0.8137,0.8137,0.48%,-2.14%,-4.77%,-5.69%,1.62%,-9.83%,---,---,-16.45%,-18.63%,-7.76%,0.15%, +,318,11853,招商中证消费,9月20日,0.8343,0.8343,0.68%,-1.65%,-1.95%,-6.40%,1.76%,-9.85%,---,---,-17.79%,-16.57%,-7.72%,0.12%, +,319,2977,广发中证全指,9月20日,0.874,0.874,1.10%,-4.05%,-5.07%,-5.86%,3.92%,-9.90%,-5.84%,24.29%,-13.65%,11.07%,-8.52%,0.00%, +,320,12445,华富新能源股,9月20日,0.9064,0.9064,3.60%,-5.97%,-14.09%,-7.99%,-0.18%,-9.91%,---,---,-7.88%,-9.36%,-9.79%,0.15%, +,321,471,富国城镇发展,9月20日,2.297,2.797,0.35%,-3.73%,-5.47%,-4.85%,-3.81%,-9.92%,5.85%,64.07%,-18.66%,188.27%,-9.71%,0.15%, +,322,7783,大成MSCI,9月20日,1.1747,1.1747,0.20%,-3.29%,-2.75%,-4.37%,-0.10%,-9.92%,-8.90%,---,-10.29%,17.47%,-10.09%,0.00%, +,323,10196,易方达核心优,9月20日,0.7535,0.7535,0.83%,-1.12%,-1.08%,-5.34%,0.98%,-9.97%,---,---,-14.13%,-24.65%,-7.74%,0.15%, +,324,10674,兴全中证80,9月20日,0.8905,0.8905,0.36%,-3.42%,-2.64%,-3.33%,-2.87%,-10.01%,---,---,-12.94%,-10.95%,-9.41%,0.00%, +,325,971,诺安新经济股,9月20日,1.584,1.584,0.57%,-1.86%,-2.34%,-2.34%,5.39%,-10.05%,7.90%,69.05%,-10.86%,58.40%,-9.07%,0.15%, +,326,920003,中金新锐股票,9月20日,3.7024,4.1824,0.81%,-4.61%,-10.06%,-3.59%,-1.90%,-10.07%,37.58%,---,-14.75%,77.84%,-10.09%,--, +,327,9727,招商中证50,9月20日,1.1819,1.1819,0.86%,-4.25%,-5.71%,-2.33%,0.42%,-10.07%,---,---,-8.62%,18.19%,-10.27%,0.00%, +,328,11926,大成消费精选,9月19日,0.8204,0.8204,-0.11%,-2.07%,-4.00%,-5.48%,0.53%,-10.12%,---,---,-16.01%,-17.96%,-7.87%,0.00%, +,329,2334,汇丰晋信大盘,9月19日,1.4324,1.4324,-0.48%,-3.76%,-3.99%,-2.21%,0.58%,-10.13%,-1.15%,10.47%,-8.86%,43.23%,---,0.15%, +,330,11854,招商中证消费,9月20日,0.8299,0.8299,0.68%,-1.66%,-1.97%,-6.49%,1.54%,-10.22%,---,---,-18.03%,-17.01%,-8.09%,0.00%, +,331,501310,华宝沪港深中,9月20日,0.8448,0.8448,-0.21%,-3.88%,-1.81%,-5.84%,-5.04%,-10.23%,-2.65%,-14.05%,-5.48%,-15.53%,-9.67%,0.12%, +,332,7137,鹏扬元合量化,9月19日,1.5771,1.5771,0.15%,-6.56%,-11.34%,-9.63%,3.30%,-10.25%,25.37%,53.82%,-18.49%,57.71%,---,0.15%, +,333,10955,天弘中证智能,9月19日,0.8171,0.8171,-0.15%,-7.40%,-12.64%,-6.42%,-7.03%,-10.25%,---,---,-27.14%,-18.29%,-8.34%,0.10%, +,334,160135,南方中证高铁,9月19日,0.93,0.93,-0.30%,-4.73%,-4.65%,-4.23%,-4.88%,-10.30%,-8.11%,-11.33%,-10.15%,-58.00%,---,0.06%, +,335,10197,易方达核心优,9月20日,0.7486,0.7486,0.84%,-1.12%,-1.10%,-5.42%,0.77%,-10.33%,---,---,-14.38%,-25.14%,-8.09%,0.00%, +,336,6080,海富通电子传,9月19日,2.8062,2.8062,-1.39%,-7.26%,-8.89%,9.24%,5.97%,-10.38%,38.44%,113.94%,-16.19%,180.62%,-10.56%,0.00%, +,337,8294,朱雀企业优胜,9月20日,1.4306,1.4306,1.15%,-4.72%,-7.82%,-4.43%,-2.01%,-10.41%,11.11%,---,-19.52%,43.06%,-10.97%,0.15%, +,338,10956,天弘中证智能,9月19日,0.8144,0.8144,-0.13%,-7.40%,-12.65%,-6.47%,-7.12%,-10.43%,---,---,-27.23%,-18.56%,-8.53%,0.00%, +,339,161033,富国中证智能,9月20日,1.571,1.571,1.16%,-6.60%,-11.84%,-7.32%,-6.71%,-10.48%,-6.77%,40.52%,-26.76%,57.10%,-9.66%,0.12%, +,340,920923,中金新锐股票,9月20日,3.6578,3.6578,0.81%,-4.62%,-10.10%,-3.71%,-2.15%,-10.52%,36.21%,---,-15.06%,74.89%,-10.53%,0.00%, +,341,11042,国泰价值先锋,9月19日,0.906,0.906,-0.53%,-7.27%,-10.83%,-6.24%,0.02%,-10.52%,---,---,-19.99%,-9.40%,-8.94%,0.15%, +,342,470007,汇添富上证综,9月20日,1.003,1.327,0.00%,-3.56%,-2.05%,-4.12%,-1.82%,-10.59%,-3.84%,12.76%,-11.56%,32.76%,-10.82%,0.10%, +,343,7397,华宝沪港深中,9月20日,0.8338,0.8338,-0.22%,-3.90%,-1.85%,-5.93%,-5.24%,-10.59%,-3.43%,-15.07%,-5.76%,-15.62%,-10.02%,0.00%, +,344,13292,富国中证智能,9月20日,1.568,1.568,1.23%,-6.61%,-11.86%,-7.33%,-6.83%,-10.60%,---,---,-26.87%,-16.95%,-9.83%,0.00%, +,345,1726,汇添富新兴消,9月20日,1.626,1.626,1.75%,-4.97%,-11.39%,-7.77%,-1.22%,-10.61%,0.31%,47.15%,-18.94%,62.60%,-9.77%,0.15%, +,346,2335,汇丰晋信大盘,9月19日,1.3875,1.3875,-0.49%,-3.78%,-4.04%,-2.34%,0.32%,-10.61%,-2.16%,8.71%,-9.22%,38.74%,---,0.00%, +,347,4788,富荣沪深30,9月20日,1.7882,1.7882,-0.08%,-4.23%,-4.71%,-8.02%,-5.56%,-10.72%,6.25%,82.77%,-16.27%,78.82%,-9.84%,0.12%, +,348,5669,前海开源公用,9月19日,2.8404,2.8404,-0.09%,-10.33%,-14.73%,-8.51%,-3.51%,-10.73%,146.46%,167.06%,-22.08%,184.04%,---,0.15%, +,349,368,汇添富沪深3,9月20日,2.2561,2.2561,0.17%,-4.22%,-3.64%,-6.07%,-1.87%,-10.73%,3.84%,43.20%,-12.42%,125.61%,-11.85%,0.12%, +,350,1541,汇添富民营新,9月20日,1.53,1.53,0.99%,-4.91%,-7.78%,-3.04%,-1.10%,-10.74%,-3.53%,60.55%,-18.70%,53.00%,-11.61%,0.15%, +,351,7130,中庚小盘价值,9月20日,2.1574,2.1574,1.01%,-4.78%,-5.99%,-2.66%,0.41%,-10.76%,50.34%,112.09%,-6.97%,115.74%,-12.19%,--, +,352,4789,富荣沪深30,9月20日,1.7794,1.7794,-0.08%,-4.23%,-4.71%,-8.05%,-5.61%,-10.81%,6.04%,82.20%,-16.33%,77.94%,-9.92%,0.00%, +,353,1637,嘉实量化精选,9月20日,1.8099,1.8099,1.17%,-6.57%,-8.15%,-5.36%,-0.65%,-10.82%,14.75%,61.32%,-8.65%,78.90%,-10.62%,0.15%, +,354,4350,汇丰晋信价值,9月19日,1.6554,2.0554,-0.51%,-3.00%,-4.57%,-7.28%,-7.03%,-10.83%,13.70%,57.24%,-21.32%,102.79%,---,0.15%, +,355,519686,交银上证18,9月20日,1.48,1.48,-0.60%,-3.96%,-1.27%,-4.45%,-4.21%,-10.84%,-3.83%,12.29%,-11.11%,48.00%,-10.95%,0.15%, +,356,12930,中庚价值先锋,9月20日,0.9235,0.9235,0.28%,-2.88%,-6.94%,0.95%,-3.36%,-10.87%,---,---,-21.46%,-7.65%,-11.41%,--, +,357,5702,恒生前海港股,9月19日,0.8331,0.8331,-0.57%,-2.39%,-1.76%,-4.34%,-5.10%,-10.93%,-0.11%,-14.06%,-7.24%,-16.69%,---,0.12%, +,358,7903,长城量化小盘,9月20日,1.2471,1.2471,1.23%,-4.64%,-7.92%,-2.78%,-0.63%,-10.93%,-0.01%,---,-14.41%,24.70%,-10.95%,0.15%, +,359,7138,鹏扬元合量化,9月19日,1.5152,1.5152,0.15%,-6.58%,-11.39%,-9.80%,2.89%,-10.95%,23.39%,48.56%,-18.94%,51.52%,---,0.00%, +,360,6502,财通集成电路,9月20日,1.8639,1.8639,-0.31%,-3.68%,-6.37%,7.89%,1.60%,-10.96%,0.74%,39.69%,-13.05%,86.97%,-12.29%,0.15%, +,361,162208,泰达宏利首选,9月20日,1.8885,3.0668,1.33%,-5.08%,-9.52%,-8.71%,0.63%,-10.98%,26.24%,90.57%,-12.50%,375.45%,-11.69%,0.15%, +,362,10141,朱雀企业优选,9月20日,1.0715,1.0715,1.15%,-4.81%,-8.86%,-6.20%,-3.69%,-11.00%,---,---,-20.15%,7.15%,-11.59%,--, +,363,10801,长江量化消费,9月19日,0.7508,0.7508,0.97%,-0.87%,-3.55%,-4.96%,2.79%,-11.01%,---,---,-13.07%,-24.92%,---,0.15%, +,364,4488,嘉实富时中国,9月20日,1.3161,1.3161,0.02%,-2.91%,-3.29%,-6.19%,-2.38%,-11.03%,-10.57%,10.61%,-13.92%,31.61%,-9.75%,0.12%, +,365,100053,富国上证指数,9月20日,1.466,1.466,0.07%,-4.06%,-4.18%,-4.68%,-1.61%,-11.10%,-2.46%,16.16%,-10.99%,46.60%,-11.42%,0.15%, +,366,8295,朱雀企业优胜,9月20日,1.4055,1.4055,1.15%,-4.74%,-7.89%,-4.62%,-2.41%,-11.13%,9.35%,---,-19.98%,40.55%,-11.68%,0.00%, +,367,1044,嘉实新消费股,9月20日,2.08,2.15,0.34%,-2.67%,-2.12%,-4.63%,-2.48%,-11.15%,-8.77%,42.17%,-15.65%,117.95%,-10.65%,0.15%, +,368,13286,富国上证指数,9月20日,1.463,1.463,0.14%,-4.00%,-4.13%,-4.69%,-1.68%,-11.23%,---,---,-11.12%,-7.58%,-11.60%,0.00%, +,369,11043,国泰价值先锋,9月19日,0.8949,0.8949,-0.53%,-7.29%,-10.89%,-6.44%,-0.39%,-11.24%,---,---,-20.45%,-10.51%,-9.67%,0.00%, +,370,10434,红土创新医疗,9月20日,0.8267,0.8267,1.41%,-4.88%,-8.98%,-12.18%,-12.20%,-11.25%,---,---,-15.39%,-17.33%,-11.73%,0.15%, +,371,5229,嘉实富时中国,9月20日,1.1666,1.1666,0.03%,-2.91%,-3.32%,-6.28%,-2.57%,-11.38%,-11.26%,9.29%,-14.17%,14.42%,-10.10%,0.00%, +,372,1178,前海开源再融,9月19日,1.274,1.854,-0.23%,-3.12%,-4.14%,-1.09%,-6.12%,-11.40%,-19.44%,9.09%,-16.07%,90.59%,---,0.15%, +,373,866,华宝制造股票,9月20日,2.344,2.344,0.69%,-4.33%,-2.21%,0.17%,3.44%,-11.45%,21.20%,102.59%,-14.01%,134.40%,-11.85%,0.15%, +,374,519027,海富通上证周,9月19日,1.2334,1.2334,0.11%,-2.91%,0.09%,-4.94%,-5.85%,-11.52%,-11.84%,-7.40%,-9.53%,23.34%,-11.27%,0.12%, +,375,1490,汇添富国企创,9月20日,1.981,1.981,0.51%,-3.22%,-6.11%,-2.41%,-0.80%,-11.52%,12.11%,93.84%,-16.69%,98.10%,-11.09%,0.15%, +,376,10802,长江量化消费,9月19日,0.7435,0.7435,0.98%,-0.88%,-3.58%,-5.11%,2.50%,-11.53%,---,---,-13.44%,-25.65%,---,0.00%, +,377,202021,南方小康ET,9月20日,1.4971,1.5171,-0.43%,-4.71%,-2.76%,-5.09%,-3.43%,-11.54%,2.91%,19.61%,-10.02%,52.67%,-12.52%,0.12%, +,378,5267,嘉实价值精选,9月20日,1.8657,1.8657,-0.40%,-2.46%,1.07%,-2.32%,0.49%,-11.55%,10.70%,74.25%,-12.36%,86.57%,-11.27%,0.15%, +,379,11132,鹏扬沪深30,9月19日,0.9376,0.9376,0.06%,-2.40%,-2.08%,-6.09%,-4.99%,-11.56%,---,---,-12.89%,-6.24%,---,0.12%, +,380,12498,汇添富中证5,9月20日,0.8843,0.8843,0.60%,-5.01%,-7.25%,-3.93%,-1.35%,-11.57%,---,---,-14.91%,-11.57%,---,0.15%, +,381,519671,银河沪深30,9月20日,1.449,1.674,-0.82%,-3.85%,-0.28%,-3.85%,-4.55%,-11.59%,-7.77%,-0.01%,-10.61%,67.68%,-11.43%,0.12%, +,382,162107,金鹰先进制造,9月19日,0.9323,0.9323,-1.69%,-0.47%,-3.48%,2.77%,0.30%,-11.63%,3.47%,22.87%,-15.00%,50.40%,---,0.15%, +,383,13074,银河沪深30,9月20日,0.949,0.949,-0.73%,-3.85%,-0.21%,-3.85%,-4.62%,-11.64%,---,---,-10.72%,-5.10%,-11.47%,0.00%, +,384,6503,财通集成电路,9月20日,1.808,1.808,-0.31%,-3.70%,-6.43%,7.67%,1.20%,-11.66%,-0.86%,36.37%,-13.55%,81.37%,-12.98%,0.00%, +,385,10142,朱雀企业优选,9月20日,1.0546,1.0546,1.15%,-4.82%,-8.92%,-6.38%,-4.08%,-11.72%,---,---,-20.61%,5.46%,-12.29%,0.00%, +,386,310398,申万菱信沪深,9月20日,1.1972,1.7157,-0.76%,-3.86%,-0.58%,-3.70%,-4.78%,-11.73%,-6.33%,1.23%,-10.73%,72.25%,-11.67%,0.12%, +,387,10703,财通智选消费,9月20日,0.7754,0.7754,1.00%,-5.65%,-8.03%,-6.18%,-1.44%,-11.74%,---,---,-17.68%,-23.23%,-10.51%,0.15%, +,388,7817,国泰中证全指,9月19日,0.857,0.857,-1.41%,-6.88%,-10.45%,-3.38%,-7.98%,-11.75%,-25.37%,-14.61%,-21.88%,-14.30%,-11.68%,0.10%, +,389,4812,中欧先进制造,9月20日,3.0778,3.0778,2.96%,-5.23%,-10.67%,-8.77%,-2.42%,-11.80%,61.01%,199.28%,-13.63%,207.78%,-11.01%,0.15%, +,390,5223,广发中证基建,9月19日,0.8009,0.8009,-0.15%,-6.25%,-2.80%,-6.81%,-4.29%,-11.81%,2.18%,2.48%,-9.66%,-19.91%,---,0.10%, +,391,4346,南方小康ET,9月20日,1.4676,1.4876,-0.43%,-4.72%,-2.80%,-5.19%,-3.62%,-11.90%,2.09%,18.19%,-10.28%,19.23%,-12.87%,0.00%, +,392,11133,鹏扬沪深30,9月19日,0.9326,0.9326,0.05%,-2.43%,-2.12%,-6.19%,-5.19%,-11.93%,---,---,-13.14%,-6.74%,---,0.00%, +,393,12080,易方达中证5,9月20日,0.8928,0.8928,0.61%,-4.36%,-5.91%,-3.92%,-1.64%,-11.97%,---,---,-12.80%,-10.72%,-12.38%,0.15%, +,394,7800,申万菱信沪深,9月20日,0.9306,1.0466,-0.77%,-3.86%,-0.61%,-3.77%,-4.92%,-11.99%,-6.87%,0.32%,-10.91%,3.44%,-11.92%,0.00%, +,395,5224,广发中证基建,9月19日,0.7955,0.7955,-0.15%,-6.26%,-2.83%,-6.86%,-4.39%,-12.00%,1.78%,1.88%,-9.79%,-20.45%,---,0.00%, +,396,7818,国泰中证全指,9月19日,0.8485,0.8485,-1.41%,-6.87%,-10.46%,-3.45%,-8.11%,-12.01%,-25.81%,-15.45%,-22.03%,-15.15%,-11.94%,0.00%, +,397,12973,国泰800汽,9月19日,0.8551,0.8551,0.88%,-4.78%,-9.76%,-10.23%,7.99%,-12.05%,---,---,-13.19%,-14.49%,-10.05%,0.10%, +,398,10704,财通智选消费,9月20日,0.7703,0.7703,1.00%,-5.65%,-8.05%,-6.27%,-1.63%,-12.09%,---,---,-17.91%,-23.73%,-10.88%,0.00%, +,399,519193,万家消费成长,9月19日,2.2333,2.2333,0.64%,-3.67%,-1.86%,-3.62%,-3.37%,-12.20%,-5.60%,37.06%,-12.36%,123.33%,-12.03%,0.15%, +,400,6729,万家中证50,9月19日,1.3816,1.7764,-0.41%,-4.99%,-3.82%,2.35%,2.44%,-12.21%,10.79%,57.95%,-9.40%,78.71%,-12.36%,0.10%, +,401,12081,易方达中证5,9月20日,0.8894,0.8894,0.60%,-4.37%,-5.94%,-3.99%,-1.80%,-12.24%,---,---,-12.99%,-11.06%,-12.64%,0.00%, +,402,1736,圆信永丰优加,9月20日,3.0389,3.0389,0.14%,-4.08%,-6.37%,-2.54%,-2.22%,-12.27%,18.29%,94.80%,-15.63%,203.89%,-13.03%,0.15%, +,403,5870,鹏华沪深30,9月19日,1.3187,1.3187,-0.05%,-4.05%,-4.59%,-6.22%,-1.62%,-12.27%,1.45%,28.72%,-10.78%,31.87%,---,0.12%, +,404,12499,汇添富中证5,9月20日,0.8772,0.8772,0.60%,-5.02%,-7.31%,-4.12%,-1.75%,-12.27%,---,---,-15.40%,-12.28%,---,0.00%, +,405,5880,建信上证50,9月19日,1.2369,1.2769,0.07%,-2.61%,-2.29%,-6.37%,-5.03%,-12.29%,-13.22%,6.28%,-14.87%,27.24%,---,0.15%, +,406,12974,国泰800汽,9月19日,0.8523,0.8523,0.88%,-4.79%,-9.79%,-10.29%,7.83%,-12.31%,---,---,-13.38%,-14.77%,-10.31%,0.00%, +,407,3194,汇添富中证上,9月20日,0.7825,0.7825,0.05%,-3.80%,-2.49%,-5.13%,-5.50%,-12.32%,-17.02%,-18.28%,-13.26%,-21.75%,-12.37%,0.12%, +,408,163114,申万菱信中证,9月20日,1.5446,2.6551,2.04%,-6.11%,-12.70%,-8.38%,-4.45%,-12.39%,54.27%,117.57%,-14.44%,125.36%,-13.11%,0.12%, +,409,8240,东财上证50,9月20日,1.1299,1.1299,-0.18%,-3.19%,-2.45%,-6.30%,-5.18%,-12.40%,-9.86%,---,-15.10%,12.99%,-11.28%,0.10%, +,410,671030,西部利得事件,9月19日,2.2494,2.2494,-1.30%,-5.97%,-6.10%,-3.88%,2.88%,-12.41%,34.68%,72.76%,-17.33%,124.94%,-9.99%,0.15%, +,411,2210,创金合信量化,9月19日,1.7913,1.7913,-0.93%,-6.93%,-11.52%,-3.70%,-0.92%,-12.42%,11.43%,58.17%,-14.85%,79.13%,---,0.15%, +,412,2289,华商改革创新,9月19日,2.1136,2.1136,-0.41%,-6.44%,-12.24%,-5.95%,6.72%,-12.46%,19.50%,68.55%,-6.75%,111.36%,---,0.15%, +,413,4813,中欧先进制造,9月20日,3.0276,3.0276,2.97%,-5.24%,-10.74%,-8.95%,-2.81%,-12.50%,58.47%,193.94%,-14.12%,202.76%,-11.72%,0.00%, +,414,7379,易方达上证5,9月20日,1.1112,1.1112,-0.17%,-3.21%,-2.44%,-6.51%,-5.38%,-12.50%,-12.26%,11.12%,-15.34%,11.12%,-11.55%,0.05%, +,415,501060,中金优选30,9月19日,1.6575,1.6575,0.21%,-2.83%,-1.74%,-3.39%,-2.76%,-12.55%,5.57%,35.34%,-9.93%,65.75%,---,0.10%, +,416,6730,万家中证50,9月19日,1.3617,1.7491,-0.41%,-5.00%,-3.84%,2.24%,2.24%,-12.55%,9.92%,56.16%,-9.66%,75.84%,-12.70%,0.00%, +,417,501050,华夏上证50,9月20日,1.309,1.309,0.00%,-3.04%,-2.97%,-7.43%,-6.50%,-12.56%,-10.95%,-0.76%,-14.94%,30.90%,-11.61%,0.15%, +,418,13331,富国中证10,9月20日,1.8717,1.8717,1.20%,-5.88%,-9.92%,-4.96%,-1.60%,-12.56%,---,---,-12.19%,-9.19%,-13.14%,0.00%, +,419,1397,建信精工制造,9月19日,1.8285,1.8285,-0.27%,-5.72%,-10.13%,-3.95%,-2.50%,-12.57%,13.31%,61.67%,-13.53%,82.85%,---,0.15%, +,420,1396,建信互联网+,9月19日,1.262,1.262,-0.24%,-5.75%,-6.52%,-2.17%,2.27%,-12.60%,13.49%,63.90%,-15.07%,26.20%,---,0.15%, +,421,7380,易方达上证5,9月20日,1.1075,1.1075,-0.18%,-3.22%,-2.46%,-6.54%,-5.44%,-12.60%,-12.45%,10.76%,-15.41%,10.75%,-11.65%,0.00%, +,422,502048,易方达上证5,9月20日,1.0269,1.0521,-0.18%,-3.22%,-2.49%,-6.64%,-5.26%,-12.61%,-12.59%,7.57%,-15.15%,7.00%,-11.56%,0.12%, +,423,8241,东财上证50,9月20日,1.1221,1.1221,-0.17%,-3.19%,-2.47%,-6.36%,-5.29%,-12.61%,-10.30%,---,-15.25%,12.21%,-11.50%,0.00%, +,424,5881,建信上证50,9月19日,1.2244,1.2634,0.07%,-2.62%,-2.32%,-6.46%,-5.22%,-12.63%,-13.90%,5.02%,-15.11%,25.88%,---,0.00%, +,425,12754,鹏华内地低碳,9月19日,0.901,0.901,0.02%,-7.71%,-13.81%,-9.54%,-6.54%,-12.63%,---,---,-16.03%,-9.90%,---,0.10%, +,426,13444,建信上证50,9月19日,1.2245,1.2455,0.07%,-2.61%,-2.32%,-6.46%,-5.21%,-12.63%,---,---,-15.10%,-13.79%,---,0.00%, +,427,10419,申万菱信中证,9月20日,1.4977,1.4977,2.04%,-6.12%,-12.73%,-8.44%,-4.60%,-12.66%,---,---,-14.62%,49.77%,-13.37%,0.00%, +,428,161036,富国中证娱乐,9月20日,0.5922,0.5922,0.58%,-3.31%,-4.64%,-6.68%,-6.48%,-12.69%,-32.02%,-9.74%,-23.67%,-40.78%,-11.23%,0.12%, +,429,7994,华夏中证50,9月20日,1.621,1.621,0.96%,-5.08%,-4.91%,-0.06%,2.05%,-12.70%,17.02%,---,-11.04%,62.10%,-13.29%,0.12%, +,430,867,华宝品质生活,9月20日,1.862,1.912,0.38%,-1.53%,-0.27%,-4.32%,2.14%,-12.71%,9.98%,63.62%,-17.65%,92.59%,-11.80%,0.15%, +,431,501061,中金优选30,9月19日,1.6379,1.6379,0.21%,-2.83%,-1.76%,-3.45%,-2.89%,-12.77%,5.05%,34.33%,-10.09%,63.79%,---,0.00%, +,432,6395,华夏上证50,9月20日,1.287,1.287,0.08%,-3.01%,-2.94%,-7.48%,-6.60%,-12.80%,-11.61%,-1.98%,-15.16%,14.81%,-11.91%,0.00%, +,433,12755,鹏华内地低碳,9月19日,0.8989,0.8989,0.02%,-7.72%,-13.82%,-9.59%,-6.63%,-12.81%,---,---,-16.15%,-10.11%,---,0.00%, +,434,1237,博时上证50,9月20日,1.0936,1.0936,-0.17%,-3.18%,-2.44%,-6.50%,-5.59%,-12.83%,-13.90%,2.19%,-15.54%,9.36%,-11.81%,0.12%, +,435,540012,汇丰晋信恒生,9月19日,1.6592,2.2392,0.11%,-3.12%,-2.31%,-5.26%,-3.36%,-12.85%,-10.94%,8.47%,-15.52%,136.94%,---,0.12%, +,436,165525,信诚中证基建,9月19日,0.735,0.743,-0.15%,-6.25%,-2.85%,-7.10%,-4.78%,-12.85%,-0.14%,-3.92%,-10.41%,-25.88%,-15.85%,0.10%, +,437,161026,富国中证国有,9月20日,0.98,1.309,-0.20%,-3.64%,-2.68%,-4.76%,-2.68%,-12.89%,-4.74%,15.93%,-14.49%,16.04%,-12.97%,0.12%, +,438,320010,诺安中证10,9月20日,1.719,1.839,0.17%,-4.13%,-5.76%,-7.68%,-4.76%,-12.92%,-6.17%,21.70%,-16.72%,85.47%,-12.25%,0.12%, +,439,202025,南方上证38,9月19日,1.8713,1.8713,-0.52%,-5.60%,-6.88%,-3.43%,-1.91%,-12.92%,6.04%,34.30%,-13.78%,87.13%,-13.37%,0.12%, +,440,5737,博时上证50,9月20日,1.0887,1.0887,-0.17%,-3.18%,-2.45%,-6.52%,-5.63%,-12.92%,-14.07%,1.88%,-15.60%,16.15%,-11.90%,0.00%, +,441,5829,建信MSCI,9月19日,1.4871,1.4871,-0.12%,-4.10%,-5.14%,-6.03%,-4.11%,-12.95%,0.80%,26.95%,-15.74%,48.70%,---,0.15%, +,442,6341,中金MSCI,9月19日,2.0461,2.0461,0.00%,-2.35%,-2.54%,-6.96%,-4.05%,-12.95%,-9.98%,38.26%,-21.92%,104.61%,---,0.10%, +,443,1548,天弘上证50,9月20日,1.2273,1.2273,-0.19%,-3.25%,-2.52%,-6.76%,-5.79%,-12.96%,-15.21%,0.07%,-15.63%,22.73%,-11.91%,0.10%, +,444,12875,易方达上证5,9月20日,1.0223,1.0223,-0.19%,-3.23%,-2.53%,-6.73%,-5.44%,-12.96%,---,---,-15.37%,-16.57%,-11.91%,0.00%, +,445,690008,民生中证内地,9月20日,1.046,1.046,1.85%,-4.47%,-1.51%,-2.61%,4.18%,-13.05%,60.43%,65.77%,0.97%,4.60%,-14.33%,0.12%, +,446,7995,华夏中证50,9月20日,1.6051,1.6051,0.96%,-5.09%,-4.94%,-0.16%,1.85%,-13.05%,16.09%,---,-11.30%,60.51%,-13.63%,0.00%, +,447,540007,汇丰晋信中小,9月19日,1.8901,1.9101,-0.78%,-4.74%,-4.78%,-3.56%,4.79%,-13.06%,-3.18%,48.23%,-13.28%,92.47%,---,0.15%, +,448,6604,嘉实消费精选,9月20日,1.8332,1.8332,1.10%,-1.14%,-2.19%,-10.23%,-1.21%,-13.06%,3.85%,69.18%,-18.03%,83.32%,-11.62%,0.15%, +,449,3865,创金合信量化,9月19日,1.7198,1.7198,-0.93%,-6.95%,-11.58%,-3.88%,-1.29%,-13.08%,9.77%,54.69%,-15.30%,36.38%,---,0.00%, +,450,11107,九泰天兴量化,9月20日,0.8651,0.8651,0.85%,-3.98%,-5.32%,-5.18%,-2.20%,-13.09%,---,---,-9.69%,-13.49%,-13.13%,0.15%, +,451,11793,建信智能汽车,9月19日,0.8733,0.8733,0.22%,-7.89%,-13.45%,-9.08%,2.00%,-13.09%,---,---,-12.36%,-12.67%,---,0.15%, +,452,502006,易方达中证国,9月20日,1.3312,0.8358,-0.19%,-3.65%,-2.68%,-4.80%,-2.77%,-13.11%,-1.88%,33.60%,-14.53%,-13.41%,-13.21%,0.10%, +,453,1549,天弘上证50,9月20日,1.207,1.207,-0.19%,-3.25%,-2.54%,-6.81%,-5.89%,-13.13%,-15.56%,-0.53%,-15.75%,20.70%,-12.09%,0.00%, +,454,6342,中金MSCI,9月19日,2.0316,2.0316,0.00%,-2.36%,-2.56%,-7.02%,-4.17%,-13.16%,-10.43%,37.25%,-22.06%,103.16%,---,0.00%, +,455,11108,九泰天兴量化,9月20日,0.8642,0.8642,0.85%,-3.99%,-5.32%,-5.20%,-2.25%,-13.17%,---,---,-9.75%,-13.58%,-13.21%,0.00%, +,456,6220,工银上证50,9月20日,1.1796,1.1796,-0.16%,-3.14%,-2.53%,-7.22%,-6.43%,-13.19%,-16.66%,-6.10%,-16.06%,17.96%,-12.16%,0.10%, +,457,13233,华夏中证50,9月20日,0.9027,0.9027,0.97%,-5.07%,-4.85%,-0.14%,1.82%,-13.19%,---,---,-11.00%,-9.73%,-13.74%,0.12%, +,458,13082,信诚中证基建,9月19日,0.732,0.732,-0.16%,-6.26%,-2.89%,-7.20%,-4.98%,-13.21%,---,---,-10.67%,-4.14%,-16.18%,0.00%, +,459,4716,信诚量化阿尔,9月19日,1.4768,1.5577,-0.20%,-3.62%,-4.04%,-6.31%,-5.09%,-13.23%,-2.03%,36.99%,-17.44%,55.16%,-12.75%,0.15%, +,460,11607,民生中证内地,9月20日,1.042,1.042,1.96%,-4.40%,-1.51%,-2.71%,4.10%,-13.24%,---,---,0.87%,27.23%,-14.52%,0.00%, +,461,161211,国投沪深30,9月20日,1.6904,1.6904,-0.94%,-3.93%,-0.56%,-5.02%,-6.64%,-13.27%,-14.82%,-1.13%,-13.13%,69.04%,-12.35%,0.12%, +,462,7571,南方上证38,9月19日,1.8483,1.8483,-0.52%,-5.61%,-6.91%,-3.53%,-2.11%,-13.27%,5.20%,32.71%,-14.03%,40.48%,-13.71%,0.00%, +,463,10331,天弘消费股票,9月20日,0.727,0.727,0.76%,-2.65%,-3.75%,-7.64%,-0.34%,-13.27%,---,---,-17.94%,-27.30%,-11.59%,0.12%, +,464,10351,诺安中证10,9月20日,1.706,1.706,0.24%,-4.10%,-5.75%,-7.73%,-4.91%,-13.27%,---,---,-16.94%,-8.08%,-12.60%,0.00%, +,465,1149,汇丰晋信恒生,9月19日,1.6358,2.1858,0.11%,-3.13%,-2.35%,-5.38%,-3.61%,-13.29%,-11.84%,6.82%,-15.82%,51.61%,---,0.00%, +,466,5830,建信MSCI,9月19日,1.46,1.46,-0.13%,-4.11%,-5.17%,-6.13%,-4.31%,-13.31%,-0.02%,25.40%,-15.98%,45.99%,---,0.00%, +,467,502040,长盛上证50,9月19日,0.9664,0.9664,0.07%,-2.66%,-2.40%,-6.84%,-6.02%,-13.32%,-11.34%,15.85%,-15.97%,61.63%,-12.51%,0.12%, +,468,12873,易方达中证国,9月20日,1.3275,1.3275,-0.19%,-3.66%,-2.70%,-4.86%,-2.90%,-13.33%,---,---,-14.69%,-13.76%,-13.42%,0.00%, +,469,6193,鑫元核心资产,9月19日,1.4299,1.4299,-1.46%,-7.02%,-7.58%,-3.41%,3.05%,-13.39%,-0.36%,34.74%,-11.72%,42.99%,---,0.12%, +,470,11685,创金合信先进,9月19日,1.0361,1.0361,-1.88%,-4.59%,-6.51%,0.06%,-1.06%,-13.39%,---,---,-19.12%,3.61%,---,0.15%, +,471,9106,嘉合同顺智选,9月20日,0.8544,1.0044,0.20%,-4.04%,-5.19%,-5.25%,-3.23%,-13.40%,1.53%,---,-13.94%,-1.61%,-12.66%,0.15%, +,472,161039,富国中证10,9月20日,1.8757,1.8757,1.20%,-7.27%,-10.98%,-5.11%,-2.67%,-13.42%,10.19%,62.36%,-13.11%,85.35%,-12.96%,0.12%, +,473,6221,工银上证50,9月20日,1.1656,1.1656,-0.16%,-3.14%,-2.55%,-7.29%,-6.55%,-13.42%,-17.08%,-6.86%,-16.22%,16.56%,-12.39%,0.00%, +,474,8009,华商高端装备,9月19日,2.3282,2.3282,-1.17%,-3.95%,-7.20%,1.97%,1.87%,-13.44%,49.79%,---,-19.37%,132.82%,---,0.15%, +,475,163407,兴全沪深30,9月20日,2.1636,2.1636,-0.07%,-3.34%,-1.96%,-5.86%,-2.94%,-13.45%,-15.54%,6.75%,-15.56%,116.36%,-12.59%,0.12%, +,476,1051,华夏上证50,9月20日,0.9135,0.9693,-0.17%,-3.19%,-2.49%,-6.91%,-5.96%,-13.48%,-17.36%,-5.51%,-15.99%,-4.00%,-12.48%,0.12%, +,477,310318,申万菱信沪深,9月20日,3.1557,3.9482,0.25%,-3.93%,-3.75%,-5.53%,-2.59%,-13.48%,-5.18%,28.84%,-13.81%,518.80%,-12.76%,0.12%, +,478,6605,嘉实消费精选,9月20日,1.799,1.799,1.10%,-1.15%,-2.23%,-10.35%,-1.46%,-13.49%,2.82%,66.70%,-18.32%,79.90%,-12.06%,0.00%, +,479,8085,海富通先进制,9月19日,1.4013,1.4013,-0.01%,-11.10%,-13.21%,7.09%,13.54%,-13.53%,37.29%,---,-5.25%,40.13%,-11.00%,0.15%, +,480,8916,华夏中证浙江,9月20日,0.9802,0.9802,0.13%,-5.75%,-4.50%,-5.52%,-7.99%,-13.54%,---,---,-15.31%,-1.98%,-13.27%,0.12%, +,481,13234,华夏中证50,9月20日,0.8987,0.8987,0.97%,-5.08%,-4.89%,-0.24%,1.61%,-13.54%,---,---,-11.26%,-10.13%,-14.09%,0.00%, +,482,12503,国泰中证环保,9月19日,1.0271,1.0271,-0.13%,-8.02%,-13.49%,-9.03%,-4.37%,-13.58%,---,---,-14.09%,2.71%,-12.35%,0.10%, +,483,11295,信诚量化阿尔,9月19日,0.8657,0.8657,-0.20%,-3.62%,-4.07%,-6.40%,-5.28%,-13.58%,---,---,-17.68%,-13.43%,-13.11%,0.00%, +,484,162416,华宝港股通恒,9月20日,0.8595,0.8595,1.28%,-0.99%,-4.76%,-3.06%,-3.26%,-13.60%,-5.83%,-13.84%,-9.33%,-14.05%,-12.00%,0.10%, +,485,164304,新华中证环保,9月19日,1.4212,1.4212,-0.17%,-8.39%,-14.44%,-8.53%,-5.91%,-13.61%,49.78%,97.61%,-15.60%,63.13%,---,0.10%, +,486,160634,鹏华中证环保,9月19日,1.479,1.069,-0.20%,-8.42%,-14.46%,-8.70%,-5.98%,-13.61%,51.05%,100.45%,-15.73%,12.69%,---,0.12%, +,487,1188,鹏华改革红利,9月19日,1.187,1.187,-1.00%,-3.73%,-9.46%,-5.19%,-9.32%,-13.61%,2.24%,25.87%,-23.57%,18.70%,---,0.15%, +,488,6704,易方达MSC,9月20日,1.3896,1.3896,0.33%,-4.17%,-4.82%,-6.15%,-3.79%,-13.61%,-0.49%,33.81%,-15.74%,38.96%,-13.37%,0.10%, +,489,10332,天弘消费股票,9月20日,0.7227,0.7227,0.75%,-2.67%,-3.79%,-7.74%,-0.55%,-13.61%,---,---,-18.17%,-27.73%,-11.93%,0.00%, +,490,5960,博时量化价值,9月20日,1.3752,1.3752,-0.23%,-4.19%,-3.81%,-3.09%,-2.91%,-13.63%,3.21%,30.08%,-11.73%,37.52%,-14.67%,0.15%, +,491,12516,国泰中证细分,9月19日,0.9943,0.9943,-0.06%,-7.59%,-13.67%,-8.94%,-5.31%,-13.63%,---,---,-16.97%,-0.57%,-12.13%,0.10%, +,492,7410,浦银安盛中证,9月19日,1.2364,1.2364,-0.95%,-5.50%,-6.52%,-5.75%,-4.39%,-13.64%,-3.62%,---,-15.26%,23.64%,---,0.12%, +,493,2952,建信多因子量,9月19日,1.2109,1.2109,-0.71%,-6.86%,-8.87%,-4.40%,-5.94%,-13.70%,-11.60%,23.38%,-18.96%,21.09%,---,0.15%, +,494,6705,易方达MSC,9月20日,1.3815,1.3815,0.33%,-4.17%,-4.83%,-6.17%,-3.85%,-13.70%,-0.69%,33.38%,-15.80%,38.15%,-13.45%,0.00%, +,495,1163,银华中国梦3,9月20日,1.918,1.918,0.16%,-2.59%,-2.59%,-6.30%,0.47%,-13.72%,-6.26%,62.27%,-18.00%,91.80%,-12.46%,0.15%, +,496,5733,华夏上证50,9月20日,0.9039,0.9592,-0.19%,-3.20%,-2.52%,-6.99%,-6.11%,-13.74%,-17.85%,-6.33%,-16.18%,-2.68%,-12.75%,0.00%, +,497,1409,工银互联网加,9月20日,0.595,0.595,0.34%,-3.57%,-5.10%,-3.41%,0.85%,-13.77%,2.41%,54.15%,-19.49%,-40.50%,-13.39%,0.15%, +,498,1469,广发中证全指,9月19日,0.9493,0.9493,-0.16%,-3.35%,-0.48%,-4.96%,-6.57%,-13.78%,-19.74%,-13.34%,-13.26%,-5.07%,---,0.12%, +,499,519100,长盛中证10,9月19日,1.2074,2.3634,-0.06%,-3.82%,-5.54%,-7.40%,-5.72%,-13.79%,-7.97%,18.36%,-17.17%,168.40%,-12.74%,0.15%, +,500,5009,申万菱信行业,9月20日,1.9547,1.9547,3.05%,-6.02%,-10.45%,-4.38%,6.29%,-13.79%,41.09%,126.13%,-9.08%,95.45%,-14.76%,0.15%, +,501,7230,兴全沪深30,9月20日,2.1401,2.1401,-0.07%,-3.35%,-2.00%,-5.96%,-3.14%,-13.80%,-16.22%,5.64%,-15.81%,16.80%,-12.94%,0.00%, +,502,6286,华泰MSCI,9月19日,1.3023,1.6963,-0.13%,-4.20%,-5.14%,-5.86%,-3.60%,-13.81%,-2.01%,31.80%,-15.96%,65.28%,-13.19%,0.12%, +,503,8917,华夏中证浙江,9月20日,0.9743,0.9743,0.12%,-5.76%,-4.54%,-5.60%,-8.14%,-13.81%,---,---,-15.51%,-2.57%,-13.53%,0.00%, +,504,11686,创金合信先进,9月19日,1.0285,1.0285,-1.89%,-4.59%,-6.55%,-0.06%,-1.30%,-13.82%,---,---,-19.40%,2.85%,---,0.00%, +,505,1714,工银文体产业,9月20日,2.942,3.131,-0.07%,-3.29%,-5.31%,-5.34%,-2.39%,-13.83%,0.51%,70.75%,-19.42%,232.52%,-13.14%,0.15%, +,506,8238,中泰沪深30,9月20日,1.3243,1.3243,0.17%,-3.68%,-4.65%,-6.14%,-3.81%,-13.84%,-3.57%,---,-15.20%,32.20%,-13.03%,0.10%, +,507,7804,申万菱信沪深,9月20日,1.3512,1.3512,0.25%,-3.95%,-3.78%,-5.63%,-2.80%,-13.84%,-5.94%,27.33%,-14.06%,35.12%,-13.12%,0.00%, +,508,7275,银河沪深30,9月20日,1.2936,1.3556,0.19%,-4.06%,-5.14%,-6.62%,-5.26%,-13.84%,-0.97%,32.18%,-15.94%,35.33%,-13.43%,0.15%, +,509,12504,国泰中证环保,9月19日,1.0233,1.0233,-0.14%,-8.03%,-13.51%,-9.10%,-4.52%,-13.84%,---,---,-14.27%,2.33%,-12.61%,0.00%, +,510,9107,嘉合同顺智选,9月20日,0.8429,0.9929,0.20%,-4.06%,-5.24%,-5.37%,-3.50%,-13.85%,0.50%,---,-14.26%,-2.84%,-13.11%,0.00%, +,511,5310,广发电子信息,9月20日,1.6633,1.6633,0.52%,-4.58%,-11.46%,-2.14%,-10.26%,-13.85%,-2.92%,58.30%,-26.17%,66.33%,-13.82%,0.15%, +,512,6251,银华兴盛股票,9月20日,2.0909,---,2.82%,-5.02%,-8.40%,-5.47%,4.96%,-13.87%,33.96%,108.51%,-13.21%,109.09%,-14.24%,0.15%, +,513,8084,海富通先进制,9月19日,1.386,1.386,-0.02%,-11.11%,-13.24%,6.99%,13.31%,-13.88%,36.19%,---,-5.52%,38.60%,-11.35%,0.00%, +,514,5761,招商MSCI,9月20日,1.3482,1.3482,0.35%,-4.15%,-4.81%,-6.14%,-3.58%,-13.89%,-3.59%,20.93%,-15.78%,34.82%,-13.55%,0.12%, +,515,12517,国泰中证细分,9月19日,0.9906,0.9906,-0.06%,-7.59%,-13.70%,-9.01%,-5.46%,-13.89%,---,---,-17.15%,-0.94%,-12.39%,0.00%, +,516,501067,招商富时A-,9月20日,1.1635,1.1635,0.19%,-2.89%,-3.99%,-7.75%,-5.20%,-13.90%,-13.16%,-6.05%,-15.88%,16.35%,-11.62%,0.08%, +,517,11498,富国沪深30,9月20日,0.8365,0.8365,-0.62%,-3.97%,-3.18%,-7.65%,-1.43%,-13.92%,---,---,-16.49%,-16.35%,-12.95%,0.15%, +,518,502020,国金上证50,9月19日,0.9792,0.9792,0.06%,-2.82%,-2.33%,-6.90%,-6.01%,-13.93%,-18.21%,-9.00%,-16.18%,-9.13%,-13.10%,0.12%, +,519,7411,浦银安盛中证,9月19日,1.2265,1.2265,-0.95%,-5.51%,-6.55%,-5.83%,-4.55%,-13.93%,-4.23%,---,-15.44%,22.65%,---,0.00%, +,520,8128,湘财长源股票,9月19日,1.0177,1.5099,-0.79%,-3.54%,-4.32%,-3.75%,-17.66%,-13.93%,9.13%,---,-18.27%,49.16%,---,0.15%, +,521,11104,光大智能汽车,9月20日,0.8803,0.8803,2.97%,-5.80%,-10.68%,-6.28%,-0.58%,-13.94%,---,---,-20.31%,-11.97%,-13.78%,0.15%, +,522,2979,广发中证全指,9月19日,0.9372,0.9372,-0.16%,-3.35%,-0.50%,-5.01%,-6.66%,-13.95%,-20.05%,-13.87%,-13.37%,11.62%,---,0.00%, +,523,20021,国泰上证18,9月19日,0.9993,1.5293,0.06%,-2.35%,0.28%,-5.03%,-7.13%,-13.96%,-20.16%,-15.88%,-12.30%,53.78%,-13.23%,0.12%, +,524,213010,宝盈中证10,9月20日,1.984,1.984,0.15%,-4.11%,-5.48%,-7.55%,-5.16%,-13.96%,-7.20%,20.68%,-16.78%,98.40%,-13.02%,0.12%, +,525,5268,鹏华优势企业,9月19日,1.7617,1.7617,-0.25%,-2.72%,-5.42%,-4.64%,-3.41%,-13.98%,-11.41%,47.20%,-19.89%,76.17%,---,0.15%, +,526,5607,华宝中证50,9月20日,1.161,1.161,0.76%,-4.37%,-3.75%,-1.78%,-1.08%,-13.99%,-4.86%,25.76%,-9.87%,16.10%,-14.48%,0.12%, +,527,6119,银华中证央企,9月20日,1.1335,1.1335,-0.05%,-3.93%,-3.60%,-4.47%,-3.69%,-13.99%,7.91%,11.83%,-14.81%,13.35%,-15.56%,0.12%, +,528,160807,长盛沪深30,9月19日,1.444,1.794,-0.14%,-3.93%,-4.94%,-6.48%,-4.05%,-14.00%,-3.07%,32.53%,-16.24%,85.18%,-13.47%,0.12%, +,529,5802,汇添富智能制,9月20日,1.7339,1.7339,1.84%,-4.14%,-11.24%,-0.07%,3.05%,-14.00%,8.61%,62.00%,-18.71%,73.39%,-13.80%,0.15%, +,530,8326,东财通信A,9月19日,0.8571,0.8571,-1.52%,-6.31%,-10.46%,-5.28%,-8.28%,-14.00%,-20.87%,---,-26.07%,-14.29%,---,0.10%, +,531,12206,中泰沪深30,9月20日,0.8287,0.8287,0.17%,-3.72%,-4.69%,-6.66%,-4.26%,-14.01%,---,---,-15.56%,-17.27%,-13.22%,0.10%, +,532,656,前海开源沪深,9月19日,1.6448,2.0148,-0.12%,-3.83%,-4.97%,-6.51%,-4.54%,-14.02%,-1.86%,33.67%,-16.47%,126.41%,---,0.12%, +,533,9899,上银内需增长,9月19日,0.7944,0.7944,-0.01%,-1.97%,-2.46%,-6.21%,-3.71%,-14.02%,-20.56%,---,-20.56%,-20.56%,-12.54%,0.15%, +,534,6293,华泰MSCI,9月19日,1.2818,1.6758,-0.13%,-4.21%,-5.16%,-5.92%,-3.73%,-14.03%,-2.49%,30.66%,-16.11%,63.11%,-13.41%,0.00%, +,535,4891,华润元大成长,9月20日,1.0047,1.0047,0.38%,-3.82%,-4.57%,-6.18%,-4.92%,-14.06%,-13.10%,---,-16.16%,0.47%,-13.60%,0.15%, +,536,40180,华安上证18,9月19日,1.5016,1.5016,-0.07%,-3.56%,-3.19%,-6.51%,-5.33%,-14.08%,-11.65%,1.68%,-15.02%,50.16%,---,0.12%, +,537,6194,鑫元核心资产,9月19日,1.3947,1.3947,-1.46%,-7.04%,-7.64%,-3.61%,2.63%,-14.09%,-1.94%,31.51%,-12.23%,39.47%,---,0.00%, +,538,5113,平安沪深30,9月19日,1.2549,1.2549,-0.09%,-3.94%,-4.98%,-5.50%,-4.60%,-14.12%,-2.41%,30.30%,-17.14%,25.49%,-13.27%,0.12%, +,539,1186,富国文体健康,9月20日,1.93,1.93,-0.26%,-3.69%,-3.88%,-8.49%,-6.04%,-14.15%,-5.81%,72.01%,-25.14%,93.00%,-13.95%,0.15%, +,540,10128,宝盈发展新动,9月20日,1.1434,1.1434,1.14%,-5.57%,-10.60%,-8.49%,-6.19%,-14.15%,---,---,-23.32%,14.34%,-13.83%,0.15%, +,541,10469,圆信永丰聚优,9月20日,0.9163,0.9163,0.28%,-4.28%,-6.69%,-3.35%,-2.37%,-14.15%,---,---,-16.75%,-8.37%,-14.95%,0.15%, +,542,8239,中泰沪深30,9月20日,1.3113,1.3113,0.18%,-3.69%,-4.68%,-6.25%,-4.00%,-14.18%,-4.34%,---,-15.44%,30.90%,-13.38%,0.00%, +,543,10236,广发电子信息,9月20日,1.6521,1.6521,0.52%,-4.59%,-11.49%,-2.24%,-10.44%,-14.19%,---,---,-26.38%,-1.11%,-14.16%,0.00%, +,544,11934,中航量化阿尔,9月19日,0.8802,0.8802,-0.59%,-5.40%,-6.47%,-4.78%,-1.13%,-14.19%,---,---,-11.09%,-11.98%,-13.82%,0.15%, +,545,202211,南方中证10,9月20日,1.3769,1.852,0.08%,-3.96%,-5.23%,-7.76%,-5.58%,-14.20%,-8.65%,16.94%,-16.83%,111.54%,-13.29%,0.12%, +,546,8327,东财通信C,9月19日,0.8514,0.8514,-1.52%,-6.32%,-10.47%,-5.35%,-8.39%,-14.21%,-21.26%,---,-26.20%,-14.86%,---,0.00%, +,547,13004,国泰价值领航,9月19日,0.8554,0.8554,-0.28%,-6.74%,-12.20%,-8.89%,-1.80%,-14.23%,---,---,-18.47%,-14.46%,---,0.15%, +,548,1015,华夏沪深30,9月20日,1.776,1.776,0.17%,-4.10%,-4.57%,-7.74%,-4.77%,-14.24%,-5.63%,20.49%,-15.67%,77.60%,-13.32%,0.12%, +,549,501068,招商富时A-,9月20日,1.146,1.146,0.19%,-2.90%,-4.02%,-7.84%,-5.39%,-14.24%,-13.85%,-7.17%,-16.12%,14.60%,-11.97%,0.00%, +,550,1050,汇添富成长多,9月20日,1.739,1.739,0.64%,-5.39%,-6.91%,-3.82%,-1.53%,-14.25%,3.08%,48.63%,-12.39%,73.90%,-15.05%,0.15%, +,551,164905,交银国证新能,9月20日,1.3224,1.3889,1.98%,-5.97%,-13.47%,-11.68%,-4.13%,-14.25%,47.01%,111.45%,-16.11%,38.89%,-14.06%,0.12%, +,552,6438,博时央调ET,9月20日,1.2,1.2,-0.07%,-3.97%,-3.63%,-4.41%,-3.40%,-14.26%,7.07%,11.87%,-14.84%,20.00%,-15.83%,0.12%, +,553,1162,前海开源优势,9月19日,1.417,1.417,0.35%,-5.22%,-4.45%,-8.87%,-6.47%,-14.28%,-12.53%,13.36%,-15.95%,41.70%,---,0.15%, +,554,7276,银河沪深30,9月20日,1.2736,1.3346,0.20%,-4.06%,-5.19%,-6.74%,-5.50%,-14.28%,-1.96%,30.17%,-16.25%,33.23%,-13.87%,0.00%, +,555,6196,华夏中证央企,9月19日,1.2077,1.2077,-0.49%,-4.01%,-3.73%,-3.94%,-3.28%,-14.29%,6.52%,12.24%,-14.89%,20.77%,---,0.12%, +,556,4892,华润元大成长,9月20日,0.9983,0.9983,0.37%,-3.82%,-4.59%,-6.24%,-5.05%,-14.29%,-13.54%,---,-16.31%,-0.17%,-13.82%,0.00%, +,557,160620,鹏华资源A,9月19日,1.768,1.259,0.17%,-6.46%,-3.49%,-4.33%,1.55%,-14.30%,52.02%,73.97%,-0.28%,32.80%,---,0.12%, +,558,3232,创金合信金融,9月19日,0.9667,1.049,0.09%,-3.10%,5.21%,-3.07%,-2.44%,-14.30%,-13.25%,1.70%,-16.57%,4.90%,---,0.15%, +,559,5457,景顺长城量化,9月19日,1.5364,1.5364,-0.82%,-7.31%,-10.73%,-6.31%,-5.40%,-14.30%,12.19%,57.06%,-16.33%,53.64%,---,0.15%, +,560,1638,前海开源优势,9月19日,1.551,1.551,0.39%,-5.20%,-4.38%,-8.87%,-6.45%,-14.31%,-12.62%,13.13%,-15.98%,55.10%,---,0.15%, +,561,1539,嘉实中证金融,9月20日,1.1418,1.1418,-0.91%,-4.28%,-1.05%,-5.53%,-7.33%,-14.31%,-18.76%,-12.86%,-13.77%,14.18%,-13.41%,0.12%, +,562,5762,招商MSCI,9月20日,1.3186,1.3186,0.35%,-4.15%,-4.85%,-6.26%,-3.82%,-14.32%,-4.55%,19.13%,-16.08%,31.86%,-13.97%,0.00%, +,563,5608,华宝中证50,9月20日,1.1406,1.1406,0.76%,-4.38%,-3.79%,-1.88%,-1.29%,-14.34%,-5.63%,24.25%,-10.14%,14.06%,-14.82%,0.00%, +,564,5961,博时量化价值,9月20日,1.3289,1.3289,-0.23%,-4.20%,-3.87%,-3.28%,-3.30%,-14.34%,1.54%,26.96%,-12.24%,32.89%,-15.36%,0.00%, +,565,8129,湘财长源股票,9月19日,1.0005,1.488,-0.79%,-3.55%,-4.35%,-3.88%,-17.86%,-14.36%,8.05%,---,-18.56%,46.66%,---,0.00%, +,566,10687,工银文体产业,9月20日,2.911,2.911,-0.10%,-3.32%,-5.36%,-5.49%,-2.71%,-14.36%,---,---,-19.79%,-6.16%,-13.67%,0.00%, +,567,12207,中泰沪深30,9月20日,0.8247,0.8247,0.17%,-3.73%,-4.72%,-6.75%,-4.45%,-14.36%,---,---,-15.81%,-17.67%,-13.56%,0.00%, +,568,12808,鹏华资源C,9月19日,1.109,1.109,0.18%,-6.49%,-3.48%,-4.31%,1.46%,-14.36%,---,---,-0.36%,10.90%,---,0.00%, +,569,1718,工银物流产业,9月20日,3.212,3.212,0.38%,-4.29%,-7.44%,-4.40%,-4.23%,-14.39%,30.46%,106.29%,-22.94%,221.20%,-15.21%,0.15%, +,570,7505,华夏AH经济,9月20日,1.1953,1.1953,0.13%,-3.71%,-2.61%,-5.82%,-3.84%,-14.41%,-2.94%,19.91%,-12.58%,19.53%,-15.17%,0.12%, +,571,3318,景顺中证50,9月19日,1.2466,1.2466,-0.65%,-5.56%,-5.55%,-4.66%,-4.44%,-14.42%,3.87%,29.71%,-13.37%,24.66%,---,0.12%, +,572,11499,富国沪深30,9月20日,0.8298,0.8298,-0.62%,-3.98%,-3.24%,-7.79%,-1.73%,-14.44%,---,---,-16.85%,-17.02%,-13.47%,0.00%, +,573,410008,华富中证10,9月20日,1.3802,1.8802,0.08%,-4.16%,-5.62%,-7.65%,-5.62%,-14.46%,-5.92%,20.85%,-17.34%,86.21%,-13.81%,0.12%, +,574,160814,长盛中证金融,9月19日,0.8109,0.8109,-0.14%,-3.25%,-0.16%,-5.16%,-6.88%,-14.46%,-19.63%,-4.57%,-13.69%,-6.22%,-14.17%,0.12%, +,575,5530,汇添富沪深3,9月20日,1.459,1.459,0.30%,-3.94%,-4.80%,-6.83%,-3.68%,-14.47%,-7.21%,31.57%,-14.82%,45.90%,-14.01%,0.15%, +,576,580008,东吴新产业精,9月19日,3.1325,3.1325,-1.08%,-6.20%,-9.52%,-2.46%,-1.53%,-14.48%,6.74%,51.40%,-16.38%,213.25%,---,0.15%, +,577,10470,圆信永丰聚优,9月20日,0.9111,0.9111,0.29%,-4.29%,-6.72%,-3.44%,-2.56%,-14.49%,---,---,-16.99%,-8.89%,-15.29%,0.00%, +,578,40002,华安中国A股,9月19日,0.849,4.383,-0.35%,-3.96%,-5.35%,-5.35%,-6.29%,-14.50%,-7.59%,18.11%,-19.91%,486.26%,---,0.15%, +,579,1651,工银新蓝筹股,9月20日,2.333,2.333,-0.60%,-3.28%,-2.26%,-4.81%,-5.81%,-14.51%,1.79%,59.03%,-17.09%,133.30%,-14.82%,0.15%, +,580,6486,广发中证10,9月20日,1.4066,1.4066,1.20%,-5.84%,-9.78%,-5.01%,-4.91%,-14.52%,-4.75%,19.67%,-17.73%,40.65%,-14.92%,0.10%, +,581,7809,富国央企创新,9月20日,1.2653,1.2653,-0.02%,-4.30%,-3.87%,-4.30%,-2.43%,-14.52%,19.73%,---,-13.09%,26.53%,-16.39%,0.12%, +,582,13049,兴业能源革新,9月19日,0.8498,0.8498,-0.55%,-5.82%,-9.18%,2.09%,-1.47%,-14.53%,---,---,-18.83%,-15.02%,---,0.15%, +,583,460220,华泰柏瑞上证,9月19日,1.3691,1.3691,-0.39%,-5.26%,-5.11%,-4.90%,-3.20%,-14.55%,2.10%,27.74%,-13.61%,36.91%,-14.95%,0.15%, +,584,5691,南方中证10,9月20日,1.3524,1.8273,0.07%,-3.97%,-5.27%,-7.86%,-5.78%,-14.55%,-9.38%,15.54%,-17.07%,21.11%,-13.64%,0.00%, +,585,6197,华夏中证央企,9月19日,1.1938,1.1938,-0.49%,-4.03%,-3.76%,-4.03%,-3.43%,-14.55%,5.88%,11.24%,-15.07%,19.38%,---,0.00%, +,586,5114,平安沪深30,9月19日,1.2202,1.2202,-0.09%,-3.96%,-5.02%,-5.62%,-4.84%,-14.55%,-3.39%,28.33%,-17.44%,22.02%,-13.70%,0.00%, +,587,8407,恒生沪深港通,9月19日,0.8989,0.8989,-0.27%,-2.90%,-3.00%,-7.82%,-2.79%,-14.55%,-19.43%,---,-13.48%,-10.11%,---,0.12%, +,588,778,鹏华先进制造,9月19日,2.747,2.747,-0.04%,-1.40%,-1.86%,-6.41%,-2.76%,-14.58%,-3.82%,57.51%,-18.94%,174.70%,---,0.15%, +,589,10129,宝盈发展新动,9月20日,1.1322,1.1322,1.14%,-5.57%,-10.65%,-8.61%,-6.43%,-14.58%,---,---,-23.60%,13.22%,-14.26%,0.00%, +,590,10003,景顺长城电子,9月19日,1.0532,1.0532,-1.62%,-4.42%,-11.20%,-2.45%,-8.70%,-14.60%,4.63%,---,-22.45%,5.32%,---,0.15%, +,591,320014,诺安沪深30,9月20日,1.4401,1.4749,0.15%,-3.97%,-4.70%,-6.79%,-4.76%,-14.61%,-2.68%,26.10%,-16.96%,47.49%,-14.26%,0.12%, +,592,6439,博时央调ET,9月20日,1.1836,1.1836,-0.08%,-3.98%,-3.67%,-4.51%,-3.59%,-14.61%,6.20%,10.53%,-15.09%,18.36%,-16.17%,0.00%, +,593,2595,博时工业4.,9月20日,2.049,2.049,1.99%,-4.74%,-9.09%,-6.18%,-3.76%,-14.62%,0.34%,51.89%,-20.30%,104.90%,-14.84%,0.15%, +,594,4854,广发中证全指,9月20日,1.3519,1.3519,0.68%,-4.92%,-8.47%,-13.40%,13.05%,-14.64%,28.32%,73.92%,-10.37%,35.19%,-13.33%,0.10%, +,595,5999,嘉实中证金融,9月20日,1.0478,1.0478,-0.91%,-4.28%,-1.09%,-5.62%,-7.51%,-14.65%,-19.40%,-13.92%,-14.01%,4.99%,-13.75%,0.00%, +,596,11125,富国文体健康,9月20日,1.911,1.911,-0.26%,-3.68%,-3.97%,-8.61%,-6.32%,-14.65%,---,---,-25.44%,-12.02%,-14.46%,0.00%, +,597,7506,华夏AH经济,9月20日,1.1839,1.1839,0.13%,-3.72%,-2.64%,-5.89%,-3.99%,-14.67%,-3.53%,18.83%,-12.77%,18.39%,-15.42%,0.00%, +,598,7580,宝盈中证10,9月20日,1.934,1.934,0.10%,-4.16%,-5.57%,-7.77%,-5.57%,-14.69%,-8.73%,17.85%,-17.28%,22.72%,-13.78%,0.00%, +,599,11935,中航量化阿尔,9月19日,0.8745,0.8745,-0.60%,-5.42%,-6.53%,-4.94%,-1.44%,-14.71%,---,---,-11.48%,-12.55%,-14.34%,0.00%, +,600,1016,华夏沪深30,9月20日,1.709,1.709,0.18%,-4.15%,-4.63%,-7.92%,-5.00%,-14.72%,-6.56%,18.68%,-16.02%,70.90%,-13.77%,0.00%, +,601,7806,建信MSCI,9月19日,1.3611,1.4581,0.26%,-4.25%,-5.56%,-4.36%,-3.38%,-14.72%,5.78%,---,-14.60%,45.10%,---,0.15%, +,602,13005,国泰价值领航,9月19日,0.8501,0.8501,-0.28%,-6.76%,-12.25%,-9.03%,-2.10%,-14.75%,---,---,-18.82%,-14.99%,---,0.00%, +,603,110003,易方达上证5,9月20日,1.8165,3.7665,0.11%,-2.90%,-4.21%,-8.91%,-7.04%,-14.77%,-18.09%,5.94%,-18.22%,479.17%,-13.62%,0.15%, +,604,6034,富国MSCI,9月20日,1.8925,1.8925,0.48%,-4.02%,-5.29%,-6.24%,-2.35%,-14.79%,8.88%,51.85%,-12.34%,89.25%,-14.48%,0.12%, +,605,7523,汇添富内需增,9月20日,1.3341,1.3341,0.96%,-1.69%,-3.90%,-5.48%,2.69%,-14.79%,-12.56%,32.06%,-16.67%,33.41%,-14.31%,0.15%, +,606,11470,东吴新产业精,9月19日,3.1164,3.1164,-1.09%,-6.21%,-9.55%,-2.56%,-1.73%,-14.79%,---,---,-16.62%,-12.38%,---,0.00%, +,607,4855,广发中证全指,9月20日,1.3445,1.3445,0.68%,-4.93%,-8.48%,-13.44%,12.95%,-14.80%,27.82%,72.95%,-10.49%,34.45%,-13.50%,0.00%, +,608,5635,博时量化多策,9月20日,1.4636,1.4636,-0.16%,-4.03%,-3.96%,-1.98%,-0.27%,-14.81%,8.87%,43.11%,-10.63%,46.36%,-15.27%,0.15%, +,609,10556,汇添富沪深3,9月20日,1.4486,1.4486,0.30%,-3.95%,-4.83%,-6.92%,-3.88%,-14.81%,---,---,-15.06%,-9.10%,-14.34%,0.00%, +,610,206012,鹏华价值精选,9月19日,3.15,3.15,-0.54%,-6.08%,-8.54%,-1.32%,-2.51%,-14.86%,22.62%,125.97%,-14.70%,215.00%,---,0.15%, +,611,6487,广发中证10,9月20日,1.3912,1.3912,1.20%,-5.85%,-9.81%,-5.10%,-5.10%,-14.86%,-5.51%,18.30%,-17.97%,39.11%,-15.26%,0.00%, +,612,40190,华安上证龙头,9月19日,1.3,1.3,-0.54%,-4.48%,-3.77%,-6.27%,-6.61%,-14.87%,-14.81%,0.31%,-16.72%,30.00%,---,0.12%, +,613,7810,富国央企创新,9月20日,1.2513,1.2513,-0.02%,-4.30%,-3.89%,-4.39%,-2.62%,-14.87%,18.79%,---,-13.33%,25.13%,-16.72%,0.00%, +,614,3233,创金合信金融,9月19日,0.94,1.0297,0.10%,-3.11%,5.17%,-3.24%,-2.78%,-14.89%,-14.45%,-0.60%,-16.98%,2.97%,---,0.00%, +,615,519180,万家180指,9月19日,0.96,3.3,-0.08%,-3.62%,-3.26%,-6.81%,-5.86%,-14.90%,-13.07%,-0.12%,-15.72%,283.71%,-14.51%,0.15%, +,616,8408,恒生沪深港通,9月19日,0.8905,0.8905,-0.27%,-2.91%,-3.04%,-7.93%,-3.00%,-14.90%,-20.08%,---,-13.73%,-10.95%,---,0.00%, +,617,3016,中金中证50,9月19日,1.6438,1.6438,-0.52%,-5.84%,-7.20%,-4.78%,-4.22%,-14.91%,10.82%,57.17%,-14.75%,64.38%,---,0.10%, +,618,9954,北信瑞丰优选,9月19日,1.2805,1.2805,1.27%,-1.15%,-4.39%,-10.05%,-4.08%,-14.92%,---,---,-22.01%,28.05%,-10.58%,0.15%, +,619,10004,景顺长城电子,9月19日,1.0447,1.0447,-1.61%,-4.43%,-11.23%,-2.56%,-8.88%,-14.94%,3.80%,---,-22.67%,4.47%,---,0.00%, +,620,519032,海富通上证非,9月19日,1.3667,1.3667,-0.15%,-3.68%,-5.11%,-7.61%,-5.12%,-14.95%,-10.32%,12.49%,-18.02%,36.67%,-14.52%,0.12%, +,621,975,MSCI中国,9月20日,1.2189,1.3847,0.31%,-4.20%,-5.00%,-6.55%,-4.20%,-14.96%,-3.29%,23.56%,-16.79%,40.11%,-14.71%,0.12%, +,622,10352,诺安沪深30,9月20日,1.4305,1.4305,0.15%,-3.97%,-4.73%,-6.88%,-4.96%,-14.96%,---,---,-17.21%,-4.44%,-14.61%,0.00%, +,623,11476,工银新蓝筹股,9月20日,2.317,2.317,-0.60%,-3.30%,-2.32%,-4.96%,-6.04%,-14.97%,---,---,-17.40%,-18.59%,-15.25%,0.00%, +,624,13050,兴业能源革新,9月19日,0.8453,0.8453,-0.56%,-5.84%,-9.22%,1.95%,-1.72%,-14.97%,---,---,-19.13%,-15.47%,---,0.00%, +,625,4746,易方达上证5,9月20日,1.7921,1.8921,0.11%,-2.91%,-4.23%,-8.96%,-7.16%,-14.98%,-18.50%,5.15%,-18.37%,62.95%,-13.83%,0.00%, +,626,9374,浦银安盛MS,9月19日,0.9148,1.0248,-0.14%,-4.17%,-5.28%,-6.52%,-4.41%,-14.99%,---,---,-16.60%,0.68%,---,0.12%, +,627,8736,南方高股息股,9月20日,0.9274,0.9274,0.25%,-3.37%,-0.64%,1.96%,-3.69%,-15.00%,-8.98%,---,-16.46%,-7.26%,-14.26%,0.15%, +,628,7143,国投瑞银沪深,9月20日,1.2706,1.3496,0.16%,-3.88%,-5.21%,-7.60%,-5.08%,-15.03%,-0.75%,32.33%,-15.02%,34.44%,-14.69%,0.12%, +,629,399001,中海上证50,9月20日,1.282,1.454,-0.31%,-3.17%,-2.29%,-6.97%,-7.17%,-15.04%,-14.65%,3.03%,-17.77%,46.10%,-14.19%,0.12%, +,630,110021,易方达上证中,9月20日,1.7611,1.7611,0.36%,-4.47%,-4.02%,-5.61%,-4.39%,-15.05%,2.43%,29.05%,-13.73%,76.11%,-15.72%,0.12%, +,631,162907,泰信中证锐联,9月20日,1.1415,1.7016,0.67%,-5.32%,-6.43%,-5.54%,-3.85%,-15.07%,-0.83%,19.18%,-13.74%,73.77%,-16.01%,0.12%, +,632,7807,建信MSCI,9月19日,1.3461,1.4421,0.25%,-4.26%,-5.60%,-4.46%,-3.57%,-15.07%,4.93%,---,-14.85%,43.47%,---,0.00%, +,633,11667,东财高端制造,9月19日,1.0079,1.0079,-0.23%,-6.03%,-11.64%,-7.59%,-7.40%,-15.09%,---,---,-20.50%,0.79%,---,0.15%, +,634,5660,嘉实资源精选,9月20日,2.5598,2.5598,0.40%,-5.21%,-2.50%,3.84%,9.91%,-15.10%,47.14%,126.17%,3.21%,155.98%,-14.86%,0.15%, +,635,163111,申万菱信中小,9月20日,1.3328,2.1317,0.89%,-3.94%,-7.05%,-8.44%,-5.37%,-15.15%,-4.11%,35.67%,-19.84%,80.86%,-14.66%,0.12%, +,636,160638,鹏华中证一带,9月19日,1.634,0.738,-0.43%,-5.98%,-3.77%,-3.26%,-0.06%,-15.16%,25.40%,51.94%,-10.07%,-23.83%,---,0.12%, +,637,7657,东方红中证竞,9月20日,1.2119,1.2119,0.09%,-4.43%,-3.60%,-7.34%,-4.01%,-15.21%,-9.94%,16.82%,-16.40%,21.19%,-14.71%,0.12%, +,638,9479,中银中证10,9月20日,0.7835,0.7835,0.08%,-4.07%,-5.52%,-8.30%,-5.70%,-15.21%,---,---,-17.20%,-21.65%,-14.32%,0.12%, +,639,162413,华宝中证10,9月20日,0.9817,0.4103,1.21%,-5.82%,-9.84%,-5.28%,-5.19%,-15.22%,-6.10%,19.69%,-17.84%,-58.92%,-15.61%,0.10%, +,640,501030,汇添富中证环,9月20日,0.5486,0.5486,1.74%,-5.58%,-9.25%,-2.63%,-7.16%,-15.22%,-12.13%,-5.85%,-18.64%,-45.14%,-16.99%,0.12%, +,641,340006,兴全全球视野,9月20日,2.6598,5.4058,-0.11%,-3.32%,-5.55%,-5.07%,-6.16%,-15.23%,-3.29%,39.71%,-19.63%,902.31%,-15.26%,0.15%, +,642,5735,MSCI中国,9月20日,1.2082,1.3739,0.32%,-4.20%,-5.02%,-6.62%,-4.35%,-15.23%,-3.87%,22.48%,-16.97%,23.14%,-14.97%,0.00%, +,643,9375,浦银安盛MS,9月19日,0.9091,1.0191,-0.14%,-4.16%,-5.29%,-6.59%,-4.55%,-15.24%,---,---,-16.77%,0.09%,---,0.00%, +,644,3578,中金中证50,9月19日,1.6287,1.6287,-0.52%,-5.85%,-7.23%,-4.88%,-4.41%,-15.25%,9.94%,55.04%,-14.99%,50.85%,---,0.00%, +,645,4743,易方达上证中,9月20日,1.7943,1.7943,0.36%,-4.48%,-4.04%,-5.67%,-4.52%,-15.26%,1.91%,28.07%,-13.89%,44.77%,-15.93%,0.00%, +,646,5788,南方MSCI,9月20日,1.532,1.532,0.33%,-4.22%,-5.00%,-6.78%,-4.44%,-15.26%,-4.09%,29.22%,-16.94%,53.20%,-14.91%,0.12%, +,647,1166,建信环保产业,9月19日,1.453,1.453,0.14%,-7.10%,-12.31%,-6.86%,-1.69%,-15.28%,43.01%,112.74%,-14.73%,45.30%,---,0.15%, +,648,165515,信诚沪深30,9月19日,1.0479,1.6852,-0.12%,-3.79%,-4.91%,-7.10%,-5.91%,-15.29%,-3.99%,20.37%,-17.75%,88.33%,-14.64%,0.12%, +,649,7524,汇添富内需增,9月20日,1.3069,1.3069,0.96%,-1.71%,-3.95%,-5.63%,2.37%,-15.30%,-13.65%,29.47%,-17.03%,30.69%,-14.82%,0.00%, +,650,9398,华富成长企业,9月20日,0.9821,1.1231,1.29%,-5.76%,-10.85%,-7.17%,-9.59%,-15.30%,10.41%,---,-21.05%,9.76%,-15.88%,0.15%, +,651,9480,中银中证10,9月20日,0.782,0.782,0.08%,-4.07%,-5.53%,-8.32%,-5.76%,-15.30%,---,---,-17.27%,-21.80%,-14.40%,0.00%, +,652,6783,红土创新中证,9月20日,1.5418,1.5418,1.68%,-3.96%,-5.13%,-2.96%,-1.31%,-15.31%,9.68%,45.98%,-10.43%,54.18%,-15.54%,0.12%, +,653,257060,国联安上证商,9月19日,1.0885,1.0885,-0.21%,-6.65%,-3.49%,-6.06%,2.41%,-15.32%,58.79%,104.41%,0.42%,8.85%,-15.78%,0.15%, +,654,160806,长盛同庆中证,9月19日,1.513,1.727,-0.20%,-4.30%,-5.38%,-6.78%,-5.20%,-15.33%,-1.86%,30.31%,-17.50%,84.83%,-14.78%,0.12%, +,655,6143,恒生前海中证,9月19日,1.2354,1.2354,-1.18%,-5.57%,-4.84%,-3.51%,-5.18%,-15.34%,-10.02%,20.08%,-17.79%,23.54%,---,0.12%, +,656,7792,嘉实央企创新,9月20日,1.1751,1.1751,-0.03%,-4.44%,-3.91%,-4.38%,-2.51%,-15.34%,14.25%,---,-13.28%,17.51%,-17.31%,0.12%, +,657,11328,景顺长城新能,9月19日,1.2923,1.2923,-0.54%,-8.26%,-14.70%,-10.29%,-6.87%,-15.34%,---,---,-21.71%,29.23%,---,0.15%, +,658,162307,海富通中证1,9月19日,1.2858,1.6298,-0.05%,-3.85%,-5.62%,-7.90%,-6.73%,-15.35%,-10.21%,16.00%,-17.53%,70.90%,-14.45%,0.12%, +,659,20011,国泰沪深30,9月19日,0.8607,1.4718,-0.12%,-3.68%,-4.69%,-6.68%,-5.39%,-15.35%,-9.98%,13.53%,-17.55%,-0.55%,-14.71%,0.15%, +,660,162509,国联安中证1,9月19日,0.816,0.816,0.00%,-3.77%,-5.45%,-7.48%,-6.21%,-15.35%,-10.95%,16.83%,-17.82%,86.10%,-14.47%,0.12%, +,661,8382,融通产业趋势,9月20日,0.9851,1.0401,-0.30%,-2.82%,-0.39%,5.05%,5.35%,-15.35%,-11.00%,---,-14.20%,3.31%,-15.07%,0.15%, +,662,11668,东财高端制造,9月19日,1.0035,1.0035,-0.23%,-6.04%,-11.66%,-7.66%,-7.53%,-15.35%,---,---,-20.67%,0.35%,---,0.00%, +,663,1420,南方大数据3,9月19日,1.3199,1.3199,0.11%,-3.96%,-5.33%,-5.92%,-4.45%,-15.36%,-6.74%,21.78%,-16.76%,31.99%,-14.23%,0.12%, +,664,7144,国投瑞银沪深,9月20日,1.2562,1.3317,0.15%,-3.89%,-5.24%,-7.70%,-5.27%,-15.37%,-1.54%,30.74%,-15.26%,32.67%,-15.02%,0.00%, +,665,217017,招商上证消费,9月20日,2.27,2.27,0.50%,-2.48%,-4.11%,-8.30%,-3.26%,-15.38%,-11.91%,35.61%,-19.47%,127.00%,-14.16%,0.15%, +,666,1064,广发中证环保,9月19日,1.0788,1.0788,-0.19%,-8.41%,-14.56%,-9.28%,-6.65%,-15.39%,42.42%,89.83%,-16.52%,7.88%,---,0.12%, +,667,1242,博时中证淘金,9月20日,0.9854,0.9854,1.41%,-4.98%,-7.36%,-1.41%,-2.02%,-15.40%,-13.89%,7.31%,-12.14%,-1.46%,-16.29%,0.12%, +,668,7799,申万菱信中小,9月20日,1.5082,1.5082,0.89%,-3.95%,-7.08%,-8.51%,-5.51%,-15.41%,-4.69%,34.46%,-20.02%,50.82%,-14.92%,0.00%, +,669,10224,海富通中证1,9月19日,1.2872,1.2872,-0.05%,-3.85%,-5.62%,-7.93%,-6.79%,-15.43%,---,---,-17.61%,-15.48%,-14.53%,0.00%, +,670,11329,景顺长城新能,9月19日,1.2902,1.2902,-0.55%,-8.27%,-14.71%,-10.32%,-6.92%,-15.43%,---,---,-21.77%,29.02%,---,0.00%, +,671,920002,中金精选股票,9月20日,1.7291,5.1367,0.55%,-4.13%,-7.84%,-7.01%,-3.63%,-15.44%,-14.02%,---,-16.17%,-9.29%,-14.76%,--, +,672,955,南方产业活力,9月20日,1.428,1.428,0.14%,-3.71%,-5.31%,-6.11%,-2.99%,-15.45%,-17.02%,23.85%,-17.36%,42.80%,-15.40%,0.15%, +,673,1195,工银农业产业,9月20日,1.116,1.116,0.63%,-2.70%,-5.26%,-8.52%,-5.10%,-15.45%,-8.37%,51.63%,-20.79%,11.60%,-15.07%,0.15%, +,674,5868,平安MSCI,9月20日,1.4956,1.4956,0.35%,-4.12%,-4.95%,-6.50%,-5.07%,-15.45%,-1.53%,29.83%,-17.28%,49.56%,-15.17%,0.10%, +,675,7784,广发央企创新,9月20日,1.2886,1.2886,-0.03%,-4.46%,-3.99%,-4.82%,-2.97%,-15.45%,15.84%,---,-14.28%,28.86%,-17.32%,0.12%, +,676,161118,易方达中小企,9月20日,1.3206,1.3206,0.91%,-3.98%,-7.16%,-8.52%,-5.24%,-15.51%,-6.49%,31.52%,-20.04%,71.57%,-15.00%,0.12%, +,677,11545,长江沪深30,9月19日,0.8015,0.8015,0.00%,-4.70%,-5.07%,-7.81%,-4.56%,-15.51%,---,---,-16.78%,-19.85%,---,0.15%, +,678,5636,博时量化多策,9月20日,1.4115,1.4115,-0.16%,-4.04%,-4.03%,-2.18%,-0.68%,-15.52%,7.09%,39.66%,-11.16%,41.15%,-15.97%,0.00%, +,679,5661,嘉实资源精选,9月20日,2.5124,2.5124,0.40%,-5.22%,-2.54%,3.71%,9.63%,-15.52%,45.67%,122.99%,2.84%,151.24%,-15.28%,0.00%, +,680,7793,嘉实央企创新,9月20日,1.1685,1.1685,-0.03%,-4.45%,-3.93%,-4.43%,-2.62%,-15.52%,13.79%,---,-13.41%,16.85%,-17.48%,0.00%, +,681,5869,平安MSCI,9月20日,1.4878,1.4878,0.34%,-4.12%,-4.96%,-6.52%,-5.11%,-15.53%,-1.72%,29.43%,-17.34%,48.78%,-15.25%,0.00%, +,682,7785,广发央企创新,9月20日,1.2848,1.2848,-0.03%,-4.46%,-3.99%,-4.84%,-3.03%,-15.53%,15.60%,---,-14.35%,28.48%,-17.40%,0.00%, +,683,7658,东方红中证竞,9月20日,1.1963,1.1963,0.08%,-4.44%,-3.64%,-7.44%,-4.20%,-15.55%,-10.66%,15.40%,-16.64%,19.63%,-15.05%,0.00%, +,684,2984,广发中证环保,9月19日,1.0637,1.0637,-0.18%,-8.41%,-14.56%,-9.33%,-6.73%,-15.55%,41.86%,88.70%,-16.64%,41.56%,---,0.00%, +,685,501031,汇添富中证环,9月20日,0.5422,0.5422,1.73%,-5.57%,-9.29%,-2.74%,-7.35%,-15.56%,-12.83%,-6.97%,-18.88%,-45.78%,-17.32%,0.00%, +,686,6784,红土创新中证,9月20日,1.5263,1.5263,1.69%,-3.96%,-5.16%,-3.04%,-1.46%,-15.57%,9.02%,44.78%,-10.63%,52.63%,-15.79%,0.00%, +,687,50002,博时沪深30,9月20日,1.5897,3.6236,0.26%,-3.89%,-5.24%,-7.34%,-3.97%,-15.58%,-11.93%,7.94%,-14.24%,423.32%,-15.11%,0.15%, +,688,7538,永赢沪深30,9月20日,1.2751,1.2751,0.12%,-4.06%,-4.83%,-7.19%,-5.30%,-15.58%,-6.91%,22.04%,-17.49%,27.51%,-15.16%,0.10%, +,689,5789,南方MSCI,9月20日,1.5058,1.5058,0.33%,-4.23%,-5.03%,-6.88%,-4.64%,-15.60%,-4.85%,27.68%,-17.18%,50.58%,-15.25%,0.00%, +,690,13134,南方MSCI,9月20日,1.5251,1.5251,0.34%,-4.23%,-5.03%,-6.88%,-4.63%,-15.60%,---,---,-17.18%,-15.37%,-15.25%,0.00%, +,691,6129,华安中证50,9月19日,1.2647,1.2647,-0.62%,-5.47%,-5.60%,-5.23%,-5.81%,-15.62%,-3.47%,13.67%,-14.56%,26.47%,---,0.12%, +,692,8396,博时中证50,9月20日,1.2754,1.2754,0.71%,-5.07%,-6.27%,-4.42%,-3.52%,-15.65%,1.81%,---,-16.07%,27.54%,-16.30%,0.12%, +,693,13120,信诚沪深30,9月19日,1.0434,1.0434,-0.12%,-3.81%,-4.94%,-7.20%,-6.10%,-15.65%,---,---,-18.00%,-14.29%,-15.00%,0.00%, +,694,3986,申万菱信中证,9月19日,1.8079,1.8959,-0.27%,-5.23%,-7.23%,-6.60%,-3.99%,-15.66%,6.64%,50.70%,-13.44%,94.87%,-15.22%,0.12%, +,695,7539,永赢沪深30,9月20日,1.2709,1.2709,0.13%,-4.05%,-4.83%,-7.21%,-5.34%,-15.67%,-7.09%,21.69%,-17.55%,27.09%,-15.24%,0.00%, +,696,6144,恒生前海中证,9月19日,1.2196,1.2196,-1.18%,-5.58%,-4.87%,-3.62%,-5.37%,-15.67%,-10.74%,18.67%,-18.03%,21.96%,---,0.00%, +,697,165521,信诚中证80,9月19日,0.9437,1.6957,-0.21%,-3.34%,-0.96%,-6.37%,-7.66%,-15.69%,-15.33%,-7.25%,-14.75%,75.56%,-14.93%,0.12%, +,698,7593,鹏扬中证50,9月19日,1.6291,1.6291,0.01%,-6.03%,-7.06%,-7.66%,-4.44%,-15.69%,10.79%,61.55%,-13.34%,62.91%,---,0.12%, +,699,8737,南方高股息股,9月20日,0.9115,0.9115,0.24%,-3.38%,-0.71%,1.75%,-4.07%,-15.69%,-10.43%,---,-16.93%,-8.85%,-14.94%,0.00%, +,700,1426,南方大数据3,9月19日,1.2851,1.2851,0.11%,-3.97%,-5.36%,-6.00%,-4.64%,-15.70%,-7.49%,20.34%,-16.99%,28.51%,-14.57%,0.00%, +,701,161607,融通巨潮10,9月20日,0.957,3.132,0.00%,-4.01%,-4.87%,-7.27%,-5.34%,-15.71%,-9.97%,15.94%,-18.39%,428.60%,-14.56%,0.15%, +,702,4407,招商上证消费,9月20日,2.2177,2.2177,0.50%,-2.49%,-4.14%,-8.39%,-3.45%,-15.72%,-12.62%,34.00%,-19.70%,57.84%,-14.50%,0.00%, +,703,9658,汇丰晋信中小,9月19日,0.949,0.949,-0.83%,-5.34%,-4.84%,-0.76%,-0.07%,-15.73%,-4.73%,---,-10.42%,-5.10%,---,0.15%, +,704,8778,嘉实中证50,9月20日,1.319,1.319,1.09%,-6.18%,-7.96%,-4.23%,-2.14%,-15.75%,2.02%,---,-12.06%,30.48%,-15.16%,0.10%, +,705,519300,大成沪深30,9月20日,0.9704,2.8,0.09%,-4.09%,-4.71%,-7.40%,-5.55%,-15.76%,-12.32%,9.29%,-17.55%,237.37%,-15.23%,0.12%, +,706,4513,海富通沪深3,9月19日,1.0853,1.3553,0.17%,-4.63%,-5.26%,-5.45%,-4.22%,-15.76%,-4.82%,20.28%,-17.32%,32.53%,-14.66%,0.10%, +,707,5867,国泰沪深30,9月19日,0.976,0.976,-0.12%,-3.70%,-4.73%,-6.79%,-5.62%,-15.77%,-10.92%,11.80%,-17.85%,19.27%,-15.13%,0.00%, +,708,12872,易方达中小企,9月20日,1.3162,1.3162,0.91%,-3.98%,-7.19%,-8.58%,-5.38%,-15.77%,---,---,-20.22%,-18.61%,-15.26%,0.00%, +,709,82,嘉实研究阿尔,9月20日,1.74,2.575,0.69%,-4.50%,-5.23%,-5.28%,-2.90%,-15.78%,1.99%,47.71%,-17.06%,240.01%,-15.41%,0.15%, +,710,8166,工银消费股票,9月20日,1.1685,1.1685,0.63%,-2.00%,-3.76%,-9.79%,-2.96%,-15.78%,-17.15%,---,-21.95%,16.85%,-13.78%,0.15%, +,711,9491,宝盈创新驱动,9月20日,1.0817,1.0817,0.99%,-5.68%,-10.33%,-8.46%,-6.30%,-15.78%,7.82%,---,-24.56%,8.17%,-15.44%,0.15%, +,712,8944,上投摩根MS,9月19日,0.9541,0.9541,-0.12%,-4.09%,-5.17%,-6.66%,-5.04%,-15.80%,-4.88%,---,-17.47%,-4.59%,---,0.12%, +,713,7096,大成沪深30,9月20日,0.9667,1.206,0.09%,-4.09%,-4.71%,-7.41%,-5.58%,-15.81%,-12.47%,8.82%,-17.59%,14.34%,-15.28%,0.00%, +,714,167503,安信中证一带,9月19日,1.5,0.68,-0.46%,-6.02%,-3.85%,-3.47%,-0.53%,-15.82%,28.42%,43.17%,-10.55%,-32.29%,---,0.05%, +,715,7796,博时央企创新,9月20日,1.212,1.212,-0.07%,-4.39%,-3.91%,-4.62%,-2.81%,-15.82%,14.08%,---,-13.77%,21.20%,-17.75%,0.12%, +,716,4512,海富通沪深3,9月19日,1.134,1.417,0.17%,-4.63%,-5.26%,-5.46%,-4.26%,-15.84%,-5.00%,19.78%,-17.38%,39.24%,-14.75%,0.00%, +,717,11546,长江沪深30,9月19日,0.7974,0.7974,0.00%,-4.71%,-5.09%,-7.89%,-4.74%,-15.84%,---,---,-17.02%,-20.26%,---,0.00%, +,718,5970,国泰消费优选,9月19日,1.3499,1.3499,-2.29%,-5.58%,-7.58%,-10.78%,-12.50%,-15.86%,-26.47%,18.66%,-27.85%,34.99%,-15.95%,0.15%, +,719,920922,中金精选股票,9月20日,1.7109,1.7109,0.55%,-4.14%,-7.87%,-7.13%,-3.87%,-15.86%,-14.88%,---,-16.47%,-11.51%,-15.18%,0.00%, +,720,6600,人保沪深30,9月20日,1.3025,1.3025,0.17%,-4.09%,-4.80%,-7.22%,-5.14%,-15.88%,-8.71%,23.21%,-17.38%,30.25%,-15.26%,0.06%, +,721,8958,嘉实回报精选,9月20日,1.1528,1.1528,0.38%,-2.38%,-2.91%,-5.90%,-2.40%,-15.88%,-0.33%,---,-17.78%,15.27%,-14.42%,0.15%, +,722,3145,中融竞争优势,9月19日,1.8317,1.8317,-0.35%,-7.34%,-9.94%,-0.58%,0.68%,-15.89%,21.17%,118.48%,-19.07%,83.17%,---,0.15%, +,723,8945,上投摩根MS,9月19日,0.952,0.952,-0.12%,-4.10%,-5.18%,-6.68%,-5.08%,-15.89%,-5.08%,---,-17.53%,-4.80%,---,0.00%, +,724,3624,创金合信资源,9月19日,2.4939,2.4939,0.74%,-5.58%,-1.77%,-4.93%,0.87%,-15.91%,61.16%,159.21%,0.25%,149.39%,---,0.15%, +,725,8397,博时中证50,9月20日,1.2651,1.2651,0.72%,-5.07%,-6.29%,-4.49%,-3.66%,-15.91%,1.21%,---,-16.25%,26.51%,-16.54%,0.00%, +,726,2385,博时沪深30,9月20日,1.5679,1.5861,0.26%,-3.90%,-5.27%,-7.44%,-4.16%,-15.92%,-12.63%,6.66%,-14.49%,63.93%,-15.44%,0.00%, +,727,7794,申万菱信中证,9月19日,1.6241,1.6241,-0.28%,-5.24%,-7.25%,-6.67%,-4.14%,-15.92%,6.00%,49.36%,-13.62%,62.41%,-15.46%,0.00%, +,728,163808,中银中证10,9月20日,1.719,1.729,0.12%,-4.07%,-5.50%,-7.68%,-5.76%,-15.94%,-11.71%,11.55%,-17.95%,73.62%,-14.99%,0.15%, +,729,1214,华泰柏瑞中证,9月19日,0.7594,0.7594,-0.65%,-5.99%,-6.89%,-4.69%,-3.78%,-15.94%,1.61%,34.15%,-16.27%,-24.06%,-15.97%,0.10%, +,730,8283,易方达金融行,9月20日,1.1117,1.1117,-0.82%,-4.37%,-1.72%,-8.40%,-7.01%,-15.95%,-6.30%,---,-12.98%,11.17%,-14.08%,0.15%, +,731,6130,华安中证50,9月19日,1.2413,1.2413,-0.62%,-5.48%,-5.63%,-5.32%,-6.00%,-15.96%,-4.24%,12.27%,-14.81%,24.13%,---,0.00%, +,732,10992,东财中证50,9月19日,0.9957,0.9957,-0.66%,-6.00%,-7.00%,-4.49%,-3.52%,-15.97%,---,---,-16.22%,-0.43%,---,0.12%, +,733,1707,诺安高端制造,9月20日,1.54,1.54,0.06%,-5.23%,-10.52%,-6.21%,-3.02%,-15.98%,14.67%,30.07%,-16.94%,54.00%,-17.43%,0.15%, +,734,7594,鹏扬中证50,9月19日,1.6072,1.6072,0.01%,-6.04%,-7.09%,-7.76%,-4.63%,-16.02%,9.92%,59.40%,-13.59%,60.72%,---,0.00%, +,735,13121,信诚中证80,9月19日,0.9398,0.9398,-0.21%,-3.35%,-0.99%,-6.47%,-7.85%,-16.02%,---,---,-15.00%,-13.08%,-15.26%,0.00%, +,736,8390,国联安沪深3,9月20日,1.0428,1.0988,0.12%,-3.72%,-4.87%,-7.20%,-5.90%,-16.05%,-11.02%,---,-17.67%,9.57%,-15.42%,0.08%, +,737,7932,鹏华中证50,9月19日,1.2945,1.2945,-0.65%,-5.90%,-6.83%,-4.62%,-3.84%,-16.07%,2.41%,---,-16.19%,29.45%,---,0.12%, +,738,4874,融通巨潮10,9月20日,0.841,1.566,0.00%,-4.00%,-4.97%,-7.38%,-5.61%,-16.08%,-10.79%,14.46%,-18.64%,38.19%,-14.99%,0.00%, +,739,8779,嘉实中证50,9月20日,1.3051,1.3051,1.08%,-6.18%,-7.99%,-4.33%,-2.32%,-16.08%,1.22%,---,-12.31%,29.11%,-15.48%,0.00%, +,740,165309,建信沪深30,9月19日,1.5184,1.5184,-0.12%,-3.73%,-4.87%,-6.50%,-5.11%,-16.09%,-6.73%,19.72%,-17.28%,51.84%,---,0.12%, +,741,519117,浦银安盛基本,9月19日,1.704,1.704,-0.64%,-6.32%,-6.58%,-5.96%,-4.16%,-16.10%,-2.52%,20.17%,-14.33%,70.40%,---,0.12%, +,742,160133,南方天元新产,9月20日,3.48,3.48,0.17%,-3.89%,-5.84%,-6.70%,-3.49%,-16.10%,-18.62%,24.60%,-18.10%,248.00%,-16.14%,0.15%, +,743,7135,广发中证10,9月20日,1.0835,1.0835,0.08%,-4.12%,-5.52%,-8.48%,-6.86%,-16.12%,-14.96%,5.07%,-18.48%,8.35%,-15.19%,0.12%, +,744,6087,华泰柏瑞中证,9月19日,0.7601,0.7601,-0.65%,-6.00%,-6.91%,-4.75%,-3.89%,-16.14%,1.10%,33.16%,-16.42%,29.75%,-16.17%,0.00%, +,745,160615,鹏华沪深30,9月19日,1.4083,2.1663,-0.10%,-3.76%,-4.89%,-6.98%,-5.65%,-16.17%,-8.25%,19.95%,-17.80%,109.62%,---,0.12%, +,746,7797,博时央企创新,9月20日,1.1983,1.1983,-0.08%,-4.40%,-3.94%,-4.72%,-3.00%,-16.17%,13.18%,---,-14.02%,19.83%,-18.08%,0.00%, +,747,9492,宝盈创新驱动,9月20日,1.0703,1.0703,0.99%,-5.69%,-10.38%,-8.58%,-6.54%,-16.20%,6.75%,---,-24.83%,7.03%,-15.86%,0.00%, +,748,7136,广发中证10,9月20日,1.0789,1.0789,0.07%,-4.13%,-5.53%,-8.51%,-6.91%,-16.21%,-15.13%,4.70%,-18.54%,7.89%,-15.28%,0.00%, +,749,1520,国投瑞银研究,9月20日,1.197,1.892,0.34%,-2.52%,-2.68%,-4.39%,-4.47%,-16.23%,16.52%,83.36%,-14.92%,83.17%,-15.65%,0.15%, +,750,8001,鹏华中证50,9月19日,1.2876,1.2876,-0.66%,-5.90%,-6.84%,-4.67%,-3.93%,-16.23%,2.00%,---,-16.31%,28.76%,---,0.00%, +,751,8391,国联安沪深3,9月20日,1.0385,1.0945,0.12%,-3.73%,-4.89%,-7.25%,-6.00%,-16.24%,-11.40%,---,-17.81%,9.14%,-15.60%,0.00%, +,752,481012,工银深证红利,9月20日,1.2125,1.8473,-0.28%,-3.05%,-1.57%,-5.83%,-4.75%,-16.29%,-18.46%,-0.57%,-19.30%,83.74%,-14.75%,0.10%, +,753,1956,国联安科技动,9月20日,1.9981,1.9981,1.93%,-6.47%,-7.61%,6.36%,-1.68%,-16.29%,7.63%,64.67%,-18.10%,96.02%,-15.56%,0.15%, +,754,1008,工银国企改革,9月20日,2.115,2.115,0.52%,-4.34%,-4.86%,-5.83%,-5.16%,-16.30%,19.90%,76.25%,-17.96%,111.50%,-17.29%,0.15%, +,755,4192,招商中证50,9月20日,1.2832,1.2832,0.94%,-4.26%,-5.85%,-4.26%,-1.66%,-16.30%,-0.33%,33.14%,-14.30%,28.32%,-16.81%,0.12%, +,756,1733,泰达宏利量化,9月20日,1.201,1.201,1.26%,-4.61%,-4.53%,-8.04%,-6.39%,-16.31%,-6.97%,22.80%,-18.35%,20.10%,-15.72%,0.12%, +,757,160925,大成中华沪深,9月20日,1.0182,1.0182,0.51%,-3.05%,-4.28%,-7.83%,-4.45%,-16.31%,-13.98%,2.19%,-15.56%,1.82%,-14.97%,0.12%, +,758,5639,平安300E,9月19日,1.151,1.151,-0.13%,-3.83%,-4.95%,-6.84%,-5.56%,-16.31%,-11.19%,9.70%,-17.79%,15.10%,-15.62%,0.10%, +,759,10993,东财中证50,9月19日,0.9891,0.9891,-0.66%,-6.01%,-7.03%,-4.59%,-3.71%,-16.31%,---,---,-16.45%,-1.09%,---,0.00%, +,760,501302,南方恒指ET,9月20日,0.8196,0.8196,1.04%,-1.66%,-2.64%,-6.72%,-2.13%,-16.32%,-15.26%,-23.07%,-11.23%,-18.04%,-14.40%,0.12%, +,761,202015,南方沪深30,9月20日,1.6775,1.8375,0.12%,-4.12%,-4.86%,-7.58%,-5.49%,-16.32%,-11.53%,11.21%,-17.77%,91.34%,-15.75%,0.12%, +,762,501307,银河中证沪港,9月20日,0.9141,0.9141,0.19%,-3.69%,-2.31%,-5.46%,-5.99%,-16.32%,-6.82%,-3.70%,-9.91%,-8.59%,-16.74%,0.10%, +,763,6939,鹏华沪深30,9月19日,1.1577,1.5817,-0.10%,-3.77%,-4.90%,-7.03%,-5.76%,-16.33%,-8.60%,19.24%,-17.93%,52.27%,---,0.00%, +,764,3625,创金合信资源,9月19日,2.4194,2.4194,0.73%,-5.60%,-1.81%,-5.05%,0.61%,-16.34%,59.54%,157.49%,-0.11%,141.94%,---,0.00%, +,765,1790,国泰智能汽车,9月20日,2.446,2.446,1.62%,-7.10%,-13.69%,-14.86%,-7.21%,-16.35%,47.08%,182.45%,-21.43%,144.60%,-15.57%,0.15%, +,766,481009,工银沪深30,9月20日,0.9809,1.769,0.12%,-4.07%,-4.89%,-7.50%,-5.75%,-16.36%,-12.75%,5.12%,-17.87%,85.69%,-15.80%,0.12%, +,767,270026,广发中小企业,9月20日,1.302,1.302,1.01%,-4.48%,-7.52%,-7.89%,-5.37%,-16.36%,-7.64%,25.24%,-20.21%,30.20%,-16.19%,0.12%, +,768,1781,建信现代服务,9月19日,1.762,1.762,0.51%,-2.60%,-3.87%,-4.81%,-4.40%,-16.37%,3.95%,54.43%,-13.71%,76.20%,---,0.15%, +,769,2861,工银智能制造,9月20日,1.574,1.574,0.64%,-3.61%,-4.26%,-1.56%,-1.01%,-16.37%,5.21%,65.68%,-24.58%,57.40%,-15.78%,0.15%, +,770,5259,建信龙头企业,9月19日,1.821,1.821,0.21%,-2.91%,-3.95%,-4.82%,-3.52%,-16.37%,6.50%,62.13%,-13.18%,82.10%,---,0.15%, +,771,8973,大成中华沪深,9月20日,1.0162,1.0162,0.51%,-3.05%,-4.29%,-7.85%,-4.49%,-16.40%,-14.14%,---,-15.62%,-3.97%,-15.05%,0.00%, +,772,519975,长信量化中小,9月19日,1.499,1.899,-0.33%,-7.07%,-10.56%,-5.55%,-3.23%,-16.40%,15.49%,85.06%,-8.37%,105.78%,-16.06%,0.15%, +,773,502013,长盛中证申万,9月19日,1.2179,1.2179,0.07%,-4.03%,-4.45%,-8.21%,-6.15%,-16.42%,-2.94%,12.75%,-19.25%,-46.73%,-15.82%,0.12%, +,774,9775,汇丰晋信中小,9月19日,0.9331,0.9331,-0.84%,-5.36%,-4.91%,-0.97%,-0.48%,-16.42%,-6.25%,---,-10.94%,-6.69%,---,0.00%, +,775,164508,国富中证10,9月20日,1.124,1.247,0.09%,-4.10%,-5.47%,-8.39%,-6.64%,-16.43%,-16.37%,4.79%,-18.14%,28.68%,-15.49%,0.12%, +,776,7028,易方达中证5,9月19日,1.3337,1.3337,-0.67%,-6.04%,-7.03%,-5.09%,-3.84%,-16.45%,0.17%,31.06%,-16.43%,33.37%,---,0.05%, +,777,948,华夏沪港通恒,9月19日,0.9741,0.9741,-0.63%,-3.07%,-4.09%,-6.62%,-3.26%,-16.47%,-15.60%,-21.78%,-11.27%,-2.59%,-13.54%,0.12%, +,778,8167,工银消费股票,9月20日,1.1449,1.1449,0.62%,-2.01%,-3.82%,-9.98%,-3.36%,-16.47%,-18.48%,---,-22.40%,14.49%,-14.47%,0.00%, +,779,961,天弘沪深30,9月20日,1.3003,1.3003,0.13%,-4.07%,-4.82%,-7.44%,-5.58%,-16.49%,-12.44%,7.80%,-17.82%,30.03%,-15.93%,0.10%, +,780,110020,易方达沪深3,9月19日,1.4768,1.4768,-0.11%,-3.82%,-4.96%,-7.12%,-5.86%,-16.49%,-12.15%,7.91%,-18.06%,47.68%,---,0.12%, +,781,5962,宝盈人工智能,9月20日,2.6322,2.6322,1.02%,-5.79%,-11.00%,-9.55%,-7.20%,-16.50%,3.67%,71.09%,-25.06%,163.22%,-16.13%,0.15%, +,782,6106,景顺长城量化,9月19日,0.8123,0.8123,-0.60%,-2.74%,-3.24%,-5.80%,-3.73%,-16.50%,-14.40%,-16.38%,-9.13%,-18.77%,---,0.15%, +,783,7885,中融中证50,9月19日,1.1535,1.1535,-0.60%,-5.56%,-6.67%,-4.98%,-4.83%,-16.50%,-4.35%,---,-16.39%,15.35%,---,0.10%, +,784,8177,建信高股息主,9月19日,1.1797,1.8562,-0.52%,-7.11%,-7.65%,0.55%,1.41%,-16.52%,41.66%,---,-14.04%,85.64%,---,0.15%, +,785,501308,银河中证沪港,9月20日,0.9043,0.9043,0.19%,-3.69%,-2.33%,-5.52%,-6.10%,-16.53%,-7.28%,-4.42%,-10.07%,-9.57%,-16.95%,0.00%, +,786,7029,易方达中证5,9月19日,1.3286,1.3286,-0.67%,-6.05%,-7.03%,-5.11%,-3.88%,-16.53%,-0.02%,30.68%,-16.49%,32.86%,---,0.00%, +,787,10432,广发中小企业,9月20日,1.2956,1.2956,1.01%,-4.48%,-7.54%,-7.94%,-5.47%,-16.53%,---,---,-20.33%,-7.66%,-16.36%,0.00%, +,788,11824,浙商汇金量化,9月19日,0.8506,0.8506,-0.71%,-5.83%,-9.34%,-5.86%,-4.27%,-16.53%,---,---,-13.32%,-14.94%,---,0.15%, +,789,11142,创金合信新材,9月19日,1.1832,1.1832,-0.33%,-7.61%,-11.06%,-8.96%,-2.33%,-16.57%,---,---,-13.19%,18.32%,---,0.15%, +,790,501086,华宝MSCI,9月20日,1.2448,1.2448,0.18%,-4.14%,-5.17%,-7.83%,-5.89%,-16.59%,-7.06%,23.85%,-18.09%,24.48%,-16.19%,0.10%, +,791,7831,博道伍佰智航,9月19日,1.4712,1.4712,-0.51%,-5.67%,-7.50%,-2.50%,-1.32%,-16.60%,4.87%,---,-13.75%,47.12%,---,0.12%, +,792,160616,鹏华中证50,9月19日,1.634,1.634,-0.61%,-5.88%,-6.84%,-4.67%,-4.16%,-16.63%,2.12%,40.38%,-16.29%,63.40%,---,0.12%, +,793,590007,中邮中证50,9月19日,1.2519,1.7619,-0.28%,-4.96%,-6.76%,-3.57%,-4.43%,-16.63%,-5.42%,28.14%,-14.37%,86.38%,---,0.15%, +,794,6724,工银深证红利,9月20日,1.1991,1.6487,-0.27%,-3.06%,-1.62%,-5.92%,-4.94%,-16.63%,-19.11%,-1.80%,-19.53%,10.71%,-15.09%,0.00%, +,795,4193,招商中证50,9月20日,1.2666,1.2666,0.93%,-4.27%,-5.89%,-4.36%,-1.87%,-16.64%,-1.13%,31.54%,-14.55%,26.66%,-17.14%,0.00%, +,796,501043,汇添富沪深3,9月20日,1.2655,1.2655,0.14%,-4.11%,-5.00%,-7.62%,-5.96%,-16.64%,-9.28%,17.57%,-18.15%,26.55%,-16.09%,0.08%, +,797,660008,农银沪深30,9月20日,1.4502,1.4502,0.14%,-4.06%,-4.87%,-7.61%,-5.84%,-16.65%,-13.10%,6.37%,-17.99%,45.02%,-16.08%,0.12%, +,798,4342,南方沪深30,9月20日,1.6612,1.8212,0.12%,-4.12%,-4.88%,-7.66%,-5.68%,-16.65%,-12.23%,9.89%,-18.01%,33.23%,-16.08%,0.00%, +,799,5640,平安300E,9月19日,1.1305,1.1305,-0.13%,-3.84%,-4.98%,-6.94%,-5.74%,-16.65%,-11.90%,8.39%,-18.03%,13.05%,-15.95%,0.00%, +,800,5659,南方恒指ET,9月20日,0.8048,0.8048,1.03%,-1.66%,-2.67%,-6.81%,-2.33%,-16.66%,-15.94%,-23.98%,-11.48%,-27.20%,-14.75%,0.00%, +,801,5918,天弘沪深30,9月20日,1.1461,1.1461,0.13%,-4.08%,-4.84%,-7.48%,-5.69%,-16.66%,-12.80%,7.16%,-17.94%,14.61%,-16.10%,0.00%, +,802,1588,天弘中证80,9月20日,1.1454,1.1454,0.28%,-4.37%,-5.28%,-6.83%,-5.06%,-16.66%,-9.47%,20.77%,-17.41%,14.54%,-16.39%,0.10%, +,803,7339,易方达沪深3,9月19日,1.4667,1.4667,-0.12%,-3.82%,-4.98%,-7.17%,-5.96%,-16.66%,-12.51%,7.29%,-18.18%,10.25%,---,0.00%, +,804,7886,中融中证50,9月19日,1.148,1.148,-0.61%,-5.57%,-6.68%,-5.03%,-4.92%,-16.66%,-4.70%,---,-16.50%,14.80%,---,0.00%, +,805,11323,国泰智能汽车,9月20日,2.43,2.43,1.63%,-7.07%,-13.71%,-14.92%,-7.39%,-16.67%,---,---,-21.64%,-4.29%,-15.89%,0.00%, +,806,540009,汇丰晋信消费,9月19日,0.8198,1.8128,0.50%,-1.98%,-4.21%,-7.31%,-2.95%,-16.68%,-16.29%,30.08%,-20.55%,89.82%,---,0.15%, +,807,9336,平安中证50,9月19日,1.1704,1.1704,-0.36%,-5.48%,-6.07%,-4.25%,-2.93%,-16.68%,-2.09%,---,-18.14%,17.04%,-17.19%,0.12%, +,808,6937,工银沪深30,9月20日,0.9708,1.191,0.12%,-4.07%,-4.92%,-7.60%,-5.94%,-16.69%,-13.44%,3.86%,-18.11%,15.76%,-16.14%,0.00%, +,809,240014,华宝中证10,9月20日,1.633,1.633,0.06%,-4.17%,-5.68%,-8.98%,-7.33%,-16.70%,-14.06%,9.47%,-19.07%,63.30%,-15.72%,0.12%, +,810,530015,建信深证基本,9月19日,2.3702,2.3702,-0.16%,-3.14%,-2.27%,-4.12%,-4.20%,-16.71%,-10.01%,10.45%,-15.44%,137.02%,---,0.15%, +,811,5734,华夏沪港通恒,9月19日,0.9613,0.9613,-0.63%,-3.08%,-4.10%,-6.69%,-3.40%,-16.71%,-16.09%,-22.47%,-11.45%,-24.54%,-13.79%,0.00%, +,812,5102,工银沪深30,9月19日,0.8259,1.0629,-0.12%,-3.80%,-5.13%,-7.30%,-6.05%,-16.72%,-14.74%,0.80%,-18.16%,1.93%,---,0.10%, +,813,6524,前海开源MS,9月19日,1.3302,1.4302,-0.18%,-4.21%,-5.66%,-7.19%,-5.43%,-16.73%,-7.11%,13.81%,-18.32%,45.58%,---,0.12%, +,814,1236,博时丝路主题,9月20日,1.99,1.99,0.86%,-4.92%,-9.01%,-5.06%,2.00%,-16.74%,19.09%,90.43%,-11.75%,99.00%,-17.77%,0.15%, +,815,5248,新华沪深30,9月19日,1.2183,1.2183,0.12%,-4.20%,-5.28%,-5.71%,-5.09%,-16.74%,-5.84%,---,-16.58%,21.83%,---,0.15%, +,816,613,国寿安保沪深,9月19日,1.0753,1.7953,-0.10%,-3.82%,-4.99%,-7.36%,-6.15%,-16.75%,-12.36%,6.07%,-18.20%,90.17%,---,0.10%, +,817,6911,长江量化匠心,9月19日,1.2025,1.2025,0.13%,-5.10%,-5.24%,-6.70%,-0.23%,-16.75%,-19.38%,8.63%,-11.23%,20.25%,---,0.15%, +,818,12811,华宝MSCI,9月20日,1.2422,1.2422,0.17%,-4.15%,-5.19%,-7.88%,-5.98%,-16.75%,---,---,-18.21%,-18.32%,-16.35%,0.00%, +,819,6611,人保中证50,9月20日,1.4723,1.4723,0.73%,-5.04%,-6.17%,-4.33%,-3.33%,-16.76%,-3.29%,25.90%,-16.15%,47.23%,-17.38%,0.06%, +,820,7685,华商电子行业,9月19日,1.5204,1.5204,-1.47%,-4.81%,-8.62%,-0.90%,-7.90%,-16.76%,-2.50%,52.04%,-24.14%,52.04%,---,0.15%, +,821,8519,中金中证沪港,9月19日,1.0945,1.0945,-0.13%,-2.25%,-3.83%,-8.79%,-0.33%,-16.77%,-13.53%,---,-19.65%,9.45%,---,0.10%, +,822,10953,天弘国证A5,9月19日,0.7749,0.7749,-0.04%,-3.22%,-5.05%,-8.08%,-6.63%,-16.77%,---,---,-19.37%,-22.51%,-15.78%,0.10%, +,823,12275,富国中证沪港,9月20日,0.8107,0.8107,0.48%,-3.19%,-4.31%,-7.20%,-4.84%,-16.79%,---,---,-15.99%,-18.93%,-15.68%,0.12%, +,824,962,天弘中证50,9月20日,1.116,1.116,0.72%,-5.16%,-6.38%,-4.62%,-3.70%,-16.80%,-2.18%,24.43%,-16.44%,11.60%,-17.43%,0.10%, +,825,51,华夏沪深30,9月19日,1.3828,1.3828,-0.12%,-3.86%,-5.03%,-7.21%,-5.87%,-16.81%,-13.40%,5.16%,-18.18%,38.28%,---,0.12%, +,826,4995,广发品牌消费,9月20日,1.5161,1.5161,1.21%,-2.68%,-5.35%,-8.64%,-5.63%,-16.81%,-14.53%,38.60%,-18.70%,51.61%,-15.69%,0.15%, +,827,1589,天弘中证80,9月20日,1.1273,1.1273,0.28%,-4.39%,-5.30%,-6.88%,-5.16%,-16.83%,-9.83%,20.04%,-17.53%,12.73%,-16.56%,0.00%, +,828,161811,银华沪深30,9月20日,0.8703,0.8703,0.26%,-4.11%,-4.47%,-6.38%,-5.05%,-16.85%,-8.69%,19.04%,-17.16%,40.30%,-16.15%,0.12%, +,829,7832,博道伍佰智航,9月19日,1.4582,1.4582,-0.51%,-5.67%,-7.53%,-2.57%,-1.47%,-16.85%,4.25%,---,-13.93%,45.82%,---,0.00%, +,830,501045,汇添富沪深3,9月20日,1.2539,1.2539,0.14%,-4.11%,-5.02%,-7.67%,-6.08%,-16.85%,-9.73%,16.71%,-18.30%,25.39%,-16.30%,0.00%, +,831,7856,易方达中证8,9月20日,1.2251,1.2251,0.26%,-4.33%,-5.23%,-6.86%,-5.50%,-16.86%,-9.06%,---,-17.75%,22.51%,-16.60%,0.06%, +,832,160706,嘉实沪深30,9月20日,0.9892,3.1084,0.12%,-4.12%,-4.93%,-7.70%,-5.94%,-16.87%,-14.01%,3.47%,-18.23%,361.47%,-16.31%,0.15%, +,833,8124,中邮中证50,9月19日,1.2596,1.2596,-0.28%,-4.97%,-6.79%,-3.64%,-4.55%,-16.87%,-5.98%,---,-14.55%,25.96%,---,0.00%, +,834,161123,易方达中证万,9月20日,1.1875,0.4834,1.70%,-4.41%,-6.07%,-0.56%,0.24%,-16.88%,-1.17%,27.49%,-10.71%,-51.22%,-16.93%,0.10%, +,835,164908,交银中证环境,9月20日,0.4714,0.4714,1.73%,-5.59%,-9.52%,-3.50%,-8.47%,-16.89%,-15.82%,-12.54%,-19.97%,-52.86%,-18.65%,0.12%, +,836,6525,前海开源MS,9月19日,1.3198,1.4198,-0.18%,-4.21%,-5.67%,-7.23%,-5.53%,-16.90%,-7.49%,13.11%,-18.44%,44.45%,---,0.00%, +,837,501036,汇添富中证5,9月20日,1.101,1.101,0.71%,-5.08%,-6.39%,-4.91%,-3.95%,-16.91%,0.53%,31.49%,-16.41%,10.10%,-17.50%,0.08%, +,838,6938,鹏华中证50,9月19日,1.715,1.715,-0.64%,-5.98%,-6.95%,-4.78%,-4.30%,-16.91%,1.66%,39.43%,-16.55%,71.50%,---,0.00%, +,839,5103,工银沪深30,9月19日,0.8315,1.0515,-0.12%,-3.79%,-5.16%,-7.35%,-6.17%,-16.92%,-15.16%,-0.04%,-18.30%,1.07%,---,0.00%, +,840,7857,易方达中证8,9月20日,1.2215,1.2215,0.26%,-4.33%,-5.24%,-6.88%,-5.54%,-16.94%,-9.24%,---,-17.80%,22.15%,-16.68%,0.00%, +,841,10954,天弘国证A5,9月19日,0.7725,0.7725,-0.04%,-3.23%,-5.06%,-8.12%,-6.73%,-16.94%,---,---,-19.48%,-22.75%,-15.95%,0.00%, +,842,12831,南方中证新能,9月20日,0.8467,0.8467,2.51%,-8.42%,-14.75%,-11.20%,-6.75%,-16.94%,---,---,-18.01%,-17.40%,-15.34%,0.12%, +,843,110030,易方达沪深3,9月20日,2.6435,2.6435,0.14%,-3.95%,-5.12%,-8.32%,-6.22%,-16.95%,-15.49%,7.86%,-19.83%,164.35%,-15.82%,0.15%, +,844,3884,汇安沪深30,9月19日,1.5122,1.5122,-0.11%,-2.83%,-4.85%,-6.70%,-3.08%,-16.95%,-13.17%,25.62%,-19.02%,51.22%,-15.79%,0.12%, +,845,5662,嘉实金融精选,9月20日,1.1581,1.1581,-0.71%,-5.71%,-1.83%,-9.07%,-9.60%,-16.95%,-17.25%,-3.90%,-16.00%,16.64%,-16.26%,0.15%, +,846,11825,浙商汇金量化,9月19日,0.8454,0.8454,-0.72%,-5.86%,-9.38%,-5.97%,-4.51%,-16.95%,---,---,-13.63%,-15.46%,---,0.00%, +,847,270010,广发沪深30,9月19日,1.9684,2.2584,-0.13%,-3.85%,-5.02%,-7.23%,-6.17%,-16.97%,-12.91%,5.53%,-18.52%,140.57%,---,0.12%, +,848,5919,天弘中证50,9月20日,1.1337,1.1337,0.72%,-5.16%,-6.39%,-4.68%,-3.80%,-16.97%,-2.58%,23.67%,-16.57%,13.37%,-17.60%,0.00%, +,849,13413,交银中证环境,9月20日,0.4709,0.4709,1.73%,-5.59%,-9.51%,-3.52%,-8.51%,-16.98%,---,---,-20.01%,-10.17%,-18.73%,0.00%, +,850,6658,财通中证香港,9月20日,0.7713,0.7713,0.29%,-2.90%,-3.03%,-11.23%,-11.64%,-16.99%,-14.17%,-20.74%,-10.17%,-23.09%,-16.89%,0.12%, +,851,8520,中金中证沪港,9月19日,1.0881,1.0881,-0.13%,-2.26%,-3.85%,-8.85%,-0.46%,-16.99%,-13.96%,---,-19.80%,8.81%,---,0.00%, +,852,8286,易方达研究精,9月20日,1.2515,1.2515,0.74%,-2.97%,-4.63%,-5.32%,0.97%,-16.99%,-10.48%,---,-20.02%,25.15%,-15.36%,0.15%, +,853,167301,方正富邦保险,9月20日,0.674,1.128,-1.32%,-4.40%,2.43%,-3.99%,-6.52%,-17.00%,-31.76%,-25.10%,-14.58%,12.93%,-16.06%,0.08%, +,854,8184,新华沪深30,9月19日,1.2083,1.2083,0.12%,-4.21%,-5.30%,-5.79%,-5.23%,-17.00%,-6.39%,---,-16.76%,20.83%,---,0.00%, +,855,1070,建信信息产业,9月19日,2.838,2.838,-0.32%,-6.21%,-6.24%,-1.32%,-3.99%,-17.02%,35.08%,99.30%,-16.94%,183.80%,---,0.15%, +,856,2311,创金合信中证,9月19日,1.1574,1.378,-0.49%,-5.65%,-7.26%,-6.07%,-2.41%,-17.03%,0.05%,39.81%,-14.23%,36.03%,---,0.15%, +,857,7405,华宝中证10,9月20日,1.6116,1.6116,0.06%,-4.17%,-5.72%,-9.07%,-7.51%,-17.03%,-14.73%,8.18%,-19.30%,18.94%,-16.05%,0.00%, +,858,5658,华夏沪深30,9月19日,1.3629,1.3629,-0.12%,-3.87%,-5.06%,-7.28%,-6.01%,-17.05%,-13.90%,4.28%,-18.35%,-0.81%,---,0.00%, +,859,11143,创金合信新材,9月19日,1.171,1.171,-0.33%,-7.62%,-11.11%,-9.10%,-2.63%,-17.08%,---,---,-13.56%,17.10%,---,0.00%, +,860,309,大摩品质生活,9月20日,3.364,3.364,0.90%,-5.85%,-15.63%,-10.82%,-7.23%,-17.10%,13.84%,71.28%,-21.29%,236.40%,-16.71%,0.15%, +,861,9337,平安中证50,9月19日,1.1569,1.1569,-0.35%,-5.49%,-6.10%,-4.36%,-3.17%,-17.10%,-3.07%,---,-18.43%,15.69%,-17.60%,0.00%, +,862,501037,汇添富中证5,9月20日,1.0882,1.0882,0.72%,-5.08%,-6.40%,-4.97%,-4.07%,-17.11%,0.03%,30.53%,-16.56%,8.82%,-17.70%,0.00%, +,863,42,财通中证ES,9月20日,1.7479,2.2367,-0.14%,-4.00%,-5.13%,-6.38%,-4.69%,-17.11%,4.40%,30.76%,-17.07%,141.58%,-17.14%,0.12%, +,864,6020,广发沪深30,9月19日,1.4705,1.4705,-0.24%,-4.59%,-5.26%,-6.80%,-5.10%,-17.11%,-11.15%,21.57%,-18.23%,47.04%,---,0.15%, +,865,2316,创金合信中证,9月19日,1.1569,1.3777,-0.49%,-5.64%,-7.27%,-6.09%,-2.45%,-17.12%,-0.15%,39.38%,-14.28%,35.98%,---,0.00%, +,866,12276,富国中证沪港,9月20日,0.8069,0.8069,0.50%,-3.19%,-4.33%,-7.28%,-5.03%,-17.12%,---,---,-16.23%,-19.31%,-16.02%,0.00%, +,867,6363,建信深证基本,9月19日,2.3441,2.3441,-0.17%,-3.16%,-2.31%,-4.24%,-4.45%,-17.13%,-10.91%,8.81%,-15.74%,44.87%,---,0.00%, +,868,10245,广发品牌消费,9月20日,1.5055,1.5055,1.22%,-2.68%,-5.38%,-8.72%,-5.81%,-17.13%,---,---,-18.93%,-13.67%,-16.02%,0.00%, +,869,2987,广发沪深30,9月19日,1.9386,1.9386,-0.13%,-3.85%,-5.04%,-7.28%,-6.27%,-17.14%,-13.26%,4.90%,-18.64%,33.87%,---,0.00%, +,870,2556,博时丝路主题,9月20日,1.948,1.948,0.88%,-4.93%,-9.01%,-5.16%,1.78%,-17.14%,17.99%,87.67%,-12.05%,168.69%,-18.15%,0.00%, +,871,5963,宝盈人工智能,9月20日,2.5474,2.5474,1.02%,-5.81%,-11.06%,-9.74%,-7.56%,-17.16%,2.03%,67.05%,-25.47%,154.74%,-16.78%,0.00%, +,872,6063,景顺长城MS,9月19日,1.5122,1.5122,0.18%,-4.41%,-5.07%,-4.59%,-4.27%,-17.16%,-0.17%,34.12%,-13.95%,51.22%,---,0.15%, +,873,161715,招商大宗商品,9月20日,1.5461,1.6846,1.26%,-5.12%,-3.93%,-3.22%,1.60%,-17.17%,48.91%,73.68%,-4.15%,79.96%,-18.63%,0.12%, +,874,3475,前海联合沪深,9月19日,1.341,1.341,-0.07%,-3.71%,-4.87%,-7.33%,-6.34%,-17.19%,-13.86%,13.36%,-18.30%,34.10%,---,0.12%, +,875,7788,易方达中证国,9月19日,1.2537,1.2537,-0.26%,-4.78%,-4.87%,-6.00%,-3.26%,-17.19%,8.83%,---,-11.51%,25.37%,-17.74%,0.06%, +,876,160724,嘉实沪深30,9月20日,0.9136,1.2912,0.12%,-4.11%,-4.96%,-7.78%,-6.13%,-17.20%,-14.70%,2.24%,-18.46%,19.89%,-16.64%,0.00%, +,877,6682,景顺长城中证,9月19日,1.4367,1.4367,-0.43%,-5.69%,-6.10%,-3.37%,-2.79%,-17.20%,9.01%,45.74%,-11.97%,43.67%,---,0.15%, +,878,12832,南方中证新能,9月20日,0.844,0.844,2.50%,-8.43%,-14.77%,-11.27%,-6.89%,-17.20%,---,---,-18.19%,-17.66%,-15.60%,0.00%, +,879,6957,长江量化匠心,9月19日,1.1753,1.1753,0.12%,-5.11%,-5.29%,-6.85%,-0.54%,-17.24%,-20.35%,6.66%,-11.62%,17.53%,---,0.00%, +,880,6659,财通中证香港,9月20日,0.7634,0.7634,0.29%,-2.92%,-3.06%,-11.30%,-11.78%,-17.24%,-14.69%,-21.46%,-10.36%,-23.88%,-17.14%,0.00%, +,881,166802,浙商沪深30,9月19日,1.7314,1.8864,-0.20%,-3.94%,-4.85%,-7.30%,-6.17%,-17.25%,-8.14%,28.49%,-17.76%,99.32%,---,0.15%, +,882,6214,平安500E,9月19日,1.3569,1.3569,-0.67%,-6.00%,-6.95%,-4.92%,-4.27%,-17.25%,-3.04%,23.51%,-16.91%,35.69%,-17.27%,0.10%, +,883,501069,华宝标普中国,9月20日,1.3165,1.3165,1.00%,-5.37%,-6.92%,-5.75%,-8.69%,-17.25%,-9.41%,24.19%,-18.42%,31.64%,-17.73%,0.10%, +,884,3885,汇安沪深30,9月19日,1.3905,1.3905,-0.11%,-2.84%,-4.88%,-6.80%,-3.28%,-17.28%,-13.86%,24.14%,-19.25%,39.05%,-16.12%,0.00%, +,885,7789,易方达中证国,9月19日,1.2488,1.2488,-0.26%,-4.79%,-4.88%,-6.02%,-3.32%,-17.28%,8.60%,---,-11.58%,24.88%,-17.82%,0.00%, +,886,2310,创金合信沪深,9月19日,1.3543,1.4923,-0.14%,-4.73%,-6.70%,-7.73%,-5.61%,-17.29%,-9.64%,22.07%,-17.47%,53.20%,---,0.15%, +,887,7541,新华MSCI,9月19日,1.1379,1.1379,-0.10%,-4.23%,-5.29%,-6.87%,-5.24%,-17.30%,-13.04%,13.42%,-17.50%,13.79%,---,0.12%, +,888,460300,华泰柏瑞沪深,9月19日,0.9354,1.8484,-0.11%,-3.78%,-4.84%,-7.05%,-6.03%,-17.31%,-13.49%,4.95%,-18.25%,88.84%,-16.68%,0.10%, +,889,4403,平安股息精选,9月19日,1.2273,1.2273,-0.13%,-2.31%,2.40%,-0.04%,-8.06%,-17.31%,-13.22%,11.54%,-22.32%,22.73%,-15.89%,0.15%, +,890,1878,嘉实沪港深精,9月20日,1.848,1.916,0.87%,-2.89%,-1.33%,-4.05%,0.05%,-17.32%,-5.08%,22.87%,-16.04%,93.20%,-16.27%,0.15%, +,891,6215,平安500E,9月19日,1.3514,1.3514,-0.67%,-6.00%,-6.96%,-4.94%,-4.31%,-17.33%,-3.24%,23.12%,-16.97%,35.14%,-17.35%,0.00%, +,892,1277,博时国企改革,9月20日,0.79,0.79,1.41%,-4.59%,-7.49%,-9.09%,-3.30%,-17.36%,-19.06%,0.89%,-22.47%,-21.00%,-16.31%,0.15%, +,893,5663,嘉实金融精选,9月20日,1.132,1.132,-0.72%,-5.72%,-1.88%,-9.19%,-9.82%,-17.36%,-18.07%,-5.36%,-16.30%,14.02%,-16.67%,0.00%, +,894,200002,长城久泰沪深,9月20日,2.0498,4.9098,0.28%,-4.38%,-4.73%,-5.60%,-5.07%,-17.37%,-10.10%,13.31%,-16.78%,437.85%,-16.78%,0.15%, +,895,2315,创金合信沪深,9月19日,1.3515,1.4965,-0.15%,-4.74%,-6.72%,-7.76%,-5.67%,-17.38%,-9.83%,21.59%,-17.53%,53.79%,---,0.00%, +,896,1054,工银新金融股,9月20日,2.786,2.786,-0.04%,-2.89%,-3.03%,-5.69%,-4.10%,-17.38%,36.70%,124.14%,-18.61%,178.60%,-17.16%,0.15%, +,897,165511,中信保诚中证,9月19日,1.5451,1.9749,-0.68%,-6.07%,-7.15%,-5.45%,-4.85%,-17.41%,5.25%,43.00%,-17.62%,98.82%,-17.42%,0.12%, +,898,162213,泰达宏利沪深,9月20日,1.9197,2.3597,0.30%,-4.09%,-5.33%,-7.48%,-5.84%,-17.43%,-8.05%,20.32%,-17.31%,173.80%,-17.04%,0.12%, +,899,7044,博道沪深30,9月19日,1.35,1.35,0.01%,-4.20%,-5.69%,-6.35%,-3.57%,-17.43%,-8.76%,25.42%,-16.06%,35.00%,---,0.12%, +,900,1825,建信中国制造,9月19日,2.1224,2.1224,0.14%,-3.61%,-7.40%,-7.65%,-9.83%,-17.44%,30.51%,108.28%,-18.79%,112.24%,---,0.15%, +,901,6021,广发沪深30,9月19日,1.4477,1.4477,-0.25%,-4.60%,-5.29%,-6.89%,-5.30%,-17.44%,-11.85%,20.15%,-18.46%,44.76%,---,0.00%, +,902,8709,银河龙头股票,9月20日,0.6498,0.6498,1.59%,-5.54%,-8.65%,-8.52%,3.18%,-17.48%,-34.28%,---,-13.95%,-35.02%,-16.97%,0.15%, +,903,8236,招商深证10,9月20日,1.0561,1.0561,0.41%,-4.68%,-7.78%,-9.53%,-6.71%,-17.49%,-4.65%,---,-22.05%,5.61%,-16.62%,0.12%, +,904,160119,南方中证50,9月19日,1.6049,1.7049,-0.67%,-6.08%,-7.12%,-5.33%,-4.45%,-17.50%,-4.23%,21.19%,-17.10%,75.29%,---,0.12%, +,905,8926,泰康沪深30,9月19日,0.928,0.928,-0.12%,-3.77%,-5.01%,-7.20%,-5.91%,-17.50%,-14.32%,---,-18.71%,-7.20%,---,0.10%, +,906,884,民生加银优选,9月20日,2.031,2.425,1.96%,-4.42%,-8.92%,-6.36%,1.86%,-17.51%,-0.38%,60.66%,-13.02%,137.30%,-17.47%,0.15%, +,907,3015,中金沪深30,9月19日,1.56,1.56,-0.12%,-3.96%,-4.94%,-6.43%,-5.63%,-17.51%,-10.12%,25.12%,-16.88%,56.00%,---,0.10%, +,908,6131,华泰柏瑞沪深,9月19日,0.9244,1.7574,-0.11%,-3.78%,-4.87%,-7.10%,-6.14%,-17.52%,-13.93%,4.11%,-18.40%,22.12%,-16.89%,0.00%, +,909,7039,前海联合沪深,9月19日,1.3226,1.3226,-0.08%,-3.71%,-4.91%,-7.43%,-6.53%,-17.52%,-14.54%,11.98%,-18.53%,20.85%,---,0.00%, +,910,9513,创金合信同顺,9月19日,1.105,1.105,-0.56%,-6.59%,-12.26%,-5.03%,-4.97%,-17.54%,2.16%,---,-21.41%,10.50%,---,0.15%, +,911,740101,长安沪深30,9月20日,1.311,1.815,0.38%,-4.10%,-6.76%,-8.39%,-6.09%,-17.55%,-13.18%,17.16%,-20.88%,101.23%,-16.97%,0.15%, +,912,450008,国富沪深30,9月20日,1.47,1.813,0.27%,-3.86%,-4.23%,-7.84%,-4.79%,-17.55%,-8.53%,23.53%,-16.24%,94.27%,-17.51%,0.12%, +,913,1677,中银战略新兴,9月20日,2.919,2.919,1.67%,-3.98%,-7.36%,-0.88%,0.10%,-17.57%,31.90%,96.96%,-11.97%,191.90%,-17.19%,0.15%, +,914,10998,博道消费智航,9月19日,0.7677,0.7677,-0.04%,-2.91%,-5.46%,-6.62%,-6.63%,-17.58%,---,---,-21.03%,-23.23%,---,--, +,915,7674,工银产业升级,9月20日,1.3906,1.3906,-1.81%,-4.06%,2.33%,-3.07%,-7.77%,-17.60%,14.31%,---,-14.40%,39.06%,-17.11%,0.15%, +,916,10908,大成沪深30,9月20日,0.7992,0.7992,0.38%,-3.54%,-4.68%,-7.35%,-6.77%,-17.61%,---,---,-15.83%,-20.08%,-16.99%,0.15%, +,917,10736,易方达沪深3,9月20日,0.722,0.722,0.68%,-2.56%,-5.05%,-10.49%,-6.90%,-17.61%,---,---,-20.41%,-27.80%,-16.44%,0.15%, +,918,478,建信中证50,9月19日,2.7063,2.7063,-0.54%,-6.14%,-7.80%,-4.81%,-4.61%,-17.62%,2.20%,33.13%,-15.25%,170.63%,---,0.15%, +,919,6912,长城久泰沪深,9月20日,1.3004,2.0764,0.29%,-4.38%,-4.75%,-5.67%,-5.22%,-17.63%,-10.67%,12.25%,-16.96%,43.63%,-17.04%,0.00%, +,920,3548,泰达宏利沪深,9月20日,1.9114,1.9114,0.30%,-4.09%,-5.36%,-7.55%,-5.99%,-17.68%,-8.61%,19.25%,-17.49%,58.37%,-17.29%,0.00%, +,921,1052,华夏中证50,9月19日,0.6856,0.6856,-0.67%,-6.10%,-7.11%,-5.26%,-4.51%,-17.69%,-4.55%,19.23%,-17.15%,-31.44%,---,0.12%, +,922,165310,建信沪深30,9月19日,1.1639,2.0199,0.11%,-4.32%,-5.54%,-7.13%,-6.54%,-17.72%,-10.93%,22.70%,-17.71%,128.89%,---,0.15%, +,923,8,嘉实中证50,9月19日,1.6717,1.7377,-0.67%,-6.07%,-7.13%,-5.26%,-4.62%,-17.72%,-4.74%,19.16%,-17.13%,75.76%,-17.76%,0.12%, +,924,8237,招商深证10,9月20日,1.0673,1.0673,0.40%,-4.69%,-7.81%,-9.59%,-6.83%,-17.72%,-5.15%,---,-22.20%,6.73%,-16.84%,0.00%, +,925,11645,国泰核心价值,9月19日,0.7732,0.7732,-0.17%,-2.09%,-1.09%,-6.40%,-2.23%,-17.72%,---,---,-20.23%,-22.68%,-16.64%,0.15%, +,926,7943,富安达中证5,9月19日,1.207,1.207,-0.81%,-5.86%,-6.93%,-2.72%,-1.41%,-17.73%,-1.11%,---,-14.08%,20.70%,---,0.12%, +,927,8776,华安沪深30,9月19日,0.901,0.901,-0.19%,-4.00%,-5.17%,-7.35%,-6.34%,-17.75%,-10.27%,---,-19.09%,-9.90%,---,0.05%, +,928,7045,博道沪深30,9月19日,1.3317,1.3317,0.00%,-4.21%,-5.72%,-6.46%,-3.77%,-17.76%,-9.49%,23.91%,-16.31%,33.17%,---,0.00%, +,929,13119,中信保诚中证,9月19日,1.5378,1.5378,-0.68%,-6.08%,-7.18%,-5.54%,-5.05%,-17.79%,---,---,-17.92%,-14.48%,-17.80%,0.00%, +,930,13355,工银新金融股,9月20日,2.772,2.772,-0.04%,-2.87%,-3.08%,-5.78%,-4.35%,-17.79%,---,---,-18.90%,-16.73%,-17.55%,0.00%, +,931,978,景顺长城量化,9月19日,1.731,1.784,-0.46%,-5.46%,-5.77%,-2.75%,-3.08%,-17.81%,7.52%,36.41%,-11.68%,80.43%,---,0.15%, +,932,8927,泰康沪深30,9月19日,0.9198,0.9198,-0.13%,-3.79%,-5.03%,-7.30%,-6.09%,-17.82%,-15.00%,---,-18.94%,-8.02%,---,0.00%, +,933,312,华安沪深30,9月19日,2.1257,2.4857,0.00%,-3.94%,-4.67%,-5.60%,-4.13%,-17.83%,-6.22%,28.44%,-17.86%,161.05%,---,0.12%, +,934,4348,南方中证50,9月19日,1.5772,1.6772,-0.67%,-6.09%,-7.16%,-5.43%,-4.64%,-17.83%,-4.99%,19.75%,-17.34%,-0.10%,---,0.00%, +,935,161017,富国中证50,9月20日,2.22,2.589,0.63%,-4.97%,-7.19%,-6.05%,-4.52%,-17.84%,1.88%,33.17%,-13.92%,175.18%,-18.35%,0.15%, +,936,3579,中金沪深30,9月19日,1.5805,1.5805,-0.11%,-3.97%,-4.96%,-6.52%,-5.82%,-17.84%,-10.84%,23.16%,-17.11%,48.52%,---,0.00%, +,937,5994,国投中证50,9月20日,2.0668,2.0668,0.91%,-4.74%,-7.49%,-5.78%,-5.03%,-17.84%,9.00%,59.98%,-14.09%,106.68%,-18.29%,0.12%, +,938,7786,富国中证国企,9月20日,1.1772,1.1772,0.28%,-4.49%,-4.63%,-5.79%,-3.79%,-17.86%,5.25%,---,-12.08%,17.72%,-18.61%,0.12%, +,939,10737,易方达沪深3,9月20日,0.7182,0.7182,0.67%,-2.58%,-5.09%,-10.56%,-7.05%,-17.86%,---,---,-20.60%,-28.18%,-16.70%,0.00%, +,940,11418,汇添富消费精,9月20日,0.7867,0.7867,1.38%,-1.64%,-4.25%,-7.71%,0.27%,-17.86%,---,---,-18.79%,-21.33%,-16.47%,0.15%, +,941,11224,九泰盈泰量化,9月20日,0.8207,0.8207,0.55%,-3.46%,-3.81%,-7.33%,-2.49%,-17.86%,---,---,-11.71%,-17.93%,-17.85%,0.15%, +,942,10812,中银战略新兴,9月20日,2.899,2.899,1.68%,-3.97%,-7.38%,-0.96%,-0.10%,-17.88%,---,---,-12.20%,26.04%,-17.52%,0.00%, +,943,8777,华安沪深30,9月19日,0.8972,0.8972,-0.19%,-4.00%,-5.19%,-7.40%,-6.43%,-17.91%,-10.62%,---,-19.21%,-10.28%,---,0.00%, +,944,163821,中银沪深30,9月20日,1.729,1.729,0.17%,-4.63%,-5.16%,-7.69%,-6.13%,-17.94%,-12.63%,23.24%,-18.56%,72.90%,-18.13%,0.12%, +,945,5037,银华新能源新,9月20日,1.9252,1.9252,2.81%,-5.66%,-11.61%,-8.47%,-4.15%,-17.94%,68.17%,145.47%,-15.31%,92.50%,-17.83%,0.15%, +,946,164809,工银中证50,9月20日,1.0902,1.4224,0.70%,-5.07%,-6.36%,-4.99%,-4.58%,-17.94%,-6.03%,16.55%,-17.16%,47.23%,-18.40%,0.10%, +,947,10909,大成沪深30,9月20日,0.7942,0.7942,0.38%,-3.55%,-4.70%,-7.44%,-6.95%,-17.94%,---,---,-16.06%,-20.58%,-17.31%,0.00%, +,948,2980,华夏创新前沿,9月20日,2.263,2.263,0.94%,-5.12%,-6.95%,-5.51%,-3.58%,-17.95%,6.14%,81.77%,-20.32%,126.30%,-17.47%,0.15%, +,949,4945,长信中证50,9月19日,1.483,1.483,-0.11%,-4.88%,-5.84%,-4.08%,-4.65%,-17.95%,4.08%,55.99%,-13.32%,48.29%,-17.70%,0.15%, +,950,8258,中银证券中证,9月19日,1.1608,1.1608,-0.63%,-5.89%,-6.88%,-5.16%,-4.66%,-17.95%,-5.95%,---,-17.16%,16.08%,-17.97%,0.12%, +,951,9514,创金合信同顺,9月19日,1.0927,1.0927,-0.56%,-6.61%,-12.30%,-5.16%,-5.21%,-17.96%,1.14%,---,-21.70%,9.27%,---,0.00%, +,952,8832,海富通中证长,9月19日,0.9244,0.9244,-0.28%,-3.62%,-3.58%,-6.96%,-8.57%,-17.96%,-7.24%,---,-16.94%,-7.56%,-18.16%,0.08%, +,953,320022,诺安研究精选,9月20日,2.018,3.506,0.80%,-5.04%,-10.15%,-8.81%,-7.47%,-17.97%,-6.18%,55.59%,-22.56%,250.60%,-17.60%,0.15%, +,954,4404,平安股息精选,9月19日,1.1698,1.1698,-0.13%,-2.33%,2.34%,-0.25%,-8.44%,-17.98%,-14.61%,8.93%,-22.78%,16.98%,-16.56%,0.00%, +,955,501301,华宝香港大盘,9月20日,0.8427,0.8427,0.75%,-2.06%,-2.84%,-7.78%,-2.45%,-17.98%,-21.10%,-26.95%,-12.46%,-15.74%,-15.60%,0.10%, +,956,13332,富国中证50,9月20日,2.217,2.217,0.64%,-4.93%,-7.16%,-6.06%,-4.60%,-17.98%,---,---,-14.04%,-12.37%,-18.49%,0.00%, +,957,6382,华夏中证50,9月19日,0.6751,0.6751,-0.68%,-6.11%,-7.15%,-5.36%,-4.70%,-18.01%,-5.30%,18.02%,-17.39%,29.83%,---,0.00%, +,958,161816,银华中证等权,9月20日,0.8118,0.8118,0.02%,-4.38%,-5.14%,-8.28%,-6.91%,-18.02%,-14.36%,18.19%,-19.41%,15.40%,-17.53%,0.12%, +,959,161227,国投瑞银深证,9月20日,1.309,2.476,0.46%,-4.59%,-7.75%,-9.16%,-6.30%,-18.03%,-7.95%,27.46%,-21.90%,31.77%,-17.15%,0.12%, +,960,5633,建信中证50,9月19日,2.6445,2.6445,-0.55%,-6.15%,-7.83%,-4.94%,-4.85%,-18.03%,1.18%,31.14%,-15.55%,11.51%,---,0.00%, +,961,6656,方正富邦中证,9月20日,1.1564,1.1564,0.68%,-4.93%,-6.20%,-5.11%,-4.63%,-18.03%,-7.12%,16.48%,-17.22%,15.64%,-18.61%,0.12%, +,962,1158,工银新材料新,9月20日,1.499,1.499,1.35%,-4.58%,-7.92%,-8.21%,-2.09%,-18.04%,40.22%,113.23%,-18.62%,49.90%,-18.31%,0.15%, +,963,12835,招商景气精选,9月20日,0.7826,0.7826,0.23%,-0.72%,2.34%,-2.55%,-0.65%,-18.04%,---,---,-13.13%,-21.74%,-18.79%,0.15%, +,964,70039,嘉实中证50,9月19日,1.3059,1.3059,-0.68%,-6.08%,-7.16%,-5.36%,-4.81%,-18.05%,-5.49%,17.74%,-17.37%,30.59%,-18.08%,0.00%, +,965,9208,建信沪深30,9月19日,1.153,1.153,0.10%,-4.33%,-5.57%,-7.23%,-6.73%,-18.06%,-11.65%,---,-17.95%,15.38%,---,0.00%, +,966,7470,博道叁佰智航,9月19日,1.5267,1.5267,0.07%,-4.41%,-6.48%,-6.63%,-4.51%,-18.07%,-3.50%,39.50%,-16.80%,52.67%,---,0.12%, +,967,165806,东吴沪深30,9月19日,1.2366,1.2366,-0.04%,-3.50%,-4.40%,-6.93%,-6.20%,-18.08%,-12.23%,3.98%,-18.92%,23.66%,---,0.12%, +,968,540008,汇丰晋信低碳,9月19日,3.7366,3.8366,0.25%,-5.21%,-11.49%,-12.18%,-2.79%,-18.09%,75.37%,234.85%,-16.55%,307.48%,---,0.15%, +,969,11377,创金合信积极,9月19日,0.891,0.891,-0.80%,-3.76%,-5.26%,2.97%,-5.95%,-18.09%,---,---,-20.16%,-10.90%,---,0.15%, +,970,660011,农银中证50,9月20日,1.5126,1.5126,0.71%,-5.15%,-6.41%,-4.96%,-4.39%,-18.10%,-7.15%,13.76%,-17.26%,51.26%,-18.69%,0.15%, +,971,164811,工银中证京津,9月20日,1.0302,1.5227,0.52%,-5.12%,-6.33%,-7.65%,-13.27%,-18.11%,-8.79%,3.63%,-14.87%,55.98%,-18.62%,0.10%, +,972,513,富国高端制造,9月20日,3.07,3.07,1.02%,-5.94%,-10.76%,-13.06%,-6.00%,-18.11%,-6.54%,57.52%,-25.36%,207.00%,-17.52%,0.15%, +,973,4730,建信量化事件,9月19日,1.4022,1.4022,-0.11%,-4.51%,-6.78%,-6.23%,-4.62%,-18.12%,-1.90%,44.35%,-16.96%,40.22%,---,0.15%, +,974,8259,中银证券中证,9月19日,1.1553,1.1553,-0.64%,-5.90%,-6.91%,-5.22%,-4.76%,-18.12%,-6.33%,---,-17.28%,15.53%,-18.14%,0.00%, +,975,1241,国寿安保中证,9月19日,0.6004,0.6004,-0.65%,-5.98%,-6.99%,-5.34%,-4.91%,-18.13%,-5.37%,17.27%,-17.48%,-39.97%,---,0.12%, +,976,11646,国泰核心价值,9月19日,0.7683,0.7683,-0.17%,-2.10%,-1.13%,-6.52%,-2.48%,-18.13%,---,---,-20.51%,-23.17%,-17.05%,0.00%, +,977,6687,方正富邦深证,9月20日,1.4666,1.4666,0.41%,-4.49%,-7.52%,-9.09%,-6.28%,-18.14%,-7.98%,28.68%,-21.56%,46.66%,-17.26%,0.12%, +,978,9194,泰达宏利中证,9月20日,0.9296,0.9296,0.81%,-4.05%,-5.48%,-10.37%,-7.09%,-18.14%,-8.76%,---,-22.27%,-7.04%,-16.77%,0.12%, +,979,313,华安沪深30,9月19日,2.0211,2.3811,0.00%,-3.95%,-4.70%,-5.69%,-4.32%,-18.15%,-6.96%,26.90%,-18.10%,149.56%,---,0.00%, +,980,7223,工银中证50,9月20日,1.0832,1.0832,0.71%,-5.07%,-6.38%,-5.05%,-4.70%,-18.15%,-6.50%,---,-17.31%,7.79%,-18.61%,0.00%, +,981,457,上投摩根核心,9月19日,2.3164,2.6254,-0.65%,-3.99%,-6.49%,-10.04%,-7.22%,-18.16%,-5.72%,40.56%,-21.86%,170.54%,---,0.15%, +,982,7089,国投中证50,9月20日,2.0376,2.0376,0.91%,-4.75%,-7.52%,-5.88%,-5.22%,-18.17%,8.14%,58.01%,-14.34%,75.20%,-18.61%,0.00%, +,983,7787,富国中证国企,9月20日,1.1644,1.1644,0.28%,-4.49%,-4.67%,-5.88%,-3.98%,-18.19%,4.41%,---,-12.33%,16.44%,-18.93%,0.00%, +,984,11419,汇添富消费精,9月20日,0.7824,0.7824,1.37%,-1.66%,-4.28%,-7.81%,0.05%,-18.19%,---,---,-19.02%,-21.76%,-16.80%,0.00%, +,985,8907,汇添富中证国,9月20日,1.2606,1.2606,0.28%,-4.51%,-4.70%,-6.23%,-4.22%,-18.20%,5.45%,---,-12.82%,26.06%,-18.93%,0.12%, +,986,70030,嘉实中创40,9月20日,1.6775,1.6775,0.91%,-5.52%,-9.34%,-6.15%,-6.52%,-18.21%,-10.39%,19.90%,-21.62%,67.75%,-18.21%,0.12%, +,987,70023,嘉实深证基本,9月20日,2.0003,2.0003,-0.53%,-4.63%,-3.72%,-6.02%,-5.15%,-18.22%,-12.16%,7.80%,-16.55%,100.03%,-18.32%,0.12%, +,988,4190,招商沪深30,9月20日,1.4653,1.4653,0.32%,-3.95%,-5.65%,-8.06%,-5.55%,-18.22%,-11.31%,18.64%,-16.48%,46.53%,-17.92%,0.12%, +,989,100038,富国沪深30,9月20日,1.522,2.108,0.26%,-3.97%,-5.11%,-8.42%,-6.03%,-18.23%,-10.53%,5.95%,-16.90%,116.04%,-17.69%,0.12%, +,990,167601,国金沪深30,9月19日,0.9534,0.9534,-0.15%,-4.02%,-5.78%,-7.13%,-4.76%,-18.23%,-16.99%,-1.09%,-19.05%,61.61%,-17.28%,0.12%, +,991,10322,大摩新兴产业,9月20日,0.9874,0.9874,1.21%,-5.66%,-15.26%,-8.42%,-6.06%,-18.23%,---,---,-22.85%,-1.26%,-17.98%,0.15%, +,992,12728,国泰中证动漫,9月19日,0.7938,0.7938,-2.72%,-6.01%,-9.70%,-9.16%,-13.95%,-18.23%,---,---,-30.09%,-20.62%,---,0.10%, +,993,10561,银华巨潮小盘,9月20日,1.0795,1.0795,0.60%,-4.85%,-4.43%,-4.89%,-4.24%,-18.24%,---,---,-11.86%,7.95%,-19.60%,0.12%, +,994,162711,广发中证50,9月19日,1.3493,1.3493,-0.68%,-6.08%,-7.10%,-5.37%,-5.14%,-18.25%,-5.00%,18.80%,-17.83%,34.93%,---,0.12%, +,995,5038,银华新能源新,9月20日,1.8846,1.8846,2.81%,-5.67%,-11.63%,-8.55%,-4.34%,-18.26%,66.82%,142.52%,-15.55%,88.44%,-18.15%,0.00%, +,996,7675,工银产业升级,9月20日,1.3605,1.3605,-1.81%,-4.07%,2.26%,-3.26%,-8.14%,-18.26%,12.50%,---,-14.89%,36.05%,-17.77%,0.00%, +,997,6355,华宝香港大盘,9月20日,0.83,0.83,0.75%,-2.06%,-2.88%,-7.87%,-2.65%,-18.31%,-21.73%,-27.82%,-12.72%,-29.33%,-15.94%,0.00%, +,998,164825,工银中证京津,9月20日,1.0235,1.0235,0.52%,-5.13%,-6.34%,-7.70%,-13.38%,-18.32%,-9.28%,3.06%,-15.03%,2.50%,-18.82%,0.00%, +,999,5569,中融智选红利,9月19日,1.5249,1.5249,-1.04%,-6.71%,-11.06%,-1.36%,6.42%,-18.32%,13.73%,42.90%,-15.72%,52.49%,---,0.15%, +,1000,5502,华泰紫金智能,9月19日,1.1865,1.1865,-0.13%,-4.63%,-5.35%,-6.82%,-5.54%,-18.33%,-8.16%,23.25%,-18.92%,18.65%,---,0.15%, +,1001,13019,国泰中证全指,9月19日,0.8074,0.8074,-1.88%,-4.97%,-6.33%,-9.22%,-10.32%,-18.33%,---,---,-17.24%,-19.26%,-18.24%,0.10%, +,1002,6657,方正富邦中证,9月20日,1.1376,1.1376,0.68%,-4.94%,-6.23%,-5.21%,-4.84%,-18.36%,-7.87%,14.97%,-17.46%,13.76%,-18.93%,0.00%, +,1003,11225,九泰盈泰量化,9月20日,0.8153,0.8153,0.56%,-3.47%,-3.86%,-7.46%,-2.79%,-18.36%,---,---,-12.09%,-18.47%,-18.35%,0.00%, +,1004,410010,华富中小企业,9月20日,1.3019,1.3019,1.61%,-3.72%,-5.66%,-8.30%,-8.10%,-18.37%,-16.08%,13.23%,-20.02%,30.19%,-17.83%,0.12%, +,1005,13291,富国沪深30,9月20日,1.519,1.749,0.33%,-3.92%,-5.12%,-8.44%,-6.10%,-18.38%,---,---,-17.01%,-17.92%,-17.84%,0.00%, +,1006,409,鹏华环保产业,9月19日,4.633,4.633,-0.39%,-9.53%,-15.47%,-13.69%,-11.80%,-18.39%,47.78%,171.09%,-20.34%,363.30%,---,0.15%, +,1007,540006,汇丰晋信大盘,9月19日,4.1884,4.2484,0.50%,-4.43%,-5.03%,-7.83%,-4.94%,-18.39%,-11.92%,17.25%,-20.46%,343.74%,---,0.15%, +,1008,50013,博时上证超大,9月20日,1.0121,1.0121,-0.30%,-3.88%,-3.83%,-8.65%,-8.78%,-18.40%,-18.77%,-1.56%,-18.69%,1.21%,-17.92%,0.12%, +,1009,7471,博道叁佰智航,9月19日,1.5068,1.5068,0.06%,-4.43%,-6.50%,-6.73%,-4.71%,-18.40%,-4.27%,37.85%,-17.04%,50.68%,---,0.00%, +,1010,519034,海富通中证5,9月19日,1.8718,1.8718,-0.24%,-6.50%,-6.24%,-4.85%,-5.11%,-18.41%,2.31%,44.76%,-17.55%,87.18%,-18.62%,0.12%, +,1011,2903,广发中证50,9月19日,1.0721,1.0721,-0.68%,-6.08%,-7.11%,-5.42%,-5.23%,-18.42%,-5.37%,18.10%,-17.94%,7.21%,---,0.00%, +,1012,1455,景顺长城中证,9月19日,0.876,0.876,-0.57%,-5.91%,-7.01%,-5.19%,-4.78%,-18.44%,-4.89%,21.50%,-17.36%,-12.40%,---,0.12%, +,1013,3416,招商财经大数,9月20日,1.1582,1.1582,0.23%,-0.86%,2.14%,-4.11%,-3.54%,-18.44%,3.74%,41.64%,-16.58%,15.82%,-18.85%,0.15%, +,1014,5495,创金合信科技,9月19日,1.6386,1.6386,-1.53%,-3.33%,-10.96%,1.59%,-2.06%,-18.45%,-6.85%,43.05%,-24.70%,63.86%,---,0.15%, +,1015,8908,汇添富中证国,9月20日,1.251,1.251,0.27%,-4.53%,-4.73%,-6.30%,-4.37%,-18.45%,4.83%,---,-13.00%,25.10%,-19.17%,0.00%, +,1016,6688,方正富邦深证,9月20日,1.4241,1.4241,0.41%,-4.49%,-7.56%,-9.18%,-6.47%,-18.47%,-8.71%,26.35%,-21.79%,42.41%,-17.59%,0.00%, +,1017,9195,泰达宏利中证,9月20日,0.9215,0.9215,0.81%,-4.05%,-5.51%,-10.46%,-7.28%,-18.47%,-9.50%,---,-22.49%,-7.85%,-17.09%,0.00%, +,1018,12729,国泰中证动漫,9月19日,0.7909,0.7909,-2.73%,-6.02%,-9.72%,-9.23%,-14.08%,-18.47%,---,---,-30.24%,-20.91%,---,0.00%, +,1019,13511,汇丰晋信低碳,9月19日,3.719,3.719,0.25%,-5.22%,-11.53%,-12.30%,-3.03%,-18.48%,---,---,-16.84%,-22.64%,---,0.00%, +,1020,6440,中信建投中证,9月20日,1.4142,1.4142,0.93%,-4.91%,-5.71%,-3.40%,-2.64%,-18.50%,8.09%,---,-16.06%,41.42%,-19.00%,0.10%, +,1021,11378,创金合信积极,9月19日,0.8839,0.8839,-0.81%,-3.77%,-5.30%,2.84%,-6.19%,-18.50%,---,---,-20.45%,-11.61%,---,0.00%, +,1022,673090,西部利得个股,9月19日,1.4725,1.5945,-0.95%,-4.68%,-5.90%,-9.50%,-9.18%,-18.53%,-5.45%,28.51%,-20.67%,64.94%,-17.50%,0.12%, +,1023,5727,嘉实中创40,9月20日,1.0073,1.0073,0.91%,-5.52%,-9.37%,-6.25%,-6.71%,-18.53%,-11.09%,18.48%,-21.84%,0.73%,-18.53%,0.00%, +,1024,1705,泓德战略转型,9月20日,1.3461,2.2461,0.19%,-4.15%,-6.93%,-10.24%,-7.49%,-18.54%,-1.05%,71.30%,-24.15%,129.40%,-17.67%,0.15%, +,1025,5998,嘉实深证基本,9月20日,1.2326,1.2326,-0.52%,-4.63%,-3.75%,-6.11%,-5.34%,-18.54%,-12.85%,6.52%,-16.78%,22.40%,-18.63%,0.00%, +,1026,6346,安信量化优选,9月19日,1.8832,1.8832,-0.45%,-6.27%,-9.73%,-2.52%,-2.02%,-18.54%,-4.95%,42.46%,-19.02%,88.32%,---,0.15%, +,1027,8112,中泰中证50,9月20日,1.3115,1.3115,0.68%,-5.57%,-6.42%,-5.04%,-4.75%,-18.54%,-0.84%,---,-16.28%,30.26%,-18.31%,0.10%, +,1028,700002,平安深证30,9月19日,2.345,2.425,-0.30%,-5.06%,-8.29%,-9.04%,-7.42%,-18.55%,-1.68%,41.18%,-23.32%,152.61%,-17.76%,0.12%, +,1029,9126,嘉实基础产业,9月20日,1.1498,1.1498,-0.17%,-4.56%,-3.02%,-6.99%,-3.46%,-18.55%,-0.44%,---,-14.82%,14.98%,-19.49%,0.15%, +,1030,11630,东财有色金属,9月19日,1.3341,1.3341,0.02%,-6.60%,-6.55%,-9.29%,-3.54%,-18.55%,---,---,-9.53%,33.41%,---,0.15%, +,1031,4191,招商沪深30,9月20日,1.4367,1.4367,0.32%,-3.96%,-5.69%,-8.15%,-5.74%,-18.55%,-12.02%,17.22%,-16.72%,43.67%,-18.25%,0.00%, +,1032,9059,南方沪深30,9月20日,1.1862,1.1862,1.00%,-4.28%,-4.70%,-7.70%,-6.96%,-18.56%,-11.33%,---,-19.59%,18.62%,-18.11%,0.12%, +,1033,13020,国泰中证全指,9月19日,0.8048,0.8048,-1.89%,-4.96%,-6.34%,-9.29%,-10.45%,-18.57%,---,---,-17.42%,-19.52%,-18.49%,0.00%, +,1034,217016,招商深证10,9月20日,1.8401,1.8401,0.42%,-4.73%,-7.82%,-9.54%,-6.52%,-18.58%,-7.26%,29.12%,-22.23%,84.01%,-17.68%,0.12%, +,1035,3834,华夏能源革新,9月20日,3.335,3.335,1.93%,-4.19%,-8.10%,-10.59%,-1.59%,-18.58%,103.48%,232.83%,-14.16%,233.50%,-17.47%,0.15%, +,1036,4790,富荣中证50,9月20日,1.2966,1.2966,0.49%,-4.53%,-6.45%,-5.75%,-4.15%,-18.61%,1.67%,32.83%,-12.35%,29.66%,-19.26%,0.12%, +,1037,9004,海富通中证5,9月19日,1.8602,1.8602,-0.24%,-6.50%,-6.26%,-4.91%,-5.23%,-18.62%,1.81%,---,-17.69%,22.33%,-18.82%,0.00%, +,1038,161037,富国中证高端,9月20日,1.8033,1.8033,0.95%,-5.85%,-11.50%,-11.31%,-10.11%,-18.64%,-2.40%,49.56%,-22.10%,80.33%,-18.63%,0.12%, +,1039,4791,富荣中证50,9月20日,1.2904,1.2904,0.49%,-4.53%,-6.45%,-5.77%,-4.20%,-18.68%,1.47%,32.40%,-12.41%,29.04%,-19.34%,0.00%, +,1040,12911,同泰沪深30,9月19日,0.828,0.828,0.02%,-4.53%,-6.71%,-7.05%,-6.51%,-18.70%,---,---,-18.54%,-17.20%,---,0.12%, +,1041,12836,招商景气精选,9月20日,0.7753,0.7753,0.23%,-0.73%,2.27%,-2.75%,-1.06%,-18.71%,---,---,-13.63%,-22.47%,-19.44%,0.00%, +,1042,4189,华商消费行业,9月19日,1.2823,0.9128,0.78%,-0.50%,-1.78%,-7.48%,-4.96%,-18.72%,-19.69%,24.09%,-23.47%,-8.72%,---,0.15%, +,1043,696,汇添富环保行,9月20日,2.413,2.413,2.20%,-4.59%,-11.29%,-14.55%,-5.34%,-18.73%,44.23%,128.72%,-18.15%,141.30%,-18.06%,0.15%, +,1044,5288,海富通创业板,9月19日,1.687,1.687,-0.66%,-7.43%,-12.24%,-7.47%,-7.67%,-18.73%,1.55%,57.87%,-23.30%,68.70%,-17.83%,0.15%, +,1045,5570,中融智选红利,9月19日,1.4935,1.4935,-1.05%,-6.72%,-11.10%,-1.48%,6.16%,-18.73%,12.64%,40.66%,-16.02%,49.35%,---,0.00%, +,1046,5965,安信中证50,9月19日,1.7575,1.7575,-0.09%,-4.91%,-5.59%,-4.21%,-4.33%,-18.73%,0.72%,39.62%,-15.32%,75.75%,---,0.12%, +,1047,6441,中信建投中证,9月20日,1.4042,1.4042,0.93%,-4.91%,-5.73%,-3.47%,-2.78%,-18.75%,7.45%,---,-16.23%,40.42%,-19.24%,0.00%, +,1048,11269,中银证券优势,9月19日,1.0851,1.0851,0.38%,-6.91%,-2.66%,7.31%,20.98%,-18.77%,---,---,13.24%,8.51%,---,0.15%, +,1049,11631,东财有色金属,9月19日,1.3281,1.3281,0.02%,-6.60%,-6.57%,-9.36%,-3.68%,-18.80%,---,---,-9.73%,32.81%,---,0.00%, +,1050,519935,长信创新驱动,9月19日,1.712,1.712,-0.93%,-5.99%,-8.74%,-0.93%,-0.93%,-18.82%,-2.06%,37.73%,-18.05%,71.20%,-18.42%,0.15%, +,1051,5496,创金合信科技,9月19日,1.5961,1.5961,-1.52%,-3.34%,-10.99%,1.46%,-2.30%,-18.85%,-7.78%,40.68%,-24.96%,59.61%,---,0.00%, +,1052,8113,中泰中证50,9月20日,1.297,1.297,0.68%,-5.58%,-6.46%,-5.13%,-4.94%,-18.86%,-1.63%,---,-16.52%,28.82%,-18.63%,0.00%, +,1053,6347,安信量化优选,9月19日,1.8556,1.8556,-0.45%,-6.28%,-9.76%,-2.63%,-2.22%,-18.87%,-5.72%,40.74%,-19.26%,85.56%,---,0.00%, +,1054,13262,西部利得个股,9月19日,1.4659,1.4659,-0.95%,-4.69%,-5.93%,-9.61%,-9.38%,-18.87%,---,---,-20.92%,-19.90%,-17.84%,0.00%, +,1055,512,国泰沪深30,9月20日,1.1879,2.1408,0.40%,-4.08%,-4.66%,-6.85%,-4.54%,-18.88%,-11.17%,18.28%,-16.07%,121.23%,-18.96%,0.10%, +,1056,9060,南方沪深30,9月20日,1.1748,1.1748,0.99%,-4.29%,-4.74%,-7.79%,-7.15%,-18.89%,-12.05%,---,-19.82%,17.48%,-18.43%,0.00%, +,1057,4408,招商深证10,9月20日,1.8039,1.8039,0.41%,-4.74%,-7.85%,-9.64%,-6.72%,-18.91%,-8.01%,27.57%,-22.46%,42.04%,-18.01%,0.00%, +,1058,110019,易方达深证1,9月20日,1.4833,1.4833,0.43%,-4.67%,-7.81%,-9.63%,-6.69%,-18.91%,-9.84%,23.98%,-22.35%,48.33%,-18.03%,0.12%, +,1059,7952,招商财经大数,9月20日,1.1428,1.1428,0.23%,-0.88%,2.08%,-4.27%,-3.84%,-18.93%,2.53%,39.66%,-16.95%,40.77%,-19.33%,0.00%, +,1060,9127,嘉实基础产业,9月20日,1.136,1.136,-0.18%,-4.56%,-3.06%,-7.11%,-3.70%,-18.96%,-1.42%,---,-15.12%,13.60%,-19.89%,0.00%, +,1061,12912,同泰沪深30,9月19日,0.8252,0.8252,0.01%,-4.55%,-6.75%,-7.13%,-6.66%,-18.96%,---,---,-18.72%,-17.48%,---,0.00%, +,1062,2063,国泰沪深30,9月20日,1.1644,2.1134,0.40%,-4.08%,-4.67%,-6.87%,-4.59%,-18.97%,-11.36%,17.91%,-16.13%,31.96%,-19.05%,0.00%, +,1063,519116,浦银安盛沪深,9月19日,1.119,1.968,0.00%,-3.45%,-4.44%,-8.32%,-8.07%,-18.98%,-11.91%,14.49%,-20.13%,86.85%,---,0.12%, +,1064,586,景顺长城中小,9月19日,2.183,2.183,-2.54%,-5.25%,-9.83%,-7.93%,-13.44%,-19.03%,-7.03%,39.85%,-29.03%,118.30%,---,0.15%, +,1065,5287,海富通创业板,9月19日,1.6588,1.6588,-0.66%,-7.44%,-12.27%,-7.57%,-7.86%,-19.06%,0.74%,55.99%,-23.53%,65.88%,-18.16%,0.00%, +,1066,5966,安信中证50,9月19日,1.7309,1.7309,-0.09%,-4.92%,-5.62%,-4.30%,-4.52%,-19.06%,-0.08%,37.96%,-15.56%,73.09%,---,0.00%, +,1067,164401,前海开源中证,9月19日,0.8676,0.8676,-0.90%,-5.87%,-7.00%,-9.09%,-10.58%,-19.07%,-15.02%,42.13%,-21.55%,57.75%,---,0.12%, +,1068,11270,中银证券优势,9月19日,1.08,1.08,0.38%,-6.90%,-2.68%,7.21%,20.75%,-19.09%,---,---,12.94%,8.00%,---,0.00%, +,1069,13188,华夏能源革新,9月20日,3.312,3.312,1.91%,-4.22%,-8.18%,-10.73%,-1.92%,-19.10%,---,---,-14.55%,-15.53%,-17.98%,0.00%, +,1070,4742,易方达深证1,9月20日,1.4766,1.4766,0.42%,-4.68%,-7.83%,-9.69%,-6.82%,-19.12%,-10.29%,23.04%,-22.49%,45.12%,-18.23%,0.00%, +,1071,6048,长城中证50,9月20日,1.4919,1.4919,1.19%,-4.16%,-6.81%,-6.91%,-4.73%,-19.16%,5.35%,43.25%,-15.85%,49.19%,-19.38%,0.12%, +,1072,5137,长信沪深30,9月19日,1.1285,1.4091,-0.01%,-4.72%,-5.86%,-6.37%,-4.57%,-19.18%,-2.80%,34.00%,-15.80%,36.57%,-18.45%,0.08%, +,1073,162216,泰达中证50,9月20日,1.3741,2.5524,1.04%,-5.09%,-6.91%,-5.63%,-4.15%,-19.18%,3.01%,41.34%,-14.33%,225.22%,-19.87%,0.12%, +,1074,594,大摩进取优选,9月20日,2.603,2.603,0.23%,-3.52%,-8.15%,-6.70%,-2.40%,-19.21%,5.64%,51.34%,-20.93%,160.30%,-18.58%,0.15%, +,1075,12655,博时5G50,9月20日,0.7309,0.7309,-0.12%,-6.07%,-10.66%,-8.18%,-13.65%,-19.24%,---,---,-30.39%,-26.91%,---,0.12%, +,1076,10892,中银证券精选,9月19日,0.7549,0.7549,0.16%,-8.06%,-15.70%,-11.14%,-5.19%,-19.25%,---,---,-18.13%,-24.51%,-16.52%,0.15%, +,1077,9608,广发中证50,9月20日,1.0067,1.0067,1.01%,-4.42%,-6.39%,-3.96%,-2.85%,-19.26%,---,---,-14.75%,0.67%,-20.17%,0.15%, +,1078,163109,申万菱信深证,9月20日,0.609,0.8273,0.64%,-5.04%,-8.12%,-8.57%,-7.09%,-19.27%,-11.84%,16.12%,-22.02%,-15.04%,-18.84%,0.12%, +,1079,13132,创金合信文娱,9月19日,0.8044,0.8044,-1.37%,-3.84%,-4.06%,-7.09%,-7.38%,-19.27%,---,---,-24.37%,-19.56%,---,0.15%, +,1080,8399,华泰柏瑞中证,9月19日,1.1828,1.2503,-0.94%,-5.34%,-10.30%,-8.74%,-11.21%,-19.28%,-5.53%,---,-24.80%,24.29%,-19.56%,0.10%, +,1081,8854,南方内需增长,9月20日,1.0693,1.0693,0.83%,-4.06%,-4.59%,-4.83%,-1.89%,-19.29%,-16.76%,---,-17.29%,6.93%,-18.82%,0.15%, +,1082,411,景顺长城优质,9月19日,1.471,1.821,-0.34%,-1.74%,-2.58%,-9.42%,-6.78%,-19.31%,-9.48%,21.57%,-16.85%,86.22%,---,0.15%, +,1083,8768,创金合信上证,9月19日,0.889,0.889,0.18%,-2.94%,-3.04%,-7.47%,-8.50%,-19.35%,-20.84%,---,-18.86%,-11.10%,---,0.15%, +,1084,1974,景顺长城量化,9月19日,2.048,2.048,0.24%,-4.21%,-4.74%,-5.40%,-5.58%,-19.37%,-3.21%,33.33%,-15.16%,104.80%,---,0.15%, +,1085,9043,九泰久信量化,9月20日,1.2132,1.2132,0.98%,-5.81%,-9.02%,-6.82%,-6.14%,-19.37%,-0.80%,---,-13.43%,21.32%,-19.71%,0.15%, +,1086,3053,嘉实文体娱乐,9月20日,1.534,1.534,0.26%,-4.07%,-7.48%,-1.16%,-5.72%,-19.39%,1.25%,24.31%,-22.41%,53.40%,-19.43%,0.15%, +,1087,1039,嘉实先进制造,9月20日,1.862,1.862,1.03%,-3.62%,-9.52%,-8.28%,-4.32%,-19.39%,13.54%,99.36%,-19.91%,86.20%,-19.18%,0.15%, +,1088,7413,长城中证50,9月20日,1.4685,1.4685,1.20%,-4.16%,-6.83%,-6.99%,-4.87%,-19.40%,4.73%,41.75%,-16.03%,57.53%,-19.62%,0.00%, +,1089,1028,华安物联网主,9月19日,1.19,1.19,-0.58%,-5.41%,-9.85%,-7.68%,-8.18%,-19.43%,1.28%,45.48%,-23.03%,19.00%,---,0.15%, +,1090,5554,南方H股联接,9月20日,0.6786,0.6786,0.97%,-2.16%,-2.16%,-8.56%,-2.70%,-19.45%,-25.15%,-30.11%,-13.04%,-32.14%,-17.11%,0.12%, +,1091,8618,永赢医药健康,9月20日,0.9423,0.9423,0.19%,-6.29%,-7.45%,-8.51%,-14.71%,-19.46%,-20.86%,---,-24.41%,-5.77%,-19.61%,0.15%, +,1092,8400,华泰柏瑞中证,9月19日,1.1749,1.2424,-0.94%,-5.34%,-10.32%,-8.79%,-11.32%,-19.48%,-6.00%,---,-24.93%,23.50%,-19.76%,0.00%, +,1093,7448,长信沪深30,9月19日,1.1116,1.3888,-0.01%,-4.73%,-5.90%,-6.46%,-4.77%,-19.51%,-3.59%,32.17%,-16.05%,42.01%,-18.78%,0.00%, +,1094,4784,招商稳健优选,9月20日,2.7311,2.7311,2.05%,-5.26%,-11.55%,-5.08%,-7.44%,-19.52%,49.35%,149.60%,-24.56%,173.11%,-20.39%,0.15%, +,1095,162510,国联安中小综,9月19日,0.915,1.703,-0.44%,-5.18%,-8.50%,-7.95%,-9.41%,-19.53%,-16.82%,4.57%,-23.04%,65.65%,-18.72%,0.12%, +,1096,1628,招商体育文化,9月20日,1.298,1.298,0.85%,-4.42%,-8.01%,-11.82%,-15.55%,-19.53%,0.70%,34.23%,-32.92%,29.80%,-20.37%,0.15%, +,1097,530018,建信深证10,9月19日,2.1383,2.1383,-0.10%,-4.63%,-7.94%,-8.36%,-7.66%,-19.55%,-11.09%,25.20%,-22.46%,113.83%,---,0.15%, +,1098,1975,景顺长城环保,9月19日,3.066,3.066,-1.26%,-6.87%,-13.00%,-8.80%,-8.94%,-19.55%,7.13%,68.93%,-27.60%,206.60%,---,0.15%, +,1099,12658,博时5G50,9月20日,0.7274,0.7274,-0.12%,-6.08%,-10.69%,-8.27%,-13.83%,-19.56%,---,---,-30.59%,-27.26%,---,0.00%, +,1100,13437,财通资管中证,9月20日,0.8178,0.8178,2.44%,-4.66%,-3.55%,-6.84%,-2.84%,-19.56%,---,---,-8.78%,-18.22%,-19.70%,0.10%, +,1101,10893,中银证券精选,9月19日,0.7499,0.7499,0.15%,-8.08%,-15.74%,-11.23%,-5.39%,-19.58%,---,---,-18.36%,-25.01%,-16.85%,0.00%, +,1102,1879,长城创业板指,9月20日,2.051,2.051,1.10%,-6.95%,-10.92%,-9.50%,-6.72%,-19.58%,2.81%,70.76%,-21.97%,105.10%,-18.96%,0.15%, +,1103,502000,西部利得中证,9月19日,1.5945,1.0253,-0.26%,-6.18%,-5.82%,-5.76%,-2.39%,-19.59%,20.59%,74.06%,-14.32%,9.08%,-19.83%,0.10%, +,1104,9609,广发中证50,9月20日,0.9989,0.9989,1.01%,-4.43%,-6.42%,-4.05%,-3.04%,-19.59%,---,---,-14.99%,-0.11%,-20.48%,0.00%, +,1105,9874,九泰久睿量化,9月20日,0.8568,0.8568,0.99%,-5.85%,-8.82%,-7.16%,-6.37%,-19.59%,-10.16%,---,-12.71%,-14.32%,-20.11%,--, +,1106,161604,融通深证10,9月20日,1.456,3.084,0.41%,-4.71%,-7.91%,-9.79%,-7.14%,-19.60%,-11.82%,21.37%,-22.87%,424.88%,-18.66%,0.15%, +,1107,3957,安信量化精选,9月19日,1.4845,1.4845,-0.01%,-3.96%,-4.69%,-7.06%,-6.33%,-19.62%,-9.84%,27.72%,-19.18%,48.45%,---,0.08%, +,1108,8619,永赢医药健康,9月20日,0.9379,0.9379,0.19%,-6.29%,-7.47%,-8.56%,-14.79%,-19.62%,-21.17%,---,-24.52%,-6.21%,-19.77%,0.00%, +,1109,10771,天弘国证消费,9月20日,0.7665,0.7665,0.31%,-3.98%,-7.14%,-9.77%,-6.68%,-19.64%,---,---,-22.25%,-23.35%,-18.58%,0.15%, +,1110,10815,农银新兴消费,9月20日,0.7084,0.7084,0.64%,-1.56%,-2.91%,-8.96%,-3.49%,-19.64%,---,---,-21.65%,-29.16%,-18.69%,0.15%, +,1111,13438,财通资管中证,9月20日,0.817,0.817,2.45%,-4.66%,-3.56%,-6.86%,-2.89%,-19.64%,---,---,-8.84%,-18.30%,-19.78%,0.00%, +,1112,9384,大摩MSCI,9月20日,0.9084,0.9084,0.36%,-3.94%,-6.25%,-5.78%,-4.01%,-19.65%,-8.68%,---,-17.67%,-9.16%,-19.79%,0.15%, +,1113,202017,南方深证成份,9月20日,1.0096,1.0096,0.65%,-5.10%,-8.21%,-8.83%,-7.23%,-19.66%,-10.80%,20.77%,-22.37%,0.96%,-19.21%,0.12%, +,1114,13195,招商中证新能,9月20日,0.8073,0.8073,2.31%,-4.69%,-11.31%,-15.14%,-2.86%,-19.66%,---,---,-16.12%,-19.27%,-18.74%,0.12%, +,1115,8592,天弘沪深30,9月20日,1.204,1.204,0.19%,-4.05%,-4.98%,-7.31%,-4.96%,-19.67%,-4.51%,---,-18.43%,20.40%,-19.30%,0.15%, +,1116,164818,工银中证传媒,9月20日,0.6772,0.2209,0.39%,-4.86%,-8.20%,-12.17%,-14.81%,-19.67%,-37.97%,-25.50%,-32.86%,-80.34%,-18.92%,0.10%, +,1117,11882,招商蓝筹精选,9月20日,0.8018,0.8018,0.63%,-4.54%,-6.90%,-9.11%,-4.27%,-19.67%,---,---,-17.56%,-19.82%,---,0.15%, +,1118,13133,创金合信文娱,9月19日,0.8,0.8,-1.38%,-3.86%,-4.09%,-7.20%,-7.61%,-19.67%,---,---,-24.64%,-20.00%,---,0.00%, +,1119,519965,长信量化多策,9月19日,1.6945,1.6945,0.27%,-4.95%,-6.64%,-8.26%,-7.70%,-19.74%,0.80%,45.45%,-15.08%,69.45%,-19.00%,0.15%, +,1120,8769,创金合信上证,9月19日,0.877,0.877,0.18%,-2.95%,-3.07%,-7.59%,-8.73%,-19.75%,-21.63%,---,-19.16%,-12.30%,---,0.00%, +,1121,803,工银研究精选,9月20日,2.94,2.94,-0.91%,-5.86%,-2.23%,-7.34%,-9.26%,-19.76%,17.55%,95.35%,-22.02%,194.00%,-19.50%,0.15%, +,1122,13013,华夏中证新能,9月20日,0.8027,0.8027,2.31%,-4.89%,-11.59%,-15.91%,-4.05%,-19.76%,---,---,-17.26%,-19.73%,---,0.12%, +,1123,5555,南方H股联接,9月20日,0.6662,0.6662,0.95%,-2.17%,-2.20%,-8.65%,-2.90%,-19.77%,-25.75%,-30.94%,-13.30%,-33.38%,-17.45%,0.00%, +,1124,3958,安信量化精选,9月19日,1.4625,1.4625,-0.01%,-3.97%,-4.71%,-7.11%,-6.42%,-19.78%,-10.20%,26.94%,-19.29%,46.25%,---,0.00%, +,1125,8855,南方内需增长,9月20日,1.0528,1.0528,0.82%,-4.07%,-4.65%,-4.99%,-2.20%,-19.79%,-17.76%,---,-17.66%,5.28%,-19.31%,0.00%, +,1126,13218,国泰中证有色,9月19日,0.8842,0.8842,-0.01%,-6.34%,-6.02%,-9.66%,-4.11%,-19.81%,---,---,-9.78%,-11.58%,-17.90%,0.10%, +,1127,6928,长城创业板指,9月20日,2.0175,2.0175,1.10%,-6.96%,-10.94%,-9.56%,-6.86%,-19.82%,2.19%,68.83%,-22.14%,132.08%,-19.20%,0.00%, +,1128,3054,嘉实文体娱乐,9月20日,1.492,1.492,0.27%,-4.05%,-7.50%,-1.26%,-5.99%,-19.83%,0.20%,22.40%,-22.69%,49.20%,-19.83%,0.00%, +,1129,5189,海富通量化前,9月19日,1.4109,1.7249,-0.35%,-6.71%,-9.30%,-8.41%,-8.84%,-19.86%,3.59%,57.08%,-19.50%,66.52%,-19.10%,0.15%, +,1130,8199,华夏创新10,9月20日,0.9979,0.9979,0.05%,-4.14%,-5.58%,-9.56%,-8.73%,-19.87%,-18.55%,---,-21.54%,-0.21%,-19.67%,0.12%, +,1131,10677,工银中证传媒,9月20日,0.6742,0.6742,0.39%,-4.85%,-8.22%,-12.22%,-14.92%,-19.87%,---,---,-32.99%,-32.78%,-19.11%,0.00%, +,1132,10772,天弘国证消费,9月20日,0.7625,0.7625,0.32%,-3.99%,-7.16%,-9.84%,-6.82%,-19.88%,---,---,-22.42%,-23.75%,-18.83%,0.00%, +,1133,161812,银华深证10,9月20日,1.156,1.156,0.35%,-4.70%,-7.89%,-9.76%,-7.15%,-19.89%,-13.99%,17.81%,-22.78%,54.48%,-18.99%,0.12%, +,1134,4876,融通深证10,9月20日,1.426,1.676,0.42%,-4.68%,-7.88%,-9.86%,-7.34%,-19.89%,-12.53%,19.87%,-23.12%,25.55%,-18.98%,0.00%, +,1135,11512,天弘中证新能,9月20日,1.2302,1.2302,2.35%,-4.72%,-11.47%,-15.41%,-3.16%,-19.89%,---,---,-16.25%,23.02%,-18.97%,0.10%, +,1136,3876,华宝沪深30,9月20日,1.6913,1.6913,0.23%,-4.06%,-4.67%,-7.41%,-6.26%,-19.89%,-11.77%,22.26%,-18.86%,69.13%,-19.68%,0.12%, +,1137,1496,工银聚焦30,9月20日,1.513,1.513,1.95%,-4.36%,-9.73%,-7.69%,-5.02%,-19.90%,22.81%,109.27%,-19.22%,51.30%,-19.56%,0.15%, +,1138,9300,西部利得中证,9月19日,1.5794,1.5794,-0.27%,-6.19%,-5.85%,-5.86%,-2.59%,-19.91%,19.63%,---,-14.56%,69.72%,-20.15%,0.00%, +,1139,8593,天弘沪深30,9月20日,1.1943,1.1943,0.19%,-4.05%,-5.00%,-7.37%,-5.10%,-19.92%,-5.07%,---,-18.60%,19.43%,-19.54%,0.00%, +,1140,162714,广发深证10,9月20日,1.3567,1.5759,0.41%,-4.40%,-7.64%,-9.60%,-7.30%,-19.97%,-12.57%,17.55%,-22.91%,69.00%,-19.08%,0.12%, +,1141,167302,方正富邦大湾,9月20日,0.8576,0.8576,0.23%,-2.95%,-3.83%,-8.11%,-7.40%,-19.97%,-24.36%,---,-18.24%,-14.24%,-18.96%,0.10%, +,1142,4345,南方深证成份,9月20日,0.9889,0.9889,0.65%,-5.11%,-8.24%,-8.92%,-7.42%,-19.98%,-11.51%,19.33%,-22.60%,16.22%,-19.52%,0.00%, +,1143,13196,招商中证新能,9月20日,0.8039,0.8039,2.30%,-4.69%,-11.35%,-15.23%,-3.06%,-19.99%,---,---,-16.36%,-19.61%,-19.06%,0.00%, +,1144,13014,华夏中证新能,9月20日,0.8002,0.8002,2.29%,-4.91%,-11.62%,-15.98%,-4.20%,-20.00%,---,---,-17.44%,-19.98%,---,0.00%, +,1145,12768,华夏中证动漫,9月19日,0.7872,0.7872,-2.85%,-6.36%,-10.21%,-9.40%,-14.92%,-20.03%,---,---,-32.41%,-21.28%,---,0.12%, +,1146,11513,天弘中证新能,9月20日,1.2266,1.2266,2.34%,-4.72%,-11.49%,-15.46%,-3.26%,-20.05%,---,---,-16.38%,22.66%,-19.14%,0.00%, +,1147,13219,国泰中证有色,9月19日,0.8813,0.8813,-0.01%,-6.34%,-6.03%,-9.73%,-4.26%,-20.06%,---,---,-9.98%,-11.87%,-18.14%,0.00%, +,1148,4858,长信量化多策,9月19日,1.6358,1.6358,0.26%,-4.97%,-6.68%,-8.35%,-7.88%,-20.07%,-0.01%,43.37%,-15.32%,35.75%,-19.34%,0.00%, +,1149,7590,华宝绿色领先,9月20日,1.4552,1.4552,0.86%,-5.76%,-10.67%,-10.21%,-4.97%,-20.07%,10.82%,45.52%,-21.84%,45.52%,-20.77%,0.15%, +,1150,8200,华夏创新10,9月20日,0.9908,0.9908,0.05%,-4.14%,-5.60%,-9.62%,-8.86%,-20.10%,-19.03%,---,-21.70%,-0.92%,-19.91%,0.00%, +,1151,9601,招商科技动力,9月20日,0.7999,0.7999,0.21%,-0.73%,2.24%,-3.07%,-1.65%,-20.10%,-19.96%,---,-14.48%,-20.01%,-20.17%,0.15%, +,1152,854,鹏华养老产业,9月19日,2.952,2.952,-0.44%,-3.24%,-4.99%,-6.32%,-5.54%,-20.13%,-11.91%,38.46%,-22.78%,195.20%,---,0.15%, +,1153,10202,天弘中证科技,9月20日,0.9917,0.9917,0.06%,-5.88%,-10.74%,-8.75%,-9.33%,-20.13%,---,---,-24.13%,-0.83%,-20.34%,0.15%, +,1154,9472,广发深证10,9月20日,1.3509,1.3509,0.42%,-4.40%,-7.65%,-9.64%,-7.40%,-20.13%,-12.92%,---,-23.02%,8.45%,-19.24%,0.00%, +,1155,161612,融通深证成份,9月20日,1.037,1.118,0.58%,-5.12%,-8.31%,-8.71%,-7.16%,-20.15%,-8.45%,26.62%,-22.41%,10.76%,-19.73%,0.12%, +,1156,176,嘉实沪深30,9月20日,1.5438,1.5438,0.18%,-4.25%,-4.83%,-7.48%,-6.52%,-20.16%,-15.03%,9.10%,-18.32%,54.38%,-19.59%,0.10%, +,1157,8898,国寿创精选8,9月19日,0.9896,0.9896,-0.99%,-6.08%,-11.33%,-6.54%,-12.25%,-20.17%,-14.44%,---,-26.45%,-1.05%,---,0.12%, +,1158,9981,万家创业板指,9月19日,0.8709,0.8709,-0.53%,-7.26%,-12.45%,-8.52%,-8.07%,-20.17%,---,---,-21.04%,-12.91%,-19.38%,0.15%, +,1159,5188,海富通量化前,9月19日,1.4131,1.7271,-0.35%,-6.72%,-9.33%,-8.51%,-9.03%,-20.18%,2.77%,55.22%,-19.73%,66.66%,-19.42%,0.00%, +,1160,290010,泰信中证20,9月20日,1.143,1.163,0.26%,-4.99%,-5.93%,-8.12%,-6.69%,-20.18%,-10.84%,15.69%,-19.79%,16.59%,-20.24%,0.12%, +,1161,7404,华宝沪深30,9月20日,1.6696,1.6696,0.22%,-4.07%,-4.70%,-7.51%,-6.45%,-20.21%,-12.48%,20.80%,-19.09%,41.96%,-20.00%,0.00%, +,1162,501057,汇添富中证新,9月20日,2.5285,2.5285,2.37%,-4.71%,-11.52%,-15.53%,-3.80%,-20.22%,71.76%,183.53%,-17.25%,152.85%,-19.43%,0.12%, +,1163,1938,中欧时代先锋,9月20日,1.492,2.8168,1.39%,-4.70%,-6.84%,-3.85%,-2.62%,-20.23%,9.08%,52.67%,-20.07%,253.32%,-20.24%,0.15%, +,1164,9079,南方粤港澳大,9月20日,0.9919,0.9919,0.05%,-4.19%,-5.65%,-9.70%,-8.78%,-20.23%,-20.27%,---,-21.70%,-0.81%,-19.39%,0.12%, +,1165,8261,招商研究优选,9月20日,1.1111,1.1111,0.26%,-0.72%,2.57%,-2.38%,-0.96%,-20.23%,-15.24%,---,-14.81%,11.11%,-20.12%,0.15%, +,1166,161031,富国中证工业,9月20日,0.922,0.762,0.22%,-5.34%,-9.52%,-6.59%,-10.92%,-20.24%,-0.23%,52.10%,-26.83%,-16.70%,-19.83%,0.12%, +,1167,10153,中加中证50,9月20日,0.9536,0.9536,0.67%,-6.01%,-6.85%,-5.96%,-5.36%,-20.24%,---,---,-16.09%,-5.27%,-19.69%,0.10%, +,1168,3745,广发多元新兴,9月20日,2.0913,2.0913,1.66%,-5.75%,-10.58%,-7.75%,-9.23%,-20.28%,-8.87%,59.96%,-21.97%,109.13%,-19.33%,0.15%, +,1169,12769,华夏中证动漫,9月19日,0.7847,0.7847,-2.86%,-6.38%,-10.24%,-9.48%,-15.07%,-20.28%,---,---,-32.55%,-21.53%,---,0.00%, +,1170,9080,南方粤港澳大,9月20日,0.9895,0.9895,0.05%,-4.19%,-5.65%,-9.72%,-8.83%,-20.30%,-20.43%,---,-21.76%,-1.05%,-19.47%,0.00%, +,1171,9852,银华品质消费,9月20日,0.7834,0.7834,1.08%,-1.14%,-2.74%,-9.19%,-2.37%,-20.30%,---,---,-17.72%,-21.66%,-19.55%,0.15%, +,1172,11883,招商蓝筹精选,9月20日,0.7945,0.7945,0.63%,-4.54%,-6.96%,-9.29%,-4.67%,-20.30%,---,---,-18.03%,-20.55%,---,0.00%, +,1173,311,景顺长城沪深,9月19日,2.243,2.583,0.18%,-3.86%,-4.59%,-6.19%,-6.66%,-20.32%,-14.32%,4.91%,-17.66%,163.86%,---,0.12%, +,1174,1167,金鹰科技创新,9月19日,1.109,1.109,-2.80%,-5.46%,-14.95%,-3.73%,-13.83%,-20.33%,15.40%,67.27%,-29.32%,10.90%,---,0.15%, +,1175,7354,创金合信港股,9月19日,0.6903,0.6903,-0.76%,-3.40%,-4.01%,-8.16%,-6.39%,-20.34%,---,---,-13.54%,-30.97%,---,0.15%, +,1176,160629,鹏华中证传媒,9月19日,0.713,1.133,-1.66%,-5.19%,-8.47%,-11.76%,-14.61%,-20.34%,-40.29%,-23.26%,-32.86%,-48.72%,---,0.12%, +,1177,2076,浙商中证50,9月19日,1.5031,1.5031,-0.50%,-5.66%,-6.99%,-5.78%,-6.83%,-20.36%,7.39%,59.51%,-17.67%,50.31%,---,0.15%, +,1178,2621,中欧消费主题,9月20日,2.0588,2.0588,1.19%,-3.06%,-5.86%,-8.70%,-3.66%,-20.36%,-31.53%,26.38%,-25.08%,105.88%,-18.85%,0.15%, +,1179,7983,申万菱信中证,9月20日,1.457,1.457,0.17%,-4.48%,-8.90%,-10.32%,-10.74%,-20.37%,-1.12%,---,-25.55%,45.70%,-19.92%,0.12%, +,1180,10203,天弘中证科技,9月20日,0.9861,0.9861,0.07%,-5.88%,-10.76%,-8.81%,-9.47%,-20.37%,---,---,-24.29%,-1.39%,-20.57%,0.00%, +,1181,519706,交银深证30,9月20日,1.731,1.731,-0.35%,-4.94%,-3.46%,-6.89%,-7.63%,-20.38%,-18.73%,-3.67%,-19.11%,73.10%,-19.86%,0.15%, +,1182,6265,红土创新新科,9月20日,3.6248,3.6748,4.98%,-3.53%,-10.85%,-7.10%,0.37%,-20.38%,55.71%,155.11%,-12.96%,267.99%,-20.29%,0.15%, +,1183,470068,汇添富深证3,9月20日,1.5647,1.5647,0.57%,-4.90%,-8.02%,-9.24%,-7.26%,-20.40%,-13.80%,15.33%,-22.61%,56.47%,-19.75%,0.10%, +,1184,4875,融通深证成份,9月20日,1.052,1.07,0.57%,-5.05%,-8.28%,-8.76%,-7.31%,-20.41%,-9.15%,25.18%,-22.60%,23.30%,-19.99%,0.00%, +,1185,8899,国寿创精选8,9月19日,0.9826,0.9826,-0.99%,-6.09%,-11.35%,-6.61%,-12.38%,-20.41%,-14.95%,---,-26.60%,-1.75%,---,0.00%, +,1186,12543,嘉实中证新能,9月20日,0.794,0.794,2.33%,-4.74%,-11.40%,-15.20%,-2.83%,-20.41%,---,---,-16.09%,-20.60%,-19.50%,0.10%, +,1187,180003,银华-道琼斯,9月20日,1.265,3.4983,0.15%,-2.80%,-2.08%,-3.29%,-3.47%,-20.42%,-4.41%,27.28%,-21.92%,584.73%,-19.94%,0.15%, +,1188,9147,建信新能源行,9月19日,2.2833,2.2833,-0.17%,-8.39%,-11.84%,-8.50%,-3.00%,-20.42%,91.06%,---,-16.77%,128.33%,---,0.15%, +,1189,501058,汇添富中证新,9月20日,2.4984,2.4984,2.37%,-4.72%,-11.55%,-15.58%,-3.92%,-20.43%,70.90%,181.41%,-17.40%,149.84%,-19.63%,0.00%, +,1190,11285,民生价值优选,9月20日,0.7604,0.7604,0.33%,-2.58%,-3.08%,-6.71%,-1.43%,-20.43%,---,---,-18.71%,-23.96%,-20.24%,0.15%, +,1191,10154,中加中证50,9月20日,0.9476,0.9476,0.67%,-6.02%,-6.88%,-6.03%,-5.49%,-20.48%,---,---,-16.27%,-5.87%,-19.93%,0.00%, +,1192,1193,中金消费升级,9月19日,1.0332,1.0332,-0.29%,-2.88%,-5.40%,-12.42%,-8.10%,-20.49%,-21.67%,25.08%,-24.18%,3.32%,---,0.15%, +,1193,9982,万家创业板指,9月19日,0.8652,0.8652,-0.53%,-7.27%,-12.48%,-8.61%,-8.26%,-20.49%,---,---,-21.26%,-13.48%,-19.69%,0.00%, +,1194,5612,嘉实核心优势,9月20日,1.3806,1.3806,0.52%,-2.09%,-3.31%,-7.04%,-3.03%,-20.52%,-13.41%,27.67%,-19.99%,38.06%,-18.86%,0.15%, +,1195,1245,工银生态环境,9月20日,2.289,2.289,2.55%,-5.61%,-11.07%,-10.20%,-5.49%,-20.55%,77.30%,201.18%,-18.34%,128.90%,-20.41%,0.15%, +,1196,11122,汇添富ESG,9月20日,0.7726,0.7726,1.87%,-3.39%,-6.99%,-5.20%,-6.37%,-20.55%,---,---,-21.92%,-22.74%,-20.00%,0.15%, +,1197,10872,博时沪深30,9月20日,0.7264,0.7264,0.39%,-3.93%,-5.08%,-7.76%,-5.66%,-20.57%,---,---,-15.59%,-27.36%,-20.54%,0.12%, +,1198,1351,诺安中证50,9月20日,0.916,0.916,0.58%,-5.22%,-7.27%,-7.44%,-6.78%,-20.58%,-6.46%,28.29%,-19.38%,-8.40%,-20.93%,0.12%, +,1199,11722,前海开源深圳,9月19日,0.7319,0.7319,-0.58%,-3.15%,-3.55%,-9.40%,-7.88%,-20.58%,---,---,-21.09%,-26.81%,---,0.15%, +,1200,7984,申万菱信中证,9月20日,1.4447,1.4447,0.18%,-4.48%,-8.92%,-10.38%,-10.87%,-20.60%,-1.71%,---,-25.71%,44.47%,-20.16%,0.00%, +,1201,12544,嘉实中证新能,9月20日,0.7918,0.7918,2.33%,-4.75%,-11.42%,-15.25%,-2.95%,-20.61%,---,---,-16.24%,-20.82%,-19.70%,0.00%, +,1202,7386,浙商中证50,9月19日,1.4872,1.4872,-0.52%,-5.68%,-7.03%,-5.87%,-7.00%,-20.64%,6.64%,57.74%,-17.87%,51.82%,---,0.00%, +,1203,10013,易方达信息行,9月20日,0.8788,0.8788,-0.27%,-4.49%,-6.36%,-1.60%,-1.93%,-20.64%,-11.86%,---,-23.50%,-12.12%,-20.69%,0.15%, +,1204,592,建信改革红利,9月19日,5.349,5.349,-0.56%,-7.20%,-9.09%,-2.48%,-2.55%,-20.66%,44.22%,138.05%,-18.22%,434.90%,---,0.15%, +,1205,11723,前海开源深圳,9月19日,0.7309,0.7309,-0.58%,-3.15%,-3.56%,-9.42%,-7.94%,-20.67%,---,---,-21.15%,-26.91%,---,0.00%, +,1206,12244,广发金融地产,9月20日,0.8206,0.8206,-1.22%,-4.15%,0.85%,-6.58%,-4.48%,-20.67%,---,---,-15.96%,-17.94%,-19.85%,0.15%, +,1207,9904,民生加银中证,9月20日,0.8592,0.8592,0.12%,-5.34%,-6.08%,-8.92%,-5.31%,-20.69%,---,---,-18.42%,-14.08%,-20.67%,0.15%, +,1208,9602,招商科技动力,9月20日,0.7871,0.7871,0.22%,-0.74%,2.17%,-3.26%,-2.05%,-20.74%,-21.23%,---,-14.97%,-21.29%,-20.81%,0.00%, +,1209,11286,民生价值优选,9月20日,0.7566,0.7566,0.34%,-2.58%,-3.10%,-6.79%,-1.61%,-20.74%,---,---,-18.93%,-24.34%,-20.54%,0.00%, +,1210,1230,鹏华医药科技,9月19日,0.993,0.993,-0.50%,-4.89%,-6.41%,-5.97%,-1.88%,-20.81%,-1.68%,58.88%,-19.07%,-0.70%,---,0.15%, +,1211,10873,博时沪深30,9月20日,0.7226,0.7226,0.38%,-3.94%,-5.11%,-7.83%,-5.80%,-20.81%,---,---,-15.78%,-27.74%,-20.78%,0.00%, +,1212,163209,诺安创业板指,9月20日,1.6823,1.7059,0.57%,-6.42%,-11.67%,-10.98%,-7.99%,-20.84%,12.67%,62.26%,-23.81%,32.59%,-20.24%,0.12%, +,1213,4241,中欧时代先锋,9月20日,1.4418,2.532,1.39%,-4.72%,-6.91%,-4.05%,-3.03%,-20.87%,7.35%,49.07%,-20.53%,156.74%,-20.88%,0.00%, +,1214,8262,招商研究优选,9月20日,1.0899,1.0899,0.27%,-0.73%,2.49%,-2.57%,-1.37%,-20.87%,-16.59%,---,-15.30%,8.99%,-20.75%,0.00%, +,1215,90012,大成深证成长,9月20日,1.083,1.083,0.28%,-6.48%,-11.95%,-11.95%,-11.52%,-20.89%,-26.08%,16.83%,-27.27%,8.30%,-20.31%,0.12%, +,1216,10355,诺安中证50,9月20日,0.9093,0.9093,0.59%,-5.22%,-7.31%,-7.54%,-6.97%,-20.90%,---,---,-19.62%,-2.96%,-21.24%,0.00%, +,1217,9905,民生加银中证,9月20日,0.8546,0.8546,0.11%,-5.35%,-6.11%,-9.00%,-5.46%,-20.94%,---,---,-18.60%,-14.54%,-20.91%,0.00%, +,1218,4752,广发中证传媒,9月20日,0.5678,0.5678,0.37%,-4.88%,-8.27%,-12.47%,-15.29%,-20.95%,-41.92%,-27.93%,-33.40%,-43.22%,-20.21%,0.12%, +,1219,4432,南方有色金属,9月20日,1.2039,1.2039,2.84%,-4.77%,-3.80%,-8.68%,-3.66%,-20.96%,43.37%,72.78%,-10.51%,20.39%,-21.14%,0.12%, +,1220,7842,南华中证杭州,9月20日,1.1062,1.1062,1.06%,-4.76%,-6.65%,-8.34%,-6.92%,-20.96%,-9.00%,---,-21.68%,10.62%,-20.66%,0.12%, +,1221,2697,中欧消费主题,9月20日,2.0215,2.0215,1.19%,-3.08%,-5.93%,-8.90%,-4.06%,-20.97%,-32.64%,23.49%,-25.52%,102.15%,-19.49%,0.00%, +,1222,7357,创金合信港股,9月19日,0.6811,0.6811,-0.76%,-3.42%,-4.07%,-8.34%,-6.76%,-20.98%,---,---,-14.02%,-31.89%,---,0.00%, +,1223,12245,广发金融地产,9月20日,0.8166,0.8166,-1.21%,-4.14%,0.81%,-6.67%,-4.67%,-20.98%,---,---,-16.19%,-18.34%,-20.16%,0.00%, +,1224,9988,信澳蓝筹精选,9月20日,0.8702,0.8702,1.27%,-2.37%,-3.13%,-8.79%,-5.01%,-20.99%,-14.92%,---,-21.63%,-14.07%,-18.79%,0.15%, +,1225,5628,汇安趋势动力,9月19日,1.4256,1.4256,-1.12%,-6.25%,-9.70%,-7.87%,-6.27%,-21.05%,13.18%,25.04%,-22.65%,42.56%,-19.15%,0.15%, +,1226,13179,广发国证新能,9月20日,0.8189,0.8189,2.02%,-5.46%,-13.57%,-17.37%,-5.00%,-21.07%,---,---,-17.78%,-18.11%,-20.31%,0.12%, +,1227,4753,广发中证传媒,9月20日,0.5666,0.5666,0.37%,-4.89%,-8.29%,-12.51%,-15.37%,-21.11%,-42.15%,-28.32%,-33.49%,-43.34%,-20.35%,0.00%, +,1228,697,汇添富移动互,9月20日,1.619,1.619,0.19%,-4.82%,-7.01%,-5.04%,-10.11%,-21.14%,-13.70%,28.09%,-29.97%,61.90%,-21.06%,0.15%, +,1229,2510,申万菱信中证,9月20日,1.5275,1.5275,0.94%,-4.65%,-7.29%,-4.24%,-2.93%,-21.15%,-3.30%,42.07%,-15.65%,52.75%,-22.11%,0.12%, +,1230,8860,民生加银龙头,9月20日,1.2474,1.2474,0.34%,-2.57%,-3.26%,-6.69%,-1.40%,-21.16%,-9.39%,---,-19.12%,24.74%,-20.80%,0.15%, +,1231,10356,诺安创业板指,9月20日,1.6693,1.6693,0.57%,-6.43%,-11.70%,-11.07%,-8.18%,-21.17%,---,---,-24.03%,8.24%,-20.56%,0.00%, +,1232,11123,汇添富ESG,9月20日,0.7647,0.7647,1.86%,-3.41%,-7.06%,-5.39%,-6.76%,-21.19%,---,---,-22.37%,-23.53%,-20.63%,0.00%, +,1233,974,安信消费医药,9月19日,1.331,1.391,0.00%,-4.18%,-8.08%,-12.43%,-12.78%,-21.20%,-26.71%,-3.13%,-24.42%,38.70%,---,0.15%, +,1234,7474,华夏创成长E,9月19日,1.9989,1.9989,-0.85%,-7.79%,-11.98%,-8.17%,-9.64%,-21.21%,15.23%,80.62%,-23.52%,99.89%,---,0.12%, +,1235,968,广发养老指数,9月20日,0.8776,0.8776,0.30%,-4.36%,-4.52%,-11.28%,-9.42%,-21.23%,-32.24%,-10.43%,-24.64%,-12.24%,-20.38%,0.12%, +,1236,13180,广发国证新能,9月20日,0.8171,0.8171,2.02%,-5.47%,-13.59%,-17.42%,-5.10%,-21.23%,---,---,-17.90%,-18.29%,-20.47%,0.00%, +,1237,828,泰达转型机遇,9月20日,3.036,3.256,3.58%,-6.04%,-13.13%,-2.66%,2.67%,-21.27%,90.94%,196.48%,-11.41%,264.82%,-22.87%,0.12%, +,1238,10990,南方有色金属,9月20日,1.1956,1.1956,2.83%,-4.77%,-3.84%,-8.77%,-3.86%,-21.27%,---,---,-10.77%,23.42%,-21.46%,0.00%, +,1239,4433,南方有色金属,9月20日,1.18,1.18,2.83%,-4.78%,-3.83%,-8.77%,-3.86%,-21.28%,42.22%,70.72%,-10.78%,18.00%,-21.46%,0.00%, +,1240,7843,南华中证杭州,9月20日,1.0956,1.0956,1.06%,-4.76%,-6.67%,-8.43%,-7.11%,-21.28%,-9.72%,---,-21.90%,9.56%,-20.98%,0.00%, +,1241,2900,南方中证50,9月20日,0.9603,0.9603,0.05%,-5.35%,-10.37%,-4.32%,-11.73%,-21.30%,-27.20%,-8.84%,-28.24%,-4.02%,-21.55%,0.12%, +,1242,12698,平安中证新能,9月19日,0.8416,0.8416,1.11%,-6.33%,-13.45%,-15.81%,-5.62%,-21.30%,---,---,-18.62%,-15.84%,-18.68%,0.10%, +,1243,217019,招商深证TM,9月20日,1.6081,1.6081,-0.15%,-4.72%,-8.67%,-8.42%,-10.57%,-21.35%,-17.99%,12.60%,-28.63%,60.81%,-21.09%,0.15%, +,1244,8052,工银湾创10,9月20日,0.8795,0.8795,0.07%,-4.66%,-6.95%,-10.22%,-10.17%,-21.35%,-23.41%,---,-22.77%,-12.05%,-20.52%,0.10%, +,1245,2982,广发养老指数,9月20日,0.8652,0.8652,0.30%,-4.36%,-4.52%,-11.33%,-9.52%,-21.38%,-32.51%,-10.96%,-24.75%,-9.42%,-20.54%,0.00%, +,1246,7795,申万菱信中证,9月20日,1.6269,1.6269,0.93%,-4.66%,-7.31%,-4.32%,-3.08%,-21.39%,-3.90%,40.80%,-15.84%,62.69%,-22.35%,0.00%, +,1247,1528,诺安先进制造,9月20日,2.09,2.09,0.24%,-2.79%,-6.99%,-7.81%,-10.80%,-21.40%,-2.25%,37.50%,-25.89%,109.00%,-21.43%,0.15%, +,1248,501007,汇添富中证互,9月20日,0.8886,0.8886,0.09%,-5.77%,-8.71%,-6.39%,-10.69%,-21.43%,-29.77%,-11.98%,-29.32%,-11.14%,-20.70%,0.08%, +,1249,5629,汇安趋势动力,9月19日,1.3907,1.3907,-1.13%,-6.26%,-9.74%,-7.98%,-6.51%,-21.44%,12.06%,23.18%,-22.93%,39.07%,-19.55%,0.00%, +,1250,168701,合煦智远金融,9月19日,0.8183,0.8183,-2.80%,-5.57%,-6.51%,-8.73%,-16.66%,-21.45%,-28.07%,---,-27.27%,-18.17%,-21.33%,0.15%, +,1251,12800,泰达转型机遇,9月20日,3.026,3.026,3.59%,-6.02%,-13.15%,-2.70%,2.54%,-21.48%,---,---,-11.60%,-15.57%,-23.08%,0.00%, +,1252,7853,华商计算机行,9月19日,0.9758,0.9758,-1.61%,-3.39%,-5.46%,-5.23%,-9.94%,-21.53%,-25.21%,---,-25.84%,-2.42%,---,0.15%, +,1253,7475,华夏创成长E,9月19日,1.9735,1.9735,-0.85%,-7.79%,-12.00%,-8.26%,-9.82%,-21.53%,14.32%,78.48%,-23.74%,97.35%,---,0.00%, +,1254,1421,南方量化成长,9月20日,1.311,1.311,1.39%,-4.72%,-12.42%,-9.15%,-5.68%,-21.54%,-6.22%,31.36%,-16.55%,31.10%,-21.92%,0.15%, +,1255,501309,国泰恒生港股,9月19日,0.8802,0.8802,-0.79%,-3.60%,-4.39%,-8.22%,-6.32%,-21.54%,-19.97%,-10.81%,-15.14%,-11.98%,-19.15%,0.12%, +,1256,4616,中欧电子信息,9月20日,2.103,2.103,-0.58%,-2.68%,-5.15%,1.02%,-9.29%,-21.56%,4.92%,46.29%,-28.14%,110.30%,-21.62%,0.15%, +,1257,4347,南方中证50,9月20日,0.9416,0.9416,0.05%,-5.55%,-10.36%,-5.10%,-11.87%,-21.57%,-27.74%,-10.50%,-28.41%,0.88%,-21.86%,0.00%, +,1258,12699,平安中证新能,9月19日,0.8375,0.8375,1.11%,-6.34%,-13.48%,-15.91%,-5.81%,-21.62%,---,---,-18.85%,-16.25%,-19.00%,0.00%, +,1259,4409,招商深证TM,9月20日,1.578,1.578,-0.15%,-4.73%,-8.70%,-8.52%,-10.75%,-21.66%,-18.65%,11.25%,-28.84%,5.13%,-21.41%,0.00%, +,1260,549,华安大国新经,9月19日,2.954,2.954,-0.57%,-5.71%,-10.43%,-8.57%,-9.36%,-21.67%,-0.07%,44.73%,-24.02%,195.40%,---,0.15%, +,1261,11651,招商港股通核,9月20日,0.7549,0.7549,0.75%,-3.79%,-5.99%,-6.74%,-3.07%,-21.67%,---,---,-16.73%,-24.51%,-20.69%,0.15%, +,1262,950,易方达沪深3,9月20日,0.7884,0.7884,-0.54%,-6.82%,-3.31%,-8.37%,-8.69%,-21.68%,-32.09%,-24.27%,-21.49%,-21.16%,-20.88%,0.10%, +,1263,8053,工银湾创10,9月20日,0.8697,0.8697,0.06%,-4.68%,-6.99%,-10.31%,-10.38%,-21.69%,-24.04%,---,-23.01%,-13.03%,-20.86%,0.00%, +,1264,501008,汇添富中证互,9月20日,0.8725,0.8725,0.09%,-5.78%,-8.74%,-6.48%,-10.88%,-21.73%,-30.33%,-13.03%,-29.52%,-12.75%,-21.02%,0.00%, +,1265,7882,易方达沪深3,9月20日,0.7859,0.7859,-0.54%,-6.82%,-3.32%,-8.39%,-8.73%,-21.75%,-32.23%,-24.49%,-21.54%,-22.10%,-20.95%,0.00%, +,1266,12926,民生加银中证,9月20日,0.8122,0.8122,0.76%,-5.08%,-6.84%,-6.95%,-6.60%,-21.75%,---,---,-17.93%,-18.78%,-22.20%,0.15%, +,1267,7737,诺德研发创新,9月19日,1.3424,1.3424,-0.67%,-4.25%,-9.29%,-9.63%,-10.96%,-21.76%,-10.46%,27.53%,-26.35%,34.24%,-21.13%,0.15%, +,1268,5813,华安CES港,9月19日,0.7937,0.7937,-0.90%,-3.81%,-5.49%,-7.78%,-5.16%,-21.78%,-21.62%,-18.12%,-15.60%,-20.63%,---,0.12%, +,1269,8889,银华中证5G,9月20日,0.6532,0.6532,-0.40%,-6.98%,-12.38%,-9.45%,-13.39%,-21.80%,-31.02%,---,-32.32%,-34.68%,-21.50%,0.12%, +,1270,12862,汇添富中证电,9月20日,0.8132,0.8132,2.43%,-6.31%,-14.86%,-11.20%,-7.29%,-21.83%,---,---,-19.95%,-18.68%,-21.26%,0.10%, +,1271,168702,合煦智远金融,9月19日,0.8083,0.8083,-2.80%,-5.58%,-6.55%,-8.85%,-16.88%,-21.85%,-28.79%,---,-27.53%,-19.17%,-21.72%,0.00%, +,1272,746,招商行业精选,9月20日,3.185,3.185,0.22%,-0.69%,2.28%,-3.13%,-1.94%,-21.86%,-17.10%,61.35%,-15.13%,218.50%,-21.96%,0.15%, +,1273,3853,金鹰信息产业,9月19日,3.3368,3.6733,0.13%,-6.74%,-12.89%,-12.24%,-8.01%,-21.88%,44.91%,142.97%,-24.65%,270.63%,---,0.12%, +,1274,826,广发百发10,9月20日,1.232,1.592,1.82%,-6.24%,-11.37%,-14.33%,-13.18%,-21.88%,-16.53%,9.71%,-26.88%,57.69%,-21.38%,0.12%, +,1275,827,广发百发10,9月20日,1.23,1.59,1.82%,-6.18%,-11.38%,-14.35%,-13.14%,-21.90%,-16.55%,9.72%,-26.87%,57.46%,-21.36%,0.06%, +,1276,360001,光大量化股票,9月20日,1.0254,3.4471,0.90%,-4.28%,-5.30%,-5.59%,-7.30%,-21.92%,-9.64%,15.79%,-17.75%,406.14%,-21.97%,0.15%, +,1277,6593,博道中证50,9月19日,1.8636,1.9636,-0.20%,-5.64%,-6.71%,-4.22%,-3.20%,-21.94%,12.86%,62.49%,-16.45%,102.87%,---,0.12%, +,1278,10805,东财新能源车,9月19日,1.249,1.249,1.14%,-6.27%,-13.45%,-15.95%,-5.31%,-21.95%,---,---,-18.47%,24.90%,---,0.12%, +,1279,10120,九泰久福量化,9月20日,0.8564,0.8564,0.98%,-5.83%,-8.84%,-6.22%,-6.22%,-21.95%,---,---,-13.35%,-14.36%,-22.25%,0.12%, +,1280,5062,博时中证50,9月20日,1.2817,1.2817,0.76%,-4.65%,-5.44%,-3.90%,-3.73%,-21.96%,-6.95%,28.88%,-14.03%,28.17%,-22.97%,0.12%, +,1281,688,景顺长城研究,9月19日,1.477,1.497,0.00%,-3.59%,-4.71%,-7.69%,-7.11%,-21.98%,-22.34%,-3.34%,-26.70%,50.49%,---,0.15%, +,1282,12927,民生加银中证,9月20日,0.8095,0.8095,0.76%,-5.09%,-6.87%,-7.03%,-6.75%,-21.98%,---,---,-18.11%,-19.05%,-22.43%,0.00%, +,1283,1556,天弘中证50,9月20日,1.2212,1.2212,0.84%,-4.73%,-5.78%,-5.82%,-3.19%,-21.99%,4.21%,50.04%,-15.74%,22.12%,-22.17%,0.15%, +,1284,4532,民生加银中证,9月20日,0.8979,0.8979,0.31%,-3.90%,-4.65%,-8.56%,-8.22%,-22.02%,-6.91%,-1.76%,-13.37%,-10.21%,-20.22%,0.12%, +,1285,6257,信澳先进智造,9月20日,2.0591,2.6794,2.83%,-6.59%,-12.84%,-6.06%,-3.22%,-22.02%,22.91%,108.40%,-20.54%,162.27%,-20.62%,0.15%, +,1286,10524,银华中证5G,9月20日,0.6501,0.6501,-0.38%,-6.97%,-12.39%,-9.52%,-13.52%,-22.03%,---,---,-32.46%,-29.29%,-21.73%,0.00%, +,1287,12863,汇添富中证电,9月20日,0.811,0.811,2.44%,-6.31%,-14.87%,-11.26%,-7.40%,-22.03%,---,---,-20.09%,-18.90%,-21.45%,0.00%, +,1288,9805,国泰医药健康,9月19日,0.7354,0.7354,-0.78%,-6.18%,-10.40%,-8.40%,-14.16%,-22.05%,-25.42%,---,-24.41%,-26.46%,-20.65%,0.15%, +,1289,5814,华安CES港,9月19日,0.796,0.796,-0.90%,-3.82%,-5.53%,-7.88%,-5.36%,-22.09%,-22.24%,-18.98%,-15.84%,-20.40%,---,0.00%, +,1290,1361,景顺中证科技,9月19日,0.56,0.56,-1.41%,-4.60%,-8.94%,-6.82%,-13.31%,-22.11%,-24.02%,-2.27%,-29.20%,-44.00%,---,0.12%, +,1291,10341,招商产业精选,9月20日,0.7778,0.7778,0.34%,-0.59%,2.23%,-2.99%,-2.19%,-22.13%,---,---,-15.17%,-22.22%,-22.24%,0.15%, +,1292,9067,国泰中证新能,9月19日,2.2462,2.2462,1.04%,-6.19%,-13.30%,-16.08%,-5.97%,-22.14%,62.56%,---,-18.54%,124.62%,-19.54%,0.10%, +,1293,4686,华夏研究精选,9月20日,1.4324,1.4324,0.35%,-4.72%,-5.84%,-8.14%,-4.86%,-22.16%,-9.08%,33.58%,-20.04%,43.24%,-21.43%,0.15%, +,1294,160127,南方新兴消费,9月19日,0.7342,0.7342,0.01%,-1.96%,-2.65%,-4.36%,-0.73%,-22.17%,-19.31%,31.71%,-17.81%,247.17%,---,0.15%, +,1295,163110,申万菱信量化,9月20日,2.0113,3.0949,0.99%,-5.63%,-8.70%,-7.75%,-6.44%,-22.18%,-3.42%,28.42%,-17.67%,240.88%,-22.78%,0.15%, +,1296,6594,博道中证50,9月19日,1.843,1.943,-0.21%,-5.64%,-6.73%,-4.29%,-3.34%,-22.18%,12.19%,61.05%,-16.63%,100.64%,---,0.00%, +,1297,5763,中欧电子信息,9月20日,2.1635,2.1635,-0.58%,-2.70%,-5.22%,0.82%,-9.66%,-22.19%,3.25%,42.87%,-28.55%,97.60%,-22.24%,0.00%, +,1298,5885,金鹰信息产业,9月19日,3.3165,3.635,0.12%,-6.75%,-12.92%,-12.33%,-8.19%,-22.20%,43.75%,140.22%,-24.87%,251.31%,---,0.00%, +,1299,1557,天弘中证50,9月20日,1.1937,1.1937,0.84%,-4.73%,-5.81%,-5.89%,-3.34%,-22.22%,3.58%,48.69%,-15.92%,19.37%,-22.40%,0.00%, +,1300,4533,民生加银中证,9月20日,0.886,0.886,0.31%,-3.91%,-4.68%,-8.63%,-8.35%,-22.22%,-7.38%,-2.51%,-13.54%,-11.40%,-20.42%,0.00%, +,1301,10806,东财新能源车,9月19日,1.2403,1.2403,1.14%,-6.28%,-13.48%,-16.04%,-5.50%,-22.26%,---,---,-18.70%,24.03%,---,0.00%, +,1302,5795,博时中证50,9月20日,1.2591,1.2591,0.76%,-4.66%,-5.48%,-4.00%,-3.92%,-22.29%,-7.72%,27.31%,-14.28%,30.05%,-23.28%,0.00%, +,1303,11652,招商港股通核,9月20日,0.7459,0.7459,0.74%,-3.79%,-6.05%,-6.94%,-3.46%,-22.31%,---,---,-17.21%,-25.41%,-21.32%,0.00%, +,1304,10121,九泰久福量化,9月20日,0.8492,0.8492,0.98%,-5.83%,-8.88%,-6.35%,-6.47%,-22.34%,---,---,-13.66%,-15.08%,-22.65%,0.00%, +,1305,9265,易方达消费精,9月20日,0.927,0.927,0.83%,-1.27%,-0.95%,-6.67%,2.81%,-22.35%,-22.47%,---,-21.69%,-7.30%,-19.80%,0.15%, +,1306,11326,国泰医药健康,9月19日,0.7306,0.7306,-0.79%,-6.19%,-10.44%,-8.50%,-14.34%,-22.37%,---,---,-24.63%,-27.02%,-20.97%,0.00%, +,1307,10777,浙商智选家居,9月19日,0.6794,0.6794,-0.76%,-4.44%,-5.35%,-13.20%,-4.38%,-22.37%,---,---,-24.75%,-32.06%,---,0.15%, +,1308,160137,南方中证互联,9月20日,0.7694,0.7694,0.08%,-5.54%,-8.03%,-8.20%,-14.13%,-22.38%,-26.53%,-4.45%,-29.98%,-16.45%,-21.95%,0.12%, +,1309,9068,国泰中证新能,9月19日,2.23,2.23,1.04%,-6.20%,-13.32%,-16.15%,-6.12%,-22.38%,61.58%,---,-18.72%,123.00%,-19.78%,0.00%, +,1310,10749,浙商创业板指,9月19日,0.8831,0.8831,-0.67%,-7.59%,-13.02%,-10.64%,-10.73%,-22.41%,---,---,-23.71%,-11.69%,---,0.12%, +,1311,10495,创金合信创新,9月19日,0.763,0.763,-1.20%,-4.45%,-9.60%,-6.24%,-9.31%,-22.44%,---,---,-29.44%,-23.70%,---,0.15%, +,1312,761,国富健康优质,9月20日,1.4994,1.4994,1.05%,-2.80%,-2.43%,-11.61%,-9.05%,-22.45%,-14.68%,28.04%,-22.99%,49.94%,-22.00%,0.15%, +,1313,4476,景顺长城沪港,9月19日,1.648,1.648,-1.26%,-4.41%,-7.26%,-6.20%,-5.23%,-22.45%,-17.02%,30.59%,-22.52%,64.80%,---,0.15%, +,1314,160225,国泰国证新能,9月19日,1.8378,1.8378,1.17%,-6.42%,-14.44%,-15.32%,-6.28%,-22.46%,48.02%,128.55%,-19.23%,81.94%,---,0.12%, +,1315,4856,广发中证全指,9月20日,1.2017,1.2017,-0.41%,-5.71%,-7.10%,-13.00%,-12.51%,-22.50%,-18.73%,24.31%,-21.13%,20.17%,-22.11%,0.10%, +,1316,10391,易方达战略新,9月20日,0.7886,0.7886,-0.32%,-5.00%,-9.58%,-10.58%,-6.32%,-22.50%,---,---,-24.46%,-21.14%,-21.97%,0.15%, +,1317,13177,华宝深证创新,9月20日,0.7673,0.7673,0.34%,-4.92%,-9.41%,-11.00%,-9.50%,-22.54%,---,---,-25.03%,-23.27%,-21.86%,0.10%, +,1318,233010,大摩深证30,9月20日,1.8,1.8,0.56%,-4.81%,-8.16%,-9.09%,-7.07%,-22.61%,-10.85%,23.37%,-23.70%,80.00%,-22.04%,0.12%, +,1319,12605,东财证券保险,9月19日,0.8285,0.8285,-0.89%,-6.66%,-3.72%,-7.79%,-7.39%,-22.62%,---,---,-21.07%,-17.15%,---,0.12%, +,1320,8056,南方上证50,9月19日,1.0613,1.0613,0.69%,-3.92%,-3.30%,-12.19%,-9.47%,-22.63%,-17.03%,---,-19.40%,6.13%,-22.69%,0.15%, +,1321,160144,南方新兴消费,9月19日,0.7265,0.7265,0.00%,-1.98%,-2.71%,-4.51%,-1.04%,-22.64%,---,---,-18.16%,-26.33%,-20.50%,0.00%, +,1322,8086,华夏中证5G,9月20日,0.837,0.837,-0.40%,-7.15%,-12.62%,-9.54%,-13.88%,-22.64%,-31.97%,---,-33.23%,-16.30%,-22.36%,0.12%, +,1323,4857,广发中证全指,9月20日,1.2034,1.2034,-0.41%,-5.71%,-7.11%,-13.04%,-12.59%,-22.65%,-19.05%,23.64%,-21.24%,20.34%,-22.26%,0.00%, +,1324,10361,嘉实品质优选,9月20日,0.7217,0.7217,1.79%,-4.96%,-7.26%,-5.05%,-4.94%,-22.65%,---,---,-20.02%,-27.83%,-22.11%,0.15%, +,1325,370023,上投摩根中证,9月19日,1.6244,1.8044,-0.34%,-3.23%,-4.62%,-9.15%,-9.29%,-22.69%,-25.69%,-2.03%,-23.09%,90.10%,---,0.12%, +,1326,5707,富国港股通量,9月20日,0.81,0.81,0.96%,-2.04%,-3.32%,-6.78%,-2.76%,-22.70%,-20.25%,-15.61%,-13.93%,-19.00%,-20.87%,0.15%, +,1327,8072,景顺长城创业,9月19日,1.2852,1.2852,-0.77%,-7.15%,-14.09%,-10.16%,-12.35%,-22.73%,2.19%,---,-25.37%,28.52%,---,0.15%, +,1328,10342,招商产业精选,9月20日,0.7668,0.7668,0.33%,-0.61%,2.16%,-3.19%,-2.59%,-22.76%,---,---,-15.67%,-23.32%,-22.87%,0.00%, +,1329,10778,浙商智选家居,9月19日,0.6744,0.6744,-0.77%,-4.45%,-5.39%,-13.31%,-4.61%,-22.76%,---,---,-25.01%,-32.56%,---,0.00%, +,1330,9046,东财创业板A,9月20日,1.3639,1.3639,0.67%,-6.78%,-12.69%,-11.56%,-11.05%,-22.78%,-1.95%,---,-26.28%,36.39%,-22.13%,0.12%, +,1331,13178,华宝深证创新,9月20日,0.7649,0.7649,0.34%,-4.92%,-9.44%,-11.06%,-9.64%,-22.78%,---,---,-25.19%,-23.51%,-22.10%,0.00%, +,1332,1416,嘉实事件驱动,9月20日,1.058,1.058,0.76%,-4.72%,-4.81%,-5.91%,-5.15%,-22.79%,-7.65%,31.25%,-20.81%,5.00%,-22.43%,0.15%, +,1333,9613,上银中证50,9月19日,0.9738,0.9738,-0.68%,-5.77%,-7.34%,-8.44%,-9.19%,-22.80%,1.81%,---,-19.09%,-2.62%,-23.27%,0.12%, +,1334,10750,浙商创业板指,9月19日,0.8765,0.8765,-0.67%,-7.60%,-13.05%,-10.76%,-10.95%,-22.80%,---,---,-23.97%,-12.35%,---,0.00%, +,1335,10392,易方达战略新,9月20日,0.7833,0.7833,-0.32%,-5.01%,-9.61%,-10.67%,-6.52%,-22.81%,---,---,-24.68%,-21.67%,-22.28%,0.00%, +,1336,161028,富国中证新能,9月19日,1.19,1.422,1.10%,-6.23%,-13.45%,-16.37%,-5.93%,-22.83%,62.16%,168.07%,-18.99%,81.43%,-20.14%,0.12%, +,1337,12636,国泰中证全指,9月19日,0.74,0.74,-2.17%,-2.68%,-3.63%,-5.14%,-13.14%,-22.86%,---,---,-27.41%,-26.00%,-23.19%,0.10%, +,1338,8087,华夏中证5G,9月20日,0.8301,0.8301,-0.41%,-7.16%,-12.65%,-9.61%,-14.01%,-22.88%,-32.37%,---,-33.37%,-16.99%,-22.59%,0.00%, +,1339,12606,东财证券保险,9月19日,0.8247,0.8247,-0.88%,-6.67%,-3.75%,-7.88%,-7.57%,-22.93%,---,---,-21.29%,-17.53%,---,0.00%, +,1340,6603,嘉实互融精选,9月20日,0.9335,0.9335,0.56%,-4.74%,-8.62%,-14.29%,-8.61%,-22.94%,-25.27%,-7.00%,-26.62%,-6.65%,-22.28%,0.15%, +,1341,8057,南方上证50,9月19日,1.0512,1.0512,0.69%,-3.92%,-3.33%,-12.28%,-9.64%,-22.94%,-17.69%,---,-19.63%,5.12%,-22.99%,0.00%, +,1342,3069,光大创业板量,9月20日,1.4926,1.4926,0.48%,-6.73%,-11.82%,-10.34%,-10.52%,-22.95%,-1.07%,53.51%,-23.91%,49.26%,-22.59%,0.15%, +,1343,9047,东财创业板C,9月20日,1.3554,1.3554,0.67%,-6.78%,-12.71%,-11.61%,-11.17%,-22.98%,-2.44%,---,-26.41%,35.54%,-22.32%,0.00%, +,1344,13048,富国中证新能,9月19日,1.187,1.187,1.11%,-6.24%,-13.48%,-16.41%,-6.09%,-23.02%,---,---,-19.20%,-15.76%,-20.28%,0.00%, +,1345,751,嘉实新兴产业,9月20日,3.795,3.795,-0.21%,-3.67%,-5.56%,-7.72%,-2.51%,-23.03%,-19.56%,35.19%,-22.94%,280.30%,-23.36%,0.15%, +,1346,9614,上银中证50,9月19日,0.9674,0.9674,-0.68%,-5.78%,-7.35%,-8.50%,-9.32%,-23.03%,1.21%,---,-19.26%,-3.26%,-23.50%,0.00%, +,1347,160221,国泰国证有色,9月19日,1.3234,0.9579,-0.09%,-7.23%,-7.23%,-10.47%,-7.83%,-23.04%,45.48%,74.38%,-12.84%,0.34%,-21.47%,0.00%, +,1348,10496,创金合信创新,9月19日,0.7526,0.7526,-1.21%,-4.46%,-9.65%,-6.43%,-9.67%,-23.05%,---,---,-29.85%,-24.74%,---,0.00%, +,1349,160625,鹏华中证80,9月19日,0.657,1.795,-0.90%,-6.68%,-4.37%,-8.62%,-9.13%,-23.07%,-29.81%,-17.64%,-22.34%,44.98%,---,0.12%, +,1350,165522,信诚中证TM,9月19日,0.6734,1.5193,-1.77%,-4.48%,-8.84%,-7.13%,-13.09%,-23.07%,-28.97%,-7.10%,-29.34%,-2.19%,-23.38%,0.10%, +,1351,12637,国泰中证全指,9月19日,0.7373,0.7373,-2.16%,-2.68%,-3.66%,-5.21%,-13.26%,-23.09%,---,---,-27.56%,-26.27%,-23.43%,0.00%, +,1352,11013,长城消费30,9月20日,0.7133,0.7133,0.79%,-1.26%,-2.27%,-10.01%,-5.67%,-23.11%,---,---,-22.94%,-28.67%,-22.09%,0.15%, +,1353,10362,嘉实品质优选,9月20日,0.716,0.716,1.79%,-4.98%,-7.30%,-5.19%,-5.23%,-23.12%,---,---,-20.36%,-28.40%,-22.58%,0.00%, +,1354,165524,信诚中证智能,9月19日,0.718,0.5442,-1.41%,-6.80%,-13.87%,-5.80%,-10.17%,-23.16%,-27.96%,-8.31%,-28.21%,-52.21%,-22.70%,0.10%, +,1355,501303,广发恒生中型,9月20日,0.7881,0.7881,0.56%,-3.84%,-4.07%,-7.21%,-5.38%,-23.16%,-18.88%,-10.07%,-16.25%,-21.19%,-22.03%,0.12%, +,1356,3070,光大创业板量,9月20日,1.3662,1.3662,0.48%,-6.74%,-11.85%,-10.45%,-10.73%,-23.25%,-1.52%,---,-24.13%,36.62%,-22.88%,0.00%, +,1357,1552,天弘中证证券,9月19日,0.7747,0.7747,-0.91%,-6.80%,-4.48%,-8.84%,-9.14%,-23.27%,-30.72%,-15.71%,-22.34%,-22.53%,-22.83%,0.10%, +,1358,7664,永赢创业板指,9月20日,1.5297,1.5297,0.64%,-6.70%,-12.52%,-11.57%,-11.48%,-23.29%,-1.16%,52.92%,-26.60%,52.97%,-22.67%,0.10%, +,1359,5873,建信创业板E,9月19日,1.5296,1.5296,-0.74%,-6.92%,-12.62%,-9.95%,-11.33%,-23.31%,-4.42%,43.81%,-25.98%,52.96%,---,0.15%, +,1360,9550,汇添富开放优,9月20日,0.8003,0.8003,0.31%,-3.86%,-6.11%,-9.29%,-12.05%,-23.31%,-21.10%,---,-26.21%,-19.97%,-23.00%,0.15%, +,1361,7665,永赢创业板指,9月20日,1.5253,1.5253,0.65%,-6.70%,-12.53%,-11.59%,-11.52%,-23.36%,-1.35%,52.50%,-26.65%,52.53%,-22.75%,0.00%, +,1362,996,中银新动力股,9月20日,0.997,0.997,0.40%,-3.20%,-4.50%,-10.74%,-7.34%,-23.37%,-13.23%,40.82%,-27.49%,-0.30%,-22.47%,0.15%, +,1363,13122,信诚中证TM,9月19日,0.6706,0.6706,-1.77%,-4.50%,-8.87%,-7.23%,-13.27%,-23.38%,---,---,-29.54%,-26.05%,-23.67%,0.00%, +,1364,50021,博时创业板E,9月20日,2.0164,2.0164,0.67%,-6.76%,-12.61%,-11.57%,-11.28%,-23.39%,-5.15%,42.60%,-26.37%,101.62%,-22.74%,0.08%, +,1365,519673,银河康乐股票,9月20日,2.499,2.499,0.81%,-4.94%,-7.48%,-11.23%,-13.20%,-23.39%,-19.26%,43.54%,-26.91%,149.90%,-23.51%,0.15%, +,1366,10161,广发瑞安精选,9月20日,0.8488,0.8488,-0.20%,-5.53%,-6.24%,-9.32%,-13.14%,-23.39%,---,---,-28.59%,-15.12%,-22.66%,0.15%, +,1367,6733,博时创业板E,9月20日,2.0145,2.0145,0.67%,-6.76%,-12.61%,-11.57%,-11.29%,-23.41%,-5.20%,42.49%,-26.38%,85.50%,-22.76%,0.00%, +,1368,1553,天弘中证证券,9月19日,0.7623,0.7623,-0.91%,-6.80%,-4.49%,-8.87%,-9.22%,-23.42%,-30.99%,-16.21%,-22.44%,-23.77%,-22.98%,0.00%, +,1369,11316,天弘创业板3,9月20日,0.7889,0.7889,0.78%,-6.50%,-12.34%,-9.92%,-11.66%,-23.43%,---,---,-26.67%,-21.11%,-22.87%,0.10%, +,1370,13084,信诚中证智能,9月19日,0.7151,0.7151,-1.41%,-6.82%,-13.90%,-5.90%,-10.34%,-23.45%,---,---,-28.40%,-26.80%,-22.99%,0.00%, +,1371,11035,嘉实中证稀土,9月19日,0.8445,0.8445,-1.10%,-8.79%,-13.63%,-11.52%,-5.88%,-23.55%,---,---,-20.99%,-15.55%,---,0.10%, +,1372,673100,西部利得沪深,9月19日,1.6406,1.7606,-0.25%,-4.68%,-6.75%,-9.03%,-8.75%,-23.56%,-10.02%,32.64%,-22.10%,81.96%,-22.65%,0.08%, +,1373,1703,银华沪港深增,9月20日,2.049,2.119,1.54%,-1.77%,-3.30%,-4.56%,0.84%,-23.57%,-10.41%,31.43%,-22.68%,118.02%,-22.82%,0.15%, +,1374,11014,长城消费30,9月20日,0.7075,0.7075,0.80%,-1.27%,-2.32%,-10.15%,-5.96%,-23.57%,---,---,-23.27%,-29.25%,-22.56%,0.00%, +,1375,7839,汇添富中证长,9月20日,1,1,0.61%,-4.85%,-6.84%,-9.31%,-10.11%,-23.58%,-17.04%,---,-23.12%,0.00%,-23.21%,0.12%, +,1376,11317,天弘创业板3,9月20日,0.7867,0.7867,0.77%,-6.50%,-12.36%,-9.97%,-11.75%,-23.58%,---,---,-26.77%,-21.33%,-23.02%,0.00%, +,1377,5874,建信创业板E,9月19日,1.5114,1.5114,-0.74%,-6.93%,-12.66%,-10.05%,-11.51%,-23.61%,-5.18%,42.12%,-26.19%,51.14%,---,0.00%, +,1378,13443,建信创业板E,9月19日,1.5117,1.5117,-0.74%,-6.93%,-12.65%,-10.04%,-11.51%,-23.61%,---,---,-26.19%,-24.20%,---,0.00%, +,1379,4996,广发恒生中型,9月20日,0.7706,0.7706,0.56%,-3.86%,-4.12%,-7.35%,-5.67%,-23.62%,-19.85%,-11.64%,-16.61%,-22.94%,-22.49%,0.00%, +,1380,11036,嘉实中证稀土,9月19日,0.8436,0.8436,-1.10%,-8.79%,-13.64%,-11.54%,-5.92%,-23.62%,---,---,-21.05%,-15.64%,---,0.00%, +,1381,6781,汇丰晋信港股,9月19日,0.8244,0.8244,-1.69%,-4.44%,-5.49%,-5.28%,-3.48%,-23.65%,-24.43%,-17.01%,-16.19%,-17.56%,---,0.15%, +,1382,10162,广发瑞安精选,9月20日,0.8429,0.8429,-0.19%,-5.53%,-6.27%,-9.40%,-13.31%,-23.70%,---,---,-28.79%,-15.71%,-22.96%,0.00%, +,1383,3366,浙商汇金中证,9月19日,0.861,0.861,-0.23%,-5.70%,-10.03%,-10.78%,-8.79%,-23.81%,-25.39%,2.26%,-17.45%,-13.90%,---,0.15%, +,1384,7840,汇添富中证长,9月20日,0.991,0.991,0.61%,-4.86%,-6.86%,-9.38%,-10.26%,-23.81%,-17.54%,---,-23.29%,-0.90%,-23.45%,0.00%, +,1385,5035,银华信息科技,9月20日,0.9987,0.9987,0.34%,-6.09%,-10.73%,-6.33%,-10.91%,-23.83%,-17.97%,9.58%,-27.37%,-0.13%,-24.04%,0.15%, +,1386,9414,中银大健康股,9月20日,0.9934,0.9934,0.61%,-4.21%,-6.94%,-10.08%,0.08%,-23.84%,-14.41%,---,-17.23%,-0.66%,-24.00%,0.15%, +,1387,673101,西部利得沪深,9月19日,1.6205,1.6205,-0.25%,-4.69%,-6.78%,-9.12%,-8.94%,-23.87%,-10.74%,30.99%,-22.32%,75.17%,-22.96%,0.00%, +,1388,2906,南方中证50,9月19日,1.14,1.14,-0.26%,-6.86%,-9.81%,-8.95%,-7.92%,-23.90%,-10.31%,21.93%,-20.78%,14.00%,---,0.15%, +,1389,9012,平安创业板E,9月19日,1.2421,1.2421,-0.68%,-7.22%,-13.05%,-10.42%,-11.93%,-23.90%,-5.02%,---,-26.81%,24.21%,-22.76%,0.06%, +,1390,9551,汇添富开放优,9月20日,0.7865,0.7865,0.31%,-3.87%,-6.18%,-9.48%,-12.41%,-23.93%,-22.36%,---,-26.64%,-21.35%,-23.61%,0.00%, +,1391,1105,信澳转型创新,9月20日,1.036,1.036,3.60%,-9.50%,-16.39%,-7.32%,-2.25%,-23.95%,-2.06%,40.85%,-16.81%,0.00%,-21.57%,0.15%, +,1392,160223,国泰创业板指,9月19日,1.2061,1.2061,-0.56%,-7.01%,-13.11%,-10.17%,-11.89%,-23.95%,-1.01%,47.93%,-27.27%,20.60%,-22.91%,0.12%, +,1393,10253,兴银中证50,9月19日,0.9411,0.9411,-0.45%,-5.64%,-7.72%,-5.46%,-6.24%,-23.95%,---,---,-18.72%,-5.89%,---,0.15%, +,1394,59,国联安中证医,9月20日,1.0258,1.5858,0.20%,-5.98%,-7.67%,-11.56%,-14.52%,-24.04%,-25.58%,9.14%,-25.88%,57.09%,-23.78%,0.12%, +,1395,10157,汇安中证50,9月19日,0.9069,0.9069,-0.53%,-5.79%,-7.46%,-5.85%,-6.98%,-24.05%,---,---,-20.73%,-9.31%,-23.90%,0.12%, +,1396,11205,兴银中证50,9月19日,0.9377,0.9377,-0.46%,-5.64%,-7.73%,-5.50%,-6.33%,-24.10%,---,---,-18.83%,-6.23%,---,0.00%, +,1397,167702,德邦量化优选,9月20日,1.2754,1.4854,1.62%,-5.74%,-6.85%,-4.14%,-2.17%,-24.13%,-20.65%,11.44%,-15.77%,43.22%,-23.34%,--, +,1398,5036,银华信息科技,9月20日,0.9909,---,0.33%,-6.10%,-10.77%,-6.43%,-11.10%,-24.14%,-18.62%,8.30%,-27.59%,-0.91%,-24.34%,0.00%, +,1399,10321,中银大健康股,9月20日,0.986,0.986,0.59%,-4.23%,-6.98%,-10.18%,-0.13%,-24.15%,---,---,-17.48%,-18.48%,-24.31%,0.00%, +,1400,9013,平安创业板E,9月19日,1.2298,1.2298,-0.68%,-7.23%,-13.08%,-10.51%,-12.11%,-24.21%,-5.78%,---,-27.02%,22.98%,-23.06%,0.00%, +,1401,2907,南方中证50,9月19日,1.12,1.12,-0.27%,-6.90%,-9.82%,-9.09%,-8.05%,-24.22%,-10.97%,20.43%,-21.02%,12.00%,---,0.00%, +,1402,160637,鹏华创业板指,9月19日,1.064,0.688,-0.75%,-7.24%,-13.14%,-10.51%,-12.07%,-24.22%,-4.87%,43.70%,-27.27%,-28.64%,---,0.12%, +,1403,165520,信诚中证80,9月19日,1.5884,1.5953,0.11%,-6.65%,-6.40%,-11.61%,-5.53%,-24.27%,50.59%,90.14%,-11.25%,73.09%,-22.31%,0.12%, +,1404,167703,德邦量化优选,9月20日,1.2452,1.4552,1.62%,-5.75%,-6.87%,-4.20%,-2.30%,-24.32%,-21.05%,10.60%,-15.91%,40.16%,-23.54%,0.00%, +,1405,6569,国联安中证医,9月20日,1.0406,1.0406,0.19%,-5.98%,-7.70%,-11.65%,-14.69%,-24.35%,-26.17%,7.87%,-26.09%,36.33%,-24.08%,0.00%, +,1406,1592,天弘创业板E,9月20日,0.9498,0.9498,0.67%,-6.84%,-12.77%,-11.94%,-11.75%,-24.36%,-7.20%,38.62%,-27.14%,-5.02%,-23.70%,0.10%, +,1407,10158,汇安中证50,9月19日,0.9002,0.9002,-0.52%,-5.80%,-7.49%,-5.95%,-7.17%,-24.36%,---,---,-20.96%,-9.98%,-24.21%,0.00%, +,1408,9557,申万菱信创业,9月20日,0.8492,0.8492,0.86%,-6.73%,-10.76%,-11.18%,-10.86%,-24.40%,-14.44%,---,-23.49%,-15.08%,-24.17%,0.15%, +,1409,1877,宝盈国家安全,9月20日,1.3308,1.3308,1.17%,-4.66%,-12.25%,-4.13%,-6.90%,-24.43%,13.16%,51.06%,-28.30%,33.08%,-25.19%,0.15%, +,1410,5390,工银创业板E,9月20日,1.2914,1.2914,0.64%,-6.74%,-12.64%,-11.92%,-11.86%,-24.43%,-8.23%,36.83%,-27.01%,29.14%,-23.76%,0.10%, +,1411,7472,华夏创蓝筹E,9月20日,1.3034,1.3034,-0.21%,-4.81%,-7.45%,-8.11%,-10.38%,-24.44%,-19.81%,19.29%,-27.57%,30.62%,-24.83%,0.12%, +,1412,161613,融通创业板指,9月20日,0.874,2.486,0.81%,-6.82%,-12.51%,-11.27%,-10.54%,-24.45%,-6.82%,40.34%,-25.71%,177.35%,-23.94%,0.12%, +,1413,942,广发信息技术,9月19日,0.9696,0.9696,-1.77%,-5.05%,-11.23%,-6.83%,-15.18%,-24.46%,-28.62%,-8.36%,-30.58%,-3.04%,---,0.12%, +,1414,6248,华夏创业板E,9月20日,1.6949,1.6949,0.67%,-7.32%,-13.26%,-10.72%,-12.21%,-24.47%,-4.65%,43.53%,-27.43%,68.37%,-23.31%,0.12%, +,1415,1593,天弘创业板E,9月20日,0.9325,0.9325,0.66%,-6.84%,-12.79%,-12.00%,-11.84%,-24.52%,-7.57%,37.78%,-27.25%,-6.75%,-23.86%,0.00%, +,1416,7133,嘉实长青竞争,9月20日,1.1502,1.1502,0.21%,-4.11%,-4.55%,-6.47%,-10.37%,-24.52%,-19.13%,8.60%,-28.92%,15.02%,-23.99%,0.15%, +,1417,10001,创金合信研究,9月19日,0.8964,0.8964,-0.76%,-6.76%,-11.14%,-10.69%,-9.44%,-24.53%,---,---,-21.59%,-10.36%,---,0.15%, +,1418,13081,信诚中证80,9月19日,1.5819,1.5819,0.10%,-6.66%,-6.44%,-11.70%,-5.72%,-24.57%,---,---,-11.51%,-22.59%,-22.62%,0.00%, +,1419,2974,广发信息技术,9月19日,0.9594,0.9594,-1.77%,-5.06%,-11.25%,-6.87%,-15.25%,-24.61%,-28.91%,-8.92%,-30.68%,-16.31%,---,0.00%, +,1420,161022,富国创业板指,9月20日,0.998,1.75,0.60%,-6.73%,-12.76%,-11.92%,-11.84%,-24.62%,-8.27%,37.33%,-27.31%,54.20%,-23.99%,0.12%, +,1421,161030,富国中证体育,9月19日,0.707,0.559,-2.48%,-5.73%,-10.05%,-12.50%,-17.79%,-24.63%,-39.39%,-16.00%,-34.23%,-52.32%,-23.17%,0.12%, +,1422,1410,信澳新能源产,9月20日,4.257,4.319,2.93%,-7.62%,-16.00%,-9.67%,-6.95%,-24.65%,18.68%,102.94%,-22.89%,333.00%,-23.13%,0.15%, +,1423,585001,东吴中证新兴,9月19日,1.4061,1.4061,-1.10%,-5.49%,-8.71%,-11.28%,-10.97%,-24.69%,-9.49%,27.60%,-25.41%,40.61%,---,0.12%, +,1424,5391,工银创业板E,9月20日,1.2645,1.2645,0.64%,-6.74%,-12.66%,-11.99%,-12.02%,-24.69%,-8.87%,35.36%,-27.19%,26.45%,-24.02%,0.00%, +,1425,6249,华夏创业板E,9月20日,1.6742,1.6742,0.66%,-7.33%,-13.28%,-10.78%,-12.34%,-24.69%,-5.23%,42.25%,-27.58%,66.33%,-23.55%,0.00%, +,1426,110026,易方达创业板,9月20日,2.405,2.405,0.65%,-6.83%,-12.76%,-11.99%,-11.91%,-24.70%,-8.06%,36.25%,-27.34%,140.50%,-24.05%,0.12%, +,1427,10505,申万菱信创业,9月20日,0.8025,0.8025,0.87%,-6.73%,-10.78%,-11.26%,-11.04%,-24.70%,---,---,-23.69%,-19.75%,-24.46%,0.00%, +,1428,1319,农银信息传媒,9月20日,0.9353,0.9353,-0.37%,-3.49%,-4.27%,-10.32%,-11.29%,-24.71%,-23.01%,14.73%,-28.73%,-6.47%,-24.16%,0.15%, +,1429,13278,富国中证体育,9月19日,0.706,0.706,-2.49%,-5.74%,-10.06%,-12.62%,-17.91%,-24.73%,---,---,-34.33%,-18.57%,-23.25%,0.00%, +,1430,4870,融通创业板指,9月20日,0.823,1.215,0.73%,-6.90%,-12.54%,-11.41%,-10.74%,-24.74%,-7.57%,38.58%,-25.90%,27.10%,-24.25%,0.00%, +,1431,4925,长信低碳环保,9月19日,2.2486,2.2486,0.50%,-7.71%,-13.32%,-14.42%,-7.35%,-24.75%,66.35%,153.74%,-16.55%,124.86%,-22.51%,0.15%, +,1432,7473,华夏创蓝筹E,9月20日,1.2866,1.2866,-0.22%,-4.82%,-7.48%,-8.21%,-10.56%,-24.75%,-20.45%,17.86%,-27.78%,28.94%,-25.13%,0.00%, +,1433,13277,富国创业板指,9月20日,0.997,0.997,0.61%,-6.82%,-12.77%,-12.00%,-12.00%,-24.75%,---,---,-27.44%,-25.43%,-24.07%,0.00%, +,1434,2168,嘉实智能汽车,9月20日,3.35,3.35,1.24%,-4.37%,-9.46%,-18.31%,-12.03%,-24.87%,24.26%,96.94%,-24.80%,235.00%,-24.74%,0.15%, +,1435,3765,广发创业板E,9月20日,1.2802,1.2802,0.68%,-6.76%,-12.66%,-11.80%,-12.25%,-24.88%,-9.02%,33.19%,-27.59%,28.02%,-24.24%,0.12%, +,1436,1550,天弘中证医药,9月19日,0.8183,0.8183,-1.22%,-6.22%,-7.95%,-12.05%,-15.03%,-24.89%,-29.72%,5.66%,-26.52%,-18.17%,-24.60%,0.10%, +,1437,4744,易方达创业板,9月20日,2.3748,2.3748,0.66%,-6.83%,-12.78%,-12.04%,-12.02%,-24.89%,-8.51%,35.20%,-27.47%,31.25%,-24.24%,0.00%, +,1438,2656,南方创业板E,9月19日,1.1729,1.1729,-0.69%,-7.35%,-13.32%,-10.79%,-12.55%,-24.90%,-7.24%,40.10%,-27.71%,17.29%,-23.74%,0.12%, +,1439,7134,嘉实长青竞争,9月20日,1.1285,1.1285,0.20%,-4.11%,-4.58%,-6.58%,-10.60%,-24.90%,-19.94%,6.96%,-29.17%,12.85%,-24.37%,0.00%, +,1440,10002,创金合信研究,9月19日,0.8873,0.8873,-0.77%,-6.79%,-11.19%,-10.81%,-9.67%,-24.92%,---,---,-21.87%,-11.27%,---,0.00%, +,1441,11614,工银科创板5,9月20日,0.7943,0.7943,0.93%,-4.16%,-10.56%,-9.15%,-12.65%,-24.92%,---,---,-27.54%,-20.57%,-25.21%,0.10%, +,1442,10854,汇添富沪深3,9月20日,0.6746,0.6746,0.10%,-4.26%,-6.45%,-8.31%,-8.75%,-24.94%,---,---,-23.55%,-32.54%,-24.84%,0.15%, +,1443,13151,长信低碳环保,9月19日,2.2395,2.2395,0.49%,-7.72%,-13.35%,-14.51%,-7.55%,-25.02%,---,---,-16.79%,-19.66%,-22.79%,0.00%, +,1444,8749,富国中证科技,9月20日,0.8769,0.8769,0.26%,-4.76%,-9.13%,-9.66%,-14.44%,-25.03%,-21.36%,---,-30.23%,-12.31%,-24.65%,0.12%, +,1445,3766,广发创业板E,9月20日,1.2739,1.2739,0.67%,-6.77%,-12.68%,-11.85%,-12.34%,-25.04%,-9.39%,32.38%,-27.70%,27.39%,-24.39%,0.00%, +,1446,1551,天弘中证医药,9月19日,0.8055,0.8055,-1.23%,-6.23%,-7.97%,-12.10%,-15.12%,-25.05%,-30.01%,5.02%,-26.63%,-19.45%,-24.76%,0.00%, +,1447,1849,前海开源强势,9月19日,1.396,1.396,-0.71%,-6.75%,-10.46%,-10.05%,-9.47%,-25.11%,-14.51%,26.33%,-22.40%,39.60%,---,0.15%, +,1448,12645,建信中证全指,9月19日,0.7441,0.7441,-0.91%,-7.67%,-7.13%,-10.27%,-10.94%,-25.12%,---,---,-24.99%,-25.59%,---,0.15%, +,1449,11832,西部利得人工,9月19日,0.7344,0.7344,-1.42%,-3.91%,-9.63%,-7.87%,-18.31%,-25.13%,---,---,-30.03%,-26.56%,-24.47%,0.12%, +,1450,12696,同泰数字经济,9月19日,0.715,0.715,-0.85%,-6.01%,-9.96%,0.21%,-4.03%,-25.13%,---,---,-19.46%,-28.50%,---,0.15%, +,1451,10785,博时创业板指,9月20日,0.8045,0.8045,0.64%,-6.74%,-12.67%,-12.31%,-12.41%,-25.18%,---,---,-27.69%,-19.55%,-24.52%,0.08%, +,1452,4343,南方创业板E,9月19日,1.171,1.171,-0.70%,-7.35%,-13.34%,-10.88%,-12.72%,-25.20%,-7.97%,38.43%,-27.92%,28.58%,-24.05%,0.00%, +,1453,10183,南方创业板E,9月19日,1.1638,1.1638,-0.70%,-7.36%,-13.34%,-10.88%,-12.72%,-25.20%,-7.96%,---,-27.92%,-6.48%,-24.04%,0.00%, +,1454,11615,工银科创板5,9月20日,0.7894,0.7894,0.92%,-4.18%,-10.59%,-9.24%,-12.83%,-25.22%,---,---,-27.75%,-21.06%,-25.51%,0.00%, +,1455,1643,汇丰晋信智造,9月19日,3.0933,3.0933,-0.49%,-4.64%,-12.17%,-10.75%,-10.56%,-25.26%,47.11%,179.30%,-28.42%,209.24%,---,0.15%, +,1456,8750,富国中证科技,9月20日,0.8678,0.8678,0.25%,-4.77%,-9.17%,-9.76%,-14.62%,-25.33%,-22.00%,---,-30.43%,-13.22%,-24.96%,0.00%, +,1457,163116,申万中证申万,9月20日,0.7675,0.8949,-0.21%,-6.37%,-12.42%,-8.01%,-16.07%,-25.36%,-17.92%,19.32%,-32.03%,-10.51%,-25.19%,0.12%, +,1458,12646,建信中证全指,9月19日,0.7411,0.7411,-0.90%,-7.67%,-7.15%,-10.37%,-11.12%,-25.41%,---,---,-25.20%,-25.89%,---,0.00%, +,1459,11833,西部利得人工,9月19日,0.7307,0.7307,-1.43%,-3.92%,-9.67%,-7.96%,-18.48%,-25.43%,---,---,-30.23%,-26.93%,-24.76%,0.00%, +,1460,12697,同泰数字经济,9月19日,0.7117,0.7117,-0.85%,-6.02%,-9.99%,0.11%,-4.23%,-25.43%,---,---,-19.70%,-28.83%,---,0.00%, +,1461,4805,长信消费精选,9月19日,1.3681,1.3681,1.28%,-1.64%,-5.18%,-11.71%,-7.01%,-25.46%,-24.28%,11.12%,-24.88%,36.81%,-22.87%,0.15%, +,1462,10786,博时创业板指,9月20日,0.799,0.799,0.63%,-6.75%,-12.71%,-12.40%,-12.60%,-25.53%,---,---,-27.91%,-20.10%,-24.86%,0.00%, +,1463,10855,汇添富沪深3,9月20日,0.6657,0.6657,0.11%,-4.26%,-6.50%,-8.48%,-9.12%,-25.55%,---,---,-23.98%,-33.43%,-25.43%,0.00%, +,1464,10531,申万中证申万,9月20日,0.807,0.807,-0.22%,-6.39%,-12.44%,-8.08%,-16.21%,-25.59%,---,---,-32.18%,-19.30%,-25.42%,0.00%, +,1465,12116,中银创业板E,9月19日,0.8018,0.8018,-0.68%,-7.16%,-13.04%,-10.95%,-12.52%,-25.59%,---,---,-27.69%,-19.82%,-24.46%,0.10%, +,1466,1644,汇丰晋信智造,9月19日,2.9903,2.9903,-0.49%,-4.65%,-12.21%,-10.86%,-10.79%,-25.63%,45.65%,175.27%,-28.67%,198.94%,---,0.00%, +,1467,8537,兴银研究精选,9月19日,0.9882,0.9882,-0.27%,-5.24%,-8.79%,-8.43%,-5.98%,-25.69%,-1.31%,---,-20.12%,-1.18%,---,0.15%, +,1468,4292,鹏华沪深港互,9月19日,1.7769,1.7769,-0.80%,-7.55%,-9.54%,-7.59%,-4.97%,-25.72%,-1.01%,57.72%,-26.06%,77.69%,---,0.15%, +,1469,7750,广发优势增长,9月20日,1.3647,1.3647,2.19%,-4.54%,-7.84%,-2.49%,-3.85%,-25.73%,-9.12%,---,-19.59%,36.47%,-25.85%,0.15%, +,1470,12117,中银创业板E,9月19日,0.7993,0.7993,-0.68%,-7.16%,-13.04%,-10.99%,-12.61%,-25.74%,---,---,-27.79%,-20.07%,-24.61%,0.00%, +,1471,13152,长信消费精选,9月19日,1.3618,1.3618,1.28%,-1.65%,-5.21%,-11.80%,-7.21%,-25.77%,---,---,-25.11%,-28.70%,-23.19%,0.00%, +,1472,3984,嘉实新能源新,9月20日,2.7287,2.7287,1.37%,-5.41%,-10.37%,-16.66%,-12.21%,-25.79%,26.20%,114.61%,-24.67%,169.19%,-24.82%,0.15%, +,1473,7300,国联安中证半,9月20日,1.7778,1.7778,-0.13%,-4.77%,-10.28%,-6.29%,-17.79%,-25.82%,-11.18%,39.88%,-29.13%,78.00%,-26.64%,0.08%, +,1474,6909,华夏战略新兴,9月20日,1.6978,1.6978,1.13%,-6.82%,-11.93%,-13.57%,-13.10%,-25.83%,-7.56%,48.01%,-26.51%,67.89%,-24.48%,0.12%, +,1475,11608,易方达科创板,9月20日,0.7772,0.7772,0.92%,-4.23%,-10.80%,-9.64%,-13.48%,-25.84%,---,---,-28.34%,-22.28%,-26.12%,0.06%, +,1476,502053,长盛中证全指,9月19日,0.8383,0.8383,-0.97%,-7.91%,-7.25%,-10.40%,-10.67%,-25.85%,-22.47%,-0.81%,-25.23%,-5.37%,-25.30%,0.12%, +,1477,11612,华夏科创板5,9月19日,0.7858,0.7858,-2.18%,-5.39%,-11.37%,-10.01%,-13.59%,-25.87%,---,---,-28.29%,-21.42%,---,0.12%, +,1478,11609,易方达科创板,9月20日,0.776,0.776,0.92%,-4.23%,-10.80%,-9.66%,-13.53%,-25.91%,---,---,-28.39%,-22.40%,-26.19%,0.00%, +,1479,160516,博时中证全指,9月20日,1.0623,0.7353,0.08%,-7.79%,-7.24%,-9.51%,-10.33%,-25.92%,-22.67%,-10.15%,-24.85%,-26.47%,-25.45%,0.10%, +,1480,160626,鹏华信息A,9月19日,0.763,1.834,-1.55%,-4.15%,-8.73%,-7.18%,-15.88%,-25.92%,-29.55%,-1.51%,-32.18%,67.47%,---,0.12%, +,1481,12040,鹏华信息C,9月19日,0.786,0.786,-1.63%,-4.26%,-8.82%,-7.31%,-15.94%,-25.99%,---,---,-32.24%,-21.40%,---,0.00%, +,1482,12552,天弘中证芯片,9月20日,0.6699,0.6699,-0.49%,-6.10%,-11.76%,-8.45%,-19.60%,-25.99%,---,---,-30.74%,-33.01%,-26.75%,0.10%, +,1483,7301,国联安中证半,9月20日,1.7592,1.7592,-0.14%,-4.77%,-10.30%,-6.35%,-17.89%,-26.00%,-11.62%,38.69%,-29.26%,76.14%,-26.82%,0.00%, +,1484,7464,交银创业板5,9月20日,1.5964,1.5964,1.06%,-7.12%,-14.04%,-13.08%,-12.26%,-26.01%,0.36%,---,-27.99%,59.64%,-25.31%,0.12%, +,1485,1616,嘉实环保低碳,9月20日,3.014,3.014,0.84%,-2.55%,-6.69%,-14.71%,-11.72%,-26.02%,14.99%,103.37%,-25.82%,201.40%,-25.47%,0.15%, +,1486,8538,兴银研究精选,9月19日,0.9755,0.9755,-0.28%,-5.25%,-8.81%,-8.54%,-6.22%,-26.05%,-2.51%,---,-20.41%,-2.45%,---,0.00%, +,1487,6910,华夏战略新兴,9月20日,1.6811,1.6811,---,-6.83%,-11.96%,-13.64%,-13.23%,-26.06%,-8.12%,46.69%,-26.67%,66.24%,-24.71%,0.00%, +,1488,11613,华夏科创板5,9月19日,0.7828,0.7828,-2.17%,-5.39%,-11.39%,-10.06%,-13.69%,-26.06%,---,---,-28.41%,-21.72%,---,0.00%, +,1489,12553,天弘中证芯片,9月20日,0.6684,0.6684,-0.48%,-6.10%,-11.77%,-8.49%,-19.67%,-26.13%,---,---,-30.84%,-33.16%,-26.89%,0.00%, +,1490,3985,嘉实新能源新,9月20日,2.672,2.672,1.36%,-5.42%,-10.40%,-16.77%,-12.43%,-26.16%,24.95%,111.43%,-24.93%,163.61%,-25.19%,0.00%, +,1491,501016,国泰中证申万,9月19日,0.9324,0.9324,-0.98%,-7.88%,-7.29%,-10.12%,-10.50%,-26.16%,-28.67%,-11.54%,-24.98%,-6.76%,-25.62%,0.12%, +,1492,13306,国泰中证科创,9月19日,0.7332,0.7332,-0.56%,-5.48%,-11.21%,-8.79%,-12.85%,-26.22%,---,---,-25.84%,-26.68%,-25.51%,0.10%, +,1493,7465,交银创业板5,9月20日,1.5786,1.5786,1.06%,-7.12%,-14.07%,-13.17%,-12.44%,-26.31%,-0.44%,---,-28.20%,57.86%,-25.61%,0.00%, +,1494,11610,华泰柏瑞科创,9月19日,0.7778,0.7778,-2.15%,-5.28%,-11.42%,-9.90%,-13.72%,-26.32%,---,---,-28.52%,-22.22%,-25.92%,0.10%, +,1495,5826,华夏潜龙精选,9月20日,1.8358,1.8358,1.71%,-4.90%,-9.07%,-4.92%,-6.84%,-26.40%,5.16%,37.10%,-23.07%,83.58%,-26.81%,0.15%, +,1496,8264,南方ESG股,9月20日,1.3167,1.3167,1.86%,-3.52%,-4.70%,-3.64%,-3.68%,-26.41%,-9.96%,---,-18.83%,31.67%,-25.92%,0.15%, +,1497,7992,华夏中证全指,9月20日,0.9749,0.9749,0.09%,-7.78%,-7.25%,-9.56%,-10.51%,-26.41%,-25.01%,---,-25.13%,-2.51%,-25.99%,0.12%, +,1498,13307,国泰中证科创,9月19日,0.7308,0.7308,-0.56%,-5.50%,-11.24%,-8.88%,-12.99%,-26.46%,---,---,-26.00%,-26.92%,-25.75%,0.00%, +,1499,1617,天弘中证电子,9月19日,1.1083,1.1083,-1.47%,-5.34%,-11.58%,-8.18%,-16.83%,-26.49%,-22.99%,10.58%,-32.53%,10.83%,-26.59%,0.10%, +,1500,5777,广发科技动力,9月20日,1.3828,1.3828,0.14%,-5.70%,-8.89%,-6.88%,-0.72%,-26.49%,-31.31%,9.94%,-23.56%,38.28%,-26.27%,0.15%, +,1501,11611,华泰柏瑞科创,9月19日,0.7748,0.7748,-2.16%,-5.29%,-11.44%,-9.96%,-13.83%,-26.50%,---,---,-28.64%,-22.52%,-26.12%,0.00%, +,1502,161631,融通人工智能,9月20日,1.0717,1.0717,0.38%,-4.20%,-10.30%,-12.65%,-21.60%,-26.52%,-29.60%,-6.82%,-33.62%,7.17%,-26.33%,0.12%, +,1503,8281,国泰CES半,9月19日,1.3691,1.3691,-1.72%,-5.29%,-10.83%,-6.27%,-18.54%,-26.52%,-9.76%,---,-30.97%,36.91%,---,0.10%, +,1504,3956,南方产业智选,9月20日,1.7942,1.7942,2.32%,-7.34%,-13.34%,-0.12%,-1.03%,-26.59%,-2.36%,51.07%,-26.31%,79.42%,-25.97%,0.15%, +,1505,11146,创金合信气候,9月19日,1.2531,1.2531,0.83%,-4.50%,-10.18%,-13.47%,-5.80%,-26.59%,---,---,-17.62%,25.31%,---,0.15%, +,1506,7993,华夏中证全指,9月20日,0.9677,0.9677,0.09%,-7.79%,-7.28%,-9.63%,-10.65%,-26.63%,-25.46%,---,-25.29%,-3.23%,-26.21%,0.00%, +,1507,1618,天弘中证电子,9月19日,1.0904,1.0904,-1.46%,-5.34%,-11.59%,-8.23%,-16.92%,-26.63%,-23.29%,9.93%,-32.63%,9.04%,-26.74%,0.00%, +,1508,8590,天弘中证全指,9月20日,0.9486,0.9486,0.08%,-7.79%,-7.32%,-9.80%,-10.74%,-26.66%,-25.64%,---,-25.45%,-5.14%,-26.21%,0.10%, +,1509,160420,华安创业板5,9月19日,1.2282,0.4687,-0.65%,-8.12%,-14.99%,-12.18%,-13.19%,-26.69%,-1.20%,65.03%,-28.63%,-53.13%,---,0.12%, +,1510,161628,融通中证云计,9月20日,0.7849,0.5945,-0.43%,-4.27%,-7.09%,-7.13%,-14.99%,-26.71%,-32.22%,-11.10%,-29.69%,-41.81%,-26.51%,0.12%, +,1511,8282,国泰CES半,9月19日,1.3576,1.3576,-1.73%,-5.29%,-10.85%,-6.35%,-18.66%,-26.74%,-10.29%,---,-31.12%,35.76%,---,0.00%, +,1512,160633,鹏华券商A,9月19日,0.884,0.559,-1.01%,-7.92%,-7.43%,-10.53%,-10.89%,-26.76%,-27.42%,-6.93%,-25.40%,-46.30%,---,0.12%, +,1513,163113,申万菱信中证,9月20日,0.7469,1.7858,0.09%,-7.74%,-7.26%,-9.73%,-10.81%,-26.77%,-31.12%,-17.78%,-25.37%,13.36%,-26.30%,0.12%, +,1514,160422,华安创业板5,9月19日,1.6951,1.3929,-0.64%,-8.05%,-14.80%,-11.96%,-12.85%,-26.78%,-1.42%,60.22%,-28.53%,32.85%,---,0.12%, +,1515,160224,国泰中证计算,9月19日,0.6624,0.8501,-1.92%,-2.44%,-5.48%,-7.17%,-14.79%,-26.81%,-28.97%,-0.71%,-29.79%,-26.21%,-26.67%,0.10%, +,1516,8591,天弘中证全指,9月20日,0.9434,0.9434,0.08%,-7.79%,-7.33%,-9.84%,-10.82%,-26.81%,-25.93%,---,-25.56%,-5.66%,-26.35%,0.00%, +,1517,9239,融通人工智能,9月20日,1.0615,1.0615,0.38%,-4.21%,-10.33%,-12.75%,-21.75%,-26.81%,-30.15%,---,-33.81%,-13.11%,-26.62%,0.00%, +,1518,12044,鹏华券商C,9月19日,0.855,0.855,-1.04%,-7.97%,-7.47%,-10.56%,-10.94%,-26.86%,---,---,-25.46%,-14.50%,---,0.00%, +,1519,8265,南方ESG股,9月20日,1.295,1.295,1.85%,-3.53%,-4.76%,-3.80%,-3.98%,-26.87%,-11.05%,---,-19.18%,29.50%,-26.37%,0.00%, +,1520,11147,创金合信气候,9月19日,1.2445,1.2445,0.83%,-4.51%,-10.22%,-13.56%,-6.00%,-26.89%,---,---,-17.86%,24.45%,---,0.00%, +,1521,161720,招商中证全指,9月20日,0.9241,0.6626,0.09%,-7.85%,-7.33%,-9.87%,-10.93%,-26.89%,-27.86%,-11.23%,-25.55%,-45.49%,-26.41%,0.10%, +,1522,6818,安信盈利驱动,9月19日,1.0929,1.0929,-0.16%,-5.66%,-10.89%,-11.13%,-17.16%,-26.89%,-33.65%,2.25%,-24.37%,9.29%,---,0.15%, +,1523,13317,华宝中证科创,9月20日,0.7214,0.7214,0.60%,-4.92%,-10.93%,-9.99%,-13.12%,-26.90%,---,---,-26.49%,-27.86%,-26.55%,0.10%, +,1524,160419,华安中证全指,9月19日,0.8937,0.6019,-1.00%,-7.93%,-7.39%,-10.47%,-11.00%,-26.92%,-25.82%,-3.26%,-25.62%,-39.81%,---,0.12%, +,1525,12321,东财云计算A,9月20日,0.6897,0.6897,-0.62%,-3.91%,-7.21%,-8.66%,-13.64%,-26.95%,---,---,-30.86%,-31.03%,---,0.15%, +,1526,502010,易方达中证全,9月19日,0.9998,0.6849,-0.99%,-7.95%,-7.36%,-10.39%,-10.70%,-26.95%,-26.02%,-4.00%,-25.53%,-31.62%,-26.41%,0.10%, +,1527,13597,招商中证全指,9月20日,0.9233,0.9233,0.08%,-7.85%,-7.35%,-9.90%,-10.98%,-26.95%,---,---,-25.61%,-29.84%,-26.47%,0.00%, +,1528,1626,国泰央企改革,9月20日,1.639,1.639,-0.30%,-2.38%,-5.97%,-2.96%,-4.99%,-26.96%,-20.90%,27.55%,-24.89%,63.90%,-27.61%,0.15%, +,1529,4683,建信高端医疗,9月19日,1.7562,1.7562,-1.20%,-5.61%,-6.89%,-11.41%,-11.37%,-26.97%,-5.73%,59.51%,-25.14%,75.62%,---,0.15%, +,1530,13445,东财芯片A,9月19日,0.7303,0.7303,-1.89%,-5.69%,-11.25%,-6.37%,-17.96%,-26.97%,---,---,-29.66%,-26.97%,---,0.12%, +,1531,160424,华安创业板5,9月19日,1.6808,1.9608,-0.64%,-8.06%,-14.82%,-12.02%,-12.96%,-26.97%,-1.91%,59.00%,-28.66%,82.99%,---,0.00%, +,1532,6098,华宝券商ET,9月20日,1.2147,1.2147,0.09%,-7.85%,-7.32%,-9.99%,-11.04%,-26.98%,-28.19%,-10.21%,-25.44%,21.47%,-26.51%,0.10%, +,1533,161027,富国中证全指,9月19日,0.825,0.557,-0.96%,-7.92%,-7.41%,-10.23%,-10.71%,-26.99%,-27.15%,-10.87%,-25.61%,-47.81%,-26.38%,0.12%, +,1534,12898,兴银中证科创,9月19日,0.6587,0.6587,-0.62%,-5.67%,-11.48%,-8.75%,-12.96%,-27.01%,---,---,-26.58%,-34.13%,---,0.12%, +,1535,10210,国泰中证计算,9月19日,0.6589,0.6589,-1.93%,-2.44%,-5.49%,-7.24%,-14.91%,-27.02%,---,---,-29.94%,-30.11%,-26.89%,0.00%, +,1536,12362,国泰中证全指,9月19日,0.799,0.799,-0.94%,-7.91%,-7.34%,-10.36%,-11.07%,-27.03%,---,---,-25.48%,-20.10%,-26.59%,0.10%, +,1537,12969,鹏华国证半导,9月19日,0.6996,0.6996,-1.60%,-5.96%,-11.58%,-7.41%,-20.68%,-27.07%,---,---,-31.51%,-30.04%,---,0.12%, +,1538,501047,汇添富中证全,9月20日,0.8982,0.8982,0.08%,-7.90%,-7.34%,-10.02%,-10.93%,-27.08%,-29.26%,-10.07%,-25.53%,-10.18%,-26.62%,0.08%, +,1539,12550,华宝中证电子,9月20日,0.6599,0.6599,-0.42%,-4.41%,-10.14%,-8.82%,-17.86%,-27.08%,---,---,-32.67%,-33.73%,-27.11%,0.10%, +,1540,12899,兴银中证科创,9月19日,0.6579,0.6579,-0.62%,-5.68%,-11.49%,-8.79%,-13.01%,-27.08%,---,---,-26.64%,-34.21%,---,0.00%, +,1541,13276,富国中证全指,9月19日,0.823,0.823,-0.96%,-7.94%,-7.42%,-10.35%,-10.83%,-27.10%,---,---,-25.72%,-19.55%,-26.56%,0.00%, +,1542,13318,华宝中证科创,9月20日,0.719,0.719,0.59%,-4.94%,-10.97%,-10.08%,-13.26%,-27.13%,---,---,-26.66%,-28.10%,-26.78%,0.00%, +,1543,6671,广发消费升级,9月20日,1.3354,1.3354,1.45%,-3.75%,-5.36%,-11.81%,-4.41%,-27.15%,-22.86%,19.31%,-22.05%,33.54%,-26.26%,0.15%, +,1544,12322,东财云计算C,9月20日,0.6874,0.6874,-0.62%,-3.91%,-7.25%,-8.72%,-13.77%,-27.17%,---,---,-31.02%,-31.26%,---,0.00%, +,1545,6819,安信盈利驱动,9月19日,1.0772,1.0772,-0.17%,-5.67%,-10.92%,-11.22%,-17.32%,-27.18%,-34.20%,1.00%,-24.58%,7.72%,---,0.00%, +,1546,12629,广发国证半导,9月19日,0.667,0.667,-1.58%,-5.96%,-11.55%,-7.30%,-20.69%,-27.19%,---,---,-31.53%,-33.30%,---,0.12%, +,1547,12970,鹏华国证半导,9月19日,0.6981,0.6981,-1.61%,-5.97%,-11.60%,-7.45%,-20.76%,-27.21%,---,---,-31.60%,-30.19%,---,0.00%, +,1548,1104,华安新丝路主,9月19日,1.837,1.946,-0.16%,-3.67%,-6.66%,-9.01%,-7.69%,-27.22%,-12.90%,41.66%,-24.31%,92.24%,---,0.15%, +,1549,4069,南方中证全指,9月19日,0.9122,0.9122,-0.98%,-7.99%,-7.41%,-10.63%,-11.13%,-27.23%,-28.18%,-8.63%,-25.75%,-8.78%,-26.71%,0.12%, +,1550,12551,华宝中证电子,9月20日,0.6584,0.6584,-0.41%,-4.42%,-10.18%,-8.88%,-17.96%,-27.23%,---,---,-32.77%,-33.89%,-27.25%,0.00%, +,1551,11077,汇丰晋信创新,9月19日,0.7626,0.7626,-0.37%,-5.36%,-12.17%,-13.08%,-13.16%,-27.24%,---,---,-29.07%,-23.74%,---,0.15%, +,1552,12874,易方达中证全,9月19日,0.9953,0.9953,-0.98%,-7.96%,-7.38%,-10.48%,-10.88%,-27.24%,---,---,-25.75%,-18.62%,-26.71%,0.00%, +,1553,12363,国泰中证全指,9月19日,0.796,0.796,-0.93%,-7.90%,-7.36%,-10.42%,-11.20%,-27.25%,---,---,-25.63%,-20.40%,-26.80%,0.00%, +,1554,3760,国泰中证50,9月19日,1.0368,1.1006,-0.75%,-5.71%,-7.77%,-6.60%,-4.48%,-27.26%,-17.22%,1.64%,-14.57%,9.18%,-27.40%,0.10%, +,1555,501048,汇添富中证全,9月20日,0.8976,0.8976,0.09%,-7.89%,-7.36%,-10.08%,-11.04%,-27.26%,-29.61%,-10.73%,-25.66%,-10.24%,-26.80%,0.00%, +,1556,13302,招商中证科创,9月20日,0.7297,0.7297,0.61%,-5.05%,-11.09%,-10.10%,-13.04%,-27.26%,---,---,-26.54%,-27.03%,-26.91%,0.12%, +,1557,7531,华宝券商ET,9月20日,1.1992,1.1992,0.08%,-7.87%,-7.36%,-10.08%,-11.22%,-27.27%,-28.76%,-11.27%,-25.65%,-5.04%,-26.80%,0.00%, +,1558,13446,东财芯片C,9月19日,0.7273,0.7273,-1.90%,-5.72%,-11.29%,-6.48%,-18.13%,-27.27%,---,---,-29.87%,-27.27%,---,0.00%, +,1559,3761,国泰中证50,9月19日,1.023,1.0859,-0.75%,-5.71%,-7.78%,-6.61%,-4.49%,-27.28%,-17.24%,1.48%,-14.59%,7.73%,-27.42%,0.00%, +,1560,1180,广发医药卫生,9月20日,0.8858,0.8858,0.23%,-5.16%,-7.61%,-13.39%,-15.79%,-27.30%,-27.32%,4.58%,-26.55%,-11.42%,-27.43%,0.12%, +,1561,12907,鹏扬中证科创,9月19日,0.6843,0.6843,-0.61%,-5.69%,-11.60%,-9.01%,-13.55%,-27.31%,---,---,-27.21%,-31.57%,---,0.10%, +,1562,12837,华安CES半,9月19日,0.6294,0.6294,-1.76%,-5.52%,-11.11%,-7.15%,-19.44%,-27.31%,---,---,-31.82%,-37.06%,---,0.05%, +,1563,519606,国泰金鑫股票,9月19日,1.9775,2.1469,-0.55%,-6.84%,-14.44%,-6.05%,-1.52%,-27.35%,-19.09%,30.44%,-20.04%,97.75%,-25.80%,0.15%, +,1564,12326,天弘中证全指,9月20日,0.6517,0.6517,-0.08%,-6.08%,-5.89%,-11.85%,-9.59%,-27.36%,---,---,-25.21%,-34.83%,-27.75%,0.10%, +,1565,12894,天弘中证科创,9月20日,0.6567,0.6567,0.60%,-5.03%,-11.08%,-10.05%,-13.19%,-27.40%,---,---,-26.91%,-34.33%,-27.05%,0.10%, +,1566,12630,广发国证半导,9月19日,0.6648,0.6648,-1.58%,-5.97%,-11.57%,-7.37%,-20.81%,-27.41%,---,---,-31.68%,-33.52%,---,0.00%, +,1567,161025,富国中证移动,9月20日,0.698,1.564,-0.29%,-5.55%,-9.59%,-10.40%,-15.50%,-27.44%,-25.68%,8.36%,-32.88%,7.15%,-27.14%,0.12%, +,1568,8585,华夏中证人工,9月20日,0.6377,0.6377,0.36%,-4.18%,-10.07%,-12.72%,-22.29%,-27.44%,-30.91%,---,-34.08%,-36.23%,-27.30%,0.12%, +,1569,2978,广发医药卫生,9月20日,0.8748,0.8748,0.22%,-5.17%,-7.63%,-13.45%,-15.88%,-27.45%,-27.62%,3.94%,-26.66%,11.77%,-27.58%,0.00%, +,1570,12327,天弘中证全指,9月20日,0.6501,0.6501,-0.09%,-6.10%,-5.92%,-11.89%,-9.68%,-27.51%,---,---,-25.32%,-34.99%,-27.89%,0.00%, +,1571,4070,南方中证全指,9月19日,0.8921,0.8921,-0.98%,-8.00%,-7.44%,-10.72%,-11.31%,-27.52%,-28.75%,-9.72%,-25.96%,-10.79%,-27.01%,0.00%, +,1572,12838,华安CES半,9月19日,0.6273,0.6273,-1.77%,-5.53%,-11.13%,-7.22%,-19.57%,-27.53%,---,---,-31.96%,-37.27%,---,0.00%, +,1573,12895,天弘中证科创,9月20日,0.6551,0.6551,0.60%,-5.04%,-11.10%,-10.10%,-13.29%,-27.56%,---,---,-27.02%,-34.49%,-27.20%,0.00%, +,1574,13303,招商中证科创,9月20日,0.7265,0.7265,0.60%,-5.06%,-11.12%,-10.20%,-13.22%,-27.56%,---,---,-26.76%,-27.35%,-27.21%,0.00%, +,1575,11839,天弘中证人工,9月20日,0.6848,0.6848,0.35%,-4.22%,-10.13%,-12.90%,-22.67%,-27.58%,---,---,-34.18%,-31.52%,-27.39%,0.10%, +,1576,12908,鹏扬中证科创,9月19日,0.6811,0.6811,-0.61%,-5.70%,-11.63%,-9.11%,-13.73%,-27.60%,---,---,-27.41%,-31.89%,---,0.00%, +,1577,13505,华安新丝路主,9月19日,1.827,1.827,-0.16%,-3.69%,-6.69%,-9.15%,-7.96%,-27.61%,---,---,-24.60%,-25.70%,---,0.00%, +,1578,160636,鹏华中证移动,9月19日,0.689,0.843,-1.57%,-4.83%,-9.22%,-9.10%,-15.25%,-27.63%,-27.91%,6.92%,-32.71%,-25.78%,---,0.12%, +,1579,8075,招商核心优选,9月20日,0.9825,0.9825,1.06%,-3.74%,-7.03%,-6.98%,-5.93%,-27.66%,-27.34%,---,-20.39%,-1.75%,-27.55%,0.15%, +,1580,161718,招商沪深30,9月20日,0.895,1.2119,0.62%,-5.15%,-8.50%,-13.45%,-10.93%,-27.67%,-23.45%,-3.53%,-27.13%,1.42%,-27.31%,0.10%, +,1581,8586,华夏中证人工,9月20日,0.6333,0.6333,0.35%,-4.19%,-10.11%,-12.79%,-22.42%,-27.67%,-31.33%,---,-34.23%,-36.67%,-27.53%,0.00%, +,1582,1291,大摩量化多策,9月20日,1.099,1.099,0.37%,-3.93%,-6.63%,-8.72%,-12.08%,-27.70%,-5.42%,30.52%,-26.24%,9.90%,-28.08%,0.15%, +,1583,11840,天弘中证人工,9月20日,0.6833,0.6833,0.35%,-4.22%,-10.14%,-12.94%,-22.75%,-27.73%,---,---,-34.28%,-31.67%,-27.53%,0.00%, +,1584,5620,中欧品质消费,9月20日,1.3634,1.6184,0.97%,-3.61%,-7.53%,-14.98%,-11.50%,-27.79%,-36.93%,19.70%,-32.87%,53.43%,-26.86%,0.15%, +,1585,13304,易方达中证科,9月20日,0.7178,0.7178,0.60%,-5.05%,-11.10%,-10.20%,-13.41%,-27.79%,---,---,-27.08%,-28.22%,-27.52%,0.06%, +,1586,7815,嘉实新兴科技,9月20日,0.9671,0.9671,0.05%,-4.74%,-9.29%,-13.05%,-18.37%,-27.82%,-28.77%,---,-31.26%,-3.30%,-27.66%,0.12%, +,1587,165523,信诚中证信息,9月19日,0.6362,0.5035,-2.36%,-3.52%,-6.55%,-6.32%,-17.94%,-27.84%,-36.44%,-25.69%,-30.70%,-58.19%,-27.74%,0.10%, +,1588,5968,创金合信工业,9月19日,2.5595,2.5595,-0.36%,-8.57%,-14.24%,-14.01%,-14.92%,-27.86%,23.17%,154.30%,-26.50%,155.95%,---,0.15%, +,1589,8887,华夏国证半导,9月20日,0.9809,0.9809,-0.29%,-6.25%,-12.05%,-8.99%,-21.09%,-27.86%,-8.47%,---,-32.20%,-1.91%,-28.60%,0.12%, +,1590,5927,创金合信新能,9月19日,2.7156,2.7156,0.98%,-4.75%,-10.54%,-14.47%,-7.40%,-27.89%,83.29%,172.40%,-18.58%,171.56%,---,0.15%, +,1591,9864,招商景气优选,9月20日,0.6525,0.6525,0.99%,-3.63%,-6.72%,-6.95%,-5.90%,-27.89%,---,---,-20.30%,-34.75%,-27.78%,0.15%, +,1592,13310,华夏科创创业,9月20日,0.6993,0.6993,0.60%,-5.05%,-11.09%,-10.15%,-13.33%,-27.93%,---,---,-26.99%,-30.07%,---,0.12%, +,1593,7816,嘉实新兴科技,9月20日,0.9615,0.9615,0.05%,-4.74%,-9.29%,-13.09%,-18.45%,-27.96%,-29.06%,---,-31.36%,-3.86%,-27.80%,0.00%, +,1594,12401,天弘中证医药,9月20日,0.745,0.745,0.15%,-5.02%,-7.81%,-12.60%,-13.42%,-27.96%,---,---,-28.32%,-25.50%,-28.28%,0.15%, +,1595,13305,易方达中证科,9月20日,0.7154,0.7154,0.59%,-5.07%,-11.13%,-10.27%,-13.56%,-28.02%,---,---,-27.24%,-28.46%,-27.75%,0.00%, +,1596,8154,嘉实医药健康,9月20日,0.6127,0.6127,0.00%,-4.80%,-7.74%,-13.01%,-15.68%,-28.06%,---,---,-27.78%,-38.73%,-28.48%,0.12%, +,1597,8888,华夏国证半导,9月20日,0.9742,0.9742,-0.30%,-6.25%,-12.07%,-9.06%,-21.20%,-28.07%,-9.02%,---,-32.34%,-2.58%,-28.82%,0.00%, +,1598,13083,信诚中证信息,9月19日,0.6336,0.6336,-2.37%,-3.52%,-6.58%,-6.41%,-18.11%,-28.13%,---,---,-30.90%,-30.61%,-28.03%,0.00%, +,1599,1629,天弘中证计算,9月20日,0.6239,0.6239,-0.21%,-3.51%,-5.77%,-9.09%,-16.28%,-28.14%,-34.84%,-20.39%,-31.44%,-37.61%,-27.81%,0.10%, +,1600,13311,华夏科创创业,9月20日,0.6971,0.6971,0.62%,-5.04%,-11.11%,-10.20%,-13.46%,-28.14%,---,---,-27.14%,-30.29%,---,0.00%, +,1601,12402,天弘中证医药,9月20日,0.7426,0.7426,0.15%,-5.04%,-7.84%,-12.67%,-13.56%,-28.18%,---,---,-28.47%,-25.74%,-28.49%,0.00%, +,1602,6923,前海开源沪港,9月19日,1.0116,1.0116,-0.76%,-10.31%,-11.47%,-7.79%,-0.75%,-28.22%,-20.68%,-3.79%,-28.94%,1.16%,---,0.15%, +,1603,8155,嘉实医药健康,9月20日,0.6109,0.6109,-0.02%,-4.81%,-7.76%,-13.06%,-15.77%,-28.22%,---,---,-27.89%,-38.91%,-28.63%,0.00%, +,1604,6981,中金新医药股,9月19日,1.5145,1.5145,-1.62%,-5.02%,-5.18%,-9.43%,-6.64%,-28.23%,-18.94%,31.90%,-22.18%,51.45%,---,0.15%, +,1605,13298,南方中证科创,9月20日,0.7118,0.7118,0.61%,-5.08%,-11.14%,-10.25%,-13.51%,-28.23%,---,---,-27.20%,-28.82%,-28.06%,0.12%, +,1606,8076,招商核心优选,9月20日,0.9611,0.9611,1.05%,-3.76%,-7.10%,-7.18%,-6.32%,-28.24%,-28.49%,---,-20.85%,-3.89%,-28.13%,0.00%, +,1607,1630,天弘中证计算,9月20日,0.6143,0.6143,-0.21%,-3.50%,-5.80%,-9.14%,-16.36%,-28.29%,-35.10%,-20.87%,-31.54%,-38.57%,-27.96%,0.00%, +,1608,13315,嘉实中证科创,9月19日,0.6812,0.6812,-0.63%,-5.64%,-11.54%,-8.98%,-13.85%,-28.34%,---,---,-27.37%,-31.88%,-27.55%,0.10%, +,1609,5621,中欧品质消费,9月20日,1.3233,1.5623,0.97%,-3.62%,-7.59%,-15.16%,-11.86%,-28.37%,-37.94%,16.84%,-33.25%,48.13%,-27.43%,0.00%, +,1610,5969,创金合信工业,9月19日,2.4855,2.4855,-0.36%,-8.58%,-14.29%,-14.17%,-15.23%,-28.37%,21.46%,149.02%,-26.87%,148.55%,---,0.00%, +,1611,10420,民生加银成长,9月20日,0.7306,0.7306,1.19%,-5.17%,-8.19%,-12.46%,-12.58%,-28.39%,---,---,-28.79%,-26.94%,-27.64%,0.15%, +,1612,1749,招商中国机遇,9月20日,1.951,1.951,1.67%,-5.20%,-8.02%,1.04%,-1.76%,-28.40%,8.03%,84.75%,-20.46%,95.10%,-28.59%,0.15%, +,1613,5928,创金合信新能,9月19日,2.6318,2.6318,0.97%,-4.77%,-10.60%,-14.63%,-7.73%,-28.40%,80.74%,166.89%,-18.99%,163.18%,---,0.00%, +,1614,6924,前海开源沪港,9月19日,1.0027,1.0027,-0.76%,-10.32%,-11.49%,-7.87%,-0.88%,-28.40%,-21.08%,-4.51%,-29.07%,0.27%,---,0.00%, +,1615,13299,南方中证科创,9月20日,0.7095,0.7095,0.62%,-5.07%,-11.16%,-10.31%,-13.64%,-28.45%,---,---,-27.36%,-29.05%,-28.27%,0.00%, +,1616,1113,南方大数据1,9月19日,0.9397,0.9397,-0.87%,-8.93%,-15.64%,-5.54%,-3.99%,-28.47%,-1.99%,43.66%,-19.70%,-6.03%,---,0.12%, +,1617,9865,招商景气优选,9月20日,0.6429,0.6429,0.99%,-3.64%,-6.79%,-7.14%,-6.28%,-28.47%,---,---,-20.76%,-35.71%,-28.35%,0.00%, +,1618,7005,中金新医药股,9月19日,1.489,1.489,-1.63%,-5.03%,-5.21%,-9.52%,-6.83%,-28.51%,-19.58%,30.25%,-22.40%,48.90%,---,0.00%, +,1619,13316,嘉实中证科创,9月19日,0.6794,0.6794,-0.63%,-5.64%,-11.56%,-9.04%,-13.96%,-28.52%,---,---,-27.50%,-32.06%,-27.72%,0.00%, +,1620,1899,东海社会安全,9月19日,0.518,0.518,-0.96%,-4.60%,-7.17%,-5.82%,-9.76%,-28.55%,-33.93%,-25.04%,-26.21%,-48.20%,-27.88%,0.12%, +,1621,4450,嘉实前沿科技,9月20日,1.6103,1.6103,1.26%,-4.01%,-9.99%,-9.16%,-13.47%,-28.59%,-18.38%,21.95%,-28.04%,61.01%,-28.58%,0.15%, +,1622,1072,华安智能装备,9月19日,1.838,1.891,-1.13%,-5.60%,-13.30%,-6.61%,-10.91%,-28.65%,1.16%,58.86%,-28.62%,93.16%,---,0.15%, +,1623,13313,富国中证科创,9月19日,0.7114,0.7114,-0.60%,-5.60%,-11.51%,-9.06%,-13.78%,-28.73%,---,---,-27.19%,-28.86%,---,0.12%, +,1624,4344,南方大数据1,9月19日,0.92,0.92,-0.86%,-8.94%,-15.67%,-5.63%,-4.19%,-28.75%,-2.77%,41.98%,-19.92%,1.51%,---,0.00%, +,1625,4606,上投摩根优选,9月19日,1.0843,1.0843,-0.03%,-5.77%,-9.11%,-9.66%,-10.25%,-28.78%,-21.93%,-2.09%,-24.64%,8.43%,---,0.15%, +,1626,13314,富国中证科创,9月19日,0.7106,0.7106,-0.60%,-5.62%,-11.52%,-9.10%,-13.82%,-28.81%,---,---,-27.24%,-28.94%,---,0.00%, +,1627,10585,创金合信医药,9月19日,0.7007,0.7007,-0.37%,-5.71%,-7.50%,-10.17%,-11.81%,-28.87%,---,---,-26.38%,-29.93%,---,0.90%, +,1628,4352,北信瑞丰研究,9月19日,1.393,1.393,-0.43%,-7.55%,-11.23%,-6.83%,-5.53%,-28.95%,2.28%,32.15%,-20.85%,39.30%,-29.07%,0.15%, +,1629,540010,汇丰晋信科技,9月19日,2.2713,2.2713,-0.58%,-4.99%,-12.53%,-11.87%,-16.45%,-28.96%,-31.71%,9.21%,-32.82%,127.13%,---,0.15%, +,1630,11254,长江量化科技,9月19日,0.7131,0.7131,-1.22%,-6.01%,-10.72%,-7.78%,-10.31%,-28.96%,---,---,-26.36%,-28.69%,---,0.15%, +,1631,7965,民生加银品质,9月20日,1.0295,1.0295,1.06%,-3.54%,-8.59%,-9.13%,-12.03%,-28.98%,-17.28%,---,-28.28%,2.95%,-28.72%,0.15%, +,1632,167506,安信深圳科技,9月19日,0.9705,0.9705,-1.04%,-6.98%,-13.76%,-9.62%,-11.61%,-29.09%,-30.56%,---,-31.12%,-2.95%,---,0.12%, +,1633,10586,创金合信医药,9月19日,0.6944,0.6944,-0.37%,-5.72%,-7.54%,-10.28%,-12.03%,-29.23%,---,---,-26.64%,-30.56%,---,0.00%, +,1634,167507,安信深圳科技,9月19日,0.9638,0.9638,-1.04%,-6.98%,-13.77%,-9.67%,-11.72%,-29.26%,-30.91%,---,-31.24%,-3.62%,---,0.00%, +,1635,7966,民生加银品质,9月20日,1.0196,1.0196,1.06%,-3.55%,-8.62%,-9.22%,-12.21%,-29.26%,-17.93%,---,-28.49%,1.96%,-29.01%,0.00%, +,1636,10112,广发研究精选,9月20日,0.7269,0.7269,1.89%,-5.70%,-10.18%,-7.09%,-12.16%,-29.27%,---,---,-27.79%,-27.31%,-29.12%,0.15%, +,1637,7873,华宝科技ET,9月20日,1.0233,1.0233,-0.48%,-4.78%,-8.05%,-9.64%,-18.99%,-29.34%,-30.18%,-2.76%,-32.90%,2.33%,-28.95%,0.10%, +,1638,11255,长江量化科技,9月19日,0.7077,0.7077,-1.23%,-6.03%,-10.77%,-7.92%,-10.59%,-29.39%,---,---,-26.67%,-29.23%,---,0.00%, +,1639,12882,工银科技龙头,9月20日,0.6375,0.6375,-0.47%,-4.74%,-8.00%,-9.55%,-18.91%,-29.47%,---,---,-32.85%,-36.25%,-29.08%,0.10%, +,1640,8551,东财医药A,9月19日,0.9505,0.9505,-1.11%,-6.31%,-7.78%,-12.69%,-15.16%,-29.48%,-24.86%,---,-26.98%,-4.95%,---,0.10%, +,1641,10113,广发研究精选,9月20日,0.7215,0.7215,1.91%,-5.70%,-10.21%,-7.18%,-12.32%,-29.55%,---,---,-28.00%,-27.85%,-29.40%,0.00%, +,1642,12883,工银科技龙头,9月20日,0.6367,0.6367,-0.48%,-4.76%,-8.02%,-9.59%,-18.96%,-29.55%,---,---,-32.90%,-36.33%,-29.15%,0.00%, +,1643,11425,广发优势成长,9月20日,0.6638,0.6638,2.12%,-4.46%,-8.35%,-4.13%,-7.93%,-29.57%,---,---,-22.84%,-33.62%,-29.74%,0.15%, +,1644,7874,华宝科技ET,9月20日,1.0109,1.0109,-0.48%,-4.80%,-8.09%,-9.74%,-19.15%,-29.63%,-30.74%,-3.92%,-33.10%,1.09%,-29.24%,0.00%, +,1645,8552,东财医药C,9月19日,0.9447,0.9447,-1.12%,-6.32%,-7.81%,-12.75%,-15.27%,-29.66%,-25.24%,---,-27.11%,-5.53%,---,0.00%, +,1646,12730,国泰中证细分,9月19日,0.8324,0.8324,0.10%,-6.10%,-6.97%,-12.05%,-7.15%,-29.80%,---,---,-17.42%,-16.76%,-28.79%,0.10%, +,1647,11426,广发优势成长,9月20日,0.6595,0.6595,2.11%,-4.48%,-8.39%,-4.24%,-8.12%,-29.86%,---,---,-23.06%,-34.05%,-30.02%,0.00%, +,1648,12537,华宝中证细分,9月20日,0.8089,0.8089,1.26%,-4.32%,-6.14%,-10.68%,-6.80%,-29.93%,---,---,-17.62%,-19.11%,-29.62%,0.10%, +,1649,12731,国泰中证细分,9月19日,0.8294,0.8294,0.11%,-6.10%,-7.00%,-12.11%,-7.29%,-30.01%,---,---,-17.60%,-17.06%,-29.01%,0.00%, +,1650,12538,华宝中证细分,9月20日,0.807,0.807,1.27%,-4.32%,-6.14%,-10.72%,-6.89%,-30.06%,---,---,-17.74%,-19.30%,-29.75%,0.00%, +,1651,12045,大成医药健康,9月20日,0.7,0.7,0.13%,-5.72%,-11.08%,-17.19%,-22.61%,-30.06%,---,---,-31.83%,-30.00%,---,0.15%, +,1652,5894,华夏优势精选,9月19日,1.6772,1.6772,-1.37%,-9.19%,-11.63%,-0.38%,-3.65%,-30.09%,6.04%,34.24%,-16.22%,67.72%,-28.10%,0.15%, +,1653,12046,大成医药健康,9月20日,0.6972,0.6972,0.13%,-5.73%,-11.11%,-17.27%,-22.76%,-30.34%,---,---,-32.03%,-30.28%,---,0.00%, +,1654,5770,信澳中证沪港,9月20日,0.7441,0.7441,0.35%,-5.64%,-7.58%,-10.11%,-14.83%,-30.40%,-34.15%,-24.94%,-24.46%,-25.86%,-30.30%,0.10%, +,1655,160635,鹏华中证医药,9月19日,1.004,0.911,-1.08%,-6.08%,-7.55%,-12.62%,-15.20%,-30.42%,-31.19%,-2.90%,-27.19%,-8.99%,---,0.12%, +,1656,8020,华富中证人工,9月20日,0.6529,0.6529,0.08%,-4.27%,-9.91%,-11.82%,-21.01%,-30.42%,-35.67%,---,-35.71%,-34.71%,-30.09%,0.10%, +,1657,6786,泰康港股通大,9月19日,1.0272,1.0272,-1.51%,-5.55%,-8.73%,-8.47%,3.99%,-30.44%,-23.00%,5.70%,-20.20%,2.72%,---,0.10%, +,1658,10366,鹏华中证医药,9月19日,0.671,0.671,-1.03%,-6.02%,-7.58%,-12.52%,-15.17%,-30.47%,---,---,-27.22%,-32.90%,---,0.00%, +,1659,1605,国富沪港深成,9月20日,1.843,1.843,0.93%,-4.26%,-7.34%,-8.90%,-9.83%,-30.53%,-15.92%,32.49%,-26.19%,84.30%,-30.24%,0.15%, +,1660,160219,国泰国证医药,9月19日,0.6293,2.0143,-1.13%,-6.09%,-7.85%,-12.00%,-15.04%,-30.61%,-29.30%,9.33%,-27.63%,70.29%,-30.64%,0.10%, +,1661,8021,华富中证人工,9月20日,0.6481,0.6481,0.08%,-4.28%,-9.94%,-11.90%,-21.15%,-30.63%,-36.07%,---,-35.85%,-35.19%,-30.30%,0.00%, +,1662,6787,泰康港股通大,9月19日,1.0132,1.0132,-1.52%,-5.56%,-8.75%,-8.56%,3.79%,-30.72%,-23.61%,4.45%,-20.42%,1.32%,---,0.00%, +,1663,780,鹏华医疗保健,9月19日,1.942,1.942,-0.15%,-4.94%,-5.91%,-8.01%,-9.97%,-30.74%,-18.23%,38.22%,-25.68%,94.20%,---,0.15%, +,1664,163118,申万菱信中证,9月20日,0.7228,1.175,-0.06%,-4.96%,-8.12%,-13.64%,-15.94%,-30.79%,-26.52%,15.75%,-28.33%,17.50%,-30.88%,0.12%, +,1665,168203,中融国证钢铁,9月19日,1.135,1.135,-1.30%,-6.04%,-6.35%,-9.49%,-8.91%,-30.96%,27.10%,36.19%,-17.27%,-51.35%,---,0.00%, +,1666,165519,信诚中证80,9月19日,0.9491,1.6541,-0.62%,-6.61%,-9.62%,-14.56%,-19.21%,-31.10%,-26.63%,12.53%,-29.68%,75.43%,-30.66%,0.12%, +,1667,793,工银高端制造,9月20日,1.673,1.673,0.97%,-5.43%,-9.52%,-6.64%,-5.91%,-31.18%,5.62%,95.22%,-22.90%,67.30%,-31.60%,0.15%, +,1668,5112,银华中证全指,9月20日,1.4391,1.4391,1.12%,-5.22%,-6.46%,-16.01%,-11.04%,-31.18%,-27.81%,15.25%,-28.41%,43.91%,-31.66%,0.12%, +,1669,7076,汇添富中证医,9月19日,1.0198,1.0198,-1.10%,-6.24%,-7.80%,-13.13%,-16.07%,-31.30%,-32.34%,-3.82%,-27.91%,1.98%,-31.07%,0.10%, +,1670,13080,信诚中证80,9月19日,0.9453,0.9453,-0.62%,-6.62%,-9.64%,-14.65%,-19.37%,-31.37%,---,---,-29.87%,-29.44%,-30.94%,0.00%, +,1671,13162,广发沪港深科,9月20日,0.684,0.684,0.25%,-4.44%,-8.67%,-12.62%,-13.35%,-31.51%,---,---,-30.52%,-31.60%,-30.82%,0.12%, +,1672,376510,上投摩根大盘,9月19日,2.4529,2.4529,-0.61%,-5.38%,-13.72%,-13.68%,-14.82%,-31.52%,-10.48%,36.12%,-28.09%,145.29%,---,0.15%, +,1673,1915,宝盈医疗健康,9月20日,1.465,1.465,0.41%,-5.48%,-7.69%,-9.51%,-9.34%,-31.57%,-25.71%,31.86%,-22.69%,46.50%,-32.40%,0.15%, +,1674,7077,汇添富中证医,9月19日,1.0058,1.0058,-1.10%,-6.25%,-7.83%,-13.23%,-16.23%,-31.57%,-32.88%,-4.96%,-28.12%,0.58%,-31.34%,0.00%, +,1675,13163,广发沪港深科,9月20日,0.6825,0.6825,0.23%,-4.45%,-8.70%,-12.67%,-13.44%,-31.65%,---,---,-30.63%,-31.75%,-30.96%,0.00%, +,1676,8189,国泰中证钢铁,9月19日,1.231,1.431,-1.27%,-6.16%,-6.39%,-9.01%,-7.79%,-31.67%,23.46%,---,-16.00%,40.18%,-31.63%,0.10%, +,1677,4075,交银医药创新,9月20日,2.5489,2.5489,0.56%,-3.87%,-7.07%,-13.45%,-8.83%,-31.71%,-14.18%,55.55%,-25.01%,154.89%,-32.16%,0.15%, +,1678,12315,创金合信港股,9月19日,0.6255,0.6255,-2.39%,-7.59%,-6.81%,-9.91%,-4.05%,-31.83%,---,---,-26.88%,-37.45%,---,0.15%, +,1679,373,华安中证细分,9月19日,1.26,1.26,-0.87%,-6.74%,-9.68%,-14.17%,-19.08%,-31.86%,-35.35%,-6.94%,-28.97%,26.00%,---,0.12%, +,1680,8190,国泰中证钢铁,9月19日,1.2204,1.4204,-1.27%,-6.17%,-6.41%,-9.07%,-7.93%,-31.88%,22.72%,---,-16.18%,39.08%,-31.83%,0.00%, +,1681,524,上投摩根民生,9月19日,2.3855,2.8245,-0.60%,-4.42%,-10.91%,-9.52%,-8.97%,-31.89%,-8.88%,52.04%,-26.51%,198.29%,---,0.15%, +,1682,3230,创金合信医疗,9月19日,2.2149,2.144,-0.85%,-7.02%,-9.20%,-10.47%,-12.83%,-32.02%,-16.94%,51.77%,-28.23%,114.40%,---,0.15%, +,1683,11236,上投摩根行业,9月19日,0.8082,0.8082,0.00%,-5.26%,-9.34%,-10.39%,-6.95%,-32.04%,---,---,-23.55%,-19.18%,---,0.15%, +,1684,9877,中银内核驱动,9月20日,0.7746,0.7746,1.37%,-2.65%,-5.12%,-14.96%,-10.72%,-32.08%,-21.39%,---,-27.79%,-22.54%,-30.89%,0.15%, +,1685,8314,上投摩根慧选,9月19日,1.2909,1.2909,-0.07%,-4.62%,-10.33%,-13.81%,-13.33%,-32.12%,-16.82%,---,-29.54%,29.09%,---,0.15%, +,1686,376,华安中证细分,9月19日,1.22,1.22,-0.81%,-6.73%,-9.70%,-14.27%,-19.26%,-32.15%,-35.86%,-7.99%,-29.19%,22.00%,---,0.00%, +,1687,12316,创金合信港股,9月19日,0.6216,0.6216,-2.40%,-7.61%,-6.85%,-10.03%,-4.30%,-32.17%,---,---,-27.14%,-37.84%,---,0.00%, +,1688,9733,创金合信港股,9月19日,0.5761,0.5761,-0.95%,-3.03%,-6.81%,-6.61%,-7.62%,-32.20%,-40.98%,---,-26.75%,-42.39%,---,0.15%, +,1689,2332,汇丰晋信沪港,9月19日,1.2062,1.2612,-0.22%,-6.26%,-10.99%,-12.40%,-6.05%,-32.27%,-23.20%,1.50%,-26.56%,26.81%,---,0.15%, +,1690,12600,中银内核驱动,9月20日,0.7712,0.7712,1.38%,-2.66%,-5.15%,-15.05%,-10.90%,-32.33%,---,---,-28.01%,-38.23%,-31.16%,0.00%, +,1691,11237,上投摩根行业,9月19日,0.8019,0.8019,0.00%,-5.28%,-9.38%,-10.50%,-7.20%,-32.38%,---,---,-23.82%,-19.81%,---,0.00%, +,1692,3231,创金合信医疗,9月19日,2.1646,1.9771,-0.86%,-7.03%,-9.25%,-10.63%,-13.13%,-32.49%,-18.10%,48.44%,-28.58%,97.71%,---,0.00%, +,1693,160322,华夏港股通精,9月20日,0.9987,1.0487,1.00%,-2.71%,-5.76%,-10.89%,-8.16%,-32.49%,-29.02%,-5.55%,-25.38%,4.16%,-32.61%,0.15%, +,1694,502023,鹏华国证钢铁,9月19日,1.532,1.074,-1.35%,-6.13%,-6.41%,-9.88%,-9.78%,-32.51%,23.85%,36.11%,-18.34%,9.29%,---,0.12%, +,1695,12810,鹏华国证钢铁,9月19日,0.843,0.843,-1.29%,-6.12%,-6.33%,-9.94%,-9.74%,-32.56%,---,---,-18.39%,-15.70%,---,0.00%, +,1696,2333,汇丰晋信沪港,9月19日,1.1663,1.2213,-0.22%,-6.28%,-11.03%,-12.53%,-6.31%,-32.62%,-23.97%,-0.03%,-26.83%,22.68%,---,0.00%, +,1697,1126,上投摩根卓越,9月19日,1.3012,1.4307,-0.09%,-4.72%,-10.83%,-13.83%,-15.18%,-32.64%,-7.85%,64.56%,-30.65%,40.54%,---,0.15%, +,1698,8107,华商医药医疗,9月19日,0.9613,0.9613,-2.34%,-8.28%,-9.00%,-11.32%,-14.85%,-32.66%,-30.42%,---,-29.14%,-3.87%,---,0.15%, +,1699,8315,上投摩根慧选,9月19日,1.264,1.264,-0.07%,-4.64%,-10.39%,-13.98%,-13.68%,-32.67%,-18.13%,---,-29.94%,26.40%,---,0.00%, +,1700,9734,创金合信港股,9月19日,0.5679,0.5679,-0.94%,-3.04%,-6.86%,-6.78%,-7.94%,-32.67%,-41.80%,---,-27.11%,-43.21%,---,0.00%, +,1701,1009,上投摩根安全,9月19日,1.574,1.8206,-0.40%,-7.30%,-12.40%,-4.04%,-3.60%,-32.71%,-0.14%,59.30%,-19.86%,78.42%,---,0.15%, +,1702,1685,汇添富沪港深,9月20日,1.141,1.141,0.97%,-2.48%,-4.68%,-8.72%,-8.06%,-32.88%,-18.96%,8.36%,-23.83%,14.10%,-32.20%,0.15%, +,1703,12884,华夏港股通精,9月20日,0.9915,0.9915,0.99%,-2.73%,-5.81%,-11.03%,-8.47%,-32.91%,---,---,-25.72%,-39.84%,-33.02%,0.00%, +,1704,9017,银华港股通精,9月20日,0.9365,0.9365,0.80%,-1.54%,-5.63%,-9.34%,-2.26%,-33.07%,-24.80%,---,-18.68%,-6.35%,-32.10%,0.15%, +,1705,161035,富国中证医药,9月20日,1.393,1.393,0.07%,-4.91%,-9.19%,-15.11%,-16.84%,-33.19%,-28.08%,16.57%,-29.75%,39.30%,-33.32%,0.12%, +,1706,5626,富国中证医药,9月20日,1.39,1.39,0.07%,-4.92%,-9.21%,-15.19%,-16.92%,-33.30%,---,---,-29.87%,-32.59%,-33.46%,0.00%, +,1707,1313,上投摩根智慧,9月19日,0.9722,0.9722,-0.13%,-8.69%,-15.84%,-14.91%,-8.09%,-33.32%,-15.83%,29.80%,-24.03%,-2.78%,---,0.15%, +,1708,900029,中信证券量化,9月19日,0.94,1.939,-0.17%,-5.24%,-8.12%,-5.27%,-11.46%,-33.39%,-15.12%,---,-28.37%,9.15%,---,0.10%, +,1709,7388,上投摩根研究,9月19日,1.0311,1.0311,-0.78%,-5.53%,-13.97%,-13.77%,-13.80%,-33.55%,-7.65%,---,-27.13%,3.11%,---,0.15%, +,1710,12371,东财沪港深互,9月20日,0.5605,0.5605,0.48%,-5.10%,-6.96%,-13.84%,-9.51%,-33.61%,---,---,-30.70%,-43.95%,-32.75%,0.12%, +,1711,1171,工银养老产业,9月20日,1.547,1.547,0.98%,-3.19%,-8.35%,-13.09%,-14.62%,-33.80%,-1.65%,68.70%,-26.65%,54.70%,-34.37%,0.15%, +,1712,1344,易方达沪深3,9月20日,1.0739,1.0739,-0.19%,-5.31%,-8.04%,-14.77%,-15.29%,-33.84%,-31.75%,-3.92%,-28.96%,7.39%,-33.60%,0.10%, +,1713,12372,东财沪港深互,9月20日,0.5576,0.5576,0.49%,-5.11%,-6.99%,-13.92%,-9.69%,-33.87%,---,---,-30.90%,-44.24%,-33.02%,0.00%, +,1714,10204,中银港股通优,9月20日,0.6053,0.6053,1.39%,-2.26%,-5.70%,-8.98%,-7.98%,-33.88%,---,---,-21.93%,-39.47%,-32.79%,0.15%, +,1715,7883,易方达沪深3,9月20日,1.0704,1.0704,-0.18%,-5.31%,-8.05%,-14.79%,-15.34%,-33.91%,-31.88%,-4.21%,-29.01%,2.85%,-33.67%,0.00%, +,1716,960,招商医药健康,9月20日,2.077,2.077,0.19%,-4.02%,-8.46%,-14.63%,-19.03%,-33.92%,-24.42%,33.14%,-26.74%,107.70%,-34.33%,0.15%, +,1717,900030,中信证券量化,9月19日,0.9228,1.9218,-0.17%,-5.27%,-8.19%,-5.46%,-11.82%,-33.92%,-16.46%,---,-28.78%,7.15%,---,0.00%, +,1718,1482,上投摩根新兴,9月19日,1.6803,1.6803,-0.60%,-4.13%,-10.34%,-9.69%,-8.88%,-34.00%,-11.70%,47.65%,-26.86%,68.03%,---,0.15%, +,1719,399011,中海医疗保健,9月20日,1.349,2.929,0.67%,-4.73%,-7.41%,-12.52%,-10.37%,-34.04%,-21.63%,12.00%,-27.59%,239.85%,-34.73%,0.15%, +,1720,7389,上投摩根研究,9月19日,1.0124,1.0124,-0.79%,-5.56%,-14.04%,-13.96%,-14.15%,-34.08%,-9.13%,---,-27.55%,1.24%,---,0.00%, +,1721,12238,工银养老产业,9月20日,1.535,1.535,0.99%,-3.22%,-8.36%,-13.23%,-14.86%,-34.18%,---,---,-26.94%,-29.88%,-34.74%,0.00%, +,1722,5237,银华医疗健康,9月20日,1.2741,1.2741,0.47%,-5.38%,-7.73%,-13.65%,-15.42%,-34.42%,-23.64%,13.67%,-28.13%,27.41%,-34.81%,0.15%, +,1723,5238,银华医疗健康,9月20日,1.2534,1.2534,0.47%,-5.40%,-7.76%,-13.74%,-15.60%,-34.69%,-24.26%,12.32%,-28.34%,25.34%,-35.06%,0.00%, +,1724,6756,国泰中证生物,9月19日,1.0999,1.0999,-0.55%,-5.07%,-8.22%,-12.80%,-20.72%,-34.87%,-41.05%,-4.85%,-29.37%,9.99%,-35.04%,0.10%, +,1725,6757,国泰中证生物,9月19日,1.0846,1.0846,-0.55%,-5.08%,-8.25%,-12.88%,-20.84%,-35.07%,-41.40%,-5.75%,-29.53%,8.46%,-35.23%,0.00%, +,1726,2121,广发沪港深新,9月20日,1.2426,1.3276,0.92%,-4.40%,-7.72%,-14.70%,-8.39%,-35.08%,-30.89%,-6.71%,-27.60%,33.01%,-33.91%,0.15%, +,1727,9896,广发港股通成,9月20日,0.621,0.621,0.98%,-4.21%,-8.76%,-14.74%,-5.28%,-35.20%,-37.86%,---,-27.42%,-37.90%,-34.20%,0.15%, +,1728,1764,广发沪港深新,9月20日,1.039,1.176,1.86%,-5.46%,-9.26%,-15.46%,-7.07%,-35.22%,-32.53%,5.80%,-24.27%,16.02%,-34.37%,0.15%, +,1729,5303,嘉实医药健康,9月20日,1.6454,1.6454,0.40%,-5.56%,-11.00%,-15.86%,-7.53%,-35.33%,-23.71%,38.50%,-24.40%,64.54%,-35.68%,0.15%, +,1730,10024,广发沪港深新,9月20日,1.233,1.233,0.92%,-4.40%,-7.75%,-14.78%,-8.58%,-35.34%,---,---,-27.81%,-29.54%,-34.18%,0.00%, +,1731,12634,国泰中证医疗,9月19日,0.5748,0.5748,-2.16%,-7.63%,-9.15%,-14.97%,-13.55%,-35.36%,---,---,-29.12%,-42.52%,-35.59%,0.10%, +,1732,9897,广发港股通成,9月20日,0.616,0.616,0.98%,-4.21%,-8.78%,-14.82%,-5.48%,-35.46%,-38.36%,---,-27.62%,-38.40%,-34.45%,0.00%, +,1733,12635,国泰中证医疗,9月19日,0.5727,0.5727,-2.17%,-7.64%,-9.18%,-15.04%,-13.69%,-35.55%,---,---,-29.28%,-42.73%,-35.78%,0.00%, +,1734,5433,申万菱信医药,9月20日,0.6658,0.6658,1.39%,-3.72%,-4.16%,-12.60%,-15.42%,-35.60%,---,---,-31.34%,-33.42%,-36.10%,0.15%, +,1735,5402,广发资源优选,9月20日,1.8831,1.8831,3.27%,-3.37%,-3.70%,-8.24%,2.64%,-35.84%,6.82%,86.06%,-21.23%,88.31%,-35.64%,0.15%, +,1736,5304,嘉实医药健康,9月20日,1.5847,1.5847,0.40%,-5.57%,-11.07%,-16.03%,-7.91%,-35.85%,-24.92%,35.29%,-24.83%,58.47%,-36.18%,0.00%, +,1737,831,工银医疗保健,9月20日,2.687,2.687,0.83%,-3.52%,-8.61%,-13.85%,-13.49%,-35.93%,-6.44%,52.50%,-26.64%,168.70%,-36.42%,0.15%, +,1738,11373,招商前沿医疗,9月20日,0.614,0.614,0.28%,-3.94%,-9.45%,-15.17%,-18.76%,-35.95%,---,---,-29.30%,-38.60%,-36.23%,0.15%, +,1739,711,嘉实医疗保健,9月20日,2.148,2.148,0.14%,-9.11%,-11.18%,-16.44%,-10.44%,-36.05%,-25.05%,19.97%,-25.52%,114.50%,-36.43%,0.15%, +,1740,10235,广发资源优选,9月20日,1.8692,1.8692,3.27%,-3.38%,-3.73%,-8.34%,2.43%,-36.10%,---,---,-21.46%,10.71%,-35.90%,0.00%, +,1741,161122,易方达中证万,9月20日,0.6439,0.934,0.34%,-5.11%,-10.94%,-17.13%,-21.89%,-36.21%,-29.45%,19.25%,-29.50%,-4.29%,-35.74%,0.10%, +,1742,10572,易方达中证万,9月20日,0.6405,0.6405,0.34%,-5.11%,-10.97%,-17.19%,-22.01%,-36.40%,---,---,-29.65%,-30.30%,-35.94%,0.00%, +,1743,11374,招商前沿医疗,9月20日,0.6079,0.6079,0.28%,-3.97%,-9.51%,-15.35%,-19.10%,-36.47%,---,---,-29.70%,-39.21%,-36.74%,0.00%, +,1744,1717,工银前沿医疗,9月20日,3.06,3.06,0.79%,-3.50%,-8.03%,-13.73%,-14.95%,-36.61%,-6.28%,70.57%,-28.24%,206.00%,-37.22%,0.15%, +,1745,12737,广发中证创新,9月20日,0.5986,0.5986,0.17%,-4.44%,-10.64%,-15.87%,-20.50%,-36.66%,---,---,-30.42%,-40.14%,-36.44%,0.12%, +,1746,12738,广发中证创新,9月20日,0.5972,0.5972,0.17%,-4.43%,-10.67%,-15.90%,-20.57%,-36.78%,---,---,-30.52%,-40.28%,-36.56%,0.00%, +,1747,10685,工银前沿医疗,9月20日,3.028,3.028,0.77%,-3.54%,-8.08%,-13.88%,-15.23%,-37.00%,---,---,-28.57%,-7.68%,-37.61%,0.00%, +,1748,2387,工银沪港深股,9月20日,0.903,0.971,0.86%,-4.43%,-11.78%,-16.64%,-13.41%,-37.03%,-30.42%,-15.69%,-32.17%,-4.18%,-35.94%,0.15%, +,1749,162412,华宝医疗ET,9月20日,0.7889,0.5445,-0.01%,-5.35%,-8.95%,-16.07%,-14.10%,-37.30%,-30.65%,13.02%,-30.07%,-49.78%,-37.64%,0.12%, +,1750,7512,工银沪港深股,9月20日,0.8914,0.8914,0.86%,-4.44%,-11.82%,-16.77%,-13.68%,-37.41%,-31.25%,-16.98%,-32.46%,-18.49%,-36.32%,0.00%, +,1751,12323,华宝医疗ET,9月20日,0.7869,0.7869,-0.01%,-5.35%,-8.97%,-16.12%,-14.19%,-37.42%,---,---,-30.17%,-43.74%,-37.76%,0.00%, +,1752,502056,广发中证医疗,9月20日,0.891,0.9264,-0.02%,-5.32%,-8.89%,-16.09%,-14.17%,-37.49%,-28.91%,11.89%,-30.27%,-5.00%,-37.81%,0.05%, +,1753,5983,上投摩根核心,9月19日,2.0684,2.0684,-0.81%,-9.26%,-15.76%,-14.47%,-10.05%,-37.50%,7.72%,74.08%,-24.79%,106.84%,---,0.15%, +,1754,9881,广发中证医疗,9月20日,0.8875,0.8875,-0.02%,-5.33%,-8.91%,-16.12%,-14.26%,-37.61%,-29.19%,---,-30.37%,-33.02%,-37.93%,0.00%, +,1755,501311,嘉实港股通新,9月20日,0.8315,0.8315,1.50%,-4.44%,-10.88%,-14.15%,-6.47%,-37.70%,-36.22%,-16.60%,-29.27%,-16.85%,-36.51%,0.10%, +,1756,6002,工银医药健康,9月20日,1.9283,2.4759,0.47%,-3.82%,-10.59%,-15.27%,-13.69%,-37.73%,-14.82%,57.34%,-28.49%,131.55%,-38.28%,0.15%, +,1757,501009,汇添富中证生,9月20日,1.4488,1.4488,-0.45%,-4.67%,-10.52%,-16.53%,-23.25%,-37.81%,-34.40%,11.96%,-31.79%,44.88%,-37.74%,0.10%, +,1758,6614,嘉实港股通新,9月20日,0.8193,0.8193,1.50%,-4.44%,-10.92%,-14.25%,-6.65%,-37.95%,-36.72%,-17.58%,-29.47%,-18.07%,-36.76%,0.00%, +,1759,501010,汇添富中证生,9月20日,1.4371,1.4371,-0.46%,-4.69%,-10.56%,-16.62%,-23.41%,-38.07%,-34.93%,10.68%,-31.99%,43.71%,-37.99%,0.00%, +,1760,6003,工银医药健康,9月20日,1.8743,2.4175,0.46%,-3.83%,-10.64%,-15.41%,-13.96%,-38.11%,-15.84%,54.47%,-28.80%,125.58%,-38.65%,0.00%, +,1761,9162,富国医药成长,9月20日,0.8201,0.8201,0.31%,-3.98%,-9.25%,-15.68%,-11.75%,-38.12%,-22.30%,---,-28.35%,-17.99%,-38.65%,0.15%, +,1762,501005,汇添富中证精,9月20日,0.9815,0.9815,-0.44%,-4.19%,-11.68%,-18.39%,-25.16%,-38.17%,-41.01%,-0.35%,-33.19%,-1.85%,-37.93%,0.08%, +,1763,1766,上投摩根医疗,9月19日,1.6961,1.6961,-2.04%,-7.23%,-8.91%,-14.09%,-14.67%,-38.41%,-23.15%,29.37%,-30.51%,69.61%,---,0.15%, +,1764,501006,汇添富中证精,9月20日,0.9572,0.9572,-0.44%,-4.19%,-11.71%,-18.47%,-25.31%,-38.42%,-41.48%,-1.50%,-33.38%,-4.28%,-38.18%,0.00%, +,1765,5328,前海开源价值,9月19日,1.0824,1.0824,0.68%,-5.02%,-5.69%,-7.77%,-13.03%,-38.43%,-19.27%,10.58%,-35.17%,8.24%,---,0.15%, +,1766,12496,同泰行业优选,9月19日,0.6163,0.6163,-1.42%,-9.10%,-13.73%,-13.20%,-10.13%,-39.08%,---,---,-33.60%,-38.37%,---,0.15%, +,1767,9898,民生加银医药,9月20日,0.533,0.533,0.70%,-5.18%,-9.54%,-12.32%,-24.18%,-39.13%,-46.79%,---,-33.37%,-46.70%,-38.86%,0.15%, +,1768,12497,同泰行业优选,9月19日,0.6137,0.6137,-1.43%,-9.11%,-13.76%,-13.28%,-10.32%,-39.33%,---,---,-33.79%,-38.63%,---,0.00%, +,1769,5209,东吴双三角股,9月19日,0.6957,0.6957,-1.68%,-8.75%,-10.73%,-17.23%,-13.79%,-39.45%,-42.71%,-24.52%,-29.92%,-30.43%,---,0.15%, +,1770,5210,东吴双三角股,9月19日,0.6779,0.6779,-1.70%,-8.76%,-10.77%,-17.34%,-14.03%,-39.76%,-43.28%,-25.64%,-30.18%,-32.21%,---,0.00%, +,1771,9537,太平行业优选,9月19日,0.6806,0.7306,-0.06%,-7.24%,-13.10%,-14.96%,-17.44%,-39.79%,-27.81%,---,-35.04%,-28.71%,-39.10%,0.12%, +,1772,11040,天弘国证生物,9月20日,0.5784,0.5784,0.24%,-5.30%,-12.32%,-19.01%,-23.38%,-39.96%,---,---,-31.74%,-42.16%,-39.49%,0.10%, +,1773,9538,太平行业优选,9月19日,0.6735,0.7235,-0.06%,-7.24%,-13.13%,-15.06%,-17.64%,-40.08%,-28.52%,---,-35.27%,-29.44%,-39.40%,0.00%, +,1774,12598,华安国证生物,9月19日,0.6274,0.6274,-1.04%,-7.72%,-12.41%,-18.05%,-23.18%,-40.08%,---,---,-31.56%,-37.26%,---,0.05%, +,1775,11041,天弘国证生物,9月20日,0.5765,0.5765,0.24%,-5.31%,-12.33%,-19.05%,-23.46%,-40.09%,---,---,-31.84%,-42.35%,-39.61%,0.00%, +,1776,12599,华安国证生物,9月19日,0.6255,0.6255,-1.03%,-7.72%,-12.42%,-18.11%,-23.29%,-40.25%,---,---,-31.71%,-37.45%,---,0.00%, +,1777,10387,易方达医药生,9月20日,0.5395,0.5395,1.35%,-4.68%,-8.70%,-11.53%,-10.20%,-40.79%,---,---,-31.20%,-46.05%,-40.69%,0.15%, +,1778,161726,招商国证生物,9月20日,0.565,1.0672,0.23%,-5.31%,-12.39%,-19.27%,-23.86%,-40.84%,-38.12%,7.97%,-32.42%,-9.91%,-40.38%,0.10%, +,1779,12417,招商国证生物,9月20日,0.5644,0.5644,0.25%,-5.32%,-12.39%,-19.29%,-23.89%,-40.89%,---,---,-32.46%,-49.29%,-40.43%,0.00%, +,1780,10388,易方达医药生,9月20日,0.5355,0.5355,1.34%,-4.68%,-8.73%,-11.60%,-10.38%,-41.02%,---,---,-31.40%,-46.45%,-40.93%,0.00%, +,1781,8412,长盛竞争优势,9月19日,0.6668,0.6668,-2.06%,-6.43%,-8.54%,-16.23%,-21.96%,-41.10%,-30.46%,---,-32.12%,-33.32%,---,0.15%, +,1782,8413,长盛竞争优势,9月19日,0.6554,0.6554,-2.06%,-6.45%,-8.60%,-16.39%,-22.26%,-41.57%,-31.57%,---,-32.50%,-34.46%,---,0.00%, +,1783,9863,富国创新趋势,9月20日,0.6571,0.6571,0.47%,-5.10%,-9.29%,-17.83%,-23.86%,-42.44%,-35.13%,---,-39.35%,-34.29%,-42.79%,0.15%, +,1784,6228,中欧医疗创新,9月20日,1.5763,1.5763,0.24%,-4.58%,-10.78%,-18.21%,-15.30%,-42.75%,-24.16%,36.43%,-32.63%,57.63%,-43.14%,0.15%, +,1785,4851,广发医疗保健,9月20日,2.0465,2.0465,0.49%,-5.32%,-10.42%,-19.21%,-19.96%,-42.89%,-29.31%,28.73%,-34.57%,104.65%,-43.30%,0.15%, +,1786,4040,金鹰医疗健康,9月19日,1.2342,1.5342,-2.00%,-7.38%,-9.30%,-17.97%,-28.53%,-43.09%,-21.78%,17.74%,-36.73%,39.01%,---,0.12%, +,1787,9163,广发医疗保健,9月20日,2.0266,2.0266,0.49%,-5.33%,-10.45%,-19.29%,-20.12%,-43.12%,-29.88%,---,-34.76%,9.53%,-43.52%,0.00%, +,1788,6229,中欧医疗创新,9月20日,1.5331,1.5331,0.24%,-4.60%,-10.84%,-18.37%,-15.65%,-43.21%,-25.37%,33.43%,-33.02%,53.31%,-43.59%,0.00%, +,1789,4041,金鹰医疗健康,9月19日,1.2823,1.5923,-1.99%,-7.40%,-9.33%,-18.05%,-28.67%,-43.32%,-22.40%,16.33%,-36.91%,44.25%,---,0.00%, +,1790,913,农银医疗保健,9月20日,1.7176,1.7176,0.33%,-4.14%,-9.27%,-15.80%,-18.92%,-43.56%,-31.14%,16.17%,-34.25%,71.76%,-43.70%,0.15%, +,1791,2300,长盛医疗行业,9月19日,1.502,1.502,-2.28%,-7.63%,-9.68%,-18.85%,-26.59%,-43.64%,-29.28%,22.51%,-34.87%,50.20%,---,0.15%, +,1792,10592,南方医药创新,9月20日,0.5084,0.5084,0.04%,-4.22%,-9.20%,-14.25%,-16.79%,-43.85%,---,---,-33.03%,-49.16%,-44.02%,0.15%, +,1793,10593,南方医药创新,9月20日,0.5037,0.5037,0.04%,-7.29%,-9.28%,-14.22%,-17.08%,-44.21%,---,---,-33.34%,-49.65%,-44.35%,0.00%, +,1794,11601,前海开源公共,9月19日,0.5083,0.5083,-1.82%,-7.09%,-8.00%,-13.21%,-19.98%,-48.52%,---,---,-36.81%,-49.17%,---,0.15%, +,1795,11602,前海开源公共,9月19日,0.5053,0.5053,-1.83%,-7.10%,-8.03%,-13.30%,-20.12%,-48.73%,---,---,-37.00%,-49.47%,---,0.00%, +,1796,12596,汇添富中证8,9月20日,0.9168,0.9168,0.26%,-4.33%,-5.14%,-6.79%,-3.46%,---,---,---,-10.43%,-8.32%,-8.32%,0.05%, +,1797,11589,九泰天利量化,9月20日,0.8321,0.8321,1.34%,-4.73%,-7.19%,-3.78%,-5.84%,---,---,---,-17.07%,-16.79%,-16.79%,0.15%, +,1798,12416,德邦上证G6,9月20日,0.7239,0.7239,2.27%,-7.87%,-16.27%,-14.17%,-19.34%,---,---,---,-27.95%,-29.22%,-27.61%,0.00%, +,1799,12597,汇添富中证8,9月20日,0.9157,0.9157,0.26%,-4.33%,-5.15%,-6.81%,-3.46%,---,---,---,-10.44%,-8.43%,-8.43%,0.00%, +,1800,11861,南方中证10,9月19日,0.8627,0.8627,-1.21%,-7.13%,-11.01%,-5.17%,-6.20%,---,---,---,-19.22%,-13.73%,-12.68%,0.00%, +,1801,11836,银华智能建造,9月20日,0.8213,---,-1.46%,-3.35%,0.05%,-9.12%,-14.13%,---,---,---,-18.58%,-17.87%,-17.87%,0.15%, +,1802,13473,华宝中证新材,9月20日,0.7907,0.7907,1.11%,-5.41%,-10.88%,-12.99%,-6.78%,---,---,---,-18.47%,-20.93%,-20.93%,0.10%, +,1803,13606,华夏中证内地,9月20日,0.8148,0.8148,1.94%,-8.00%,-14.36%,-10.36%,-7.57%,---,---,---,-17.37%,-20.07%,-18.52%,0.00%, +,1804,12319,东财消费电子,9月19日,0.735,0.735,-0.64%,-6.13%,-12.11%,-7.17%,-17.24%,---,---,---,-33.22%,-26.50%,---,0.15%, +,1805,12320,东财消费电子,9月19日,0.7329,0.7329,-0.64%,-6.15%,-12.13%,-7.25%,-17.36%,---,---,---,-33.37%,-26.71%,---,0.00%, +,1806,13242,北信瑞丰优势,9月19日,0.7814,0.7814,-0.70%,-8.36%,-13.56%,-8.80%,-7.48%,---,---,---,-22.08%,-21.86%,-20.44%,0.15%, +,1807,13031,民生加银中证,9月20日,0.8182,0.8182,0.39%,-4.21%,-5.53%,-8.40%,-7.60%,---,---,---,-17.93%,-18.18%,-18.18%,0.15%, +,1808,12901,招商创业板指,9月20日,0.6651,0.6651,0.64%,-6.76%,-14.20%,-15.84%,-16.53%,---,---,---,-30.38%,-33.49%,-33.49%,0.00%, +,1809,13474,华宝中证新材,9月20日,0.7885,0.7885,1.12%,-5.42%,-10.90%,-13.05%,-6.92%,---,---,---,-18.64%,-21.15%,-21.15%,0.00%, +,1810,12213,天弘中证高端,9月20日,0.8283,0.8283,0.98%,-5.68%,-11.18%,-8.60%,-5.00%,---,---,---,-17.20%,-17.17%,-17.17%,0.00%, +,1811,12559,天弘中证沪港,9月20日,0.6895,0.6895,0.28%,-4.47%,-8.77%,-12.53%,-13.22%,---,---,---,-30.46%,-31.05%,-31.05%,0.10%, +,1812,12394,农银中证新华,9月20日,0.7794,0.7794,0.31%,-3.72%,-6.19%,-9.17%,-7.04%,---,---,---,-23.08%,-22.07%,-22.07%,0.12%, +,1813,12212,天弘中证高端,9月20日,0.8301,0.8301,0.97%,-5.67%,-11.16%,-8.53%,-4.85%,---,---,---,-17.02%,-16.99%,-16.99%,0.15%, +,1814,13642,博道成长智航,9月19日,0.8267,0.8267,-0.95%,-6.52%,-11.22%,-2.90%,-3.93%,---,---,---,-17.84%,-17.33%,---,0.00%, +,1815,12157,汇添富上证5,9月20日,0.8945,0.8945,-0.30%,-3.00%,-2.61%,-6.96%,-5.88%,---,---,---,---,-10.55%,-10.55%,0.15%, +,1816,12405,天弘国证建筑,9月20日,0.847,0.847,-0.40%,-5.34%,-7.24%,-14.48%,-12.66%,---,---,---,-23.75%,-15.30%,-15.30%,0.10%, +,1817,12151,华泰柏瑞中证,9月19日,0.846,0.846,-0.74%,-3.53%,-4.67%,-7.15%,-4.47%,---,---,---,-11.34%,-15.40%,-14.51%,0.12%, +,1818,13129,汇添富消费龙,9月20日,0.8308,0.8308,0.70%,-1.34%,-0.31%,-3.59%,2.37%,---,---,---,-17.13%,-16.92%,-16.92%,0.10%, +,1819,12152,华泰柏瑞中证,9月19日,0.8452,0.8452,-0.73%,-3.53%,-4.66%,-7.16%,-4.52%,---,---,---,-11.40%,-15.48%,-14.60%,0.00%, +,1820,13613,宝盈国家安全,9月20日,1.3237,1.3237,1.16%,-4.67%,-12.30%,-4.28%,-7.20%,---,---,---,-28.62%,-23.17%,-23.17%,0.00%, +,1821,13319,华安中证新能,9月19日,0.7424,0.7424,1.12%,-6.08%,-13.20%,-16.15%,-5.70%,---,---,---,-18.28%,-25.76%,---,0.05%, +,1822,13320,华安中证新能,9月19日,0.741,0.741,1.12%,-6.10%,-13.22%,-16.20%,-5.80%,---,---,---,-18.40%,-25.90%,---,0.00%, +,1823,12180,浦银安盛创业,9月19日,0.7617,0.7617,-0.72%,-7.00%,-12.88%,-10.28%,-12.66%,---,---,---,-23.83%,-23.83%,---,0.00%, +,1824,12215,民生加银核心,9月20日,0.8719,0.8719,0.33%,-2.56%,-3.06%,-6.54%,-0.50%,---,---,---,-11.63%,-12.81%,-12.81%,0.00%, +,1825,13816,汇添富中证光,9月20日,0.8853,0.8853,3.28%,-6.18%,-12.78%,4.53%,11.79%,---,---,---,-1.57%,-11.47%,-11.47%,0.12%, +,1826,13093,汇添富科技龙,9月20日,0.6764,0.6764,0.24%,-4.40%,-8.67%,-12.33%,-12.92%,---,---,---,-30.05%,-32.36%,-32.36%,0.10%, +,1827,12560,天弘中证沪港,9月20日,0.6882,0.6882,0.26%,-4.50%,-8.80%,-12.59%,-13.31%,---,---,---,-30.56%,-31.18%,-31.18%,0.00%, +,1828,13340,创金合信芯片,9月19日,0.8463,0.8463,-2.52%,-4.19%,-11.14%,2.86%,-7.32%,---,---,---,-22.66%,-15.37%,---,0.00%, +,1829,13125,华夏中证细分,9月20日,0.88,0.88,1.02%,-0.48%,-2.16%,-6.71%,1.93%,---,---,---,-15.51%,-12.00%,-12.00%,0.12%, +,1830,13448,华宝中证智能,9月20日,0.7943,0.7943,0.62%,-4.89%,-10.49%,-5.04%,-10.51%,---,---,---,-24.19%,-20.57%,-20.57%,0.00%, +,1831,13130,汇添富消费龙,9月20日,0.8289,0.8289,0.70%,-1.34%,-0.32%,-3.65%,2.22%,---,---,---,-17.28%,-17.11%,-17.11%,0.00%, +,1832,12619,嘉实中证软件,9月20日,0.6987,0.6987,-0.75%,-3.88%,-3.77%,-6.89%,-12.05%,---,---,---,-29.69%,-30.13%,-30.13%,0.10%, +,1833,13465,博时智选量化,9月20日,0.9479,0.9479,1.48%,-5.53%,-8.90%,-1.12%,3.08%,---,---,---,-5.82%,-5.21%,-5.21%,0.15%, +,1834,13475,华宝中证智能,9月20日,0.729,0.729,1.65%,-5.31%,-11.82%,-14.74%,-7.10%,---,---,---,-23.24%,-27.10%,-27.10%,0.10%, +,1835,13094,汇添富科技龙,9月20日,0.6748,0.6748,0.25%,-4.39%,-8.68%,-12.38%,-13.03%,---,---,---,-30.17%,-32.52%,-32.52%,0.00%, +,1836,12179,浦银安盛创业,9月19日,0.7634,0.7634,-0.72%,-6.98%,-12.85%,-10.21%,-12.52%,---,---,---,-23.66%,-23.66%,---,0.12%, +,1837,12214,民生加银核心,9月20日,0.875,0.875,0.33%,-2.55%,-3.01%,-6.44%,-0.30%,---,---,---,-11.37%,-12.50%,-12.50%,0.15%, +,1838,12809,鹏华中证沪港,9月19日,0.6991,0.6991,-1.26%,-6.17%,-8.97%,-12.10%,-13.64%,---,---,---,-30.25%,-30.09%,---,0.00%, +,1839,11860,南方中证10,9月19日,0.8636,0.8636,-1.21%,-7.11%,-11.00%,-5.13%,-6.15%,---,---,---,-19.16%,-13.64%,-12.60%,0.12%, +,1840,13453,交银国证新能,9月20日,1.3203,1.3203,1.99%,-5.97%,-13.49%,-11.73%,-4.23%,---,---,---,-16.24%,-12.06%,-12.06%,0.00%, +,1841,13810,广发科创板5,9月19日,0.7187,0.7187,-2.16%,-5.33%,-11.35%,-10.08%,-14.07%,---,---,---,-28.76%,-28.13%,---,0.12%, +,1842,12761,华泰柏瑞上证,9月19日,1.057,1.057,0.26%,-3.80%,1.14%,2.63%,4.60%,---,---,---,4.93%,5.70%,5.48%,0.12%, +,1843,13490,同泰金融精选,9月19日,0.8394,0.8394,-0.45%,-4.73%,-1.97%,-7.00%,-9.04%,---,---,---,-16.03%,-16.06%,---,0.15%, +,1844,13491,同泰金融精选,9月19日,0.8366,0.8366,-0.45%,-4.74%,-2.00%,-7.10%,-9.21%,---,---,---,-16.27%,-16.34%,---,0.00%, +,1845,13803,财通资管中证,9月20日,0.815,0.815,0.75%,-5.14%,-5.74%,-8.98%,-7.21%,---,---,---,-15.12%,-18.50%,-18.50%,0.00%, +,1846,13476,华宝中证智能,9月20日,0.727,0.727,1.64%,-5.33%,-11.85%,-14.81%,-7.26%,---,---,---,-23.42%,-27.30%,-27.30%,0.00%, +,1847,12419,天弘国证建筑,9月20日,0.8455,0.8455,-0.40%,-5.34%,-7.25%,-14.53%,-12.75%,---,---,---,-23.86%,-15.45%,-15.45%,0.00%, +,1848,12900,招商创业板指,9月20日,0.6672,0.6672,0.63%,-6.76%,-14.19%,-15.77%,-16.37%,---,---,---,-30.18%,-33.28%,-33.28%,0.12%, +,1849,13339,创金合信芯片,9月19日,0.8504,0.8504,-2.51%,-4.17%,-11.10%,2.99%,-7.08%,---,---,---,-22.38%,-14.96%,---,0.15%, +,1850,13126,华夏中证细分,9月20日,0.8776,0.8776,1.02%,-0.49%,-2.18%,-6.79%,1.77%,---,---,---,-15.70%,-12.24%,-12.24%,0.00%, +,1851,13639,光大保德信中,9月20日,0.8994,0.8994,0.97%,-3.60%,-3.96%,-1.69%,-1.14%,---,---,---,-10.02%,-10.06%,-10.06%,--, +,1852,12555,西部利得创业,9月19日,0.7043,0.7043,-0.79%,-7.48%,-12.82%,-11.79%,-11.46%,---,---,---,-28.66%,-29.57%,-29.07%,0.00%, +,1853,11590,九泰天利量化,9月20日,0.8282,0.8282,1.33%,-4.74%,-7.24%,-3.90%,-6.08%,---,---,---,-17.37%,-17.18%,-17.18%,0.00%, +,1854,14118,国泰中证沪港,9月19日,0.6556,0.6556,-1.56%,-8.98%,-12.26%,-12.93%,-17.24%,---,---,---,-29.87%,-34.44%,-34.23%,0.00%, +,1855,14185,招商专精特新,9月20日,1.0855,1.0855,0.14%,-1.07%,-2.83%,6.71%,15.74%,---,---,---,8.69%,8.55%,8.55%,0.15%, +,1856,12561,天弘中证新材,9月20日,0.7903,0.7903,1.13%,-5.53%,-11.12%,-13.36%,-6.86%,---,---,---,-18.48%,-20.97%,-20.97%,0.10%, +,1857,12695,汇添富国证生,9月20日,0.7635,0.7635,0.22%,-5.36%,-12.05%,-19.19%,-24.46%,---,---,---,---,-23.65%,-23.65%,0.00%, +,1858,14380,建信中国制造,9月19日,2.116,2.116,0.14%,-3.62%,-7.43%,-7.74%,-10.01%,---,---,---,-19.02%,-18.67%,---,0.00%, +,1859,12620,嘉实中证软件,9月20日,0.6973,0.6973,-0.75%,-3.87%,-3.79%,-6.94%,-12.16%,---,---,---,-29.82%,-30.27%,-30.27%,0.00%, +,1860,14133,工银中证50,9月20日,0.873,0.873,0.85%,-5.23%,-5.56%,-2.69%,1.43%,---,---,---,-13.33%,-12.70%,-12.70%,0.15%, +,1861,14028,招商中证银行,9月20日,1.0922,1.0922,-0.92%,-2.20%,0.56%,-4.26%,-5.27%,---,---,---,-6.20%,-9.62%,-9.62%,0.00%, +,1862,14173,富国中证移动,9月20日,0.697,0.697,-0.29%,-5.56%,-9.60%,-10.53%,-15.62%,---,---,---,-32.98%,-31.53%,-31.53%,0.00%, +,1863,14172,富国中证工业,9月20日,0.921,0.921,0.22%,-5.44%,-9.62%,-6.69%,-11.01%,---,---,---,-26.90%,-24.57%,-24.57%,0.00%, +,1864,13918,申万菱信量化,9月20日,2.0039,2.0039,0.99%,-5.64%,-8.73%,-7.85%,-6.63%,---,---,---,-17.91%,-17.87%,-17.87%,0.00%, +,1865,12759,工银沪港深互,9月20日,0.6987,0.6987,0.46%,-4.94%,-6.79%,-13.50%,-8.98%,---,---,---,-30.33%,-30.13%,-30.13%,0.10%, +,1866,13471,华宝中证全指,9月20日,0.9765,0.9765,-0.64%,-5.07%,-4.48%,-2.56%,-0.28%,---,---,---,-6.34%,-2.35%,-2.35%,0.10%, +,1867,13879,圆信永丰中证,9月20日,0.8551,0.8551,1.17%,-4.28%,-5.55%,-3.44%,-4.06%,---,---,---,-14.97%,-14.49%,-14.49%,0.00%, +,1868,14063,景顺长城专精,9月19日,0.7666,0.7666,-1.20%,-5.83%,-12.86%,-4.81%,-4.73%,---,---,---,-21.09%,-23.34%,---,0.00%, +,1869,14111,嘉实中证稀有,9月20日,0.8336,0.8336,3.50%,-3.20%,-4.83%,-10.25%,-0.02%,---,---,---,-9.57%,-16.64%,-16.64%,0.00%, +,1870,14126,华夏中证10,9月19日,0.8927,0.8927,-0.70%,-5.84%,-8.99%,-3.87%,-1.84%,---,---,---,-12.89%,-10.73%,---,0.00%, +,1871,14100,博时中证科创,9月20日,0.7016,0.7016,0.59%,-4.80%,-10.75%,-10.27%,-14.30%,---,---,---,-27.61%,-29.84%,-29.84%,0.00%, +,1872,12664,国寿安保沪港,9月19日,0.9603,0.9603,-0.25%,-3.58%,-4.75%,-7.37%,-3.98%,---,---,---,---,-3.97%,---,0.00%, +,1873,12718,易方达中证科,9月20日,0.8512,0.8512,0.34%,-5.32%,-9.95%,-11.25%,-15.06%,---,---,---,---,-14.88%,-14.88%,0.00%, +,1874,14193,汇添富中证芯,9月20日,0.7192,0.7192,-0.58%,-4.39%,-7.42%,-0.46%,-11.92%,---,---,---,-25.50%,-28.08%,-28.08%,0.15%, +,1875,13869,创金合信物联,9月19日,0.75,0.75,-0.19%,-5.52%,-10.64%,-4.14%,-2.10%,---,---,---,-25.54%,-25.00%,---,0.15%, +,1876,13447,华宝中证智能,9月20日,0.7965,0.7965,0.63%,-4.87%,-10.47%,-4.97%,-10.36%,---,---,---,-24.02%,-20.35%,-20.35%,0.10%, +,1877,12694,汇添富国证生,9月20日,0.764,0.764,0.21%,-5.36%,-12.03%,-19.14%,-24.36%,---,---,---,---,-23.60%,-23.60%,0.10%, +,1878,14304,华安中证内地,9月19日,0.8227,0.8227,0.32%,-7.85%,-14.25%,-13.45%,-10.64%,---,---,---,-18.33%,-17.73%,---,0.00%, +,1879,13878,圆信永丰中证,9月20日,0.8571,0.8571,1.17%,-4.28%,-5.53%,-3.37%,-3.92%,---,---,---,-14.79%,-14.29%,-14.29%,0.12%, +,1880,14331,华泰柏瑞中证,9月19日,0.7937,0.7937,-1.05%,-8.71%,-13.30%,-11.07%,-6.02%,---,---,---,-19.71%,-20.63%,-18.57%,0.12%, +,1881,14130,融通中证云计,9月20日,0.7824,0.7824,-0.43%,-4.27%,-7.12%,-7.23%,-15.17%,---,---,---,-29.91%,-29.19%,-29.19%,0.00%, +,1882,13899,上投摩根全景,9月19日,0.8858,0.8858,-0.54%,-4.92%,-11.89%,-10.56%,-7.77%,---,---,---,---,-11.42%,---,0.15%, +,1883,14431,华夏中证新材,9月20日,0.9083,0.9083,1.11%,-5.52%,-11.03%,-13.06%,-6.54%,---,---,---,---,-9.17%,-9.17%,0.12%, +,1884,14201,天弘中证10,9月20日,0.9519,0.9519,1.27%,-5.58%,-10.12%,-4.08%,3.38%,---,---,---,---,-4.81%,-4.81%,0.15%, +,1885,12644,招商中证红利,9月20日,0.9863,0.9863,0.10%,-3.63%,-0.64%,1.62%,2.06%,---,---,---,---,-1.37%,-1.37%,0.00%, +,1886,13926,易米国证消费,9月19日,0.8794,0.8794,-0.19%,-4.07%,-7.66%,-7.92%,-5.30%,---,---,---,-12.14%,-12.06%,---,0.12%, +,1887,14300,泰达宏利先进,9月20日,0.9664,0.9664,1.68%,-4.18%,-8.19%,-3.03%,3.21%,---,---,---,---,-3.36%,-3.36%,0.00%, +,1888,14052,银华港股通精,9月20日,0.9338,0.9338,0.80%,-1.55%,-5.68%,-9.44%,-2.47%,---,---,---,-18.91%,-24.89%,-24.89%,0.00%, +,1889,8924,建信医疗健康,9月19日,0.8954,0.8954,-2.01%,-6.48%,-7.99%,-9.56%,-5.54%,---,---,---,-10.50%,-10.46%,---,0.00%, +,1890,13622,华安智能装备,9月19日,1.826,1.826,-1.14%,-5.63%,-13.38%,-6.79%,-11.27%,---,---,---,-29.00%,-25.04%,---,0.00%, +,1891,14237,东财新能源A,9月19日,0.8622,0.8622,0.20%,-8.15%,-14.35%,-11.78%,-6.21%,---,---,---,-13.00%,-13.78%,---,0.15%, +,1892,13478,华宝中证金融,9月20日,0.7601,0.7601,-0.24%,-6.99%,-7.77%,-7.70%,-18.51%,---,---,---,-26.47%,-23.99%,-23.99%,0.00%, +,1893,14155,国泰君安中证,9月19日,0.8987,0.8987,-0.60%,-6.10%,-7.40%,-5.58%,-2.48%,---,---,---,-11.45%,-10.13%,---,--, +,1894,14156,国泰君安中证,9月19日,0.8959,0.8959,-0.61%,-6.12%,-7.44%,-5.68%,-2.68%,---,---,---,-11.71%,-10.41%,---,0.00%, +,1895,14099,博时中证科创,9月20日,0.7022,0.7022,0.59%,-4.80%,-10.73%,-10.24%,-14.25%,---,---,---,-27.56%,-29.78%,-29.78%,0.12%, +,1896,12717,易方达中证科,9月20日,0.8526,0.8526,0.34%,-5.31%,-9.93%,-11.19%,-14.93%,---,---,---,---,-14.74%,-14.74%,0.06%, +,1897,14046,交银医药创新,9月20日,2.5367,2.5367,0.56%,-3.88%,-7.12%,-13.59%,-9.11%,---,---,---,-25.33%,-24.80%,-24.80%,0.00%, +,1898,14188,华夏量化优选,9月19日,0.8969,0.8969,-0.21%,-5.64%,-7.05%,-5.57%,-5.02%,---,---,---,-11.11%,-10.31%,-9.52%,0.00%, +,1899,12663,国寿安保沪港,9月19日,0.9579,0.9579,-0.24%,-3.57%,-4.72%,-7.29%,-4.24%,---,---,---,---,-4.21%,---,0.12%, +,1900,14419,西部利得CE,9月19日,0.6999,0.6999,-1.86%,-3.67%,-9.85%,-4.53%,-17.82%,---,---,---,-30.02%,-30.01%,-30.46%,0.00%, +,1901,13919,建信中小盘先,9月19日,4.318,4.318,0.00%,-7.28%,-6.50%,4.40%,15.98%,---,---,---,2.27%,9.43%,---,0.00%, +,1902,14299,泰达宏利先进,9月20日,0.9684,0.9684,1.69%,-4.18%,-8.17%,-2.96%,3.37%,---,---,---,---,-3.16%,-3.16%,0.15%, +,1903,13477,华宝中证金融,9月20日,0.7619,0.7619,-0.24%,-6.98%,-7.75%,-7.64%,-18.38%,---,---,---,-26.32%,-23.81%,-23.81%,0.10%, +,1904,14117,国泰中证沪港,9月19日,0.6572,0.6572,-1.57%,-8.98%,-12.24%,-12.86%,-17.12%,---,---,---,-29.73%,-34.28%,-34.06%,0.10%, +,1905,13881,长信中证50,9月19日,1.4779,1.4779,-0.11%,-4.89%,-5.87%,-4.19%,-4.85%,---,---,---,-13.57%,-9.21%,-8.57%,0.00%, +,1906,14125,华夏中证10,9月19日,0.8955,0.8955,-0.70%,-5.84%,-8.96%,-3.76%,-1.64%,---,---,---,-12.63%,-10.45%,---,0.12%, +,1907,13941,东吴医疗服务,9月19日,0.7184,0.7184,-1.54%,-8.51%,-10.66%,-15.06%,-17.06%,---,---,---,-26.62%,-28.16%,---,0.00%, +,1908,13802,财通资管中证,9月20日,0.8174,0.8174,0.75%,-5.14%,-5.73%,-8.96%,-7.16%,---,---,---,-15.05%,-18.26%,-18.26%,0.10%, +,1909,13817,汇添富中证光,9月20日,0.8833,0.8833,3.27%,-6.19%,-12.79%,4.47%,11.65%,---,---,---,-1.75%,-11.67%,-11.67%,0.00%, +,1910,12562,天弘中证新材,9月20日,0.7889,0.7889,1.12%,-5.54%,-11.14%,-13.41%,-6.96%,---,---,---,-18.61%,-21.11%,-21.11%,0.00%, +,1911,13032,民生加银中证,9月20日,0.8158,0.8158,0.39%,-4.22%,-5.56%,-8.46%,-7.74%,---,---,---,-18.11%,-18.42%,-18.42%,0.00%, +,1912,12762,华泰柏瑞上证,9月19日,1.0561,1.0561,0.26%,-3.81%,1.13%,2.60%,4.54%,---,---,---,4.87%,5.61%,5.39%,0.00%, +,1913,12801,富国中证医药,9月20日,0.8354,0.8354,-0.06%,-5.41%,-7.59%,-13.95%,-15.62%,---,---,---,-16.46%,-16.46%,-16.46%,0.12%, +,1914,13870,创金合信物联,9月19日,0.747,0.747,-0.19%,-5.53%,-10.67%,-4.27%,-2.35%,---,---,---,-25.81%,-25.30%,---,0.00%, +,1915,14187,华夏量化优选,9月19日,0.9018,0.9018,-0.20%,-5.62%,-6.98%,-5.39%,-4.67%,---,---,---,-10.65%,-9.82%,-9.03%,0.15%, +,1916,13811,广发科创板5,9月19日,0.7167,0.7167,-2.17%,-5.35%,-11.38%,-10.15%,-14.21%,---,---,---,-28.92%,-28.33%,---,0.00%, +,1917,14198,华夏智胜先锋,9月20日,1.0099,1.0099,1.37%,-4.76%,-5.38%,2.48%,9.38%,---,---,---,-0.42%,0.99%,0.99%,0.00%, +,1918,13942,华宝中证稀有,9月20日,0.9275,0.9275,4.00%,-3.17%,-3.88%,-9.44%,1.69%,---,---,---,-7.69%,-7.25%,-7.25%,0.10%, +,1919,12757,易方达中证龙,9月20日,0.954,0.954,0.18%,-3.27%,-3.27%,-8.25%,-3.62%,---,---,---,---,-4.60%,-4.60%,0.00%, +,1920,12643,招商中证红利,9月20日,0.9867,0.9867,0.09%,-3.64%,-0.63%,1.64%,2.11%,---,---,---,---,-1.33%,-1.33%,0.06%, +,1921,14418,西部利得CE,9月19日,0.702,0.702,-1.86%,-3.65%,-9.82%,-4.42%,-17.65%,---,---,---,-29.82%,-29.80%,-30.25%,0.12%, +,1922,13908,永赢深创10,9月20日,0.7277,0.7277,0.33%,-4.91%,-9.37%,-11.00%,-9.73%,---,---,---,-25.61%,-27.23%,-27.23%,0.00%, +,1923,14382,博时国企改革,9月20日,0.788,0.788,1.29%,-4.72%,-7.62%,-9.22%,-3.43%,---,---,---,-22.67%,-23.64%,-23.64%,0.00%, +,1924,13900,上投摩根全景,9月19日,0.8827,0.8827,-0.55%,-4.93%,-11.92%,-10.68%,-8.00%,---,---,---,---,-11.73%,---,0.00%, +,1925,14416,泰康研究精选,9月19日,0.7911,0.7911,-0.86%,-5.83%,-10.42%,-10.45%,-10.70%,---,---,---,-21.97%,-20.89%,---,0.15%, +,1926,13640,光大保德信中,9月20日,0.8954,0.8954,0.97%,-3.61%,-4.00%,-1.80%,-1.34%,---,---,---,-10.30%,-10.46%,-10.46%,0.00%, +,1927,14345,鹏华中证50,9月19日,0.9425,0.9425,-0.42%,-5.41%,-6.30%,-4.06%,-0.12%,---,---,---,---,-5.75%,---,0.00%, +,1928,14238,东财新能源C,9月19日,0.8602,0.8602,0.20%,-8.15%,-14.37%,-11.85%,-6.36%,---,---,---,-13.18%,-13.98%,---,0.00%, +,1929,14064,银华农业产业,9月20日,2.034,---,-0.49%,-5.47%,-5.77%,-3.85%,3.00%,---,---,---,-10.16%,-8.57%,-8.57%,0.00%, +,1930,14163,富国港股通量,9月20日,0.8087,0.8087,0.96%,-2.05%,-3.35%,-6.83%,-2.87%,---,---,---,-14.06%,-15.13%,-15.13%,0.00%, +,1931,14186,招商专精特新,9月20日,1.0787,1.0787,0.13%,-1.08%,-2.89%,6.50%,15.27%,---,---,---,8.08%,7.87%,7.87%,0.00%, +,1932,14377,东吴新能源汽,9月19日,0.9936,0.9936,0.71%,-7.23%,-11.81%,-11.44%,-0.70%,---,---,---,---,-0.64%,---,0.00%, +,1933,13415,永赢中证全指,9月20日,0.7664,0.7664,-0.31%,-5.69%,-6.04%,-11.33%,-12.96%,---,---,---,-24.50%,-23.35%,-23.35%,0.10%, +,1934,14154,天弘华证沪深,9月20日,0.8549,0.8549,0.64%,-3.69%,-5.90%,-9.60%,-7.03%,---,---,---,---,-14.51%,-14.51%,0.00%, +,1935,14303,华安中证内地,9月19日,0.8238,0.8238,0.30%,-7.85%,-14.24%,-13.40%,-10.55%,---,---,---,-18.23%,-17.62%,---,0.05%, +,1936,501219,华夏智胜先锋,9月20日,1.013,1.013,1.37%,-4.76%,-5.34%,2.58%,9.61%,---,---,---,-0.14%,1.30%,1.30%,0.15%, +,1937,13907,永赢深创10,9月20日,0.7289,0.7289,0.33%,-4.89%,-9.34%,-10.95%,-9.63%,---,---,---,-25.49%,-27.11%,-27.11%,0.10%, +,1938,14432,华夏中证新材,9月20日,0.9064,0.9064,1.12%,-5.53%,-11.05%,-13.13%,-6.68%,---,---,---,---,-9.36%,-9.36%,0.00%, +,1939,14533,易方达MSC,9月20日,0.8451,0.8451,0.24%,-4.05%,-5.29%,-8.69%,-6.18%,---,---,---,-15.51%,-15.49%,-15.49%,0.00%, +,1940,14332,华泰柏瑞中证,9月19日,0.7922,0.7922,-1.05%,-8.71%,-13.32%,-11.13%,-6.14%,---,---,---,-19.86%,-20.78%,-18.73%,0.00%, +,1941,14531,华夏MSCI,9月19日,0.8262,0.8262,0.22%,-3.94%,-5.53%,-8.36%,-6.17%,---,---,---,-17.50%,-17.38%,---,0.00%, +,1942,14364,银华沪港深增,9月20日,2.04,2.04,1.54%,-1.78%,-3.36%,-4.67%,0.49%,---,---,---,-23.02%,-23.34%,-23.34%,0.00%, +,1943,13834,国泰中证50,9月20日,0.873,0.873,0.72%,-5.06%,-6.28%,-4.54%,-3.88%,---,---,---,-15.79%,-12.70%,-12.70%,0.00%, +,1944,13174,银华华证ES,9月20日,0.8294,0.8294,0.11%,-3.54%,-3.51%,-5.59%,-3.77%,---,---,---,-17.15%,-17.06%,-17.06%,0.12%, +,1945,13472,华宝中证全指,9月20日,0.9743,0.9743,-0.63%,-5.07%,-4.50%,-2.63%,-0.42%,---,---,---,-6.53%,-2.57%,-2.57%,0.00%, +,1946,13601,国泰中证光伏,9月19日,0.8804,0.8804,-0.93%,-9.47%,-16.05%,-3.18%,2.09%,---,---,---,-7.60%,-11.96%,-9.52%,0.10%, +,1947,13602,国泰中证光伏,9月19日,0.8781,0.8781,-0.94%,-9.47%,-16.07%,-3.26%,1.93%,---,---,---,-7.79%,-12.19%,-9.76%,0.00%, +,1948,14256,富国中证娱乐,9月20日,0.5914,0.5914,0.56%,-3.33%,-4.66%,-6.75%,-6.59%,---,---,---,-23.77%,-18.61%,-18.61%,0.00%, +,1949,14530,华夏MSCI,9月19日,0.828,0.828,0.22%,-3.93%,-5.51%,-8.30%,-6.03%,---,---,---,-17.32%,-17.20%,---,0.12%, +,1950,160646,鹏华中证沪港,9月19日,0.7008,0.7008,-1.25%,-6.17%,-8.95%,-12.03%,-13.51%,---,---,---,-30.10%,-29.92%,---,0.12%, +,1951,14134,工银中证50,9月20日,0.8704,0.8704,0.86%,-5.23%,-5.59%,-2.78%,1.23%,---,---,---,-13.57%,-12.96%,-12.96%,0.00%, +,1952,14376,东吴新能源汽,9月19日,0.9962,0.9962,0.71%,-7.22%,-11.79%,-11.35%,-0.50%,---,---,---,---,-0.38%,---,0.15%, +,1953,13416,永赢中证全指,9月20日,0.7651,0.7651,-0.33%,-5.69%,-6.08%,-11.39%,-13.06%,---,---,---,-24.61%,-23.48%,-23.48%,0.00%, +,1954,14344,鹏华中证50,9月19日,0.9451,0.9451,-0.42%,-5.40%,-6.28%,-3.96%,0.08%,---,---,---,---,-5.49%,---,0.12%, +,1955,12989,天弘国证港股,9月20日,1.0033,1.0033,1.07%,-2.25%,-4.35%,-8.77%,---,---,---,---,---,0.33%,0.33%,0.10%, +,1956,12340,东财食品饮料,9月19日,0.8283,0.8283,0.83%,-0.24%,-3.11%,-7.50%,-0.46%,---,---,---,-17.51%,-17.17%,---,0.15%, +,1957,12341,东财食品饮料,9月19日,0.8261,0.8261,0.82%,-0.25%,-3.14%,-7.57%,-0.61%,---,---,---,-17.69%,-17.39%,---,0.00%, +,1958,14110,嘉实中证稀有,9月20日,0.8353,0.8353,3.51%,-3.20%,-4.80%,-10.19%,0.11%,---,---,---,-9.40%,-16.47%,-16.47%,0.10%, +,1959,14194,汇添富中证芯,9月20日,0.7175,0.7175,-0.58%,-4.40%,-7.43%,-0.54%,-12.05%,---,---,---,-25.66%,-28.25%,-28.25%,0.00%, +,1960,12990,天弘国证港股,9月20日,1.0095,1.0095,1.07%,-2.26%,-4.36%,-8.82%,---,---,---,---,---,0.95%,0.95%,0.00%, +,1961,13833,国泰中证50,9月20日,0.8753,0.8753,0.71%,-5.04%,-6.25%,-4.46%,-3.73%,---,---,---,-15.60%,-12.47%,-12.47%,0.10%, +,1962,14153,天弘华证沪深,9月20日,0.8563,0.8563,0.63%,-3.69%,-5.88%,-9.55%,-6.90%,---,---,---,---,-14.37%,-14.37%,0.10%, +,1963,14528,汇添富MSC,9月20日,0.861,0.861,0.23%,-3.94%,-5.54%,-8.37%,-5.98%,---,---,---,---,-14.10%,-13.90%,0.10%, +,1964,12855,英大中证ES,9月19日,0.9953,0.9953,-0.11%,-2.68%,-4.28%,-4.50%,-0.48%,---,---,---,---,-0.47%,-0.45%,0.00%, +,1965,13927,易米国证消费,9月19日,0.8764,0.8764,-0.19%,-4.08%,-7.69%,-8.01%,-5.49%,---,---,---,-12.39%,-12.36%,---,0.00%, +,1966,14532,易方达MSC,9月20日,0.847,0.847,0.25%,-4.04%,-5.27%,-8.61%,-6.04%,---,---,---,-15.32%,-15.30%,-15.30%,0.12%, +,1967,13053,天弘国证龙头,9月19日,1.0223,1.0223,-0.13%,-3.36%,-2.29%,-0.98%,2.22%,---,---,---,---,2.23%,2.35%,0.10%, +,1968,13054,天弘国证龙头,9月19日,1.0168,1.0168,-0.13%,-3.37%,-2.32%,-1.04%,1.67%,---,---,---,---,1.68%,1.80%,0.00%, +,1969,14529,汇添富MSC,9月20日,0.8596,0.8596,0.23%,-3.93%,-5.55%,-8.42%,-6.09%,---,---,---,---,-14.24%,-14.04%,0.00%, +,1970,13011,工银中证创新,9月20日,0.7809,0.7809,0.17%,-4.38%,-10.51%,-15.40%,-19.92%,---,---,---,-21.91%,-21.91%,-21.91%,0.10%, +,1971,13940,东吴医疗服务,9月19日,0.7195,0.7195,-1.53%,-8.51%,-10.65%,-15.02%,-16.98%,---,---,---,-26.51%,-28.05%,---,0.15%, +,1972,14129,东财沪港深创,9月19日,0.6808,0.6808,-1.66%,-9.65%,-13.02%,-13.38%,-17.79%,---,---,---,-30.90%,-31.92%,---,0.00%, +,1973,12708,东方红中证红,9月20日,0.9801,0.9801,-0.02%,-3.37%,0.14%,-1.57%,0.96%,---,---,---,-1.99%,-1.99%,-1.99%,0.12%, +,1974,14544,汇添富中证沪,9月20日,0.6801,0.6801,-0.25%,-3.95%,-7.32%,-12.46%,-18.02%,---,---,---,-31.99%,-31.99%,-31.99%,0.00%, +,1975,12760,工银沪港深互,9月20日,0.6981,0.6981,0.46%,-4.94%,-6.80%,-13.52%,-9.03%,---,---,---,-30.38%,-30.19%,-30.19%,0.00%, +,1976,14128,东财沪港深创,9月19日,0.6831,0.6831,-1.66%,-9.64%,-12.98%,-13.29%,-17.62%,---,---,---,-30.70%,-31.69%,---,0.12%, +,1977,14062,景顺长城专精,9月19日,0.7692,0.7692,-1.18%,-5.80%,-12.82%,-4.70%,-4.53%,---,---,---,-20.86%,-23.08%,---,0.15%, +,1978,13012,工银中证创新,9月20日,0.7803,0.7803,0.15%,-4.39%,-10.52%,-15.43%,-19.97%,---,---,---,-21.97%,-21.97%,-21.97%,0.00%, +,1979,14407,富国中证新华,9月20日,0.9129,0.9129,0.30%,-3.69%,-6.16%,-8.45%,-7.35%,---,---,---,---,-8.71%,-8.71%,0.00%, +,1980,12415,德邦上证G6,9月20日,0.7256,0.7256,2.27%,-7.87%,-16.25%,-14.12%,-19.25%,---,---,---,-27.82%,-29.05%,-27.44%,0.12%, +,1981,14602,嘉实中证医疗,9月20日,0.7786,0.7786,-0.01%,-5.45%,-9.03%,-16.53%,-14.61%,---,---,---,---,-22.14%,-22.14%,0.10%, +,1982,14737,创金合信专精,9月19日,1.0701,1.0701,-0.85%,-2.42%,-1.93%,16.38%,11.27%,---,---,---,---,7.01%,---,0.00%, +,1983,13466,博时智选量化,9月20日,0.9437,0.9437,1.47%,-5.54%,-8.94%,-1.25%,2.81%,---,---,---,-6.16%,-5.63%,-5.63%,0.00%, +,1984,14932,上投摩根医疗,9月19日,1.6897,1.6897,-2.05%,-7.24%,-8.96%,-14.22%,-14.92%,---,---,---,---,-22.82%,---,0.00%, +,1985,14967,建信潜力新蓝,9月19日,3.96,3.96,0.03%,-7.11%,-6.25%,4.40%,18.95%,---,---,---,---,22.15%,---,0.00%, +,1986,14536,诺安高端制造,9月20日,1.534,1.534,0.07%,-5.25%,-10.61%,-6.35%,-3.40%,---,---,---,-17.30%,-15.99%,-15.99%,0.00%, +,1987,12782,银华中证创新,9月20日,0.7,0.7,0.14%,-4.40%,-10.68%,-15.62%,-20.43%,---,---,---,-29.84%,-30.00%,-30.00%,0.00%, +,1988,12158,汇添富上证5,9月20日,0.8917,0.8917,-0.29%,-3.00%,-2.64%,-7.05%,-6.07%,---,---,---,---,-10.83%,-10.83%,0.00%, +,1989,14690,国泰中证港股,9月19日,0.879,0.879,-0.73%,-3.46%,-4.37%,-6.78%,-4.32%,---,---,---,-12.10%,-12.10%,-11.20%,0.00%, +,1990,14902,长城新能源股,9月20日,1.1788,1.1788,2.77%,-4.64%,-9.37%,6.10%,18.71%,---,---,---,---,17.88%,17.88%,0.15%, +,1991,13605,华夏中证内地,9月20日,0.8171,0.8171,1.95%,-7.99%,-14.33%,-10.30%,-7.44%,---,---,---,-17.19%,-19.85%,-18.29%,0.12%, +,1992,14942,鹏华中证细分,9月19日,0.9231,0.9231,0.16%,-5.86%,-6.66%,-11.87%,-8.00%,---,---,---,---,-7.69%,---,0.10%, +,1993,14534,南方MSCI,9月20日,0.9071,0.9071,0.23%,-4.10%,-5.28%,-8.71%,-5.61%,---,---,---,---,-9.29%,-9.29%,0.12%, +,1994,13503,易方达中证内,9月20日,1.11,1.11,1.89%,-5.80%,-11.74%,-8.89%,---,---,---,---,---,11.00%,11.00%,0.00%, +,1995,14831,兴银中证10,9月19日,0.8853,0.8853,-1.07%,-6.98%,-13.05%,-11.10%,-7.69%,---,---,---,---,-11.47%,---,0.15%, +,1996,12554,西部利得创业,9月19日,0.706,0.706,-0.79%,-7.47%,-12.80%,-11.72%,-11.33%,---,---,---,-28.50%,-29.40%,-28.90%,0.10%, +,1997,14689,国泰中证港股,9月19日,0.8806,0.8806,-0.73%,-3.44%,-4.34%,-6.70%,-4.17%,---,---,---,-11.94%,-11.94%,-11.04%,0.10%, +,1998,15075,上投摩根卓越,9月19日,1.2983,1.2983,-0.11%,-4.73%,-10.89%,-13.97%,-15.44%,---,---,---,---,-19.13%,---,0.00%, +,1999,14632,华安中证电子,9月19日,0.9367,0.9367,-1.46%,-4.49%,-10.31%,-9.64%,---,---,---,---,---,-6.33%,---,0.05%, +,2000,14535,南方MSCI,9月20日,0.9052,0.9052,0.22%,-4.11%,-5.30%,-8.78%,-5.76%,---,---,---,---,-9.48%,-9.48%,0.00%, +,2001,15002,工银生态环境,9月20日,2.283,2.283,2.51%,-5.66%,-11.13%,-10.33%,-5.74%,---,---,---,---,0.44%,0.44%,0.00%, +,2002,5627,富国中证高端,9月20日,1.8007,1.8007,0.94%,-5.86%,-11.52%,-11.38%,-10.21%,---,---,---,---,-13.77%,-13.77%,0.00%, +,2003,13641,博道成长智航,9月19日,0.8305,0.8305,-0.94%,-6.50%,-11.18%,-2.77%,-3.68%,---,---,---,-17.54%,-16.95%,---,--, +,2004,15038,天弘MSCI,9月19日,0.9365,0.9365,0.22%,-3.96%,-5.40%,-7.62%,-4.63%,---,---,---,---,-6.35%,-6.12%,0.00%, +,2005,14191,广发先进制造,9月19日,1.1647,1.1647,-0.67%,-9.95%,-14.48%,-0.61%,18.40%,---,---,---,---,16.47%,---,0.15%, +,2006,10144,国泰国证医药,9月19日,0.6278,0.6278,-1.15%,-6.12%,-7.88%,-12.07%,-15.23%,---,---,---,---,-16.25%,-16.24%,0.00%, +,2007,14979,华安上证18,9月19日,1.4999,1.4999,-0.07%,-3.57%,-3.20%,-6.55%,-5.43%,---,---,---,---,-11.02%,---,0.00%, +,2008,14202,天弘中证10,9月20日,0.9499,0.9499,1.27%,-5.60%,-10.15%,-4.15%,3.22%,---,---,---,---,-5.01%,-5.01%,0.00%, +,2009,15123,汇添富国企创,9月20日,1.972,1.972,0.51%,-3.29%,-6.18%,-2.67%,-1.20%,---,---,---,---,-3.66%,-3.66%,0.00%, +,2010,12781,银华中证创新,9月20日,0.7005,0.7005,0.16%,-4.39%,-10.67%,-15.60%,-20.39%,---,---,---,-29.79%,-29.95%,-29.95%,0.12%, +,2011,12962,招商创业板大,9月20日,0.9218,0.9218,0.66%,-6.68%,-11.83%,-12.78%,---,---,---,---,---,-7.82%,-7.82%,0.00%, +,2012,14736,创金合信专精,9月19日,1.0736,1.0736,-0.85%,-2.40%,-1.89%,16.53%,11.57%,---,---,---,---,7.36%,---,0.15%, +,2013,14192,广发先进制造,9月19日,1.1621,1.1621,-0.68%,-9.97%,-14.51%,-0.71%,18.16%,---,---,---,---,16.21%,---,0.00%, +,2014,13481,华宝国证治理,9月20日,0.8343,0.8343,-0.60%,-2.93%,-0.69%,-5.59%,-4.54%,---,---,---,-16.34%,-16.57%,-16.57%,0.00%, +,2015,15060,华夏节能环保,9月20日,2.2412,2.2412,3.51%,-7.14%,-14.59%,1.51%,2.14%,---,---,---,---,-0.74%,-0.74%,0.00%, +,2016,8923,建信医疗健康,9月19日,0.8981,0.8981,-2.02%,-6.47%,-7.96%,-9.46%,-5.33%,---,---,---,-10.23%,-10.19%,---,0.15%, +,2017,15225,汇添富中证细,9月20日,0.9556,0.9556,1.33%,-4.44%,-5.92%,-8.45%,-4.53%,---,---,---,---,-4.44%,-4.44%,0.12%, +,2018,13479,金鹰先进制造,9月19日,0.9297,0.9297,-1.69%,-0.47%,-3.51%,2.67%,0.19%,---,---,---,---,-11.98%,---,0.00%, +,2019,14605,嘉实中证光伏,9月20日,1.0749,1.0749,2.86%,-6.97%,-14.23%,-2.19%,2.96%,---,---,---,---,7.49%,7.49%,0.00%, +,2020,14930,富国高端制造,9月20日,3.059,3.059,1.02%,-5.93%,-10.79%,-13.15%,-6.25%,---,---,---,---,-17.81%,-17.81%,0.00%, +,2021,14630,汇添富中证人,9月20日,0.9763,0.9763,0.35%,-4.06%,-9.88%,-12.95%,---,---,---,---,---,-2.37%,-2.37%,0.10%, +,2022,12709,东方红中证红,9月20日,0.9773,0.9773,-0.02%,-3.38%,0.10%,-1.67%,0.76%,---,---,---,-2.27%,-2.27%,-2.27%,0.00%, +,2023,14543,汇添富中证沪,9月20日,0.6813,0.6813,-0.25%,-3.95%,-7.29%,-12.41%,-17.92%,---,---,---,-31.87%,-31.87%,-31.87%,0.10%, +,2024,14455,中银成长优选,9月20日,1.0535,1.0535,2.57%,-5.61%,-12.10%,-0.89%,3.86%,---,---,---,-12.57%,-11.50%,-11.50%,0.00%, +,2025,14863,建信信息产业,9月19日,2.832,2.832,-0.32%,-6.23%,-6.29%,-1.43%,-4.19%,---,---,---,---,-3.80%,---,0.00%, +,2026,14661,天弘上海金E,9月20日,0.9367,0.9367,0.24%,-0.94%,-0.37%,-2.99%,-3.34%,---,---,---,---,-6.33%,-6.33%,0.10%, +,2027,14453,中银新动力股,9月20日,0.993,0.993,0.40%,-3.22%,-4.52%,-10.86%,-7.54%,---,---,---,-27.78%,-29.22%,-29.22%,0.00%, +,2028,14417,泰康研究精选,9月19日,0.7882,0.7882,-0.88%,-5.84%,-10.46%,-10.56%,-10.93%,---,---,---,-22.25%,-21.18%,---,0.00%, +,2029,14937,上投摩根核心,9月19日,2.061,2.061,-0.81%,-9.27%,-15.81%,-14.59%,-10.31%,---,---,---,---,-18.60%,---,0.00%, +,2030,14984,华安中证全指,9月19日,0.8929,0.8929,-0.99%,-7.93%,-7.39%,-10.50%,-11.08%,---,---,---,---,-16.36%,---,0.00%, +,2031,14985,华安创业板5,9月19日,1.2269,1.2269,-0.66%,-8.13%,-15.00%,-12.22%,-13.28%,---,---,---,---,-14.05%,---,0.00%, +,2032,15278,东财沪深30,9月19日,0.9959,0.9959,-0.11%,-3.83%,-5.03%,-7.19%,-0.67%,---,---,---,---,-0.41%,---,0.12%, +,2033,15157,申万菱信行业,9月20日,1.9515,1.9515,3.04%,-6.03%,-10.49%,-4.48%,6.08%,---,---,---,---,-2.92%,-2.92%,0.00%, +,2034,15337,嘉实中证芯片,9月20日,0.8305,0.8305,-0.50%,-6.06%,-11.88%,-9.31%,---,---,---,---,---,-16.95%,-16.95%,0.00%, +,2035,15046,前海开源中航,9月19日,1.1423,1.1423,-1.41%,-0.58%,-0.18%,8.99%,10.47%,---,---,---,---,5.19%,---,0.00%, +,2036,15177,申万菱信深证,9月20日,0.6081,0.6081,0.65%,-5.04%,-8.16%,-8.65%,-7.23%,---,---,---,---,-14.60%,-14.60%,0.00%, +,2037,13922,华夏中证10,9月19日,0.9049,0.9049,-1.21%,-7.08%,-10.81%,-5.31%,-6.02%,---,---,---,---,-9.51%,---,0.12%, +,2038,14406,富国中证新华,9月20日,0.9134,0.9134,0.30%,-3.69%,-6.14%,-8.43%,-7.31%,---,---,---,---,-8.66%,-8.66%,0.12%, +,2039,15178,申万菱信中证,9月20日,0.7456,0.7456,0.09%,-7.75%,-7.29%,-9.82%,-10.97%,---,---,---,---,-15.05%,-15.05%,0.00%, +,2040,13923,华夏中证10,9月19日,0.9032,0.9032,-1.21%,-7.10%,-10.83%,-5.37%,-6.16%,---,---,---,---,-9.68%,---,0.00%, +,2041,15170,上投摩根核心,9月19日,2.3104,2.3104,-0.65%,-4.00%,-6.52%,-10.15%,-7.45%,---,---,---,---,-17.11%,---,0.00%, +,2042,14907,国泰中证消费,9月19日,0.7619,0.7619,-0.95%,-6.02%,-12.72%,-10.48%,-17.52%,---,---,---,---,-23.81%,-23.77%,0.00%, +,2043,14994,国泰上证18,9月19日,0.9976,0.9976,0.06%,-2.35%,0.25%,-5.10%,-7.27%,---,---,---,---,-13.99%,-14.68%,0.00%, +,2044,14997,国泰国证新能,9月19日,1.8347,1.8347,1.16%,-6.42%,-14.46%,-15.39%,-6.43%,---,---,---,---,-9.46%,---,0.00%, +,2045,14864,建信食品饮料,9月19日,1.1292,1.1292,0.90%,1.01%,-0.77%,-1.41%,5.57%,---,---,---,---,-0.49%,---,0.00%, +,2046,14820,华安创新医药,9月19日,0.8514,0.8514,-1.57%,-7.69%,-11.05%,-16.51%,---,---,---,---,---,-14.86%,---,--, +,2047,14776,富国中证芯片,9月20日,0.7856,0.7856,-0.46%,-5.97%,-11.29%,-7.42%,-17.78%,---,---,---,---,-21.44%,-21.44%,0.12%, +,2048,14908,国泰中证新材,9月19日,0.8893,0.8893,-0.01%,-6.70%,-11.64%,-13.34%,-8.60%,---,---,---,---,-11.07%,-10.05%,0.10%, +,2049,15052,东方红医疗升,9月20日,0.9219,0.9219,0.51%,-4.26%,-6.57%,-9.35%,---,---,---,---,---,-7.81%,-7.81%,--, +,2050,15053,东方红医疗升,9月20日,0.9197,0.9197,0.51%,-4.27%,-6.61%,-9.47%,---,---,---,---,---,-8.03%,-8.03%,0.00%, +,2051,15176,申万菱信中证,9月20日,0.7218,0.7218,-0.04%,-4.95%,-8.13%,-13.69%,-16.05%,---,---,---,---,-17.47%,-17.47%,0.00%, +,2052,15140,泰康医疗健康,9月19日,0.9302,0.9302,-1.81%,-6.63%,-8.70%,-9.63%,-9.00%,---,---,---,---,-6.98%,---,0.00%, +,2053,15114,汇添富高端制,9月20日,2.507,2.507,0.36%,-2.72%,-3.80%,-1.65%,5.38%,---,---,---,---,-0.40%,-0.40%,0.00%, +,2054,15226,汇添富中证细,9月20日,0.9543,0.9543,1.33%,-4.45%,-5.93%,-8.50%,-4.65%,---,---,---,---,-4.57%,-4.57%,0.00%, +,2055,15159,申万菱信智能,9月20日,3.408,3.408,0.90%,-5.60%,-10.52%,-4.34%,-6.66%,---,---,---,---,-10.94%,-10.94%,0.00%, +,2056,15139,泰康医疗健康,9月19日,0.9327,0.9327,-1.80%,-6.61%,-8.66%,-9.51%,-8.76%,---,---,---,---,-6.73%,---,0.15%, +,2057,15279,东财沪深30,9月19日,0.9938,0.9938,-0.12%,-3.85%,-5.07%,-7.29%,-0.88%,---,---,---,---,-0.62%,---,0.00%, +,2058,15388,中欧沪深30,9月20日,0.9639,0.9639,0.14%,-4.11%,-5.04%,-5.78%,---,---,---,---,---,-3.74%,-3.61%,0.00%, +,2059,14674,富国中证港股,9月20日,0.7376,0.7376,1.25%,-4.81%,-8.11%,-17.17%,-7.31%,---,---,---,---,-26.24%,-26.24%,0.00%, +,2060,12802,富国中证医药,9月20日,0.8347,0.8347,-0.07%,-5.42%,-7.60%,-13.97%,-15.67%,---,---,---,-16.53%,-16.53%,-16.53%,0.00%, +,2061,14519,博时恒生高股,9月20日,0.8224,0.8224,0.35%,-1.71%,2.14%,-16.65%,-17.64%,---,---,---,---,-17.76%,-17.76%,0.12%, +,2062,15040,国泰国证食品,9月19日,1.0372,1.0372,0.77%,-0.67%,-3.58%,-7.66%,-0.38%,---,---,---,---,-11.55%,-10.70%,0.00%, +,2063,13873,平安中证医药,9月19日,0.813,0.813,-1.37%,-7.58%,-9.64%,-16.31%,-20.32%,---,---,---,---,-18.70%,-18.73%,0.12%, +,2064,14629,华泰紫金智能,9月19日,1.2349,1.2349,-0.13%,-4.63%,-5.37%,-6.86%,-5.63%,---,---,---,---,-13.58%,---,0.00%, +,2065,15048,建信新能源行,9月19日,2.2769,2.2769,-0.18%,-8.40%,-11.87%,-8.59%,-3.20%,---,---,---,---,-7.48%,---,0.00%, +,2066,15172,上投摩根安全,9月19日,1.5694,1.5694,-0.41%,-7.32%,-12.44%,-4.16%,-3.84%,---,---,---,---,-7.46%,---,0.00%, +,2067,15171,申万菱信医药,9月20日,0.6642,0.6642,1.39%,-3.74%,-4.20%,-12.69%,-15.57%,---,---,---,---,-18.01%,-18.01%,0.00%, +,2068,14866,大摩MSCI,9月20日,0.8979,0.8979,0.36%,-3.95%,-6.28%,-5.97%,-5.04%,---,---,---,---,-13.09%,-13.09%,0.00%, +,2069,14906,国泰中证消费,9月19日,0.7631,0.7631,-0.95%,-6.01%,-12.69%,-10.40%,-17.40%,---,---,---,---,-23.69%,-23.65%,0.10%, +,2070,14415,招商中证畜牧,9月20日,1.0995,1.0995,-0.61%,-4.99%,-3.37%,-1.74%,---,---,---,---,---,9.95%,9.95%,0.00%, +,2071,15336,嘉实中证芯片,9月20日,0.8316,0.8316,-0.49%,-6.06%,-11.86%,-9.25%,---,---,---,---,---,-16.84%,-16.84%,0.10%, +,2072,14604,嘉实中证光伏,9月20日,1.0766,1.0766,2.87%,-6.96%,-14.21%,-2.14%,3.09%,---,---,---,---,7.66%,7.66%,0.10%, +,2073,14821,华安创新医药,9月19日,0.8498,0.8498,-1.58%,-7.70%,-11.09%,-16.60%,---,---,---,---,---,-15.02%,---,0.00%, +,2074,12734,易方达中证人,9月20日,0.789,0.789,0.34%,-4.17%,-10.01%,-12.41%,-21.14%,---,---,---,---,-21.10%,-21.10%,0.00%, +,2075,12700,易方达中证全,9月20日,0.9112,0.9112,0.08%,-7.75%,-7.25%,-9.92%,-8.87%,---,---,---,---,-8.88%,-8.88%,0.00%, +,2076,15196,汇添富智能制,9月20日,1.7274,1.7274,1.84%,-4.15%,-11.29%,-0.21%,2.67%,---,---,---,---,4.63%,4.63%,0.00%, +,2077,13480,华宝国证治理,9月20日,0.8362,0.8362,-0.59%,-2.93%,-0.67%,-5.52%,-4.40%,---,---,---,-16.15%,-16.38%,-16.38%,0.10%, +,2078,14832,兴银中证10,9月19日,0.8841,0.8841,-1.09%,-7.00%,-13.08%,-11.15%,-7.80%,---,---,---,---,-11.59%,---,0.00%, +,2079,14372,浙商沪深30,9月19日,1.7256,1.7256,-0.20%,-3.96%,-4.89%,-7.42%,-6.40%,---,---,---,---,-14.12%,---,0.00%, +,2080,15198,汇添富移动互,9月20日,1.613,1.613,0.19%,-4.89%,-7.09%,-5.23%,-10.39%,---,---,---,---,-11.47%,-11.47%,0.00%, +,2081,14520,博时恒生高股,9月20日,0.8201,0.8201,0.34%,-1.73%,2.09%,-16.75%,-17.81%,---,---,---,---,-17.99%,-17.99%,0.00%, +,2082,14903,长城新能源股,9月20日,1.1743,1.1743,2.77%,-4.64%,-9.42%,5.96%,18.37%,---,---,---,---,17.43%,17.43%,0.00%, +,2083,14943,鹏华中证细分,9月19日,0.9216,0.9216,0.16%,-5.87%,-6.68%,-11.94%,-8.14%,---,---,---,---,-7.84%,---,0.00%, +,2084,15395,招商体育文化,9月20日,1.292,1.292,0.86%,-4.44%,-8.04%,-12.05%,-15.89%,---,---,---,---,-13.17%,-13.17%,0.00%, +,2085,14983,华安中证银行,9月19日,0.8836,0.8836,0.36%,-0.53%,1.46%,-4.30%,-4.91%,---,---,---,---,-11.35%,---,0.00%, +,2086,15037,天弘MSCI,9月19日,0.9379,0.9379,0.24%,-3.95%,-5.38%,-7.55%,-4.50%,---,---,---,---,-6.21%,-5.99%,0.10%, +,2087,14777,富国中证芯片,9月20日,0.7845,0.7845,-0.47%,-5.98%,-11.31%,-7.48%,-17.87%,---,---,---,---,-21.55%,-21.55%,0.00%, +,2088,14662,天弘上海金E,9月20日,0.9349,0.9349,0.24%,-0.94%,-0.40%,-3.08%,-3.52%,---,---,---,---,-6.51%,-6.51%,0.00%, +,2089,15001,工银物流产业,9月20日,3.223,3.223,0.40%,-4.28%,-7.44%,-4.50%,-4.45%,---,---,---,---,-13.62%,-13.62%,0.00%, +,2090,14631,汇添富中证人,9月20日,0.9759,0.9759,0.34%,-4.07%,-9.90%,-13.01%,---,---,---,---,---,-2.41%,-2.41%,0.00%, +,2091,14980,华安上证龙头,9月19日,1.297,1.297,-0.54%,-4.49%,-3.85%,-6.35%,-6.76%,---,---,---,---,-12.42%,---,0.00%, +,2092,14174,富国中证国有,9月20日,0.977,0.977,-0.20%,-3.74%,-2.79%,-4.78%,-2.79%,---,---,---,-14.75%,-12.69%,-12.69%,0.00%, +,2093,14218,添富中证科创,9月20日,0.9854,0.9854,0.97%,-5.05%,-11.01%,-6.65%,---,---,---,---,---,-1.46%,-1.46%,0.12%, +,2094,14219,添富中证科创,9月20日,0.9843,0.9843,0.97%,-5.05%,-11.03%,-6.70%,---,---,---,---,---,-1.57%,-1.57%,0.00%, +,2095,14603,嘉实中证医疗,9月20日,0.7773,0.7773,-0.03%,-5.46%,-9.06%,-16.59%,-14.72%,---,---,---,---,-22.27%,-22.27%,0.00%, +,2096,12961,招商创业板大,9月20日,0.9257,0.9257,0.66%,-6.67%,-11.80%,-12.70%,---,---,---,---,---,-7.43%,-7.43%,0.12%, +,2097,15194,汇添富新兴消,9月20日,1.622,1.622,1.76%,-4.98%,-11.46%,-7.89%,-1.46%,---,---,---,---,-2.70%,-2.70%,0.00%, +,2098,12590,易方达中证全,9月20日,0.9121,0.9121,0.08%,-7.76%,-7.24%,-9.89%,-8.83%,---,---,---,---,-8.79%,-8.79%,0.06%, +,2099,15085,中欧核心消费,9月20日,1.0327,1.0327,0.87%,-0.47%,-1.72%,-3.23%,---,---,---,---,---,3.27%,3.27%,0.15%, +,2100,15086,中欧核心消费,9月20日,1.0303,1.0303,0.87%,-0.48%,-1.76%,-3.36%,---,---,---,---,---,3.03%,3.03%,0.00%, +,2101,14909,国泰中证新材,9月19日,0.8878,0.8878,-0.02%,-6.72%,-11.66%,-13.40%,-8.74%,---,---,---,---,-11.22%,-10.19%,0.00%, +,2102,14206,长城中证医药,9月20日,0.9169,0.9169,0.58%,-5.86%,-7.74%,-8.30%,---,---,---,---,---,-8.31%,-8.31%,0.00%, +,2103,15577,国联安上证商,9月20日,1.1028,1.1028,1.28%,-6.66%,-3.51%,-6.11%,---,---,---,---,---,6.73%,8.10%,0.00%, +,2104,15773,招商移动互联,9月20日,1.5654,1.5654,-0.36%,-3.21%,-4.51%,13.03%,---,---,---,---,---,30.66%,30.66%,0.00%, +,2105,14139,易方达高质量,9月20日,0.9481,0.9481,-0.26%,-2.88%,-4.96%,-6.88%,---,---,---,---,---,-5.19%,-5.19%,0.15%, +,2106,12854,英大中证ES,9月19日,0.9492,0.9492,-0.09%,-2.68%,-4.27%,-6.09%,-5.09%,---,---,---,---,-5.08%,-5.07%,0.08%, +,2107,13888,天弘新华沪港,9月20日,0.883,0.883,0.82%,-3.07%,-3.41%,---,---,---,---,---,---,-11.70%,-11.70%,--, +,2108,15598,国泰中证申万,9月19日,0.9325,0.9325,-0.98%,-7.89%,-7.32%,-10.16%,---,---,---,---,---,-0.57%,-0.47%,0.00%, +,2109,15618,永赢卓越臻选,9月20日,0.9157,0.9157,0.18%,-3.53%,-6.27%,-8.79%,---,---,---,---,---,-8.43%,-8.43%,0.00%, +,2110,14305,华泰柏瑞中证,9月20日,1.0064,1.0064,0.07%,-0.62%,-0.66%,-0.06%,---,---,---,---,---,0.57%,0.64%,0.15%, +,2111,15466,太平中证10,9月19日,1.0276,1.0276,-1.10%,-7.23%,-11.61%,-4.80%,---,---,---,---,---,2.76%,4.04%,0.12%, +,2112,12929,银华中证光伏,9月20日,1.2991,1.2991,2.83%,-6.74%,-13.80%,-2.59%,---,---,---,---,---,29.91%,29.91%,0.00%, +,2113,15364,汇丰晋信价值,9月19日,1.6511,2.0511,-0.51%,-3.01%,-4.62%,-7.41%,---,---,---,---,---,-7.54%,---,0.00%, +,2114,12733,易方达中证人,9月20日,0.7894,0.7894,0.34%,-4.16%,-10.00%,-12.38%,-21.09%,---,---,---,---,-21.06%,-21.06%,0.06%, +,2115,15495,景顺长城中证,9月19日,0.9908,0.9908,-0.91%,-7.73%,-11.49%,-7.60%,---,---,---,---,---,-0.92%,---,0.12%, +,2116,15468,嘉实农业产业,9月20日,0.9434,0.9434,-0.16%,-4.13%,-6.33%,-5.03%,---,---,---,---,---,-5.66%,-5.66%,0.00%, +,2117,15454,中欧中证50,9月20日,0.9566,0.9566,0.61%,-4.28%,-6.71%,-5.20%,---,---,---,---,---,-4.34%,-4.34%,0.00%, +,2118,15497,华泰紫金中证,9月19日,0.9448,0.9448,-1.41%,-6.45%,-7.62%,-13.09%,---,---,---,---,---,-5.52%,---,0.06%, +,2119,15498,华泰紫金中证,9月19日,0.9444,0.9444,-1.41%,-6.45%,-7.63%,-13.11%,---,---,---,---,---,-5.56%,---,0.00%, +,2120,14673,富国中证港股,9月20日,0.7386,0.7386,1.25%,-4.81%,-8.10%,-17.13%,-7.22%,---,---,---,---,-26.14%,-26.14%,0.12%, +,2121,14205,长城中证医药,9月20日,0.9177,0.9177,0.58%,-5.86%,-7.71%,-8.23%,---,---,---,---,---,-8.23%,-8.23%,0.12%, +,2122,11965,泰康中证50,9月19日,0.9234,0.9234,-0.71%,-6.14%,-7.41%,---,---,---,---,---,---,-7.66%,---,0.00%, +,2123,14414,招商中证畜牧,9月20日,1.1024,1.1024,-0.61%,-4.98%,-3.32%,-1.64%,---,---,---,---,---,10.24%,10.24%,0.12%, +,2124,15671,前海开源沪深,9月19日,1.6428,1.6428,-0.13%,-3.84%,-5.00%,-6.61%,---,---,---,---,---,0.69%,---,0.00%, +,2125,14588,华安中证50,9月19日,0.9456,0.9456,-0.61%,-6.01%,-6.97%,-7.16%,---,---,---,---,---,-5.44%,---,0.00%, +,2126,15596,国泰国证有色,9月19日,1.3233,1.3233,-0.09%,-7.23%,-7.26%,-10.57%,---,---,---,---,---,1.38%,3.46%,0.00%, +,2127,15674,鹏华中证80,9月19日,1.009,1.009,0.50%,-2.98%,4.67%,6.66%,---,---,---,---,---,0.90%,---,0.00%, +,2128,15675,鹏华中证传媒,9月19日,0.957,0.957,-1.75%,-5.15%,-8.51%,-11.80%,---,---,---,---,---,-4.30%,---,0.00%, +,2129,13889,天弘新华沪港,9月20日,0.88,0.88,0.82%,-3.08%,-3.43%,---,---,---,---,---,---,-12.00%,-12.00%,0.00%, +,2130,15507,兴业中证50,9月19日,0.9539,0.9539,-0.43%,-5.67%,-6.35%,-4.65%,---,---,---,---,---,-4.61%,-3.83%,0.12%, +,2131,15673,鹏华创业板指,9月19日,1.037,1.037,-0.77%,-7.25%,-13.15%,-10.60%,---,---,---,---,---,3.70%,---,0.00%, +,2132,15678,鹏华中证高铁,9月19日,0.964,0.964,-0.31%,-4.74%,-4.65%,-3.89%,---,---,---,---,---,-3.60%,---,0.00%, +,2133,15387,中欧沪深30,9月20日,0.9667,0.9667,0.13%,-4.10%,-5.00%,-5.64%,---,---,---,---,---,-3.46%,-3.33%,0.15%, +,2134,14306,华泰柏瑞中证,9月20日,1.0048,1.0048,0.07%,-0.63%,-0.69%,-0.17%,---,---,---,---,---,0.41%,0.48%,0.00%, +,2135,12928,银华中证光伏,9月20日,1.3004,1.3004,2.82%,-6.74%,-13.78%,-2.53%,---,---,---,---,---,30.04%,30.04%,0.12%, +,2136,14140,易方达高质量,9月20日,0.9466,0.9466,-0.27%,-2.88%,-5.00%,-7.00%,---,---,---,---,---,-5.34%,-5.34%,0.00%, +,2137,13502,易方达中证内,9月20日,1.1124,1.1124,1.90%,-5.78%,-11.72%,-8.81%,---,---,---,---,---,11.24%,11.24%,0.12%, +,2138,15484,前海开源中证,9月19日,1.219,1.219,0.47%,-3.15%,-4.35%,-7.05%,---,---,---,---,---,-0.55%,---,0.00%, +,2139,12756,易方达中证龙,9月20日,0.9562,0.9562,0.19%,-3.26%,-3.24%,-8.16%,-3.42%,---,---,---,---,-4.38%,-4.38%,0.10%, +,2140,15558,万家中证红利,9月19日,2.2823,2.2823,0.08%,-4.35%,-0.40%,1.27%,---,---,---,---,---,7.35%,7.47%,0.00%, +,2141,13893,国联安上证科,9月20日,0.9016,0.9016,0.87%,-5.06%,-10.93%,-10.69%,---,---,---,---,---,-10.62%,-9.84%,0.10%, +,2142,15676,鹏华中证移动,9月19日,0.998,0.998,-1.67%,-4.86%,-9.27%,-9.19%,---,---,---,---,---,-0.20%,---,0.00%, +,2143,14564,天弘恒生沪深,9月19日,0.904,0.904,-1.90%,-9.99%,-12.29%,-13.95%,---,---,---,---,---,-9.60%,---,0.10%, +,2144,15599,国泰国证航天,9月19日,1.3079,1.3079,-1.75%,-3.02%,-4.11%,3.51%,---,---,---,---,---,9.21%,9.24%,0.00%, +,2145,13894,国联安上证科,9月20日,0.9,0.9,0.87%,-5.08%,-10.96%,-10.82%,---,---,---,---,---,-10.78%,-10.00%,0.00%, +,2146,15467,太平中证10,9月19日,1.0259,1.0259,-1.10%,-7.24%,-11.64%,-4.89%,---,---,---,---,---,2.59%,3.87%,0.00%, +,2147,15328,华泰紫金中证,9月19日,0.9697,0.9697,0.15%,-6.44%,-7.53%,-12.97%,---,---,---,---,---,-3.03%,---,0.06%, +,2148,15329,华泰紫金中证,9月19日,0.9692,0.9692,0.17%,-6.44%,-7.54%,-12.99%,---,---,---,---,---,-3.08%,---,0.00%, +,2149,15508,兴业中证50,9月19日,0.9531,0.9531,-0.43%,-5.67%,-6.38%,-4.72%,---,---,---,---,---,-4.69%,-3.91%,0.00%, +,2150,15739,国泰中证港股,9月20日,0.8307,0.8307,1.58%,-4.01%,-11.04%,-16.60%,---,---,---,---,---,-16.93%,-16.93%,0.10%, +,2151,15475,天弘文化新兴,9月20日,1.014,1.014,0.53%,-1.73%,-1.89%,-6.89%,---,---,---,---,---,1.40%,1.40%,0.00%, +,2152,15686,富国新兴产业,9月20日,2.082,2.082,1.22%,-3.52%,-6.38%,14.58%,---,---,---,---,---,18.23%,18.23%,0.00%, +,2153,15998,大成中证电池,9月20日,0.8721,0.8721,2.41%,-5.93%,-14.04%,---,---,---,---,---,---,-12.79%,-12.79%,0.00%, +,2154,14958,华富消费成长,9月20日,0.9687,0.9687,1.21%,-1.15%,-1.99%,---,---,---,---,---,---,-3.13%,-3.13%,0.00%, +,2155,14589,招商成长先导,9月20日,0.8898,0.8898,0.49%,-3.62%,-8.81%,---,---,---,---,---,---,-11.02%,-11.02%,0.15%, +,2156,14590,招商成长先导,9月20日,0.8885,0.8885,0.47%,-3.64%,-8.89%,---,---,---,---,---,---,-11.15%,-11.15%,0.00%, +,2157,15872,景顺长城国证,9月19日,0.8643,0.8643,1.29%,-6.57%,-14.71%,-16.89%,---,---,---,---,---,-13.57%,---,0.00%, +,2158,14634,景顺长城ES,9月19日,0.9478,0.9478,0.15%,-3.63%,-3.67%,-6.16%,---,---,---,---,---,-5.22%,---,0.15%, +,2159,14635,景顺长城ES,9月19日,0.9462,0.9462,0.15%,-3.64%,-3.71%,-6.30%,---,---,---,---,---,-5.38%,---,0.00%, +,2160,15922,申万菱信国证,9月20日,0.95,0.95,1.26%,-5.14%,-8.13%,---,---,---,---,---,---,-5.00%,-5.00%,0.00%, +,2161,15894,平安中证消费,9月19日,0.9178,0.9178,-0.96%,-6.07%,-12.88%,---,---,---,---,---,---,-8.22%,-8.18%,0.10%, +,2162,14633,华安中证电子,9月19日,0.9361,0.9361,-1.46%,-4.49%,-10.33%,-9.68%,---,---,---,---,---,-6.39%,---,0.00%, +,2163,15496,景顺长城中证,9月19日,0.9891,0.9891,-0.92%,-7.74%,-11.52%,-7.71%,---,---,---,---,---,-1.09%,---,0.00%, +,2164,15871,景顺长城国证,9月19日,0.8647,0.8647,1.30%,-6.57%,-14.71%,-16.86%,---,---,---,---,---,-13.53%,---,0.12%, +,2165,14854,嘉实中证半导,9月20日,1.2672,1.2672,-0.52%,-4.37%,-4.81%,6.83%,---,---,---,---,---,26.72%,26.72%,0.10%, +,2166,15641,银华数字经济,9月20日,1.0236,1.0236,1.98%,-3.80%,-6.28%,-5.55%,---,---,---,---,---,2.36%,2.36%,0.15%, +,2167,15642,银华数字经济,9月20日,1.0228,1.0228,1.97%,-3.81%,-6.31%,-5.61%,---,---,---,---,---,2.28%,2.28%,0.00%, +,2168,14121,大成品质医疗,9月19日,0.848,0.848,-2.55%,-7.61%,-10.77%,-15.82%,---,---,---,---,---,-15.20%,-15.14%,0.15%, +,2169,15877,富国中证消费,9月20日,0.8883,0.8883,0.03%,-6.63%,-13.35%,-11.17%,---,---,---,---,---,-11.17%,-11.17%,0.00%, +,2170,15997,大成中证电池,9月20日,0.8726,0.8726,2.41%,-5.93%,-14.02%,---,---,---,---,---,---,-12.74%,-12.74%,0.15%, +,2171,14855,嘉实中证半导,9月20日,1.266,1.266,-0.52%,-4.37%,-4.83%,6.76%,---,---,---,---,---,26.60%,26.60%,0.00%, +,2172,13943,华宝中证稀有,9月20日,0.9254,0.9254,4.01%,-3.18%,-3.90%,-9.51%,1.54%,---,---,---,-7.88%,-7.46%,-7.46%,0.00%, +,2173,15679,景顺长城沪深,9月19日,2.242,2.242,0.22%,-3.82%,-4.60%,-6.19%,---,---,---,---,---,-0.18%,---,0.00%, +,2174,15808,汇添富中证电,9月20日,0.8124,0.8124,2.45%,-6.31%,-14.88%,-11.28%,---,---,---,---,---,6.74%,6.74%,0.00%, +,2175,15895,平安中证消费,9月19日,0.9171,0.9171,-0.97%,-6.08%,-12.91%,---,---,---,---,---,---,-8.29%,-8.25%,0.00%, +,2176,15994,博时中证光伏,9月20日,0.9173,0.9173,2.72%,-6.85%,-8.28%,---,---,---,---,---,---,-8.27%,-8.27%,0.00%, +,2177,15876,富国中证消费,9月20日,0.8887,0.8887,0.03%,-6.64%,-13.34%,-11.13%,---,---,---,---,---,-11.13%,-11.13%,0.12%, +,2178,15149,华安中证10,9月19日,0.9241,0.9241,-1.16%,-6.87%,-10.03%,---,---,---,---,---,---,-7.59%,---,0.00%, +,2179,16020,招商中证电池,9月20日,0.8446,0.8446,2.39%,-6.20%,-14.67%,---,---,---,---,---,---,-15.54%,-15.54%,0.00%, +,2180,14587,华安中证50,9月19日,0.9469,0.9469,-0.60%,-6.00%,-6.93%,-7.05%,---,---,---,---,---,-5.31%,---,0.12%, +,2181,16019,招商中证电池,9月20日,0.8454,0.8454,2.40%,-6.19%,-14.64%,---,---,---,---,---,---,-15.46%,-15.46%,0.12%, +,2182,15588,国泰大农业股,9月20日,2.3136,2.3136,0.07%,-4.12%,-5.76%,-5.44%,---,---,---,---,---,0.01%,0.01%,0.00%, +,2183,15617,永赢卓越臻选,9月20日,0.9169,0.9169,0.16%,-3.52%,-6.24%,-8.68%,---,---,---,---,---,-8.31%,-8.31%,0.15%, +,2184,12329,天弘中证新能,9月20日,0.8876,0.8876,2.52%,-6.01%,-11.79%,---,---,---,---,---,---,-11.24%,-11.24%,0.00%, +,2185,15453,中欧中证50,9月20日,0.9588,0.9588,0.61%,-4.26%,-6.66%,-5.05%,---,---,---,---,---,-4.12%,-4.12%,0.15%, +,2186,14565,天弘恒生沪深,9月19日,0.9032,0.9032,-1.90%,-10.00%,-12.31%,-14.00%,---,---,---,---,---,-9.68%,---,0.00%, +,2187,15897,天弘中证细分,9月20日,0.899,0.899,1.26%,-4.46%,-6.18%,-10.10%,---,---,---,---,---,-10.10%,-10.10%,0.00%, +,2188,15896,天弘中证细分,9月20日,0.8994,0.8994,1.25%,-4.46%,-6.18%,-10.06%,---,---,---,---,---,-10.06%,-10.06%,0.10%, +,2189,15608,信澳转型创新,9月20日,1.035,1.035,3.71%,-9.60%,-16.49%,-7.59%,---,---,---,---,---,2.89%,6.70%,0.00%, +,2190,14122,大成品质医疗,9月19日,0.8467,0.8467,-2.55%,-7.61%,-10.80%,-15.90%,---,---,---,---,---,-15.33%,-15.28%,0.00%, +,2191,15873,工银国证新能,9月20日,0.8554,0.8554,1.98%,-5.33%,-13.33%,---,---,---,---,---,---,-14.46%,-14.46%,0.10%, +,2192,15860,宝盈国证证券,9月20日,0.9372,0.9372,---,---,-7.30%,---,---,---,---,---,---,-6.28%,-6.28%,0.00%, +,2193,14957,华富消费成长,9月20日,0.97,0.97,1.22%,-1.13%,-1.92%,---,---,---,---,---,---,-3.00%,-3.00%,0.15%, +,2194,15677,鹏华中证一带,9月19日,1.01,1.01,-0.49%,-6.05%,-3.81%,-3.35%,---,---,---,---,---,1.00%,---,0.00%, +,2195,15740,国泰中证港股,9月20日,0.8329,0.8329,1.57%,-4.02%,-11.06%,-16.65%,---,---,---,---,---,-16.71%,-16.71%,0.00%, +,2196,16018,银河康乐股票,9月20日,2.498,2.498,0.77%,-4.95%,-7.55%,---,---,---,---,---,---,-9.72%,-9.72%,0.00%, +,2197,15761,银华中证基建,9月20日,0.9382,---,-0.13%,-6.29%,-5.14%,-7.37%,---,---,---,---,---,-6.18%,-6.18%,0.12%, +,2198,16033,华宝中证10,9月20日,0.9812,0.9812,1.20%,-5.83%,-9.86%,---,---,---,---,---,---,-7.19%,-7.19%,0.00%, +,2199,15600,国泰创业板指,9月19日,1.2062,1.2062,-0.56%,-7.02%,-13.10%,-10.21%,---,---,---,---,---,-1.91%,-1.37%,0.00%, +,2200,15754,上银内需增长,9月19日,0.7929,0.7929,-0.03%,-1.99%,-2.51%,-6.37%,---,---,---,---,---,-2.22%,-2.53%,0.00%, +,2201,15762,银华中证基建,9月20日,0.9373,0.9373,-0.14%,-6.31%,-5.17%,-7.45%,---,---,---,---,---,-6.27%,-6.27%,0.00%, +,2202,16129,景顺长城中证,9月19日,1.0027,1.0027,-0.30%,-3.61%,-1.11%,---,---,---,---,---,---,0.27%,---,0.00%, +,2203,13874,平安中证医药,9月19日,0.8114,0.8114,-1.37%,-7.59%,-9.66%,-16.39%,-20.47%,---,---,---,---,-18.86%,-18.90%,0.00%, +,2204,850788,海通智选一年,9月19日,0.8422,1.5372,-1.24%,-6.63%,-10.95%,---,---,---,---,---,---,-10.95%,---,0.12%, +,2205,15148,华安中证10,9月19日,0.9247,0.9247,-1.17%,-6.87%,-10.01%,---,---,---,---,---,---,-7.53%,---,0.12%, +,2206,16185,广发中证全指,9月19日,0.9518,0.9518,-1.04%,-8.97%,-7.21%,---,---,---,---,---,---,-4.82%,---,0.12%, +,2207,16186,广发中证全指,9月19日,0.9513,0.9513,-1.05%,-8.98%,-7.24%,---,---,---,---,---,---,-4.87%,---,0.00%, +,2208,16496,景顺长城中证,9月19日,0.9337,0.9337,-2.14%,-8.14%,---,---,---,---,---,---,---,-6.63%,---,0.00%, +,2209,15874,工银国证新能,9月20日,0.8548,0.8548,1.98%,-5.34%,-13.36%,---,---,---,---,---,---,-14.52%,-14.52%,0.00%, +,2210,16399,九泰久睿量化,9月20日,0.8563,0.8563,0.99%,-5.86%,-8.88%,---,---,---,---,---,---,-3.96%,-3.96%,0.00%, +,2211,16113,华宝高端装备,9月20日,0.9893,0.9893,-0.16%,---,-0.81%,---,---,---,---,---,---,-1.07%,-1.07%,0.10%, +,2212,16114,华宝高端装备,9月20日,0.989,0.989,-0.16%,---,-0.84%,---,---,---,---,---,---,-1.10%,-1.10%,0.00%, +,2213,15042,国泰国证房地,9月20日,0.895,0.895,-2.01%,-3.61%,1.07%,0.98%,-1.61%,---,---,---,---,-4.38%,-4.38%,0.00%, +,2214,12328,天弘中证新能,9月20日,0.8881,0.8881,2.50%,-6.01%,-11.76%,---,---,---,---,---,---,-11.19%,-11.19%,0.12%, +,2215,16401,上投摩根大盘,9月19日,2.4524,2.4524,-0.62%,-5.40%,-13.76%,---,---,---,---,---,---,-14.39%,---,0.00%, +,2216,850799,海通智选一年,9月19日,0.8421,1.5371,-1.24%,-6.63%,-10.96%,---,---,---,---,---,---,-10.96%,---,0.00%, +,2217,15879,富国中证农业,9月20日,0.9505,0.9505,-0.29%,-4.68%,-4.95%,---,---,---,---,---,---,-4.95%,-4.95%,0.00%, +,2218,16134,嘉实沪深30,9月20日,0.8951,0.8951,0.19%,-4.26%,-4.85%,---,---,---,---,---,---,-10.49%,-10.49%,0.00%, +,2219,16123,华富中证科创,9月20日,0.9908,0.9908,0.14%,-0.96%,---,---,---,---,---,---,---,-1.06%,-0.92%,0.00%, +,2220,16291,华安大国新经,9月19日,2.952,2.952,-0.61%,-5.75%,-10.49%,---,---,---,---,---,---,-11.54%,---,0.00%, +,2221,16128,景顺长城中证,9月19日,1.0028,1.0028,-0.30%,-3.61%,-1.10%,---,---,---,---,---,---,0.28%,---,0.12%, +,2222,16052,华商改革创新,9月19日,2.1117,2.1117,-0.41%,-6.45%,-12.28%,---,---,---,---,---,---,-11.90%,---,0.00%, +,2223,15921,申万菱信国证,9月20日,0.9506,0.9506,1.26%,-5.14%,-8.11%,---,---,---,---,---,---,-4.94%,-4.94%,0.12%, +,2224,16292,华安物联网主,9月19日,1.19,1.19,-0.58%,-5.41%,-9.85%,---,---,---,---,---,---,-10.99%,---,0.00%, +,2225,11964,泰康中证50,9月19日,0.9238,0.9238,-0.70%,-6.13%,-7.38%,---,---,---,---,---,---,-7.62%,---,0.10%, +,2226,15693,鹏华中证80,9月19日,0.991,0.991,-0.90%,-6.77%,-4.44%,-8.75%,---,---,---,---,---,-0.90%,---,0.00%, +,2227,15993,博时中证光伏,9月20日,0.9177,0.9177,2.73%,-6.84%,-8.24%,---,---,---,---,---,---,-8.23%,-8.23%,0.10%, +,2228,16437,银华巨潮小盘,9月20日,1.0805,1.0805,0.59%,-4.86%,-4.45%,---,---,---,---,---,---,-2.24%,-2.24%,0.00%, +,2229,16352,建信高端医疗,9月19日,1.7563,1.7563,-1.20%,-5.62%,---,---,---,---,---,---,---,-6.57%,---,0.00%, +,2230,15593,国泰金鑫股票,9月19日,1.974,1.974,-0.56%,-6.86%,-14.48%,-6.19%,---,---,---,---,---,9.34%,11.02%,0.00%, +,2231,16283,华泰柏瑞积极,9月20日,1.075,1.075,2.09%,-6.57%,-12.90%,---,---,---,---,---,---,-3.66%,-1.65%,0.00%, +,2232,16053,泰康先进材料,9月19日,0.9918,0.9918,-0.66%,-5.52%,-6.29%,---,---,---,---,---,---,-0.82%,---,0.15%, +,2233,16209,申万菱信中证,9月20日,1.1433,1.1433,0.07%,-3.70%,-3.95%,---,---,---,---,---,---,-3.36%,-3.36%,0.00%, +,2234,16495,景顺长城中证,9月19日,0.9327,0.9327,-2.13%,-8.24%,---,---,---,---,---,---,---,-6.73%,---,0.12%, +,2235,15878,富国中证农业,9月20日,0.9506,0.9506,-0.29%,-4.68%,-4.94%,---,---,---,---,---,---,-4.94%,-4.94%,0.12%, +,2236,15685,鹏华中证环保,9月19日,1.108,1.108,-0.18%,-8.43%,-14.51%,-8.81%,---,---,---,---,---,10.80%,---,0.00%, +,2237,16077,华夏中证农业,9月20日,0.9357,0.9357,-0.29%,-3.44%,-6.16%,---,---,---,---,---,---,-6.16%,-6.43%,0.12%, +,2238,16078,华夏中证农业,9月20日,0.9354,0.9354,-0.30%,-3.44%,-6.18%,---,---,---,---,---,---,-6.18%,-6.46%,0.00%, +,2239,16054,泰康先进材料,9月19日,0.9911,0.9911,-0.66%,-5.54%,-6.32%,---,---,---,---,---,---,-0.89%,---,0.00%, +,2240,16269,建信改革红利,9月19日,5.347,5.347,-0.56%,-7.20%,-9.13%,---,---,---,---,---,---,-7.19%,---,0.00%, +,2241,15794,天弘创业板指,9月20日,0.9151,0.9151,0.68%,-6.78%,-8.49%,---,---,---,---,---,---,-8.49%,-8.49%,0.15%, +,2242,15795,天弘创业板指,9月20日,0.9149,0.9149,0.69%,-6.79%,-8.51%,---,---,---,---,---,---,-8.51%,-8.51%,0.00%, +,2243,16050,华商高端装备,9月19日,2.3254,2.3254,-1.17%,-3.96%,-7.24%,---,---,---,---,---,---,-2.64%,---,0.00%, +,2244,16643,南方中证10,9月19日,0.8635,0.8635,-1.22%,---,---,---,---,---,---,---,---,-3.14%,-1.96%,0.00%, +,2245,16355,华夏国证疫苗,9月20日,0.9636,0.9636,---,---,---,---,---,---,---,---,---,-3.64%,-3.64%,0.12%, +,2246,16356,华夏国证疫苗,9月20日,0.9635,0.9635,---,---,---,---,---,---,---,---,---,-3.65%,-3.65%,0.00%, +,2247,15859,宝盈国证证券,9月20日,0.9376,0.9376,---,---,-7.29%,---,---,---,---,---,---,-6.24%,-6.24%,0.10%, +,2248,16122,华富中证科创,9月20日,0.991,0.991,0.13%,-0.94%,---,---,---,---,---,---,---,-1.03%,-0.90%,0.12%, diff --git a/images/groupby.png b/images/groupby.png new file mode 100644 index 0000000000000000000000000000000000000000..8c939bf0388b63920743930ca1968ebe87d49fb2 GIT binary patch literal 24429 zcmZU*2{e>%^Z<;(OX@`-X@()Pmn>xlnF*0C3K3b#QW9etYl<<*zVDH-6G;)0Fp_LB z)|90w)Qo+}7V^FN{r~^-edjyJnVI)_pSwKw-sj%?-1{66CdRsl4hS7!Vq!XUNl*I< z6B8@Q!~_fCfI%ZM2#Oi>#p;4J!ZIuz|~U0Cij0_dIG^m70+D;9~xr7`vk_ z#7N;FCXlT3A)m52X4pvy7W{oFw#Aij9|4bEhSAqsn1k8qBtHuSX~ve@6+?-qN6&@V z&KINM3L+(!O4r;~eG3jtsshw+gsAL6qmod+51zA z1dGfEteb0NYb)iSj8^DG!UU#`y}pQX8;(z9smSB+d0*C!pUn>6X5bV89|+x_dvmn+ zbZ-03(2i1)V>zDGS z(=X9E47wdT&TRkc+jg<`Sy_tdFC!DGJqm0HJH2uayQ3ji7&Zj>o5Afo+$)6KuZka?VlnHFeWtm&mSrz+mG(FwUtspVB zRrS^~JaL+u_|e)Vxtkf6;5T%&m*#hmI8e4CY#G}f?;V?(i8zgui}3isNfW!E)R(SV zq5Y!0kkT)1-}MW>>bsOJ>A}H_|9Va{y@Os~{%t~k^AP;DM-KYQOyS$YInQvkxz7g|t%sBC|4=Rq?$$~h$lu{-%?e2U9sYHyqVc7v?%z4Sp;cp;N80@ z7{cOK&RS7aK*EYJrRBE^9GSwwUv-_anc-?EVI1n@ZF<#AG{sl8@Nf*{4q7FpX5`zB zsZ4^#bGc+ZAh=4sD{CN`D#I01e%kO})P+f^JXeg>%~tp5f~&I&XdiBGDdib=YbWNY zIPz!CdWFO=_esTqeD0~^CrAqeAG{t`7FQmWE~h7;z~8!(sSBGmy1&vj?82&pNlS-c zN5W!xm}Poi4=f2vU-&s|E$O}Y6wvY%jN}Gkfp&`DD%9D^gaY!;c(&@?kqgA)-FK9F?O#@ZBu^*nQlNIc^QHCHVW!btrtdM3FJj&kBOFq@NqK6H4 z$r~1ICpzhPKCYN%j`v8a{-s>)*ZM79I58GA=0B9*Hn_c_X%&oUkzc;NIv6+rWElPhNs%lv1mAFpK<4pRJ5lfo~fCclYN2#9Fh&%6Z z1W@BH-By#ku;cNuH-PX=EqnC~BIaxp4ha&j9Kc;-9)0Gw$QHAFZu`xA(p)_YDD!2a zi(NmK+`+B#Fb4KOdv0vwf@Tg4`KM5b!oufN)xY}s{g#9Ej7RY4p4s#Aq8sh4Ix(DH zD$97=ie=FTuc@sZyA!xq=xXUlb;Hr7HoUJh1r<`v>NNMN0a>)Q*dGV8H)>n~@&~_Pq3jWGHn8Z!^EaP-*~;s=m&l&*Xv&IUq0enDpRyt^zQ(6_><3naJ+jB0o0^&B zD-=9h&eR1Cmc+81!pwgUYN>v<8Z}9ZK-@oJ+s_n5II9rn6O4TSLG6wccC5Q;P4?;& zfdrM;FFsD^qT^qv*$0Gkm^Kq>i9&k9;a~4i2j&HsnO(U6zJp!e6;(<4?qb4j@nr7h z_gcSme%O#3t7!G2u+Co4~#A_A4o^I@dL2RPeWgJ{ra(Pht%HUW&da zx)xS9*Bj7~ERaO_zzara%D$;}J?Y-ymR4F30|#H3N`qITRcMHV0g@UMl0UXPChgf- zT0$>+VtPHvpJwcH1~uWp*~}uMCWUw-jXXq+^r;-3ko$_-Q`2Pn8$|rYJVsi_*|Xcn z!Wc0zo1F|hi@QFRJ2!YAZGOoQT~5q?~=-<(Ku;`J8d!D+P{HrBL2*FTS*v}DqQ zNYq9}Fytd!Q=<=#7mk}1LE79t2wbi9)fGrvzFnKIClW$>Gsy5n22ZC!zIuqm7XWBM zzy?#_1ua$NlhT39pDq<{wY`YkIemozhKhlPBu6dPx?mrLm|HaF2GTIDxg~ilO;! z3lUs<=c`fa0~En}d2ta2C^-v>enA1VC=OsEF#eCi>7Ulhb*vx@Hw~d2PCAqMH)B*@ zJ5y44$JFAi$UDWDBEPovj~(5AmNU36=swQYOZuU>XS-qh@uQ)dEjK{Mjvi(loBlz& zsxz_@LNG-uYn<1=p^SU>$Gm|Q=vU1YwI#v$n=TQd`69{}*jrd2K38c`+e97GeUAO( zCq($%0!h+t?GO##tfq$}XZbL}cM>mJ-w|B4Xja3iR(6oSs9`FX9yC%ytJaplMg{_D zxhWrk!yac{Y%WJW_F1aR#K3%kV;~K&Q|@@{v)FsJkxy#0CGgSd>r}W0O9S+h$E?i9 z{)hl1hq}$m$fG{+3cng1cx!vnZP!^{QLG0@Uvy%(T`Ew5;rt&Xc8el z`c|`zICCy1jB}AG*mV^&dt^T(sTv;FaIE%!ac!>t2t(j_?1E7DD9jBoj%V#^NT1IY zf8l@(s@#I27DP7i1G>LG)ybI*ntS=@rUCx&J`+C?-I6Dzzs4Kbd?YUM8_d5L4f0{a zrY(ccAMG2T`Y~hT-`pPe56RHtyna9YyK!{XyV1u!72ba6 zO{*8&#QS|=n9tG^sgmKJBewT$U3(xkibERq#BGeOgjB~0bZUnBELkh0?*;sE_*+#q zG~ciIx#n)nV9W$jv8ryQ^3<}dYLE}rBEiSt+9(j{BgrDG?Ed)Y z>tBev>&;=urJI5wUEFII&U8?DwByMYwo%$Q&Yq#K`L|)!VQ=TiXIRVG#b!I(Hx4(% z8esH{52j7Eo1cz+*LpJAbdT@#ybxxDjyT9Ldbt9Qeq~PsCiA<=#GGtblhs$&~y2L|)n7c6Xa;rS~6hIK4&Ylbq!{wx^n(M<(B; z(=L|~?M^ID;1Wr@ca0IE!1y@Yc9ee!qYY>xJ#yfN>>45;-J8dFd$}^J%jR9HkROK#R+{GuMu3q;x$Rr(It>a%8 z41~&huk!1Q0aVJNa+20m^EUziZ|>ib=#roQxR~)^3^*4659VV2+a_&DITJ%=CM;Qi z&vqe(P?ol%@^p-R`uUN0v$Odx?`-G2x*!hh&v*+TAmF52%!;V+cnJpQWo1C_PA(swP$Z z>4G=G5b;(> zMKZ}Djf%bSdPq$*5$wJW3i}knX29@+bn@J_!Xv&BcNmz!e^!GDFa#=!gRjseiq=5o z{dM1AkgZ*uEd#6>G_HN3qg3Lt;f!Mhha?{|J9T4sm1M_0K z*-;x9vXr(8dvR!gESo^P4Engt-`M0?mfi)&D(}U=)+FvD&_buz{M!A&<^J=k_mvtA zJ`QNFLe{a~k5yaces6no2F3O8gp=&Z$9=iHOaceh-`*BEoT`U*p}2dLg9r@J>O!D) zBero`EmQXeqLtYW?2p-^EmhZ@s0N0b6u&`OSqPr#znPUIA|Z#~4&E1d>QCF57Yxwd zC+6KxQ3{(8e!Y1^m_U^dJ{x=uyH6|*JYP4E=nouc*3>{5MruXtxf@9`Q7wX0(^hFs0M-Uas_!LZ&k*< z6YW?Ze8cPW;ud0%ZaEqtBRJeg+^ZJ1&Epr@OTMu`iUBhEup60e2O6{^;C1#Q>ibTND~>IWuZe*;=^4 z_7A6DA8{E?X0y$+1ckY;N$37E)(I?RJlos`oWip#sPq(svf@7+%=?J7fC>*!*^=X5 zPXgaP_Jvb0!R!Uxq1)@R5t@b{Op_-}k~tt|saRWrg8Shyw^MDu@b-b`fRcF${Q>ic^6_gt1^f3+iutg*nkd{Q0nxhftz(ESoH&BTVDlW?bpIZ7-* zVd^wGTn;dug_f59->fp2OuvV?1U}RCU1a_rT9tp!%O}sxO3l?6jg)&cy=b(|60#I@v= zi1;5pr2M))hl)PMAH6S47hL!@b7zJ zZ7_u_^`RAZKK|zk^w8AfKmD>2tl}>VKZfv#okWDRJ@fzE@(*NeX?(S+Rzw7Pf4mEAYtiU0*o6?DvSXuT^qEN z%W6*NGW+Y@PsKU!Mdm6smHRz;v~AEPEuSvvFE+cUk;?k96L_8^uwK-pX6@Y1MZChn zusbonmVCTv;IpOH#;J@@3tPuS2%AvwY1H=i;*&pxa00()+mV(H122VXomS{L;&N}v zA-j5^`AGg3D2KrQBv9qtJC5S**=-OxX8f{fQG~KZe7AuS;Hs@7p9+yA%AU{}eRyeE z>?|Ugi!|ed!cEQ(AB+o4l*o<*+itg5ZzWGq=4OH?6f;7b`&sRz#PMgw|Cwwe~>QbX%?J zSm18~RC@$yR_8Z!i9lvWnb46((SpYBHR2?j{7ffhFa5@KF#vo#FGA|5Eur)s%ub?| zO&Xddf|mMIy;pSne_E6B7*S-8{#R56?GPIFi<&ikg1`a3IPm3nM{AL;ocf0^x zO{Zn2#)D&Fuox=Vf?(3E&og-1Zg9i;Y}99~fd^6TkO$^@cFJfDF;aRwu3?vx5Z@JX zaqSr^_MDT_w$jjM(bl)ciQV<>YkTWOdr1pT2W8RHh`J??U#%HzLv=2Xjb?=?))%0V zL1AV2u4SYRg~7X(CJ%a_sY#t}hx~(S6KvqX11nxDDrH@5KKfa!JQPo-1`pjK@TthI z2oWmH!5-BrCWK8A7@3=wJX{E2#IJF#yDO2I3# zOgSOf!xIJmQE}SnApSjbIbW7%=kN8nJkkaKl8Ajj6M|n-5f9mDC)Q|Yy>sx`!^^lv z8+Ybu8MRI`g1Rrrpl^q`oSSGTW^}5r{h{n$=l;=cRU(bugiSy^M}k?niPpQQ^vll$ z|Ej2*)|cnbC;gbuJ-HvRYx;;OPbYk(frX3=m8(X8lSc5>=PD4)7Lk>WH-;-by8NPJWB;KLY+q*m3+2}3Re=6 z#@4;@fxIj<+n4G(LZEN`#l}2HxWypTOpZWNrIaXe;DI_njG0@;|aKPHkZ%s9n3s}3zc5OG2Kx5MZV%(_uR?~If-wn(PTUB$V%TU?YuM2~c9hfyJWmRE08|-I-cLPpNtBJ+ z@7(h|sBlBT$ORhz|zmRzA9kbr9A2d|45E zaM${y2thjX5TZP=TMw@wtM%-PxkTfL0!^yuzr=unY)tXhMO$9(uTGev=_b4~HUvHp zN+KGcMbMEG)>nL>*u68d`XLea7Tsc2P(&&o_AHT>h8Tf@TH*lF4ywd|`Ft5{JB>NTK>o2uE9`Lkwyf38jb`jp2*{A zxir(W>zlR_i!8dli%e*qeyox;MTRcno=EcBYdy+nWF?s3N*Ka~=7=^{LM7cySw$gI z6j+T6TW?2kQEo#5dkDelVSuRfVc652Pv9k&xD7qU5V#Uf$WXNjP{x|fP4sP_Mm8Kc z(ubwwo`lK)NI9UWOJT+?u=WP{Y+>=qhwVL=MVmo!9S12lX11C3?WP4YzuJ1a;IJo8 z=YId5a}OLh4w}5o5pkwwSNh@^I{Ctlp&tw;NiJS`b71_z$s=v~FdJ7H4ey`^630u@ z!6_t^^wbTqqL~mupv7@^Z9ZPL{hwz~L>L%J^fMa^V1T(W1Eaz=5Cf1&Otu-PR2<$j zLDR>wz-JO{%xRfC5CHTbGiWZK1ma#Xp*f}mArhw{5-=)O>V4r!Dl?slps>v@%@Gcv z#wU{?QOQel)D80GfP;4{AMW!D`G4h#Fa{O zBC2Cqtoj)CGa|1uS?_J!Kf#Hv6GNDllnLd4<+`LCsh6ZTFN1bgq7M*wZh(K!G{8U) zK_1g+ePDL@UXKNl*H~a?VR2Hq%*BjMqT{IrgH|@Kk$S*v%6e6w#vQ3AcWA1h}( zN47&0S$9#!ZjdKFKnp*Jg0gM?nP(UCVBbxnWqLYVW&;J^Jm0kL{WAOZhVFqPl5ptp z3X9=)aJ}Z5@3m4N6X|YZJa`$L@NTcHHEq zXamFfSDd=bTVvpIhLxkvWCFU~8nk#3WJWNV|7?EG=dj`by$euFhNZ!yuO-6@<;m5z%A4UI^XD11ji$ySY z(8b91HLgR)qT~qVchgAh9Ogkg)`6h#oq_~N!Uu!nqlS*F=p6#OMjf(vuF?wMN4k(< z4`aa}S#tEQ0ZKS9FU~vxS_iVsp?&0}4-)&`vp9)0R69+D>Wd#@o-;;%1P zGTduMp8Z%UB{3NDY>Ewy9Jf*^UXW8C7_&0@oJ;b1Tj?fA!<6QJ)zs>Qoa{=`!ZLvsOqaeyt(w4xqJGt zuNNLnxp$_9fj`lz538DuD zdT$h`Tn1!K+ZV363n$L2E$kZc#YYmJg6b{jUK$Go%pWE&t*S`heIDc4n&I%2fJr0i z`2o7qG!_Dr8tcJVen(DSNq`(9Oi)e*p^gOXJ-nwuR&CKmN(Tw@!Ic>7txs?8 zHzdq--@X={Qdh0`j-9}op%orX*Y8v#S7kbXOk6QpphLxpexia)Mr^r3 z6whezCg6DsQ1hoA{$O8|I~(cybLFLbJ-)ZPLPfCqhNt4zNObRMm2~Ksd~C1df=gYw z!J}7XaFIW`W3>GG$?;uQ?3X#+$5cg+BAD&uCpG(;YDumcnyqMvr0=KL@h|SBz{!oi zGa-Fe^dKwHk`ZJFUipa#=!0E|^AxR0gXQDhzQga7#qZM9rSgvu!Jd!cDIMS{>CU%T zdlK!$>qc*^KOE694}!btN+J*(t>B{>W~UblROTlqgv-C(+kE7K5-b`UU&8QVfsnoo zMi44FyaD#>*5*7vJ32ng`bJON&nUQ@(!#}Hg@zirQK18s;v${Tfp)caBFOrIpRJvu zFgEkZSD~MIRoyA}er*2gecyPW`19WOdKFR^z#4zt303GjE1z^cW|=|W8XHs*zm_Zt z%pUVOuFhjFidT64(d7af^Nth~^Go&ha$Tc%B$-rkgF%T|!X#sXc?+na!%Ro6-|aR& ztWYdFuzox+lZb~T-x=hqf}5_*XDyoV0Z%Q8jl zrH3mMf|5dA8-sr{!&FK`R;;T>ccy7qoj=?ggbq;TXmAA-`}EcSmmt2m_ST$tUeBWHP~@oB+E03h0Vj_{OUS9lQTz37I){5LppZG60H7nZGR1 zW~S}u+`=ygcs-~!xp{_w@#PX*M7ET_mK;?`)dq@T7s;gC_a1e(9b!6>~cQNV?cxjM?( zrfFqa`|;|rKCDqiXgd~g9%Tu|g7imh2Bz#6$9KD_IQb=CudO%FBDF{e)F(jg(@EOnn3Hr0v`eGc{b zF@W9EK@`^5{ca#VT0gEKD4#6oKkRRR_8Ud3C<8BHDIabXMt+w#ojIhPioV~r#g5UU(8(K$R!p^XnKNs)9 z)>&DvN{ArxNEc(@<=%s26#&T!*^bo+I3$ruKMiERyr+!zjn!;A;U;-2N3J~fWA^A8 zjX-5JA!%7f74;bwpj2z*1{u4dslTJtav4D?{L65Jsx3WiGfeCc zKLHctX_S)_fTyCoo;(4Il#0Wc(9$!A63_Q@k@wjPVPQh0ZiJ0<`3CzPl$; zw~yTdu3N7v?Pfp_IoizG+9}Cvq?w->Li3aKfMihU%k`G&!~R=G5+P-4N4{SDF_lF6 zE6coJevFtcA?n z`>ni}$Q{Yj6uKxdS7pJbcOGpB3=D7xpi0^y3*U6;jhj)v?2Q`fJ%6i+6epFkTtL!G zNj}n#HBnhACUyFK71W0OrE&Z9a;G%dyet4PFabM8V_y^UdV|Hv+c5+az=9-G_#gS6 z0q&N+yB{Q{nr~I%;=!q6xaz=n=uB-Cem5kSgw~V!!HKpXm)mERJbs)kwl0cNXv}RT z5fs{cw$(b?G?tHi09mK0nj8o^&D8`^PwPISFTTZ3pk)?bytBA7wB0wNBqKCa7&r%hg?61%?7Dxqc@IO!*V$&F)o7nHv< z>~{z596QCk3QpO)j`5Gn@)-_;Y+nzs7>%X!zLy7Vp$$;?^G=n&OI?)tRy%RtP2<j-0noD)GQEMQ#VX?R_fTgx<(rv)=e-a3!D|EAiU>hC$*RQq^Ze1H6l~Lmbl1xHt2fSP03OJu0{{>`mF!X=@-2#yZkr*d_9{Y90WGdX?RI4&mr1V zf`V;o`e}#m-f>Ou?Z0ltKayKoBWHs5^PSe$bo;D;>`3%?_lv;HOZ}ETSzu+&@7a!f zk)dZ>1Pc_td`pSEo|0pq=(KER30d<|*UR9<3F*hF7r6)Ye_9=cB6`s8uli*6jeOYa zj<2H$Fx1u75S~jdQ0l3PuIujz&hwUMMPwzA_U5u@Q}bnbLOFS;a?oAydE>#72z~zV zMeci9RnE>{l5B38u1Axt0vfzfxJ8eZ&QqNi-m+1dm3(kw==N*r0r#N5Kp~`s!#9rV zBu0?;OXT-u6I&XE5z1VX&Nslpwr@l*UJW`u8V&!*mmMJ5RM(bWhs0@!R*kAM(K~dC zA(y^2ex6KHng)%p_|PItDg0%J$K`HuLF*j62)r@iePIOLa=FTh#w?J}qvIupXn8II z6IRw#N(P=F5c`K(Y$~&jAncog{(&ffOP{$*YgJp#O{#x~O)0 zJA)J5ZUmhDdOzx^TKG<-%kxHlbJ9JLrmq8GVcS!t^Uwa21@s7M!+cxWc}xrn2pvV z(ouFpll294XGmg+YC%<%D0zb$Wu8thl!w2O2#)pKu!%67KtGx*VVWlH1+W?LUSrTM z_()`KXmo0bsNNmj!yNRHncdr458Qg#g+GJFj8jS(_6>aE1&sPZ0`& z1o|tNGznGlJ5Ji|?}HgoCXXa^AZdRV6?=$4o4K-&i|GyNCV?g+eVzrX`t;}lAMpbH zWkfIo2hF0O@PO_!HNnWZ`eZkI^oN}NK`0edLO4q6D38fz{6}$RfY@^--7Q`IJM>IC z(noQ~3Vq3UW?5YrT!bnYR0`XDKsT3U6WTF(k6>};B>W%G?RvnM1-&EMghb8wX;Xt%%NLBnx1wTJ8FRds4$5M$}yH)y*XVSZKp_n3A>C?DV z5NcFO9iR$A~lLt~Gkqvyvy{zy-fJ>GI!iz8Hy8>CLAe*>6X| zm3LeDr|K*q+kEL|m`^JF+hv0Colw{fkU#Abto%ZA(29eVP@8|;}b}ejOSf!g`$d9kx(KLQP@jO!8@-P;UEXF=P(fdB>vHm3>IU_Z9 z0dx7e#84-2Bd2zjK(**ozI*(R7QH#iWh51*vJ1z?-km2b?GR)#ghSeihw@40I;M>c zgac@Lv?t%4E-k>>>4(AMQ|D~3`#Go)&r2tpck*aIxC;Kv6KnT;o&(Z#gfB7d>5qRI zT=zJ2>203WR|AAJowhaV^y^#t&kjT#KT2?z!lQVp2xcBCq-=@@T>Y)JlVE{1P+@IQ zEUucMV07cSIIxfrxnudK$6!I4-fa9tZ!t>pT@|&w9m{hWq`&t9_K_nA9{i zJyRdD-OVPPfbe9HM_~IQ7c3}wOldsJP0)|TgBE;5Jdi*N%$OH?84tT)!+imWzAwhf zu;0Wu^t8Y^{v_P~NO3p>;@TE|$`mj`qb&vi+V zrjX$v;j`SYQ_>ZWb4jeytY;D0@uaQD>JxX}%DfcO)W7{CLoZl4b@FkWF) z@k>0M%!j8Yo`mayHognwxY-LJho=UJ5Z4o}WRSUf5poses4Vb_Vv~ zDd)R6b(eq_8)6$m!BTikX}m)}aff2HnfbP$PB;P#&=JnS1M{cxRPNSW*R!1eSx zdykSuJ1OeNz8D^!ueoyZ5*<_OKzg{*g=I#kcNDC2VBelHKl#_@OA2hpIuZ-?#Dlla zOa&djCV;4u2^hbf*P90`{Oays^|*s*n>={@0z1mdJkR6hRKueEDIl)*&RvLZk!$bC zD7aux$fUW1cL-LjlUbrd4qa*9j%|Qti<(F1hjbEmH+k*w)StPe<9$(GetDj!fG|;D zKGo3K6MpF2`%jux)bQJQ`*u90fP{8!$uA6N>5=nY9ykpwiYz-xWi$|IC&sci5FwqE zSVLzV{LsK2h^nGdNaA=5;&&T=FQT=ZJCsV?$^b8FY+|8esI@TdMD}Zbx5KI~1~=Ogec4(eU@3=2i1&3qiM(|2QfpO{Rx{MZ3mu6#00J zE}6tyoCWKZtHYrL+3X^7qT4uJ1mKJhSA#+4X+3HP3#hgmTf}eEr z2u@IeEz9b5!xz|MVpckNx7_ISF^0Vf(%NBxR+erNI)FX-@eDtL!$Wa7P0Y#53{CG3 zSA#lO8>YU~_WDNx_@$$=2$*CNOHT`-`tCLdcLrD_Z+qxCyOr6#0ka|s-t346fq9*j zxuD2TkMa`gt)xtR6x4=CJr~t1cfT_bAI%6$;TdY=)-~w#o!Ehfg5@RWXra&9DtQhvhcwmb_{h%)~qtizIBFCcV zo!8edH!t>vB-;JcA;U)^^7-X!5tHo&B+vLvJv=5H@^|sSss1AoZR0P;5=k{KS6Q-C#SYn?El}|eN+3zyzkQOlPom_t|74kOM&mjuT@BcLF zj8#;(Hs~M!d9CHse82`hh> z(lw%JSJPkn+_BB$8mNVLXAa)x4FzXL6j-yYD*Iv;On*dzJ%%WHOTEJLTh}L#WP}i? zrae8W9SFl!@4IJ~7#K5}>I$RzqB_km0y;%Y0w>FL^T$+u`+T)e;(=cdT3@Yxd7OVT zWOdv2A=l3w#+Q3vHN4+<=flq2h+L6EeQ&@oi9~(&v%MvpsH~@kr*4pVrs{&h9cdM{ zlRnYkrbp)bHhtHKe}y=AXC}YuQxZuSw7n$0Y6yYLL87G=RQu^c8hU4c=&~YObBaCF z9M#br@gykCmjUEgB~IS2ao{K*tw857)l@iNE-Cp9^bXmHj@=L65p<03Q?S+XmvZR8 z*o|XHQ;W%@#Ml%60(nUksEz%|3#B1Y;&%$o^8v2ApQC6KaGIP5zPEhPWhJ!gs zQ1Ae1A0d>IUqJI%9dFuC*V_?;hJcvMq|ZJ~2m#rv4M_ZlK>ZErejl-YA`H3}w4Y<@ z17dF{IiO!i9}{_mqc{A2vW;B=A^wXe>wfx@q!#}xAC^#c2)ft;0hMHe+Q$FOnLE1u zmufIXQ8EwaXN>0g@_$t97|ofMaWN47tH;BjB%vHbcqo#6o10FvA@FQO7yt=5;e_}O z&wv5!Q13K@yzp2DNN~A0IEG!R+fnuyu!~gOPdRa3Xw^(OUmj^Yf`OUB{bR3+N?G&* zyaup;&K`tTj&(+drI zJpZ(y{s!j9i`Mg!KJZT>s=|nH?SFa;8lx=JG2(Z2KuDrl;owv#9eF82Y(MLII!1xI zQLR4vD}dCGWnfx8{?SGH;LOnB^Zz47()JJ?S@Rzgl0L}Oy1l;3@m3x_#yt$k>0l&Gdmk zdmlX+v`074Jf>e2;^~-kZC`#(cIQV!RkxeZbG4{MH|Y=Fs9A7uc7iTlvpQNZONQ}M zJPZ1W*>=ws?<=X}sR7#5qt~d+R-lmX$a!HRSkxv`0isRTC*PI*l+6=BhtpK`Yv7xw zY(`Q@Mcd)za~067Tlnp_BD#6->Zn@0(s9I-DA4&+rX?X>#z#RX^)z6`!0gPZvQsI0 zJna~i$@n$a2x$M1-Qf?dRpQ|7(~8PO{1O+U+qza-7*T)|sJ7lxy_ZcuKDzh5nGCxt zZ(cPo>?toc5)9^1DLX3ekK$ofJG`ef5pvEU8y}Jy7wpZm4WAR1o=mpq!q(0z)gw`s zF=S@wssc=dd-8-0IQ2MhWR9Tl=*ULg+gHo(1_J{`t0dUD1`)f<<^%=Kk=jZ622#QR zY-5N)_n#}|13YY?f*(ro=G`3qrMkym#0YWVJApZ!)w_oOvuf>*6s6ATpR?k?+wV$iC&JUsQA>Y+h7+iV@$92-NYDZ4 zxy>o&D>jk+lxLGAoc#Jk0#CJ7{CqO@KOcuD9~-*;0KfDH<-We1e9h_R0P$7<1#cm7 zY8umjFzY4(**L23o8>#lk=PRe;!g0$?vTbO&OnIaN2uEjT%|0~`2N1$%5s>`8Fv{6im&5Z*;uc7Fkcw<1m!y;A>_-d#7 zS{G0}f;edK{C=D(gO(;Q5?^^r|hK^!_IiTUpkxj_BH{dUfrAs<tz<&eGsE$;I9YnLEFcpJKZvW80FJ*PwiE0h<&$iB zg8%MSw9RumAqWZ*JVm-63t`{fi4wqHD6}Yc5E0&~&{db7Qn!*dkq0jM)6WiQIj|j| z|GUpH8))7v#yZZ(@LJTk>s}0V*iHz+M1U1@KIF4Z7Rr3Ra^=rgnqeYng?{DOVruqu z^Z5$s>Mgz*U@@7^xhC>jjMES>7baAW6?(Qnm#E(Aj_kHpEi{iz@=8w8Dr4CRJQCgt z&6HaB!R9a8WY|LXZNtNAmJ438{e-30H>eJDdyAA3mM#hf;x*4v;5?h|d>`x3-ss#s z2v)Ea!4^#OvlOZ-1D5pr3HHMj7=J7Xf2v(PWxp@+3cSgl7+_~ywVALDe6A?fFCU*q zUK*!dc_;3KrrI5Our#(*1be{GkVer2Ad}!5-a6CNPDCfe7_vZduUtt^4|E9!W|R)L z)(XL6PUVXN+mi>-m0iT;lIf@uKry4)*Dau=6;!=}w*M3cpIiLUz`$4*&psYu1`t_! zq_6oJ6VfP!X;XhiaYT5(MlD97%7j`7dtJy5#NsQyVd*18%!^h#I$3Hwr_@chC!L8& zxMTnS0;m~Wi5s8Sbg?L$nl-r@-Q6hJe-BJ74d5$nX~*ZBZ&E3P*GKj4%srk?q+-p_db~5!6*CM5ec#*?V?vk( z)P0^@Ix}?w0HHPEP-*CyzuU_dzEY_8qDTC0Qd%o_V!fY&sVESu=xskYWi+XMtLg-B z5~_FEgngI!4~pSL&gRa53Yf1h`)@uF5O7jrU9cL7hdJ3;{JMNVB1E;!#ud@P0vbTWaz19v0XEb4H?R#J@X;|g@{XeFS zN9(Qk_xD_Jp8pF`3EAZ&I6?ZOXuid}b5Dy7pIzoK1Y!l0s%UqW8Oe|LE>Ks6(1zYMk? za)-S3zy7Q3>|gZRzrC{$VKu<4$o1cw|KAK>1%w_1(rgU0%l(Ia@E^=Rz9a@_e<&QG zo(;xZk>!BE{W*D1a|S7k(&JNu%1@JY+8P|y9tJi#15oNzX9>=T?6>mD7#O5C6FOWP z;^+s#J`T}tKg`-Ir!14Kvel3MeCFH;)GhrszxpVy7{>2*sC3ETRo17TyB^*b(HwUj zWxsCn?W!FC?~AaJgJxc=F*rkS|dcbb=r*||`@Jc!D*Ig?EIuP@kftT6BCvp#h_ zljyX3`@mhzwf=9y+JJ7=s;;AdjdQWy1)xNYV{OOEe{A&E*K4i=^CG*Rwagbq*nkIB z`I=fu0sh`Dk0tV8S+@_?S^GY)*^*KN z8z6rD@NFRmi29PNsFDAo{I!saz)B(M<^pc_#O;38!-4ERcO`dBAB66H`G4xT@<6D* z_noF(MVFE_mnkJmvM)2#j3U{ZRH9@}WY6asYcVdRB$7gjA*m!wgk&22;z zPmU4k39;W*esRbBlPV{=E>?Y8nN$9A7omF7?d$fD8AI&m-==3sX+X%(os?EG}a$LW|#acg}$Vg93yzH||Cb1Dy(aXhiF3p*zvC0NVZ!!U516oWmrMj6e4^oxx84yf051UW3@( zv2}d@Dwxu`Vp{DEs0q|Hb#Z0Z`XvnXm}P{7EZM{DTchiJ65`vW>G0$z5mfwWlv-Vw^PO=?_5g z^bxtTR&ou%qS{K2Y%;rkJa9@J+iFw${STzpAVPr(>qQT4agC3{V40zaz#k?RZ#K!h ziXS|hH{`g9uQ++rT13C|!^`70Ts4@4D^8;yH-1+sdXusYi~Fk@k%sL}f9^wT1ukv8 z9Qk!gqZQ!e`NXo&rH?kt@Hc-05)WW4+qwv+T$()eJ{U|s%y6nk**|K_$w%bK z3yFk%=U0_AQ9t%4c`pu%=Di zHhH)+(dGc(+fp{w%X){wHp})k3qCgdtFG`lFr33?i^ZJzP(ame$!sV$iipPdcl1H zh){boqN#o2+~7B~c5YS5^{$S04r_io%HOcDwwd0_i-=#>&@O9cej<=*V0cxkox#lK ze|WcleY438iCsw;n>vqJeA@DE@cMtdNK=P3za4_EcO+vgmVw*Ch=nK1W8kC@g*n%d zn8Soo1I^Yuu+2?O1|^WZqxlw()o%Q8O*hU$t@n z+PE&xZm{<3EeNy7t-wBnqyCO_`&=i`+5=S?>s#OVv;T7rA%>+ptDYo1?)I-e+|Js* z+QZlE)^4OQ9gbu0XJM1ep%$D9VWvKq+qu|ARq(H^m(;g> z21y4;d-5n2kL$-s_jVPlYKDHhxb7O@4!QDJ+|7`V1}nU z@_oXKc1@K$Lg29lRh%ax_x#ryaXV(6C>x zerNZCJ*OlAnbOnpl*`p7XDF82HrJ!YX5IFmk~*Q%4vD@SyIIQ?-=l~qx6^y2&CKuE zru<;NKm5^dgealM7SuP{QH-sM(bIG;5Q%~B1`~~K=AG1jz^%WVt*rx2mQJj_sqqjq z*B0zDh1+vkL*lDLqa#qix(??yM#1o5Ncq+~LnFg;kd|W$PvR7^CJWQ>7g3`7S;PJh zu(GbjCTgP7_RYp)T7XTSvqv>Hq_6xAD|QN$W*%0DRr7? z?NJxNm069P-42cLn0t+qYL{i4Z7(Akwz?<5s4q=^?4UPD^4Wg;C8L+nLMyG==V2J_v ze9zS$cw}R2S$NW6;xMY3w9Rk>zSJwn-SZE~+Iw9_;C)OxgQDbY3EZ5aJ}IUDM2J1S zP!WG{YpWYeu9@W^O?sTkZ;RuJ+IWti&6mc`F`gEzEV`WhQq>=9NMe^euLEioK4Fk{ zLUmydkJMg?_#6^$Z{u5k3x^PUg*$u=X^A0?X;mc>v?pnM&bKib(nH2z3ju(9m%KIa zzPMR)%->Oah@z6O?3lz`^)P0!9;O9~T!9acq+J}iO{m%m$;CNUDIZ695!4N`CXfQh z==HacD7Q$LKFqwmxv6yTE0;fNR{^cHOI}R;8eDgZ!=XC9+JglBT;T}s&`v}gqEB08 z5;iM19D*3bME7%BD`ol;;Ww<$pU=QHxNq~w^QDi-^C3)CJu{LBPT-^U%*Mk0w6G@D z&r*M#YjPPdEky`)rOg3Iy+o!}rT0l-xFJfSIL$mniI}aZK3!yAQji&mCMy*rtjE2@ zKjngxY@|K>l#r;hc!IVNx34^>8VE>83FB-=%7040p>s$NwMH2VMH19Ff;Ps zz1o{$qB!!i$k#3}Ngm<0uI6#qYf+|;=AaRxaZJn)%VhEgzXd~blt&3p`}224lDkzq z=x{um5~!z|Ib3VdCdmK_U*~}B+F^J|>%`S!_3ig7b{*BE0VdC?)M!PN7V4E7u4MJC z3Ged27=$@NT#u;6*ME_RJOZMgm>5Aa|7<5{j{KO=!jQ>)aJYAp5-P*Jyp=xXN0KC` zSvw6=gq|ks9KRe@H*}8;4DbSvDM`xGF*ZFGortZdM&+Gow!gZ`!|xW*10c+mf9Gb5 zWmoQidRI!5I~dbS&m-~uXiN0d$R=v$x%)VXWxJ_a4oK|1ysA7Q|39cD!M5! zi*Q!lxsCN@(?dUh)%>^py<9WA56iCMic2FU19@>)%_h@;O_X2IwS+{4)qKCSe%6#k zi9ZhZtXvr+$UJfV!p6PXgr6oxVD9+ch1;80JJ5)_p;vAAo);^&KCodz{NFy<@~(=( zUESI&Hg${fsCn4J~inSXTaXFlTIufs*Qjr3?W5x1xv`I?!u3ro*x>5 z{iC#Z4Nb2e>;SOkC@|b<1mx%PLf)0(`~q@NxJbQ@@R#)vI9sxFfbD;$LeURo>>L6e zgQf#!-iIUzqX}zqgBK-<%(Y`FZsOWQ%nLWcp#YpuX_z^WnU!eENhJ8}kYH2!(Fm(I zc07u%-A~ct0oG+18F4EN=5_FO5`{_J$|FNnWBv(IaPAY@H3qEy@PF00#62$zJ$0AE z$`jAr$i$TK@k(V=M11Zn1P4cXX8?b$}Lt9So|%(teemsn`eRBkpp0l*eFU=#Cd8AMt3!ip?%eVafR zGEzHglG}Sgv2AlS{!9dsREpijRN_g@!p0L1eN3Q7AMHsrF&~^6__@~yLG*96Gh(+6 z>11R7ePZn+5yhrYq3p^_!CQEt!H{L}+_Vg!5gL6JCYn5tSU~=5fYMgn#&@;p zWH#pGJCLSFXUCP5Z$dNVH$Up49hEBSbb_ zU0%#>Q1mr{0^gC@;r$fr1KwNu2beiq=!?HQD!iLive%y4{s^nBuRA#d_r<@^NsNH= z4I%A6vwCwzMfKT8XIXaJMI{GOo1ra6IRr6D(>*3rg7cV)?L@a=`Y{#r`gh~%mE>cz1q>!|H!H!qRf)~KRda@aJUp|~^8+Gc1hgt_Rqfpu~ zUtq6}GgMbmZBD0u1ZV<~#^LxuH4-NVNxKRso!=sTTxHMM9f(X>F|z?lyRD2`W<>F@HqLJGdsH7M?f=9RU>8lnaDkYUi{<&+(DVea0w&pv(%xsWTE5if3S_FU&efpzMYa7Su#Cr{~_AI_5p}gA56@1%( zE@O`f2FG(mPLEUW>g<;itK?82>XR5A*x;C&!3V$nlJ3 z!RQ`F`g2Ts`B4X*q<8^Pc<)CaM-!k|tV%>PB6Hwwe`@_e)hkScB!)D)U&{!jrP}2B zSU?I)!G=VnQ}lG~{O9DZcH{a9_&pC?o1DBbLVON5XU=;4#9H_+|A;R=Vb6^GKQg!% zbkqf!9_QXcX)2R@`8kZYQtk6n#a=l1860v}lT4@(X~>H$PEKI_8WM$>cL&iKq@{VgYnj?pH5(_{l(y_;L>9!P*ZvbQnV80)n zQ6&3m9oYfQax4=Jcp{tSv?VV7s8A*#Sz`u8fcv!$;XG(hNNWzR!Fkg>E}-|EwVm4e zvI!oF1lEa5DrPfI9Zg0dWC$nxU4c2aAjoj$*DX^SSBSp#ALX8}h%f^u0>q%K(D_T{ zE^dSWc;>9dky_+$-pubkN@6W=#qI#HJL5Pn98AFsxM7E7fHGO}d9(X?^RwNc0URS} z43A3c#1#*3JMTH>h@N#)psfQ+Wa5f$MD(NdYGHHAEdRgOzBh&*917k}o)WZrcaC!4 zf10+jzIGWu>FtO<9|_M)T+2!M`*#g405>@j$=%+eMyF_L>$CH`{Gspm9{7Ms=zPaa>W#KJm7pKtJK_8M6u4AfvQqr{8+4zG&+ z)*z4bo?G4d=um||jA~gt7Y&*bG1tLZL^;b_Kwx3;SnPQuOYpzuo*>*GG5b;GYQvaW z)bH$PhNR`BSe1*`g$6vi274pQzSHw0aw*j-hZ6r;O|L2B z|8n8;BM$54FL>sX)a+YW8CPZjrR9}kXHm!BuIAG|5I<0Z7Di%+^0;gcBP?F-au43; z%x5TbzKz8o3)-*Fx(w<@=_Flskin>aX*H5|ip`2=Q!iPOXe<2gMca~sPLOoVK&>@Y z$p4qI%Uup*T4!^&mnNPs2I%1tAZ?X+KYCjFo5Tzd_46VrD9o$-r6gHbagymGt|pz0 zgc$SBPf6O20n_1lciVrYM`bk+ykHz*udiXe^T9 zy@b}LRsy?cpCj?o-=qq>z`h2Gk7e{@eO)y1*x@6ORu>V1!a-^y0;L+jG^{g8zHK&4T#IHx4^PA~v8f z2`>i$NcL;TbQsLSloCQs?{D;hB5q~?-uwnytl%&JBQRaAwImM1EeeA@#LEUPda6P0 zjDQEJ=iBi77>Y2WS^SJ$k-+DDvc1c6iEOO*w*^H4_^dP~CFCn6^?E`6qmn7V{WOJeIhZJ*3{kb7ejBIs(3 zKbR~Xz}w>tC1(<9_Vwk|M^3A#9*^U-G)wX!eSN|=0CjC=HWoe)Zh$tl`jB~xh9M`# zKo=MG!uH23(>3T*-S`$atNBi@kxCEiaqIE<^=c;q0f?UNCky}vrqCIYqUQSDGi6Qi z*^}e}2Nm}k$7S>f0$O2Hh*<#%ey2&ajP7|VeagM^&6(!8{|uhmk?*Yr5(?{q$|a~H zp~6wQmofEv?K?BmlLn_--)?7Op>2$-Ib(5f`YW)aq@6hPZL7E`lp#LPqO*?~){ve4 zXho*>7lBkDqGa~8o1IpOrM}L-2n0E3txfb{VTpIwr2tAM7ehZld`P>15jHwhQ1k_rbs zqgRo67L*OtdjB~c3N+6m{J67xVtZ;hL1rwQ;OY|pEJm$Vqn%;vlOo{*Ve1-MgdsOD znm!x#gZ4Qbd$1ze@;rT)(X;S-Cze8&!*ssVXUchyj`ZmwU%$mwki+`Trc<8HC*~OwMKbK>ZE}yi@{R?x+ZB+3#_>JEf z75W6$dBOdXIdf^*i>`!ls<6yH7{%= zmzXjN{q(Mr?h1YOx>Icrr?GBMGtWgdxp1t6&YiS1glZ)8-E-1H`2(9zh6i|f?P$0@ zJHp1q~lzY*;5`FKuOM{lzy= zTz_8-QSYvw^CUODdh46E+2Gr{&bmm_ASAuNmvQmI_4)0t>yV|(atAe{9swU^5Pk@Y z_2o~Fz-R!Ivfwd@AxnC{9Y5btHDF?LQyBgIcxhC!XvwU1il6fbj_h>9$4^OHJ{kFN z0)D~GXXs43qFZG~je?|IqsUUCT)C};(YEHV-En(H*`qq6eH6Rl*>#14K=EfBC+N%M zwF56#Wo1jZ7c8*20^7czv8%pT$-Q~Ldr+#Y3dEc+JKJa8MNM#pg5U)0w5Yb1@Bv;s zZTEE90`a-5nrzJ%=Aglwhx_gWp6icX->2DjmG}95wZ&$KTMQwcS?o%T!H8^8PMWT> zSA1;V=8tTa`xl?lV&O6R688e9B|%X zVK<=x(!tpd6|AobDgR#DwWwy7*=wzo3J)AAimjM)ZpaQJ2zT zQ^Tu3E{2Oo%pi+HC5FaUE|7XU_|B?>^`xtp5e18w8baSo3BE3TBnpp0qDd5DVK%!R z!52JeZj8>ns2gOTtE6JseM(tB<9X|B)&kC)KJvH@1IlC`7~w94y(xcy>JXEp7I zgEu_T{daDhSnnjs&vX~qQ1bFGu2U>s(6+!&+Zn?&k3c$p~jb1_H|xo)Nq7hQMG1;gin@ZIW7^XeUFcWgL7j|}0%$2)vW(^I4sJ7Egg48^RK( zispijpCbx8eHhZUZ-~l2LiTA%v&kZX{2{Au#nNWv*ZP@lZobF|vf$%?3*n!ir)Y=3 Sg2k8de-9g39?Um%jQl?^MOUc+ literal 0 HcmV?d00001 diff --git a/maoyan.csv b/maoyan.csv new file mode 100644 index 000000000..e69de29bb diff --git a/names.csv b/names.csv new file mode 100644 index 000000000..2ffc249d0 --- /dev/null +++ b/names.csv @@ -0,0 +1,4 @@ +first_name,last_name +Baked,Beans +Lovely,Spam +Wonderful,Spam diff --git a/ua_info.py b/ua_info.py new file mode 100644 index 000000000..38d2db20e --- /dev/null +++ b/ua_info.py @@ -0,0 +1,14 @@ +# 在编写爬虫程序时,一般都会构建一个 User-Agent (用户代理)池,就是把多个浏览器的 UA 信息放进列表中,然后再从中随机选择。构建用户代理池,能够避免总是使用一个 UA 来访问网站,因为短时间内总使用一个 UA 高频率访问的网站,可能会引起网站的警觉,从而封杀掉 IP。 +# 自定义UA代理池 +ua_list = [ + 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Maxthon 2.0', + 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11', + 'User-Agent:Opera/9.80 (Windows NT 6.1; U; en) Presto/2.8.131 Version/11.11', + 'Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox/4.0.1', + 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)', + 'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50', + 'Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0', + ' Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1', + 'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1', + ' Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:2.0.1) Gecko/20100101 Firefox/4.0.1', +] \ No newline at end of file diff --git "a/\346\210\221\347\232\204\345\244\251.html" "b/\346\210\221\347\232\204\345\244\251.html" new file mode 100644 index 000000000..ef3e12f1b --- /dev/null +++ "b/\346\210\221\347\232\204\345\244\251.html" @@ -0,0 +1,6659 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +我的天_百度搜索 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + +
+ + + + + +
+ + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+ + + + + + +
+ + + + + + +
+ + + + + + + + + + + + +
+ + + + + + + + + + + + +
+
+ + + +
+
+ + + + + + + + + + + + + + + + + + + +
+
收起工具时间不限所有网页和文件站点内检索
搜索工具
百度为您找到相关结果约100,000,000个
+
+ + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

如何理解张敬轩的《我的天》? - 知乎

+ +
+ 2018年3月5日 的确要动用一点理智与意志力 身处在异地在认路的我太过肤浅 不知道 计算到再准方向都会有变 夕爷的... +
+
+
+ + + + + + + + + + + + + + + +
+

我的心愿500字优秀作文关于人类飞上天空 - 百度...

32页 发布时间: 2022年09月16日
从此以后,乌龟笨笨随时都可以飞上天,还交 了许多鸟儿朋友,连一向傲气的天鹅也成了他的好朋友。 我的飞天梦作文 篇 7 我的飞天梦,从现在起航 看着火箭华丽上天,看着火箭上的...
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

专访梁晓声丨活到今天,我的一个清醒就是再也不装自己深刻...

+ +
+ 2022年7月18日 梁晓声:亲爱的同志,写作这件事对我来说并不是一件艰难的事情,我很享受那个想象的过程,一个人物在你的想象中变得清晰了,人物关系也变得丰富了。你逐渐由一个人物、两个人物构建...
+
+ + 播报 +
+
+ + 暂停 +
+
+
+
+
+ + + + + + + + + + + + + + + +
+

故事:大学暗恋很久的女神,有天晚上竟主动让我去她家……

+ +
+ 2022年6月8日 周雅笑了一声,细嫩小手在我脸庞爱抚,轻声道:“没事,你只要乖乖听姐姐话就好啦。” 02 从周雅家离开,我身心舒畅。打死我也想不到,曾经暗恋的女神有朝一日会对我做出这种事。 ...
+
+ + 播报 +
+
+ + 暂停 +
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

故事:老婆离世,尸体已经腐烂,几天后我却收到她发的求救微信

+ +
+ 2022年7月25日 第二天早上的时候,新发来的消息又消失不见。我确定这不是幻觉,她肯定是出了什么事儿,我要救她;不管付出多少代价,我都要救她。于是我请了个长假,打算先从她工作的出租车公司开...
+
+ + 播报 +
+
+ + 暂停 +
+
+
+
+
+ + + + + + + + + + + + + + + +
+

我的天用英语怎么说

+ +
+ 2022年4月14日 英语是语言的一种。语言是一种符号系统。割裂地去学习任何一种语言都是不对的。许多人在学习英语的时候,都将单词识记强行分割出来识记。这种学习英语的方法是错误的低效的。这就难...
+
+ + 播报 +
+
+ + 暂停 +
+
+
+
+
+ + + + + + + + + + + + +

张敬轩《我的天》2020盛乐×中乐团红馆演唱会现场版【中文字幕...

视频时长 04:21

https://weibo.com/2793921830/JvvBAjv1Z@饮歌记:昨晚的盛乐×中乐团红馆演唱会,张敬轩在安可部分演绎了这首歌迷心中的...

www.bilibili.com/video/BV1gp...
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

我的天”用英语怎么说?有几种英语表达方式! - 知乎

+ +
+ 2021年3月24日 在英语中,很多人在表示惊讶的时候,都会用“Oh, my God”。其实在英语口语会话中,还有其他几种表示“我的天”的感叹方式,今天小编带大家学习一下其他说法! 1、OMG 是“Oh, my God”...
+
+ + 播报 +
+
+ + 暂停 +
+
+
+
+
+ + + + + + + + + + + + + + + + +
+ + +
+ + + + + + + + + + + + +
+ + + + + + + + + + + + + +
+
+ +
+
+ +
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + + + + + + From e6a0d1fc7db60392e79227cae70dc8aefd452c80 Mon Sep 17 00:00:00 2001 From: hoolich <469165171@qq.com> Date: Wed, 9 Nov 2022 22:28:56 +0800 Subject: [PATCH 09/12] 20221109 --- Part.1.E.1.entrance.ipynb | 11 +- Part.1.E.3.controlflow.ipynb | 76 +++- Part.1.E.4.functions.ipynb | 7 +- Part.1.E.5.strings.ipynb | 8 +- Part.1.E.6.containers.ipynb | 7 + Part.1.E.7.files.ipynb | 93 ++++ Part.1.E.8.json.ipynb | 148 ++++++ Part.2.D.3-lambda.ipynb | 41 ++ Part.2.D.9-internet.ipynb | 44 ++ Part.2.E.10.email.ipynb | 134 ++++++ Part.3.B.1.classes-1.ipynb | 4 +- Part5.B.downloadcsv.ipynb | 475 ++++++++++++++++++++ Part5.C.NLP.ipynb | 294 ++++++++++++ in.txt | 10 + lhy_comments.txt | 274 +++++++++++ out.txt | 127 ++++++ params.json | 1 + "\346\235\216\347\204\225\350\213\2611.png" | Bin 0 -> 299564 bytes "\346\235\216\347\204\225\350\213\2612.png" | Bin 0 -> 188029 bytes 19 files changed, 1740 insertions(+), 14 deletions(-) create mode 100644 Part.1.E.8.json.ipynb create mode 100644 Part.2.D.9-internet.ipynb create mode 100644 Part.2.E.10.email.ipynb create mode 100644 Part5.C.NLP.ipynb create mode 100644 in.txt create mode 100644 lhy_comments.txt create mode 100644 out.txt create mode 100644 params.json create mode 100644 "\346\235\216\347\204\225\350\213\2611.png" create mode 100644 "\346\235\216\347\204\225\350\213\2612.png" diff --git a/Part.1.E.1.entrance.ipynb b/Part.1.E.1.entrance.ipynb index af6778243..88035be6a 100644 --- a/Part.1.E.1.entrance.ipynb +++ b/Part.1.E.1.entrance.ipynb @@ -280,14 +280,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "693 is odd.\n" + "534 is even.\n" ] } ], @@ -858,8 +858,11 @@ } ], "metadata": { + "interpreter": { + "hash": "7e1998ff7f8aa20ada591c520b972326324e5ea05489af9e422744c7c09f6dad" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.10.0 64-bit", "language": "python", "name": "python3" }, @@ -873,7 +876,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.10.0" }, "toc-autonumbering": true, "toc-showmarkdowntxt": false diff --git a/Part.1.E.3.controlflow.ipynb b/Part.1.E.3.controlflow.ipynb index ef1fe1d20..e40e897bd 100644 --- a/Part.1.E.3.controlflow.ipynb +++ b/Part.1.E.3.controlflow.ipynb @@ -1784,6 +1784,75 @@ "> * 函数从控制流角度去看其实就是子程序" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 思考题\n", + "最后给你留一个思考题。\n", + "给定下面两个列表 attributes 和 values,要求针对 values 中每一组子列表 value,输出其和 attributes 中的键对应后的字典,最后返回字典组成的列表。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'name': 'jason', 'dob': '2000-01-01', 'gender': 'male'},\n", + " {'name': 'mike', 'dob': '1999-01-01', 'gender': 'male'},\n", + " {'name': 'nancy', 'dob': '2001-02-01', 'gender': 'female'}]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "attributes = ['name', 'dob', 'gender']\n", + "values = [['jason', '2000-01-01', 'male'], ['mike', '1999-01-01', 'male'],['nancy', '2001-02-01', 'female']]\n", + "# expected output:\n", + "result=[{'name': 'jason', 'dob': '2000-01-01', 'gender': 'male'}, {'name': 'mike', 'dob': '1999-01-01', 'gender': 'male'}, {'name': 'nancy', 'dob': '2001-02-01', 'gender': 'female'}]\n", + "#你能分别用一行和多行条件循环语句,来实现这个功能吗?\n", + "result" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'name': 'jason', 'dob': '2000-01-01', 'gender': 'male'},\n", + " {'name': 'mike', 'dob': '1999-01-01', 'gender': 'male'},\n", + " {'name': 'nancy', 'dob': '2001-02-01', 'gender': 'female'}]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "attributes = ['name', 'dob', 'gender']\n", + "values = [['jason', '2000-01-01', 'male'], ['mike', '1999-01-01', 'male'],['nancy', '2001-02-01', 'female']]\n", + "list_a=[]\n", + "for i in range(len(values)):\n", + " dict_a={}\n", + " for j in range(len(attributes)):\n", + " dict_a[attributes[j]]=values[i][j]\n", + " # dict_a[attributes[1]]=values[0][1]\n", + " # dict_a[attributes[2]]=values[0][2]\n", + " list_a.append(dict_a)\n", + "# list_a.insert(1, attributes[0]+':'+values[0][0]) # 在索引 1 的位置插入 'example'\n", + "list_a" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1793,8 +1862,11 @@ } ], "metadata": { + "interpreter": { + "hash": "7e1998ff7f8aa20ada591c520b972326324e5ea05489af9e422744c7c09f6dad" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.10.0 64-bit", "language": "python", "name": "python3" }, @@ -1808,7 +1880,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.10.0" } }, "nbformat": 4, diff --git a/Part.1.E.4.functions.ipynb b/Part.1.E.4.functions.ipynb index 2e69d1e08..ef68f620a 100644 --- a/Part.1.E.4.functions.ipynb +++ b/Part.1.E.4.functions.ipynb @@ -690,8 +690,11 @@ } ], "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -705,7 +708,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.9.7" }, "toc-autonumbering": true }, diff --git a/Part.1.E.5.strings.ipynb b/Part.1.E.5.strings.ipynb index 5ec5bfc2a..ff4c79fe3 100644 --- a/Part.1.E.5.strings.ipynb +++ b/Part.1.E.5.strings.ipynb @@ -1595,7 +1595,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -1605,7 +1605,7 @@ "s.lower().replace('mp', '[ ]', 2):\n", "\n", "si[ ]le is better than co[ ]lex.\n", - "complex is better than complicated.\n" + "co[ ]lex is better than co[ ]licated.\n" ] } ], @@ -2423,7 +2423,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -2432,7 +2432,7 @@ "'John is 25 years old.'" ] }, - "execution_count": 48, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } diff --git a/Part.1.E.6.containers.ipynb b/Part.1.E.6.containers.ipynb index 40f695fb5..552686ad4 100644 --- a/Part.1.E.6.containers.ipynb +++ b/Part.1.E.6.containers.ipynb @@ -424,6 +424,13 @@ "del s[2] # 这一句会报错" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/Part.1.E.7.files.ipynb b/Part.1.E.7.files.ipynb index b07e6a430..f32f88ab2 100644 --- a/Part.1.E.7.files.ipynb +++ b/Part.1.E.7.files.ipynb @@ -9679,6 +9679,99 @@ "> * 可以用 `with` 把相关操作都放入同一个语句块……" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 思考\n", + "### NLP分词\n", + "首先,我们要清楚 NLP 任务的基本步骤,也就是下面的四步:\n", + "> 1. 读取文件;\n", + "> 2. 去除所有标点符号和换行符,并把所有大写变成小写;\n", + "> 3. 合并相同的词,统计每个词出现的频率,并按照词频从大到小排序;\n", + "> 4. 将结果按行输出到文件 out.txt。\n", + "有一个in.txt文件,我们需要将这个文件中的语句内容进行分词,并统计词频。\n", + "如以下例子:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "I have a dream that my four little children will one day live in a nation where they will not be judged by the color of their skin but by the content of their character. I have a dream today.\n", + "\n", + "\n", + "\n", + "I have a dream that one day down in Alabama, with its vicious racists, . . . one day right there in Alabama little black boys and black girls will be able to join hands with little white boys and white girls as sisters and brothers. I have a dream today.\n", + "\n", + "\n", + "\n", + "I have a dream that one day every valley shall be exalted, every hill and mountain shall be made low, the rough places will be made plain, and the crooked places will be made straight, and the glory of the Lord shall be revealed, and all flesh shall see it together.\n", + "\n", + "\n", + "\n", + "This is our hope. . . With this faith we will be able to hew out of the mountain of despair a stone of hope. With this faith we will be able to transform the jangling discords of our nation into a beautiful symphony of brotherhood. With this faith we will be able to work together, to pray together, to struggle together, to go to jail together, to stand up for freedom together, knowing that we will be free one day. . . .\n", + "\n", + "\n", + "\n", + "And when this happens, and when we allow freedom ring, when we let it ring from every village and every hamlet, from every state and every city, we will be able to speed up that day when all of God's children, black men and white men, Jews and Gentiles, Protestants and Catholics, will be able to join hands and sing in the words of the old Negro spiritual: \"Free at last! Free at last! Thank God Almighty, we are free at last!\"\n", + "[('and', 15), ('be', 13), ('will', 11), ('to', 11), ('the', 10), ('of', 10), ('a', 8), ('we', 8), ('day', 6), ('able', 6), ('every', 6), ('together', 6), ('i', 5), ('have', 5), ('dream', 5), ('that', 5), ('one', 5), ('with', 5), ('this', 5), ('in', 4), ('shall', 4), ('free', 4), ('when', 4), ('little', 3), ('black', 3), ('white', 3), ('made', 3), ('faith', 3), ('at', 3), ('last', 3), ('children', 2), ('nation', 2), ('by', 2), ('their', 2), ('today', 2), ('alabama', 2), ('boys', 2), ('girls', 2), ('join', 2), ('hands', 2), ('mountain', 2), ('places', 2), ('all', 2), ('it', 2), ('our', 2), ('hope', 2), ('up', 2), ('freedom', 2), ('ring', 2), ('from', 2), ('god', 2), ('men', 2), ('my', 1), ('four', 1), ('live', 1), ('where', 1), ('they', 1), ('not', 1), ('judged', 1), ('color', 1), ('skin', 1), ('but', 1), ('content', 1), ('character', 1), ('down', 1), ('its', 1), ('vicious', 1), ('racists', 1), ('right', 1), ('there', 1), ('as', 1), ('sisters', 1), ('brothers', 1), ('valley', 1), ('exalted', 1), ('hill', 1), ('low', 1), ('rough', 1), ('plain', 1), ('crooked', 1), ('straight', 1), ('glory', 1), ('lord', 1), ('revealed', 1), ('flesh', 1), ('see', 1), ('is', 1), ('hew', 1), ('out', 1), ('despair', 1), ('stone', 1), ('transform', 1), ('jangling', 1), ('discords', 1), ('into', 1), ('beautiful', 1), ('symphony', 1), ('brotherhood', 1), ('work', 1), ('pray', 1), ('struggle', 1), ('go', 1), ('jail', 1), ('stand', 1), ('for', 1), ('knowing', 1), ('happens', 1), ('allow', 1), ('let', 1), ('village', 1), ('hamlet', 1), ('state', 1), ('city', 1), ('speed', 1), ('s', 1), ('jews', 1), ('gentiles', 1), ('protestants', 1), ('catholics', 1), ('sing', 1), ('words', 1), ('old', 1), ('negro', 1), ('spiritual', 1), ('thank', 1), ('almighty', 1), ('are', 1)]\n" + ] + } + ], + "source": [ + "\n", + "import re\n", + "\n", + "# 你不用太关心这个函数\n", + "# 生成单词和词频的字典\n", + "word_cnt = {}#考虑到要读取多行,如果这个在函数代码块中就无法生效,所以当成全局变量,这样就会因为执行多次函数而发生变化\n", + "\n", + "\n", + "def parse(text):\n", + " # 使用正则表达式去除标点符号和换行符\n", + " text = re.sub(r'[^\\w ]', ' ', text)\n", + "\n", + " # 转为小写\n", + " text = text.lower()\n", + " \n", + " # 生成所有单词的列表\n", + " word_list = text.split(' ')\n", + " \n", + " # 去除空白单词\n", + " word_list = filter(None, word_list)\n", + " \n", + " \n", + " \n", + " for word in word_list:\n", + " if word not in word_cnt:\n", + " word_cnt[word] = 0\n", + " word_cnt[word] += 1\n", + " # 按照词频排序\n", + " sorted_word_cnt = sorted(word_cnt.items(), key=lambda kv: kv[1], reverse=True) \n", + " return sorted_word_cnt\n", + "\n", + "with open('in.txt', 'r') as fin:\n", + " for line in fin.readlines():\n", + " print(line)\n", + " # print(word_cnt)\n", + " word_and_freq = parse(line)\n", + " # print(word_cnt)\n", + "print(word_and_freq)\n", + "\n", + "\n", + "with open('out.txt', 'w') as fout:\n", + " for word, freq in word_and_freq:\n", + " fout.write('{} {}\\n'.format(word, freq))\n" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/Part.1.E.8.json.ipynb b/Part.1.E.8.json.ipynb new file mode 100644 index 000000000..449202c48 --- /dev/null +++ b/Part.1.E.8.json.ipynb @@ -0,0 +1,148 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# JSON 序列化与实战\n", + "最后,我来讲一个和实际应用很贴近的知识点。\n", + "\n", + "JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,它的设计意图是把所有事情都用设计的字符串来表示,这样既方便在互联网上传递信息,也方便人进行阅读(相比一些 binary 的协议)。\n", + "\n", + "JSON 在当今互联网中应用非常广泛,也是每一个用 Python 程序员应当熟练掌握的技能点。\n", + "\n", + "设想一个情景,你要向交易所购买一定数额的股票。\n", + "\n", + "那么,你需要提交股票代码、方向(买入 / 卖出)、订单类型(市价 / 限价)、价格(如果是限价单)、数量等一系列参数,而这些数据里,有字符串,有整数,有浮点数,甚至还有布尔型变量,全部混在一起并不方便交易所解包。\n", + "\n", + "那该怎么办呢?\n", + "\n", + "其实,我们要讲的 JSON ,正能解决这个场景。\n", + "\n", + "你可以把它简单地理解为两种黑箱:\n", + "> * 第一种,输入这些杂七杂八的信息,比如 Python 字典,输出一个字符串;\n", + "> * 第二种,输入这个字符串,可以输出包含原始信息的 Python 字典。\n", + "\n", + "具体代码如下:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "after json serialization\n", + "type of params_str = , params_str = {'symbol': '123456', 'type': 'limit', 'price': 123.4, 'amount': 23}\n", + "after json deserialization\n", + "type of original_params = , original_params = {'symbol': '123456', 'type': 'limit', 'price': 123.4, 'amount': 23}\n" + ] + } + ], + "source": [ + "import json\n", + "\n", + "params = {\n", + " 'symbol': '123456',\n", + " 'type': 'limit',\n", + " 'price': 123.4,\n", + " 'amount': 23\n", + "}\n", + "\n", + "params_str = json.dumps(params)\n", + "\n", + "print('after json serialization')\n", + "print('type of params_str = {}, params_str = {}'.format(type(params_str), params))\n", + "\n", + "original_params = json.loads(params_str)\n", + "\n", + "print('after json deserialization')\n", + "print('type of original_params = {}, original_params = {}'.format(type(original_params), original_params))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "其中,\n", + "\n", + "json.dumps() 这个函数,接受 Python 的基本数据类型,然后将其序列化为 string;\n", + "\n", + "而 json.loads() 这个函数,接受一个合法字符串,然后将其反序列化为 Python 的基本数据类型。\n", + "\n", + "是不是很简单呢?\n", + "\n", + "不过还是那句话,请记得加上错误处理。\n", + "\n", + "不然,哪怕只是给 json.loads() 发送了一个非法字符串,而你没有 catch 到,程序就会崩溃了。\n", + "\n", + "到这一步,你可能会想,如果我要输出字符串到文件,或者从文件中读取 JSON 字符串,又该怎么办呢?\n", + "\n", + "是的,你仍然可以使用上面提到的 open() 和 read()/write() ,先将字符串读取 / 输出到内存,再进行 JSON 编码 / 解码,当然这有点麻烦。" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "after json deserialization\n", + "type of original_params = , original_params = {'symbol': '123456', 'type': 'limit', 'price': 123.4, 'amount': 23}\n" + ] + } + ], + "source": [ + "\n", + "import json\n", + "\n", + "params = {\n", + " 'symbol': '123456',\n", + " 'type': 'limit',\n", + " 'price': 123.4,\n", + " 'amount': 23\n", + "}\n", + "\n", + "with open('params.json', 'w') as fout:\n", + " params_str = json.dump(params, fout)\n", + "\n", + "with open('params.json', 'r') as fin:\n", + " original_params = json.load(fin)\n", + "\n", + "print('after json deserialization')\n", + "print('type of original_params = {}, original_params = {}'.format(type(original_params), original_params))" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "7e1998ff7f8aa20ada591c520b972326324e5ea05489af9e422744c7c09f6dad" + }, + "kernelspec": { + "display_name": "Python 3.10.0 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Part.2.D.3-lambda.ipynb b/Part.2.D.3-lambda.ipynb index 8a734e951..1f8df951f 100644 --- a/Part.2.D.3-lambda.ipynb +++ b/Part.2.D.3-lambda.ipynb @@ -768,6 +768,47 @@ "list(map(lambda x:x,phonebook1))" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 思考题\n", + "最后,我想给你留下两道思考题。\n", + "\n", + "第一问:如果让你对一个字典,根据值进行由高到底的排序,该怎么做呢?以下面这段代码为例,你可以思考一下。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "d = {'mike': 10, 'lucy': 2, 'ben': 30}" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'ben': 30, 'mike': 10, 'lucy': 2}" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "d = {'mike': 10, 'lucy': 2, 'ben': 30}\n", + "d = dict(sorted(d.items(), key=lambda kv: kv[1], reverse=True))\n", + "d" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/Part.2.D.9-internet.ipynb b/Part.2.D.9-internet.ipynb new file mode 100644 index 000000000..261e2b47b --- /dev/null +++ b/Part.2.D.9-internet.ipynb @@ -0,0 +1,44 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# 导入socket库:\n", + "import socket\n", + "\n", + "# 创建一个socket:\n", + "s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n", + "# 建立连接:\n", + "s.connect(('www.sina.com.cn', 80))" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "7e1998ff7f8aa20ada591c520b972326324e5ea05489af9e422744c7c09f6dad" + }, + "kernelspec": { + "display_name": "Python 3.10.0 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Part.2.E.10.email.ipynb b/Part.2.E.10.email.ipynb new file mode 100644 index 000000000..c81a8484b --- /dev/null +++ b/Part.2.E.10.email.ipynb @@ -0,0 +1,134 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 发送email与接收email\n", + "## 发送email\n", + "SMTP是发送邮件的协议,Python内置对SMTP的支持,可以发送纯文本邮件、HTML邮件以及带附件的邮件。\n", + "Python对SMTP支持有smtplib和email两个模块,email负责构造邮件,smtplib负责发送邮件。\n", + "\n", + "首先,我们来构造一个最简单的纯文本邮件:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from email.mime.text import MIMEText\n", + "msg = MIMEText('hello, send by Python...', 'plain', 'utf-8')\n", + "msg" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "注意到构造MIMEText对象时,第一个参数就是邮件正文,第二个参数是MIME的subtype,传入'plain'表示纯文本,最终的MIME就是'text/plain',最后一定要用utf-8编码保证多语言兼容性。\n", + "\n", + "然后,通过SMTP发出去:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "send: 'ehlo chenqiangdeMacBook-Pro.local\\r\\n'\n", + "reply: b'250-newxmesmtplogicsvrsza2-0.qq.com\\r\\n'\n", + "reply: b'250-PIPELINING\\r\\n'\n", + "reply: b'250-SIZE 73400320\\r\\n'\n", + "reply: b'250-STARTTLS\\r\\n'\n", + "reply: b'250-AUTH LOGIN PLAIN XOAUTH XOAUTH2\\r\\n'\n", + "reply: b'250-AUTH=LOGIN\\r\\n'\n", + "reply: b'250-MAILCOMPRESS\\r\\n'\n", + "reply: b'250 8BITMIME\\r\\n'\n", + "reply: retcode (250); Msg: b'newxmesmtplogicsvrsza2-0.qq.com\\nPIPELINING\\nSIZE 73400320\\nSTARTTLS\\nAUTH LOGIN PLAIN XOAUTH XOAUTH2\\nAUTH=LOGIN\\nMAILCOMPRESS\\n8BITMIME'\n", + "send: 'AUTH PLAIN ADQ2OTE2NTE3MUBxcS5jb20AQzFoNUU4bjU=\\r\\n'\n", + "reply: b'535 Login Fail. Please enter your authorization code to login. More information in http://service.mail.qq.com/cgi-bin/help?subtype=1&&id=28&&no=1001256\\r\\n'\n", + "reply: retcode (535); Msg: b'Login Fail. Please enter your authorization code to login. More information in http://service.mail.qq.com/cgi-bin/help?subtype=1&&id=28&&no=1001256'\n", + "send: 'AUTH LOGIN NDY5MTY1MTcxQHFxLmNvbQ==\\r\\n'\n", + "reply: b'334 UGFzc3dvcmQ6\\r\\n'\n", + "reply: retcode (334); Msg: b'UGFzc3dvcmQ6'\n", + "send: 'QzFoNUU4bjU=\\r\\n'\n", + "reply: b'535 Login Fail. Please enter your authorization code to login. More information in http://service.mail.qq.com/cgi-bin/help?subtype=1&&id=28&&no=1001256\\r\\n'\n", + "reply: retcode (535); Msg: b'Login Fail. Please enter your authorization code to login. More information in http://service.mail.qq.com/cgi-bin/help?subtype=1&&id=28&&no=1001256'\n" + ] + }, + { + "ename": "SMTPAuthenticationError", + "evalue": "(535, b'Login Fail. Please enter your authorization code to login. More information in http://service.mail.qq.com/cgi-bin/help?subtype=1&&id=28&&no=1001256')", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mSMTPAuthenticationError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m/Users/chenqiang/Documents/the-craft-of-selfteaching/Part.2.E.10.email.ipynb Cell 4'\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 10\u001b[0m server \u001b[39m=\u001b[39m smtplib\u001b[39m.\u001b[39mSMTP(smtp_server, \u001b[39m25\u001b[39m) \u001b[39m# SMTP协议默认端口是25\u001b[39;00m\n\u001b[1;32m 11\u001b[0m server\u001b[39m.\u001b[39mset_debuglevel(\u001b[39m1\u001b[39m)\n\u001b[0;32m---> 12\u001b[0m server\u001b[39m.\u001b[39;49mlogin(from_addr, password)\n\u001b[1;32m 13\u001b[0m server\u001b[39m.\u001b[39msendmail(from_addr, [to_addr], msg\u001b[39m.\u001b[39mas_string())\n\u001b[1;32m 14\u001b[0m server\u001b[39m.\u001b[39mquit()\n", + "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/smtplib.py:750\u001b[0m, in \u001b[0;36mSMTP.login\u001b[0;34m(self, user, password, initial_response_ok)\u001b[0m\n\u001b[1;32m 747\u001b[0m last_exception \u001b[39m=\u001b[39m e\n\u001b[1;32m 749\u001b[0m \u001b[39m# We could not login successfully. Return result of last attempt.\u001b[39;00m\n\u001b[0;32m--> 750\u001b[0m \u001b[39mraise\u001b[39;00m last_exception\n", + "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/smtplib.py:739\u001b[0m, in \u001b[0;36mSMTP.login\u001b[0;34m(self, user, password, initial_response_ok)\u001b[0m\n\u001b[1;32m 737\u001b[0m method_name \u001b[39m=\u001b[39m \u001b[39m'\u001b[39m\u001b[39mauth_\u001b[39m\u001b[39m'\u001b[39m \u001b[39m+\u001b[39m authmethod\u001b[39m.\u001b[39mlower()\u001b[39m.\u001b[39mreplace(\u001b[39m'\u001b[39m\u001b[39m-\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39m_\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[1;32m 738\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 739\u001b[0m (code, resp) \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mauth(\n\u001b[1;32m 740\u001b[0m authmethod, \u001b[39mgetattr\u001b[39;49m(\u001b[39mself\u001b[39;49m, method_name),\n\u001b[1;32m 741\u001b[0m initial_response_ok\u001b[39m=\u001b[39;49minitial_response_ok)\n\u001b[1;32m 742\u001b[0m \u001b[39m# 235 == 'Authentication successful'\u001b[39;00m\n\u001b[1;32m 743\u001b[0m \u001b[39m# 503 == 'Error: already authenticated'\u001b[39;00m\n\u001b[1;32m 744\u001b[0m \u001b[39mif\u001b[39;00m code \u001b[39min\u001b[39;00m (\u001b[39m235\u001b[39m, \u001b[39m503\u001b[39m):\n", + "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/smtplib.py:662\u001b[0m, in \u001b[0;36mSMTP.auth\u001b[0;34m(self, mechanism, authobject, initial_response_ok)\u001b[0m\n\u001b[1;32m 660\u001b[0m \u001b[39mif\u001b[39;00m code \u001b[39min\u001b[39;00m (\u001b[39m235\u001b[39m, \u001b[39m503\u001b[39m):\n\u001b[1;32m 661\u001b[0m \u001b[39mreturn\u001b[39;00m (code, resp)\n\u001b[0;32m--> 662\u001b[0m \u001b[39mraise\u001b[39;00m SMTPAuthenticationError(code, resp)\n", + "\u001b[0;31mSMTPAuthenticationError\u001b[0m: (535, b'Login Fail. Please enter your authorization code to login. More information in http://service.mail.qq.com/cgi-bin/help?subtype=1&&id=28&&no=1001256')" + ] + } + ], + "source": [ + "# 输入Email地址和口令:\n", + "from_addr = '469165171@qq.com'#input('From: ')\n", + "password = 'C1h5E8n5'#input('Password: ')\n", + "# 输入收件人地址:\n", + "to_addr = '469165171@qq.com'#input('To: ')\n", + "# 输入SMTP服务器地址:\n", + "smtp_server = 'smtp.qq.com'#input('SMTP server: ')\n", + "\n", + "import smtplib\n", + "server = smtplib.SMTP(smtp_server, 25) # SMTP协议默认端口是25\n", + "server.set_debuglevel(1)\n", + "server.login(from_addr, password)\n", + "server.sendmail(from_addr, [to_addr], msg.as_string())\n", + "server.quit()" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "7e1998ff7f8aa20ada591c520b972326324e5ea05489af9e422744c7c09f6dad" + }, + "kernelspec": { + "display_name": "Python 3.10.0 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Part.3.B.1.classes-1.ipynb b/Part.3.B.1.classes-1.ipynb index aae544aa4..6718542bb 100644 --- a/Part.3.B.1.classes-1.ipynb +++ b/Part.3.B.1.classes-1.ipynb @@ -153,10 +153,10 @@ "> * 界面,属性,方法\n", "> * 继承,类,子类,实例\n", "- 对象其实就是object,比如我们说的动物就是对象。\n", - "- 对象和类之间的区别是什么,其实对象就是类和子类的统称\n", + "- 对象和类之间的区别是什么,其实对象就是实例,类是抽象归纳的类别,比如我们类里有狗类,子类的话就有狼狗类,但是我们有个符合狼狗类的狗名叫“二狗”。\n", "- 子类是继承了类的所有属性和方法,但也可以去重写属性和方法。\n", "- 我们创建实例就相当于是创建某个类的实例,比如我们要创建狗,狗属于哺乳类这样\n", - "- 那抽象是有些类,我们不需要写明他具体是哪个类,我们在实例化时可以具体声明\n", + "- 那抽象是有些类,我们不需要写明他具体是哪个类,我们在实例化时可以具体声明,抽象类的作用是什么呢,举个场景,有一样东西是现实中不可能出现的东西或者难以描述的东西,当子类继承后并且能够对其进行二次描绘“重写”才能生成实例,而这样的子类很多,有些属性和方法我们可以进行抽象,因此抽象类就由此而来。\n", "- 封装指的是我们要把不需要给使用者看的东西封装好,不被他们看到,给他们看到就是个开关\n", "- 界面就是由属性和方法组成,就是英文里头的动词和名词" ] diff --git a/Part5.B.downloadcsv.ipynb b/Part5.B.downloadcsv.ipynb index a06fc59d1..e4efc4397 100644 --- a/Part5.B.downloadcsv.ipynb +++ b/Part5.B.downloadcsv.ipynb @@ -982,6 +982,481 @@ " # 单行写入\n", " writer.writerow({'first_name': 'Wonderful', 'last_name': 'Spam'})" ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['https://movie.douban.com/subject/34841067/comments?start=0&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=20&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=40&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=60&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=80&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=100&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=120&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=140&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=160&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=180&limit=20&status=P&sort=new_score']\n" + ] + } + ], + "source": [ + "import requests\n", + "from bs4 import BeautifulSoup\n", + "import time\n", + "import random\n", + "urls=['https://movie.douban.com/subject/34841067/comments?start={}&limit=20&status=P&sort=new_score'.format(str(i)) for i in range(0, 200, 20)] #通过观察的url翻页的规律,使用for循环得到10个链接,保存到urls列表中\n", + "print(urls)\n", + "dic_h = {\n", + " \"User-Agent\": \"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36\"}\n", + "comments_list = [] #初始化用于保存短评的列表\n", + "\n", + "for url in urls: #使用for循环分别获取每个页面的数据,保存到comments_list列表\n", + " r = requests.get(url=url,headers = dic_h).text\n", + "\n", + " soup = BeautifulSoup(r, 'lxml')\n", + " ul = soup.find('div',id=\"comments\")\n", + " lis= ul.find_all('p')\n", + "\n", + " list2 =[]\n", + " for li in lis:\n", + " list2.append(li.find('span').string)\n", + " # print(list2)\n", + " comments_list.extend(list2)\n", + " time.sleep(random.randint(0,3)) # 暂停0~3秒\n", + " \n", + "with open('lhy_comments.txt', 'w', encoding='utf-8') as f: #使用with open()新建对象f\n", + " # 将列表中的数据循环写入到文本文件中\n", + " for i in comments_list:\n", + " f.write(i+\"\\n\") #写入数据" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['https://movie.douban.com/subject/34841067/comments?start=0&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=20&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=40&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=60&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=80&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=100&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=120&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=140&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=160&limit=20&status=P&sort=new_score', 'https://movie.douban.com/subject/34841067/comments?start=180&limit=20&status=P&sort=new_score']\n" + ] + } + ], + "source": [ + "import requests\n", + "from bs4 import BeautifulSoup\n", + "import time\n", + "import random\n", + "urls=['https://movie.douban.com/subject/34841067/comments?start={}&limit=20&status=P&sort=new_score'.format(str(i)) for i in range(0, 200, 20)] #通过观察的url翻页的规律,使用for循环得到10个链接,保存到urls列表中\n", + "print(urls)\n", + "dic_h = {\n", + " \"User-Agent\": \"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36\"}\n", + "comments_list = [] #初始化用于保存短评的列表\n", + "\n", + "for url in urls: #使用for循环分别获取每个页面的数据,保存到comments_list列表\n", + " r = requests.get(url=url,headers = dic_h).text\n", + "\n", + " soup = BeautifulSoup(r, 'lxml')\n", + " ul = soup.find('div',id=\"comments\")\n", + " lis= ul.find_all('p')\n", + "\n", + " list2 =[]\n", + " for li in lis:\n", + " list2.append(li.find('span').string)\n", + " # print(list2)\n", + " comments_list.extend(list2)\n", + " time.sleep(random.randint(0,3)) # 暂停0~3秒\n", + " \n", + "with open('lhy_comments.txt', 'w', encoding='utf-8') as f: #使用with open()新建对象f\n", + " # 将列表中的数据循环写入到文本文件中\n", + " for i in comments_list:\n", + " f.write(i+\"\\n\") #写入数据" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "把二十多分钟的小品拉长到两个小时,没有好导演和好剧本还是省省吧。\n", + "有笑有泪的,不明白陈赫这个人物有什么作用,完全多余\n", + "跟唐人街探案三的分数相比,很明显观众们评判电影的标准不仅在于你拍的好坏,而更在于你拍的态度是否真诚\n", + "这次感受注定是感性压倒理性的,所以就不打分了。\n", + "贾玲还是适合做小品,她的表演方式、她的叙事能力都更适合能和观众互动的、短小精炼的舞台而不是要被观众一帧一帧检视的电影。更何况她非科班出身,参与电影项目也不多,要执导筒讲故事就更是自曝其短。\n", + "这是一部非常开心麻花式的片子,如果你喜欢《夏洛特烦恼》那么可以去看看,如果是抱着宁浩电影的期待那就赶紧睡个回笼觉,或者喝杯咖啡把瞌睡醒醒。\n", + "但说一千道一万,《你好李焕英》只能是贾玲来演、贾玲来导,它是贾玲自己的情感寄托和内心牵挂。哪怕在我觉得很尬的场景里,她对母亲的爱意和思念都饱满到要冲出屏幕来逼我落泪。我也确实掉了眼泪,在大年初一这天。\n", + "这种情绪不是浓汤宝能兑出来的煽情,哪怕我和她的人生轨迹并不相同,但我也在电影院里体会了一把贾玲的过往青春。\n", + "我以为是我在为你圆梦,其实还是你陪着我做了一场好梦。\n", + "贾玲水平有限,奈何感情无比真挚。虽然结尾让我哭的稀里哗啦,但也没能改变前半段就是个低配版夏洛特烦恼的状况。\n", + "这完全是贾玲拍给自己的作品,不是拍给观众的,充满了个人的执念。\n", + "你以为你已经很爱很爱妈妈了,但妈妈远比你想象中更爱更爱更爱你\n", + "贾玲哭的时候很明显没有在演戏,这是最让人伤心的。\n", + "前一个小时强行塞包袱,后面干嚎占二十分钟。。。\n", + "我不喜欢,我不觉得好笑,也不觉得感动\n", + "以为穿越是为了改变她的人生轨迹,竟然只是了却自己的遗憾。原来从天而降的大胖妞无论有多重,她都会毫不犹豫接住她的宝儿。裤子无论多破,她都会缝成小狗。今生母女一场,只能化作目送。以为她希望我有出息,原来她只需要我平安。以为她想换个女儿,原来她从没后悔。以为多了解她,原来还是误会了她。\n", + "7分。豆瓣8.2分过分了,就电影论电影的话,贾玲这部作品最大的问题在于它不太像电影(但也确实比小品形态提升了不少)。如果无视这一点,主要凭是否感动或者哭了多少眼泪来评价它的优劣,那就好比让情色片与AV同台竞技,主要凭观众生理反应的指标来评价优劣。 \n", + "同样是女性导演的亲情题材,许鞍华《桃姐》8.3分,张艾嘉《相爱相亲》8.4分,就是把贾玲纪念母亲的真诚用心全算上,它跟蒋雯丽《我们天上见》——同样演员出身的导演处女作,同样纪念自己至亲——也差了几条街,后者的确是一部电影,蒋雯丽之后没再做导演让我觉得可惜,而贾玲如果之后再做导演我只会觉得她是飘了。\n", + "如果你只是把它当成一件商品,那么眼泪的容量可以跟商品的质量成正比。如果你还把它当成一件艺术品,那么真诚只是优秀艺术品的要素之一,技巧和手法同等重要。【仙桃金逸】\n", + "8.3分绝对是太不正常了。《李焕英》你不能说它差,但也绝对称不上好,只是前些年综艺大电影版的变形罢了。主题选择了“子欲养而亲不在”,表达上却仅限于一味的情感宣泄,里面其实你很难找出一个完整鲜活的角色,母、女也只是传统文化几千年来堆砌出来的固定形象,除了伟大和孝顺找不到更多的形容词。\n", + "贾晓玲撮合李焕英和沈光林这段有很多笑点,但内核是很扎心的。\n", + "因为它体现了贾晓玲的自卑和丧,她觉得自己活着什么用都没有,她凭借自己无法让母亲过上更好的生活,所以她才想出这个办法。\n", + "很多人看了《李焕英》后都说:如果母亲生的不是我,她是不是会过得更幸福。\n", + "但这并不是电影想要表达的主题,电影想表达的是,你的母亲觉得有你这样的儿女,就已经很幸福了。\n", + "贾晓玲说她会看相,她看到李焕英未来的女儿会出国留学,而且收入很高。\n", + "而李焕英说,我的女儿,我就让她健康快乐就行了。\n", + "其实天下母亲都是如此。\n", + "如果我们能功成名就当然更好,但如果我们没有功成名就,难道她们就会觉得我们不配做她们的儿女吗?\n", + "事实是无论我们贫穷还是富贵,成功还是平凡,她们都会以我们为傲。\n", + "因为重要的不是我们做出多大的成就,重要的是“我们”。\n", + "贾玲:我给你们讲个笑话,你们别哭。\n", + "我要强烈批评影片最后刻画母亲买票又退票在大雪天中一个人走回去的镜头,我不接受,母爱不是因为牺牲才伟大,爱与关怀本身就是伟大。\n", + "其实还是小品段子电影,最大的梗电影看得稍多些的观众一早就能猜到,但胜在有真感情,没有绝大部分国产喜剧那股鸡贼味。这片或许确实只能由贾玲自己来拍,换别的导演,就算拍得更成熟、更电影,恐怕也达不到现在的效果,或者说,就会是另一个故事了。\n", + "这个底太好了,比起以往穿越片的个人救赎迈的更深了一步。本以为影片会如同以往的俗套一般会终结在「希望孩子健康快乐」上,没想到结尾以针线为引,将「无论你在哪里我都会找到你并且保护你」的母爱穿进了观众的心里,以个人故事为本,动了真情的贾玲担得起导演的称呼。在喜剧元素上,影片也做的十分自然,不刻意不尴尬,更是在演员的选角上玩出了花,乔杉和贾玲的父女堪比去年黄渤和彭昱畅。\n", + "看到8.3分才决定去看的,看完了,就这?是我要求太高了吗?很多桥段感觉很刻意和做作,张小菲的假笑只有我感受到了吗……最后的反转的确有感动到,但也不至于如热搜所说湿了两个口罩吧,我还特意有所准备,我的感受是这部剧营销过头了吧\n", + "贾玲昨晚的喜剧已经尴尬到我了… 这个导演的电影真的更加尴尬… 还是好好当个综艺咖吧!电影就算了…别伤害影迷的眼睛了…\n", + "“我宝”那句出来的时候真的直接泪奔\n", + "我以为只有我回到了1981,我以为我可以牺牲我自己改变你往后的命运,我以为你可以更幸福的,我没想到你愿意过的就是摊上我的这一生😭\n", + "国产+喜剧+催泪=烂片,这是豆瓣一贯的风气,因此我知道自己的评分一定不会公允,这里有掺杂太多我的主观感受:有生以来第一次在电影院哭得泣不成声。\n", + "昨晚是除夕,我和妈妈大吵了一架。她气得直骂我没良心、白眼狼,我爸也心寒地把我妈牵到楼下,说不指望以后让我给他们养老。\n", + "凌晨的时候,我给我妈朋友圈的拜年视频点了个赞,并发给她一个拜年红包,和她说“今晚我脾气不好,你别往心里去”我妈收下红包,给我发来好多幸福快乐的祝福。\n", + "今天看到这电影,许多情节点都让我泪眼婆娑,直到女儿明白真相后,一路奔跑的那一段蒙太奇,我极力掩着眼泪,把哭声压到最小。\n", + "观影是一个创作者通过作品感染观众的过程,无论它是否合乎艺术规律,只要能让观众感动,它就值得那个观众为它叫好,不必因为它是国产片就舍不得掌声。\n", + "感谢编剧没有让李焕英以少胜多赢下排球赛。这个剧其实好就好在它的质朴情感上。没有什么输赢胜负,也没有什么人生逆袭改变命运。穿越回来只为了让你开心。不完美的小人物在闪闪发光。\n", + "2.5 穿越梗是人家三十多年前玩剩下的套路,拍得也很糟糕(导演问题),全程味同嚼蜡,直到最后那个反转。这是皮克斯式的情感/视角反转(参考瓦力、玩具3和Coco),学到了精髓而奏效,可惜又处理得过于繁重拖沓。当然电影之外的真情实感的确很动人。\n", + "真诚打动内心,没办法客观评价\n", + "我最忘情的哭声有两次,一次,在我生命的开始;一次,在你生命的告终。第一次,我不会记得,是听你说的;第二次,你不会晓得,我说也没有用。但两次哭声的中间啊,有无穷无尽的笑声。一遍一遍又一遍,回荡了整整三十年。你都晓得,我都记得。——余光中《今生今世》\n", + "8分?是因为我没看过开心麻花,对这个体系的喜剧存在一些误会吗?我以为自己对贺岁片已经够宽容低期待了,唐探,飞驰人生,流浪地球,都是手松一松能给4星的贺岁片,但李焕英是真的不行,毫无新意,所有的场景台词都是能找到一百八十个前辈的陈词滥调,听听你妈年轻时候的故事都比买票跟着别人哭强啊,脱离不了屎尿屁和融梗的国产喜剧,太廉价。尊重贾玲的心意,但不认同这是一部值得被夸赞至此的电影。\n", + "在电影院哭得稀里哗啦。隔壁座的小姐姐也在哭。她问我:想妈了?我说:嗯!小姐姐:你也春节没回家?我指了指前面:我妈坐第三排,我俩没买着连号的座。这下小姐姐哭得更凶了。\n", + "有一种“上当”了的感觉,第一次觉得豆瓣评分不可信\n", + "贾玲你这样算不算恰烂钱?我就想问这个电影要干嘛?你要煽情没问题要找人客串没问题,要搞笑都没问题!可你什么都来一点。大杂糅无非就是要保证票房而已!\n", + "我讨厌煽情喜剧!即使再感人 流泪会有种被“打亲情牌”而被占便宜的感觉\n", + "最戳我的就是在知道了48岁的李焕英是穿越回去的后,想起那句“我这一辈子过得挺幸福的,怎么就没人相信呢。”\n", + "意识到妈妈什么都知道的时候,我哭到抽搐。贾玲太有才了。在读你和我时就在想,逝去的父母是靠儿女的记忆继续活着,而如果你可以写作,或者像贾玲一样用一部电影来纪念,那他们就一直活着。他们的精彩也都没有被忘却。这是贾玲给自己的交代。我不停的想,到底我不能接受的是什么,如果她的一生在自己活着时就去全都熠熠闪光,那死去时也不能称之为遗憾,只是命运。\n", + "贾玲说她把心掏出来给观众看了,我想说,我看到了。\n", + "打着亲情牌圈钱 说难听就叫消费亲妈\n", + "张小斐还行,整体观感就像看现如今强迫你笑你哭的春晚小品,对不起我真的入不了戏。\n", + "这是今年春节档,我最最想看的一部电影。《你好李焕英》的小品,是千禧年之后我心目中最佳小品前三,即便珠玉在前,当得知要影视化的时候,依然期待爆棚。作为贾玲的导演处女座,这部作品是值得肯定的,笑点泪点恰到好处,没有硬搞笑也没有刻意煽情。子欲养而亲不待,她在讲一个珍惜亲情的故事,也在讲当代女性意识的觉醒,不鼓吹生育,不鼓吹婚姻,而是让我们看到,任何一个女性在成为妈妈之前,第一个身份首先应该是她自己。祝天下所有“李焕英”永远快乐。\n", + "不想在大过年的接受情感强奸。\n", + "基本上和夏洛特烦恼一个套路,穿越过去弥补现实生活的遗憾。但剧本比不上夏洛打磨的千锤百炼。能看出贾玲对母亲的真挚感情,但不足以撑起一部电影的篇幅。\n", + "逻辑很差让人无法共情,前面笑料勉强可以,后面哭得可尴尬了,作为导演,她想导观众的是,看我都哭成这样了,你们快给我哭!\n", + "放在大过年,大年初一给老子哭????为什么喜剧一定要哭!不哭不行嘛??\n", + "为什么表妹撕了你刚拿到的结婚证你都不生气。因为那是你女儿啊。\n", + "最让人泪崩的是,我知晓未来所发生的一切,依然选择你这件小棉袄来陪我走过一生。\n", + "不是我拉男女对立啊。当屏幕上出现 “贾玲 执导”字样的时候,就比起那些拍了几个直男癌片子就写“××× 导演作品”的,要真诚多了。\n", + "“作品”这个词是自己叫的吗。。\n", + "说实话吧,这要都算电影,电影的门槛是太低了点。\n", + "散场以后我挎着妈妈散步回家,我想着她,她应该想着她妈妈吧。\n", + "电影有一种聪明的真诚,可是这种真诚并不新鲜,每隔一长段时间,从让人疲惫的视效大片出来,你都能找到类似的感动,在国内电影市场上成为黑马。我们被这样的片子感动过太多次了。创作者不能老是这么拍电影,观众亦不能老是做煽情大保健。\n", + "\n", + "它起了一个坏示范,无法从沉湎于悲伤中,走向理智,走向探索生活本质,因而它用冗长的煽情,绕开了现实的复杂。在某种程度上,它绑架了大多数母亲,建立一种刻板的母亲形象,抹掉了母亲形象本身的丰富,也绑架了身为子女的观众。\n", + "\n", + "从技巧上,即使对比《相爱相亲》情节剧,它也缺乏力量,就更难对比类似《痛苦与荣耀》里母亲和子女作为独立个体相互平视的亲密关系。真的,我们不需要黏糊糊的中国式不分你我的亲情,我们不需要下跪父母,我们更需要在这种亲情中,走向人格的独立、人的平等和思想的升华。\n", + "实际上三星都很勉强的……豆瓣分太高了8.2,好吧2星……没有任何创新,剧情拖沓,强行煽情……\n", + "仅强于《囧妈》,结尾不错改分了\n", + "如果你要陪长辈看电影的话,那就看这部吧。基本上就是贾玲版的《夏洛特烦恼》,完成度很好,笑点和泪点都到位,感觉会是春节档期大众口碑最坚挺的一部电影。一开始你以为这是一个熟悉的穿越设定,最后一反转,你会发现这不仅仅是一次穿越,而穿越的背后正应了母女情的主题。完了结尾的字幕又补了一刀,原来这是贾玲自己的经历,用这样一部电影去追忆母亲年轻时的样子。穿越回八十年代,从工厂记忆,女排比赛,黑白电视到祖父悖论,都是能引发几代人共鸣的设计,以前都是看贾玲笑,这次是看贾玲哭,很多人却是跟着她笑着哭。\n", + "笑的不尴尬,哭的脑壳疼。\n", + "看完真是气死了,求求中国的导演了,拍喜剧就纯粹点吧,咱别煽情别拔高别搞低级催泪行吗?我花了比平时贵的票价是来寻开心的不是来哭的啊喂。\n", + "本来前半部分还算是精致轻松的风格,后半部分就又往煽情的低级趣味上去了。对,亲情确实很容易感人很容易把观众弄哭,咱们能不能选个难点的level,把它拍成云淡风轻,春风化雨好不好?\n", + "真TM妥妥春晚小品风。躲过了春晚,却没躲过这货。\n", + "实话实说我哭抽抽了 看见张小斐想喊声妈的程度\n", + "笼统的看下豆瓣评分就去看了,真的很失望,感觉评分是刷的,不值票价和时间,贾玲值得尊敬,母爱更值得赞扬,但这种形式,就像小学的感恩大会,有一个人拼命的在台上讲,拿出各种故事拼命的渲染,好像不感动不哭就是不合适宜。\n", + "感谢贾导。感谢李阿姨,是您的女儿在开局落后15亿的情况下,阻止了《唐3》这种烂片成为2021年春节档票房冠军,她永远是您的骄傲。\n", + "我未来的女儿,我就让她健康快乐就行了。\n", + "\n", + "\n", + "\n", + "大家来看这一部吧,别看唐3了\n", + "我求求这群演员了,真不是是个人都能当导演\n", + "现在的喜剧已经不是喜剧,都是让你一会笑一会哭的,pua套路\n", + "80年代性转夏洛一点不烦恼,从头到尾的无聊和尴尬,贾玲说说是讲述自己和妈妈的故事,其实真的和妈妈一点关系都没有,尤其是李焕应这个角色,就是一个工具人而已。一个小品撑长到电影长度已经很勉强了,结果还在小品里面套小品和段子就更让人难以忍受了。整个故事真的可以说一马平川,没有真正的人物矛盾,没有真正的情节波折,甚至,连整个故事的情感支点都是虚的,剧本的堆砌感实在是太强了,结构散得一塌糊涂,观众是真的好骗呀!\n", + "值得一看,但没有你想象中那么好看,尤其是当你带着豆瓣8点多高分期待去看!都说哭的稀里哗啦,但我确实没有哭……\n", + "到底是一种怎样的执念,让焕英这老母亲,在人生最后的回光返照里,在明知晓玲的破洞牛仔裤是流行的情况下,都要把那洞给缝上?\n", + "看过这个小品,人都没换,变成电影了。。。作为骗钱贺岁档一点诚意都没有,史上最i差,看不下了。\n", + "如果你看过贾玲的小品,看过这个的话。我不知道你什么心态。看什么不好看这个。实力劝退。\n", + "嘴一句,是挺感人,但是我都说了。\n", + "这并不是一个穿越的故事,而是是一个母亲在弥留之际创造出来安慰女儿的梦,真的特别特别特别好,贾玲值得。9/10 \n", + "让她再选一次,她还是义无反顾的选择了有你的人生\n", + "咋说呢,贾玲太牛了,不玩梗的那种搞笑,一点都不低俗,但是笑点通俗易懂,演员也都特别好,而且有一个点很戳我,就是后面暗示了王琴的发达不是因为靠男人,中国就是应该多有这样的思想纠正啊!!催泪的地方也容易产生共情,后半段我一边哭一边骂:这特么咋没完没了了……然后继续哭....好了好了,我爱我妈妈,虽然我们也会吵架,但是我很爱她,一直爱她\n", + "自我安慰式小品\n", + "豆瓣也开始水了\n", + "“我的女儿,只要健康快乐就行了”\n", + "神不能一直在,所以创造了妈妈\n", + "陈赫的戏份太恶心了,和贾玲一起躲雨,陈赫和贾玲肥胖身躯挤来挤去恶心死我了,尴尬到我脚趾母都扣起了。\n", + "贾玲好棒 抢结婚证那里 结婚证被撕坏了 小斐眼里含泪的说 我这一生真的很幸福 你为什么就不相信呢 当时看的时候觉得很奇怪 后来全明白了 剧本好棒 拍的也很好 不过李焕英不管票房多少 她应该只想让贾玲健健康康 开开心心吧\n", + "感谢贾玲,我们太需要女性视角的影视作品了,在女性眼里,女人不和性挂钩,不被凝视,所以不需要少女,不需要磨皮,滤镜,让人看的非常舒服,今年春节最佳了\n", + "那句\"我宝\"真是让我眼泪都要下来了\n", + "吹的太过了,6.5分顶天了,整个就一个小品,这样的画质和声效离影院标准差太远了,网播就行了。据说投资3.8个亿,少两个0都不影响效果。要不是我的免费票没别的看了,真不会看。\n", + "一开始觉得冷特的角色多余,晓玲总要回来的,这样留下一段感情对冷特来说很残忍,后来反转了才明白根本不是穿越,是妈妈为晓玲创造的梦境,在妈妈创造的梦境里,为了抚平晓玲的自卑而创造了冷特的角色,妈妈想告诉女儿 她也值得被爱。\n", + "挺细腻的一部剧吧。\n", + "以为是帮妈妈圆梦,其实是妈妈陪女儿回去帮她圆梦。\n", + "我这一辈子过得挺幸福,你咋就是不信呢?\n", + "不知道有多尴尬 全程尬笑\n", + "作为一部电影来说,是不及格的,严重过誉。剧情结构太弱,逻辑基础混乱,表演舞台化严重。强行抖机灵的台词和用力过重的表演,都让人尴尬得出戏,反而掩盖和混淆了剧作本身表达的内容。前半个小时,我深刻自我怀疑:就这?中间一个小时我满心期待会有更好的编排,却越来越失望。最后半个小时,我感觉被捏住脖子摁在地上强行质问:你哭不哭?体验极为不好😞\n", + "从妈妈张开手喊着“我宝”去接人那瞬间开始,哭到停不下来。你以为自己已经很爱很爱妈妈了,想尽办法让她开心,其实她更爱更爱你,她包容你、守护你,甚至下辈子也舍不得让你当妈妈。笑点有,泪点足,反转到位,其实剧情的反转就是感情的反转,因此带来的触动是极大的。除了陈赫这个角色以及这条感情线略鸡肋,其他我觉得都很好。真诚永远是最打动人的,这部电影真的很用心、很真诚。【8.2】\n", + "观感有些复杂 哭了\n", + "但你又知道这个哭是生理性的,被煽动的\n", + "你不太确定那是不是感动,你为这样的自己感到厌恶\n", + "贾玲第一次当导演就能拍出这水准的片子,可见用心和不用心做事的区别到底在哪里,我觉得做春节烂片的导演们真的该好好反省反省。\n", + "故事虽然有点像某个电视剧的剧情,但也不全是一样,加上看得出来贾玲确实放了真情实感,后面的回忆杀真的让人泪目。\n", + "前半段的笑点也很多,划船那段真的笑到打滚!沈腾贾玲真的是喜剧质量的保证。而且演员们的演技还是都不错的。值得去电影院支持。\n", + "看完之后感觉可能是春节档最好看的吧……\n", + "有泪有笑,这不是一个人的感觉,是整个影厅的反馈\n", + "````最讨厌这种电影!!\n", + "女性导演还是会更细腻一些,结局并没有刻意要所谓的“圆满”,贾玲第一次导戏非常成功啊👍\n", + "看哪,贾晓玲考上了艺校,打铁娘子队赢得了新的搪瓷杯,王琴靠自己的努力过上了更好的日子,而李焕英,她得到了一次重返青春的机会,真好。这些女孩都有光明的未来,而这也就是中国电影需要更多女性视角的原因。(理性角度来看,这部电影自带的一些争议以及很多稚嫩的处理手法,确实不应该拿到五星。但是揉揉自己哭肿了的眼睛,我确实没办法公正的打分。一颗心都捧出来给观众看了,这不叫技巧性煽情,而叫真诚。)每位演员的表现都让这个剧本变得更加熠熠生辉(包括热评里觉得多余的一些角色的演员),而这部电影也证明了,不用一些带有性别倾向的梗(无贬低之意),也能让人发自内心地笑出来。最后表白结尾的文字:每个母亲,都曾经是少女。而在母亲这个身份之前,请不要忘记她是一个独立的人。\n", + "“你以为自己已经很爱很爱妈妈了,妈妈却远比想象中更爱更爱你。你以为自己是在为妈妈圆梦,没成想只是她陪你做了一场好梦。”\n", + "好无聊好无聊,旁边的小朋友被无聊哭了,真的难看。不知道要讲什么,笑点还都很尬,贾玲演的这个人真的好奇怪,还一直愁眉苦脸的,她煎熬,我看她也煎熬。看在沈腾的份上两星吧,张小斐也还行\n", + "看评论时有人说了这样一个观点,我特别特别赞同:“看这个片会哭地很惨的人都是特别幸福的人,因为能和贾玲产生共鸣说明有一个爱你的好母亲,一个只想你幸福快乐无私付出的母亲,但现实中也有一些人不那么走运,ta们的母亲可能自私,也会让孩子寒心…因为不是全天下的母亲都是合格的母亲,所以看哭了其实真的是一件特别幸福的事,这足以说明你幸运地拥有一个好妈妈。”\n", + "“我的女儿,只要她健康快乐就行了。”本来以为只是贾晓玲穿越回了1981年,没想到原来2001年的李焕英也穿越回了20年前,这里真的设计得太巧妙了。重来一回,李焕英还是会选择当玲儿的妈妈啊。开头李焕英看见从天而降的玲儿,下意识地就要去接住玲儿,这就是母爱吧。这种感情可能真的只有母女会懂吧。\n", + "前半部分贾玲沈腾真的好好笑哈哈哈哈哈哈哈。\n", + "贾玲在影片里用了好几次华仔的歌,不愧是华仔的真爱粉。\n", + "啊对,通过黑白照片染色这一方式呈现画面也蛮有创意。\n", + "哭笑交叉的一部电影。\n", + "前面一个半小时三星,后面半小时五星,眼泪水真是摥勿牢\n", + "1.5。喜剧元素出众,笑点属上乘。靠细节抓住时代感,通过时代落差反过来促进笑点\n", + "\"自我记事以来,母亲就一直是一个中年妇女,但是我们却容易忘记她曾经也是一个花季少女\"。说得很好,可惜没有任何意义,在鸡汤里都算下流水平\n", + "电影很好地完成了风格的转变,至少效果是达到了的,电影院里前半段笑声不断,后半段鸦雀无声,真正地做到了\"有笑有泪,喜剧的内核是悲剧\"的大众低俗标准,可惜转场的生硬导致全片漏洞百出,然而这些都在观众的哽咽中抛在脑后\n", + "贾玲的确用心拍摄了这部电影,真情实感在影像的流动间溢出屏幕,对母爱的赞美让我们感同身受,很好地做到了共情,可惜这不是电影的评判标准\n", + "\"献给所有伟大的母亲\",主题一下子升华,电影结束后观众的赞美声再次证明了煽情永远是电影最低级最取巧的表现手法。片中的母爱远没有达到伟大的地步\n", + "新年第一部觉得最值得五星的片子,很好笑也很好哭。阳光下张小斐穿百褶裙真的漂亮,打排球真的飒。\n", + "另,沈腾叔叔的表演让我相信雪姨阿姨是靠自己让她女儿去米国念书的。\n", + "\n", + "微博上发不出负面评论,怒打低分。浓缩成一出小品 或者 拍一个短片,也许会不错。作为一部电影,一塌糊涂。难过。\n", + "贾玲和他爸的乔杉真像啊!\n", + "是不是被隔壁唐3给惯的了,明明也就一般的片子,怎么一下就彪到30亿了,贾玲真应该感谢一下陈思诚\n", + "催泪神器,给四颗星五颗星都可以理解,毕竟大家都太想“让妈妈高兴”了。\n", + "“你以为你已经很爱很爱妈妈了,其实妈妈比你想象中更爱更爱你。”\n", + "歌颂母德,令人不适。如果一个创作者的私人情绪泛滥成灾,那么最终成品也只能是一个灾难。\n", + "春节档电影票价很贵,选来选去还是看了这部,倒不是喜欢沈腾和贾玲,而是抱着宣传的噱头:喜剧片才带着爸爸妈妈去看,看完之后只有一个感觉,喜剧片不是各位的噱头,特别是春节元旦这样的档期,还有希望各位对喜剧演员的包容度稍微减一减,沈腾贾玲尴尬至极,还有一个要命的陈赫。。。。\n", + "“可是我妈还不会缝啊” 自此开始眼泪止不住。\n", + "以为穿越是为了改变她的人生轨迹,竟然只是了却自己的遗憾。原来从天而降的大胖妞无论有多重,她都会毫不犹豫接住她的宝儿。裤子无论多破,她都会缝成小熊。今生母女一场,只能化作目送。以为她希望我有出息,原来她只需要我平安。以为她想换个女儿,原来她从没后悔。以为多了解她,原来还是误会了她。\n", + "豆瓣也开始水了\n", + "有时候不需要太深的立意,故事流畅,人物真诚就很足够了\n", + "催泪神器,给四颗星五颗星都可以理解,毕竟大家都太想“让妈妈高兴”了。\n", + "承认是贾玲的真实感情,但仅限于此。\n", + "什么电影手法,在真挚感人面前不重要\n", + "所有不是沈腾主演却写他主演,预告片就减他出场的部分骗我去看的片子全部最低分\n", + "如此成功地调动了观众的情绪和心理,诠释了电影作为一个现实生活的宣泄口和安慰剂,在意识形态上功能可以多么强大。越是回到过去,我们离现实越远。实际上,你和你妈的矛盾,根本不是靠两个人重新选择可以解决的,而是靠你妈接受了你的平庸,达不到社会成功人士的标准。可是,有出息的标准是注定不会被质疑的,只恨发财买车没有早一点,让妈赶上享福。这难道不是一个成功人士对“失败者”的冷酷规训吗?最后,观众在愧疚、自责和遗憾中流下感动的泪水。可是,女性之不幸,原来终究是子女一代的错吗?社会变迁、家庭结构,隐没在母爱的伟大里,逃避了追问。我为这样地利用一个母亲而感到悲哀,因为她的不幸仍要在这个大地延续下去,在循环往复的过新年里被虚假地应付,实际上这不幸是永远过不去的。\n", + "完虐隔壁姓唐的好么?\n", + "被捧得很高的贺岁档 感觉剧情有点俗套 全片唯一的亮点大概是她妈也穿越了吧\n", + "30/100 俗套至极的剧作本就奠定了不佳的观感,而后大篇幅的自我感动更叫人尴尬得无地自容。也许贾玲真的把电影当作了小品,如乱炖的类型语气割裂了所有闪光点,却依然妄图用“真实事件”来掩盖除了俗套的情感升华什么也不会的事实,并且前者早已在矫揉的煽情桥段里被消弭得一干二净。在影院看纯粹浪费票钱。\n", + "你好李焕英或是春节档最佳\n", + "陈赫的戏份太恶心了,和贾玲一起躲雨,陈赫和贾玲肥胖身躯挤来挤去恶心死我了,尴尬到我脚趾母都扣起了。\n", + "提前看影评说会哭的稀里哗啦 所以看的时候我一直在憋着等最感人的时候再哭 结果憋着憋着就结束了……\n", + "真情动人\n", + "多一星给最后的反转\n", + "电影一旦入了真情 讨论技法之类的似乎就落了下乘 \n", + "好无聊好无聊,旁边的小朋友被无聊哭了,真的难看。不知道要讲什么,笑点还都很尬,贾玲演的这个人真的好奇怪,还一直愁眉苦脸的,她煎熬,我看她也煎熬。看在沈腾的份上两星吧,张小斐也还行\n", + "mv级别的电影\n", + "贾玲现在不仅健康快乐,还出息了,焕英阿姨你看到了吗\n", + "得知两个人一起穿越,很催泪,想要用手接住从天而降的女儿那个画面也是泪点\n", + "所有人都把它吹上了天,但这就是一部笑点低级强行煽情的小品式电影\n", + "带着口碑去的,有点强行感人的味道,评分高可能都是同行衬托得好\n", + "剧情感情不落俗套,但煽情手段太落俗套,为什么国内电影都是这种【外放】的形式来煽情升华啊!!在影院里一边心里吐槽一边忍不住跟着哭的心情真的好崩溃\n", + "题材很容易共鸣,不代表就拍的很好,就很中规中矩,甚至不如唐人街\n", + "建议以后的导演处女作学习一下,老老实实讲一个发自内心的故事。\n", + "太刻意了,结构方面甚至可以说还是个小品\n", + "这么说吧,带了很多纸巾,没用上。\n", + "千万别和你妈一起看这片,特别是知道你妈当年有的选并且选错了而且你现在不太行的情况下,看完我只敢聊去哪吃饭\n", + "如果没有最后二十分钟,这部电影也就是一般只能打五分的程度。贾晓玲吃着包子忽然意识到什么开始哭,然后前几十分钟铺垫的情感一泻千里,哭得我撕心裂肺。结构能让内容翻倍地表现出来。另外,女性视角的女性真的太美好了,不只是张小斐,中年妈妈和阿姨也很可爱\n", + "其实影片前面部分很一般,最多3星,但确实最后情真意切,加一星\n", + "从前有个女儿,为了让妈妈长脸,宁可让别人家的孩子代替自己的位置,结果呢,妈妈从一开始就知道她的小心思了,默默地陪她玩这个游戏。因为,妈妈只想要女儿健康快乐。\n", + "单纯对穿越梗感到反感与厌恶。\n", + "终于有一个女主角,或者说是妈妈形象不再是人忍气吞声,忍辱负重的了。就喜欢焕英的洒脱和大气。\n", + "诚然这部电影有很多不足之处,但它是唯一一部后劲大到让我看完还哭了俩小时的片,我中途还纳闷过为什么李焕英脾气那么好,晓玲把她的结婚证撕了她都不生气,后来揭晓原因时我已经泣不成声。对于电影,技巧只能加分,真情才最动人。\n", + "从片子本身来说,算不上优秀大作。许多人抹着眼泪给出了春节档高分,一方面是其他对手太不争气,另一方面,最重要的原因,大家把高分投给了全天下所有人的妈妈。\n", + "玲啊,真好,真好啊。\n", + "\n", + "妈妈飞扑过去接住女儿时喊出地那句:“我宝!”直接让我在电影院把眼泪流进了衬衣。\n", + "真诚的编导才能换取观众的真心,打动观众的故事才能称得上好故事。中国喜剧能拥有这样一群创作者实在是非常幸运。\n", + "大过年的,一家人看一部有笑声、有泪点的电影,出了电影院还能一起开心地聊聊,还有比这更适合过年的吗?\n", + "这是这几年看到的国产影片中,从头到尾让人感觉最舒服的,这应该和导演及编剧是以贾玲为中心的女性团体有关系,在脱离了男性凝视,在不用女性当工具人的电影中,女演员的魅力被无限放大,不知道男观众如何想,但是作为女观众完全感受到了,那种仿佛闪着光的被超放大的魅力,把李焕英不只是作为母亲,更多作为一个飒利的女性的角色呈现在观众面前。\n", + "过誉了真的。。。大概就是贾玲小品集锦+王牌对王牌煽情套路。\n", + "镜头像微电影的质量,几个穿越情节设计得毫无新意,甚至俗,立意容易打动观众,但没有任何艺术感。评分这么高票房这么高,说明中国观众的艺术审美落后。\n", + "女导演太棒了,喜剧并不是一定要黄段子!!前面合家欢喜剧尬点很少,后面猝不及防的高潮呜呜呜呜呜呜,世上只有妈妈好。\n", + "前面笑到人仰马翻,结尾哭到无法呼吸。贾玲对妈妈的爱在电影里淋漓尽致的展现,忽然觉得拍好一部电影或许真的不是那么难的事情。你看贾玲就做得挺好\n", + "谁不想去父母年轻的那个时候看看呢?!老生常谈的故事,司空见惯的段落,有些笑点,有些泪点,但大部分是挺无趣的。放在春节档里,倒是有挺好的宣传口(带着父母等等)来吸引观众入场。\n", + "当你以为自己和电影中的贾玲一样拥有一个全知视角时,可能正是你要被这部电影深深催泪的时刻。电影最后,当另一个我压根就没有预料到的视角被打开的那个瞬间,我的眼泪就止不住了,真的太感人了。\n", + "要说贾玲才华横溢那肯定是没有的,这部电影也确实像一个大型小品。但是以近年的喜剧片横向比较,至少这部基本没有那些低俗笑话。虽然离高级幽默还有距离,但足以为同行表率。在悲剧内核里嵌入喜剧是本片成功的重要前提,而这悲剧不仅在于对主角的同情而更多是共情,就再给影片增加了后劲。结尾显得长而直白的煽情是减分项,我想说导演不要太低估观众,最好的表达方式不一定要说出来,让悲剧在喜剧性之下涌动可能更好。\n", + "太过个人化了,贾玲哭了太多,纪念自己的母亲没问题,但是拍成电影给观众看,能不能考虑下观众的感受?一味宣泄导演的个人情感,拍成家庭录像自己纪念不是更好?\n", + "2.2 真的太无趣了,根本不配称之为电影,贾玲的导演成分只有小品式的搬弄翻版,表演只会大哭和傻笑,每当镜头从近景zoom in至脸部特写时,失效的脸部浮夸表情与镜头的运动衔接此刻极其地不匹配,还在拿舞台的思维进行电影表演呢, 而且这个镜头在全片还有滥用之嫌,一股狠不成熟的视听手段暴露显现,可见当下院线电影的导演门槛有多低。如此老套的穿越梗情节,黑白到彩色普普通通低级的设计真的不是大一编导学生想出来的吗,尤其那几段剪辑太差了,几乎每一段情节都是如此尴尬拖沓,况且连处于时空错位之下都不会有效设计笑点,《乘风破浪》处理得都比这好。非要说真诚,全片唯一真诚的时刻只在片尾对于电影之外真实人物的致敬。\n", + "女性主义的电影,描绘的每一个女性角色都很可爱,我喜欢王琴阿姨,看到电影最后她是靠自己的努力工作抓住机遇才得到后面富裕的生活,就很庆幸贾玲没有让这个角色流于俗套。整部电影最巧妙的地方就是在于最后一部分——双穿越。确实催人泪下。但是父母真的对孩子没有要求吗?我想并非天下父母都是如此。但是真挚的感情可以打动人。\n", + "没有想象中的好看,中规中矩,评分虚高。\n", + "额… 电影不差 ,但也没有那么好吧… 8.1过誉了 ,6.8分差不多了\n", + "前面100分钟笑点密集,笑得人仰马翻,后面从贾玲奔跑那里没忍住看哭了,全片没有拉垮的演员,满分好评。\n", + "既没让我笑也没让我哭,每个“爆笑”段落都尬出天际,最后又来一个大型煽情。片尾曲第二首是啥玩意?第一次遇到这么赶客的片尾曲。还有那段女儿撮合妈妈相亲的戏,跟这个年代催婚的母亲们有啥区别,约等于把“时代倒退”几个字打在了大银幕上。唯一让我共情的点在于即使是有李焕英这么好的妈妈,做女儿的也一直一直在努力想让妈妈高兴。这说明大多数母亲都让孩子感到亏欠,而孩子却在无条件地爱她们——宁愿不出生,也希望妈妈能过得更幸福。\n", + "真的很好哭。\n", + "脱离了男性凝视,镜头聚焦的胸和屁股。我只记得李焕英的每一个漂亮裙摆,被风吹起来露出一截细长的小腿,原来每一个妈妈都曾是美丽的少女。\n", + "“观众已经笑得不行了”\n", + "结尾给整部电影涨了分,前半部分的笑料设计其实很一般,处于也可笑但又确实又有点勉强的线上。\n", + "就这?就这?8.3分?我居然花了60块在大年初三去看了这么一部电影??大家对中国电影要求这么低了吗?我承认有些许的小亮点,题材也不错,所以在我心里它可以打到及格线6分,但是这完全没有到优秀吧?剧情老套,转折生硬,最后一大段贾玲的哭戏哭了我一地尴尬的鸡皮疙瘩…哪怕换个有演技些的演员我都能再多打一星,一整部电影就像是强行煽情的哄闹小品,居然能上大银幕还有8分的高分?我服\n", + "“人在委屈的时候就会想妈妈”\n", + "故事说不上新颖,可是母亲这个点总是能打动人,希望每个做母亲的女生记得对自己好点,不要牺牲不要伟大,让自己开心快乐很重要。\n", + "3.5,之前从来没觉得乔杉和贾玲长得这么像。\n", + "前面这些天听够了大家的笑死哭死等夸张评论,眼瞅着春节档这唯一的8分电影满怀期待,看完后内心一片狐疑“就这???”不管是造梦还是穿越都特别偷懒,甚至编剧都没想怎么去说服观众,只想我逗你们笑让你们哭就行了,然而这电影既不好笑也不好哭。一切都特别矫揉造作,甚至还不如当初的小品好笑,也不如贾玲在综艺节目里回忆自己妈妈煽情。沈腾的出现就好像贾玲需要一个拉票房的演员,然后靠友情求过来硬塞进来。你以为这就够工具人了?那么陈赫的出现让你无比困惑,他存在的意义是什么?\n", + "哭瞎了,啊,女孩子真好啊,又甜又暖\n", + "好真诚 诚恳得不像一部电影 像是一首散文诗 \n", + "在贾玲说出对啊,我妈怎么会缝的那一瞬间整个电影在这里开始反转,从这里开始显得不一样,我爱这一瞬间!!!!\n", + "有一个影评人说过,其实好作品没有什么标准,只要她打动了你,就是好作品。张小斐那句“我宝”出来我都哭抽抽了,无论在哪里,妈妈的本能就是保护孩子。BTW我真的无法正视沈腾了,他不说话站在那我就很想笑\n", + "“打我有记忆起妈妈就是个中年妇女的模样,所以我总忘记妈妈曾经也是个花季少女。” \n", + "熟练地搞笑,稚嫩地煽情\n", + "想让隔壁唐探3编剧瞧瞧 \n", + "什 么 T M D 叫 反 转\n", + "贾玲最后干吼的那一段太尬 ,有时候悲伤真的不是靠哭来让别人有共鸣\n", + "让这部电影挂在中国影视的前列,告诉所有电影人,电影是抒发自己情感引起全国共鸣的好办法,质朴的手法、真挚的感情就能获得观众的理解。\n", + "戴口罩看这种电影太反人类了,哭得口罩都湿了,糊在脸上好难受\n", + "诚意之作,希望往后能多一些这样的电影,少一些圈钱工业垃圾,没错,说的就是陈思诚。\n", + "最美好的一幕是贾玲在山坡下,看着她爸骑车奔向她妈。我就想着,我也愿意去我妈的年轻世界里走一走。\n", + "好好笑啊!\n", + "而且没有令人不适的颜色笑话,女性视角就很棒👍🏻\n", + "虽然有点煽情但是不妨碍好笑\n", + "这破烂电影能成为中国电影史票房第二,是中国电影人,乃至世界电影人的耻辱。煽情、刻意、莫名其妙,什么感动,老子只想笑。\n", + "看电影最厌恶的就是电影里的人强行煽情哭了但是看的人很尴尬。喜剧部分也做得不怎么样,沈腾说是男一的戏份但是存在感比陈赫还弱,更看得人难受了。\n", + "这片子好时机,能这么高分,只能说明人民群众的情感匮乏到什么程度了\n", + "上映前评价不好,我就觉得就当爆米花搞笑剧图一乐吧。看到一半觉得这绝对算搞笑剧里的一流作品。看到最后,我错了我全错了,这一流喜剧啊,好笑但又戳泪点,而且这泪点真的不是一哭即完。还有片尾那些话让我回顾起剧情更难受了,说贾玲靠妈赚钱的能消停会儿不?\n", + "李焕英阿姨 您女儿可太棒了 她真的好爱您 也真的很遗憾妹让您坐上敞篷车 看着她现在事业有成 我也好爱我的妈妈 希望您保佑所有妈妈都健康平安 长命百岁\n", + "没有想到这么好。一开始笑死,后来又哭死。结尾尤为动人。\n", + "不太是电影的视听语言,像是抻长了的好几个小品,但沈腾贡献了很好笑的表演,以及妈妈对女儿的爱永远比女儿对妈妈的爱更多这个题眼还是很动人的,是强烈的抱憾的女儿视角。在穿越回去的那场母女对谈中,双方都心知肚明,但都打着哑谜。女儿希望母亲幸福,即便这样的幸福图景中没有自己。母亲希望女儿健康,即便时光倒流也从未对当时的选择感到后悔,从未想过没有这个女儿的人生何以可能。希望这样题材的电影越来越多。母女之间的共情和联结,是一个眼神,些许沉默,无数眼泪和一声叹息。\n", + "1.道路千万条,安全第一条,各位上路一定要看路啊!2.感觉像是夏洛特烦恼的翻版,夏洛特毕竟第一次,还有点经验,这个,,,毕竟这年头穿越剧好多好多3.母爱太过沉重,看不下去,反正母爱伟大完事4.作为男的,看这片怎么老想着名词“丧偶式育儿”。。。\n", + "电影的所有呈现,打四分其实就可以了,但是多出来一星要给到女导演视角下的女性主题,完全没有让人有任何不适(拉踩隔壁某探3)。没有刻意制造的笑点更没有刻意制造的哭点,一切都是很自然的发生了然后触动观众,这很难得。好喜欢贾玲,有谁会不喜欢贾玲呢。\n", + "得比唐3低两分\n", + "就这破电影,一堆人哭的稀里哗啦,还觉得自己倍有欣赏能力,还觉得自己共情。打个三分不吹不黑,但硬要把他推上45分我就不敢苟同了。\n", + "摊手。打个两星凭着我的权重把分拉下来。\n", + "\n", + "我又回来了,改一星了。什么鬼剧情什么烂演技,这玩意有脸刷8分?????恰烂钱???\n", + "\n", + "来杠我!三无小号尽管来杠!\n", + "\n", + "\n", + "……3月16日更新\n", + "听说这玩意还能出口国外,真把自己当啥了\n", + "“可是我妈现在还不会”这句话出现后的转折是我怎么也没想到的 一贯的思路都以为只有晓玲自己穿越回去希望能让年轻的妈妈更加高兴 谁可知母女两人一起穿越回去了 这是这部电影最大的转折 也是全片泪点开始 让老套的穿越剧更加新颖 挺中规中矩的一部片却也很特别 母爱一个讲到烂的题材 可是这部电影还是刷新了大家的印象 妈妈怎么会不爱自己的孩子呢 \n", + "生女儿的妈看不了的电影\n", + "眼泪哗哗的\n", + "但是还是推荐阖家观看\n", + "贾玲说了这片“我把心都掏给你们看了……”\n", + "任何时候真心都是最打动人的。\n", + "有的人见妈妈坐飞机,有的人见妈妈要坐时光机。\n", + "其实如果从电影的角度来说,五星是肯定不到的,四星顶多吧。但从整部电影的情感来说的话,真的太真挚了。我相信贾玲一定是把那个充满了遗憾的自己刀剐了千百遍,抚慰了千万遍,把见母亲最后一面的一幕想象了无数遍,才能产出如此真诚的一部电影\n", + "\n", + "当然,导演水平挺普通的,艺术性也基本没有,但真的就胜在了真诚,嗯。\n", + "\n", + "确实很好哭,也挺好笑的(但有些笑点还是比较冗杂)\n", + "这应该是贾玲作为一个女儿最极致的浪漫了。千千万万走到电影院的人,去了解李焕英、纪念李焕英的同时,想起总是被我们忽略的母亲。\n", + "\"我宝\"那一句真的泪奔了,五星好评,前面笑点不尬,后面反转真的流泪了…\n", + "缺点:1、诉求和故事主线不统一不连贯,主角不够聚焦,故事成了拼盘一会儿是张小斐的戏一会又成了沈腾的戏(在这点上同类型的影片《夏洛特烦恼》就要比这部强,主角欲望强烈,诉求明确,主题突出,当然夏也有很多问题);2、情绪缺乏克制,没有留白,这是无法成为经典影片的最大障碍。优点:1、女性导演女性视角,难能可贵(当然并没有突破男性视角);2、结尾处理很好,催泪全在这段,准确说是104分钟到110分钟;3、笑点设置比原版小品好,尤其沈腾在舞台上演出那段设置特别巧妙,打破了荧幕,直接和影院观众互动那种。影响:好的影响是未来大概会出现一批女艺人来做导演拍自身故事,这部片子8.3的评分说明我们影视欣赏水平稳步降低,良好的市场表现会引发大量模仿,咱国影视质量又将大幅下降。\n", + "大型欢乐喜剧人小品一则,胜在感情真挚。张小斐可以的。我和我妈全程无表情看完,无情母女。\n", + "这分数真是绝了,太虚高了。没啥笑点也没啥哭点,唯一感觉演员演的都不错,尤其是张小斐。全国人民给贾玲的情怀买单……还把全国人民都感动了……好无语……\n", + "不至于不至于,逻辑都没有,从电影层面来说问题太多\n", + "6 看简介以为是女性版《乘风破浪》,其实是80年代版《夏洛特烦恼》。细节工夫到位,OST有流行音乐,也有真正属于那代人的《年轻的朋友来相会》!情绪处理得挺好,也善于营造气氛,很让人感动。尤其处于疫情背景之下,“亲情”与“告别”很能令人共情,更何况是“妈妈曾经是少女”引发的女性意识呢?到了最后20分钟左右,很多人都在抹眼泪😢 影片不乏许多问题(尤其是剧作结构),但作为贺岁片,绝对及格了。PS:场下UCLA毕业生一脸辛酸笑。\n", + "张小斐喊出哪句“我宝”的时候\n", + "宛如某晚小品,前面不管咋地最后反正都必须给你一个煽情。感觉前面拍那么多有的没的都是为了那个煽情结尾,可是你起码也把前面故事编圆了好吧?真要图个感动就拍最后十分钟足够了\n", + "贺岁档基本都看过了,怎么说呢,这部片子的口碑真得感谢同行,不差,但也没有特别好。\n", + "从另一个方面来说,真正用心用感情去拍一部电影,真的是可以弥补专业水平的不足,甚至可以打动观众的。相比之下《唐人街探案3》就输在这里,陈导很傲慢,砸钱就完了;贾导很真诚,只想记录一段平凡的母爱和想念,人民群众真正喜闻乐见的是什么,答案已经有了。电影不过是影人和观众的交流,真诚的情感可能不会被所有人接受,但空洞的生意不会被任何人共情。\n", + "我也曾想过,如果母亲不用为我牺牲,会不会成为更伟大的人;或许会吧,但她就不会成为一个伟大的母亲了,我又何必帮她做出选择,我能选择的只有如何回报她\n", + "\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import jieba\n", + "import wordcloud\n", + "# 读取文本\n", + "with open(\"lhy_comments.txt\",encoding=\"utf-8\") as f:\n", + " s = f.read()\n", + "print(s)\n", + "ls = jieba.lcut(s) # 生成分词列表\n", + "text = ' '.join(ls) # 连接成字符串\n", + "\n", + "\n", + "stopwords = [\"的\",\"是\",\"了\"] # 去掉不需要显示的词\n", + "\n", + "wc = wordcloud.WordCloud(font_path=\"/Library/Fonts/Songti.ttc\",\n", + " width = 1000,\n", + " height = 700,\n", + " background_color='white',\n", + " max_words=100,stopwords=s)\n", + "# msyh.ttc电脑本地字体,写可以写成绝对路径\n", + "wc.generate(text) # 加载词云文本\n", + "wc.to_file(\"李焕英1.png\") # 保存词云文件" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVMAAADnCAYAAACjZ7WjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9dbxk6XXei3/fjbWLq86pw9zMPMyo0Yw0IkuyBQbJssyx4+vrOGiHbuLYcewkdsyWrIgZPBoNa7B7ZpqZuw9jneKN7/2j6mDV6dMtKb6/XzLPfPRRn9r4blh7vWs961lCSslbeAtv4S28hR8Oyv/XJ/AW3sJbeAv/O+AtY/oW3sJbeAs/ArxlTN/CW3gLb+FHgLeM6Vt4C2/hLfwI8JYxfQtv4S28hR8BtFWW16X6pZR4MsALAgIpkUhCqo6mvGWX/6EwWTkLCCwtiS4sNCWEQEEI8b/smG5QoeCOYmkpTCWGEI3v9zw7RICg8fksX6fiz5K1rxDWmjHUCLoIoQj9f+l4pAwoeGNIKYnoGRS0/6XH+98VnncZhImqtCBlHs8fRlN7ECK85HpKKZEyDwQoSnL+GfhRXnMpJbbvoQiBrqjXte8f4DxWXHE1Y7oEvgwoey7fvnqcnGMjBFiqzl1ta+mOJm9kV//bwgscpuyLKEIjYbSjC2vJjQpkwGDpIDl3jJbQejLmmht6oKQMeHPq04xXTmKpSZJGD2lzgJTZR8roxdLS6CK0orH7QRBIj9Oz3+HYzFdImb1sSDxCh7UTXYnUvTC2P8mMfZiqmVSJGQOEtW4CaZNzziIJcIMsXlAmY92GrsSYrJzh2ZF/j66EiRsdpIw+0mY/KaOPmN6OoUZ+5MYu61zl+2N/gBMUWBO7lzWxe4nqbShC/ZEdYzVIGVByzyOli6X3oogwEMAqH8ZAOgTSRhUWQtzQK7wqgkAyPjZLNGoSjVmrnL/DbO73UdVWTPNWPO88lcrTxKKfRBJgGrtRlOTcnimWPo/vjxGL/RKO8ya6th5V7UQIQRBIQCIDSeBLNKNqDBcbO9/z8f0A3Wj8LFR8j7899QZZu8KmVAsb0xnawzEimoEixPw2Zc/hQmGCgWiGodIMEuiLNqEKlaMzgySNMKoQ5D0bJ/DYmuxEvY736Zp3wgsCLuQnmbZLAMw6FVqsKFmnzFSlSN61uaNtgIQRWvVA1wspfaS0EcL4kT8oKx9TAj5VR/yHe2kVoZB1h3lj6nN0R3ZzU9OHMdXIwrEIOJv/PieyT3Bv26+SMdfc0P49aVP0xuf/N2mfgbzAUCJYWoqW0Ea2JN9Nq7Vl0dioja06rhsd32TlLEdmvkDeHWHWvcpo+Sh90TvYnHwnaXMNqtDnj5F3LzBeehlTTaMpYaR0q8YUj7x7nrI7ii/LqMKkKbQbiFH0Jin5U+BPMete5WrxNVRhEFITxPVOBmL3sCHxCLoILRrT3LjENb3ghtcwsDk88zlGyocByYxzmcuFl9mcfJze6K0YSuwfxEv1giyXs39M3jlOMnQTzeGHCKSLF2SJ6Oux9N66d0DKgKny00wWv0vKup20dQ8hreOHfleCIAAEU5N5Pv0Xz/PO9+5jw+ZrG1PPu4TvDyFlgUAWcN1TKEqcUvnrKEorqtqGLhJUPxCSIMjiuMepVJ7D804jUFHVdkBl+MI40+OzWNEQI5cmuOOx3QgBhdkSF08MIaVk9PIkxVyZRz5yJ1bErDufkVKeL5w7yoXcNJam0xwKsyGZ4bb2Xt7Ws572cAyAq6VpvjV4mFuaB3hz+gpFz2ZLsoMH27fyhcv72Z3uI6qbXCxMMuuU2BBvQ1V/SGOqCEgZYUy1ulqrFSOqm7w6fgldUbE0naLnMFjMsklvJQimEUJHiDBwfW72YkhZoVj+LsXyE4TMm4hYb0dVMqtMKasPQfVYN/4CVKcfRQqlr+IHk4RDD2LoG/hBjaoiNDqtbRwWX+Vi4VW2JR/DUMJIgoV1UAjwSOjtSKrhEuU6r5cblHGD8vJR4AQFXKeMoUQoedNLlpb8Ka4UXkEIBQWdG8XFwvPk3dH5vyv+LKdmv8No+Qibk+9mXfxBTKX6oNr+JKowKXuj6EqUsNZV3cYbp+hcouBeQuKjKTGK7hUMtZnysvMF8KVD0ZsgkD45d4hAukDNmOJztbifojeJJgxuNPRf8qe4mH+BOYMcSJexynFmxi8xWHqD7akfI20O/C/1UqUMmKm8wkzlFbxglrHCCAXnFELoFOyj6GqakNaJpiSXfCgkPkXnHLY/zHT5JUaNr9IZ/ygtkUdRhFHbt0TiIVCZezcWflMQDcZ14uggly9OYFc8Lp4f57WXzzJ4ZapuPSGgvTPNhs2tuO4J4vFfo1T+Fprai6b2Ai6O8waJ+G+jqhmk9HGcA/jBJH4wjqIkECioag+GedP8uQxdHOfs4csMbO7iwrGr9G3sINUSxzB1Mh0phs6PkZ3M09bTTOAHSCmXzfgkhydHGC7mACh7LlcLswwWZrlSyLI+2UxbOEYgAw7PXGXGKTFYyhLWDOzAJROKoyoKgZSENYNzuTHGK3ke7dqOoVzfc7CKMVXIWNElvwVSIoCmUISC65A2wsSNEBCQK36Kiv0qIfM2QubNGPoGFBFntWkLgJQexfKTTGX/JX4wRrH8HUrl75CM/TIh8xagUQxNUrZfwvdHMPQt6FofQljXdbwFeORLX2B69t8iZZl88bPEIh8gFv5g7asprntfgfSQUmKqETYkHmDWGaLoTRHW0lwpvk7JmyYTWkfFzwOQc0eYmrlIyZ9hS+IR4nrbqsdygxJOUGy4LBPayN1tv0HK6Fv4UYAqdM7mnmKkfPiGPLilWB4+l2Sdq+yf+DOmKmfZl/k4lpogkC6KMEmYVSOqK3EgIKx10h1/Nxeyn8YNZjHVNHFzIyApNjCm1W0t9jb/FOvjD6Mpiz0RQdGb5OXxPyaQ3g84mvrKPycocjb3JNP2efY1f5zuyE0NDaqUARIfgYYQy43X9TzrEtsfYyT/BbxgFkVYtEQepSP2ISaK3yZvH8LxJwjr6+hO/CyKWOqFTZee4ersXxJgU3LPY3ujLL4/EpdLuS+iK1Eiei8CgS9txksvkTS30Ba5v25cLzxzkm9/9Y2acwEXz42zfBgSkIGkbyDD7/zHd9OU2Q0IQsbtlMpfI5BFNK0XXd+KlM68s1NxXiXwJ4lGfgqkxPVOUyx9jrD1CIiq9yuA0ctThKMhykWbV797hI17+rGiITzH48VvHaR3Ywee43HiwHl237MZVV04waLr8PTgOSr+0uehIxLn39/yNnY2t6PUHK6MGaPdStBmxTmftym4NhfyE+xK96ApKgnd4vDMINtTXUzZRbwgwPhhPdNGEMAH1+zBVDRyboVMKIpS+/IFQYGy/QJl+wUUkUDX1xEO3Us4dD+6vhGB0fBBk1LiuCfI5v8QPxir/epQtl/Edk8Qj/4UicjPoCjpZdsLbOdNZnL/CVVpRtfXYJl3Ypm3oesbUUTVW1rp4ZZSYjsHmc3/CVJWQxmef5WZ3H+mVH6KROwXCIfuB6zrMqjTzlXO5p4HJJ50uFo6xNn88+xIvZuyn+XwzNfZlXovrqx6liU/y3jlDJeLr1P0prg987OEteQ1j+GsaEwFneFdJI3eJZ68QBBSE+xp+kkuFb5PwuhCFfVTpGuh7M9wdOaLVPzZumWerHCh8AJdkb2sid2PqaYpcBHbm0AInYoyPu+VF93LRI0+8s55JAFld4SI0UfRm2h43IjWQnfkJjRlaRhJESprYveSd0cwlAghNcGNzkrO5Z5iuHywwRLJlH2eM7knaLO2YarRujVKznEmCv+TdOQdxMyb8IIcw7P/GVWJ0RL7KQy15ZrHljiM5r/IrP0GupKmK/EzdMR+HEVYTJWemV8vZm4nYe6pm5mVnDNVF1GCJqI0h+9fYnAlMFF6CYRCW/heFKHhBUXGSi/gBUXaI/fXndNj797D3fdvBqqGNGTptHem8P0ARak6FK7j8bUvHuDY4Svkcw6ppln8YApFiRPIWRSliYj1HvxgnHz+j4lGP46m9daO4IN0q+cnKwgRQoiF+xoEEsPUCEVMctNFbn5wGxt39zM2OIVvaASBxLQM1mzvIRK3lhh6KSUnZ8bZP3Z1yZgyoQhR3cCXQc2QVt+HAElCtyh4NiXPRgJZp0TZcxAITudGybllLNXAlz45t0yTEl3VBty4MRWCpFH9mliavuR3Ral6hRAQyFls53Vs53VmC39ByNhDNPx+LPMOFCW51EUPpsjm/yuOe6rueEEwTTb3X7DtA6QS/wRT3zH/cAkhap6oxA/G8O0xKvbLZEUUQ1+HZd5H2HoAQ9tQu3lLL4YfTJDN/zGeP7jsqD62e4iJmV8jaj1OIvbz6NrAqkmdJqOXVPOHkTJgsHSIk7PfI6KlaQ2t53LxDQSCVms9blA13K2hDQBsSjxEsznQ8MVdDCkljl9oMM2venHXmpp2RnbRGdkFiHmv7Hq91Cn7PMdmvlz3u0ChJbSJTcl30BO5FYCUuYO4sQFFaCjCJJAOZTtAUXwSxkZi+gCd0bfj+jkMNYWUPiWvfjoJkDb6MJV4w2WmGuXmzCeYM6I3Oqbh0psNf7fUNOviD7Ax8SiGEmm4Tq7yfbKVZ4mFbgHA8yfJlp9FVzMkQvegK5lrfMB9JopPMlL4PBF9LZ2xj6AqUQJpo4hrxyhvFAIFgUL1GikIQAiVQHqoy56Tnr7mRecoCUdM8rNlvvy519i5p493vHcviiKYGM9z9/2b6e5rRogSqpoh8CcJ/GkUEcN23sQ0byEc+QCKkgBAVVoQmIBCIIuoSjOmcQvz905KXNvlnvfsY/3OXobOjaEbGkZIp2tNK5WSg6aptHSl6dvYUTfOiu/x7cunmCgvOBmmqvGPd93JwYlh/tOh7/P7t7+drkgCX0oKrk1UD2GqOkXfQQBhzWDWLfO+3j1sTXZyoTCBRHIuP0FvpJkm89rvJvwAxvTaqF4wFsUHAYJghlLlKUqV5zGNbRj6JmDhZvr+COXK92nAxJpbg7L9fdypK6QT/5SI9TZELemhiFBtXwvHlLKA7RzEdg6SK/wlprmbqPU4utbHwssXUK48TanywoqjkbJIvvRZbOcQqfg/Jmw9gKjFpRpBCAUVhTdnvsix7HcwlDBd4Z0E+DXvTCxK1lRfrPWxe4nrLSDEdRmCqhdXf51MJUrK6K3fYOHs5v+Vd0Z5c/pThJQ4CaOLuNFFRGvCUtMYyzL0AF5QaWjADSXC3uafoTO8B4BTVyc4MzTByFSO9qY492wfwA9CfPWlw+xc00EsbNLZ1IKpG5hqGoCSN7Vi2CJtrlk2vW88HoBDU/+TvDtC3OgkoXcT01uxtBSWmkRpkMQp+9mGe+2L3s6+5o+jisazKC/IU3DepCX6YbxglpJzkqJzEEWEaI39FDPlJ9DUJCFtXd32UvpMl19gMPdXZMKP0Bn/KAXnJGen/iVhvZ+uxMeRuPPrO94oOftNlseEy95lkEvfsflt/BxlbxhDTWEocx67RKAQNdZQ8cY5OvlvWJv6OFG9/nlxXQ8ZSPK5Ms89dZxK2alN/asxyi3bu0k3RzFNDViHlAFF53MoajPR6McpFj8PgBW6HyEsfH8SRUmiqV243jkEBn4wjKq2UCx9gUj4gzgVSUd/C13rWhEIOte0Ek8vGC+77GCGDTKd6brzlVJyaHKYJ66cmX8rVCF4V/9mHu/fTMaK8EsvfIN/c+AZ/vm+++mMxLm7dT0hVccOPPame/GlxJcBKSOMoWooQuHja+9ipJxFUxQ6w6mG13o5fiBjuhI3qxpMvpZBcLGdN7Gd5dOr61Ou8vzLTM3+KxQljGXeW/MUVQTKinsIZJZy5RnKlecbnFvAcsNfD4njnWAy+9skgwnikR+/pkH1pctE5TxFb4otybczWDzIYOkgmgghCcg6QxRqntjF4mtMTX+O/uitbEo8REiNrWpQFyeCFiOqtxHWmlYZSxVOUORS/vvYQQGBQBEaITVJXG+nJ3ormxPvxFjEQCj7WQL8uv2owiCsVUMvnh+QLZZpTUZ548wgj9y0Ecs0eP3MVU4PTpArV+htSdHXsvTBrPg53AbGVBMWKbO3Foe8NqSUjFdOcqnwIqL2n65EiOgZMuZ6tqTeRSa0cX59T9o4tdnBclhaGnUFjmsgHaZL30JTmtDVDEPZ3ydh3Y0XzJCJfpCkdR8V9xwXp36L9vgniIduR60l5qT0mam8wnT5efqSv0IydAsSj8nS93CDaWbtaUqTFzHUzPzxcvZBvKA+tFLxRghoHCuW0mHGPkLOOUtX9DGGi08Q0bpJhrbRFNpL3jlLzFiL0uDVLxVtvvg/XwEJW3f28P4P30ZTJkZ2psjTTxxFBpK7H9yCaWq1sN4UtvMqnneBZPyfoeubEWjM5n4P236JePzXKRY/i6q2YRg7KVf+nljk49jOq1jWo+Tzf4RlPYYRSjKwtWv+PN72odsRygLzJNEU5eP/8j0oDeKWOcfm82ePMF4qVNcHbm3r5Vd33E5I1djZ3MHGZIanBs9hBz7/16672JRqQRECU9VZKR/bG22iN3p979McVjWmZcdlKles8sBqD9ilsWmGp3I8sncj8bC56MFbzZjW1lLbUERi2a8erncZFn2ZG8H3Ryjbr2CZdwDmdRjw+aM2nKZL6cEKD+aS4wZjzOb/O6a+lZC5p+E6XuBwNv88I+XjBDJg2r7MQPR2OsPbOZt/ngn7HKPlk7Rbm1gbu5Oh0mEGS4cp+zm6wjsJqbFVzyPvNTamabMfXbm+aWIgvdq0uFp0Uc2cj2P7sxhKlHWxB5YaU28GGkg1Gmps/phSSi6NTlOsOLi+z2snr/DA7nWMZwv0tCRpjkdwXB9dW2ocbT/X0LCF1DgJvfv6iNdIpPTnxyMBO8hh23n8wKYzsneJMa0yIuqPqQgdS02y0vMUBEUmC18EPPL2fsLGZjS1CSFCRM29FOw3Kbvn8IJJrsz8W3rTv0PSuhcQBNJBEzF6k7+MrqQAQbbyCtnKKwAIdBKhfSjCpOieBqAp/CB9yV9iuWc6Vvgq52f+PYGs1J2joTYR0XqR0iWidzFeDlAUs5Y085gov0LMWIeltddte/zIVb71lTdwHI/9r5xj284e+gYyPPe945w7M0p3bzO79vUTiZhIKan4OXzRTyR6DxKTomcTKJtIJH8PIYto2gCR8PtQ1S6EMFGjLej6RnR9K+CRiP/fKKKehibU5U6aQNXqP6p+EPDdq2d4Zuj8PPFvS7qV39x1N+3h6n7TpsW7B7ZwYmaMF4YuMl4q8LNbbuKBrrVE9cazjx8UqxpT2/W4OjHLpfEZ1nY0gYTnjpzn+8cvsr6zmV1rOhcGjYJAXMPP1AiZ+0jFfxNDW7tkieePMTb1M3j+lRW3FiJGyNxHxHqUhU+KOh+MbwyDkLmPaPjdNWbBYkhKlWcolD6/4jEXHb1K61ghriWlZLh8FCEUWkLruFx8vTZlVghr1Q+HroRJm72owmB9/F6Gy8dQ0NiafJQms3dVr1QiKbhjdb8raKSMvutOLHmyvISqNYdWayt3tP5qnYdb9mcaZr8tNTF/TCEElqkTDhlki2Xa0jGkhP62NOPZArbrETaXenzVF3K2oWGL6i1E9Oa63xshkC6+dOp+N5QoN2V+lt7IbUt+d4MyXoOwhSoMLDW14gumKgna45/E8UeZLT9POvIoqogACn6QI5A2Ces+UuG348s8MfOm+W0VESJmbp+/Vl6QZ6zwNRx/shoiiLyTnsTPM1r4yvw2QmgoDQowFLEyvW3u3AN8bH+GQNoYShIEzFZOEdJaaQnfRqMPRu9Ahnse2EJ7Z5LhwRlefuE0T377MEIIHn/fXu5+YAstbQmklLw+c4RTufO4gUMmNALArJsjpJhsiK1la2ILQghM8+aF66c2186xev6GsXPFcawGKSWnsxP8zck3qgVEwIZkht/eey9bm1rnr4MQgkd61/PElTO8MnqZEzPj/M7+p3hh+CLvX7udHc3thLUbpws2wqrGNBEOsWOgnal8kc3drZi6yhe+f5jtfe1s7L521rLuYGoHzcl/h66tr3tApHS5Nl9QkIh9gnjko6hK86Ltr22ADH0dmdQfoKmddfw6KX18f4zCKuetKCnCofuJRz6Coa9fcb220CZUxWCkdAxVGGTMAY7PPkHJm6bgTRLR0iT0Do7NfofmUD/DpaM0mX0MRG9pOO1aDjcoNsyoG2qEpNFTe0ltKn4OU43Wykzrr48TFBeR+RcQ1VoIa81196bszTQ0vpaaRJs3prBjoAPXr4YDKo6HENCdSZKOhbFdD1VZFkMkoOCNN9x32lxTDY3IoDZmQUiNN5xd+NLFk3bd77pikjR6UZWlYZnGXF3QhIF1DTaFEAJT62am/Pekwg8TMbbiBTkUYWGoVU+v5BzB9oZJhd+GqkSXbDs/bhkwU36J6fILCDRaI4/Tl/wVNHVpCMQP8lS8oboxu0GWOe9BEiz50Ll+jqxzHD+oUPKG8IIyviyjK1GmKvvJWFVDWq2gWsqSaG6OsXFLJ7fcsY6Tx4bQdZXu3mbOnh7hyqVJCvnK/DhUoTLtVD+ybaKFsm/jBT4jzjiKUFgb68NSf3TFPMsxVSnxZ8f3czo7iQA2pVr4zd130xtN8uroFZpCYWKGSVQ3SJthfm7LTVzOzzBUzJF1Knz94gleHb3C3Z39PNy9nu3N7aRMaz7r/4Ng1TdYCIGhVakJ+89cpas5wfmRKX718TuxjBurnxZCRxGJH7DUUWDqm9FWoZ3UHzNcI/7/4ATsiPUI6fhvN6BmLT6OwFDDS35LmV3sSL2LkBpjZPo4GXOAjvBWjmS/wbOjf0zBm+COlp8jqq2c/V2Mij+LXeOoLoalJkkYnfjS42zue5zIfoNMaD1r4/eTCW2sm/7bfqHOgAkULC1dy/4uQEpJ2Z+hkesf0pLzhkpVFPrbqgmC9Z2ZJeulY+G6baFqCPLuSN3vAoWmWmVV1rnCqxN/SiA9BmJ30x25hYjWtOQZ8qWNFzSY8ioxdGXpsaWUeEF5np62GHOe6bUwUfg8ucorIAWKMCk5JyjYr9MS+zCqiJItP8NM+QlUJUpT5J0NR132LjOU+xRuMI1Axw1m8GUZjaXHni6/QMW7QiA9AllGVaoxddsbrRUxVPe3+N64QZ6p8ms0WXuI6D2YagqBhi9tOqNvZ6r8Jiemfp+N6V8lZvQvv/BIJBPjVeL7+z9yO4lkmLvLWzh++Aqvv3aeeCJMW3eCSXsagUBTNCbtaXrCneTdAoZiEFZXDzcFUjJVKWKqGjHdvCE7UnAd/ubUGzx59SwSyZ5MJ7+x6y72tXTxvcGz/NNXn0QTCulQmN5Ykjvb+3hH/yY+seUm/vDwS8zYZQIpqxVTZ4/y5JWzbG1q45bWbva1dNMXTxHTTUz1xgqPrisBpSqCDV0t/PkTr6FrCms7mtm3rusfpOTu/xegiBjKdfDMlsNQIuxI3cZg6QgBAWtjdxNWU7SG1nNo5qtEtCbSRk9t7YVyTy+wcYJirVplwWjk3VHsoN6YRvVWpISpylmOZb/CtH2eKfsMV4qv0hu9nY2JR0iba+br2yt+ts6YKkIjrDXVjTHAa2jABQqWmlrmUUv8wMWX3rwBr1bfBNhBHimD2niqx/ADm6xztW7fuhLGUlOU/RlOzX6bweIBAjzGysc4Zz3DxsQjdEduxlTi8954o7irpaVqFVJLYQf5hmR/Q42sSIeCatg4ad2Lpa8lbGxGCJOSc5JAVogYuzHUVmx/lOnStzAaxCQBXH+Wwdxfk7MP166YW/Nu688zbd1FV/ynKbkXmSh+m+7Ez6IKi6nys1yZ/TP8oERT+L4lSauQ1sr25n9RfWYxCQITUw2TDG2iPXw/+fA57GCaiN5ZdzwpoakpRjwRpqMrjWFU720kYrL3lrX09GWYnMjR2hGnJ9xJTIsS0SymnSwxreqFm4pOayiDskpV2qXcDP/qwFOkTYuf2bSXzenW6xJLKnsunz97mL87fRBfBjzYtZZf3n4bm9OtKEIQyGrZuxcEjJULnM1Osi7RjKFovG/NNiqex5+d2M9Upfq8BEim7TIvDF/k5ZHLpEyLvniKzelWbmnt5q6OfiL6ygnnxbguYyqEoKclSSpq8c3XTvDL77wdRRF1JV1voYoFP0HgBhUuF/czEL2VltA6zuafY6h0jJTRzawzzHNjf8zW5Nvpi9xEVG9BFRolb4pXJv4btp9DFQZzxsf2cw2np9P2RV4Y+z0qfo6sfal2DpKiN8HJ7DcYLB5gc/Jx1scfJqQmqPiztYTNAhShEWnABvCCSkPqkiI0LG0hvuhLj4I7QcGbYNK+SEtoHZowaTb7kQScyn6bS4WX0BRjPkMv8ZmonKnbty8dDk9/FlUYTDsX5jPXriwzXHqTycppuiM3sy31Y2RCG/BkpWHc1VKTteu3FMvLbRfWT9WFBBbDDSbI269ie1cpOsdIhR+uMjuEgiJMFCVUo2GJhpxRP6gwUvgC2fJrmFo7Fe8qIAlpXehq/bVXlRghrQtflnGDLLqaxFAzZJRHUITFldk/wfVnKDjHSZh7URULgcrQlIkXVMgWszjeBnb3dWJp1XBMMrR1xfEpimDrzm40rd4jUxRBa3uC5kwMRRX0R3pYF1OREpzAwVJDbIivQUHBUus53Uuuo+/zd2cO8tLIZaSUnJud4ld23M7dHf3zpeuNUPFcvnDuKP/92Ksg4EPrd/GxTXvpiMTnj6csoxgaqsodHX01L1PjIxt2ETNM/sfx17iSzy6Zb3kyYKJSJOuUiekmd3X03ZAa3qrGVErwAp/jl8co2Q63b+7jcy8c4upElnu2r2FzTysx68bc9P+dMZdPVoSKL10uF1/HVKI0mf0cmvkKeXeCHal3kgmt4+WJv+RK8Q1eHP8LxuNnuaX5J4npLVhairDWzHjlFKYSnQ9RFN1xlk+3BQqq0Cn7WaT0UYVBsGgKKwnIuUMcmPwLit44NzX/bNWYLvdMURtSq1bimKpCx1IXeH9S+pwvvIwiFMpelsuFA3RFdlbPUGg0hdZwcvZbCF+g1rijK2XVdcXClWVcWVn0MVkYtxMUOZ9/lmn7Ave1/3N86TQ8x5WMYzVsUQ9LTa+iXSAp2IeIGNvJRD+IqfVUPdOgSN7ej+alKLvnoEEYK5BVGlTOPkR/6tfJ2W8ymPtbGoVPlkNBw/EnKTkX0EPNqMKi5J7D9kaoeFfJOUdoi7yLnsTPoSpxjg+NkS87DM3M0paI0dOcJGatnpwUQuALyXS5gKaoK2cj5r/DC959xSszd5+q/14Z53PTfOfyafwaV/bY9Bj/+sDTFHfeyaO9GzAaGNSi6/DZs4f5k2OvkjYtPr55H2/v3ViXkV+u0DFnWufWCesGP7ZmG93RBH967DUOjA/iBAuOhSIE7+zfzG/uupsWq55zfS1c05hKKSnZLocvDnNueIqffnAfLckoX3vlOJ97/hBHL43ya+++k91ruurqeP9PRru1mYTejqlE0RULVeh40mZt7A6SRjehmirRva2/wiuTf0PBnWBH6l1EtWq2UxMhdqZ/gs3Jx9EVC4FCID1eGv8vXC2+tuRYlpri9pZfJWX2Y/uzvDD2+0xU6ivJEkYXCaOHgKDhtF1TrIbVRu4KXp8idMKL4ot2UMRQLOyaF1sJ8gyVjtBubUZFp83azoMdv4OuhGtVWoKh0uu8OPaHdZn49fGH2ZJ8N0KonJr9NoemPlPHqzSU8Hw8uORMLYohVlGNAScb8ylX8EzDWhr1GupLupKhv+k/oqsttWm5QAgFU+vF1LpRlThRY1ctIdW6ZFvHG8MPCqxJ/RYhrYuCc3LF4yxHtbJQMlN5mZi5g+nyi4wVv1G9DmqGiL4BIfQa/UrQ25Ti4OXhWk6jysi5XkxUSvzugacYKxV+qGTMtVB0HbJ2mdAiozlRLvKnx16lL5ZiV2ahyklKSdap8BcnDvCl80e5s72Pj23ex6ZUyw+soayrKne09zEQT/PZs4f50vmjjJUKSGBPppN/vPPOGzaksIoxdX2foalZ2pIx9qztwtSrq3/o3l3sXddF2XbZuaYDRfk/y5IGQQGJX+PILdxQKSW+P8j6yOaaSMpC2WsjJIx27m39ZZygRESN4gcTqEoTQmjE9GUvo984kx/RM2RCG7C0FAoKftAoqx3htswv0RHejRMUV+R16kp99rXqmdavrwmT0KLMd0iN0Rpaj1czjFP2RabsS/OhYF2xaA6tm19fyoBAenWGVEGj1dpCTK/GHKu+zvJsv6Aveid3tv46mmIyWj5a599VPedGNCdJ2V9hmq+lVqEdKZha95LfmiLvpin8OLraihAKlr6GNI/VbWtoGdpiP1ZXjXU90EQUXUkzWXqKiLGBkfwXCGv9pON3kQrdjqX3ooqFmH5rIkprPMr6tmZiIZPupuR1H6s9HON9a7YRSEnMMG9Q8eCHg6YodEerNMKqeAxczs/wJ0dfZaiY45/vvY97OgeIaAve6GJWyo0lwwWd0QS/sv127mjv469Pvs7hqRF+bsvNdEQalzCvev7XWmhoWl1mFqqZ2809rQ22+D8DtvMmucKfEbYeRdcWZ0QlucJf43mXSSX+KSHzjnljW73pLtXigVrMUHoochrFPchk7lv4/gjJ+G8RMm+rpyf5Mw2NadroR6sle1xZbmgoY3or6ZoItS/thhVHi2lOi7ESjSikxuf1RYFaZjeEkNWxVfmnYkXmWiA9Zp3lmgjUNEw7EEIQSI+Kn2sYkugM75kvNa2Whi41p6owsLQG5YdIyl627vdqJj95w97Icg90JTRKMF0vVCVK2Bggm3uVwdzf0JP4BAlzL5qSaHi+LfEobckYFyamaYlHGJvNM9ByfdU8mqLwcM/K9L9/KHhBwP7xQb539Sz7Wrv4v7vWkjargkMScHwfTVHwgoBjE2OsTaWJmzdOxTJUlZtbu9na1MpgIUd//PpKRxvhH0Z9+X8zSGljO29i6FvRtXVLlgXBLJ53iUAuZ68GFEvfoGw/TzT8AaQsYTtv4nrn8P25WKhOxX4e09iJEEuFFYreVANjKmgKrZvPWJe9LL6sryCLaBlCavVrO8cUWI6QmkRt4JmWG2T+oerFLY5Hlrwso+WT81nysj9L2uhZsRDBx2uYyY9ozUT1tuq5SqfhB0RVDJLGQvlh2ZuuKypQl4Uh5nBNT1tNNjzXlRBIyeh0DlPXMHWN0Zk8vS2puiqviuNSrLikY9enPrYcQigkzL2Mii9TdE6RqxwkYe5ecV+nhsf5xpsncDyfsu1y35Z6AXIpJYGUIFkifFyxXa4Mz5CIhcikY3WzTiklI+M5srMlerubCIeq9MggkFwZnqZccenpSBEJ35gy2XIUPIeYbvBrO+4gscxI5uwKf3bwdYbzOXRVxVBUfnHvzT+QMYWqlxrVTTam6h3HG8FbxvQHhZR4/iC288aSn4NgGoRWFwIA8IMpiqVvYIXuwTLvxDT2VqtBhIZAY0GwpZ7rWXDH6oyAoURIGt3MuX8VP9uwEmiO0A+1unS/gTHVkg1pRGVvaoXqp9SSTHlEa2Jj/IG69VaCG5Qa6gykzYF5WpUf2FQaCJKE1XRNdg8Wpu3LjKkSamgcnaDUOKGmmLVS0uuD5weMTOd45vA5PD+gLRXj6MURdq3txDJ0ZgplxrN54uEQjufj+QEfvHsnlnnj1TbVPlVrCWkdFN0zDOb+hpJ3ke74x4mZ2+pCE7mKjRcECAGG3jiRJCW8uP8c33zqKB//4O1sWFP1sH0/4FNfepXJ6QL/5JfeRntL9SNs1EJ8QSB54rnjfPOpI/z+P38f/d1Vj9fzfP72i69w6vwYv/OP38GZC2P0dzexcW0b6nXGNh2/RNmfJaa3kDRCJJuq+r5uUCHrDKIInYiWIqJHaI1EmSmXaYlU//3DwPN8xifzNDdF58f5g+AtY/qDQgh0bS2hReVyAOXKs+CP4geTeP4IqtI6b1Tnym01tRu1QfGBlDb5wqdBqETD75mXMJP4ZJ3LdetbapK43jlvKEveNH5dJZAgbfQzF32cda7iBEu9ZgWt6sU18HRKK2a+U3iBzaxzteb53tgUuehONOTMZkIbUGrUKU/alLz644e1Zsyap237xYbhAktNNFSccoMSXoOadk2YGGqUGfsyQijE9LYlCl/LIaXkzNAErudX9QhiYZriEVzPJ2aZXBqbZjxboCUZxfUDHtq9npBxPa/bwizAC2bJVl4lW9lPxbtC2FhH2RskkCWmSk+Tt4/SHL6flsg7iBgb0JQIUgoKFQdFKAgF8mWb6WKZzvRyLQzI5sqcvTiOFdK5PDjNs6+cZvfWHqIRkytD01y6OsVT3z/J8Ngs73nbTjavr8WxRdXogmT/oUtcHZ7BDwKuDM+QL1R48vkTnDg7QkdLgp/54G10tCYBiRvY5NwxGokLBTLgTP45LuRfYnPyEbYmHpmXpMy743x76HfxpM0dmU+wJno321ta6YxVixjGS8Vr9mgKAskbhy8zNVMABJWKy9DIDPGYRXNTlHLF5fipYe66dR133rJuxf2shus2pp5f7UgaWmS5K66Hoar/RySgJBD4U/jBFKAQCb8PgIr96pL1TGM7prGLYunrFIqfJhn/bUxjz6L9SEqV7+G49dlcKSvYzn6krKCpnVihBxBCIZA+M86luvVjevt8xY6UASV/sm6arwmDpNmDRDJtX+DIzBfnk0RzqHJGmxpOyastRZbTsVRUxeDQ9Gc4k3uStNnPluS76IncUifk3AhSSgreGI6/1KhrIkTKnDP8VQqU3SC0EdfbMZQIblDmeParTNnn645hqY2TSe4KnqmpRhkvn+Dg9GcIpMea2L1sTD5GTGvc/UBTVRQhOHxhuDYmcDyfXWs7mJwt4flBVaR5tkAqGma2uPyYVWO0GLY3QtZ+ff7vieJ3GC98i5DWSW/yF4mb26vGo/gdIMDxxxjOf46J4neJmVtpDj9ES+Qx7t08wO6+Dlw/IB2x0BqoLVW9Vg1VURgem6VQsvnMVw/geQF37F3DbbsH0HWVodEsL71+nlt397NhTSszs6XqWF2fT335Ne6+eR07NndRsV1eO3iJmWyJluYYE1N57rtjIy1NC+I9XlBhonJ2PglX8CY4lv17FKHSG9lLTG9la63Nz0j5OFP2ZRJGBzEtgycrFL1pNMUgoBrb7U0ksT2fTDhCzFg5Jq0ogi0b26tPlRAcPzXMk8+d4KPvv4VtmzuREh66ZzOa9sM1obwuYyql5MTVMZ47dp4P3bWLcMjg4tg033n9FO+6ZQtr269PkOL/3+EHkzjuUXL5P0dVOwhFbiaX/zPAJx79OYQwgX48fwgDgaq2UG10ttDUTlHCtT5TG+v2L5HEIh+kmrhZIOs7QbFh2WVzaB2qUjUYnrQpuPWK9WGtibDWjJQBx2a+zFj5GMtfYkVomEoUrwEToJFwsyI0JiqnmaicouLPMlw6yLR9kXXxB9mWeh9RrfWaXmqV+zpS5yGGtSZi+sK2BXesgeFX5w3ulH2OI9OfbxjaMNUEIOvGVPFzDUtPpQw4lv3K/AzgyMznGS0fY2f6x+mM7KnzUoWoxkwziSie71NyXDzPn7+0qjL3aRJoqrKkO2b1ePWShl6Qo+JeWfR3noS5l/7UrxEzdyBQ6Ul8EsefIlt5jTkJSV8WUYSJrqYBQcl2GZ7JIYRgNJunJR5Z4plKKSlVXFS12vPoM1/dT6niENRCA9qimO+cgE1XRwrPD3j2lTNkcyUMXeXq0AzPv3qWh+/ZjG17OI6HHwTomkp7a4I3j15h87p2knGLqrZCgvXxe+fH//r0F8i5IxhKmEB6rI/dM6+cdjr3DK9M/g0Zcw23t/wsC5lMQSAlb44OM5TPU3BsOmJxuuNxLH3lmUQ+X+GNI5fZtL6dsYkce3f2kmmOMTFZ4MyFMQqFCg/duwXjh9A8WdWYFso2lyeyfPfN01ydmuXPn9yPqWu4vs+Jq+PsGuhkTVt9GWIj+EGWXOkzDdSbIJA5Apm7xtZBVUasrurq2qRnKSt4/iVEUO8xSRnUPM3VIQBdW4eqNDGb+68EwSxBkKvRmZoRQsf3x0AYVCov4vnDJOO/hqFvQwil2nUVHyEsAlmgXHkBXV83r0IlZZly5Tl0bYCQeWtN9LqKojdBeZmHpqDSVCsRhepXv+DVK0rF9HbCagqBQn/0LoZLh8i5Q0vW8aXNiew3uFioF8qeqJyu+y2QLiOlQ0vERSp+luMzX2XavsDe5p+hJbQZZYWply8dsnZ92CKmt2ItqgTKuyN1hlIVJs1mVXEsqffQHbmZ8/lnkcv0VscrJ3hp7I/rnsuSN9lQCzTrXFni1fvSZaR8mPzYMFtT72Vj4rG6TggCQU9LitlimTXtTVwam2Gued3wVA7L1JESBidn2bd+gVJVpf3MdcNdQFgfIGXdwWjhiwg0msIP0J/6R1ha33yoKKyvZSD1m1zM/mey5ZcRQqUj9mG6Ex9Dr2lHjM1O8NTx8xQqNoam8q49W5YcR0rJiTPDDI9lKZZsWppj7N7aw3/72+cIWyalsoPteHS2JVnf30LYMkgnIly8OsUTz52gLVPlST/+8A4mpvJMzxSRQCwaoqUphucFVCoepy+M8sJrZ3n7vVvmq6oEajWJVTnOydknSRu97Eg9jioMJuzztITWEqrxnX3poishzGX6CpamowqFvGNjqhpJM4S2StO7bK7EF7/xBg/ctYlnXjzFI/dv5UvfeINyxSWVDLP/zYvs3dlH2PrBWRerGtODF4f5q6cOsGugg1s39HBmeJJU1GJjVyeKEHh+/Rd2JVRbkPwxjfkyEqj3MJas0UCcYjU47ilGJn6iYTwQQK6g8r70zPxaVdNcXblAUZLo2jqqfWwUVLUd35/E1LdSKH6OIMihKM0sJJMCqi2sI/jeEDOz/45o5CcwjKosWxBkyRc/hUAn0/QnGMqm2pgleXesbrpr1togzxkLJyhScMeXrCMQNcGQaoVaV2Qft2R+ntcm/gez7kImXUFj2rmAaHD5hRBEtPqZhxc4Na9xwSAEeAyV3qQ0OsWtmV+gM7K3YRsVL7DJOvVSi83m+nnSvJQBs85wXdgiojUR09sRQhDSEtyc+TlAciH//LyRFKjYfo6Rhj2eaDgeKSV2kF9mvCUFb5w3pv6WojfJnqafxFik0TDQnqY5EaFYcVjX2Uw6FqanJUkiEqIpHqkJv0jODU/R25JctN9gSZHBXHmtIkK0Rt/FTPn7JK3b6E/+Iwx1qZcvhELU2MTa9G8zmPtb/KBAV/ynMBZ9hC5PZgmCAFVRKFQcivbSGzubr/DkCyeZyZaIR0N86N034TgeCMHkTIGLVye5cHmSh+7exPD4LAcOX6avu4lKpep9h8yqwdm6oQPb8Xjz6BXW9bfwkffcjERy9uIEmaYo73zoIZqSkXm2gESClMw4g+yf/AxNZh83NX2I5tAAg8XDvDT+56SMLm5u/kjD+7ZwVyBtWbRGopRcFyfw56uprgVVVRjoy/D8K2fYvrmLqekimmYz0Jvh4NErmNcV014Zq269sTPD+2/fznPHLnBlIktnUwLX9ynZDoamXp8u8zwUFCVWp0wE1alfEGShgaL7HKrLA1iivh40FC5egIcfTF5j+eo3QcoKyGDRWCWBzOF6F6rLRBRN66VY+hqBLOD5V4mG341hbFn0IgQEwQya2lprQJbHNHYRth6tinX4oxSKnyeQeRSRXDg2PrPLvCaYmxK3zf+dd0frE0tCp83auqhuWaU3WuWw7p/4M7LOFSJaCzvSH6Q9vGNVPdXFGC4dYv/knzWgGUlmnEscmPorkmbvknOcQ8mbougtvyeCTGgDcxe5mu0fZrn3ljL6sLQFylNUb+HmzCdRhMb5/LMADMTuYXPy8WuKliyH7Rd4beJPGascq1vmBiVOZL9OyuhjY+LR+d/7WpfyWJs3V4/XHI+ypn3h+51J1GebNSVGxNhIWF9DU/h+RE2EJm5uZ036t4mbuzHUxmpiQihYWj8Dqf8LKV00Jblk+dbuNoZmcjhe1QnoTC2dCQ6OZLk8OE1PZxpjTCMaMZm0XRQhmJwuYOgqU9kil65OoyiCYskmYhnctLOPbRs7eO3QJThajUUauspXnzjEhjWt3L53DaqqsP/QRY6dHqa1OUZ/d/P8dQikx8nZ73Fy9klm3RHWx+9lqHSEwdIhfOnhS5dz+e8T1TOk5gWAGmNXazt72jpwggBNiOsWI1kZK3OirxerGtN0LMwdm/s5fGmEXMmmORZG11QujE1z+NIIOweWN7i6hjS02k4m9QeoSr1n4AcTjM/8Or4/1GBLAB0att2dU41vDFXtJBb+AKJhZjag4rxBufL0itsDBEEO8AlkBd8fQ+KiYMzvMwjy+P4ohr6Jmdl/gxAhrNB9CLT5sISUNp43WCXkK6so6i96gXzpNkywpIzeeWMhpWTGuVyXWAlrTbX44gIUodITuQVdCXMx/wJd4T10R25qWMNeLTSoljAtf6mn7Ysrnn5Ma6MzvLuh8r+Ukll3qC6TbyoxEsbCVLji58i5w0vPHY1MaAPaMh3OqkH9OeJGJwLBhvjbGypgXWs8JW+qjso2B02EaLO21mhoq2P1iJdCR/wjtEXfj67GUUVk0QfPJBN5G34QkHdtLE1HEwvtowvZIpWSQ6VkE0tGiDclKc6WqtPsZPV5SFgmW7taMTQVP5B11KR1/Rn+xT96lONnhjlw+BKHjg0Si5qEQjq27VEqObXprmRsMl/lYUZMuttTdLQkeOPo0lmF7VRbnFshHVVVUBQF1/XrpswChXP5FxguH0dXQpycfRIFlTZrE33Rm+iJ7CHvjlULNRrElBf2A23R1btS/ENjVWN6ZniSA2evMluscOjiMJfGp2lLxmhLxbhrSz+buxemIVWh2pUhhImurUVrIE/m+UkUYS7yS+ckCxR0bQ0R621ErEeo42Di0tibFVWjZt5BKv7LteTQUkjpkyv81SrGtEopkkg89yRT2X+G74+CdCmXn0QGZVStCU3rw/UuAip+MEU29wdYofuwQveja2vxvKsgdCLWu/D8arzQcY8y1+42CGZqMeOlb6ITlBpOiTOhDfOVVIF0mbEv1cUX08YAUa2egqUIlQ5rJ23W1nlZvvprEzBaPkbRG6crchOmsrS9hCfLDR94VRjc2vKL9ERuaZhNlwTMOlfrDH9EbyaqtSwYDW+sLvllqFHarG0NzzesNbEr/SGqwioLMn8L46nqsl4pvEImtIGUOVAVwZhTppd+w8QUQHdkH3e2/gYhtXHF0UpwAo+j00P0x5pJGeH5bYUQzDg6r00M0hv16bAk6rL9Hs0O86lzr3JTcx9v79pKVySFAM4dvsKzX96PXbK5+9372Hn3Jl5/+hip1gQd/S2k25K8eWmYLx04RlPEIhoy2dnbzr2bF4j7IVOnozXBweNXiEdDfO6br9PSHENVBH3dTRw/PUyl4uL7AflCBT9YffYWjYTIpKOomkrEqpZ76pq65MMiUBiI3kZMb6U9tAlXVnh18lPk3FESegc94T0kjQ7arM1M19TPftQQMM9umEu0ZXOlH4m2yKrGtGQ7XBidZrZUYWNnhng4hKooJMIhbtnQSzq62PvwWFUFZ0Vx5TAh8w5UpQVFiaIoaXx/FNc7j2XejKGvx/MGQavGK+dI7nI+CaICCkKYaGorhr4Ry7wXK3QXAFI6zBnn6noL2cF6KAh0VLWNkHkTsciHUEQETe3E0DdhmXcSDj2EpvUzPvVRQMF1T2Hbr5NK/FNK5b+nbD+DlDYh8w7AwfFOE4t8BE3rqxlTgaI0oWmdgMD3QwgMln8Y8u5InTCHKgxSZt98uKQS5Ji2LywdgdDpDO9akaokhEBdQSGp6ule4vtjv0/OHWFN7B52N320VuZZPaYblAkaGFNNmMT1jhWl7DxZqZ3r0uckrndiqnPN5yTj5VO4y7L9KaN3ife6HNeqe/dkhcPTn+NY9ivE9Q72NX+M3uhtKFKbL11tRJkSCCJ6KyE1QdFzVnEXFkFK3pi6wu8e/g5bkx38yuZ7WRtbmLZP2UX+8/GnUYXCve3raV7WSvhMbpxXJi6yf/Iy45U8v7H1QVQXzh+7yuxUnnKuzKk3LhBIeP3p44TCBl3r2nnoJ26j7LgkrRBThRK5is2u3vr2yEEQMDqe486b13H4xCAHDl1i5+ZurgxN05qJMziaRVEVdmzuYnTiWonhKqamC5w6P4aiVEMFK2Fz4m0ootoEc7B0GD9wqfh5TCVCxc/RYW2jyexjukGC8nowV9M//zcLzT+jYZNUMsK7376LlkycB+7exORUns997XX6epqxQsaS/fh+gKoq1/0BXdWY7lnTxe6BTk4OjpMIh2hNxrBdj1ypwniuSK5skwiHalNZh5VjkAqa2oEQjVXXFRGnKfEvkDgIYSHQyRX/jqnsb5Erfopc8TMoSgJVyaBr/VU+p74NVUkRj/4kqtKEpnahKNXe3UGtXLPivFKLd+ooShxN7cLQ12NoG1HVFjStF0PfCkiqqvwpdK0P09iFoW9D17oQNZqSojSTTvxO9fyEgpQeIfP2mkFXSMR+EUVJYYXuoVj+JrrWj6FvQco8prEHTe1CCAVFaSYSfjeWeQe6trFaM69mCVuPoC1qNlitfGoUC1WZrJzBUtMkjE5yznBdhj6spuiI7F7t9tZBSokryxya/p/z3NazuSfJu2PckvnkfFzTDUqNO5Yq5jU1Qb2gUneuUDXOQ6U3axVQISYqJ5ckaRRUOsI7b6hKaWFMAYPFA5ye/Q6BdMk6l/n+2O9T9CbYmHgUjRCBdBuq74PArLUf+d7wSQZLM3Wx5YrvcmRmiEBK1sVbSJvV6fZUpcCmRBu+DHhl/AL90Wa0uek8Al9K7MDhgfZN7G1eGiN8cfw8fz9Ubcy4LdWJpeoITdC9to2Z8VmGz4+Tak2w5ZY1TAxOMXZ1il13bSQcs3D9gLLjYhk6IV0jEjKQC/0wq0nNQoVS2eHHHtvDprVt/N1X9vNzH7kTy9T55lNHSMRCvPftu3j1jYvVZppLLmj9VVq/ppXHH9qBoghGJ3KcPDda56cE+OTcEXzpI4CcO1LNlUiP8cpZTuWewglK3NnyyYYlzNeDgKXiJ5Iqha2rPcWvffIB2lsTrBuoztbi0RAdbQlaM3FCIZ1IeOG5nc2Vefal09x3x0Zsx6M5HV2VT38deqaSfNmmN5PCMqpfcUNXmcgVuTg2TVfTYv5amaXGVEVVmtC1AcKh+4iE34EiGsc6hBAIEQHm4oBBjaM5B58gmCYIpnG905QqTyAwq21k9Y2EwrsJW28n8CcplL5OufI0gayvsAEQhND1NcQiP07Ueg9tzZ8BqDUvqzZIWynwX10+97dGKvFbdeupajPx6E8vWi8xX80EYBrbyKT/aOk2SpJk/Dfmr8Uc2q0d7G76KGdzT9Zq2SVuUGb/5F9wbObLpM21CKEsk9UTtFnbSTRQU18dksHifi7mX1z0i2SkfIjnx/4jt2Z+ifbw9pqgSv1bpQnzmo39TCXGrqaPcDL7TYZLh/BqBmyo9Dpj5WMkjC7S5gCjleNLtrO0NN2Rm1eMa14LJW+KozNfXhKnrfiz7J/4cyr+LDtSH8CVlToZP6h6pqZaDXE81r1tSfxyDq9PXubrV45Q9GzWxJr56JqbSRjX1ym27Ll85cpBXplYOrO4Wlyo/AqpC6GYnXdvYssta9n/vaPsuHMjuqGz+ea19G7qYPDcKL2bOtnS1UoiHML1fVJhi45lCaggkJy+MM69t20gnQzz5AsTfPg9N9Hf3cTTL57iey+cJJ2Kcu7iON959hhBIJfU2gdzrd6peYK1v8sVh5ffuMD395+rJafqzctQ6SiurCAQZJ0hJAG+dJl2rtBhbQMkJS+LX9N4kFwrI1IPPwiWzB78IMCTAaGQTndnvfCNqih0tCWX/Oa6HhXb49TZUUolh1gsxMP3blk127+qMZ3Ml/jKK0fpb0nj+j5XJrKUbIdzI1NYhk4mHuH2TX3VnWnb0PV3YRlN6Fo3ur62VjrZgSLCDQ3U3I1oaLxW6ZkusfH8y3j+ZVzvLIa+A10bIJP+Qyr2a2Rzf0DFOcByb1lSwXGPMz37b/G8IVLx30BRGnvM14trjSMIJG/sv0Cl7HDbnRtAwPDgNJGICUIQi4fQdY3xsRyf//RL3HnvJnbs7kNRBBE9w670h1kXf5Czuac4NfutGoFfUvKnKZX21x3PUCIMxO7BkzYTpTMoQluR87kcblDm8PTn543cYkzbF3hx7A+4peUXcBpoogJoitlQfWoOqmLQG72NzvAuhkuHODbzVUbKh/ClgycrTNnnmLLPLdtK0BHeRdLoYbJyFk/aKFxffx4pJVeKrzK2zDhDdep/aPqz+NKlNbQZ2YheIxTMWsJQb8BltH2PJ4dPMu0U6Y828/7+vcT16xfcsDSd9/TuYk/TMs907Bx/P1Q958XGxAjpGCGde9938/wzt35X35Jtu9JxDCloSkYaGrRiyaa7I0VbS5wrQzPcedNa+nuaUYRg19Ye7rx5HXu29bBtYydnL06QToZZ399SNWsC2jJxHr57M+lkhFyhwl23VNePRkxu3tXP2YvjNKUiDPQuTTSrQmNbakGecLB4iJOz30NXLDYnHiITqvKHpZScmP0uqtCw1MR1s0yklLiBP2/sASK6fk31/kY4dGyQV16/QEtzjPHJPO2tiTrxmkZYVRz60IUhDl0YplB22NCZ4dzIFJqq0BQL092cJF+2uTo1y/nxKSruekazbWzrbqe7KUncrGYpTw2P8/TxI3zivpvQVZVCxeHS5AwHzl+lLRljulBmoCXFjt4OwktKEK7HAAhMYxfp+G+haz01YrCJZd6JkV7DRPb/plx5hkZelJRlcsW/w9C3EIu89zqOtTKGr05z/OhgXUjYrrgceuMSvh/Q1pFi645uLMvgj37v77n/4a34XsDoSJb3f/g2ioUKB145x4ZNHUsD90IQ1VrZlf4J+qN3cHTmS5zPP9NQ/QmqscWW0Ea8oMKrE/+dKfvCqj155iCRDTt9zmHWHeTA5F/OT32XQxOhhjXxiyEQaMKiJ3IrbdY2LhVe5PD055lxGjMEdMWiK7wPTQlxtfgab059en4/1wNfug2J+lBN3p2Y+Rq5yHDDdaqe6cr6lseywzw9fIpAShJGCEvV8aWcn86vhDl/yw8CLuYnlwglA1wuTtfWq3qCjVoErfQxuTo6w7/+H9/lI4/t4649a+ump7FoiFi0avD7uqre2qXiBDm3QlsswWMf2ELOK3MhGOXnf/IuNEXhaPYql6cnubt1E7ffOcDb9Wr7k2jE5Dc+8eD885qMW/ziT91zwywjWatW86SNF7h0hLfwrq5/T8LowF0hMdgIW5va+NimvUgJ3bEE25va2NpUT8+7FgpFm+Z0hJv3DPD090/iuN51JahWNdmmrhELm1ydzGIZ1dJI1/NRlWqZmeP5nBmd4JWzV1AVhaJtU7I9MrEoUkqGZnIMTuc4PjhG2XFRQwq253F5YoajV0fxg4Dz49NUXI/Nna0sredafQRChIlHfrqmHbqY3CxQ1Q6SsV/GcY7iB+MNt5cyT7H8TSLW22uK5suX+6w07V+M9q4Uhqlz9vQIrW0JpiYLZGeKbNjcyTe+8gaPv28fDz+2A1VVsG2PStlB1zW6ehJ8+i9fYOuOHuKJMJqmkkzVq3xX/xYkjV5ubakKPR+c+jTTzkWWfyhmnMscy36Z7akPsDn5OMezX6vGIsUPJlG27EQIKQmuFF9tuFhTQtec5i8dT7W3/fr4w7RaW3hz6u+4kH+2jpXgBRVOzX6buN7OQOwehkuH0RSDiJa5IW7sStCVMBU/1zChJljwTJdj2i7y6XOvMVquJmhaQjGOZ0f43MXX2ZhoZV9zH53hRMNZgQTSZhiBoOJ7DJeWFmWUPJc1sWY6wkmOZ0fQFIV72tYTUq9d7yil5MU3L3Dq4jhfePIgmwbaaG1aev6NnuXzhXGOzlyhK9LERCVHSyjOrlQfk06eJ4YPc7U0xYxT5HD2CtuT3byjc0ECcPnuGpbkSMmsO8yl4gH8wMGXDjPOIL50qfg5Xhr/S+J6KwmjnXZrM83mGlK1ZOO0fblha/LlEEKwLtHEP9lTLVmt9oNa+aPTCEEgiUQMDF3j/KUJmtNRYpEQjuv/8NP81kSUIJDYrke2WEHKqgK/Eajz5KWDl0YwNI3OdJw3Lw7Rm0lRchwKtsNfv/A6fc3Vr9/hKyN4fsBAS5qJfBHb88lXnOq+S2WKtkMivPiFX726ShERDH3jCjFOgalvxTS2U6o8teI+PH+0SpZnwZhKJK57lnzxM+jaeiLWIyhKI+X22nkoCjPTBf7qT57h/R++jamJPM89dZyP/eL9CAGqKpbUPM+hu7eJD/7k7fT0NXP1yhSappJqWplsLoRAFyHWxO5BESrPjf6HOrFnJyhwdOYr2H6RXU0fojty85LKnR8WJW+aS4UXGy4LqfEbMnBzH4mE3s2tmZ8n744wWj6yZB1JwEj5MC+O/yG3Zn6Bu9t+E1ONogiNqXyJsyOTlGyHuBViQ2eGNy8MkQiHuDg+TU9zkl39HSjXlIETHJz6dGN2gmI27EBQ9lz+54UDvDxxAUvTKXoOpqJxR8sAbuDxJ6de4G+1V/nxgX28u2cnpqoRSMlwKUvBs6n4Lj+59hbiukWbFUdbZnA7wgm2JNuo+B5/cPxpvnn1CGPlPB/o33NNg5ov2rzw5nn8IODo2RG+/uwRPvLYTVihaxthQTWR9vLEGR5s28Yb0xfZkugipUSo+C5Zp4SuaBhCnZ9ON+rVdC1U/Dz7J/8O2y8AElXoxPQWWkPr6Y7sojW0gYTRUQsTCQruJHZQYLh8fMVZWN04hGg4K5hxCqhCIaYt1ZRdHJ6TUjI+mWNsPEdzU5RC0UZTFWbzZSam8nS1p+r2uxjXvBpCCDqaEty/Yx3PHjnHbKlCOham4njMlsocuTTKAzvXkY5aXJqYwfE84paJQNCZSjA6m6cjGae3Oclr567Q15zij558mffftB3L0IlZJieHx0mFLUxNw1vGZ5PXmG7OQVGWJnfqxxDG0LdTqjwHK0z1FGHV8VB9f4zp2X9PqfIUQlhUnFdJRH8eQ1/gdy7HXMZ07YY2otEQiqoQXkUkNxw22b1vgHjCYnR4hkjUJN20uj6jRDJZOdOwTQlU6+3P5L6LqcbY0/STaNfIsN8ofOlQ8RvTZeak+BzXx3ZdXC8gZGhYpn5NYy6EoOhNNhR0qUIyZZ9n/+RfcFfbbxDVM0gpGZws8N2D54mEDMKGjuPCU0cu0p6KMzQ1i+MJdvR2o1/jxZcyoOzP1NX3Q9VrVZeFLWzf5UuX3+Qrlw/yYMdGAin5+pXDAFiawaNd25h1yvzhiWf4z8efJqwavKN7GwCXClOMlnM4gcfZ3AQxzWTQjKArKp+/9AYTlTz7mvu4u3UdAphxSryndye6opI2wlXO5zXCdycujHL2clXwxvV8vvrMEToyCR66bROGvvKGgZTEjTCu9JlxiiSNMJZqUPJtOqwkL02cQVMUdiR7iOkWrvQxbkDBUwhB0ugibfZSdCfpCG+h09pBq7WBmN6CJkK1nlPVZ8SXHjl3lDemv8DV0kE8aSMQ1x2uWoycW+K/n/02WbdIeyi95FMvkfSEW3iscx+motOcjvLg3ZtRlOoz7Hk+lmU0VN5ajlVjpudGJskWyqiKwuXxGZJRi1TUors5SXdzkj1rOrlJ7ebvXjpI2DAIpOTY4CiGptKRivHw9vWcGp5AAm2JGD920zbWtjXRl0mhKoI3Lla9iHs3D9AUWZwEktdlTFUl1ZCQP4eqd7oJIQxkg17poGEae5awDKR0yBU+VdUmxUPKPIXSV3G9CyRjv0o4dE+NLlWPwJfMzpTI5cq1ONfK5z4zU+R7f3+Ezq40zZkYZ0+O0NOXIRJdfTo+bZ/nfP7ZFWOBUDWoJ7PfoNlcx0Dsnh+ZZ1p0JxomqEAQ1tIUyjbPvn6WU5fGEULQnAjzrnu2kYytnOTzA4cT2W80KDNdDMlE5RQHp/6OO1t/HUOJUrSdmsp9gYHWFMmoxfr2ZrLFCooiCOnaqskDNyiveFxDiSypuCq4Nl+49AbfunqU9/bu4v39e/nshQPLtlF5tGsb3x48xvHsCN8aPMrbu7agKSq3tgwAMFya5UuXDlLwbB7t2sr7+/bwpctvknMqbE128O7eHeTcCv/p2FMMxJp5X99uotq1ezK5ns8TL52kbC+wEmZyZf7yq6+iaSr37lu34lQ1kJK0ESGkaJwvjHFHZgMTdo7NiS7arRRbk114MsAJPKad4jXOo+rpSelgV57D868SCt2Lpg1gKhHuyHwcQ4kQ1TPoYuWW0KrQaLc2syP1LkbKx/FxaQ71kzRujKEipeSF8WM8N36Ust9Y+6M73MwtzRvoCjejaer8DNK4wVr9axtTqhqNM8UykZDB3nVdpCIWCIhZJpu6WkhGQpwbm6ZYcWjpijCRi7KmNU2+YtNb486dG5tioCWNrqnctKabiusxks2RsEJs625jcHqWZ09c4H03bSWyiDgbyNVde0VJrmjY5qDr61GVJjx/eR15NQwQi/zYIsqNpGIfIF/8LJLFxtzHdg4ylf1neLGfJxb+MZRlSRhFEWiGyvDQNLPZMumm6JKWEFAT1Ki4OI7Hk986xKPv3sPGLZ2cOzPK4NVpNmzq4MSRq2zb1bvizXSDMsdmvjLvxWnCIm32M21fqJO1s4M8R2a+QHt4xwoN5m4MUgZM2mcatv4QCMJqE4WSzfRsiQtDU6zrzjCZLZIv2SsaUyklw6VDXMg/x1y5Z8roxZdOXUmpJOBK8VUuF15hbfzBauInHEJXVTKJCG3JGKlomOlCmeZYBF1VVw07FL1JZhu0UIFqTFdXQkgpGavk+erlQ1wtzvCPNt/HvuZeQqpeHzMUgrQZ5pZMP2dz40S0hedzTsR41ikzUSlQ8V36ok2EtSqXWSI5nh3mS5cOMlHJ8/rkZY7MDJEJRXmkc8uK6khSSi4NT3PgeH213Mhkjj/5wovkixXedvsmouGlrdm9wCemhzAUFU8GTDkFOsNpjmav0GGl6I02c5fcyJXiFHe2bORiYRxdafxs+v4IQkQRIgpCo1j4H/jeIPHEvwBcmvU4qtpGxfG5PD5JyXaxHZemRIRY2OTC8DSFcoWoFWLPhi7arI3cmvlp/MChM7x9SbuaObiBx1B5ihYz2TAEMlrJogqFFjOBsei8XelT8R3iWngJA+AHxbWn+cC+tV3sWdNFrlTB0NSarJjE8fyqkIKEgZYUn7jvJqIhg5vXdGPq1fiQrlbjKz9+644lD5yuKrTEo7QnYxiaRtF2cD1/WbxU4vv1+pzLoShpBNeeSmtqF2HrbVU1J1mkStAPYerbScV/Y0kfpyDIM1v4c/ygXs4OJJ5/lZnc7+H7kyRiH0dVFuIoLW0JfvaXHmDL9m58L+C2O9dTLjv4XsDisPzURJ5iweaW29dx/9u2MTY6y5PfPsx9D28llY7yt3/+PB/7hfvZsbu3/gxkwMX881wsvIAkQBUGGxIPszHxGK9N/A8GSwfqtpmsnGGsfIy+6J2rXs9roZpEGORS4cWGvaZAENEyJCyLkKmztruZTCpCEEjS8ZUNadGb4OD0p7GDauggbfZzW8svM21fYP/En9d9INygxPn8M/RE7mBzVytxK4QiIBmxiJg6GzqaaU1EiVtmrYJl5TF5gc2F/HMNW6gAmGoMTQlhBx5HZ4bYmurgxwf2ktCv3c9JFQrv79tDSyjGzZn+OiX4q8VpKr5L0rDoiy5udifoCCfZla4mXx7q2AxA3Ahdk94WBJLvvXKaqWxjB2RsKs+fffllLg/P8L4Hd9Ddlpr/0CtCsCvdhyoUpIQ96X7iukVPuAmzxnGN6xbbkj3E9BCd4caxwyAoUSp9GWSArm8hCKZRlFYkDnblGTz/KuXyV4lGP4GmP8jZwUnGZnKcvDTGrvVd3L1zDbGwycnLo3S3pMgVKzQlImxL1nd7nYOUkrP5Yf7b2W+zMd5FTF/IewRSsibaznu7b6PkVdidXsOa6EIp++XiOIezl3hX1y2kjR++1n/VmKkQ1aLFdCxcC9Z6IMAyNKxa5l0IQTpa3dWcM6Uu2sdSI1klykbMha91LNTIGAYrGLQlZ4iqNl1zmg+gKGGSsV/G1HfgeqeR0kHX+rBC96CpPSzuIFqqPE3ZfoFrlcUGwQyzhT8lkAVSsV9FVasJtkQyzN6bqzXQruMxOZnnC3/3MsWiTTxhzV+Prp4mfuoT97BpaxdXL01y+sQwdz+wmS3bu8lOF0mmIth2vbGSUjJROc2bU5/GCYqowmR9/CF2NX2EsJpmbfx+xirH67zGAI/xyskf2JhKGeBJm2n7IoenP8t4uXHPd12xsLQUQSBRFUGx7DApijSvwHeUUuIERQ5Nf5bRclWtKW0OcGvmF2m3dhDXOzife6YhR3TWuYojZ8nE28nElybsNnbW6xEsP26AR8XLci7/NMezX20oMC2oyg8qaOiK5K7WdRjK9fFbhRD0RNN8dO0tdcv8IODU7BhCwECsmb88+zJ7mnooujYCSBghuqNLDVYgJWXfIaTqdYZZSsngeJan99drzy5GvmjztWePcOLCKO+5fzt37llLPGKiCAVLXXgf53RbF3vBlmpcM1YLUKl8l1Lx01jh94HQ0PT1pNJ/RNXMSHx/CCHCeN5lpguTHD43xEBHE8lYmKhlMjQxy/BUjnNDU2SSMWbyJZoS11b+sgOX7468ydHsJQ5n66l1WxO97E2vpc1K0WTGabcWiPsFr0Jct2gNJa89sOvEDQr4SSr2fsr2K6hKEiFCy6qUfnSQ0sNxz6yylsDzLlMofeG696trA/P/rrYcWaD4SHxyhb+9Lt1UKUvkC38LSNLx30BRlnIRdUNjy7Zu7rhnE6qqsG1Xz6JlKvc8uIWxkVmisRAPPrqDcLgqDtHcEudXf/PtxOKhZceT5NxhXp34U2bdQXRhsTH5GLvSH5pP+swR2ycqp+rOt7EnuYBABjh+Hk/a8/3snaCE7c9S8MYZL59kuHyIgju2YqlfRGvGUpNYqs72tR24no+uafS0JRt2ufSlzcnZb3F69jtIJJnQRm7L/BKt1haEUIhoGbqjNzNROV0XGw5qYuErQUqJJys4fpGAqrybF1SwgwJlb5oZ5xJDxTeZss+uyKtVhE7K7K/pGIi6kM3Csa51ZesxYRc4OH2Vm5r7+fUt9/PMyGk+c2E/I+VZAiRPDZ9ipJSrFQlI3CCg7Dt0R1L8RP8+mkJLw0t+EPDUq2cYHl+9ht7zA05cGOXS8DRnLk/wCx+4g9AP0OSvERSlCct6L6Z5B/nc72GYtxCL/ToQYFeeQ1FSpFJ/hKI044uqrN+67gy266GpCjvXddLeFGciW+ChfRuumTCbQ8V3GS5PE9ZM4np4PqQjkeTcEhEtRMmzGSnPMO0UuFBYmIGMV7JcLI7x0sQJ9qTXYio6AS6CajvplUSAVsINWkKBoqQolD6Ht6JU3j8kAorlb1Esf+v/k6NLbPKFT6Gp7SSiP1dX6miFDd753r112wlRpUl1djcob1MVmjJLpxxzU+HXJv6UkfJhQmqSnekfZ1PiHejKQmVZWGuiM7ynpo6/+A2fa6q3MtygwMXC95lxLpJzRsjVZPLcoFwTAFndYqTMfiwtjSIE63paWNfT0nCKXW0z7HI29z0OTX0GX7r0RG7m5szPkTL658ejCJWu8F5Oat+k6C0N+US15vn21Y0gCZionGGo9DoFd4ysc5WyN40jS1VdgYbJyKUwlCgZ89o95KtebjXOez1VZm7g8/TIKeJ6iF/adDf90SY+suZmtqU6+NqVwxycusr5/ASnZ8eqZP0avT+sGvyzHY+QNJeGS6SUXBmZ4YkXT1wXF3MOpYrD2SvVhoDXMqZSSrL5MueuTpJOhOnvSOO7Aaq+MFYZVGksunY7pnknvj+E74/POyWV8hPkcv8aTVuHYe5BCAVVEQx0NBEJGdyxfYB8ya4qezkuazqa0FQxf/w5NDJscd3iw/338tzYEd7ZefO8N13xXb589SV+euABKoHDa1OnuVJqHDY8mr3Mf9r5M/RGklwpPEdEb8MLyrSHb161CnMxbsiYVuvyNxAN/xjZ/H+hKnNn0Vgr9IeDlB6yrvf8cqgoIgqI+WSVci1B4Ln78qNJas+fg+0crqnoX1899o1ASknJm+K1iT/lUuElUkYf+5o/Rk/0lrq+RKrQ6InczNnck0uMT9ocoDOyZ/mul8BU42xMPIonK5S9GSbts5zIfp3h0kGux5BqIkR/9M55pfyVPuhzU+xz+ac5MPlXSHy2JN/FrqYPEdaa6tZPGb20Wzs4l396/jw0EWIgdh/GClVYUDXE7eHttFlbqPg58u4IFwsvcHr276/LkAK0WluuS8O0P9rE4z3bua99w3zJaSMjEMiAE9kRpIR/su1tdISrkn6mqnFTcx+70t2MlnMMlma4VJhmrJxjyi6SdyvE9VDD2Kvr+Xz7hRMMjmeva0xzCBkaD9yynug1qHtSSi6PzPCnX3iR/ceuMNDVxO/+/CNceOUsmc40o5cnSGYSXDk1hOt4BH7A3oe20zWXgpAOlfK3KZW+iBV+P6HQIyhK9R7HwiEeu21L3THXdWVY17W0f/3EdIHxmQKbBlpr9CkWfXAVOkJp0kaMznDzfIKp5NnENIvWUIo3ps+hCZWe8NL9QtWD1YRK1i3Q5JYZKr5MWG9FSp+0uYGQlr5u3vQPMEdXiEV+HM8fxjLvwNDXAj86DuMcyvaLTM/+a65F3DeNHaQT/xSBwUz+D/G8KzQl/w2qUv9SAmTzJfxArhqHuRFUv7KZhtVTPyyqHuk4r078CZcLrzIQu5u9TT9NwuheYfohyIQ2sSP9QY7NfAU3KJMye9nb9DOrNrmbgypMYno7Mb2dNmsbTw3/DiPlQ6tsJeiK7KU7ctOq+w+ky5nck7w++VeYaozdTb9If/SuFXmwuhJhe/oDlP0Zpu0LmGqMdfEH2ZB426rjqeqVaoS1NGEtTSa0gbjeyUvjf9RQ1GQxwlozmxKPoddI614QENXrDY8Qgsd7dvB4z466ZcOVMUpehU6rDUs1cQOPpKnz/v7dGIrGpD1N1s2j1KaVvvRpDTXTE13DbS1r6va3HFJKjp8b5bsvn7yhUIMQgtt3DfDQrY2LXeYwOpXnv372BV46dBEpJReHphgezzJ4ZoQrp4Y5f/gS+962k0rZ4fLxQTRdZff9W2FOptE7i27sJZH8D6hqB1Uv5trXvREOnR7ia08d5g//yXu5MjZLeyZ+Q6GJjfEufmvz+wikpDm0tKik+nEPSOoRZp2FLguerKxA/1sZN2RMpYTLY1leODLOo7f8a6LhGCXbpVRxaEpEqiTjQhldVYlaVdmv0Zk8yUiIcMigULa5Mp6ltzVF+Bokbik9yvazrFYBZRq7CRl7kEh0rY+K/RKedxkrcmfDfc8WxjlyboSmZPXFjYZMtq1tX3JjHNtj5OoULR1JdF1jcixHsilCaJFq+OxMkfxsmaZMjJnJAqnmKGPDozS3JYlETXwp8YIAQ1UZLxUIaRpSgi8DmkIL0/KS63BgbIitTa2kQ/WVGbPuIK9N/ClZ5wq3tvwC6+IPoC8SZJFS8txLp6nYHt2dKRQh2LC2jS7lYSanu9i6uYWE2YKuRBguT+EEHmP2DEk9Qtm32ZLow5cB+6dOUfEdpp08s26R93TdSUsoSVhLszHxdkbLR1aMkwpUuiM3cXPmk/N6pCvBDSqcmv0WR2e+RFdkHzvTP0Gy1p7Ctl9EUVrQtHV1ZcHN5joe6PhXFJ2LSO8EcXMr+JdwfUD6VCrfwwzdha7vuqaqlCI0+qN3VRv/ORdWXC+qtbK3+WcIa5v5yqUjnJ4dx9J03te3g4hu8MWLh9iSbMcJPAxF49aWvjo1+4CAZ8dfxQ08POnRH+lGInlt6jAfH3g/baEMz028xnB5nEfa7sYNXP7q0pe4t+UWHm2/95rXcQ6zhQqfe+INJlfI4K+EjX0tfPw9txKLrMxnzhUr/PXXXuWVwxfnvWw/CCiVXVzbI92RJJqM0DHQyqn955gamSHVmmBmbJbujUkAdH0zlvXu+fsppYttv0wodM+q5+j7AcfODXNlZIaT50eZzBb55nPHOHZ2mLfftYU9m3uuu8W8QPClqy9xsTBGV7h53ruF6mxhe7Kfd3XdQkRroT/+NlRhIqVPVO+8oWq+VY1pseIwPpOf52EdOjfMXz9xgO5Mkp5WhxePXuSNM0P8ynvuoLc1xReeO8yl0Wlu3thDICXfe/0MezZ08VMP7+Ps4CT/7K+f4D998jE2dq+ccZXSxXaOrLgcQAgLU98KGAgCNLUTKSvMFv6CkHlrzWNeipZ0DF0bqwptqAqD41n6O9NLjKmUkm985hXWbenknrfv4Fufe5WB9W1s2tlDJB4inoxwZP9FXn3mBB/8uXv41B89xa33bebF7x3jQ79wHwMb2xkq5Pi9N15gU7qFQxPDgGBTOsPzgxd5pH8DgQzwgyqh/6+Ov8HmdAu/e+sDDCTStXMImLLP8cbUpzCVGA90/KtazLNa8lYuVDBCOhXHY2Qsx6Wrk8zMlujpTFfLCE+MMDqisK4jhdFR1UiYsLNcLo5xMneF9fFuMmYCTWhU/DKzbomh0iSe9IjpYcr+QkImbfajK+E6TVWBQkxvZ338ITYm30FYrY//LobtFzie/QpDpYPsa/4YfdE70Gqk7SCokJv9D4Ssh4hG1xAEBWRQqIp8+CNo+mZCahxNTzOT/xSe+jGCYJpK+Uli8d+gUvkuQTCFntjGarOkkBonafQ0NKaGEqUjvIvtqffTam1mslIh51aQSE7PjnOxMM1ArIlT2XHSZoSXxi7QH2tiT3MX1jLPuuLbXCoO8d6uh/nq0JPcnN5JWLN4euxlQrWKKl8GzDizXC0N40qfsl9Buc6X1/N8nnzlFK8dvTER5Y5Mgk++/w76Ola+X47r8ZWnDvPkK6fxF2mZSgm267HxpjVV49mWZPPNa4nELRLNMXzPJ92WrBkgQeBP4vuXAB0IcN2jlIqfQ9e3oijX7misKIKt6zrYuq6DkKFzYXCKd923nXtvWke+WJ8wvJZj/urUKV6cOEHJtzlbGK5bPlrJck/LNuJ6gjatBV/aNyj8V8WqxjQIJCPTeaZzVbrNlfEsQSC5NDrNdL7EKycus2ttJ1Gr+oAUyjauF7Chu4VASp47fB7PD/ivX3uJ1lQU1/PnKVcrodqfvj4jvRiq0oppbK/V1Co14eUQrneObP6PaE7+O4QSWcjuySp5+fzgJJ0tSdqb4/S2p4lYS6duZkjnbe/bx8RIlpefPk7IMjhx6ApPff0gN9+7kfXbujh64ALnT47w5FffJJYM8/LTx0k2RXnz5XN09WVwfI/9Y4N0xxK0R2I8M3iBzmics7NT/HQ4yhfOHqXsufzuLQ/wjQsnGS3ll6gGVfwclwsvszZ2H236Ht741klmxs7R1pehqSPNa985yL6Hd9CxsZP779rI1584RKFQwXU9stkShqHhej65fJWfWS3VrGAHLmEthILACTwEUPIq+NJn0pml5FWIuiVK3gKvM6q30hHeyVj5OIrQMJQoSaOHjvAuOsI7SRhdq2Y9pQwYKr0OCO5s/XXieud8siYICnjuKaTMgfQp5P8LqtpJufx1zNDdlIqfJ574p4RC91MltXv4/giBP0kQTOD7V5GygqK2cb0qY73RWxmrHCeQProSIqJlaLW20BneTSa0cT4WW/FdBotZOsMJpu0SIVWj4Nr4MkARAkvVieuhutdOSsml4hBD5VFUoSKRXC4NEVJMJLKWLZaEFIOIZs1vnzYSFP0yBbdIVF85FCWl5MSFUb745EEqzvXFfwHSiTAfe88t7NnUteL9CgLJC2+c54vfO0RlGT0vCCTZQoW7796KU3aYGs2CgHhTlLt/7Bby0wWEoiCUAF1fh20/jzN1hGpXjGpDSdBw3aOY5j3XHN/Foan5stgjp4eYni3x3ZdOMjKZYypb5Kcev5mWmoDLrFvizZlzTDv5+WICL/A5OnuJL1x5kZhmkTZjbDC7SC66rkWvwpSTZ0eyH01RFyhh/GCCQKsa06hl0J1JcuziKC3JKP1taT760B6ak1FOXhmjuyXJzrWdNCcii4LukuGpWZ564ywA7ek4X3rhCPfsuL44kOOewvNXqtGuImTuRlOr1RDVfjN9KEoK3x+hWP4mhr6JRPRjsKg6SggwDY2pbJGh8Vn6OtL0taewzLnGeJLDr53n+e8c4Y6HtpLOxIknI3zva2/SPZDhvnfsQjdUjrQmCIUNNu/sIZct8Y3PvMLmXb2s39qJbqpQs0UZK4qpVtAVFUvTUBC0hKMYiopUJV2xBIaqoQpBwly4gaYaZWvqfRhKGLvskp8uEgSS8StTOBUXK2IyO5kj47Vx5MQQIUOnt7uJRNxCURVmsiW62lOMT+Zob42TSkZYF+tipDKNG3i0hlJkzAQSSUsoyc1Nm5iws0xUZkkZUToXBepNJc4dLb9G3htFFQZBJcyxNyYI97WTTLQS+AGO72GaevVlmymi6yrR2EKpYKXi4Y31kdI24BODlFhIAkoXz7tAlcToUyp9iXD4/QTBNJq2DpCI+fYqEoGCpvXhCxPhhNG0DSwW7F78HM09G8sxELuXlDlAIF1MNY6lptAUc8lHQUpJxXfxZUBI01mfaOF8bopHujfRHo7TbsWJ6Ca90XRdUsiTPm7gkjTiKEJBIOiy2ghrVlVhH5+z+UvkvSJJPc6sm8cJXDbF1nB09jSWYvK29rtRV9CAGJvO86lvHmBwLNtweSPEIiYffnQv99+0vqHgztyYT10a46+//lpD8r/vB1wZnUE3NYyQTjRVve6ZrmqOIlRLZkkZEE/8Kzz3JIEsgPRBKAhMFLUVXd+26vl2t6Zob44zW6jw0sEL3LF7gI0Drdy6ox/T1ObLYqWUHJ+9wtHsZd6cXtp4UiIZq2T599t/knd23Mz6WAdbkwuFMBcLYxyYPsMHe+5CV7R5ZoaCwJMBqlDwa/+vXEe+YVVjKoQgEQ3x2qkrNMXCPH77VlqSUSRwaXSaQtnhE4/egqYquLWKqGTUojkR5cpElkdu2sjViVmKFec6s+gOFfula2byhbCwzDuXvESa2oWu9uD7I0hZIZv/b6hKM9HwuxCiWvK3obeFpmQETVXwvIBkzFrCHRQCNm7v5it/8yJ2xWXz7l6+/Fff59KZUT75248RjYeolByunh/H93wOvHCatq40nusTjpoo1yGGcD1QhDb/lVQUhZaeZkr5Mq9++010QyPRHGfvwzvIzpbIzpaYnCmgqgqmqVX7nwOJuMVsrszoeI5EIkwgA9pDTViqwbnCEHbg0htpxZM+g6UJusMtJPQoZc9mpDxFXK/GZj0voDhjQNCFD4wOZ/n0X7/GAw9txbJMTp8a4fixQR5/9x7aO1IcPzbIs8+c4OOfuJf2jir/dWQ4yx/8P0/T1Z1GSvjEz99Ha2tVnEYoSVS1FVVtR9M3oKoZVG0ug64BAoRS0znQ0PRNIANkkEfiEgQzGMZekB5BkJtX9rpSmuCFiWM0m3G6wxmajThRLYSlmWiKSSZ0bcoTQMKw+OjafVwtZsm5FTrDCXSh8LauTWxJttFiRemJpOrUkxShsC7WT1itJiUDGTBSGSekhKhGmVV6w528OXOcsp/DlR6HsyfZkdxISo+zK7VlRUGPfMnm80+8yf5jl6876RSxDD7w8G7eec+2ayZuJmYK/MWXX+Hi4FTD5YGUnLs6SaFkXzPeKoSCpvWiafUVfNeDqnymwlS2yDeeO0p3W5JH79rKqYtjfOf8cd774E7amqu0uKowS56ucFM14bhoP36NWhYQEFL1mvepz69lqBqaUDFqJaiBlDw7dI5Zp0LWKbO7uYtDU0PsaupkR1PHqgnP60pAKUIQs0xsz6NQtklEQwxP5sjmy/S2pQkZWq19AVRLLgMGJ7OUbRchoDuTuG4OnOePU7Yby7vNwdDWEzJvXZJsUJQIIfNmKs5rAATBFNO5/wcQRMKP1VqSCDLJlek0QgisiImmqaiaQmG2jF1xsCIGx9+8zOZdvcxMFhCKoL2niXvfsZOZyQKGqdHamWJsaIY1m+qbl81BIpm1yzi+jxP4TJVLeIGPskK9dfWcYOzKJBeOXMYwdSKJMDvv3UzHmjZQBO2tCcplB1VVCVs6iqLQmomjKALPqyaNBJA246SMGJqikndLlPwyObeARNIVbmJ9rAtJQM4toisaZd/GUk1s2+XypQlyuTKmoTM6Okul7OJ5AYcOXmZyskBLS5x8vkKnIujrzzAynOXsmRGuXJmir7+ZXK5MqeTQ3d3E5GSB7z9/mkfevr0m6BLgeqdQtV489yyavoVGfcKknMV1j2Oad1Rb17jHQPr4/mV0fTOO8xqO/RIh6xFA43TuKp+9/By+9DEVgyYzRofVRFe4mb5ICwORdtqsFDEt3NDrEELQasXAijEQX6oYv6upOiNaG6+n2kC1lHRxDfitTbtZH+vHUHRmvTx24GCqBjk3jyZUKn6FhB7l/tbbUIVKRG1celuxXb713DG+9cJxHHd1eUqAaNjgxx7cxfsf2kXEWjmeXLZdPvPtNzhw/Mo169QvDE1ycWia7etXfs5/FChXHP7iyy9zabh6rNeOXKIpGeHE+VFams7z3gd2VmUthcp7u2/nnZ03N9yPLwMs1eDbw69zcOY8L08uVO9lnSLD5WnKvsP9bTvpDjfz/dGLdEYSHJi4wkSlwMX8DFHdJGFa9EZT1/RQV1WNqjgeFcfjk++4lecPn+f5w+f5xGO38NLRS8TCIe7aPsCXXjjCfbvW0ZKM4vkBlqnTFI8QtQyCQLK5t3U+pnrt4/lU7JdxvZUzraDVGs8tbxetEzJvRyn8Ta1lMvj+MNOz/4ZA5oiF34cQsVVie5Lp8Tyu43H57Biu43HvYzvp39DOqUNXsCsuuqmxdU8fRw9cRAAjV6eolF1mpgromop7jRiWLyUnpifYlWknQLJ/9CpF18Wy9BXD3aKWJZ4amsZ1PEzLIJqMUClWiNa87HpvozpGfVEFibGoUk1XVE7NXKQS2JS8Cm7g8bb22zk4c5JLxWEKXpmbmrZyS9N2IhGTvfsG+Ju/fAHP84knwmRaYliWwamTI1y6OM7P/Ow9bNpcVfNpa0/wj3/zUQqFCv/5977DY4/vxrKqIYBKxWXrti7KZYdS2a0ZU4GubyXwxymXv0ok8jEaxT6FiKDruwiCcfK5/4DrnkFRm/D9MXRtA9HYP6pJMaoEUjJUnqLkVQiolmFm3QLnCyMIBCFVJ6KF2Jro4+fWvJ3OcNP8/a+WlUoC6aMqRh2X90YgEIxVJonpEcYrU4Ak7xY4MHOEDbF+mswUPeEOXpjYT84r8r3RlwgI6LLauTOzF3URYdx2PJ585RSf+c7rDRMwjZCMWXzgbbt57wM7iC0TN1mMIAj43iun+PYLx3C9axvpfMHm2QNn2bKmbcWKsB8FDF3jjj1ruHvfWnrb0yRiFlZIJ2TqxCMmQpnjmYol9fiNcLEwxhvT5xitzDRcfmz2MqpQeE/XHVzKT7MhmSHv2lzOz9Bkhvnu4GlUodAdSf7gxhRgZDrP6avjjEzlMHSVTDLKwXNDWKZGKmZx+PwwlqkzOp0nZpk4ns/5oSlmC2Xec+c2nnz9DMWKQzikr6oJGAQzFMrfvGY5p66tIWI9DMse8jkhaMPYSsV+ef53PxhjJvd7eN4Q8ehP1zqkrnweh/df4J5Hd1Aq2pw5OljzTl0S6SjH3rjEntvXEY6a6IbK1r39+H7Aa8+e4tb7NmHNEaBnqvGmsVKBolt9OQE0IbitvYfdmepX3Q483CAgFbIwVvBOhSJobk/R3NWEDCTJlgSda9swVhH7nUO1rNKm4E0T05pRhU5YDZFzC8y6BSqBTZfVSkSralRKJJqiMlGZwQs8tJqHNTQ0zZnTozz+7j08+PA2VFWhkC9z5fIUqlqdhpfLDsNDM5w9M0omEyeQkt6+ZkIhnUTCoqMjSXd3mkQyTFNNs1UIBcO4Gc+7gBAW5cq3sUKPImUJ1z2KZK5mvprEsCvPoKo9GOZtVMpPEDLvJpf7PTTnZcLh96PrO7FrKkKN2jLLmnHVhEqLmaypNS1gpHSAsJYh61ygObSZhPGDTVUVoXB35ibWRHvRhTY//eyPVDnCJb/CA623E9MirIn0cLE4yHBljIJXJGnElkzzbcfjuy+f5C++8sp106DamuN89B37eNvtm66pJSul5MzlCf72G/splBtL1C1GICUvvHGOd969lf6uxnzuHwV0XeWefQsCRBXHI1e06emoaj8cOjNESypKZyax6vR72snTF2lZkbTvSR9VKAwVZxkp5QipGpaqE9YMdjR1sH/iCptTrWjXFBi/DqGTvrYUEVPnX7x4jK5Mgls3Vx+uSGeGA6cHGZ3O828/9gidzQkGJ7L0tCTJFSsYusa+Dd28cvwykZDBJx+7lZnCykZSyoCy/X1su171aAEGscgH0LU1DflfipIgar2Lin2AxeTgIMgyW/gLHO8MyegnMc09CBp/qW+5dyO6oeE6Hq88fZJL58ZwKi6BHxD4AZqu0tHbPK/c3tQS565HtqMtqyOWUpKtTelNZS6xITAUFVOrXnYTjZ/cvJvJchHb9zDUeoOqKII9D25jxz1V9SChCMyQMf9lvhaklNhBkTemv8nx2efYlnyAPel3oCtmdTqpWTXdmup/utDQhIaqqiSNWN1HJxIx2bCxnXCtJe7Q4DSKolQbAwLTU0X2v3aeb379IB/9qTuRUvLqy+c4dXKYfK7M6Ogsr716nv6BFj7yk3egGyrg4TpHEOgkkv+RUk1nQdPWoesbMPQ9KEoaKUt47kk0fQvhyIex7e8DKrqxnWjsF6hUnqq1yK4yF4ZKK+ui6kLjx3vv4b3ddxBSln6Uyv4UphpvqGUQyIApO09YMwmrK3t6AKpQuTOzb8XlKRYEzdNmkrSZZA9b69Yrlh2+9fwxPvWtAysqQi2Gogg2D7TxsXffwt7NPUtmJ8tRFfZx+NQ39zM0PrvqvucwMpHj688d5Rc/eOd1NZpbfkzPDyiUbGZyJYJAEouEiEdMTFNf0fM7dn6Ypw6cob05QWcmwaWRKXrb0nRmVhaGn8PmRA//bMsHWClpE8gAXdGYtW0yVpT9E1fZkMxwMT/N8ZlRTEWjPby6qtSqnqkiqjSOqVyJdCxMKraUNO56PvGaKpTt+tyxtZ9LozOUbIeLozMoiiBRI+1/7rlDGJqKvsxoSCS+P0q++Ln5KXojhIw9RK3HVyxfFUIhHHoAU/+f2O6hZUsdypWncd3T1RbP4feiqZ0sVs0XQhCuCTPrhsb9j++qxnpldaxCqVK61mxsZ83Gapihqz9DV//SL54EYobJvtYu1iTSjJUKDBfz88uWrCslr9eI+zGjcYWNburo11Hx4UuPrDOKE5T/X+7+OzyONLvuxz+VOmd0I2eAIEiCOZPDIYeTc9qozUFhV7IkK9mSrGTLlmUFS1pZWmlXG7WzYXZ2cg7kROacARI5hwY6p6p6f380AAJEI82M5J+/53nm4aBDVXV19a373nvuOegiS0Kf4Fr8GJcib5ETaQ6N/oSApYIm9w5uKdmKIskcHTtPTujopg4INFklridJGxmMyTv2FJLJLG2tg1it+cbQ8FAUEJhmvl5eUelnxYrS6WaYw26lvMLHqZOdBIvdXLrYTzye5qFHt2CxTnZPzQlk2Yfd8Qig4fE0ACY2+53Ish+LZTPSpHC3xboDSdIQAhSlCrvjIUDDat2H1boDyNfFw9kYg+mJec/Tam8VD1TswCbfmLEJHGoxGSOKUy2eNXYqhOBitIevtT5NlSPEI5W7aXJXoBSwfv4wIIQgHE3yoxdP8uTrZ5aUNTrtFm7d3sSn791KValvScd17Hw3754ubGQ4H0whePGdS+zaUMfWNdVL2k9ej0HQ3T/Oq0eucPRcF2ORBEKAw6axsqaYW7Y1sXl1JQ6bZc42k+kcAY+D0Uic6KTwt3cJIuoAFlklkk3QnRzGKltY4S7DfsPNUAiBXbFglZW8XbQQuDUr4UySYpsrT2cTc00NZ2JJDSirprFnXR21JX6KZuhSrqsuxWZRQQgM3aSq2AdCcO+OVbjsVpqrillZGZpc4is0lgfZtrKKiuANAhUiRzz1FOnMXNviKShyCK/7V0AuxhAmiVwWi6xgU2cb8ClKCR7X5xgdv3SDuDNc1yP93yTTb+BxfgaH7dbJDnDhFF6S8jSe5UxCVLg8/O3e+6h2+6YpTz+8cibfgMqmyRo6U0LAPbEIP249S65xDWVO95xJmuVAQkaWFKK5EXqTF+hInGI00z09vZQxE1yMvkm9azMuNS+puMG3ElmS0WSNncENmMIknI3kBxskBdM0MQyRF7MoAMMwOXa0nWg0xbr1k8pYQhCJpLDZNaxWDbtdo7GxhJdeOMO2HY3U1oXQdRNVlVGUECjXb0aSNNUg9Ez+XegGAxbLeiyWmSOc9sldCzrigySNwo6WmqRwb/n2abbCTOgig1MtwamWkDEnSOSGpreZ0NN8r+M1LkV7uBTt4UKkm0/W7GV/yXqcyvyK8cvFVCP3Ws8o3/jZexw600FOn18dC8iLhlQG+eTdm9i3dcWiFjEz93Wtd4zMMriqU4jEU3zrycPUVRQR9M01gLxxP9mcwcFjbXznmSN09ofnMBHae8d490wHd+1axafv20LIP9ezTIg8u8RpkxmNJDjfPkhTdTE+1/w105Se4dWh0zzde5je1BhWWeVzdbfyYMUO1BsSKUR+fzUuPzVuP/2JKLowOD3Wz7GRHvaVN6AsEAeWFEz9bju/9sgeslmdztZBvAEXTpcV/2iOs8da+V8HOmhoLuPej2wlVOplW/N1ubli//Xu+S/cN1fbMd/kOkk0/j0EhX8AoOFxfZmwvpb3+i5Q5nBjCkHI7mS1f/bMuSTJOO33kki9SDL9yjzby5HJHmc0dwGrZTMe5yexW/ciy4HJbXywH4ZTs7A2ONte1q7mLYD/25E3KHd6UGSJjGEwlIzRE4uQNnR2ltUQtDumz0tOpMkaKZxqYYX8aYbEZLCXJRm/pQy/pYxG9zbWZ+/k1PgLnB5/eVpmbjTTTdqIo8n5O7N3hiiuOtnwcKrXL85r14ZovTKA02XD7bbR3TVKbV2IWDSNqio0NZfT1jrI0GCE6uoiMlmd8Ykkbx68hNfn4NLFPjRNJVDkwmrTWL+hmqHBSN5XR128KblcmAhaY32kjcIz4I3ucnYUrSz4nCbb8VvzEo0WxYlbyzfVBHBw5BzHw23Tr+1LjfJ/2p6lLdbHp2puocT2YbgYCJLpHAeOtvK9Z4/RPVi4YTIFSYKSIg937V7F/XtbKA955mRbs18vzfn71u1NHD3Xydm2/mVLCZ5t6+cHzx/nFz+6G5ul8ODGVBP7Z6+d4dtPHyGenL95Fo2n+dnrZ4jEU/z6p/fhv0FQPJnJUl3ix+XIj6p39IfzgwUFgmm+xJXj+50H+En3O6TNfGafBDoTw+jCmL7er58P2FveyN1VzST1LKt8JVQ6vUQmhWZu5BPfiGXN5vd2jPL3/+M5HC5bXrIgp7N6QzV2u4Wjb7dSUV3EbfdvWNZFpRs9TET/Gt2Ya7eQh4zb8She1xfoCsfoiI4xkIiiyjKr/CWs9IVm3WEAZNmN3/NbZHOX0I3CdhQAQqRIZ94hnTmKVVuNy/EwDtutqGoNH7ZO686yar66bjut46PEc1kyho5NUdkQLOP+ulXsq6zHN4O4nxNp3hv5MQPpNrYEHsA6Sw0rf9WbQsequCi21U2rNU1BkVSC1mr2FX8BCZlj4acAyBpJUkYUt7a05kFdfTF19cWsaCrl6//ndQxDsG1HI0IIXn35POlMjjvuWsuWrfVIwOmTXfh9DkIhN7t2N3H0yFW8PgeH3mvDatV46YWzrF5Twee/dPMHOZ3zIpJL0BbrKzgOqEkKd5dtxbvAdFEhjGQmeKLnHfQb3EtTRpZn+47QkxzllxrvoclduSRydyHkdIML1wb54YsnOHymg8wC1CdJkigPedi3pZF79qyhtjwwq7M+VSLo6BujbyhfCy0LeWioDBLwXteGkCSJmjI/f/LVe/j200d45b3Ls/yjFoNpCp4+cI76yiLu2bNmWjbvxs/19IFzfPPJQ6TSi29bN0wOHGujsSrEp+7dPN2bWNtYRktDGZmcTjSRRjdMEukMDlthupdA8NLACX7U/RaGMCm3B6iwF9HkruCOso1Y5bllM0WS+VzTXMnM2avf+SEtwv+c9WQ6meXZHx+hdkV+8mWof4JsRqdlcw2pZJbK2iDBYs+Sg6lhhAlH/pRY8nEKO4dKOGx3EvL/JbIc4MzYAM90XsBrsWMIkwdqVtPoCxZ4X/6CiqeeZGz89zDFUovrEopSht26E4ftLqyWDahK6YceWBeDKUwuRd/klYF/JG3Gp2edr2MqVAh8WikPV/4epfa5WgTA5Fx+Jz/s+j2SRgSH4uXRqj+g0rF6SceSyeRoax3k1IlOVjaXs3Z9FfZJvmJ4LM7X/uZlksksv/eHD+Lx2OloH+HNA5dY0VRKy7oqTp/spLV1kG3b6tE0lW/9y5ukU1n+8E8eoaR0dvPg/EQnl6I92BRtSdqghTCSifCT7reJ63ObnT7Nyceqb8ZvWdz9dQoCuBzt4bm+IwXZAVNocJXxGysfocVbM+f6NwyTc239KIrM6vrZlKJsTqeta4Rn3jzPm8evMhGbv0nrtFtorA5xy9YV7N5YT0XIM8fCOpZI88LbF3nurQt09oenqU6aqlBXUcQjt67jjl3Nc4JQJqvz5omrfO+Zo1zrHUUIKAt68LrtdPaNLTi2Whxw8fs/fydb18wWHzFMkzePX+V/ffv1BT9XIaysLeYvfuNBigNzGz9CCAbHooBEScBdUHi8PT7I7579LiU2Pw9WbGeNtzqvR7EAp3uJmDe4LSuY6jmDn3z7bfq7x0jE0zicNu792FbsDivV9SFkeeGZ+5kwzRjj0b8mGv/OPMt7FYftDoK+/4qi5KcPOqJhLo0PUeXyc3ZsgG3FVayYJ5gCCJFlIvZPTMT+FrEEc77Z0NDUaqzaOmy23Vi19ahK+aSB38I/9LSRQZYkVEklrifQZA2bvHD3d+b440R2kGf6/hd9qYX1CQAUSeOesl+nxTe/0lBSj/BY1+8ykunEKjt5pOr3qXVuWHTbAOl0jshEEn/AOd0ZnjlyOTwcJR5LU1sXmqZITUwkcbvtpJIZ4vEMRUWuyc49hMNxhoei1NUXY7uB3nU11s/vnv0Owws0j5aChUQqllP7XtoW81AlhYcqd/JLDfdMT9RMobVrmN/6q6exWhT++6/cx4qaELFEhovtg7zy3mWOnO8iPJGYsw8J8LjtVBZ72bKmmm0tNayoDuFy5l1Kb1zS9w1HpiXz5uOLOmwaD96yli89vHOOlqkQgmMXuvlP//sZUpkc+7Y08iufvJmr3SO8/N5lTl7uJTJPUFxZW8zv//wdrKgOMeVBf613lD/5x5do617cy+1GuOwW/uq3Hmb9yuW5kULeYO9b7a+iSgofqdo9XR//kOra825k2SnXrv2rkIB//foBXB4b4ZEY/T1dnDnazl2PbJ4lVTcfDDNCJPb3RBPfLxhIJcmG0/4AAe9/RpFLp09CjdtPtcuXVx5XNUocC2cYkmTB6/oCQsSIxL+1zICaI6dfI6e3E089hyL7UdVaLFoTVm0NmtaMqpQiSx5k2Y0kaeRMnXB2nMNjJym2BWnxrOTJvpdY5W5kpbsBj+bGxOR4+CylthAxPU7ayLDGu5JoLsY7o0e5o2QvXYmzDKc7l3SUQpgF/YtmwiI7sMhTo40Ghrn0pZzNpmG7IYOcgiRJlJR4p0dDpx7zT85suz123J7Z9ayiIjdFRYVpJnWuEh6t3E00l6TGWTynfLMYxrJRfth1kLFsbM5zzZ4qHq7YNWsy6f1AF0kyxgS6mQ8qTq0cSVIwzSiN7hpMEccwnSiTKlJCwNsnrzEyHgMkfvb6GSqKfRw538WVziHiycx0rVJVZDxOG36vg4bKIC0rylhZU0xNeQCXw4IiF2YOTAXSP//Waxy/2L1g7TOZzvHUgXMUeZ188u7NN4xT5zvkU5le/m87N29pZGtLDZc7hnj9SCuHznQwOBabVZNt7Rrm64+/y29+dj/lIQ+JVJafvnKaa70LWXcvcJ4Nc0nZ7Mx5+qlzM5FLsMJdwa5gMzblw9dang/Lq5l2jXLghbNomoJmURGm4LkfHyUWSXHfx7ctaSJCN4aZiP1d3kpZzLULVuQgHufn8bg+N0emS5akaQn3Bu/San6y7MLr/iogEY1/G1PM/aEtDAHkMMxhjOwwmewx4mhIkg1FCaIopahKKRZtLVn1dr7f/SoT2QirPU3kTJ22WDtpI01Hood7y2/FIls4MPwu2wIbyJo5Tk9coDvZR9Aa4FzkMreV7KHSsZoN/ju5En0Pr6WE+gIq+VF9lO7EGVp8t1HlmMtPnAlFUtEmZd9MDIwlKs3/e0OZHA2EfKa3HBaFEIIXB46TMOY2OByKlYcrdnJX2eYPnJ2E0xcZTl0jZYwiIdHo2YYuMgyn2kll27iUTtLgfRSPpRbIj0UePTcV4ATPvXVhUnBHw++xU1seoDzkpbLER1Wpn/KQh7KQF7fDiqYpyIsorEGei/qtpw5z/GLPkppIqXSOZw6eZ8+mBmoWkOKbgixJOO0WNq2qpKWxlIduWctbJ65y4Fgb3YPj5HQTIeDouS6+/dRhfuljuznX2s/B41cx52GBLAZJkqbFTBZC1tQ5MHyWoNUz7TCaM3Uq7AH6U+FF369IMl7NiVdzfOBrY1nB1GJV0SwKI4MR4tEUpmFSXObjrkc2Y7Vr5HIG2jwnIM9Jvcp49H+RTL0yY7JlCgoWbTU+91dx2O5AlvPUne6+MO8dv8Z9t61DVWVeOniByjI/61ZVoKnKpB5mXht0YDjKG+9cZtfWBuqrg+i6gaLIKLIXr/urSJKDaPybGOb7u1tOfhIEWYTIYuoxTDOOIgdQlTISQsImW/FoLvpSg1Q5ynGqDkptxdgUKwk9idViwSpbGM2Oo0oKDtVOb2oAuzKVwUkELBXsLf4cdsVLxkiwI/iROUfRn7pCLDfMJv89NzSn5kKSpOnMVAgTcxHR7X9rZLI6hmFis6pzan7z+bEvhpie4o2h06SNuVl6i7eWHcGFVeWXimiuk7QRJq2H85QzSSJnxEkb4xhmiliul5HUSdxaNSDRMzROR/914RDdyNOcykMOPnrHRnasqyXgdaCpCqqyfM6qaQoOn+3k4LGrS9a/ABgci3Lh2uCSgukU8gFOY0VNiLrKIu7cvYr3znRw4Ggbbd0jJFJZXjt8BUmS6B2aWHaddCb8HjulwcWJ8kkjw0sDJ7gc7V20214IFllltbeaX1lx3yzn0veDZV25ZZUBPv6lvUTGEyTjGRRFxjRNyquKiEVT6AU6kPkvOEsq/Tbjsb8hkz0FN6i2y3IRTvvdeJyfw6I1I0kqumESjaW41jnCSwcusHNznrLy2luXqa0qorN7jFv3NONx27jWOYJtUgLu6OlOLBYVp93Ca29fZs3KMlqaK1AVL17Xl1HkIBOxv0c3uliKt9F8kOUinLY7cDkexWJZiyy5GE8NclNwG6cnLpAyUsiSzDrvKt4bO06Dq5aV7gYMYXJTaBuvD73D1sAGvJqHc5HZtVFJktAkG1bFQdZMIhdY7uYfk5BZmvWwOilFKBAs5Or574GjZzt540gr9+1rYfOa6sXfsAiEEJyb6ORidC5zw6M5uLd8Kz5t6U2nqW3C3DqbXSlmXFzCqnjImUmEMFFlBxbZhd1Sjyxr2NSiad3S81cHicbnlrK6B8f51pOHOX25l9t2rGT9ygq8bvuyK7qxZJrn3rpAMr04qX8mDMNkYHRxN9MbkczkyOo6LpuV0qCHj9y2gf1bmzhxqYcDR9s429bHy+9dmr5pvB+oiszO9XWUFs1vmDiFlJFlKD1BXJ+PVrk4Do9eYXtgJQ9UFhZLWSqWbainaQpFITeBoJv8qjv/9Xv9hZR+TAxjgFjyJ0Tj38MwB2/YngubZStu56ew2/YgzxAiyeV0OrpH6R0YJ5HMcvJ8D8IURKIpcrqBy5lXNLo8OMH3nzjCmpXlCFOwY1Md5y/3k0pluXwt7/DYWFuMy2lFlp24nR9FVcuZiP4t6ewJCrMIFoKMRVs7mUHfgiRdJxfLkkxnsoer8Q5KbCGEEDhVB7FcnIyRQZVUknqKuJ5kIhclZaS5ELlC1lzeD+H9QJ5mJIh5LUj+vdA/GuWt41e5ZfviMnhLQdLI8MLAMRI3dPAlJLYFVrIlsGJZGV8sl+LtkfMkjQzbi1ZSbi+azno02YnAxK6GQB8lkr2Gz9qEQy3BZ20iY0xQZFuHLCnohsHxC4Upf0JAOJrk9SOtHL3QzdoV5dy2vYmtLTUEPI4lWXIIIbjSOczFa4OLvnYOJKkglWk+ZHWd/nCMY9d66B2LsKm+giK3gzWVJYQCLu7Y1czOdbUcOtvJ1x57k7HI3BLeUmDRFLavreFjd25c0jJfkxT2l6yfFDRf3q1oKD3OkbErZE29oAL/cvG+1lR5pfy5j00hP8URJ5U5RDT+L6QzR2ZNI0mSC6tlPS7HIzhst6LIoTkdcrvNwuZ1NYDEc6+fx+20YpoCRZVpbijlrlvyzobReJrdWxtY21zBv/7sCCtqi+nuD7NvVxN37F2Nz2vHatFm7NuC3boX1V9BJPZPJFLPLTjCOhsKdutuAt7fw6K1zBpFhXydbywzjkXWqLSXMZIZQ5VUXJqTfcW7CFkDWGQL1Y5yqhzlbPCtoTXWjtfiLsh7+zAxRTW6bh78/rCQ6PJSIeU3MD3XbZgmuZyBdR7i92LHc2r8GifHr875VMU2H/eVb8OlLt3sMGvkeK7/CN/vfIOMkeO1wVM8WnUTO4OrcCpWvJZ6mv2fIz9jDIpsQ5UdlDl9qJINmzuANll2GR1PcLVn4U62IH8Nv3uqndOXe1nTUMo9e9awY10tXtfCk1W6YXLyYi/RxPKzMk2RqSlb+rJWkWUu9Q1z9GoP5X4Pjx86x2/et2f6eVmS8LhsqIq8IEe2EFRFxmGzUFXq46ZNDdy1axWlwYUV3qZQZPXw+bq8C8O03jiC9vgQIaun4KRb/jXQmRiiPT6ER7OzxvvBV0gfKoFSCIEgQzZ7gVjyRyRTL82oT8rIsgfr5Hy93bYHRS5elGYE+XE5x6Sc39S45VSdtKm+hFCRm0PH22moCeVFOARUVwQoDrrzTYw5gV9GU1cQ8P0BVstaIvFvktM7uLH8cMO7sFk2E/D+ARZtTcEvOmQt4lM1D/NE7ws4VQd+i5fxbAQZBY/mxqpYMYRBZ6KX9b7VjGbDuFQHD1bcyUgmzLJHUN4n3s9epgLwYLodTbbi00pQJBVD6AxnuvFoRZMKVVmSepRS+9xBghsPIp3ViSczXO0a4Y0jrTx8+3pqywPLCqgJI8PTfYdI3LDMUyWZfcVrWempRBfmkj/05VgvT/cdnuapXox2033lSU6NX+Xj1TdT5QhhV0JzjnFKqs+i5JemQgg6+8MMjS294ZlIZTl6vpvzVwfZuKqSB/e1sGlVFU773Fn1qdefvtK75O1PQQJW1pawuqF00ddOQZFlTCGwWzSqgz4u94/MaTgnUlkOHGtbcMppCqoiE/A6aKwKsaq+hDWNZWRtJvUlReiyoDMyQa3Xlz/eSarVpdERSl0u/DPMJ2VJmrHqyiNtZPnXzjeodZZwR9kmSqxeNHnujdqrOdgcaOBj1XuodMxPsVwqPpRgmg+iWXK5VuLJp0mknp2cPBKABVUpx27didNxP1bLRmRpYdksIfLEdT1nkptsInnddkwh0FSZRDLDO0ev0lRfTMDvRFFkBkeiuF1WinxObFYVt8vKu8evIQE7N9fPsWqQJAlF8uF2fhqLZT0Tsb8nlT4wr/yfqtbg9/wWFm31vMcuSzI2xYZFzjeZ1npX8frwO2iyikXW8pMp2QmcqoOQNcDPel9kZ3AzmqxxPHwGn8W7bDrQUjHLx33y31Q8TTQcx3tDFjA2MEEmmaFmVQWyIiMQZIwUw5kuzo4fwKo4CVhKaXJvQ5U1htKdRHOjpI0EGTOJXXFRaq9b8HgM0+R8az+pdJbhcIx4MsPZK31Ul/pRlrj8FELw3shFTo/P1b9Vpby4xY+631zStvIbhAuRLgZv6ALH9RTP9x/jSqyPz9beyo6iZiwFfpwzYZqCs239SxZxnolkOsu7p9o5e6WPXRvqeOS29TTXlmDRZtfHB0aj9I8UHkhR5Lxafb5cIMHkzL+qyjTVhPjSIzsJ+pdeRx6PpxgYj5LK5ogk02RzOm9ebOfju9ZjmfxtdfSNcaa1b8HtWDWVxuogO9fXsXtDHZUlPpyTfNd3erq4ODpMzjS5Nh5mQ0kZG8vK8FpthFMpvn7iKJ9Ys47tFZUoC5z7kXSEy9E+3h65yBtDZ9kRXMn+knU0uspnfW82xcLe4haqJwPp9V6CDixN32AmPlAwnc5Ec5dIJJ8mkXoR3egFJBS5CItlLQ7brditN6OpNUjS0jlfo+E4Zy/2MRqOU+R3cq1rhGzOoLzURzSe5ujpTnTdIFTkpn8ogt/nIJPR+dEzxxECXnjtfJ6PareQTGXxuAsv9SRJxaptIOT/K+KJnxCJf3PyM8wIPpIDr/OL2Kw7lpRJ31ZyE5qsYVUs7AluZ4t/PQGLDwCP6mKLfx0g8dnajxCw+FAllfvKb0NGwq68PzOvxTDVwc+L7eU/w2DnCN/8Lz/ipge3Mj4cYbR/nPU3r6L1RDsnXj/P7333q1Q3V2CYOqOZHobSnWRFBkyJWC5Md/Ii5fZGIrlRwtkBsmYaRVLJmRlkFr4pKIrMlpZqdm5YOOjOByEEo5kIP+55i0wB3mzazPLa0OllN3QEzKuD2hbr4y8u/ZRP1d7Co1W7sSwgHJ3J6Zy5snBgWQyxZIaX37vMqcu93LV7Fffd3EJFiXd6ZLV3cJzIDc0tl8PKqroS1jaV01BZRMCb540m03EyGQ2Xw0pteYAiX74UYYocEsqi17UsS1QH8+LIq6tKGIkmqAldV543TJN3T3cwEZ0nGVFkGquCPHDLWm7e1EDA55w1ejuaTBJOpShxulBliUujw7zb28W2isq8hmp3JxtLyzkzNEi5202Nt7AqVj5hiZM1c4CgOzlCV/cwbwyd5e6yzTxcuZOgNT+l6VKtrPV4MYxOhEhiGkMoSg05/SJW6z4kafEG2KzPuKxXcz3DESJGOnuSePIJUum3McwRZNmHzboTu3UvDtseNLURWXay3MKwJEFxkZvb9jRz/EwXbx1pIxhw0VRfQjarMzgS5Z79LTQ3liDLMi3N5ei6yZuHWykNebj3trW8dOACxUE3D9yxDofdMhn4dbJGBIviQ0JBYCCEjixZUWQfHteXsFl3MBH7e5Lp16d5sHbrzbgcDzOf9N+N8E8GTgCP5sIzo5NsVa5PnZTYrqslBa0fjJaxEIQQZI38RS6hTLMDTMMkNp5gza4mjrx4mshojM23tiCE4J2njqNONgAkSUIXOfqSrdhkJxkzyUCunVrXWkxhMJzupNhWi1OxABI5M4MusmgFFJ8+LBjC5Nn+o1yLzW0cSEg0eyr5uZpbKLIsTq+ZiXA2xv++8hRj2cJ19Kie5OWBE9xasoFim6/ga4QQDIxGl2V4txCGw3H+9bnjHDrTySfu2sS+rY1YLRo9QxPTik+qIrNlTTWfvHsTaxrKcNotCJFhLPUWdq2KeOYSxa4HkGaYBmb1ETojX6PS8wUc2sI3NafVwvYV1exv0VBkmcaSIlRFRplslI1Hkhy/0F2wi+9z23l4/zoe2r+O4sBcNSgAVZZoHRtFk2VcFgunBgf5zR27sasqnZEJvDYbWcNgIB4rKFU5E43uMv58w+fpT4W5FOnhcrSXzsQQj3W9SXt8kF9svJtaZzESMhbJIJ16FUl2kkm/gdV2KwiDQtY5i2FZwVQInZzeRSr9BvHUM+RybciyF6tlPXbbXmyWbWhqHZL0wQmwOd3gytUh3jvRzuc/upMNLVVYNIV7b1vL33/7IE+8cJL/+Au3YdXybqMXrvSTyeh89XN78XnzJ+Iv//FVdm9toKm+hKTei2GmGEq+hdfajMfSzGjqELqZpNJ9Hwp2JEnBallHyP83pDJvEk08BiKH3/NryPK/nar4vzXSZpxobhiYJPDPCHLZdI4L77XS2zrAxHCEUwcv0n62G1mVZwheT06gOddwLX4au+Km2FrDRHYYq+zApfqRkehPXcWqOEjoEXSRQ+PfJpgKITgX6eTpvkMFs0inauWT1fu4OdSy7OtwKD0+75SUQ7GyypPXQg0sEqQ7+8JLEnNeKkwhaOse4S++8zqHznTwyG3r6R7Iq0q5nVY+dc8WPnL7hhkjooKMPoIp0pgiSyLXRiR9HK9tMxL5FaIhkiSyV8gZo7BIMFUVGa/j+qop6JnNbb7aM0pn/+zyiCTB6vpSfuEju9i8ugq1gPj5FDxWGz6bDd00SeZylLvdHO3vZXNZOUG7g0Q2S38syt2NTZwbHmJbRQUObe5KV5IknKqNZk8VzZ4q9pesJ2Vk6UuOcmSslYPD5/ha27P8hxX3U+ssBkx0vRVNW48kWRAijWkMwiIrq4LnaKkvFEInkXqeePJJQOCw7cPq+Q00tQFVKVty1rYcFAWc/OKn98zyOPK67XzlszeTTGWx2zRMQ6DIElvX1+Ce0f1cvaKMP/mt+6go8wMwkHiVRK4HRbKT0geRJJXx9Fky5gRJvZ86789hV0sAkGUHTvvd2G23TN+lPkwBYCEE4YFx3nz8MBv3t1CzunLZzqZZI0VMH6M7eQ6rMj9pXzeztMUOMZrNU3Q02TbtfAp5EezGDbWMD0eIhuOs2tpAanLpeL3MKnCqPiyyjcF0Jx41QK2zBatix6a4cKpe7IoLWVKQkVEkbZZ/0VLPCSzOEsgLt0T4VvvLjGcLO9jKyNiU5de8FsMmfyN/1PKpReulumFy4drAB+Jazod0Vue1I62cuNSLYeYddn/543u466ZVc1TvTXRi2XNY1VJkyYZVLWPKX0sIQc4Yx2VZw0T6OG7rBuT3+RueGhyYyXVVZIndG+v5lU/cvCSh6qvhMSbSabKGQc40CTmcXB4d4Wo4jKrI/PWRd6n1+lFlmSN9vWRNg9vrGuawiAwh5tiL2BULje5yGlxl3FO+hUOjl3lz+Bzeiu14FQVJsiJECklyI0tuUN7f97aMzFTBYduP3bYPWXKQj9zSsoWTF4MQguF0hJwwaGcYfdxga1EDx8auMZKJokgyVlljlbcCWZJQNJlQgVlvTVOorwlNb9OiBMgaEdLGMKrsIGDdQEYfJZa7Nlk3mhvMZMm23ArFkpBN5/jh/3yKZ//pVUprQnzkN+9n/yd343DblxQATGHSGnuP4XQHT/T8t8Vfj8lUDdihevFMyu+pVpWSmiDDPaOMD0VIRJN0Xe4jnUjTvLUB+6SSuSKphKx5R06b4sIiWXFp+ZuUIXRavHuQJYViW820QLUqL70+LoTg0rVBjpzt5OHbNyxICUqbOX7W+y7nI11L3v6HBausLRpIIX9D2LCyAiFgYCTCcDhOLJkmlsgQS2YwPoQgOx7Nl6AaqoI0VAULjHJLWJRiEIKMPogqu9Bkz/RvNZ+tXqPU9Qjh1Nv0x35Ametj7+tYIvEUl9oHp0dHZVliz+ZGfvWTN1MWWpqKXLXXy5c3bkZC4kp4lHg2i0QFIacTi6Lwn3fdTMjhxG21clNVLZaZkoNANJOmIzLO6eEBgnYnm0vKMYXgwtgw20or8Frz15RPc3JX2SbGswkUSUZWQtidnyaV+AGS5EBWSlDkBiAL5MtWS8WSg2meW7q8+tP7gUBwZOwqsiRR5Qgyno0zkokSy6W4GhvErlgos/vxLUOT0iSHx9KEItnwsoqsMUFC78GmlmBRAkSzl9Hk65SWXCaHJMtLIk4vF6YpOPzcCV7717cxdZP+a0N843f+lfYznXziPz1EcXVw0Ysvpo/SmTiDWFAUbi4kZBpdW3EqfoQQuDwOPvJr9+Bw27hyoh2LzYK/2IvVbqXzQh/hgQk8gdkd34BlNp1GkVSKrHmDQL+lZM4+szmd4+e7CUeS0xS1/uEIteUBLlwdIBzJqyWdb+3navcoXreDB/evLdjR102DN4fP8mzfEYz/y1NcC0GRJW7a2MCu9XWYkyrzkXiacCTB0FiM7sFxOvvC9AyOMxZJMBFLva+uP0BH7xh/+o2X+dwD29m3pfEGorvAbV2HbkbRzTgjiZcJOu9Ak/1kjUHc1tU4tSasaimjyVcxC/heLQX9IxG6JksOkgSbV1fxSx/dTVnIQzadA0nCuogBpE3VpnVDt1dUzaIJSpJEU9F16lKlZ25jaDSV5PlrV4hk0lgUhWqPl6faLmFTVLKGzt6qOtyWvHKbhETA4gIEpjmEaYSx2u5AiDSZ9GtIsgtNbYZlNMzh34BnCvMv1bJGHFNksSrzq5KLyf96EmMYpklUT1HrLKYvNU7W1Enq2bxtiZEmKLkRwiRljGGKHBbZjSY753QmZTS8lmY8liYkpHwmKilImozApMi2CXnyxJmGyXP/9BpXjl/7NwumV45eJTFjQiQVT/PStw+STmT46t98HrffNUOxdG64HMv0kDET2JWldRsl8rP5da5NbA7cP83LS8ZTZFJZMuksqViabDrL+HAUIQQN62vILMF3aDGoqsL65srJ48hj39YVmAJk+fqqZt/WFQghUFWl4Hk3heDsRAff73yd2CQH1CprmEKQu0G4JScMLkZ7MN4Hb3cil5hWZX+/mBpqkSe1My2aisthpaLYS0ujwDBMdMMklckxOBajeyDMte5RrnQN0zM4QTiSWFA/dCZMIWjvHeOvv/cGV7tH+MRdm6YFoBXJSch5D0LkyHOopfxqCwmbWgHIec61XESp66NIKDCv28X8uHhtkEQqzy2tLS/iy4/spLrMj54zePEH73HxWDsOd2GWiiRJhCr83PHxHQTLfPnH8k8s/QCEwK6qeeqkouDULGT0/PkzEdR5/ThvqK/muasgyyEs1gCQD+RW217yEcjGcpelH2owNUWOgeRRNMVJwNqEOqPWaAqDSxOPMZI+zxrfpyl2bCzoSS6EQJVkorkUHs1Od2KUkmovujBIGTlypo7TtDL1QXWR5mz4XxhJncWlVeDWKvFbGym1b8ahlkxe2Hmu3dRSXpnp/YLCTNtoWZGpWV3JUNcI/hLfkgPqQMcQL33rAHrOwO62sX7vGurXVePw2GeVQYQQVDSVY7Wp0zffXM7ANE3KakIoU0V6ISbnu2WEMGfdIAKWCu4p//VJO2BpevsCMISBLMnIM/YpSTJO1YtHK0aT8sudZCyFzWGlvL4YAE+RG7vLRlldCEVV6L7Ux6kD56ldU4l1CbKK82FKceiDQAhBR2KQ73S8Su+k62jA4uYjVTdxcPgsrbHZFKSUkeGHXQdR34fwhQkFxVI+LEiShKoqqKqCzarh9zhori0mt9Ukk80xMh6ntWuE81cHOH91gIGRKLFEGnORG0MknuZHL52kZ3CcX/jILmrLi/L6wqhQcHji+mP5bO39hQLdMDl/dQBdN/G4bHz63i2sqS9FliRisTSn3rrMcF8YSyFFfCEY6g2Ty+iUVhex/5H53Vwhn+h0XRlAs6p4/E4cHnteQ5d8ZprIZSmyOxhLJXFZrKzwBwin01wcG6HeF8B+g2J+Pi6ozA6D75+auKQzKIQgqQ/TnzxEzkygyW68llr81kZU6XqdT2DSm3yXvsS7lDm2Uuu+A6+WHwlN6ENci75IQh8gmu1hjf/T1HvuRpNnUxAMYVJq8xFzpfFpDqK5FAoydsXC5kAdqqQwlI5M+8zrZopwupWJbDsT2XZAwqWVYwm6cKhzl51TnwcKZ9BZ3aDl5lU0bmvA4bAtmUD++F89N10zyiSztJ1ox+mxc/9X7qB5WyOSLJHLGvT3jXP8aDsrm8soKfUyOBhhbCRGMpll0+5G7JN3cAHUOtajyXPvkD5LKb4Zy+1ILs6p8Vacqp2skSNo9VHpCDGejTGaieDRHLTHI1Q7k5RMWqNMjETpbx+eXk6V1YXwl3jpu5qf87bYNDSbRjaV/UDB9INCCEFfaox/ufYyZyc6kZBocJXxmdr97A6u5ujYlTnvscoat5SsL+iTvhjieopn+45MZ7//HpAkCYumYNEU3E4bdRVF3LK1kUg8Q3vvKKcu93LyUg9dA+PEE5l5A2tON3jrxDVGJxL8/KO72LSqctlWzMvFRCxJR18YSZa4bcdK9m5pnB6QcXnt3P6x7QRKvJTXzf0uhIDnvvMW4eEINU1li+4rncry3T9/lu4rA5TXF1PbXM6KdVW07GikPuBnX1UdsiRj11Qa/QFcmgW7ptIbixYcLtRzBh0X+3D7nRRXBj7wSnTJtyOL4kZgcnH8scmA6qLOfSdrA1/EMtlNlvISrST1Ya5FX2AweRK3VomETM5MkNTz9JyEPsC58LdwaeWUO3bMCmqqrNDiq2KVtwKrrJE0MmiywidqduFUrciSTEJPT8+yJ/URUsZ1ST0ZlSbvQ5Q7dxb8HLqZojfxLlbFS8i2DlW+Tt8RQvDq8VZkWWIinqKlroyygJuekQnGYylkWWJtXRlB7+x6bTKa4uiLpzAnGwumYTI+NEH35T5G+/J0EVmWyWQyXLnUz7kz3flsVAi6O0e5cmkAIQQ7b2qaPheSJBG01SypuTeejXE0fJEKe4jWWDdrvQ04VSsnxq9wKdqFR3USycVp8dZzT9lOFEmhrK6YsrriD73j/WFCCMFwZoJvd7zK4bHLWBWVncHVfLJ6L43u8nkl16yyxv7idewIrlr2PofS4xwYOrvsYJqMpcimc7j9TpQPGMCmpO6KAxrFARebV1cxHl3Plc5hTlzs4fiFbnqHJgqWAkwhOH91gL/4zmt8/sHt3Lp95bxmdx8GhsfiDIxGaKgM8uit66dXIUIIErE0yUSGSrcN3zxyervuXk+w3IfHv3gPJJ3IMNo/zkDXKANdo5w8eInKxmK+8HsPsuPOddxVP1s4p8qTFy0P2uduWwhB+8VevvY7P8LpsfHx/3Ana3eumEEHXD6WFEzzknAO6t13M5w6S0fsJXQjTXvsRWrc+/HLTehmClWyTdZdAAR+awMbi76KLCnEcn28O/hfyZgTABTbN+LRqubsS5HkWZ1J96QOp1u7PsHkVCezNyGIZDvJGtfnn33WOmpdd6AUKB4LIRhMneTE6N8BEk3eh2j0PIhNyXem46ksp671EY6myOo6boeNZDrLpe4hhibiSECxzzUrmAohuHz0KldPzvYeb9xYx6987Ys0bqxDUZV8dp/M0NsTxm63MDIcJZ0qxmJVyeUMdN2YVSZaDkNCCIFFUkkbWXTTIGVkSRlZ+lOjhLNRTGEykBqlxVuPicjzMKTrpYFLA8OoisyKUL7Lv5i9ioA5thkfNoQQDKbH+Xb7K7w1fI4Sm4/7K7ZzV9kW/Fph4vf/TRx8/DCnDl7kF//nz+EtctF1uZ/y+pJ5a4XLgaYqFAfchPwutq+tYXA0xrELXbxzqp2L7YNE45k5Wqa9QxH+4UfvEI1neGBfy7zz/R8U7b2jmKbg4f3rqJmhq2AaJu++cIY3njiKZlEJVfgLvr+4MoBmXVpOl0pkiEdm3OQk2HHnOjbsua5Vm0llGR2YQFEX1obNZnRe/P47tJ/vwRSC4d4wn/i1u9j74Ob3vRJbVqFEkayU2DfSEXsJuK6NmdbHSBnj+K0Ns4KAVfHjtdQhSRKmMGepLFU6b8KlVcw7EpYTCUyhLziWaAqdscwldHF9uqfcsQtVts8KsFPImnGuRp4mqY8AgnPh7xLNdrOu6Mu41HIEgngqi24YKLKEbuSVjKyaiiLL6Mbcjque1XnlewdJzhDCtbtt3P+VO2jaXD8rS3G5bZSUeimv9BOZSOWDp4DVLRVgCnJZHT2n52eotaXplE4hJwyypo5DtZExs/nzjYRV1hAI7KqNnNBnjfANRGLEM1kOtnXgsGgkMlmsmsqqkhAZU+dSZJB4Lo1FVmnylBDNpXCoFrriY6zxlWNX/22W/0II+lNjfOPaSxwLt7I50MjHq2+mxVv7vsWjP2wkYynaTndOrkYkWk920n2lnwuHWolPJHnth+9y88Nbuf8XbkXVFj5mIQSJVJbWrmHKgnml/ULIlwNUqsv8VJb6uHV7E5fah3jl0BWOnutiPJqcVQIIR5N8++nDJFIZPnbHRjyLqFDdCNPMU+qEyDfNlALi1Z39YdauKM8v72ckQYZhUtVYwqd+425e/tEh3n3h9Lz7qVlZxqO/dCsO18I3nlQ8TTx6vXHrcNlYubEWu/P66jKVyPCvf/k8vVeHFuRum4bJYPfodGluoHOUf/mvTzIxEuP+L9yMzbmwZ1shLPPKlAjaWghYm0joI9S578BrqWc0fR6HOikWMK28JKFJ8/MmpRmeLXMhGEye4NL4Dyc7z4VfZ4oskWzn9N+ypDGQPMpo+sI8r88R1/uxytcv1oHkMVxaBesCX8Rtt+Jz5r9QwzBRZJmxaIJUVkeRJQxDmnUoQgiuHG/n+MtnZu3H6XHMoRQBOJ1WbrltDZIskUnnJsW1BZpF4c2fHGKwbYD24wncfherdqxY8nJRlmQaXZVU2ENcjnZSbAsggI3+JhRZod5ZzqVoJxt8KyabVnkc7+5jMBoDBBJwoqefwWiM37tzHxJglVWeHWzlnooWEnqG7kQYQwi64mOYQrAuUIlN+XCHNUwhuBbv51vtr9CXGuMztbdye+lGApalSbL9e0GYeebByGCEUGUAp9eOZtGwOqy88O2DrNrWyIZ9q+c4CczZjhCEI0m+9+xRXj18hTt2NvPrn9636P5lScLndrBjXS0bmiu53DHEC29f5L0zHXm62WRMjSUyPPbCCRKpLJ97YBu+RbjMMxPcSDxNTjeIxtO8eeIqt2xdgds5O+A115WwZ1MDfu/s3oeqqZRWFxEZi+ErcpOIpQv+ioXIJxFiCfYmE2NxMsnrzUG3z0FV4+y+iMfv5P4v3Ew6lcPjm790kE5m+OHfvsTJg5emH4uOJ3jsf78IEjz6lduW3C+ZwrLFoX2WOvaW/Tk5M4FLK0dCIpLtoMjWPMvcTUbBphZO7Rffj0yxfT1W2YOmzKdsI+iJv8VYJq9SL0sWVvs+SbV7//L2hYRF9jAVJVvqyhiLJpBlCZ/LTsjnQlWU6SV4kTv/BQkhSMXSPPW1F4mMzs6CE9EkI71j6Dkj/2OSri+JXZPLPufMu2k8TceZTq4ev0ouo7N2zypW71q6cHKpLcAtxZtxqjbqnOV4NCeqrJAzc9Q6y3CrDlq89RRZZqt1GaZJzjCn6Wh5ObP82mIim+JMuIdz430ELA7WBSo5PNxOucOLieBUuIdKp59yh29Z53shGMLkRLiNH3QeoMTu5/frbqfRXTaLfbEUCASGMMmZy/e60k1jSXqvTq+Dxg21HHj8MHpWxxv0YLXnbyzRsRhun4PSmhDSAk0NIQSxRIbvPnuUJ18/S0435lWBmg+SJGG3amxYWcGahlIudwzx+KunOXSmc1oKL5XJ8eQbZxFC8MWHdiyYoeqGOR1Q+4Yj9A5FKAt5eO6tC6iKzN03zVZNu23HyoLbyaazPPmNA6QSGe78xA5kRSYaThQ8H74iFzbH4qucoZ6xWZ5SZbUhfKHZ9EBZkVm9tWHRbfW0DTLcc338VZYlVE1BtShcOdmJntVRlrncX/aaSZJkXNr1ztt45ioCE1WyYYgsGSMvECFLGh5tccHVfK1HgCTNKhHYFB82x8Z535cxooxn2jBE/oIpsq5khfchnFrhDv5Scf/OuX7yq6qLCx730RdPceSFk3OeK64KUt5Yyk/+8hmCFQHq19VQ0ViK01t4LFXPGZiGiSTLWGxank61jCzMqliwTrowhmaIbyiKFduksIpDnbuEWldRSl2Rn0MdPaiyzIbKsmkDt2Kbm7X+Ck6He9lcVEO9O8jpcA82xUI6m2RbsJaAdemDE4vBFII3hs7w1vA5Hq7cxfaildiU91fnSxoZvn71BX7QdWDZ782ZRkF30znHa5hYbBrr9zQz3BsmEUlimoLBjmHu/dJ+6luqePrrr3Hvl27BPU9zJacbPHXgLM8cPD+vNfNSMVUCWNdUQVNNMUfPd/OTl09yprWPnG6Syeo8deAckiTxpYd34nYW1k3I5nSmpuWS6XzpobYiQMDj4OmD59m2tpbgAhnf9GfLGkyMxjj7bhsnDlwESWJiNFbA4x5Wbqjh9/75i3gLrOZmYrB7bFZtuH5NJXanFWHmSxFLHckWQnDu8FVG+sNIkkRlYwl7H9zM2p2NOFw2fCEPlkWGDAphwWBqCoPR9EWGU6eQJRWnVkbAsiKfkUp5ncuh1AmcaimyZCFtTJDQBwBwaqX4rfNnV1N81Hiun3DmCk3eRymyNi9J4i7fSDrOUOoUAJrsYqXvIzjUuUEPYCx9ibbIM5Q7tlHm3D6HjrVcCCHoudzPY3/2JOlEASFcCWrXVJGOZ3jsz55kqGuEsvpi1u9dw877N9O4sW56VBPA6bFTs7qS6lUVXDrcRll9McIUSJPLDCEEcT1MzswQmJw2+jBQH8wrVZ0fGMJjs9FSXjK9v6SRxapoPFKzkYODV+hPTVDrKqLY5qYnEebIaCfVrsCHuMwXVDmC/EbzI/g05wda0gshSJs5ZH35PFNdGEsyprtwuI2eK3nFqshojHeePk4mleXikTZWbWvkxOvnGewepe1UB5v2z3WPNQyTN4628cMXT5DOvL/Jo/lgs2rctLGOeCrD5c4hcnp+tZjJ6jz5+lkkSeLnH9mJo0DmFUtkUGSZDc0VfPT2jexYV4PVotJYHeL7zx7jjSOtfPSODYt+P06PnV/8k0eJhuOMDkxw4Wg7549eY8PuJlZvrUeWpXzIFgLNoi1aLxVCMNA5Ml0OsNg06laVoygybz1zgndfOM2uuzewed+qeW9e059xIsmRV88hKzL3fOYmHvnKrZTVLD55uBgWDKYSMm6tnM7Yy7RGnkRg4tbK2Rb6bcqdO8gZccbSraz2b0KSYCLbTjw3gCrZaPDcOyuDlSV1liL2tdjzXIs9P/33eOYqO4r/M0W2ZhabPEgbYa5GniFr5rNgv6URu1JEOHN5zmt1kebs2L8wmDpBR+wlqlx7WeP/FD5Lw5ICdyHEwnEe+x9P0nG+sL8P5L/smx7eRs3qCr79Bz/m0LMnaD3ezvPfeI2W3c08+Mt3snF/C6pFRVZkdj2wBYvdQkVjab6pMeMUpI0Yrw39M4lcmL3Fnys47LAU5McADByqD79WNv35b13ZgHaDoo9DsdDoDoE7xLZg7azntgcXVhh6P5CQWOmenJSaYhpM2iPPet0SLninauMXG+5mc2DFso9jJBPh9898h6HMxIKva9nVRMuuJtLJDN/8Lz9mbGCcisZSguUBQpVF3Pul/fN2qYUQnGnt51+ePMR4Af1PAWR0nXAmyUAiRonDRbHdRUrPkTMNDGHi0qxEsmlKHe5ZTUXIZ/mHz3XxjSfeIz5ZY7RoeUZJJqfz5OtnsFs1PvfAtjk+Sw67hV//9D52b6jDO0MDuLY8gCTDM2+e46ZN9ZTP0ySbgixLePxOPH4nFfXFrN/dRDyS4tq5HoJlPkqri5hS0C8E0xR0tw7Q3zEyzXjpvTY0/bzFphEZi/PWsyd5/O9fof1CH4dfOUfzpjru+/wetu5fMythAZgYjXHtXA+D3WP0tA3yc//xHu773B6sjg+H6bBwMJUkbEqAJu/D9CbeJaEPEMv1cTX6HOXOHYxnr5EzEzjVUjJGlPboCwgMVngfotHzwKzg6VBDhGxr6Y6PIgpYDU9kO+hNvIvf2lTQjXMKpjDojL3GcGqq6SORMkY5F/42hYKwwJwk8wt0kaIj9jLjmTY2h36Ncse2JZ2kmUgnMzz7T6/y7lNHJ6sTEp6gm8jIXP1LSZaoaq7gK3/9Oax2Cwd/8t40J/Xi4Vbu/fKtfPx3HsTldxKqnJT4u0G0RTeznJ54ibbYYQyh86Pu/1Lwcy4NAhOTCnszD1X8Z1xaPjMt9cze5/+NRk9BW45MlsNtXdQE/VzuH8Gmqdy6tnFO8JizLSRcqg2/ZXmOpABZMzftl7XY8eo5g0PPniSTzHLTg1sZ6Bhmzc4V/PTvXuLwC6e4+eGtNG6sI1AyO/D0DE3wjSfeo3dwYs52TSG4ODbEiZE+Dg10Uenysa2kkqJyB+fHhjgfHqTBW8Tl8RFyhsEvr9uBRbn+OxNCcL5tgL/9wZsMzLgmWxrL2LKmmuffukDfcISfvHIKj8vGo7etn0Xs37SqcrI5PPs7qSzx4XHa6OgL8+I7F/nCg9sXba7NRHgois1hYf3uJgwjn/1PjMbIpHKEhyIEy30UV1zX9JUkiIzF+ek/vIoQeXGg3qtDM56XePOZE8iSxPhw/nPmMjrnDrVx7XwPn/i1u/joL98+6xhG+sb5y1/9HoloCtWicuSVc7i8Dm772PYPxC+dwqI1U0mSsKtBrIp3egkvSfkRx974O3gtNQC0Rp4kmutmQ9EvUue+G4s8+0JWJCubg79KsX0Do+nzWGU3sqQhSyqa7MKplhCyry2o3jQT45lW2iJPTtOhLLKHbaHfJmRfN2+IeW/oT+mKv54/dhRsiv99ZXe5TI43HnuHJ//2BTKpLLIis/n2day9qZlv/ZcfFXyPJEmEqor47B9/jMholOOvnAUgPp7gZ3/3Armczuf++GM4CjgBCGHSnTzH8fCzGJMiFLr44KOOo5luRrPd08F0KYhm2xlKHsVjqcOlVWNXQ3O8d94PhBCYIkdOxFElG4pkm86Yc7rOyfY+Xj17FYdFy3uBWTV2r6z9wPv9oEjGUlw41EYmneWz/+URDjx+mMHOYVZsrOPjv3Ev3/vTn3Hp6FX+4//50qxgGk2k+d4zRznX1l+wzZU1DAaTMU4M9VHqdFPqcHFlfIQqt483+9pRJImzuQH6EzFKHXNvFj2DE/zdY2/SfYO2qMtu5aFb1rJ5VRXfefoIxy50891njlLkdXDr9pXTtUxlngBZUuSmyOtkOBznxXcucev2ldSWL379CFMwNhThm//tSR780j4M3aS8Nog36GZ8JMZP/+E1Tr19mU//5j3c+9nrBn2SJLFqSx1/9O1fxGLXaD3dzR9++h8w9DxbaO+Dm/nM79yHMAXf+tMneeVHh6ffW7OynC375/Y+FFXG0A1yWZ1cVqfn6iBuvwNJliZpYCzrBnEjlvRrUCQrxfZ1xHP9ONQgKzwPkjbGGU6fZoXnQTrjr5E1Ymwv/p3JzFKdQzqXJAmb6iehDzKSPkul8yZq3bfjtdQiS9qkdcIiy3t9nAvj3yeau768ViQVl1aKJs/vQDmT32pR3KwJfIZi27qlfPRp5LI6b/30MD/4708QGY2hWVS237eJL//Zp2g9fm3B90qSRGldMR//nYfovNjLaG/+Qs9ldF761gFWbVvBzR/ZMaeArosc7fETJPWJqS3dsGVR4PFCj81+PGMmieXGFv3MMzGUOsr58D8gSTJljptYG/gVHNrSDdlgcqIpdZTxzGXcWjUB21psShET2SucG/saFsVLjeteyp03I0kyFlXF67BjUVWsk5lDTfD9MUQ+TOg5nbGBCcrqill/czOaVUMCVIuKZlHZesc6SqqDjPaHaZ7RWTZMk5ffvcSBY23zap3KkoRTszCYjNHkDzKeSeHWrPgsNpr8Qc6PDVHidDOUnK3lKoQglszwz0+8x4VrgwUDtaoqrG0q53e+cCs/fvkUz755nn96/F1Kgh7WNpYt+PuzWTVqKwJc6hiifzjCswfP89WP31RA+u86TNPk9DutvP7To8QjKfo7Rnji66+zbtcKPvGrdxIs85HN5FBUhfK6uf0Oi1XDMqllHB6OkJusLSuqQuPaKtxeB8l4mmT8et9CUWW27l9NbfPc3sKNTAKH20bd6goQgvdeOkvv1SHu/vRuvAUkPZeCJQfTFv/nKHfsxKGG8Frq6Eu8R86M41BDyJJGzkzSEXuFrtjr0wIdN0IXKbrib5AxJrgy8TMGkydY4X2IBs+9izaFdDPDlchP6Uu8R17gNn8xCkwS+siCwra6eb0uJSGhSFZutGleCNl0lrd+epjv/vHjDHeP4fDYueOze/nYbz9AsCKwaDCFfA1p1Y4V3PzoDn72dy9Mx7ZkNMVrP3ibbfdsnJOdqpLGBv9dqJKFc5HXafHeglu7LkV2fuIAIWs1JfbrP9je5EUS+gQrPbtmbevM+CtUOFYRtFYhIVFmXzr1SgiTicwVdJFEwUbIvhmb+v7cHMOZC1wM/zMOrZTNoT/ArgbRzQSj6VOosoNGz8eZuhFkDYORWAKbplLidCFLEob5f196T1EVyuuLkWeQ2Dfesob6tVU4fQ4UVaF2TSW1aypnBaiBkShPvnGWxAJqXKYQuDUrXqsN3TSIZPMqTpKUv3ZVWWa1vxhFkhhIXGcdGIbJ02+c5a3jVxdsoMmSRGnQw5cf2UlFsZfvP3eMr//kXf74K3cR8s8/WWZRFeorg9PH+Mqhy9yxq5mmmrlOrTDZxIxnOP7GRbLpHLc8vAWbw8KK9dUcfOoEkbEENrvGlVNd3P2p3TRvqp3/hANdl/qnKVsev5OqxpJJvQudaPj6jUVRFWqaC98Y5rtV9Fwd4rG/fpG+9mEGukb53H+6H3/x0nRYZ2LJ46R2tYgKNT/vbogsnfFXsSshQva1qJKdrBlDN1MITIaSJylzbEO9IVtMG2MYZv4uItCJZDvojh+gwrl7wWBqCp2O2Eu0Rp7Ea6nHqZXSm3gbU+TIGnHOjP0zqjx/N3A8s3iwmw+peJrX/vUtfvg/n2KsL0zFijIe/OU7ue3Te/JSecuQebPYNHY/tJXX/vUtomPXL4De1n4mhiNzgqkkyRRZqtgefJT+1BVWeW6m1N44/fxgqo161xZWea8vjxRUxrK9bAk8MGtbPYnzrHBvp8G1ZbmngKwZJZbrAgQurYpi+9b3tcSfUu8yyaFKDlxqxeQzU+pXCqp8nT7mtlnZ1lg5XZsOx5PTRm7/NxHThxnNdJE2YiiShlsLUb62FEc2wYjRhpa2ErBUzRHInoilFrUysSoqqwPFVLm8hOwuFEnGrmokcvnm0901K1npDzGcipPI5eu7Qggudw7zk1dOk10CxUqaVPJ68JZ1hPwu/vmn7/H0gXN88aEd8xLVZVmissSH1aKSyeqMjMd58o0z/MZnbsFSYMIrnczw6o8PM9A1SkV9MZdOdEz/VlRN4dDLZ7A7rXzkK7dxxyd2LsgzNU2TzisD038XlXoprQlO7yc8dL027HDZUFWV/o4RFHV2Qjc2GJnFUzV0k8HuMQ69cJquK/2YhuD1x4+iZw2+8PsPUlS6sIvyjXhfhnojqbMMJI6wwvvQZJYnU+m8iUrnHrJmnJQ+SsjeQql966yD6Yq9gSGu1xaL7evZWPRVnPNQmkBgCoPu+EEujj9GqWMLa3yfZiR9jr7EuwBYFBfri34BtzY/ZejYyP+mN/H2sj9nZDTGs19/hWf+4WVyGZ1dD27lof9wN6t3NqFZ3l8wqV1TRWld8axgmsvqZFOz6TEzla0USVtSU+TfColcP/FcNyBRbN+KXZmrAGQKnViuC4dagibP3/jJl38kJEldlE2hKjLlfg+JdJbqoI+u0QkmkmmEENOd4OUrli4M3TQXJe3bFS9erZS22LuscN+EWw3RlTjFcPoqusjiUUM4vD5cN/iG1ZYHePS29Tz31gVGxuMFlYzy9xuJX2rZPu2Ualc0XBYLNW7fdPNtX2UDpjBRJnU5r/aMEJ4xarkYppSq9mxuwOOycfpyHznDmHfZLk1mtB6njZFJu5iDx65y565VbFg5dyw8m9E5/fYV2s710H6hF8MwsdotePxOtt/WQnldiAtH21mxrhqXd2FedXwiyXDv9Rpw7apynJ584hEeipKY8blDFX46LvXxvf/1bL6pNGO7mVSW1Awq4/hwlG/+8RMk42k8M2yvz7x7hYNPHueRX9w/TU9cCpZpqCeI5/o4G/42WTNOkW3VtLDJVKZikR041RIuT/wUj1aLQ80vA3QzQ0fsFQT5qRSbEmCN/zMEbasL/qiEEJjo9Mbf4mr0GVb6HqXWfQdW2cto5vq4qISMUw3hWiCY3pghLwbTNOlrG+THf/E0R184RWVTOXd+bh877tuEd4k2DPPB4bbTvLWR1uPXvd5LqoP4iq9PcuhmloF0GyFrDbZ5J8A+fAhhTo4Dz/584cx5skYMTXZTbN+KJKmYYnYGNJFt5eTI/6DIto5m3+exKYWXf1PIMzYWDqbpbI6B8RhHrnYTT2epCHhRZIn9LQ0zFWKX9RkNYZI1ctMeBfnrTKCbBmPZKO+MXCCamycoSdePPZIbJGMkSekThKUecmaKjJlACJOoPkLWnEt5cjmsfPaBbaxrquCJ185w4mLPLN+kmbsJFWguzfxaXLPEjgU719Vxx86VHDjWRjqz9MkvRZbZ2FzJ6vpSrItoCBT7XfjcdkbG88F0IpbiZ6+doakmhNM+ewjA6bHz8V+9g+MHLrLt1haGesZwuG2Mj8TYddc6nB47zZtq6e8YYdWWunmTEyEE4aEo4aH8ZJgkSaxYV41mUfPyjO3DpBLZyeegtrmcWx7dSs3KMvzFnllDAv2do/zdbz9GMpYvnXiLXHzmd+6bFqW+DglPwLng9FohLBpMp7utZoJw5goXJ37IcOoUVsU3Sd6fvUNZ0ihxbOZa7AUujn+fdUVfxiJ7GE6dYjB1fPJQFercd1Ji3zhvINVFit7E24ylL7Gx6CuLUqY+LOhZndMHL/Czv32BXFbn03/wEXbcu4lgRWDZpneFoGgKt392LxcOtTJwbYjSuhAf/c378cwoeqeMKO+OPMYG/92sdO/+wPtcKhJ6P8OpY8wMUAKTnvjLCHRU2U40e420MYIQBrpIT75WYiLTSjzXSyI3gCl01hX9Gpp0I3laTAZrgYy26PepmyYeh5WbmuvQDYNMTieSzEzHFHNShGM5iOYSvD50ht7kCJFckoSeJqlniOspEnqa8Vyc7DxjqFOSf1kzhVcrJWitpsS+AlMYhEUPOTONLCmErPXzmhzaLBrb19bQVFPMgWNtPH3gHO29o9MNKSGYzryXCkmSKA64+I+fvoWmmmKefP0sfcMTGEuYd596/0zTyvngtFsoD3lp6x6ZfuzQmQ5OXOzlpo31swKXIssM9YR55/nTuH1O4pEkFqvGUG+YyFicYKkPwzDpuTZET9sgtasq5tUTHeweJTaeL484PTaqV5YhyRKGbtJ5uZ/MpMq/ZtVYva2B4orALJrVFDSLOivz1qwqtc3llNUW0lq9frNd6nexaDA10RnNXKQj9jI98TdJG/l026b4cRRY7kGeRF9s38DV6PNIkkKj534ujP+AnJm/oxVZm1npfRRFKlznFJiMps8jo7Eu8GUsC2RnhsjSm3gPR6Z13tckcoOLfcxpDHQMc+LVs9z+2b2s37sKf7Fv2XeohSBJEk1b6vnDn/xHRvvChKqCFFcHZwXqmB5mJNPNsbGnCVgqZglB/1vCInvwW2drgCZy/cRy3UjI1LjuocSxHZAYz1zkUvhfyJkxQvYttPi/QpPvUwCTlLdCLgr57Df/GssMucbCkJDI6SbZnI5hCkZjSTbVXV9SGsJctheUW3WwN7SWSC5Ba6yP90Yvcj7RSVxf3K7DpeZXOHbFg0V2UGxrxKMWY1Ec5MwUDtVHxkyQ1CeI58ZwzqNNIUkSAa+Dh/avZfPqKn704gmef/siOd1gdDxO33CEiuLl1eskScLjsvGxOzeyZU01T75+ljePX2Us8uHZTSuKTG1FgDdPXH8snsrys9fP0LKiDP9MERUJVqyrwuG08d0/f25ytZ3nr+ayOoqm5IV+DJPBrjF+7S8+Ob10nwkhBG1nu6drnf5iL+W1+VVPPJKk/XzvdLkkUOJl1eYPZ6BkPJwgFk1RVbO4LOUUFg2miqRRbFuPQw2R1sP0JN4EwCK75w1ymuyk0XMfQ8njXJl4gr7EIWK5XgCsso+1gS8UzGqnICETsLSQyUqTSvPzwxBZhlIn0eT5R8jykntzYQqRNzwzDGyKgizLlNUV88U//QSqZTYR+v0u7QUCRD6LmrYSkaCsvoSy+pJJ5sPsbU9kB8maKfpSF3lt6J/ZG/rs+9r3cmFRPFhm+UoJotlrZI0INiVEpetW/NZVecJ15jKmyCFLFsodN1NkW7+Ec5Qv3QAosnVJTawit4NEOosk5RtSM7v5uqmji+XNtKuyQsjmJWTz0uguZ1/xOl4dPJW3js4Vto6ewkzlfkVSaXRfFyCvcMwdGV0MiixTWx7g1u0rOXj8KhOxFJc7h/mL77zOH/7SXXinJnimBGQX+3fytXUVAX7lk3vY0FzBn/3Lq6TS+bJG3nvKKPx+lrBt8uR9SZqtLnXqci/vnGzn3j2rpxtYkiRRVhvi3s/eRCKWxmrXsDksFFcW8c9//AT1qyu4/eM7OP1OK0PdY/MWawzd5OrZnum/bQ4LY4MRHC4b3a0DdE6O9EoSrNlWT2l10TxbWjr6esKcOdXF6EiM5tXlrF1fjX0JQixL7ua71HJWeB9iIHkUXaQmxZfnL1YHbWto8j7KmfA3iOa6gLwK/prApyl3bl+0+TAeNTh49hqrq4tBkqgrDeC2zxVnsMguNgd/Bc/k8EAhvD34hyRiA3MePzXQz5nBIcKpJA+vWo3PZsNjtSKQGIjHGYjFkCWJdSUlKMsMpoYwGc1EyZk6vckRLkV72VvcQrk9yMHhM6z11mEIg/ORLnaH1uBUrusnRnMj6GYGgaArcZaX9P8zrcb17wlTGPQlDiIwCNrW49by59gkRyR7FUOksSlBgrbFZ7UhH0oNkc8AVcm+qE+702ZhVUUx9cUBVEWe07DJmDqZQktyiSU37ByqlbvLt9CeGODp3kPz+r0GLG7W++uXtM1lY8apE0Jw/EI3v/7nP8O+hKX3Qkhlc2Qn1fjPXunnt/7qqXlJ+UtFNJGeU6bOZHWefOMMW9ZUzRozVRSZDXtWMtQzBpKEw2WjfnUFa3es4Ohr53n4F/Zzy8NbsDutOOcR0ZYVmfu/uBen28bpd65w7Xwv//WL/0RJZVGeWxvOZ94ur4Ob7t34oVjsaJoCEqRSWfxFrgW5tDOxLKtnTXbmfwAihS7Sk/Wvwks1CQWPpRpNcpAR12XFItlOxtJX8FsbJ5kAN6rICC51D/PS8SuYQtA5FGZVdQmlfnfBYPp+YZomV0bHiGUytI2N8dMLFzCF4JHVq6n1+Xj68iV6IhGagyFqvF4sqorLsvQvKq6nea77OLcUr8OjOVntrcauWDkydpln+47SmRgiqWcYSI8zlB7n49V7sSoaQgisip1KxxoUScUUJjmRJpWbO676b4l8s7GHsfRZZMlCheuW6bJMxhhnLH0OgCLbWtwL3MhmwhQ6upkAJCyKd0kmbgKBRVMKOg+kjExB87tSm58K+9IzFIusstZby0sDJ0gZc4VrSm1+Pld3G7XOkunrNWcY9IejeOw2fM7CknamELx06gqDEzEe3tYy7+tuhGGKWXXJDwPRRJoL15Ze7louWrtGeOmdS3zm/q2zxlOLSrzYHFZGB8anm0zbb2/B5bPj8jrwB92zJCpvhKLIbLllNRv2rKTr8gAvP/Yubz59kiunOme9rrQ6SHld6AOtIqePOeRGVRS8XnteRnOJHf0lB1MhBCl9DN3MdzqzRpSMEZkWhZ4J3UzTGXuVM+FvkjEjKJIVU+iY6FyLPkdP/C2CttVUOHcRsq3FoZZgVTzTy776sgCfvGUDb5/vQFNkHtgxdzTsgyKRy3FxeBi/3U5LcTHhVIpVoWIqPB6O9/ehyQqDsRgWReEv332X+kCAz2/ciLqMO/tELsGhscu4VBtnJzr4fN3tWGQVh2ohrqcZz8Ypt+eFnBN6GuukAtMG311s8N09vZ2smeRnvf/9wz4Fi2Iw+R5pYxSXVoVbq8trKgiJsfQZYrlONNlNlesO1DmNpsIwRZa0MY4saTjVhSduppA1ogjMaWuZmdAklaDVQzSXRJFkvJM3rUcqd1NmX/qoLEClI4jf4iKTymFXNLwWF+X2AJv9K9gVXEWNs3hOtnuotZtXzrRyyyS7IF82gv5whLF4kpDHxcB4lIlk3l30MzdvWrRj/v8qDMPk+bcvsHN9Lc111286kizh8tpxea/XQ1u2N9CyPT9osuTmjqpQv6aCX/iTj7DjznX88x89QdcM7um1C738zW/8gE/95j1suLl5ydlkIYwOR1mxshSnq4bjR9qpqi7C5V68+b3kb9ZEZzh9arrmlTLCJPXhWcFUCJN4rp/Lkcdpj75AzkwQsK5kte+TjM2Yqc+aUfqThxlIHsMiu3BqZTjVEnzWBurddxMOO3n2yEVGJhIoikSRx8mO5uoZ5ODCS7G8jYpBzkzmJT2ETtaIktJnj05KQMYwqPR68FpteG1Whnp68Fit6KbJjsoqWopLuDI6QqnLRSyTRVPkeZf6ZoGuqRCCIoubelcpkWySSkeQMnsAgWCFuyLv2Y2EKin4La5pj6spYvuNnytnZhhItaLMqDOmjQTR3Agj6c7px+J6mJQRnfUYQMZMEMkOM5LuRJE0vJaSWdsqdDZBImjbRM6Mc2bsr1EkGw61mHDmEjkzQYVzH8X27Uv+QeTMBIlcL6rkwGdtXvT1AsF45hIOtQSb4iNrJNFFFqvsRBdZglYPv7/6E3QmOnBpfkJWH0GrF01avoFcg6uMP1rzc4SzcZyqlaDVS9DqwSKrBV0hNEVhc30F33j9KCfa+/j9R/bjc9iYSKb53cde5HRHPz9/23Z+/d6bJkW35597//8K+keiPH3wPDVlgWl5v4KTSO8zc5SkvIBz0Q3CMZDXl710ooOv/acf8Sv/8+NsvmX1+95PcYl3+id4573rl+xauuRgmjPijKTOTf+dNWNkjIlpCkHWjDGQPMLliZ8wlrmMTfbR4LuXFd4H8Wg1VLpuxmOp4sL4vxLP5X3OBQYZM0ImEyGlj1Lu3IFdLaK8yMJnbt2MbpjEJmkPOcPEMllCMsV1Ads5x2kmGU6dYiR9ntH0eRK5IRL6DLUZZGTJQsBmp3hyRFGRZGKZDFfDYzQHg3isVs4MDhJyOtFNk4sjwzQEVs775RgFpk4SRppimw+P5uC5vqOs8dYwno0zmokynJ5gva+eOlcpp8evUWRxz2ugJ4RgJNPJeLafN4b/BW0GAyJjJuhOnuPI2BPTj+kigykMOuKnZm0nbcYZSLWhSBpO1cc95b+2yEipRKP3o9R5HiStjxDNdTGUPExP/CWyZn6MMZrt4MrEdyhz7MFvbUZdYIotb37YRkofxm9dhceyeP3RNDOMpE5Q4tiBW9QylunkWuwtnFoRWSPJlqKfo8zuozN+AlmU4lF3Y5HzpZKp5V48luK1p06i5wzueGQLHt/cY4xNJHn2h4epaSxhxy3NKKpCKpHhqW+8S6DYze7bWwrW9EIeJ/dvXkVjaRE+pw1VlmntH6G1f5T1teU8sr0Fq7o8L6//lyGE4K0TV9mzqZ5d6+sKlvAmYikyWR2f2z5Nx4rEU8QSeVNAl8O6oLVKMpbmqW8eoPfaEJ6Ak9LqIO0XetFz+d/gUM8YP/unN1i5qRb3EkSsb4Rhmhxu7yGrG6wsDVLmXbpdztKDqUiSNWfMwEoWFMlKzowznD7LtehzjKYvoskOmryPUO3aR5G1eVIFKO9u2ui5n4B1BZcnHqcv8d70j1KRrKz0PUq9+25U2UbncJjT1/pJ5XKkMjnW15dTU3J9maebM90Yr2dyeQsSF+WOHQRtLbRGnuR8+ruzJP/sahF2Je+i6LPZUGQZTZbZXlnJA82rsCoKPZEIOcPgU+vW0zY2Rm8kSkvx/Ar+2fT16SVZkfEE3OgYVNqD6KbBJ2v2cT7SyaHRS9xWuhEJCYdqpcJexMnwVcrsRahy4WWEST4wJo183TnLbDK4LrJkmEt/yRWo/U0pT6WMGKOZHkptK+ZnVEgSEnmKk2ZxYlF8hNPnEUCRtQUTg0imjdaJH9AVe4Eyx000+T6DW6spuE1dJOlLHECWVOrcD2KVfXM/q9DJmhF0Mw2YjGcu0Z98C6vio8i2dtpfbDzTk5+AQnB+/NnpqSqrkufqjo/GGR2M4PE70HWDkYEIbzxziqr6EDUNJQz1jZPJ5Fi3rR6rTSOTznHkwCUURSa9ox6H00Yuq3PojYtYLCo97SN88iv7cUyq009zEIE1VcWsrixBkWVi6QzPnbhEJJnG77STmaR0qcv0Evp/GeFIkqfeOEtzXQlFN1ii64bJ46+cJp3Nsa2lBotFpaWhjANH2xgOx6kq9ZFMZ3l4/3oKXZZ6TuflH77HW8+cxON38bFfvYMNN63kG3/8BCffvK5l3HGpj7GBiTnB1DAW5t0KIbjYP8xL51uJpNKsrSjl5qZaGouLlrSqWHIwtSk+grY1JPRBhDDwWuqI5XrpTbxNUh/BqZZQXbSXgG0VTrWkYHNJllSKrGvYGqqm0rmHa9HnGU2fx2upo9Z9x/R8vcNmIWcYmKagxOfmUvcQjeVBvJNmXqbIIksKimShyLZqFi1KkmQUyYpdtlLvuZvO2GvEcj1osgO3Vskq3yewqfnmxO7qvK2KBGwsK8Ou5bOaMrebCrcbRZYJOhxsLCtbsPlU2VTG7Z+9GbffRWltiKatjTSWVIOS91RSJYUWbw0mApussTmQn6/XZJVHq3bP6/8OkNKjdCZOLypNuFTkFU11kkakIC3rRpjCIJptpy3yQ8bSZ6hzP0C95xFAoj36BJ2xZ0gbo3TGniVjTLC1+I9uoFeBEAaDyXcZS5+lwfsxSp03zWJzSJKMhIwuklwIfx2XVo3AIJK5SizXQWfsWQLWNeTMDKpszVP/RRZTGCT0EZxqiLQRRQiTVCLDiz85wvBAhPrmMvq7xiirCnDXR7Zw6VQ3fR2jXLvUT/uVQT76pZtpWF1OT/sIqUSGqxf7eOwf36CiNkRVXRBhCsprgyTjGV76yVHu/OhWHE4rqWyOQ63dXOob5mdHznP7uhX8yl27ePdyF++1duWz8GSaV862AhIPb12Nz7k8K5r/l3HyUi9vnbjGA3tbpmuXQgiGxmJ0DYQJ+V28eugyTTXFNFYGiSUzGKaJRVOZiKUwTBP5huRCzxm8+dQJnvjH1wkUe/n4r93JTfduwGKzcPODm7l4rJ30pBC2oshzBmxM06S/c2Q6gy0EAYQTk9KeqkI4kWQgEqM+FFiEEZ3HkoOpKjnYUPQLhGxr0UUKmxLArgQI2tZgV4rQZEeeiL2YcK8kYVU81Lj2U2LfyEj6HJrsxKlez/w6h8KcaOsDCRxWDa/DRjyVmQ6mla492BQ/VsVLkW11weYEgF0JUuv5OOHMADHdSrV7I7JSymgmRsjqw6Io9KfHiOYSrHRXTR+fZYbqvFVVsaoLn6aW3c2s3FyPouUl2AqR/K0z7D20GbVKm3I9SAthADow4zxKEmu8+2hy75zOwKZfP+kqKoBYNoMhBA5VQ1MU4tkMLs1C1jTImSZuzTIZhHR0oVNmWzFvGM3PvBuk9CEGku8ylDyMTQ2yMfg7FNnWokj5+u4q/5exqyEuj3+HjDlOOHOOlDEyK5iawmA0dZKe+Ks0eD5KjXuuQphF9mJTgyT1AcKZ84Qz56efk5AxRHqaGuZQ/ciSSsaIE80NUGJfRUofx6H6ienDpEdcnD3awfodDfR1jBAeiXHLfRuorAty+I2LPP+jI7i9Dn7pd++jqj6EKQQenwNFkfEH3dQ3l/PcY4eoqi9G1w0M3UAYJpHxBJlUDofTilVT2VhXjmkKUtkcHruVrtEJfnbkPGurSznTNYDLZmHHimp+83vP0z06zm/ctwePfWHO9P9XkEhleebgOTY2V87SPFVVGYfNwqZVVRw83gYSdA3kh4AyWZ3zV/sJ+V109YdprM5zeoUQ6Fmdg0+d4Md/9zKN66r4yFdvo3lT7bSF9qrNdZTXFdN+oRdVU9h4czOZdI6DTx4nk85i6CYTI1EOvXR2OuDCpHbpjHglAT6HjYyuMxSNs6uhmtVlxUuudS/sAWUKRibiDIXzy3FVkakuvY/LncP4Qx6udA3TUl+K1bd8zx5JkrGrRVS79s15TgiBLOVH7yB/p5npBx6wNhFYwF/q+j40MqKZd8NRDGFyMX4RiYvUOyt4sOImBIIDQyfRZJUaR8m06dxMkZGFIITg8sgo8UyWDeWlk51+iYnxBPF4muISL5blCKKYY4jM20i2O0DKL1ldqp/NgfsLvvzc6CDtkTAui5V3ejvImAZrAsXcUbOCJ/rPc1dNExfGhrgWCbO7vIbNxRX5a0dMnZ9CdB6DRK6HiWwrSX0QVXKyOvALuLVqlBusuy2Km3rPI0gotEV+iNfSiE25/uMxRJZw+jzj2cs0eT+F37Z6kp88+xy7LTWsL/oNxjMX8s1DoU82ExUcWoCgbQNB23pMBKViDapsxTCzSJKMx1I2rROgShY85Qqf/bXbOXu0A4/fya0PbqK43I+eM2jZUse1iwNcOddD/aoyHC4brWd7GBmMYApBf9co4ZEY0fEkFbVBkvE0bp+DtvN91KwowR90TQrPSARcDryTVKeRaIIXT11m75p6mstD/P4PX0aSoLE0SGXAy0unWnloyxo21H14/l3//46r3SM8//YFvvzwzmlrlIDXiddlw+Ww4HXZqSz2kc7kUBUZu1VjPJoklc7luazkr5FENMXrjx/h0Etnue/ze7j5gc1z5PHK60J8/nfv5+hrF/AEnNz+8R3YXTaGusc4cfAqJw5eIjIWz9sBzYDdaZ2jsJ/M5rCqKqosc653CJumcduqRixLsF1f8Jee1XVOXunl3LX+vBWEw8qq2hJeeO8iq+tKOXmlF6tFpcjrLFjjeL9YVV2C3+VAmuyAmkJQ4l++YKsiyVhklZSRwapok/QZF1sCzaiyQmusB1mS0GSFY+FL3BzKk887xidoHRmdztxi2SzpnI7Xlu/2xzNZvDYrmqLwUmsbg9E4v75nJzuqqwiPxejqGMUwTMbDCdauX9yhdRpGL2bim8hiAuyPgORbMKBfnRjj3NgQG0JlxHIZJCT8NjsjyQQXx4axKirDyTjXImFsqsbGUDmqJM8v7AgIoQMSAesaSh27UKWFb5Sq7KDe8wgh+2YsihfLjFpozkxgUbzUex5BkRwkMlmESCNJEoPRGK1DYzgtGmU+N42hfZTa95IxsmRyOUwhOHClg90N9ZQ48pnuzMtZmcfIz1BMfEUunC4rB547zehghPXbGxgdivD2S+dYt72eHftXEY+mcLrtePxO0ukcFTVBDN3k9oc28eNvHETVFAIhN5dOdQESm/cUtjQGiGeyfGTnWprKQnSOjE8/riky92xaic9pI+RdWjPEalHxFXBdeD/QDZNwJIEQ+e16F7B4Xi5iiUxBkZYp5HSTVw9dYcfa2rwVyuRNaNOqKooDbu7c1czK2mIGRqPYbRasmsrweAyrplJa5EEIwfhIjINPHiMVz/CVP/0olY0lKAWCmqqpbNm/hg03NSMpEurka3bfu4ENe1byzLfe5Ed/89KsYKqoMk0ba3B5Z6+S1laU4LFbp1ejiix/ON18XTexWVQcNguKLOO0WdANk9ryAKMTCUJ+FxZV/cCBVAiBbph5Coks4XHY8DhsCCHI5fKyYEv9QDduV5Fk7IoVRZInvYHs9KVG8GpOkkaaFe5KDo1eYJ33usCyz2ajLpAvHSiSxL8cPcEb1zr407tu40z/AN89cYo/vn0/jcEifnH7ViyKgm9yCadPHm88ll7WhSuEQOSOg9GFGf8aksghO78ELDwF0zo+SiybYTydr/VUOD2cGunPlytkhYlMGoeqkdF1soY+R2NzCoZp0p0cI2Bx4tGqMYTJtfgw45lBVnnL8Wjz1/wU2YqvwErBpvinSzDpnM73j5zCMAWlHhfn+4c43zeE32FnXWUpxTtcjCdSDMcS9E1EWFEc5PlzVyl2e7FpKn7H0mqOiiJTUuHHarcQHo5x56Nb2bp3JZdOd/Pkd9+heX01Xr+DowevcMcjmzEMkx99/QATY3EcLhsn32sjk8qRTeew2i10tQ3x4Gd243TbSCez2Gc0oQwzPyrcVBZkTeUkt1KIWRJ+921axW1rV+CyLW3gY+2Kcn778/uX9NrF0NU/zp98/UUSqSxrV5Tz1Y/dhHMJY5GLQQj42Wtn+MkrpxZ83dBYlJ++eprG6iBelx1Fkdm1YfbsfHnIOz01taLm+riuaZokIkk23txMZUPJopKXkiTNMTCUJAmX18Hehzbz+uNH6O8YQVZkXB47m/at4sEv7ZujoxpLZ3j90jVWlYUYjMQZjsX58p6teJdQolnwCFVFxmpRKSvyUFnso6N/jNW1JQyPxxgOxyeFDWDBVGcJSKayvPDyWRCwtqWSxvpiFEUmEk3xkyeO4fXa2bKxlrpJdRdpgYmJGyFLMkGrl5ieRJYkknqao+FLrPLUUGz1c2K8lf0lm+lODmNVLFTaQwQcdtJ6jpeuXGVNSTGGEPlGkpxXepeQMIXgtbZrxLNZPrVxPUFnPvMIlXgZHo6Szeps2rYM0QUxgci8B2RBciOp9Sz09RimiUVR2FhcjilMrIpCzjR5vuMKDzQ00xuPYFM1HKpGmdONJIFdnT8wh7MJvnb5VYptHu6r3MBIOsaL/Wdpj49wf8UGPl23a9kjtTdiPJEioxv4HTaS2RwumxVJgh11VbislumalW6aHOvqJZxM8djRM2yuqeCLuzahKktTDYtFUlw+001xuY+jb17m7ZfPUVYVIJvRuXiyk6JiD7FIilgkRTaTI5XMEiz1YpomoTIfyXiak++2Ub+qHJvDimZROfbmZW57aDOQD6R94Sivnm3F67TRNTJO58g41UEfsixTEfBSHfQjyIsq2zSVaCqD3aItulx02DRqyuYOHBiGiWnm6V49vWO4XDZCwYVXa9mcMa1/6rBqVJbmTfGmIER+Xl9R5Ol/p0VkDHM6kxMwndBM6ciublhcfEcIOHKui4PHrnL/3pYFEyJhCnQ9n4hIsoQwBZWN18n/iWgKm8OSbyyJ/IDE1PEsBn/Iw6Z9qyitCdKwppKNN69kxfoanJ7ZN2gBXBgYxmu3cvBKBw3FAZYT2xZ1Jw14HDRUBPG57cRTGWRZpqbUj9thpbrEj8dp+8CZ6ehonCefOUkkmuJLn9uDz+ugr38cq1Xj+ZfOYLGqrFpZRjSW4uy5Hta2VOLzOpZ0IjVJZaW7muHMBAk9hUu1c1NoHVZZ4/GeA0RyCUxhkjV1LkU7+WrjwwCEkym+9u5hbl/RQCyTwRQmo4kksUwWUwjCyRSto2O8fKUNv93OV3bmnU7DYzH0nEFNbRC73bKk8TYhBCJ7ApE7ByhItnuQLLsXfZ9DtaBIEpqs0ugLktJzhNNJAjbH5LSOIJbLoguTEvvCuqiKJFFi9+JUrbzYfxaXamN7sB6PZqcnGeZCpI81vooFmQcLwRT5qfehWBybppLO6QghCLld1AUDXBsJ8+61Ls72DVJfFKCmyEeJ20Wx24mmyEsOpAC+gJMv/sZdHH3rCk9//1323r2O2qZSDr1+kQ07G9m29/rAwHD/OKZhkoynqW4sYfNNTZw+dI2mlgq8ARf3f2onzz12mPKaIm65bwNY88f+T68e4UhbN7/z4F500+QfXj7M+ppSitxObm1pwKKpPHPsIhPJNJ3DYWpCfj6xez3zjV8vBCEER462c/joNe68vYWLl/ppXlm2aDAFFowFyWSWF549xS23ruHI4ausXVdFeYUfRZE5cayDy5f6CBV76OoYZfWaCvbsu37eyoIeLJpCdoHuOEAyneXxV06xfmUFNWX+gte0EIKR/jAv/+A9guU+ymqLaT/fw657NlBaE0QIweNfe5mdd29A1RRGByYY7g2z/yPbCipN3Qi708oXfu9BJMDmnMsymnmq1pSX4LPbuWVlAz3jEa6NhGc1pBfCgsHUalFprrneZb91S34pV/o+DacKQQjBuQu9hMMJamuC+LwOfvj4EQ6+dZna6iDRWIr9m1eTzeo88dRxfvbMSXZua+CXvnwLwaLFhZOrnSU0uvP2GOFsFIdiw6HaMIXJR6r2oUkqbs1BzjQYz86efxdCUF/kJ5xMcXFomB3VVSSyOVRZZmNFGYlcFgGsL7t+lw6PxnnuqZM4nVZWt1Ry8/5V0/zE+U/CBCL5QxBRJG0LsuNzSAuoYEG+lmNXVVqKSjg00M14OsX6UBmbistxqhYavQHKXR7KGtyMJBMEbAt7bAkE8VyazvhowedfGThPk6f0fY/pxTNZyjxuhBA0FhcRz2RYV1HKhYEh/uylg/ze3fsIupyUedzcuWYFumHitllRFBnrEor/M6HnDM4ea+etF85w90e3sf+BjVw81VVwUi08EqN5fRVnj7aTiKZACB78zC4yqSx1K/Mjrw6nlWNvXWFsJEqFI4hNU7l5dR2NZUXsWVU3nXF99+AJOobHSWVzsxqmfqedr33xQWzvc5Q0lzN4690rdHaOct8966muLqK7Z4xVzWXT9cH3A7vdwqo1FXR3jSLLEk88fpSmpjJuvaOF0ZEovT1h3B47vb1j+PzXrx9JkvC57XhcNkbHF5f4a+8b48cvneTXP71vuhk1E4ZuculYO+PDUdpOd9GycwXnD7exemsDJdVFjPaP03mpn6IyH/VrKum81IcwRcFhmUKQJkVWFoMQcOhaN5qi8OyZS1hUhR31VUtqPsEylfZ1I68feSNVyBR5is77KW7H4mkOH7vGyqZSigJOnnzmBPfdvYGtm2r55nfe5vb9LaiqzN/+n1d55MHN/Lc/eBhNU7BaFz90SZJmUY+CVt/0/+eX/9f/tioypQXEMQaiMWKZLFnD5MLQMP3RfMC9OjrGUGyuZJvFpmG1qjicVhqaSrDaFq55CpFDJH+IyB4BtQXZ/Z9BWZpwyI6yfHPrturGOc89umJ5knDxXIYaV5B7KzbkG3+SPD0d5tXsVDoC8w4WLAWKLFPh9xBNZxiMxPDa7TQWF5HWdZLZHCOxBK9fvsb+lfX889tHKfG4qQ/6GU+mcCxDYCY6nuDYW1eITiT50m/dTbDUy+E3LvLsY4dJJzNYZlw3Qggy6Rz3/9xO1m9v4PkfHeFv//BJ9JyOrueXuaYpMA2TTbtXUDTphiBJebV/0xTToh53rm9iW2MVA+MxUtnctFSgJEnYLRpNZcH33fy50jrItWvDfPrndtHYUMxEJMXBNy8hhODW/auxL7EeOxOmaXLuTA/PP3uKT35qF9FoirHRGGse3YquG+iGSV1DiIrKABMTSUZGYgwORiibVKX3um14nfYlBVPTzBvwbVlTxf5tTQXOg0CzaEiShGmYtJ3pIpPKoWj5G3dsPIHNYeHM25fxFbnpuNBHdVMp2Uwu32+Z6qss4Uafy+i8+vgR+tqHKasNUtVQQmVDCYESD5IEd7c05dk5VaXYNI1wYulWMMsSOjnTN8A/v3eMXXXV3LaykXJvPkP9zuETnBsYYm9jHXevbkKVZXKGgU1bLJAIzp7vRULiP3zlNgYGJvjLv32Jzq5RGhuKWb2qnJ//ws1cuNjPS6+eo7snzL13ry9o4HV9mzqZ7GlAQpYdSJIdSXIgS1P/v7SAYFFUdtRU0VAUwGWxcrKvnz94+TU+tn4tX3voPiQJhuIJdtZUkczlMM18DScU8vCRT+4AwON1IEwxZ2UnRBr0dlDrEcnHMZM/QrLdiuz4DGjNS9IFzevRSXzgGsskhtJR3hy6zPGxDsYyceyKBROBKskYwuQP1j5Ik6dwnSw/vplEiDSy7Ct8jgVc7B9GkuBYVz+lHhePHT3D/pX19OsxHBaNPY01rC4rxmW18FZbJ42hItqGx6jw3TgEICZZAdY5Uo6yIrP15pWzfIXWb2/gzJF2mtdVUddUNv3abEanaW0llXUhqhuKWb+jntGhKIlYmlxGR88Z6Hp+eKS+uQyb/Tr/V5FlZv52pUm6VMDlmKP+v5wgapp5jd2pWmcslubV1y9w/70b2Lm9AVmWcbtsrG4u50c/OcrRYx3ctn81mzbW4CqUfU0eiinErAlsSZJYuaqcV18+h8tto7cnjKGbeDx2TDPf+A2PJbh04SR19SHsdm1WzdPlsOGdRzavEBKpLN9++gir6kopL549Wy8ERMfjuLx2rCvLqG+pYrBrlFQ8k5/Ht6j4iz3kMjq+kBvTNKleWYbVbsEwTM4dvsqR187jDbhYs7WeutUVuH2Fy4BCCK6c7uKVHx0GCaw2jQe+sJfP/NY9aBYVu0WbtYIIuhZe0c3EkoOpbpocaGvnYFsHFwaGUWWZT25ZjwS0j43z4oVWaic74K9ducaRzh4+v2MTVb75FcPHwgkGhyJ84bM3UVcTxDRM1q6pxOO20dMbZtOGGp54+gRHj7WjaQorGksWJdAKkWM88t/I5s4hSy4k2YUseZBlD7LsQ1VKUZVqVK0OTalGUcqQZOesSaC+SJScafCVndtQJInXr7YTTqZYV1bC1soKAg47QghuaahDN03+/ODbmEJw24oGHE4LdQ3FCDFPnBMC9FaMyB8haasBBdnzB0iWrYjkDxCJb8A8DgQzNgKSB9n1S0hKZYFdZND1XmTZiyz7l3QDafKUUuMsIpZLY1Ms+C0Oyh1+dgYbyZk65XbfvO81zEHGI3+Grrejaatw2h/AatmEJF2/oH0OG7+wZyupnM6Wmkoyuo5NU1lTXoKqyEgy3LtuJVdGRkGCz+/chKYqNIQCNJfOdnQQIk0k9lcoSjlOx6PI0nXeoatADc0bcPLV//IASMwqU1isKtUNeTNHSZLw+Jx4JkcQC9mhLDUofhD6USKVJZXO4bRbSGdyHDnWjqrKRKMpvvaPr1NZ7kezKLz08jnsDgvtnSO89W4rLS1zr4OZwTOWSJMzZi+Lw2NxcjmDs2e6Ka/w09szxrmzPezYtQJDN5DI11VVVaGs3D8riVFkidKi2Te5xXCtZ5TXj7Tymfu3znpc1RT8xR4Gu8ZIJ7OMDYwTG4/jL85TpIorAwTLfFw4cg3VouLy2KleWYbb50QIwdodjeSyOl//wyd44p/eYOWGGj7+H+5g3c7GOd+FNMkYmjo/qqay/bY1s/im7/f7W1IwFULQMx7hQGs7FT4Pn9u2kZ111RimiSrL03dRm6pytm+Qr715iM7wOKOJJH9w1y2EXIXrf5IE+25aiaLI9PaNE4mmaFlTwZXWQa60DZJO5ygt8eJx29m4voaJieR013E+SJIKyAiRwhApMG/UhZQBBUnSUOQiLJa1uBw/h922bzroJLJZhmNxBHBlZJQfnj7LtqpKHlzTTCKb5dsHT3J2YJCdNdXc09xEcyhIkcMxuX9p+rMVPJeIfKNJP48w+5Cdv4hk2QFIiNxZROb1pXwlgA1hu71gMDXMCKPjvw2YWLTV2Kw7sFjWoiilSBTmGiqSRIO7hCKri/MTvRRZXCSNLOcmeglaXeSEUbCZJkSWROKnJJJPA1ky2VMkU89jt+7F5fw0VutmZMmKIsu4bFZcNishd/5HcHp0gBd6L1PnCfBydytrA6W8M9DJH2+9Da81f5xV/huzGEFOv0I88QSmiJDOvIfX/ctYtLWT3/1cTKkNFXp8Pvx7jn4K87qXVe/QBH3DEzTVFGPoJuvWVrJ7ZyPvvNfGi6+cY+9NTZSV+Xj2udM0rSjh0Ye34Hbb8BcQcNGN61LX/SMR+oYmpuflhYDRkSi33LqakZEYPd1jeZfTtkFWNJXS1FzOhk0Wjhy6ykD/BL09YVY0leIP5N8vSdKcDHM+KLJEwOukua6EtSvK5jwvSRIuj4OS6iLcfgertzZw6Xg7Q91jVDaU8P9j7z8D5DivK2/8V7FzmpxnMAEZIDIIgCSYMyVRIinJyrIkB1n22uu8DvK7u5bt9Qavs2XJtqxkRUqkxJwDSIIkco4DTE6dQ8Xn/6F6ZjCY1ANC2vX/fQ8/EEBXV1VXV9+6z73nnuNYDjvv3sjGG1dTyBaJVIWIJqbPQ9NV1m3vZuWmDp5/+C32vXyCfKbIH3z507MVpi5jAsmKNKurf6WoKJjmTYvv7D+Mpij85q030JqI8U+vvU0i6OfBjdO1uZOjY7xxoQ9Jkvjg5vWsaaxf0PCsKhHCshwGh9IUigbRiJ9NG9rJ5w2ee/E4mzd28Hu/ea83RSTByEiGQ0f6WL2yCb9fnzdgydJCHT4XcBHCwnYK2MU+QMLv24EkeTfk8toaltfWkCkZPH/mHCFNZ1NzI/GAn75UhlOj41QHQ3xm+xauaWxY4hfhIOzTgAzuBG7ur5CcIeTAQyAnQFvHonQMIfDSDq+M4rouSNLUQ01CxRUZLOsIhrmXXOFbqEoTur4ev+86/PpWFKUJSZoOrKqssK16GSuijayLtxBUfQjhEtdDjBs5UmaBmBaYkcELITCtE+QK3wImCdwurpskX/wBJeM1QsF3Ew59CE3tnJEhZ0yD/nwan6IyXMiRswyaQlFOp8d4eeg8Nzd3EdTmqgXaFEtP47jDgKBQ/DGmeZRI+OOEg+9Dlqv+j87Au8LGFTYSEjnrAkGtEU0O4wgTxy2iSH4EDo4wUaUAiuzDdtyphlWhZHLm4jjL2+sIBnWCZR5kKlUgFg3S2lqN63r2IzU1EZb3zE9RMm176vdXLFmcOD/C2u5GZFlGkmDNulYkyeOTG6VyqUqRCQZ16htiyLLEss5aTNNBuGKWdUdj7fyZqarKVEWD9LTVsmVNG9csb6atMUFwnvruis0d9GxoR5K8bLH7mjYvg5Q8R99gOeA5tkP3+jZ8l+1H1RWqJh1+BVw8M8zEcGZOub6fFBYMpgI4NTLGt/cd5tmTZ7h1RTdFy+LEiNfx/afX3uZiMj11I4znC9y7ZiWbWptoikXonUhRtKx592+aNuPJPKoqEy1PfbhCTHVdQyGdQtGkUDQRQvDDH+/n5VdPcfcd63ngPd4TeTYkJKlSRX4VXV9PJPRhpDmW1qoscd/qFexob+XM+AR/8txLDGQy2K5AUxQePnyM8UKBne1tBBapD3sQgIIceAAhNyCMZxH2MUTh67gihxz8JCizm2BCwFAyy/ELIzRWRcgbJtXREKcOlUgXD4IQbOpuprOx2gskknLJA8VFiDyWfQrLPkWh+Biq0oLft52A/xZ0/RpkKYguQU8kjEyBtqC/fK4yEiUa/SqOkBEihysuDaYlcoV/w7LPzflZHXeITO7LlIzXiYY/STBwB5LkSZpJErw92s/KRB0TpRy3tHQTUFVieoBzmQmMhg6Cc1xS2xmkUHyC6TWswHbOkcr8GYb5NrHwZ9D1dUiLWKL8pOAKk6RxlNHiXtLGSVZXf5aItoy81cdQ/gU0JUrJGcdycjSGrqc2sBXDshGuoLUhzgO3bWDnhg5gOoPK5Q2OHR9g4zVtxGMBTp8ZwbFdqqsWZrPkCyaqIrOqs557rl/DjVunl72SJE35Nem6PO/Ys6apaPP0KOqqIsiyNPV7Dfg0qmJBlrfXsWFFM2t7GmmtTxAK6LNWk3m7hIyMX/EaT4qq4Mi2VwOXmCLp265D0swT0QL4ZBVFVeacglIUmaqytbPrChK10RmC1D8NLJqZXkym+cGhY+QNk8eOnuT13ov01NZQFw4R0jUODQ7TEPG+1I0tTbxn/SoUWSZnmDx6+AS3ruxivt50Pm9w8NDFGZQVy3LYf9CTWEsmC/zL115h/dpWJEmirjbKPXeuJxzyUyia8wRTQKqsu6lpPVTH/xhdWzurkSHKRc+6cJiL6YxXywPuW7WSNfV1vNJ7gR8ePc6PT5zk13dfx0Pr12K7WUxnArkcmAtWL0GtHV2pxrCHMJ0JHFGgyr8d1JVIgXcjjBdwi99GlB7DlQLI4c8hyYkZ5+I4LnuOD7D3xBgd9Q55w+SOzfWMZ7NMZAsgSaTyJa/soihlMeO5byQhClj2SSz7FPnio2jqchRlfnnBhSCEgWG+ASxEUbEwrf1MpP8Qw9xHNPIpVKWDkKpzV9sKDo4P0RmtYriYI22UsFyb65uWEffN/m6FsCmWnseyTs3xWp5C8REs6xiR8CcJBd5VboZVlqV6IjNeQ28y+xZCYLtZL4uUg1PaBEIIxktvo0g+wnrH1Mit45rkrAuMFPaQNk8RUBsYKexBCkrkrX5yVh9BGskYpxCIKdcKx3G59pplPHDbBtZ0Ncyw/SiVLF559SThsJ/dN6zgrX29PPPcUSzLoa11YTcBXVf4yL1buX5zF811cdSrYFV+KeKRAK31CeIRPys66lm5rJ6Vy+qoSYRJihyGa4FPkLYLCFtMefM5QvDN869iCZcPdeyk3u9lj88PH+NEZoBVsWY02QtNE2aOR/veZlNVBx/rvGFKRP1yyIrMtbevY3wozcRohh13rJ/T7rkSVKrNcTkWJu0DXTVVtCVitCXi7OpsZ11TPdWhIG/09nFwYIi1jXWM54tAP6+evUAs4MenKpweneDxYydRFZnldTVzZm6JRIjbb1k7NdEkhGB4JMOjjx8gHPJx1+3rePGVk7Q0J1i7ugVFqWzioRJvIQBFTqAqzTOWn0IIBjNZelNp+tMZ+jMZHNdlV0c7v7BjGx2JOAFN4/YV3fzgyHH+7cChqey7YPUxmPshlptEQsNyJ2iOPEDCv5Xx4svkrbOocgSfUoeuVKMpDRB4AEXfhlv4KsJ4GqE0QvAjMzJlSYKqSJCQX0PXVDKFEpoqc254AlmSKBoW8ZDfU8EpX4HFMzOB6yYxzNcrulbvFK6bJJv/KrZznnj0t5CU1RwcH8IWLrubO3mm7wxvjfSxq7GD7tjc/k2OO0q+8H0Es7Vay0fBsk+SSv8xpnmQaOTTaGpPRQ24gj3AaHEvuhIj7ltNQKkHBCnzBL2Z75Z9sG6nNrADV5icTX+NlHmMGv8WlsU+QFxfhS0KZMwzpM2TFO1RgmojJWcc2y0iIWO5WWw3SnVgEynjKLLkKXmtX97EhpUtVF82iFIomJw4OUgw6ONjH9lFNBJgYiJPX1+S63b20NO98ENwXXcT1yxv9hp8l+y36JQwXYug4kctuxLk7DxCCPyKH1VaWNDacm0KTpGG2jD/9XP3EI8GiYZ8aGUhbCEEw9kU//P4Y6yMNrEm7tX1z2SH2TN2ipXRJqr0MIqwGTdy1PljSMD5/Cg/6HuLdYm2qYanK7wxZ1u4fLLrxnnPSZIkmpbV8rHfuhfbdgiEfJf8HiqDEIJMMs/rTx1m/Y5u6lqqlzTGvmjUCft0EFCwLEqWzeGBYYqWxVf37keSJK5paWQ8V+DF0+c4MjTCseERwBu7lCWJPecu8P5N6+YMppPLvUmYlsMLL52gr3+Cndu7uW5HD2fPj/I//vIJ7r9vMzu2d5GIh9D1hb/s+RoRlSLq97OsSqazOkFA1QjqGoo0M5AnAgE+tHE9t/V0Tc3lC2yPKydMNDmEhIqEgmGPIEkapjOBAHrT/0R18AbqQ7d5P3R1GXL4VxFKO27ph8hqN+i7p7JlCYmWmijNNTES4QBF08KyXWpjYRRZIhEOYtqXWPgClU7aSFIQiXc2ry2wEKISf3aLYukFhBBUxf8ctbyCKdgWA/k0abPE+WySb5w8wIPd64j7prMQIRyKpRcwrYOLHsUVmXL54QSxyOfKzcWFSz8+pYqSPcTx5F8R0bpYVfVLJHzrqfZvJGee5dD4nzJeepOt9f8DXY6Ss3op2aOYbnoqk9XkEIrkxxUOPiWOQGA448R9K0gZx6kNbiNv9eFXagiqjajl1UNd1dxDMJqmsLyngUBAn/pRb9rYTkdHDZGwn2Bw4Qm7uQjyQgjenDjIk0MvsSmxljsabiCoBvh67w8YKY3xUNt99IQ75r1OQgjO5nr5xoUfck18NbsbtpPQZj4EpPI0XUT1k7YK7Kpdjiop7B0/w/ncGB9s38ltjeumavyXwhYuA4UklmsjgJGSp/jmU9QZnPHL4TouJ/b30n9ulLXbu/AHl26+KVzB8w+/xT994Yes2NDOR379HlZu7qh4MGLRqCNJEiXb5pUzvWxvb6GzxluC+lSVY8OjvH1xgFuWd/H+zespWTa6ouAIL5AmAgG2trfM282f+hBCUCiavPDSCX7wo32sX9PKRz64k0jEz/vevYUzZ0f4+y8/z6OPH2D9mhbWrG5m/doWamvmsxS48uWMJEmEfbr3EFkEmqLQHJtZhA+oLUho+NUGipYOSIT0TnxqLVnzBKocxhIW6mUTTpIchuAHkKUQovgjJLUHJjv1EtTEQty5ZSWucDndP47rujTXxBhN5VAUiZJle/zEsuZpJdm5rq0lGv4MmraSd6KvUDJeJpn+AtNNqIUg4bgjuCJDeyRBVC9ybGKE7fVtfKBnA/tG+xnMZ9AvGxCYykpFpSRqB8N8i/HU7xKP/kfCwQcXzNZVOURD6EbOZ7/HWOlN+nKPE/etQZZUYr4VqHKIgj1IzjpLQGmg5IxRH9zFmupfI6S2lZf5BpocmhK39ivVZK3zSCiocggJmbRxEldYKJIfXYlf9gC87JxUGVlSKeYNJsayNLZUeUIu5UaLY7ucPNxHy7JaAkEdVVvcIsUSFqey5zidO8818VVTy+lxI0lvob98/yxwVYXDaxP7OJo5iUCwMbGGhDbd5BF4fFa/ovGBjh0k9BB+WeNcfpTXRk+zKtbEtTXds44yubTWZYUt1ctoC3recufyo3zt3Mtez/WSi2UUTUzDnqrFjg2l+PIf/5CT+3tZtqqZuz68k+vv2UhwES6s6wj6z44ihCCbKvD4117FKFoc3HOav/jNb/Kzv/cutt60es467eWoOIWTZYm2RJyWuHfhJomt6xrreezoSZ49eZbbVnbzud07mCgUGEhn2djSuKCwshACw7Q5f36M5148ztnzo9x1+zruuHXtVKBsbIjxq790O1/6l5d4fe9ZhobTJBIhtmzsWOBsKw8MY4Mphi+mcF2X9hWNjPQn6VjewMRIhprGOEMXxvEHdRK10TnpNZejZA9RFdiB5SRJOWPlz+mQMY4RUBtR5SgZ4zCaPLvLKEk6BO4DbE/0JPBeJEn1HkzhIIlyv6GlJg7AumWNl7z3ss9cwQx9KPBuQsH3zaoXLxW2fQEJeR5XrmmoahdB/22Egu9G13rY3aRQsL3xXJ/i3Se7GjtmvU8Ih2LxGQzzrSWfm+MMkM7+FX59O5rWteC2PqUav1KL5WTQ5BCOMDCcCXQlQVTvQZZ04r41DOVfJO5bRUv4XtLGCRTJj1+pRZUDJHxr0JUYafM0fqWahuB12KJIzupFkfzU+DeiKzEEouz82sZ892s+6wmu1DbF2fvCCTbu6PZERja103dujMGL4zz1/bfYcv0KMskCdzywhcQiI9Z5u8jpXC9twSZ2112LJk8/YCRJmnJgnZsGJxgoDbN34iDNgQY+1vEArcHZGq0DxRSnsoN8+8LrbKnq5IG2KI/172egmCSqBXh26AgtoSquSbSjlUswApAliZDq443xs5zMeLbU42aOqBYkoYc4nOpjVawZVZI5e7Sfr/+vxz0rZlmmmC9x+nAflmFzYn8vfWdH0H0aN92/ZcHrYRRNHvmXlwiG/diWjebT6LqEs/vG00dYu61rllTfXKg4mDqOR9o/POiZ043kyss6ScK0HYazOQKahmnbfPGVvTx36hw/u2MzH9x8zbwzydlsiYOH+8jkimzf2slD79tKIh6aWtIIIXCESVNzkF/9lZvYs6eTTLbEvXddQ2jBNL7yYHr0rfMcfyvN0IVxlm9o4+LpET70q3fw+Nf30LGyibdfOE5daxXv/sQN09SLeaDKERTJj2F7N0JY78an1mE64yiSn6bIA+TN08R86wlorXOfuaSD/x6Pb+qOgjKblze97UKfs4JrIOnvOJBWDpVI6ENEw5+ZUcMMzUl/moYnz9hPrvDNCksJk9BQlBpkKYamrZi3IXcpfEoVKxM/R866QFP4dor2IIfG/oyQ1kJj6BZ0OUbeusB46S2q/Zvpzz3GcPEV4voqeuKfoC64C02JEFdWEfetmrHvptBNSzh3D6WCyVuvnOK2+zdjlCx6Tw/juoK1WzooFU2e/9EBLNPh4tkRhOstUxeCEIJz+YsMlUa5Jr6KsDp3gBgzkyTNFJ2hNhTZa2gKBKZr8czwK1iuxc92PURQDfDIwFNsSaynKVCPXJa5DCgaQdXHhfw4rcFqDiR72ZfspSmYIKDqdEfq+cKRH3J/61be07qFrFWkrzBBe6iGj3fupjVYXX7YWNT4I9T6IhxJ9/FfDj/Mz/fcwu76VXSsaOT9v3Q7/qCOJEvkUgX+1298g6EL40iSxPbb1rJxAQ3aSfiDOh/85dtpmaf+rOkqwQr1ZSsOppqi8P5N61nX5B307YsD9Ke8OfUp2S7X5dEjJ3j82CniAT/nxpOM5vKziNeTiEYDXLezZ4GjCo6nvoMl8oDENddtoCGwCfkd1kQvhQSMDaWpa63i/IkhEIKje8+RGs8xOpBE1RVKeYNSYb6mxzRCWgediV+c8zWf6k3axHwbiPk2LFzzlcPguwEqWNLmDRNNUZAkTyU84l96reinA6k8/qmUx0HBRTCeKxAL+BcQAXEoFH6IYS5eK508jqauIBr5Ofz6FiQ5Up6AW/wHYToZAmojtYEdKLKPjHmavN3HWOlNeuKfIKg24AqTtojnfJA1zyKETcY8RckZg0Vz86XBcxuAt14+Se/pYYySRcfyeop5k/7zY5glm4HeMUJhP/UtCY4fvMjOW1bPuz/DNXh9fD9ZO8eoMcGp7Hl85Tpk3ilguw69hT5OZM9xLH2Kn2l/D1ur1k81lQ6mj3EwdZwPt9/PuthKvnnxEX7Y/xT7kkf4dOcHaQl6D/4qX5gO4aLLCsOlNPuS5/ncitv557MvkrcNVkSbqPFH+N7FN7ixfhU+RcOvaJzNjfDa2Glua1jLmJHlG717+L2176HWF6Vgm/zqyrtoC1V7ATvsZ+326ZVGaiyLXnY7lSRoaq8hXoGqliRLxKrDV4WPuqRx0jd6LzKU8SxMJgrFWdu8dbGf6KiPT+3Ywp2re2iJxyjZ9hWfnOnmyNr9mE6WiNZMf34PNb7V6MrVCaau65Glo4kQCAhF/BRyJdZs7cQ0LPrPjiJJEpZpE7pK6udzB9FLnVbLf5ITwEyKlBACxASSVDU1YnVuPEneNGmJx9jfN8j13R2E37n+708MBdPiQP8gJ0fHaYlFuZhKs3NZG8vraubc3rSOkSv8G5XVYxUC/ptJxH4XTV1eUdZtuTky5mmEsLmQ/QHDD5xNZAAAuy1JREFUhZdpDN1ET/wTMOW6JVEfvI5q/8YZ782YZyEvockRqv0bkSvktmZyJfpGUrQ3JggF5n/4pcbzdK9uYuU1rVimw+ZdPex98QRCCK69aRWpsRwTY1lau2ppaKlixbo5RkrLEEJwMnuecTNJUAmgy57zxOStN/0YkLipdgc31e4gpkem3ttb6Oe5kT080Ho311Zt5Fj2NM8Ov0JzoJ6HWu+hwV8353GjWoCPLrueoOqburt1ReUjy65jzMgR04LoikpI9fHU0CEGiymWR5uQs0PlZtcoA4UkQ8UUZ3MjbK3unLNx9X8DKo5KkuRlp5NyaHN9oLZEnF+9aReNUc8rp2jZ7O8bZFdnZSpIl2KyIC2jUB+4hpHiIVpCO1HmUYq/EriOoLouSvMymfREns7Vzex76QShqB9NV/EFdBraq5kYzsxZP7KdC2Rz/4SmdhHw3+zN+S9x2SyEgzCe8gSh9R2Lvl8UvoVQlyPpW7HcIKdHx3GFoHciNSWSUSlM6wj5wiNLOt+5YJj7ZthpLwRXCI6PjFG0LF4+10tXTRWNsbkzCNfNks39E5Z9dtH9SvgIhR4iHvlVb2y2wh+cKyzyllfzNZwkpptktPgGjaFbCKiLCyAvFUNjGf7mWy+z93Avv/KhG7lz16p5t3Vsh7GhNCO1EUoFk6H+CVITOYySRTZdZMOOLgb7JthwbRdH3+5loHd8StnqcmTtPEkzzb2Nt/DF4tdRJIWucDt+xQvmYSWIKiu0B5vpDE9b7QghGCyNsD95hHc13crySCdJM803LzxCTIvwma4PsSLSNSMeWK5NX2Ecy3XKJYLy5xECrdxY3FLVOT12IQRF26S/kKTGF+Fouo8xI4ssyeys6WFdvJWPdt6AK1wM1/ZcM65iQLVcl4F8hojmY7xUoNofZLxUwHIdb85QlmkJx6bOfT5UHEwVSWZjS9PUMv9Le2Y3AxqinpivLMveU2VsgrNjE+zsbPdcNIWL4wwhy+GpSZiFoMthZEnHpyRQZB+OMLHcPIoSr/S0F/5MZR+Y9uUhVF3FdVw61zQTiYfYeP0KVm/xbCrymdKsrqAr0qQyf0a+8DCgomvLCQcfIhi8F0WurzyoWvtxs3+KHPwY6NcuurkQWUT6N5D8t6JFfp+6SIiJQgm/BEXTIqRreA6niyNf+C75wvcrO88F4bIwcX8aqizTURVnPF+gKhgga5hYlxmdgXevFEvPUCg9Xt7//JCkCLHIzxEJfxJ5Ed+sy6HLcVrD9wKQNk8wUnyZiN5JwremvHT3kDN7US6jV5XsEbycbqZVyXyYSOf522+9zLOvn8R2XIbGMgtu39pZy5YbViDLEjfcvR7hurR11ROOBohXhxFCcPdD22hsrWLl+rYFe44+WWd79QbGjIlFz/NS2MLGci1uqttJTItguAY/GHgK0zX55LL3o8saSTNFQo9NNa8OpS7yv088wW2N60joIb5w5AdU6SGSZh5ZkvjjIz+g5JgIAXc1XcP2mm76ixMYjsXnVtzBycwgr42dxhWCvz75FHE9iBDgCJfbGtdyd9MG1ArV3xaDEDBeKvBvx06wPF7LsYkRPrNmG+eyEzzbd4bWcIzuWDVNocVFXZa4XhYYtk3OMKeW7xIwyWs9OTLOoYFhAprKaC7P9w4cZTxf4MaeznLd1CaZ/q+4IoWurcWnb0PXVqIotWXaykyumhCwLHIrYa2JmNZKVG+bcre8GpAkCV1XCQSmM6NJAYX6lunpidrLGpZCOBSKj1EoTv7QTUzrMMnMafLFHxMJf4SA/2ZkaX7FLG8/Bm7hq+D0efP6pcfAdz2SFPWWAkIgRAphvISwTyDp25CkIEJkENYRHKfIUCaHJEkENJXxgueh1BitNDt2qDQIXi3IkkR1MEjEp3MhmaYxGp5T/Nl2LpLJfRnXTc6xl2koSiPxyK8RCt7PpSpVlcLbfvI9k9oGEh69zhuplSWNi7lHSBrt+JRqDGcCWdLIWqeRJAVNiSEtQscrlkz+9dG9PLf3FHb54TGXWPWlCEUCrN+6bMFtOlfO36C8FL4pjuYSp3okldZgExIStnB4ZewthkujfLrzg3SF2zmT6+WbFx6hO9LOzurNhNUQHaFaHmzbzs7a5QQUnaZAgqeHDiMhYTgWB5MXEAg6QrV0Reop2iYnMoM81H4tm6uWsSnRwfaabg6mLnA6O8xIKU3ayqNICj2Rhit2e5gPpmOTNIucSI6SNksIIFkqosnyVBZcyTEXDaauKC8dJQCJTMngG28d5NTIGJoiE9R16iJhVFnmlbO97O8bAMkj7RdNC0WWefTwcX7h+u2AiuOOUzJeoFh6EVn6Z1S1A5++Ab/venz6BhSlzutoe4ej2r8SCQm/8tMTLFgYAtu5SDb3lVmcRyFKGOZrWMljBPw3Eg59FJ9v09R46Wx4FiXCGUQYTyGMJ5GMa5H870HSt4E7hpv7K6+zLwqI0tNIvt1T75ZlmW0dLbiu4OTIOG2JGCGfTqWZqd+3G5++6QqvwzQs+zSF4mMVHVeRJdKlEhMFzw/Kp6pTtKhJuG6BbO5LGOaBBfYkoWmrSER/h4B/N6BedYETv1LH6qrPkbN6OZv+GjmrlxXxTzNSeIWCPUB1YAvrqn+bqN5NUGuedz+O4/Kjl47yyAtHFrX5mAtWWVNVr4BHerUxmdSMGuO8MXGAo5lT3Fp/HQElQH9xCE1WSegxvn3xR/Tm+3mo9V4SeoQ7G69BLg+63Fi/imtrusvL5umxUlVSCKk+cnaJnTXLSfhCU0GrJ1RPdd7PVn8ro8lxattqGL4wRvKVYfb5ktS2VtPUWVcR/xPAMu05r50rBMeSI5R8NnpAQSBIGyWaQlEOjg9xMZeiPRJfULBpEhVlpj211Wxrb6E+EqI6FGR3dwd7zl5gTWMdaxvraIlHOTee5OTIGIZto8gyuqoQ1nWWVVexu2dZ+YuRkaVJOoaNKzKY1kFM6zC5wsNoaicB/y4C/tvKDQSvoL+UHqnAQTC/uMqMbYWDK/JIbuUitwKbfOEHmNaRebdxRZp88REMcx+h4PsIhz6AqrTMWvpLKOC7BVkK46Y+A6KIKD2GMN9A8t0IzijCfAWwQQqCUoskh8vXQ0KS5Cneb1tVfPr47mwHgLkQ8O8mGv5UxZ99PhSKj1MsPoWoIJhajsuhwWH6UhkmCgV2LWujYFlElUnXT5dC6Ulyhe8xf9NJJ+C/nnj0N8rSe7OzBlF2CZUum7UXiLJ2weJBSZOj1AZ2oMoRHGHhk0NE9R4cYWK6KWr9W2mP3D/V7Z6Pm/n28T7+9dG95CpghFyOTK7E9589SL5o8oE7N1JVoWX0/Jj71zRJtp8LrnB4cfQNHu5/AlmSuZDvx6/4iGtRWoKNNPhrafDX8tLoG6yKdnNd7dYZmZwsyQTV+RttES1A5LLenVE0OfLqSd54fD9tK5upicd58/v7Gesfp7m7Ad2v89Cv3rNoMLUthwunhjh/fJBNN6yY5RmlyBK1gTANfodl0SpCqk5A1TifTRLTPX+7oUKWlFmiNrDwtV80mFYFA/zhXTfj1zxnxRcGz1DlC/K/H7yXkK4T0FRqwiHu2NzFDqOFjdXNZK0Szw6c5raW5XTFqwleMko6t7eRixAZTGs/pnWIXOG76NpaZOlKslEXw1zYgnYSln2GZPq/IFE5nUhgYZhvwqIB28V2LpDJ/g2G+SaxyC/g9+1EknzeU84dR5QeAykAShOSvhNQEPZxcIYQxe/hiUAHkPSbkHy3IOnbPXsTYFKX9Z1BuUrqSpWch4DyZFxI14n4dMbyeTRF4dLxZ8s+TSb7N7ju+Jx7kaUYodADxMI/j6I0zxkUhRCMGRcZLJ2h3r+MmFaLXwmRd9KczLxOW2gNASVKUJm/bu+IIunScXLWBVTJjysMdDmOrkybwsmSNhVIi84QuhyfGhGdPI+hsQxf/M6rDI9nK7hGM2HZDt99+gBfeeQNwJO8e9futVfswwUeHU1Cmpp8Ai+Qurgo8zRYFEmhJdhId7iDpkA9LcFG2oJNNPhrCSoB/IoPgSBr5fFdpQaxbXmZZN/pIbrWt4MERsEglyqQHE5T3ZhYsE7tCsHoQJLnH36LE/t7edcnbiASD85ZWllTVcf1nasmF9+EVR8R3cfWOo8dIUsSEX3xGLFoMFVkmaqQl02mjCJ/f2wPH+jayPqapvKT3kvZz5SN2M4Wx9gz3MtrI73c3NY9q0QjMVkbne9CODjOEEVnaNGTf6dw3TEKxUd/oscQGJSMl7Ht80Qjv0A4+BCS5MMt/BMi/08g6cihTyL5bkLy3wlOX3lp/5y3A6UZOfyLSOpa74pJk42/qxFMf5pwEdjoqsKuzjYs22E0X6CnpnrK3sZxkqSzf4FpHZ3j/RKq0kE08umybun8DQFbmJzM7iVrTzBQOEVPZCsd4XX0F06Qt9Oczx8moIRZFd3hrQ6YZI94tcyiPcKJ5D9gOGMsj3+alHkUgUNQa0aVZxPdXWEyUTpAjX8rapnPKoSgaFj866Nvcvj04JKvlhCCt49d5DtP76doeA/uZ147wZbVbUTDc/+wRdkC2bOFdomGAvh9M8sfUTXMnY030hSoR79k+mln9RYc4VDnny0yI0kSG+NrWBnpQlc0AvJsu5jra7exItJFY2Baw/idlCRCZbHojlUtNHXV4zqCRF3Zjru5ikgijHKJa+jkZ568DsfePMeh104zPpTmM39wP2u2dqKoCq45e/XkU9RZWad/gcnN+bDoO4QQGI6NLVxOpkcxHJvlsRrSRpHeXJKcZbA60cC4kWff2AAHJwbJ2yamY/PC4BleH+nlwz2bCWvlG2BJhHsZSQotWty/7IxxRZHFM0fwMrPgEvc/eRQTIWZzbefb2nYuksr8N0AQ8d+KMJ4FyQdSBO9rkLw/S1EQOW+ZL8c8ib7Ct5Ejy0AKMaU7IGmwYEdz4Q74Tx+eILdA0FXtNfe6XRdFlstMD5Ns/isUCj9idlNMx+/bTizyOfy+axfNpl3hYAkDXfaTMke4UDhKU6CbUeMiEa2KUeMi48KlM3QNATXseRCZJ0kZXhDPmCcx3TTrqn+dqN7NhezDAGWe6SV6rkz+PsYZL75FtX/D9Dm4guf2nuLxV44uia42ifFUnn/+weuMp6anvg6dHuTzf/vj2QIm5RW67TiUDBvDspGA6zZ28bF3byMami5jxfUo9zbdMuPtEhI31++c8W9jxjASEgUnR0KvJaiEsIXM4fQbrIysxxEOcc3TzzUcm7PZJEXbYSB/EU1W2FTdNjUqOh881wTPvE9CQtMUFNkrwdiWTaQqzD2fupljr59CURXu+NhuMuNZIokQtuWglc0RXcfl7NF+cuni1H73v3KSUMTPp3//fjbfuKri2ip4k2Sloonu93yvKn0oLBrZHCE4kR7lQi7JK8PnCGs+3hrr5wt9z3JNdROtoTh9+RQHxgdZFqlCliQ2VDfxowvHWBmvoytaPUO0olJ5PJDx6RuJR38DSV6CtbRwSGf/mmLpiUU31bXVxGO/jSzHy4nyPMZNkxn4Ja+VSs+Xg2PlcN0k+cIPCKpdSPr1yL6bQakFN4mwzwKOF2SVVuTwL4EUQaircAtfRxjPIvnvYzJISlKE+QVdBEIsXr8UoojjpJb0GebeT57KKtt2+RKXVZaUyazQpVB6hkzuH2bJ68lynFDwfUTDn0FVWiu6sXXZjy4HyFrjmG4RyzVQZZ2wGkeWFFoCKyk6makJI/D0SVPGMQAUycey6EPUBa+jZA8zbuzHr9RRE9g+4ziGM47pTjBYeJ7h4itUBzbTFLoNCZnzAxP866N7KZQqq9/PuErl5f3BkwMzj2faHDlT+YptLHWQFcvquHX7iiVJyQEcz+6nPdjDufxJABSfwonsQU5kDmA4RRoDrcS0KiQkFEmi1h/Bdh1cIdBldUFivRCCXNHkwIl+3j52kcHRDLqmsHJZPTs3LKO1Po7u12nq9GiYyzdNMxqaOmcPB2TTBX7wj8+TvqSUoqoK9338Bm68f3NFmhqXov/8KP/65z9m553rufb2teg+raL7btHIpsoy11Q30ROr4bmB03ygawMtoTjfPXeQD3ZtpDkU43R6jOOpEeoDEXRZIar7sYXD0eQw57ITfLRn8/TUUkX8MAm/7zqqYn+Ipq1a0nJBCBtFnlsP83LIcgSfth5ZriZrmBweHkYtUyGifh/d1dXIEgxksvSlM6yorUZTFIKahm2fr/icpo4nxQj4d6Po60HfMlU/FtYhbwNnCOEmkUO/gCQ3eYE9+EFkyY8o/cDzinLLN4zSwPw0FwFi8YmhbO6fKRTfOWnfdTOICiaUhLDwHgYz9WNN6zCp9Bdw3Us5kDKatoJY5BcJ+u9ElmcLeAghcEWqXFufziAMt0hcqyWhN2C5BgHFW93ocoAJc5BaXyuOsDmXO8Cq2C5kSaYxdDPDhZcZLb5OU+g22iPvwXELnE1/g5I9THfsY4S1dmw3j1Juop5Nf4OB/BMU7REsN8OZ1Feo9m9Acqv57tMH6B1YGqdz8jPtO9HP9589iLMIdWox5Ismj798jG1r24kvcYJPRqHo5FElFV32gRAMli7SEVpO2kpS72+Z4pWqskJjoLL+hhCC3oEJvvTwa7y6/xz54vR98/RrJ3j6tRP8wkPXsWlVa8UPAH9Ap7WngX0vedNhsiyx86713P/pm6YU+yuFbTn84Msv8OIjb7P/5ROMDiS5+0O7CIR9i8ahio80XspTdCwcIfjRhWNsrG6mPhBBCEF3rIa6QBiforK7sYuhoje9sCJeS2eket7C9vxQ8Ovb0PX554yvJlwh2DcwwGMnTpErmaxpqGM0n+c3b7wex3X50bETFG2b58+cY1lVnPetW7Ok/UtSGL++lXDogwT8tyDNUXfzTmQC2X8XKK1TGbIk+SFwv0eNMp73GlRoSPpW5vv6xFSpY2E47hCO+5OvTU/D4tIM1psi62Ui9YdY9rR6viQFCAbuIRb57LxjoUIIHGeQidTvEgjcSShwD+BN3qmSTk9kKyBR7+9Ak3wokkpneANRoxrbtWjwdxLVa6c6/X6ljp74J9CVGF3xj2K6Gc6kv8pE6QArE79IW+Q9yJKKJkdoDN1EzjqP6SYxzQlAQpcT1AS2osoRJtIl9h3vY6mreyEE46k8X/r+HlLZSktIC+Po2SFOXRhhy+q2OZkGJdMmmS7QUOP5xnt6vC4hNYLlmkS1OLZrIUkyCa2apDVOzs6gXoE+hhCC8wMT/NcvPsGR00Oz1jKOKzhyZoi//MaL/MHP30lnc3VlKxG/xm0PbufN547Rd2aY5RvaefAXbuX4vvOzFpuO7TI6kJr+u+VyZO9Zxga9f5sYyfDSI/tAQGYiz9f/5+OYJYv3fuZm/MGFm2sVX5H6QITfXH8T3z1/iJeHzhLWfPyg9zD3tK7Cr3o1LE1W6IxWE1A1AopGW9gTV34nzDinPD+vyrNHyCxnetzrnRS7BVC0bK9+I9zpfxRQtCyaohFePn+BruoqbunpWtRu+nL4fbuoSfw5ijL3/LmXSRqgrQBmPwG9gPp+3PyXEMbzSL4bvYbVvERityLdT1muQZHj0+9yMzjuyHxboygNl1DbLjmam5syuFsYnr4reAHfcYdJpv5ohtq/pi4nFvkswcDdyHKIhbLvQunHFEpPUSw9T7H0NLHIL6Fr61AvaaxU6dOkdr8SoiW4cs69SZJElf8afEoVGfMUafMkcd9qumMfI6hOjwlLkkxn9IPUBrZTsAdx3CKqHCCoNhPWOlBkH/GIzV3XrebrP35zSUHRmmd5/06QzhU5cGKAjStbUJWZSU2+aPL333mF1w/18psfv4XNqz0ls6KTp1qvo87fRMocZ7jUT2OgjXp/M53hlfTmTxPRKstEJyGEIJkp8j++8hyHTy/8AD91YZTvP3OQX/nQ7hkWLvNBkiTaljdwz0d28ehXXuITv30fLV11/OirLzM2kCrXVqfvI92vsfOua6b+/vaLJ2bsb822mVKN6Ykc+Uzx6gRT23VJmSVOZ8ZpDcX5xxse4oXBs/zj8dfpjtZwTbU3ITFczPLw+UNkLYPGYJSXBs/Sl09zX/tqdtR3VHKoGRBCcHp8gh8fP8mqulqEEKxrqKc+EkZTFF6/2EdfOs2D69aivINgarsuA5ksndVVnJvwJm5Cuk7RtrBdF8NxGS8UiPl9/PjYSR68Zu0ie5wJWQrOkoATooQo/Qhhn0f2XY/kuxaQEcaTIDeAcrlOpAXuEKjLkaO/DwvRxoSFEItzGqPhjxMOfXj6CNZJxpP/Edu5OOf2ilxLLPLz+PRtM8o1pdLzjKd+Z96GnCQF8Pt2EAzcORWUXGecVPpPKZSeAgSSFCYUfC+xyM+jKh2LPhwdd5hc/pt4LAGDQvFHGOZ+ouFPEQ4+hCwnlvyAlVDQ5ChV/g00hm6ZV51MkX3EfbNl9ibh01V+5u5NbFjZzNd+9CavHTiPYS1cwxZCcPDkAA8/d2jRyailQAg4dGqAfNEkFp6+B03L4TtP7efhZw9i2S7/+uheVnU2EArohNQIIdXrU9T5m6jze/diV9j7vA3++QVV5oNlu3z9sTd56+jc99alcF3BvuN9jKXyNNYsPsYJoGoKtz20nXXXdtOxqglZlvi5z78PTVeXXC++UlQUTL1lo2BTTQsJnx8JiQc613sNqHAcgLtaV6HJMnWBMBISH+zaNEWAeicqL0eGR1BkiSPDI+RMk6Jtc11HOznD4NTYOCO5HG/09WM7Djvb27iS6+ZTFLqrqzg0NIxfU8kZJitqvQy7YFpeKaO6GlWRqS9Pe125FlaZPF56HDf9eaCEi4kc/o8I81XczH8FZLi86SZswEKJ/xXIjYuOqS4uPKIgy7Wol5jpKXKcYOBOMrkvzrG9i2kdIJn+U6ri/5mA/+apwKipPShyNbbTj8fA8CNLYRSlFl2/hqD/dny+rchSHJBwnHFSmf9eJubL+PTNxCK/iN+/G2mOzHz253M8i2drZkbhOP2k0n9S5vX+Mrq2hkr8nyYhSTJ+db7Vw9KgKgrruhv5g5+7kxffOs03H3+b0xdG562D5goG33lqP8lMpU4ClePCUJLxVH4qmLpC8Naxi3zriX1YtrcSO3JmiNcOnqe7rbLPL8RkqcXFcYWnwOYKIiE/TXWxGeZ9QggOnx7kRy8eqZjZkM2XKBnTzTvbcpAv84C79M+u63LkleMcefUE4ztXsH736hnWJUIIcsk8qq7iD3n32GuPvsXeJw7Q0tPAjndtoaFjbuWrSlFRMFUlmfpAeMbJa5LC6sT0D7E9kpjrre8ItutyaGiYqE9nvFDAdl2yhkHGKJEtmSSLRQYyWQzbpiYYvHI1yXLDqSkaIaCprG9s4ODgMIZjI0nQEAljuQ5r6+tYWVeLusRl/my4iNKTXnandCOpq0GYiNKPwR0G3LmZTVIYYR1BUrtgAd8mIcxy8J3v44YJ+HcT8F9/2Ss6ur4J0JiPWmY758nk/rE8+uv98HR9NTVVf4HjjIGkIktBZLkKVWlCksNY1nFy+e/i1zehqE2ks39NrvAtVKWZcOgDhEMPLkEcRuA4A+Ty/8Zc46telvoYlnWGWPRzBP13VaRl+pOAJEmEAjp37FzFNcubefTFwzzywhFGk7Mn1HoHk1fER60E2bzBxaEUnS3e9zUynuVfH3mDiUsCd65g8Of/8iz+Cho2k5Qw1xXYjottOziuF1Qba6P8+sduZvOqaeZFsWTx/WcPkMxUXvII+HX0S7rwT33lBQ6+dJSd79pK94YO3nh8P2t3rqBjbSuKqiBcwbnDF/i3//ZDVmztYvnmzpk+UAJO7z/HU195kY23ruO692zj4slBfvTFp6lrq2HNrhU/nWD6054HvhTd1VWM5PJUBQPYjsvx0TE2NTextqGOt/sHqAuHCagaq+pqUWQZIa6MX7m2oZ7V9XVIeIMK6xsb0GSZsK5THQyyva1lzrrtlcECKYAc+wKStg7kekBGDrwf102Dtg5JvvyLtXALX8fN/hmyOwTBDyFJ8bmpXJKMLFchiwyTU06SFEBVGtC19fh92/DpW5EvYz1IkoQix5Ekf7nzPs/Z2yexnYGpYCpJfvy+nXNua5iHGU/+DqZ1FFVpRFXbseyzhIMPEQ59EF1bOa3FUAGEsMkXH8W0ji+wlYtlHyeZ+jx2+CyR0MenznW2cuxPHrIs0Vgb5ePv3o6mKnz54dex7Jkrh3gkQENNlLHUUtwEKkPJsBiZ8FggpmXz2MtHOXRqduC+Gllx78AEr+w7y/qeJnRNRQjB0bND7D18YUn7WdZcRSI6XZ/vPz3Is19/mQ03riVRH6fvxACPf/lZPvr5h9h210aEAMuwcR2X6qYE0cuEoSVZonvDMr73F4/xxd/6Gj6/jnBdXMclUR+jprkyBtBCWHJLzhWCoWwW23WpCYYIaFdfYGISqiwT1DSWVSU8/5lMFl1VqAoEODk2RtTvY1trMw8fPc5YocBtPV1oV5A0SuVjXQq9XKxXJGnJDafFISMFfwZJ2zgjGxPaJk8ZSr8eSVs+4x1CuMhouJnP45Z+hOK7BdT4nHtXlWaqE1/AdZPlQBrygqscRZYCgL7Ad6Yt7uckXCoRNXHdNJnc32JahwAH2+nFdnrRtXWEgw+ia2uXpP/qkbzPkst/i0qGMhx3lHT2b7HtfmLRX0VVW0HAnqELnE1P8O7O1fhVFctxCKgajhCkjCJR3T/1/V8tSJKErqnEIoE5n3+NtVF+5UO7+cojb/D6od4ZgiiKLBEO+uZ+cM4Bx3HIFTzKka4qxKMBggHPyfTE+REeffHIrGB+tSCEVzLI5A1q4qrnOPzm6SU14uKRALddu5KA79IxdBkhIBQL4gvqXHPTGp766ot85388wvLNnUSrwhhFE0mWiNfG5rR5DsaC1HfUcnTPCQrZIla5jJCoi01JbBpFk5ELY9S1VqMHFvqdzMaSg6njuvzRU88xmMnyX++8jWVVCU6NjdEUjZIIBqbqo3nD5MVz5+mpqaanpvqKA9LahjpUWcFyHFbW1dIUjaBIMgLB3SuX41dVdFWlZNuoksxPW1LuyqAhaRvmED4RCLka5sjUJCTw34ZkH0Xy3QZqz7w/LknS8enXzPnaYpAkxSs/LBBNFaUBRV7Ys10Il3zxUQrFp7j8OzGtYyTT/4V47Lfx6ZsrrmsKUSJX+PYMGtXi7ymQK3wPgU1V/D8jSzEOjQ/x4/MnuLN9OYOFLP9y7C12NnoC5t89fZibW7p4sGfdLDWry+G4RrlJJeOIIrKkz2haeePWk1KVCycdiiyztruR3/rErTz+6nG+/8wBBkbSCKChJsrnfuaGGcHFFYKCaeE4LtGAf8atcLZvnL/+5kvYjsvGVS185N6trFxWT75o8sPnDzMwmq74+l0JBkbSDI9lqImHGBrL8MYSstJoyM8Dt21gxzUzm5CXXjlJkmjpbiQUDZKdyGOVLFxXUMwWkWWZ6qaZJcdCtkh6LAsI1l+/iqqGOK0rmzix9wxI4Av6mBhOI5Hm0EvH+cafPszWOzfwns/eQWNn/dWbgLociuRJqI3k82iKTLpU4k+efwlNVtjV0UbRspAlCctx+f6Ro9SGQvzKdTu4qWvZFWlN9tTMXRC/1Ip5Re30NlcwufdTh3cd5gogkhco5/J4lyQgjhz+dZCCS8rolgJZCrOQx7wkRQgF34ui1C64H8s+RSb7jwgxl8CHTcl8jfHU705J6EmL8BY9cv/+shj3Uh6YMpKkYllnyBpj5ByJlFHCch2+f+YIOcvg0XPHWRatYm11PWczEyzLJCrSrxwpPo/lZNGVGBnzONX+bST8m0kbhzCccWy3gOGMEVAbaAjdVtalmB+SJFEdD/H+OzayrLmK//z3T5DKFgkFdLasbiMc9JUHFQQnhsY4ce4iOcPk+qYO1rU0TCUygUsmdmoSYdZ0NeL3qew5cJ5X9p/9if9GckWTs/3jrOps4MiZQQbHFg/eqiLT1VrD/Tev59ZrVxD0L1z6qWuv4UP/6b1EqsJUNSawLZvMeBZZkam/rImWHE7z9tMHkcoJXbQ6wom9Zzi175w3ZioEbz/tDc6cO3yB/lODZMYyrNu1koaOOiTlJxRMuURMty+dwa+ppIslSrZNUzTCnzz3Ig2RCL+0czuPnzzFydExLqbSlzhe/3+YF5KEJM0v8yVJEkjeJJBl9+K62bJrgV4e033nV1iS/KhKB44zu6YmSRHCofcT9N/k1XbngRA2mezfY9knFziSwLKOMJH+fRL8J4L+OxYMqK47QTb3FRynUg6mhKp2EPDdhK6vQdfWMW5Vc2R8mFcGzlOwPItpRZJxhGdbEdZ0TMfBr2pTZR8hBJYwsV0bRVJQZQ0ZGSTImedQ5SB5K4Pt5jCcCYSwMZwxJkpv4woLkPAp1TjCqGiUWpIkNFVhWXM1Qb9OKuvpvh64OIikeEmKIkv0JTOcGZ3AcV2yJcMTF1kgWckXTZ7cc5xk+uqzBS6HYVicH5igUDJ561jfohqukZCPO3eu4v5brqGtMTGDCTAfgpEAd3z8RvLpAooiU8rbjPVPoPs1GjtnrpoaO+u5+9O3zmAVpUbTvPLwG/gCOrd++Aa23O6t5PY9d5hH/u5JYrVRlm/pRFoCPagyapQQ9KUznBwdAwnSpRKm7fDlvW9Tsm3GC0USAT8tsZinMhUM0J6Io8kyqqKwsblxyfQogY0rSkt6j/dGp2I/IiFcT+3+io6z9JnrqwnLOkYy/cdeo0hSymItV+NxJXCc0blfEQbF4lOUSi8utgccu59KxFZs+xzJ1B8hJwL4fTfOM+1kUyg9SaH0LJVpACj49K3Eo7+O37d1qsHVqAlKccF4qYAsSQzkM6xIeOyM2kCIlnBsho6E91kEbydf462JPcS0OLX+RtbFNhNVbQr2BfxKAwIHw5lgovQWqhwiWdoHCErOECGtg9HiS0T1FUT0xa2H5/w0skxjLILPp03pCWRLJstqEvSnMkzkiziuYKEYNDCa5sCJ/qvsnzo3BHBxKEn/SIqji2gJxCMBPnrfVu7bvY5wsLIapRCCXCrPkVdPEKmKsGJLF8nhNGMDnmh0TXPVjO09nunM/aZGs4xcGMcX8NF3apC69hqauxumPoDm0/AFF6fpXYqKM1NVlvFrGooklRW04d5VKwhoKv/r5T0VH7AyOBRLz+HMo2m5MFwMc7Y/1Vyw7XMkM3/qTRgtEbZ9bsnvuZrw6dtQlCZKxotUFmCuBkxsp/eq79V2LpJM/zfqataiKjNZDF7T6TTZ3D8jxMKeSR4UAr4bSMR+D01bOSM4O0Lw4sA5LNehNhDiZGqMnGXiCkHWNEgaRZzL2CACQdIc53jWWwZW67WsjKxFkULIko4i+ylYF5GQCWnthLUudCXBUP5JVCmM5aRoDN1JRF/I0nxhqLJEXTTsNaHwKIOZkoHp2ET9PkI+HWWRDGpSrf+nhcHRDEfODDGWml+oPBL08cn3bOddN67D76tMV9d1XM4e6OWJf3mejrWtbLjR03c9ve8c6bEMa3dto6ohvuA+hBCc3neOzHiWtdet5Pzhi/z4H5/h/b/5bgIh7xqruoruX5rWb8XUqMZohMZoBFcIIj4f44UCG5oaCPt8hDQN272akm8C0zqAaS1kW/HO4bjD5Avf/oke4ycFRUkQCX0Y09yPKwooSi2y7Al+/HuDhIKmLZ/SFr0UQuTI5v5pQWeDaWgEA3eSiP4OqjqzgSGEoD+fIWcavLtzNW+PDvDbm29kqJDlid6TU0t+WZKmhk2kS947ibZgJy3BDoQoElRb8dqGLnmrl5DWgSZHEFiochTBCEV7AFnSsdwc2gIarEuBBNSEgwQ0L5MKaOqUxsB8WNZczS3XLuc7T+2/IuuUpSJXMDh+dnhedwFdU3j/nZu4b/faigLp5Dfw8vdfp//0EFvv3MiND+7EH/KRTeZ5/cfePH1dWzXFXAlVn7/hV8yV2PfsYQCuu38bul/nqa++yGNfepad920GwB/UlyySUvHWk0LQmZKB5TgYts3jJ05RHwlTtG1UWfZm5csCtWZ5bn5Svm7pkJlfYm4xOFSWrUnlY1xJAHL5P6sZKhHw30A49EFUtQW/7zpkKcK0ReVPsUotBI47im1fQFM7kZXEEo8tl2lbM1cIk8aF+eIPWbzppBEOPkg89hvlAYDZxw+qKh9dtYmz6QmCqo4EDBdy3NLaza7GdoKazidXb+GampkmdfYlAxB5J4cQAlUO0xn7OCCRNg4zXtpLa+R9ILIUzFME1RYiWheWM8ZE4UfE5hDtyeRLGKa9ZG8nRZapj85W0VoIQb/OR+/diixLfP+ZgzPUmq42FFlm5bJ6RlO5eZtdN23t4aHbNxJYpNEEnsL+yEVPfP7F777ObR+5gff+8l0EowEcx+XNJ/az/7nDbL9nE8VsiT/7xF/zof/0PlZu655T3OXU2+c48PwRVu9Yzra7NjJ4doSa5ip6Ni0jM+HxfGM10SXVS2EJwfTE6Bh/8fIe+tIZzk0kUWWZZVUJ1jc28LW3DzCaz/P4iVOsqa/Dr6l879BRkoUik7YOS4MyRepeOhzS2b+hWHpq0S11bQ3x6G+VM7qZEMJEiJyndTpHUC8ZL5DK/PcrOL/5YVs2ijrzh+W6LkbRmlp+XApZjpKI/TagzeSrCpNi6Xk8GbseVKVxScT4pUFg2wOkMn9GydiDpvYQDn2QUOBeZLnqHXGQTesI6ezf4LqpBbeTpADR8M8SjXwWZZ7sXJI8r5/zmSSyJHNgbJCsZdAWiXNsYoSg5nn/SJJE0ihi2Lantl5uQE3CEQ6GW0KVw1OUrphvLVGtHqv0A1xhEFe7UX234DrnEE4IRxVI1l6EtG3GOf34paPEowEevG3DLEEPy3ambDmE8P5uLjLfPwnbnvshH48G+dR7d7CivZ5//uHrnCkHqGvXd/Cxd22b8z2O45LJl/DrGgXDxHEEtYkQo6k83356P631ccZSeTRV5qFbN+LTVRRZwqep/Od/mFtTeHl7LZ96704ic9zTc2Hw3Aj7nvEyyU23rOOjf/ggkaowruNy4LkjfONPHmbNrhV88r98gImhFH/0wH/nv3/q7/h/Hv4NmroaZuwrNZLm+3/5GOF4iI/8/gNUNcSJVoX5f77/GyQa4vzvX/xHAOraapZ871YcTAOaxunxCUqWja4o6KrCqrraKXn/RCDAZ3dup6ZscWLYNmsb6tFVhZ6apU4XSKhKM5q6Gdt28Pk00pkilmVTXeWNtWZzJcbGslMzwrW1EaKRQFnPdGHaziRkOYpP34AsV2PbJ7DssyhyDZIcwrYGMIw9xGK/X1Yvmon5xEAWQskpokoqiqSStpIElAA+xRt1HOkb5+lv7OG+T91EpGw37dguB14+Tt/pYd71qZtm7EsIQTFn4A/5Zgk5COFQKD1NLv8NVKURTevB77sOv74NVe1EluNXbdDCdQtkcn9fDt4OpnWAidRh8oVvEQl/kqD/NiRpfq+l+WA7I6Qy/31RTqks1xCP/nrZDsbPQhmx4dj86PxxTqfGMR0bRZLY3bSMgmVyfGIURZbQZYXff+0pfnPTDbyrczUCQcnxCOeq5CmgpcwJQuqlmaGBVXoWy3gBWW7EtXtR9S2AjCtSSHIc4aZnPdAy+RJfffRNXn777KwOtmk5Uyr7fcMpfvN//qBirna+aGI7c2fyPk3l1muXoyoyf/R3j1EybapiQTaunFu8ZCyV4ys/2stt21eQyhc5cnaI//DB3QyOZVA1mTVdDZztH2ciU2D98qYpStOBk/1zjo+GAjqfed9OWuoXtkG/FC09jdzx8RvZ+/h+PvUnH6KmuYpS3uCl773Ok//yPLvu38Z9P3cbifoYvoBOrDZK75E++k4Ozgim6bEsX//Cw2TGs3z2Lz7Oym3dOJbD2EASx3J4++lDHNlzAkmS6FzfNifxfyFUHEwbImE+unkDa+rr+NPnXqI3lZq9kTQ9eupTVd61xpM7M+wrkwUxDJsnnz5MR3sNg0MpUqkCiUSIbVs7OXlyiENH+li3toUXXz7Jlo3t3HzTleqfWtjOELncP4KkI6EQDN6P445Smf3J4hAIzuSOUXQKpK0kqqSyLr4FXfYjSRJvPHmIN585zLV3XcOp/b3EasJcODHIs99+HUWViVWF6L6mneYuj/bh2C7PfPcNIvEQx/edJxIPcd/HryeaCOG5wEYAG9u5iO1cpFh6HlkKo2k9+PStBPy70bRVKHIVV15OcSmWnidX+A4zl+EOhvk2ZvI4ed/1RMOfKnfVK8tEXLdIJvcPFEsvsFApRVW7qIr9AQH/zXhjswv/OM9lknz39GFuaulEliSeuHCKM+kJHOHSm0nRHI7yy9fs4sbmZcR8XslBIMjbHlfWrwRQJZURY5CmwKWq/xqKthrH3Ot9RjkMUgRJsrCN1wCBqq2b0701VzAWnckvGtac459XgslzDpQtORaD4wryJZPaRJiiYZcdX2EiU2BZUzWt9Z46V+7UAKcujLKu21NsGhzNUCjNLCVIwF3XrWbbuo4lnbOqqzz4a/dx8wd20dzTwJn959n75AFc2+Uzf/YRlq1rQy2XSkKxIBtvWkusOkLrSs9+23VcLp4Y4Ml/eR7Np/Krf/cZmnsakGUZx3bIjGf5+h9/nzef3I9l2DR11bP62uVLrpJVHEx1ReGDG9YjUdmsvlQu5E8UCpwcHefa9tYlnZhAcL53jFDIx2tvnEGWJAzTpmR4QwGO6xIK+gj4ddpaqohEAldQTvCWxLn817CdC8hKHbIcx3UnsO3eBTmfS4UtbIZK/UyYozQF2sjb2RkKOrvv30ohW+Tpf9vD0994FVVXCceCZCbyuI7D6QMXePCX75wKprlMkf5zoyjKOKqqEI4FcKZGBGXkWQLULq7IYJhvYZj7yOa/hqZ2oirNl9RZlwjhYtrHcd3k3C+LAsXSk5jmfkLBB4iEPzqn5fXM99jkC98hl/8aMJ+MoIrft5NE9LfQ9Q1cqrK/EFrDMT6//Ra6YtUMlzJc39yB6dgUHJMqPUTUr7M8Uc3v195SnqbzlvVZ22MRBJUQ1b56TmQPsza2CW3Ki0pBVpqQ1VZAQ5rUPJBkNN8NgItjHUa4S1fe/z8NRZaxHZej54YpGhZ1iTCuK8gXTUzL5snXjxMO+IgEfTiuZ6Xtuh4Vq2TOTERaGxM8ePuGGQImlSJSFULzqZzZ34tlWtz4/p1E6iOYsktOGERFgJJjUsTiQ3/wPhzDIV4bxXVczh/tY+j8CDd98DpaVzSi+6cpWJpPo2fjMm58/w6Gz4/QsKyOuz91C01dDT+5Zb6nYC4tLKF12UuuELx2oY9MyVhyMJWQiEUDHDs+QHNTgqPHBygWTUJBH36/xtBQmmBQ5+y5Efx+jeMnBtm8qb3S8eVLPpeK37eDbO4orjuBcDNIUgDTOoAshbhaDqCqpLGr5lZOZA9xJnecel8Tmjw9qRJJhKhpTBCvjXLbz+yaUsJpX9nEwLkRahrjtPRML1l8fo2G1mry2SL+Mh9u2utGWiQLdBEi+1NhTFAWgc7kvohp7SMW+Q/4fTvmJOgL4VIsPUcq+7/nrZN6Vs8PEgv/3LxWz/MhpOnUhP08M3KIcSNPQg+yvrqV/kKSjlCEt5O9mOMlttV0Ete9h1HByVOwy00JLU6Tv5UXR59kwhylzudJIUqSBHI1vtBnvAOVa6mSFEX1XQ8IVH07SH6gElbC/12ojoXQVIWmmih9IymS2SLRkA/LdnFcF11TaW9IkIgEkMpJz9BYZkbzSdcUHrh1A63106OeS3ExlSQJX9BH98YOFE1hzMjzyOBhLNfTVVgRrac3P8G4kee+1vVUx8t9EAGtK5poW9mMos4tVCTJErvevY2NN63FF/Thq5DvejkqDqau65IxDFLFEjnDmMqAJ60OMobBngsXPfUmSaJk25yfSPGlvW9RGwpxW08X1aF57DrmwKTMV6FoIoQgmymCJJHJFj3uoeVgWQ6jY1nWrm5mfCJ3hXVAGUVpRtfXYhVOo+trkeU4QhhlEnnl57wQJMAn++kKr6Q50E7RmVYHMg2LofOjZJI5mjvrcR3Xa4SMZojVhMlM5IgkwhhFi5G+CWLVYSzDoqo+hlEyqW2ME4wG0KYoJhKVf7VyuQG39GG4KQgDd1EOqEnJ2IPjpqiO/wl+39aZuxAC09xHMv3HOE7fHO+XUNUuYuHPEAq+G0mOTNGBvB+lhdeIW0jnVZA088jINAXipK0CYdXPcDHDhJFnoJiiWg8TUKapOilzgrzjcSWbAm3U+RtIWeMcTL3JTXV3T9l3SJIMs1YylzyIF3FU/b8RhmUzOJ7hli09LG+v8+ynT/RxbmAcVVH44B2beOvYRc72j3Pg1ABV0SBtDQkM02ZkYia/dF1PEzdt7WF4LOM5fiJx8Hg/48kcoaCPFV31dLXVMJEqkCr3R1zhDSgoiszKrgZkWUIu3+MFx+SNsXP4FY3uaC1nsqPkbZOMVSRnlaj2ed+FJEmLUpwkSUL3a+j+pbkHXI6Kf0F2WfX+7/bs5fT4BPWRMD5VJaTrNEcjnB4b5/NPPotPVZEkLys1bJucYRLx+TgwOMTN3Z0Vn5iE58aYTOZpXt1MNBqgoT5GoWhi2y6dnbUcOtzHmtXNhCN+ggEd03LQl3jPCmwM401sewBPCUnBdb1Ap2lz+w+9EwwV+4lpCVoCHVP/lhrN8Ne/9Q0unhxC96nYZR6g47j4/BqmYaNqCrIsEQj7uefju7n27g3UNsUpZIvYtouiyJeVeCp52kcIBm4nFHhPOQv3IHBwRRbHGfLKALjYzmhZSd9BVdrKtVYPJfM1Upn/BYua6gkcZxjHGZ75r0Jg2ceZSP8hln1i1rskKUjAfyPR8Gfw6Zu43OpZiByZ3D/j0zfh821eUGBaoqzN79oEFJ06fxTTtWkOJjBcmwlz+iHnCpfh0gAFO4+ERFd4BXG9ioAS4o2Jl1kd20CTvzLH1H+P0BSFFW21aGWGiRCC+29cjyR5gu+aqtDdUkOhZGLZLqGAjix7memlmq1Bv867dq9F1xT+8p+eY+3KJhRZ5rV957AtB79fIxTUaa6Pc75vnMefP8Lm9e2MJ3OYpkMsGqC1MUHokoxRl1V6onVosoLpOMT1IKbroEgyAfUnxVxZGEuqma5vaGBtQx2D2Sx3ruihMRJGV1V+fsc2llVVMZzLYdi2p7yNiyQJYr4gaxvq2dDUuPhBLkNVVYiNG9ppbIjR3Jygvi7G6TPD2LZDXW2U225ZQ0N9jFLJAoFXM7yCegxYSJKGItdOTUOZ5j5KpRcJBO6uWNWoEggEtrBmBGlfQGfrrWsJRQJEq8MUMkWQoJgzqG6MkxrNEI4FKeYMDrx8nEN7TrLz3o0M902QGsvhui6KKiNXMNN8KYL+W0nE/qD8uSezPBfLPkWp+Baum0JV2tC05RTNN7HtC+jaGvy+bTOEThw3ubhsHwqa2kk49GEC/humr4cQWPYpJlJ/gGG+zcxakYyqthEJfZhQ8AEUuW7OwGVaR8jk/g5ZChIOfoBQ6ME5a7MCgYyMT1ZRZYWiY3ImO0J3pI6g6qMjVMO4maPkWPgUDVtYnMmdQOBSpdfQEuwgrEao9TVwJnecF0ae4F3NHyCkhP//MqDKsoQuT4cISZJmKFcBaKoyww4FPJX8bH56RHtdTyPb13tDFJlciUy2hN+n4tdVUiUTvy/Iqu5Gjp8e4qmXjtHWXIXfp1GTCHPi7Agnzw1THQ+x+9rpKbKEL8iuui76Cim6I3WENR9NwThjRg7nqg4QVY4lkfbHrWG2r9B5z7q7iPpVjuYOsDy8go1Njayqr2a4MEbJKaFIKlk7y4X8eTrCzXRGO4hqS1c7T8RDXL9rpq7nls3LvNcS05mUrqts3bKsfJ5LYw5IqAQD9yL892LZR9DU1UiSjGkeuOoTRZIkoUjKrGmVaFWY9332dmoa99LS08DA2REkyXNHXLW1k7NH+mhor6GQKVLfVs2tH9yJrMheFlA0cV0vg10qZDmOLF9OW5Kw7IuUjDcA8OtbPL8qt4AsRxEit6Bw9HzQtJVUx7+AT79miiLkBe4TTKQ+T8l4lUsDqSRFCfh3Ewl/HL++ed4asBAuheKPcd0kLhOksn9JyXyDaPjT+H07kaTA1OeTkFiXaKEzUjtVrwuqPnxKC6Zj41NUDMfLWIUQTJhjnC37xveEV1Ol1yAjsyKyhrP5E7ydfI1qvZbddXfgK7My/j3DdQUHT/YTjwZpa0xcsd1QMlOYmrIK+XXuvn4NsbCf8WQev65y8uwwbU1VOK6gZNis6PRKCPmiSSigc/TUIKbl4DguZ3pHeeDujWxYM7Pnoroyq8KNrE+0zLjuK1hYGvInicqDKQJHOAyYZ2gMVTNk5Hlq6HGCzSFCapCIGuPl5FMU7Dx+JYDhlsjbeQpMEPb5iWjhRUfe/s/B0xrQtWmjPP0K9UAXg0/xz3DPhJkF+P4zwzz+lZfQfCort8wsiwQjAd7z87dQ11JNaixLqWCi6Sq1zXHqW6tRlpiZzgdFjqMocTwhIj+uKCFECced8OrJiy7n59pnDZrWfUkgdTDNA0yk/3PZnXQykGro2hoi4Y8S9N+xqDGe4wxcJoBiUDJexLJOEg59gEjoQyhKE5LkNR9Cqo+QOjswT2ZgWvn/jrA5kt7PhDlKWI1ybfUNKOUVyrr4Zl6feJFRY5hnRx5DkiR21dxCUAn9uw6oyUyBv/3Wy/h8Gp/74A20NyamlvhL209xKpj2tNeypex6msoU2by+nTO9o3R31JIrGGxe28rr+8+Tzpb40P3bUFWZHz51kGLJJJku4POpdLXXEr5EdMQwbR57yjMevPPWtWiackkPR5r6/6Wn/dP4XioOpkWnSF/xAj3hFbw69hIApmtwPHuEgl3ghtqbsVwLRVLLROcSQSWEJmucyh6nM9T17/pGu1qo9zUtcB08In5tcxV6QMMX0D1xCgGaphII+6lr8Wg38ZoItz64nVy6gL+sor5kKsOccBHCxKdvxnuEGuhqJ+HQg7huBnBR5Cs3nZtsFhWNl0mlv1CeuReAgqq2EQ6+l1DwAVSlbdF6tRCCQulpbPv8rNccd4h09m8wzLeJRT6H37et4ikwIQQjpSH2TrwMwJbETtpD3VOv1/ub2JzYydPDj1Bwcjw59EMmzDFuqruLWl8DcoV19q7WGrpa5h5oKRoWbx65SNGwiAR9bF3bVpE0HUAqW2TvkYtLpgoOjWc42zdOvmTy+b95jG3r2lm5rI6Gmii1iTDxSABNVVAUecGsNZktYNkOuqZw/aauKfuRUFBH0xTyBYOSaRMM6NRWR6iOh2iuj+PXVcJBH7VVYfqHUoyMZ1m/qoVkuoCmKdRWeYMSb+0/z1e+uQddUxgYSpU5szKKIqEqMqqmoKkKmqaiawqqqqBpCrqu4PdpBPwa4bCfWDSA3+fxba9GbKo4mGqyRtKcIEWKLVXbGSkNcTx7lJ7wClqDbZ63vaRiCZOc5ZGcFUlmuDSE5G+k6BQJqVePt/nvCQKXyczp8qz0UsiyzI67NnDHh69DkiQGzo142bwE7auaUS4RqRVCMHRhjAsnh9B9Gm3LG0jURblEnuOKzlWSFAL+nQSY6ekU8O24ov1dDiEK5AsPk87+RXmKTEZRGggF7iMc+hk0tbuiGrUnkpyeY2DgUphelmqfIRb5ecLB9yNJC9c3hRAUnDwvjD7BUGmA5ZG13Fx/N9ol35siKeyouZEzuROcyh3DcEvsGXuei4VzXF97G2tjmyqqo968rYdPvufaOV8bGM3wuS98h+JomsbaKL/zs7dNqUYthoMnB9h3vH/J1iSDoxlKpo3rCs70jXGmbwxFkYkEfUTDfmriYXraaljVWU9nSw2t9XF8ujbF6AHv+qWzJWzboa0xwc4Ny6aGAwzTJpnKEwr6ePXNMwBMpPKsW9FMqOwY2twQp2dZHe0t1bz29llM0+ZfvrOH229Yza3XrWR0LMs3vvMG42W2wLcffnPRzyXLEooio6oymqqg6yoBv0ZNdYRd27u4ZfdqEvHgOw6oFQdTGZkaXx2GU6InvJzD6QNkrAwCiKhRsnYWRzhk7Ay1vjoMt0RcS1AqDhDT41PLp/93wqaS4HbNDSsJRrzashCCpmV1OLaDL7gaX0DDdQWu4yIrMrl0gae+9TqUE9JCrsTm3SsJhJcuJ/jTgmMPkCv8G9n8NxEij6ouIxi4m3DgfjRtxZzc04VQKr2CaR5a/LhOP8n0F7CsU8Sjv76gS4DpGrw0+hRvJfewIrKG+1s+TEKfnT0mtGrubnwvX7vwRcaMYVxcLhTO8d2L/8rFwnnuanwvYTUyxxGmIS0wbHD5PxumzehEjmBAR1MVQgF9XrWlK40JQ+OZWTJ9juOSyhZJZYtcGEzy9rGLyJJEIhako6mK6zZ0sm1dO23lkoDjuJ5SlAQbV7bQXDdNN2ptSvDh927n6MAwxy4Oe7Ej5GNTZwtCguMDI5wdGKe5o4o1bQ1sXtdGKl1AVmTayxqlTz13lKMnKhUI9+C6Atf1qJTFSyYaL/YnOXS0j3O9Y3z20zcTqvBhNR8q55nicqFwniq9mlFjhJJTojXYiitc+ooXCSgBGgNNRLWYV1uyIWNnKDoFhBBo8lLoCgLbuUjJWLpOqhAujjtS2Wdy0xjmm3MKnSwGyzq9hJNyqERhKlYdITWa4fUnDrL1tnUk6qIoqkJVfQzhCt565jCyIrP55jX4Ajpda1s4uvcc4WiAWE0YdYpPJyo6nu1cpFh8tuLl73wwrQOLCnJb9mlGk7+CY/eja6sJBe4lELh90Ymo+SBEhmz+KyxOx5rcvkA2/zUcd4zq+J9OuZVeiryd5bmRx3lr4lV2Vd/MjXV3Eter5tibl4l1hldwb+ODfK//q2SsFFE1zi3197C5aichZWmqTouhbzjFnv3nppb9KzsbuH5z11U9xlgyX1FpwBWC8VSe8VSet45epDoWYsuaVu7dvZbu1hqyBYOQX2f7ug50bTrEKLKMIoMe0qhujhBQNZKlIqdS43zrxGEsx6E9Fme0WGKVXE9HSzVcVgapSoSoToSZSOapr4uildk7rium7Kcd18VxBI7tYDsuluVgWg72HJm6bbu88MpJbrxuJdvKze0rxZIyUwT0F7zAeWv9HTwy8H1+PPhDIlqUW+puI6JGGCwOEFbDtARaGTfHGBIDV5A+O+QK/0au8G9LfN/SYFpHGBn/xE/0GOBxWSsRInQdlxcffpNHv/w8bz9/lA03rGL9ruU0tNeQmcjzrb94nPR4lj/6xueoaUrQe2KQUsHAtmyvHHDJIYRYfIlXLD1NsfT0O/loFcN1MwT9dxKK34OmrsESAVKGiV+1iPiWlhEI4VIoPYdRZhxUDodC8QkCvpuIhD88fW7CZajUz56x5zFdgw93/Bztwe6phtN8kCWZDfGt2MLihdEnuaH2drZW7ULmalmCT6O1MUGuYDCWzNPTXsuyeWqtVwohYCKdX3jCcR6Mp/M88epxXtl3lg0rWxgay9DakGBV19yd9axpkCwVaa2N8Wr/BW5q84JY0bYoWhYTxeK89Kbbb1lDY0OMf/7aK3zqozfQ0uxNVE0GU8dxcVzv/7btYNleRmqaNoWiycREnlNnh3lpz+mpUkGxZHH0xMBPMZhKMjtqrsNwDJoCzeiyzt2N72LEGCaiRolpMZoCLbQEWknoVQSUIIOlAQpOgVWRNZd08v8dON5dbQgbxOybw3XTlIzXCPhvIZcyUDWF69+9mYunhjjw0nFOvHWOH/zDM2y9dR22ZXP+WD/v/cXbqGmMo/s0dtyxnsHzYyRHM/hDvktYXJMTQf/3QFHqiEV+HkVpxhGC1y708tqFi9zc1cnK2loieuUjfK47QS7/VQSV28143lbt+Hzb8Ptm1oNHjWEGi31srd5Fg78FTVp4kmrG55JVNid20h1eNb0q+wmgUDQ53z9BNl/Csh3am+bOmK8UjuuSzc+nhVAZckWTl/edBWBNVwOZbIm6RGSWoEpbNMae/gs0h6NUB4JoisKyWIL9I4OcSU1w+7Ju9LIzbMmwGB/P0Vx2HFVkmcb6GKGQj3DYRzy2hKnKsraybTu0tVTz9//8AoZh47ouI2NzGT8uDUsKpo2BJoCpwNgYaJr6t8nlQVSbVhNvDrTw/tYPTY3ceRtWwgOV8Okb0fVNlZ7eJft3KRmvzDlJczkUpZGA/2YkKTAd4y+P+fP8pizrNCXj+cpOaR6xasM8TK7wPQL+m3jqG69ybO9Zdtx9De0rGrnjw9eBEBx69SSPfOl5MhM57vvZG7n/F25D9+s4jsvwxXEOvX6afKbExEiG6vooidooIBCL+FpJ+PD7b0TXVkx9SCFMCsVHF5UX1NQVBPw3Tg04WPZpCsUnYA5VpOnjqYBAkiQG0xl6kynOTEwQ9uk8dvIkv7JjB/HA4lxkTzD6cQyjMmsaAFVdRjT88wT9N5frpTPLGrW+Omp8dVecUaqySrWvMtnHK0XAr7O8o45X3j6DadpXjQY3CdO0KRpX7wF8/Nwwf/ylp/jZ+69lx/oO1LJea8m2OTo2iuE4HJsYxXEFGcNge1ML2xtbyFkm1YEguqIghODQkT6+8d03+I+/dDtNDYtLRzquy/neMd4+cAFVldm8oYPW5sSUhoIE6JrKqhWNhEM+DMP2mlJXNOwzE0uq+C/EE53rQ8qSPIsmIkQlNS4Fv+8G4tH/MOerQxfGkRWZ2qbZF1cIh/HU71YUTFWlnXjk15CVas6cH2X/0Yu8544NqIrMK2+ewXUFOzZ1oqqzb9x84QcVB1Ov2zw7MzXM11CVeoSQyCbznD/Wz4UTA2g+jVy6SDgeJJcucvuHdhGviTBwdoSJoRTNXfXYls1w3wT1rdUM9Y4hhJhSBhe4uOJyF0oVWQohK1Xo2hoC/hsJ+G9GkaeXi66bw7QOLhpMQ8F3E4v8IpNBuFB8kmLp2VkDExI+ZDmOpvUQDn0Ipezv1BAJc2t3FyfGxtBkmYJpVaTVKYTAtnvJ5v+14qxUVdpIxP6AoP9WJEn1loK2ixACw7CRFa/T69gugaBOPlfCdQWqqqD7VEzDRpalBYci9h24QKlksnXzMo4eH6CvP8ltN6+ZquddDdi2Q9Cvs6a7kcbaGKZpz5pGeicwbRvDvDKpzLnguILj54b5H195jo+/ext3XbcaXVPRFYVrm1rZ3ujpp5quw97Ri8Q0P0FVo0mN0BzyEjLHcXntzbPsO3iB//LnP+LW3au4dmsn82U4ris4eLiPv/z7Z7jQP4EE9HTX83v/8V4aG2bqp0ZCfny6xuZr2rn95jWsWdX0jj/zFbfYi5bFeKlAzOcnpOkVT0t4892LL/Ul1DmnXkoFkxd/dJRg2M+O29dSVRe9TMTVntNLaM5jSDKeTbLO6ITBi69f4JZd6wmHNM5dzNLalMBxVVTm8JNZQudZzLXEFyVKxusEA/cgSQoPfO527vzo9bz22H7efu4ogZCPzESObDJPc1c9riuQZZnXnzjIHR++jmDET9eaFnpPDNLQVu0JNZSFCSRU/PpW3GAa0zqG44wQCtyH33ctmrYKValHkoKzKEjezHslM/36jO9G03oI+G/BcUaQpACKUoeqtKKqbWhqJ5q6rCxIrU75vp+ZmGBtvTearCkKAa0SHyCDXOE7mNbRRbcFkOUE0cgvEvTfPIMpcObkEPveOEs2U8Tn0/AFNGzL4X0f3smFc2Mcevs8mqYSDPsYG8mQqApz93s3z3ucE6eGKJVMtm/t4nzvGEeO9XPnbesqOsdKkcmVOHiyn2yuxMhEjkyuyK5NV68BZdku5hKpVJVgcCzDP3xnD5bt8q4b16JrKsFLvutMPsPXT+2jaFusr25EAj6+cgtNaoxsrsShI/24ruDo8QHOnB3hsacPs2ZlE5lsCXEZ82A8meOr33qNM+en3XWPnRjk/MVxGhtmNpllWaKjvZqP/8wuerrqr3ja61JccTB9pvcMf/nma6yoruHdPavY3bZsymt8PggErsgvuM1CcGyX3lND6H6NUtHkyW+/wabrVrBiQ9sVF/wd1+XoqQGOnhxkeCzDV777On6/RqlkoaoyX/3+G9x/xzVUJ660O6uiaV0z1Ke87Ogiln22LCQioWoqkTLXLVEXZdd9m3jruSM8/pWX8AV92KaNrMh85LffxcjFcaob46iaQufqZnwBneRo5pIml0IwcDc+33bGJv4DlnWSovE84CJJQRQ5ftXUsAA0tZvqxJ/j2V8rSJJWLgHMPT1jOA4t0SgbGxs5NDyMT1FQFvn+hHAxjDfJFb7NQuWESUiSn3DwZwgH3zuLrZBOFTh/ZgTXEfgDGsu66xgZSFEqmKSTefwBnQvnxti4bRm5bImJ8YXraUIIdH1a4MdxBFfbg6uxNsrurd0cPDFAZ0s1LYs4cC4Vdrlh85PAeDrPlx9+Db+uctd1q2eUKKr8Qa6tb+PVoV4GC1kag5EpUZWL/RMMDqemtjVMm1NnhjlzboRAQOfZl45zT0CnrlzaenPfeQ4f68fnU/HpKrIsE436qYrPvtclSWLbpmV0dtRelUAKVxhMC5bFwyePcWJijPFigRvbllV22wi3nJleGWzLpq4pwcRIhtRYlg27luMLvLOljixJtDVX0T+cIh4Nct+t6/iLLz/LbdevIhoJ8C/f3sOdu2cr+E/71M+XZcsoSh1B/11Ewz87K3gZ1kGEm0OWvcL60998lXNH+jGKJiN943z1T3+IUbS48YHt3P2xGzi5/zyBoI+1O5fjlG17L5wc4pXHDlDTGKeqPsbyDe3euUkSQqjYdi+mdRiwsO2zZO1z5Is/xKetJxC4jYDvehS1dUGVpfnguCkcZ8QLoJKChFaeg9cRyEg4zKUFK0kSUZ+PqM+HEIIdra0gLT5o7LgjZHJfxHH6Kzg7hYD/dqLhnwUpjGU7KLI8oxFS1xAjky56hHNZxhfQkBWJfK7kTfgoEr1nR0mO56iqmZ8v6pUeHHK5EiOjWYySjWU5FAom4UU4vxeHkyQzBeKRwKLXX5IkmmpjVMdCOI5LwHf1lZH8Po1IcLqR6fEzPaqR7bjvyCp6Il3gi9/bQ21VhG1rp5Mf07Ep2BaWOx3Iddm7b2zbpWtZHZlskUy2hGFYmKbnhZXPG3zze3s5emKAB9+zleVd9Rw60s9113azYW0rdbVRfD6NqkRwzlprOOxj4/q2Wd5b7wRLDqZCCF7t7+W1gYsk/AE+tm4TR8ZGWFNTR3eiesHal2dSV0nHUEKaw3fJF9DxBfQphaTGtndODxHA4EiaY6eGKBRNxpN5kCR0TcVXHkULBmbfuIpSjyLXlq1NBJ71h4Ys+VHUFvz6Ni871DcgSZfPbNsUS88jSX5k2ct485kSg+dHcR2XXKrAUO8YkizR0l1PrCZMOBYkEPKhagqBkI9CroRp2DiOi2XaRBOhy3QbTQrFx3Hd8Rmf1nUnKBrPUzJeI6t2EPDfRDBw+wxdgsUvmothvE46+1fYzhBQfrhIKrIUQ1Hq0dR2NLUbXVuFqnUhS5E5ygqVloYM8oXvUTJeYvESkYRP30I8+isIatl/boB8yWRVSx010el7amQojXAhGg9QKpo0NCW8AQhZRpIlb0omqFPIL/ywtm2Pw1gomnz7e3txHJdo1M/gUJqe7oWD6QtvniYeCXLztp5ZHe+xZB6zbPdTMmyOnxsmUKGYzbn+iSWPksYjAX7pA9djWDayJHuDxOWmVL5oMp7KM5EuMJbM0T+SZiJToGRY2E7lCk3D41n+/tuv0FwXo7nOq2H6VY272lYS1f2siteR8AUIlSX01qxq5g9+8z6PbF8ymUjmGRhK0def5GL/BL0XJzh2YpD/9bdPccOO5axZ2cTu65YTCi6eHETCfsIVGvpViiUFUyEEfdkMf/PWGyDgMxu28OG1G/jSgbf4o5ef4yNrN7CzpY2I7pszdRaYFTSgZFS1Fb++dd4t6poShKNLV6GaEwIu9E9w8tww8ViAzeva+O5j+zh9foRgwIczz80iy+uIRn4f29mPECaW5UOSG9C15ahqJ369CU2drSTkceEGMcy3kCS/xyQA7v3kjdz5keswiib7XzzO2mt7SI1l+OqfPULfrw2THsuiqArX3bdpaty0sb2arjUttHbXE6+ZpqB42dJFCgtwSAUlLPs4Vu4k+cL3CQbuIBL6aGXXTJLx+24AxNT8+4yRTgu89YeGIlej62sJBe7F77/JMyxcAklfCNcL/Ll/rmhVo6nLScR+C01diSvg4liKQ71DDKWyrG1rYGVzLZLkORU4tks+VyJeFSKTKmAYFqmyyLgsS4TCfgo5Y0FXl1S6iE9Xec99mzh6bICz50dZubyR5148RlNTfMGpmkLJ4nvPHOCpPcdn3SeO600egWcB8vm/fazih49VJqsvBQGfxta17fO+LoTAdlyKJYtMvsTAaJrDpwc5dNLzfkplixUd89i5Ib72ozf53M/cQMCnoUgSx5LDnM9MMF7MI0sSP7N8I82hGD7dW65PoqOthk3XtOO6gvFkjmy2RO/Fcd4+0Mv+QxfQ9Umh7sqU+y/dbnKFIVymmpKV7msSS5PgKxb5i72vcj6d5LObr+Vj6zYSUFUeXLmWfUMD/KcXnmJrYzO3LetmbW09TeEIIV1HKd+NEgqyHMHL4iYvvAR4jSBVacKnbyccenBB1aaOFUvXRp0Psixxw/YeNE3h4ScOeBdRgrUrmohHg7xW5s1NwnUFJdPi8NkJZHk7yxrvIhb289XH36QqGsRyXJKZEVZ1SOxcP1f5Q2CYb2PbfahqG5LkNbeCES+LKeUNQtEAkUSIfLZIXUs1RtEkXut1OHNpr0vvC2hsuG4Fm29cBYBRstB8k1+nQ6H0zJwCILPh4rij5AsPo6odS7huAQL+29HUbpKZ/0ah+Bizua0WjjtEsTREyXgFv+86YpFfKgs8L37reT/gXtLZv8SeU31/JhSlhXjst/DpW5EkGRlIhALUxcLUREPkywZvza3V3P/Ba/H5VU4eHWBZdz2njg2gKDIdXXVYlkNtfZTq2gixeHDerrzrCkbHsmzZ1IGiyBRLFnfcupZwyM+zLxzj7X29syQkL4dhLt5Ftx2XsdSV9xquBqSyGLQWVoiG/bTUx9m6po1cwaBvOMWLb53hlf1nOT8wMaUYNReEgCdePc62tW3s3tJDybU5mhzhSHKYZZEqGoKRRQcHMtkiX//26yzvrufaLZ2sXdXM4HCK/Ycu8tKeU2zbtGxWpn8pJssXkbAfX/k3MzGe49UXTlAomDQ0xqipi9K9vAHdN0fzeR5UFEyFEIwW8vzFm3s4MjbC56+/hTs7e9DKS/qCZXFNfSOjxQJPnT/Ds71nqQ2G2NbUwq9t20VbNA6AJIVIxH6HfOERLGcAcFCkCIraiq6uQddXoCpNl8i0eQZdl1fUJgvUk6+902kTw7Q50zuGIsve8kgILgwkSaYLs+pEuaLBwy8eQpFldFXh2TdP8bG7tzKSzOHXVS4Mp6iJhxjPXE5NmryWRfLFR5kOPDPPXfdrrNu5nEDYR/f6Nn7lf35kzv3IssylFRV/YPqaOc4Q+cIPWKxRI0kBfPpm/L4b0LWVaFoPxdIzC75n5vvlskPo5wEoFB9lvjFWIYoUS09h2+dJxP+QgO/GRQRNBEJkyGT/jpJxqUTf3JDlGhKx35miQE3uozoSYnmToK12UlJQoql1mvDeWJ75blvm8UQXqo/O/kyCluYEhmEzPJLmlhtXUZUIYbsun/25W6ipCs9Ybv97Uk1b7LwnXw8HfazqbGBFRz3vumkdz+89xQ+fP0TvYHLeGmuhZPKNx95mTXcjtYkwW2tb0GUFgaAuEJ5a5s8Fx3F57KlD/OjJgzz3ks63vr+XaZ60oFiy+Lfv7V1UzAbg9pvX8OB7tiAjcexwP/m8wdBACsOwGBpMYZkO65fgK7doMHWF4MT4KF89cgBNVvjk+s34VZUXLpybev1bxw7x2sBFtjW10h6N8XJfL6bjcE/XCloi05QEgUDXNiJH1/P00AEkJK6vW81wMcWekePsqPHTEVKnwkvSzPHowJtsqeoirod5c/wU7aE6VFlh3MjydvIMN9atZV2sHUW+8kKyBOQLBrde71lTL19WT2tjAk1T2L5x2YylhuO65IsGtYkIfl3FsLyAJUlQNG3O9I+hawq18fCsrNTzOTpQFkIGhD1LaFlWZCKJd6Ku5VIoPYO1CH1IVdqJRT5LMHgfsuTVr1x36VMgkiShKA0kYr+DbV/AtPYvuL1lnyKZ/mPUqkZ0bX5rbiEssrmvkCt8l8UeCrIUJxH7XUKBe7nc0mQgmeF4/ygTuSKmbdPVcPXGMBVFJhoJQARqy0E4ZRZ4rO8Y6xJNZBSDdKHEYCHD5urWRRkL/zdBACfHx2iJxgjrOsO5HIP5LH5VpS7oPSSG8p6qfVUggCrL1FWFef8dm9i1oZNvP7WPH790lHxx7rLe0bNDPL/3FO+7dQMrEnW0ReLkLZOMaeBT5g9L53rH+OFjBzAMG8OwSabmTloqwUuvnuT2m1aTiIcIhX0cPnCBrp4GspkiJy5OcMPNq5ckGrNgMHVcl+Pjo5xOTvCRtRvojFdxfHyUnGnMiPyf2rCFT23YQkDVaApHeOliL5brcF1L+4zaaW9+lEf632B33Vpq/TE+f+gbGK6FIsl8s/clxo0sP9t1GyHVjxCCo5mLfOfCK9T6orhC8I9nnuITnbewMtqCI1yeGTqAgsyaWPs78hCNhP388idumvpMn3y/N24oSRK7tszk8oUDPu7euYYjZwfRNYWP3LmFaMiPZbtEQ35WL2ugUDLnrB+5IkMm/89T1siuyCOuIIAtBMcZIFf4FmJem2QJn76NROz3y82xy6/c0ju2kiShKm3Eop9jbOJziFkDAzNhWSfI5b9BIvYHs4IfeIMX+cIPSef+HrEIlU6W41TF/ohQ8P5Z+8obJsf6RhhJ5xDCJeyfWb88OzjOYDJLT3MNNZFQRT7yC8ERLv2FNK+MnOV8boJaXwjDdWgMRtlcvTR33v+TGM7nODA8xP7hQar8AW5Z1sW+oUFe7buA6dhsb25lTW0dX9z3JtWBIHG/H7+i8uDqtdQGQ7Q1JvjsB65nbXcjX/r+a1wYnG0Fbjsuj754hOs2ddFRm5jzPIQQnO0dIxr2Tz2shkcz5AvvbOx1Esl0AcOwkSSJSDRALB6kUDDIZoq0d9Z6dkhLwILBVJIkuquqWVlTy6Rd27ra+qnXLocrBD8+c5J/PbKf+5evnlH7KNoG1b4I53LDnMsP89mee+gKN6DLKv2Fcd7XupPra1ejln/cebvECyOHuaNxE5qsYrgWLoK+4jiSJJE0czjCJawFpjzOlwpvYsed9VkWWiKoikxbfZxktoCmKnQ0VmHZDp3N1SxvrWVVex1DE1l82sxLK4RJPv+dGcIirpvCdgbRxOqrsgQUwiJf/CGmeXieLTRCgXuIx367LL481/LtSqdgJAK+G/Dp2yqYDHMoGW/huOOoSsOMVzy752dIZv7kMibCbMhyDVXxPyQUeA9z0bBCPp1dK9sZSuW8aZimmUpRz+w/xZee2ktLdYydqzu4feNylrd47rqLjWuOZfLsOzPAuo4G6uPT2qWO6+KXVSzXYcIs4AhBKWtRcixC8tXtHv+kkC6VOD0xjisEFzJpcqaBKsuMFwv4FAVVkskYBn5VpStRhSsEuqzgU6a/A5+mctu1K2iqjfM/v/ocR88MzTrOuf5xXj/Yy7tuWjsnC8i2Xb798F5cV/BzH99NVSLE1k0d/Prn7uCr33qNW3evor115kojmyvxre+/yX13XUPdHCUbIQSPPnGQcMjHPXesp6Y6gm07XDg3im27ICCVLOA4Lv0Xx2lfVnt1lvmyJOG4gu8eP8RYcTrbEELQm0lRtCxkSaIxHCXq8+EKwfHxUUzb5rEzJ2mPxrmxfRlCCE7lBjmYOs8NdWsR5f8+0XkLAig6JnE9xJ8e+x6ro6081HYdvYURtlR1czzTz9+e+jH3t+5ARqIjVMfKaAtDpRSq5M3vXmkgct0JXFFYUlY7eaz1XdPjZ6oi89DNG6YUu1cta/Aq7VPXy6JQfJx07q8v60jblIw9BPw38o6slr2jYFrHyeW/xVyydJIUJBr+BNHwzyPL1XMHUpxFs8r54O0vSChwDyXjBRbLcF03Oas7L8q6ChPpP1qUT+qNif4+wcCdzDccIEkS13Q0saH80qU/WNcVnB4cp2TanB4c5/xIkr7RFD9/zw4efeMYbbVxNnQ20VwTI3CZ5a3tuHzn5UP867Nvsbypho/dtoUdK9tRFInzuQlcBJuqW3hu8BRtoQQ9sTp8ytUb/fxJw6eq1ARDFGyL+lAIxxX4FIWV1TWeUIhwKVoeLao3nSJjlFhd45XfJjHZLV/T1cCvf+xm/uyfnuH4uZmutJbt8szrJ9i9pZuqOQRLTMum98I4J04PMzSc4YF3b2bzNe2sXdVMU0Oc1SubWLuqecZ7xpM5nnj2COvXtMwKtOBZ1r+5v5dELMi61d5Iq2U5tHbU4DiCfK6Ez6+xfmM7DU3xJV23RX/BflXhzs4eJn2SAC5k0vzi4z9kvFjg+tZ2drW0URsMkfAHCGgaEl4dMqB6N9CYkeVfzj7LUCnJ6lgbbcEaDqd6Ac//+kDyHFEtiBCCpJXjYmGMZaF6Ro00/3D6Se5v2cGmRBeHUufRZJW0VcB0LJaFvSw5b5cIqZdw+ioMrrYzhGnuR1XalxyQL10SenXD6b/LnvQ4QrjY9hD54g/I5P4RxxmctZ9i6UnCofejqT3vKDt13RzZ/Few7DOzXlPkBmLRXyYcfKg8RjrfbHPmHU2ogYSuX4Msx6dKGfNBlkNIlwiOeIF0DxOp38O2zy18DG0didjv4Pddv0gTi3mtPtKFEhdHU1N/72mq4dN3XUsk4OOlI+foH0tTHQ2xqrWOqkhwRv3b/P+1995hcp3Xmefvxsqpq6pzRKMTGjkHkiCYg0iKQSQVKFmWHGSP5TC2d63xPLMe78yOZzyzs/JYXkm2R1awJCtREkVKFDMJgiRyaqAbHYDOqXKuumH/uNWFbnYDaFB0mH3wPg8eEqiqG7773fOd75z3vEfTeev8JTL5IseHJxn75os8fvNGPnpgC63uKsJ2N6ooY5dkosUsb82OsLe6Db/6PtH5/pHR6PFS09nNTwb7GYpFGU0m6AwGmcmkscsytW4PW2rqGEsl2BCuIatpHJ4cJ5LN4vQtL9vsbq3msx+5hf/45ecZn00s+fz8xVlODUywf/vaZfMymcqTSufRdYOTZ8YYGpll66YW9u1aS6H4/omyKIpER1cda9bWYBgGpmn92/W+j9c0pqIgUuWwVg3TNEkUCny77xS6afA7O/fyWFcvumnynfOnuRiPc3NTK/ubW/HZFnMsTcI2L5sDbTw3dQynpGKX1IoRHExP0e1t5I96H6PWHkAVZZKlLN8fO0S0mKLDU0+0mGZ3yEoQRQspIsUUtXY/p+IXqXMEuLN2c2VlXG1tvmlmSKb/Blleg6r0XvPFXN0xNQwjWRa3Pkg29zzF0qkrciRL2jCJ5H/H7/vDVfU9WvmcOtn8z8nmnmVpCw8RVVmP3/sHOOz7YSWNgcoxTDRt5JpG8GqwYqf1SGLNNY4joMhdleov09TJF94gGv9jStrVRLdVHPb9+L2/j6qsf09jtYCZeIrJqBWvtikSH9zTS0d9iEgqg4BlMOfiaXZ2NrGjo3HZ7y/NxpiJW3qYqVyB+WQWTTcoGjpu2U6dw8vGqgbemr2IIkor0n38Hgd+z8oGVtN0piMpNN1AVSRqg95Vx3TzRY3p+eQqR2I5JNHq8fSBtV3kdc3awssyrT6rkkgWrM8/2rup8t0ddQ3Y5ZXNiSiKbOps4FOP7OHP/+6lJUmpdLbAwRMj7NrQgsP+rrLfZI5MdtF3MwVePzTA0RMX8b5fPPPF9y2Jv5Aa16qpUQVdZzqd4iunj3E+Mscf7zvALU0tKGWprLvaOviTN17i373+Ive1d/E7O/ZQ7bKqe0I2L5/teoBIIcWPJt6h0RkiWcry+lwfH287gCyItLqqaXPVIAgCRUNjMD1FsyuMJIg4ZJU2e4Ae7+VJ/ZWRFzkSHeSxpn341cXZb4EFabhV3BmF4jHmo7+Dy3k/qrIZWW4sV+vYygkNqVwuueBvm2XhEisTb1LENDJo+hSaNkxJG6JY6qekDaDrUbhiImgBBpncj9GNefze38Wm7rwuo26aJqVSP8nUlzCM6OVREBw47Hfi9/42itx9VcNjKZTPk8n+EMOIr/rcK8FSieqkpJ2/4nckMYzL+RCC4MA0C2TzLxJL/Ac0bfiKvxHFAG7nh/C6P40kNf5CXjzAubFZkllLeWptXYibetuQJXEJ1U6SRLZ3NHL3tq5lv3/l9BAnypdb43fz0QNb8DrtbHQ00O2rwS4p9PhruafB4gF7leVz8gP7e/nIvSsLqExHUvzR//NjZiIpGmv8/NnvPIhrhUq8ldA3NM0fff7HlLTVEfdnIinmYmlC/suVeoIgYJNlbIsMpF1eGqpYLE7jVq9+baIocGBHB+dHZvjO8yeWLC4nByaYjqRoa1i6Lfd57Dz24DYM00SRJUult6QxH0nzztERXj3Yj64ZSItU3ZKpPOlMgcHhWVLp5cpipmkSiaYpFjX6zk9SHfYQrLJi3rqhMV+cRxEVinqRjJ6hxdmKvMqWS6v6VrpU5K9PHOGlS8MMxaJsq63nrYlR3hwfxTANxPLAO2WFnKbx9EAfXcEQH1+/uRI7cco24qUMJlbWczwbYTYf5+DcOdJavpL1100DEYFeX3NlwGPFNNO5GGktj11SsYkKM7k4Ob1IX3KMqXyUTk8DQZun/OCupw2JQUk7Rzx5AVFwI4hOJLEKUaxCFL2IghMEe9nbFQG9bECzGGYK3Yhi6PNWZt7MlXVErzcjrpU9szhB/39CVbes2lgYRoRE+gvlLp8AApJUj8f1FB7XhxHFMKBjGGlLV9VcEOEwMdEwjASl0gDZ3HNk88+/h2tfCkGQcDsfJpd/GdNczlQQBS8e9yew227CNNOks98jkfr8iiGQ8i9Q5E687k/jcj5QLvpYeWxKZZ1P8RrehW4YvNM/ajWBFEXu3NpJjX9lIZvVPAVJFLApltevClKlthzAd5WtvdOmUuVbmQaXL2qVGK8siQS8zlU31PO67Ve9cotKfVkW59TABF/41us8dtfmVUkhrgaSJBL0uQh4HRUbYFNlnrhnKycHJpfET2ciKU4NTNJSV7XE+66t8fHkoztZ3LbZNE3OnJvg9UMX+MEzx3n+pbNL3hXDMMlki/z3v/r5yl6mafFcRUHg9UMX2H9TF5/55H5sNoWUluaFmZ8RtlWT1TOUjBIFPU+3d92qOs6uypgKwLnIHKfnrAE4PDVBX2SOereHtYEgXVUhuoNhvDYbsXyO03OzJAvLVwXDtCQw0lqO0ewcGa3AmfglbKKCXbS2/WktT60jgCxejll4FSdht5evjryMgMATLTcRtvtwpm18pOUWaux+PIqzcrXSuzLEq4OGYcZBj6Pr19ew6/2BSbF0hkzuRyjqOgSu7V0bRo5U5qvl6iMNULGp2/B5PoPDfjOCYC97nQlSma9SLPVhlo2qaRYxzBSGkcAwUmXD9/50QbDb9+Pz/Dqp9NfQjUj52hRkqQGP+ynczicxjBjJzP8knf6GNe4rQBA8OO134PV8GknoJZMoYRrW1to0YfzCJHVtNQRqfBTzJZ7/u1fo3LaGzm3tFW3Xd8M0TWbjac5esuZy2Odi29qGd8k4/v8bhmkwOZesVCqVNIOfv9XP4bOj71thgSDAxs56fvdjBwj6XeV/E6gLefnIfdv4s799obLdLxQ1Dp8d5fZdnUsWjHfnIhZw8sw4yVQOTTOIJ1YOnyVTq2nbU2LgwjTpTAGbTcEhOejy9JDUEgSlEB7Zw3BmkDpHAwF1ZfrWYqzKmDpkhVub25jJpOkJhlkXqqY3VE29x4vPZschW6uyZhh8ZusuBqLz3N/etezBeGQ7T7TcxEw+DkC3txERgYeadtHjbeREfISMViBk81rxz/K7rYgyjc4Q26vW8uOJw5imWY7biPhVN1W2xRQIi/NoqamvrtnavxyY1jbb1K/pElk0qB+QTP8tpplDEmtwOR/F435qSezVqjP34XI+hJgPkMu/RLF4uhzTvL767dVCFBx4PZ/Bpu6mUDyMYcSRpGrstj0o8lqKpfMkUv+DXP5lVn5GMqrSg8f1FE7H/YhigFQszfm3B8mmcpx8pY+m7npMw0SWZfzVXs69fYELx0co5ksYhknLukYc7uXaCABnLs0wGbFiipFUlueOnKe9LoTzfRRb/peMVKbAq0cuLNGd+McoWT108iL7t49xx66uJeGDfZvXsHtjKy+9M1AhvZwfmWE2mr6m910oaIyOR/F7nVdcMK8Fs9J0z0AUhco4pLUUx2KHsYl2q8BIVLFLdvJ6DnifjKkoCDzY0c1tLWuoKrcUMEyDBe39hYGSRZHbW9u5vXW5aK3VoVQmqHo4Ehnk420HOBEb5uWZM5yKXeRsfJQTcSsI1eaqpsNTj1F+2ReG7KbwOlrdNZxLjnM0OoRdUpYJqgiCgCw3I0u1aProam7vXwwEwYaqbrpmzNdKOL1APPnfMI00dttevO5fwW67GVFcSbtRRpHXILvacDk/SLF4jFTm78nlX7kmKX45LHWsa35LcOCw78Vh31u+ZhPDiJHJfp9k+q/LiaZ3e8LWrsLleBC36yMocnslfuwJuNlxz2aGTlzk2b9+kZse3knPrrU43A4mBqc48fJZevd2calvnK/+yXe45dHd3PnULYs6tloo6QYvnLiAVm7YVtR0GoI+bCvW35sUNX3Fdh6WZun/ejBNk4FLs/RfXF0H318E2XyRt09dYv+2tUu6lLocKo/esZkT/RNEygY8msgwcGmWtoaqq3rHoizw5BPbueOBbhKlDI3OIKIg0JcYZ52vCYd07bjyQphD03QkSSRQ9pw9socaey2TuQn8agAJiZn8NMlSotKe6WpY3TZfEHApKg5FQTcNxjIRxrJRAqqTdk8NChIGJhmtwKX0PJ3eWiRBRBKsnjpFvcRYdp5zyXFyepFf77iHJmeIgOqmaGgkill002CNq5YOTz1huxXzrFI9fKB+B9U2X8UYr3Vbatzbqtaywd+CX3FhmCY5zZrwLsUSTLHb95POfG01t/cvBJYSk9N+91UTUKZpki8cIpb4PxEQy5SnJ5Gk2mtmtwVBQBL8OOy3oSqbSWb+lmTqi5hmetVXKQj2q/adX+l6oUSxeIZk+ktk8y+sYMAFRMGHw34Aj/sT5coslXe755HJGG/95CimYZJN5fj6f/g+j//rB4jPJWnpaSCbylG/pgZZkQg1ViG9y0CapsnIdJSjF5aKpngcthVjhSXN4PtvnubQ+UvLPjt9cTkJ/R8LJktr5X8RaJrBsXPjJFZIzrzfME04NzJDJJ6hLrw0j7F+bS03b1nDj149g2GYZPMl+oamuW1nxxLD+27MFuM8nztOzigyU4zzeN0+auw+3oqdY2d1O43O914uXDAKCAjU2GuxSw5M0yBoC1K7CkMK18kUn8jGeGb8OAYmQ+kZAqqLHm89d9St59DcIIIAL0/3cUftei5l5rm7fiPNriCCIOJWHNxS3YtHviyEu9HfygZfi9Xl3TTKPaMuv0Bd3ga6vBYp1zBNvjlwkh3VjeimyA7vRrp8Yc7H5okWshQ0Daessq+uBUmU8bo/TaHwzqp6Qf3zQ8Ru20fA90dI0pUVsazMfR/x5H/CpmzE6/4VVHXDiiWZ14IkVeF1fxqtNEwm9zSrjZdKUi2q0rOKby603p2w2nZn/qGs/LT0PKLgw27bi8f9FDZ1F5bA9HLPJJfOM3Fhit33b2N6ZI72TS3Mjs6TzxaobgqRnE9x7IXT9OzpoLmnkeae5XQm3TB5/tgAsXQOSbQKUq5+ryJ7ulvYu6512WdffPYtpmPvbynwlRBP5jg7NM2O3uZfuJFeKlvgWN/Ve3y9n5ieTzI+E19mTFVF5v5bejl4YoS5mLWYnxuZJpnOE7pKV4uioTGejWCUqx+bnSFixQx+1c1ENkKDY2XP1jBN8vkSdptyRYqZR/HyQP3DGGV6oYhErBRFFVf3fq3amAqCQNjmIaXlCNu9OCQVh6hyKj7GGnc1kUKKSDGNIkq8HRnk9tr1eMp0EEWUqLH7r3hcARCvQQc6MT/JK5PDGJhEcln2N7SR00qMJKNE81lihRzpUhFRFLiprhVF7iAY+K/EEn9KoXiEpfzLfzkQBCcu56P4PZ9FkhquoXaTI1d4GZ/nt8qE9SsrtJumSamgISnSFV9ASfThdNxFNv/zVXqnCm7nIyhy2zW+Z6Lps2Rzz5LKfJ1SqZ+l4y8gSTXYbbfgdj6OTd2KKF6dN2hz2thwSw+5dB5RllBsCo/89n0AjA9M8co/HKK5xxq/I8+fpHVdIzXNl8tHTdPk0myMnx8f4NaNa7g4E2No6hrlqoJAS3WALe0Nyz4LXIEf+n5B0w003RqzuVia//trL/PpR/biXwW/cmR8vuLJZrIF8sVSRVj60lSU8UWtQP6xUShawtYraaV2tlazZ1MrP371LKZpMjmbYDqSuqoxFQWRrYE1xIoZsnqB47ERHJLKnbWbOBW/iE910uVZ+h6ZpsnJ02O8+Oo5fv2X9+N2XTmMljfyDKcHkQQJzdQYSJ2n27OOdb5ri6dfl57pRC7GXD5FophDNw3mCkkEBLyKg52hdl6f7UdTDVrdIXq89bik968W2SWr2EWZraF6Dk2PUmVz4pAVxtIJVFHCq9rJ6Rp6ORYmCAJ22zaqg18mk/shmewPKZYGMM33TmZ+PyEILmzqZjzuT+Gw34ooXPslEQQVr/tXEAQbhXyJTDJFMV/C5lDwhzycfmuI2ckYBz64DdMweeZrB9FKGnc9sZvobIIzbw/RsaGJ7i2t5eC9gCyvQRRc6NcwpoLgxuP6CB7XJ1mp0SFYVUy6PkEm9yzp7LcplQZYbEQFwY2qdOG0343DcWc5Jrq6VX9hQbA7bTz++w/gD3srL0ywLsATf/gQvpAbb9DD1ts34PYvpRwVSjpPHzpDW20Vv/PQzXzu755b1Xn/uXCqf2JJQujSVIx/+5c/ue7jvHX6Ej957SxP3LMVSRTpvzhLPP3eWwddLzTdYHBsHk03llWj2RSZu/f28PqxYWLJLJl8keHxedavXb4703WDYydHsQVF7LJCwSjR7q4lZPMSUN00OoP4FCclY7m2xPDFOf7iSy+Wd0pX3o2YmMSKUU7Gj1M0irhkF17FR0pb3Q7kurb5AdWJW7GT04r4VSfJUg4Tq1x0Op8gXcoznJ4loxUYz0S5o66X9f6rq+WYpkHByKCKzqt6pw5ZIWB3EHJYMVIESBbzFHSNZDGPTZJxKypuZemLLoohPK5P4XI+Rqk0QLF4ikLpOKXSMIYRKZdQpvnH9VxlRNGDKFYhS43Y1O04bHvLW/TVN+qzdDqtRzY+NMP3v/wKsixR3xrivo/tY3p0nnPHL7FhZzveoIvhs+O0dNZy4eQopaLG4ZfPEY+kkRWZ9vUWHUgSA4iiB92YWeGMEpJUh03dhtv5GHbbXoR3GX3TNDHNDMXSebK5Z8jmXyiLUuuAgCgGkOVWHLabyrqpvWUe8HvToZVkicaOpS+b0+ugfdNlz6emZWlM1zBNjg2Nk8jk+cPHbqXK8/41E/zHQDZf5LmD536hnksLyBdK/Pytfu7Y3YXHZefc8PT7ctzrwdRcklQmT8C7fNy726rZ0t3AS+9coFDQGJ6IoOvGkt2UaZq8c3SE//5XL/D7v3UX923ZVm4eeVnpWBAEOjx1lf9fQDyR5UtfeY3hi3O0LtqpLBzXMEwWOivEijGOx49il+woooKBwVh2lOpA9aru87q2+TZRocUVIqA6qXP4eXt+iNl8imq7ly5vHafUMTq9tRimSbyUpb1cO38lmKbJTH6A0/Fn2BP6JdxK6Irf9al22jwBSrqOIkl4FBW7pPD42o3M5tIUdI1TkWkaXF5KhoYsWDzVnF5EFWVk0Y+o7sCmbsPDxzHMHLo+h2HMoxsxDD2CbsyhG/OWgTWSmGYaw8yBWVpGeC+PivVHEBGQEAQ7ouBEEL2Ioh9JDJbbHtciiiEkqbbctsOqrPpFOH1aSScRTRMIeUgncgyfmyAymyQVzzI/HUcraUyMzKHaFaLzKQrZIjfdu4lkLINhGJVbEMUADvsdmDmLjiVgQ5LCqEoXqroVVem1OgJgKxOny8LcZhZNu0S++Ca5/MsUiqcwjDii6EGRO1CVHmy27ajKBhS5HVH0/sL3/F5RKGnMxTP86r27qK/yki+9f/3h32+Ypsng6NwyUZBfBFNzSQbH5uloDjE4Nv++HXe1iCQypLKFFY2p065y6/YO3j59iUyuyOhkjHSugM9tLdqmaTI6HuVLX3mVaNlTFwShMn8Xz6eV5taJ02OcODPGu/N3qXSeV9/o58iJSzQ1VPHIA1tRXQpVSpCClEc3dQxTp9uzjjWu1bXUXnU5aU4vkNRS3FzdTsHQ8KtOmlw7GUxN4VFsJEsZurx1hG0ecnqR8Wx0iYrMSkhps7w1/3fEi+OVoO+V4FFtPNW9FVkUeaprC4ooIQoCbkUlaHdwNDpMk1/lTPIi9ozC5qpWNEPnh+NH2BPqRBEl6h2BsnqPhCSoSKIPWFuOL5lYvEvdWvVMg8uVQrol5IyBaRoIgml9JAjlLqVWe2MTgblMFodiw22zlz+z/lzLiJimyUDEkj2rc7vx2u3XbEFbKurkcyW8QRcXTo4RnU3S3FFD1+YW+o9fpFjQ0Eo6Ql7DMEwuDUzRsbGZcJ2/wtETBBd+7+/hcT1l3Y/gQhRcZYOvvCv2pKFpl8gV3iBfeINSaRCTIpIYwOm4G1VZjyJ3oChrEMUAAsqq7v0fG3ZF5t4dXSjS9Rpzk3xJI51bXhJ8rX5HuqlzKt5Pj7cd+3WEuwzT5I3jI1cUVX4vSGcL9F+cZW1zmPtv7qWk6aiKhCyJyJJY7togVPIXq4GJxdfUynzNkqZTKukUSlb30HxRo1AsUShq+D2OK5bCCoLApq4G2hqCnBmcYmwmTipz2Zjm8iW+/g9vMXJpvtIw0jRNTvdNMHJpnrtv68V+lUaDG3sb+fCjO3nuhTOVZ5/Ll/iHHxzmuz88SjZXxGaTcblUnnh4B12ebl6de5msnkEVVbYGduBRvKsak1V7plk9z/FYP7ppECulqLFXscnXwWxhimhkjrxeYF9oE5LowyM66PFdDtqbpknBSKOIDiRBthTnjQwnYz9kPHsClxysfC9ZmkI3SwTUpXqboiBUFLgXbwEEQaBkapxJjOGR7YxlI+wJd1LSrX87l5ggpxVZ66mlwXm5XcViWOcRsAxfWel/hVmVK5X42eAgNllic20dPrt9yddmMxn+5JU38NsdfHzzFtZXVyOvsrImVSzy+bcPcWJqmo5gkK11ddzb0cnaqivz7uwOBbfXjt2h4g95mJ9OIAoCgihQ0xQkVOdfeAA4XDbmpxLUtWSZvDiPP+yplPklonDyjRjrd69FlkU8fgfCCtdtGAlyhVfR9Qh2dTcu5yMoUhOSVFdWo1IpaiYl3cQuXr13TqksJFLldWJXr5+NYJom58fmePnEID6Xnc3tDXQ0hlBXaN0rCALqFUQ4lh23zEIAi5P63JF+zo4u9xLPjc0u+s1laIbOQHqE8ew0R2OnSWlp9gQtTd7VIJnOc/jscirWLwLDNBkam8NpV3j8rs3lRbO8SRaWT/XVLPxL/74wbgthn4X/mhWJTJt65fsP+l3s2tDC+ZEZkukcs1FLjwCsBNrUdHzJRSZTeb71/XfoH5jm3MDUVY8NVj2/122vhDf6zk/y3M9Pky0vWMWixsRk3KKAym62BrZjmDqiIOKUV9/1YtU8U7fsYDxnTSATqLUHiRQTTOTmrDJRQWAqN0+DI7y0VtY0mM0PcDbxLDuCH8UjVzNXGORU7MeMpN9CX9S2I68nODT/d6RKMzS7tnH1MiATw9SpdXTjV3oRERjPRnFKKucTk+wMrmU8G6XDU1sRl1auUxVKMwxGE3G8qo0qpxPdNHj14ggvjQzTFQqzqbYGZZH3PZfN8M7EBHlNo29ult/cuYt71nagSNc+71A0wvGpKabTaabSKU7NTNPg9bK2auUFACCXLpBzFVDtCnvu2kCxUGLq4rzlsfsciKKA2+ekY2MTfYeHqarxIkoi1Y1VlWhTIVfk8ItnuXhukny2yPDZcZ787bsJhJevxqLox+38cJnPqizjtZqmyYnBMX525Dz37Oimqyl8xVrv0yNT/OUP32Rzez2P37qJprD/uj3YprCP6WiSrz5/hLDfzW88uJe7tnVWFlvDMIilczhtKo5VVjeZ5mWvUxJENrbVsqtreSZ6fD7B+HyifJ7LBlgSROrsYS5mxnFIdrYGeiuC59c+t8nIRISxFZTpf1FcnIySyRbxXiWTvVosF1OH1akYrAxZEtm1oZUfvXqGVDrP6FSMrT1WrqUq4OK3fu12/uEHR3jnqFXUc/TEJU6eHiOdKfDcz0+v+jxtLSE0TefNdwatlu6ALIusaQ2zv9z40CbZaHG1vrf7WO0Xray9C5uokipZF6KIMjk9jyiI+GQPYXtgSfM7w9SZyJ7mjbkvoRl5xKBESpvhjdkvk9eTtLl3M5w+CFhVPSOZtxlJv0XRyDCV6+PKD8is/LfG3s3e8O+xKdBCwSihmyYDySlUUabVFeZ0fIyilqfa7r3qy1rUdeazmSXnnEql+E+vv4bHZuPDGzawqbYOURRIFYtEcln2NDUTclyOAyUKec7MztI/P89YIsmleBzNMK5pTEu6znMXLjCXtYSZgw4nHcEgkWyWoq4vUe5ZgK/Kzf6HttLSWUuw1kc6mWXw9Dgur70cyhUIhD3suqOXUkFjTW8jG3a388xX36C2OUio1oeAQDqZQ5REkrEMQ2fG2HbrOjz+lRM0giCVlZ4smlE2X6KgaTSH/QTLPeknIgl++OZZDvVdYm9vKx7H8i2uCQxOzHN+dJaB8Tn6x+b4o4/cxpq61ROuBUHA7bCxcU09z7x1jon5BG+du8SBze1IktUYcXAywl88/QZdjWGePLCFoPfKWq4L0A2jYkwVWaS7sZrd3c3LvvfMO32IgoAii7gdtstttoGSodHhbiFeTOKSrn3OBRiGyamBSdLv4xZ/AfGk5fHVrbBI/ktAa30V69bU8vrRIcZm4hUHTRJFOttr+J1fv4M/+bMfkc0Veem1c2Qy7611SSKZ41z/FIZhEqxyc+eBddxz+3qaG6vQTZ3B9AANjkYEBM4mz1Btq6HZ2fL+CZ0AqKLCg/X7AXh26iBuyYEoiDQ768jpeUxM5vIxmhzVyIKMaRpM5fp4dfYviRRGCNnaMdA5HPkm49mTNDg3sDv0cWocXZyJ/4S0Ns/ZxE8pGpahNldZNx4rjhEvjdDr302qlMenOHHLNhRRotkVot4RIFrM4FOuTj0qaBpfOX6cbLl7AFjG8dz8HNlSibOzszyybh15zUpe+Gx2ekJhzs/PISDQ5PMRcjlxlWXJwi4nD3Z1X1HjcQGmadI3N8fzQ4PohoFDlnlywwZ6q6v5wjtvE3K5uK+jc9lxqhsD3P3kbiTJiknmMgV6trVS02h5sqpN4al/fS/FgkapUGLjnrUoNpmnfu9eVLuCWDY4ggCyLBGZSbLjQA+JaJqZ8RgNbVevcjo+OEnf6AyGafLk/k0EvS5ME2KpHKZpVQ/dumkt9UEvqVwBuyLjWESYPjE4wemRKdK5IplC8YoZ5pKmMzQZIZ0vrLi0prIFS1NTFPA4bJwankISBTTd5Nl3zvFW3yWODowzn8zyrx7aR+gKKk0LUCSJ3pYa1tRW0dkYZn3ryqI5d27ppD7oxe9y0FIdwOe05pcABG0BFFGmx7u6xMUCCiWNE/1X7zDwXpEvasxELIqPaZpE0lnyJY0qt1UevtLgFkoaR0bG8TnsdNWFsSvLQzearlPUDWyylcN49+epXIE3Bi6SyhforA2xvrEGeQXnwu20sb23iUMnR5icS5AvlHCW9U0FQcDjsWO3K2SzRSJRS31OkSUkWUTXDEuvQ5HQdQPDMFEUCcOwSkZVVa6EG+YiKaZmEjQ1VPHJj+5j3661lZhrXs9zKn6CqdwkHtnLdG6KWDFKnb0e2yri3teVzV9odHdHzU7csgMTk/tt+zBNk6yexyHZKvQmE4gWLxErWNUWoiARK4xyIfmqldABVNFJs3MbQ6k3iBUnSJamAQFVdCIgUjJyyKKKiISBjmYUUUQHYFAy8uUYrELJiOBVnHjLylG7Qh0AlRhpC9cuf3SrKr+2fcflWBIwHIvx1tg42VKJvFZCM4wlOoxFXeevDh9mMBqh2uXid3bvrfjMkiBik6/dcztZKPCVE8cYTyZRJYkHurp5atNmFFHkac85/vzgG8xlMjzcs46Q01kx9O9u9exw2bjlA1sWPS9W3Kq73kX6FhAIVHvp2NhEqajTd3iYzdfo9Q6WkUvlCku2eCYmkaS1GHqcNtbWB3HYFJ55q4/JSJI961o4sHktPpedsdl4WTsUtrQ30F5/Za90IpKgf2yOkqYzMD6HXZGpC3pxO2yYpsljt2yw5qdd5TuvnuT0yDRel52GoJcH9/YiSxJ2RSKayl7TmAa9Tj73xG2W52u3XVGpf/+GNdyyvo0Tw5N8+7WTZAtFblm/BpsiIyEQUH0E1OuRgoR4Koem6bQ1VCHLEvLixNAqd9GmacVIdc2gqOnkCyVyhRKyJFY8bhM4NDjKl19+hy2tDXTVhlasCoqmc3z/yBlEQeDRHev52L4tuGxLE0nRTI7vHT6Dz2FnX2cLjVVWp1vdMJDL7dAT2Tz/90/fIOBy8PmPP0hnbYiipgECStkZEEWBzV2NhANuZuZTpLPFijFdjIDfyUc+tIv/+Y03aGsJsWNLG0dOXCSVynPg5m7Onp/k0liE++7cwKXxCIePXeSRB7YSjWZ4++gwY+MxHHaFX/rIXvbv60JepIVqZU1ERjLDaKaGU3KQKJlM5Sdoda255thfd+MhQRAIqJZKk2GY2E3LFfcp7iWGQxREau3duOQqUtosmCZepZZu3x1cSL5SMVgLv6ixd7Ir9BTHot9hT+iTeNVaXp/5Iuv8d1Ft62C+MMyZ+LPcVP0r5PQkhyPfZFfoKVxSAIfsr5x3QafRxEQ3TNKlAqnyH7es0uD2ISKQ1zWGkxHafUGc5T7dBV1HFkXCTquyyJZKUjIsw7+xtpanNm7iL955a9E9ChR1nXg+j9/uoM7jua7IUUHT+OaZUzw/OIitbEh/e/cewk4nJvDk+g2cnJ7m/3nrEG+OjfJITy87GxoqrXVX8gSuB2aZkeDyOKhpCpLPFHjit+4i3HB1hZyipuNx2uioD5HI5pe86NGkFapwqAouh4rHYWN7ZyN/9DfPcujsRQpFjcf2b8QwrT5gAgJ29cqLjiJL3LqpnVs3taMbJgfPjPA3z71DQdP58IHN7OltrSwwpmny5Wff5tVTw6RzBQJuB5+5dTOdje9aTM0rF89KokjAvToeajJb4O9fOc4LJwY5PjRBIpPn/p09y3pGXQnGogQNQNDn4o8+fVf5OoTLz3eFJNGVsFDHb5gmhm5S0nWKRY1cQaOpnNQRsEJLQ7NRTBMe3NKDewXDFU1nefbkecaiCZK5worx72B5rP7rc6/zWv8Iv333Pmq8bg4NjrK9rQG33UZrOFBpMFnSdOLZHN955zQlTefRHeup9lq2oy7kpWdNLSf7J0hl84QDLnTdRJKWCnbv2r6G033j1IS93HPHerK5ArNzKe65Y73lqRoG99yxnuOnRhkdi3D3bb2MTUQ5eWaUmdkEe3a2s3fX2iWGFEASJAJqFZpZKm/rBSRBxiauLs78C3Vxm5yK881vv8WG9Y3cfmAdyruEJXxKPSH7GlLpWXQ0bJKHm8K/So29i4Hky0u+a5PctHtuYih1EL/aQJWtGVVyVo5RMvOokpOgrZWsFkMVHVSpTXiU5YTa4WSEt2dHGU8ncCs2Xp4csnpSSQqPt2/EpahcSMzzw4tn+Y3evdzXbLVD0XSdb54+xf2dnXQGQyTyhYq6UGcwhPddrYIF4XK7Kbeq4LevjgJjmiZFXee7fWf54pEjOBWFpzZt5qlNm/Hb7RWKyu6mJj61dSuff/stXr90icMTE7T4/WyqqaUnHKbW7aYzGKLF778mjWolCALYHAq+oJs9d2/EG3AirZANfzcM02Tjmjq6m6q5MDGP3+Wo/Hu0XF3jdqjYVYta5XFaQiKJTJ7+ccvDtJI21vFURar03lnwxBZj4SWWRNjV3cxPD5/n50cvMB1NsqY+SF2V5YEbhslUJImuG4TKXmltwMN0NEWV11nxghaM2GKMTEcZjySuazEcnIrw1vlRiy8dT/OXz7xJUdN5bN+GK4t1LDptJldA0w2U8pjbVJmG6uvzZt8rFpwZv9POuobqZd10AWYTaWyyjCQI1Ac8KJKIYZhLvFhJFNnYVIsiSYxGEpyfnEOVJb7zzml+eqqfjpoQBU1nc3MddlXh52cuoJsmz5++wEwixfmpOX7n7ptoCwdwOlS2djdytG+U2UiK+pCP5188w95da/H7nRV2wMJ5rxdGeRHdv6+rUl67GIlSgqn8JAUjT529AY/iRTNKOKTVLa6/kDHNZPK88up5/L7LBNsFCIKALNpocGy0svZGEd0sIYsqAbWpzMF8/yEIAjPZFF/tP4okiHQHqslpRdq8QTZW1bLGGyStFZjOpnArNtYFLreubvL52NvUzH85+Aa/tm0H0+kUumGgShJrAoElmXvrfqm8HHZZrlC3rgbTNEkWCnzt5Am+fPQI9V4v/3rvPm5qbsG2iAdZ0nVG43F2NTbx8Xyeb5w6SaJQoH9+nv55K2N/oLWN399306rOuXCP7x4rp9uO0319GV6HqtAQtF76ttrLbINCUSNT5mQGvS4W3jmP005j2FfxUlVFpqTrVumvAKos89KJIcZmY3xo/yZcdhVBEJbNJ7AyvyGvVTU2GUkSTWYrxjSVKzAZSdIY9vN7j+1nb28rh/vH+KsfvcktG9fw2C0b8bnsZS3LpcZ0Kpbk26+eQJFXz0XVDYONbUursYamIiSzBUK+lefCwuIMMDQ2T/oKZPZ/KkQzOX56agBlhXBGIpcnkcuXvV0YiyRw21VCHitUsvB8NjTV8Qf33wJYSaNnjp/n7PgMH9q5gV+9bdeSYxY0jRfODFLr89AaCuBUVUYjcVpDfkRRZH1HHV6XncnZBPVVXr799GGefeEMTfUBhi/OcfDtITLZIlMzcYJVq68eBIvdsbatmjUtoRWfsSraaHa2MpgewC27mcpNkNHSNDtb8av+ax7/FzKmC3yycNiLJIkUizqTUzHq6/zYbAoCImF7B6roQjdL6OY/lVizgENWkAQRr2Ijr2t0+8NU2Zx8/sxBEoUcPpsdl6wStF/OtgqCwM6GBgajEf79qy8TdrkpGQZ+u52OqhXaxpa3UwBe27VJ9gVN48T0FN84dYp4Poff4SCey/OV48eYz2R5ZN06KxkAxPN5/s1LLzCZTOFWVRq9PpoEODc3h26adIdC/Jv9+2nxXaYUFUsa43MJFFmitspT8XhyhRJDExHsNpnGsH9FmpBhmlbzthU800JJ49J0jLqgB7fDVjmfaZpk80WyBStpN5/MkMlbz9hpV4imckiCgNuu8r89cRslXae+ykssmSWeylWSTrPxFM8dPs/F6ShTkRS/8dBefC67Vdc9MV+OzVrnNAyDoqYhCNAU9jOXyHC434rLz8RSTEaSHNjcjqpIHOq7yDdePM6Zi9P0j81yfnSW3398PzZVqWg4qLKEw6ays7OZTW31OG3KLxQ6uRZKJb3ikY9MRBkej7Bt3T+fMVVliVqfB1VebkxdNpWmKh9Bt5M6v4djFyeo9XsqxrR/ep5EJkdbdRWPbO/l9f6LjMxFee5kPwVNRzMMRuaiS455YTrCnz3zCs3BAP/Hw7fTGg4sGe+6kJfWhiBTkSSxeIZEIsfEZJzzA1Zbm6d/cpynf3IcQYB13auTxluAJIls39KCy7XyDtKtuNns38Jmv5V7MDEpGSXc8uqM9nUZ03y+xORUvPISjI5aFTupdJ7hkVmGhuf47vcPc+v+bh57eDs2m0JAbcAlV5EuzRMvTuJTriwx948FwzTxqQ6Khk6qmCevazSrduZyy4WRJVHkkZ51HJmc5CcD/RimSYPHS4vfv+y7JUOveBpVDgdc4SU0TJPhWJSDo6OUdIOnNm2mJxzmD372U342NEg0l2V/a9uSLaZhmiTyeabSKRRR5A/23cRD3T08N3iBH58/z4c3bqTJ61taoQQcPj/Gd189xZO3bebBfb2YwOR8kt//qx/jcdr4tx+/k57WmsqWdwHpbIHPf+8Nmmv89LbVLik26Ls4w98++zadTWF+9YE9bFhTV9nq9Y/P8aM3+xAEyzOcK5f8DYzN8YUfvXnFbfPYbJySZpWwnhyawmVT6GmuYWgqwpGBMQ5stlr/js3FGZyMYF9EzK4LevnNh/YB8KM3z/LKSau9dcDt4AO71+Fz2+krtyXZ2d3Ezu6myrMtajpOu8rGtjq2rW1gV3czOzqaytVAq2tY94sgnSsgSSK97bV86M7NdLddveT6isfJFMgXSgR8TjK5IpIk4rSrZHMF5mMZ6qt9y8Jui7Hw6AVBoDUcoNrrWhaD1wyD7vowJd1gJpHmiy+9Ta3fS1ddmKDbSb5Y4o+/+zxBt5M//MB+ToxOcVNnC2Gvm6lYkkyxyMGBS1yYnue1/hHq/B5uX7eWh7evR5UkkvlCucL+MpwOle3rmhieiJBI5snlV27p/F7kXQVAkiTiiSwej2N5ctGElJYiXoyx1tNJohjnTOIU1fZa1nl7r7nIXrdnWippaOWuh9FYBkWWON8/xbruehrqA/zWb96BY9Hq7pB8BNRGYsUxXp75PO3uvfjVRswrpgDef7hklTPRKTTDqPQYvRqcisInNm3m7fExZjMZNtbU4LPbK97MAnIljYJuUaVCTucVj2uaJl7VxiM963CpaqU7wcIIeGw2NtfWLTFgJcOgVJZgM7ESeiGnk49t3MTD3T3YZLniCRc1vdJ6obu5Grsqk8zkeebNPoYmI9y2da2VXZVEfvjGGb7/2mk+/YFdNFX7K+fTDZOzF6d54egA/+rhfTQs0Z80SWULnBya4uJMlPVralkQKtnQVkdXk1Xp1Tc6w5GBcXLFEo/cvIG7t3dx8MxF+kZn2Nxez8Y19ZXWID84eIZjgxNIgsiHb9vMXQsdQAVrK79QyXXntk7u2Hrlh/b9109XjGlzdYBP3bcTd5nbms0XefHYBZqrA6xvq7VoZOXffe6J25Z0ifinQsDr5LMfuYX929dS5XXyXsjuhmHy0sF+Xnqzn19+Yg/nh2Y41TfO7m1rmJxJ8PyrfXz80V3cf/uGK8ovBlwOHIrM8GyE3/7ajwm4HCiyhFIee92w2AAl3SBTKDIRSzCfyjI4E+WVc8M8umM96xpqaAz6OTw0xrMn+0lk87QENxF0u3AoMq3hKlw2hedO9vPMifN01YV5eHsvf/2K1XrIbVu+eImCwO27utgYS5OOZ9m+uYVsrkihqDExGUMpx3Yz2cISTvtqMTEV49nnT/PJj+0jHPQs+UwzS0znp3h19kXejLxBVstgk+yoqywHvi5jarcrdHVe9iyHhmfx+Zz4vA6CVW5aWoLLJqcoyITtHQynD5EsTXEi9gNkQcWthJnND1RKSd9vaIaBuehSEsUCsYKl6K+ZV+ewCoKAIl3udT6aTBDL5fDabCymQ6YKBbIla+V85eIIkihW/r4YkihS7V6+VVgwlg7FSl4tHrtUoUBxgcpimlxKxAFrsnlsSx/u0MQ8h8+PgWBJlW1aW0+uWKLv7AzFks7gRAQBgcawn+7mav7y6YPs6W1ZYkxhQbZFwOd2LFFWiiazIAg4bQotNYEl4QxFlirhhJKmUyhqCEDY78ZhU9jS0cB3Xz/FD944w6O3bOCX79mJXZXL1BjLQ3LZbVctCdQN44pGb0k/euGyEpBpmhzqu8RfPP0GDpvKJ+/ewX27eioernQdRjSfKZCMpPBUubG7bCteSzKSJjYTp6rWjzvgYnpklshUnJaeBjyLYnsP7l+PIkuIooChG8yNR1FUmUCNDwSYHplDViSC9YErJgOj8Qwnz43T1V6Nx20nmc4TTWTpbq9FVSSi8Qx2+5VFkAVBYEtLPb922y5e6hsikcsTy+TKY2m5OdlCiVyxhMum4nXY8DsdtAQDbG2tZ1+HVRGmSCI3d7YScNqtoh6HDYdN5dzUHH/69Ev4nHa2ttYzHrUqxSZjSf7u9WO82DdINJ1jcCbCv3v4DlpC/iXXFvA6CHgdGE0mG9Y1Wtq8msGf/ucfc9OeDtpbw3z3R0eveyHUDZNXD/Zz6PAQO7e2cstNXUvmcqQY4WJmhLtq76M/dZ56Rz2qaEN5v8Whl12YbtA/ME1trY+GhgAvvtLHhx/fhfNdDbEEREK2NgRESygEg5KZJ1Yc5/np/0KLcztF4/3TVzTLlJusVqx0OI0VrIlS4/SQ10sEbM6rirCYpsmRyQkSeau1w1tjY3z7zGme2rQZzbgsyDKXzVS+c35+nnXh6ss0HcxlnuxiWK1WLIOiiCI5TSOvaZUk1Hw2Q17XEAWBKqeToWiUTKmIW12+SrY3hBiajBBLZtm4pg5ZkhgYm+PSdIyP3bUNSbQy2G6Hja2djaxvq+P0yBQ7e5oJeJYKTBumwVwsvSRbOhfPVCg8i/vKv3vMMvkixZKGTZVxl5kNLrtFj0pm8/zscD93b++irbZqiZDH1Uo9i5rO80cGGJqcXzGD27+oRn4qkuSvn30HVbYWwoHxORRZRtN1vvv6KUI+F7dsvDZf8N24cGyEL/7h1/nUf3iSzQd6KRU10rEMvpCn0lb61Ovn+OafPc2v/5en6NnVwavffYsf/MVP+fT/9RF2378Vm1NFUWXsi+41k8jyN//mm/irvXzq/3wSQRT568/9PaYJv/tXn6ZY0AjU+JZ4l6WSztmBKTb1NPDW8RH+5z8cwuu2k84UODc4xeRMYlnGfSV47DZ+6ZZtPL5rI8lcnlzJ0gJeqK1//swFvnXoJCGPk8/etY/1TTWcGp1iPpWt0KgEQeBj+zaTzBX4kx+8yPa2xgp5v6hZCcYndm/iyPA4bwxcoqnKx2/esZu+iRnmU1kaq3xUuZcX01ymQQmVe7fZQFEkaqu9rOuup+bQhVVzbxcQiaaZmIwRjWX4yc9Ps35dI6Hg5YWuSqlik38LoiCyN3QTRb3AycQJ1ro7V2W437MxvXhxnlOnx7h1fzfr1zXwhS++jNOhct+9m/B6LneFFATwKrXYJS95PVUh7INJqjRDX+Kn2CUv8/lhahxdWDX3v5hEmiSIdPjCPNTai24aHJq5xK+u202T2yqhrHV6+O7wKaYyKwtFJwsFXhweRpVkfHaZ+WyWH5zrY2Ottb11Kgo1bhf98/MVgwiwtipIJJfFn0rR6g9ctYw0r2nkyl6sR7XxP95+mxq3m8d7e1kXrmY8mSRbLKJKEhurazgzO8tgNMrm2uUxZ0USGZmK8uODZ3nqru3UBT1MRZO8eeYiiizREPKRL5Y4fmGcoqYRDriJp3IMTsyzvbupslkysbzopmo/LbWXuaaGYSAKwhJqyrtRqX4CnDYFl90K9Wi6Fa4QgCqPE5ddxTBMklkr62+9eBpvnr3I5vb6JSEisBIkm9rraKnxoxsmJwYnCHic1ATceJ3WPHuz7xIAfreDjgZLxjHodXLblrWVuJiAQNh/bdEKQzeIzyUp5kuWp2sYjA9OMXJmjPhckpnReYZOXORnf/cqD37mLrYc6EWSJQRRwNAMbA6V+GyCvrcuoJS9wy/94dcJ1Ph45LP34q/2kc8USMwnScUyRKfjiJJIdDqBrunE55KYJpw52M/Tf/kzHvnsvey4Z/MSvYG1rWFO9o0zO5/ilx7fw+hElGyuSE3Ii2GY1Nf4KJUsNSd5kXer6QZTiVRFwf/dc2hxRt9RZlzEs3lsisxENMlXXj/G0GyEsUic37hjT6V3Vt/ELEOzER7dsd4Kz5SPkcwV+OnJfi7NxwGYTqT53pEzzKWsuLrfab9mheBKME3LURkcnmVoZJZYPEsynWd0PEokmiaTKTA6HmV2LkkuV2JsIsrUTIJkMkes3Br69NlxXj80wIP3Xh5byzMdxq8EOJ04gSracEgOguqVpUEX47rvxDRN5uZSfONbh+jqrGVqOsGRYxfpXVfPd753mOGROe6/dxO96xrKAXABtxzCKQVoc+/GJrqYyJ1mLj+IiYGBTlaP88bcl1nnu5uUNseRyLfwqrVEC5c4HbcEUTJahGhhlENzXyl7tmMcjnyTKrWZbt8d2KXL8Y8NwVr+3fY7qXN6OBWZQhUldtc0U+Nwo5smsUKWZLGwYrjKNE0OT05wdm6Wezs68NpsfPXkCSZSKV67eJHH1vVye9sawi4n/+XgG0t+67GpfHbXHuL5HK3+AJliEZ/dXsnQL0aqUCBVtAzKXWvXYprwhcNvc2Z2hj+6+Rb65+cp6DqNXi/b6ut5a3yMH54/T2+4epmRXtB3FASBbd2NdDSEkCWRH7x2mg1r6mipCfC1548yPpfA67LzX3/jQRw2BVWRFg2BiSxZdeajszHS+cue41QkiddlpzrgZngqSkPYR8jnWmL08iWNgfE5AGyqgiiK5AolBAHu29lDY9jPru5mvC476XyRWNoi90uiyE/f6edw/xj37ermk3fvwO92LFqMBZqrAzSF/RwfnODpg2coajodDWEe2ttLbdXl5+60KWxYU8erJ4d47dQwrbVV7O1toae5ZtVCJ4ZhMDs6T2zWMm6HnjnGO8+dQNd1jvz8FPG5BFW1AfZ8YBuSLGIaJul4BkwTQRR46ZsHmb44x/TFOZ78gwcJ1Pq5dG6Cqjp/Ja6dz+S52DdOJpElm86TimUYODaMaZjkUnkQQCtp3Pr4HmRVxjRMKD9yVZUpFDWeffkMAZ+T5oYqsrkiPq/DqnbKl+hYU8PLb/bTUOtnfVd9xUst6TrHL04Sz+YQBYFUvsCLZwdpCvorXNEFDM5GMUyrO+uJS5N4HDZ2tzexY00jDkUmWyyRzBd4/vQAPzzaR0k3qPN7lswJl01lZ3sTNkXmp6cHqHI7uLmrlZ+eGmCsvPW/PPsuU600w0AWhSvWw6czBS6NRTh28hKHDg9RKFoSk4feGaJY1CiVdE6dHUfTdHL5Er/7uW+XFxaRXdvbOHl6jFy+xPMv97Fr+xrqa/0A+NUAO6t2k9JSeBUvVWqQofQFSsbqWEjX1bZE0wwujc7zk+dOUVvr4+EHt/KDHx2jf2CaT3/yFmKxLCdOjtLWFmZte3Ulm2iT3HiUMPWO9XR5b2Mid4rXZ79IyNbGRPYUaS1CrDjKO/NfRzOLRAojlfMmSpNLruN47HuV/z8d/zEOyYdfbaDVvRMoC2AotorivlHmvi3IzRX1Em/OXOKliQtsCtYjv+uBJQoF/v7UKXpCYX51+3bOzMyiShLZUomL8Ri91dW4FIWvnjzBubk5JEFAL08CURDYVFuLKAhMp1McGhuj1uOm8iYsGstoLleJw26rqyeWtyb46ZkZnj53jjOzM4iCwM6GRnqrq7HJMs/097O/pZVbWluXxHoWe4yvHB/kyPkxxmbj6KaJXZUryb4FDUuP01YxLoWSRiKdJ18scf/uHnxuOxva6qxnV3ZCU40hagIeiprGN188zpH+MX7tgT0011ymZU1GEhy7YNWVF4oaP3jjdEVaz8REkURODU9yaniKoqZVsu2aYXBqeBJRFHj5xCA1fg9PHtiMJC1d6TL5Is++c57x+QR2RaHK46Ap7Cf2rhYcYZ+LR27eQEk3+PsXj/GTt89xz44uPnr7FkI+d2W8Erk8bputEgJZmCOSLNG1o90SHXm1j/H+KTq2tHLi1T423NTN0ImL1DSH2XHPJlxeJ4Ik0n9kmLH+SfLZAuODU0QmY3RsaaVjaxvn3r7Amk0tFLJFJganCVT78IW97Lh7E4m5FP2Hhwg1Bpm4MA0CtG1oxht0s++hHYjSci3YXL7E1GyCgM+KaSuyRHvLZaW2H79wmpm5JHu2rSGbK5bnhfWZXZG5d2NnpaKqoOkMz0Y5PDzOnrXNPLRtXSWWrMoSL/cN4VQVPrClm6aqxQlJAUkUyJc0XDaViViSGp8bn8Neft4WZEkk5HHhLScEVVmi2uuu0O90w5qZmmFwMR5jJB6j1u1mJpOhN1xNnXtpgmgBY+NRBgZnKBZ1isVs5d/zizL/heLlHWO0rBDV1hLiM798gFcP9vP9Hx9jaGSWg28P8ugD2xBFAYfkAMmBS3ZZSV9EfAE/0ipVv67LM01n8kQiae65awMtzUFsNpkH799CNlekpTnIr3xqP0NDs2zZ3Ix7ERFcQCJoa6Vk5pAEBZvoxivXcFP415jK9/HazF+S11OUzOuPneb1NFO5PlpcO1aMa4TsLh5bsxGPYsV5nLLKzXVtpIoF1lfVYpcveyyGafCzwQsUNI3/7aabWBOoIprN4ZBl8ppGjduDLIocGh/jaydPoEoS+1tbeXF4uGJQoSz0PB9hNJHgStna/vl5EoUCe5qa6A6HODUzgyKKmJLEYDTCSCxG0Onkga4uWnx+fDY7I/EYf3bwdeyyzLb6emTx8svW01KD3+MgnSvy9Otn2Nhex+O3bqK3tZbTI1P4XPZlBgosoZC3z10iX9AYGJtDkkRmY2ky+SI/PzJA0Ovinp1dCKLAyFSU7V1NuB0qsVSW5nJ5Ilicz994aC9ff+Eoa+qCPLi394q51vlkhpdPWBn4ar+bz334tkrNvNtpWxbv0w2DN89e5JUTgwTcTh7bv5Enb92M3+3g1MjUsuN7nXYeu3kDw5MRnj/Sz7dePoFhmnzmgT3YFJl0ociXXnyHm7tb0Q2TZDZPSzjAugarmk4ravS9dYEXvvE6d33iFrxVbs4eGqCmOYRpmnz7z3+MJImsv6mLOz52C+/89ASj5ydweZ3sum8rP/3blynkSpx9c4Bv/tnT3P2JW3nhG69jd9tYt7sDWZKJzyX58Rd/TrgxiCfg4jv/82VcPid3fWI/Qycu8ZMvv8gdH70Z57u0FBRFYtO6Rk6dm2B8KsZcJM3I6DwXJyJs7G4gky1Q0nSCARfFchx0YRsrCEIlWbjw9/qAl7lUhqePnOWejZ14ywaxsl0XrN3DSuIkDlXhps5Wvn7wOLphopcTu7phYGASzWT55qETRDM5wh4XsUyOL798mKl4qnxM67qypSI/Hx5kNJnEJlmMgjb/lUuaz5yfIPUeW1UH/E4+9MHteNx2vvqtN3nt4AAHbupeEjtd3D5JFlZvIq9L6CTgd7Fr51IlnNrayytWfZ2f+gVB4sW/RaBKbSGjL+0GqYoOamwd+NVGmpxbGEofZD4/hIFB2LaGansHVzJGJgZGubWAS67CxEBg+QNvdPn4aMeWJYa2yubkY51blx7PNDk/N8+pmWk+d8t+esJhREGgIxjkQ73rmcmkeby3l9Mz0/z5wTfIlTR+Zdt2esJhXhq2dBZLuhXAz2oaPx8eJJLNkiuVlsWF8prGz4Yu4FJVPrphE16bnd5wNZ/etp2ZdJrDExPopskDnV3saGhAQKAzFGQkHqN/fp4/euHnfHLrVu5uX1sRP4mkshw5P4YiS8zEUqSyVYT9bmyqzPBkhJoqD6IoLIt5Br1OPrBnHalsgddPDTM8FeWpu7bR3VLNV547jNdp57ZtHczHM7x09AIb19Tz5B1b8L1LF9OmyOzfuIbelhpURcbrvJz1NkyTQlGjpOlk8kWOXZggmclXzt/TUoN/hUTEwm/PXZrlay8cI+h18dSd2ziweS02RaJQ0ipFAu+G3+3g3p1dvHXuEolMnueP9PPQ3l4aQj7eGRzj7PgM8WyOdL5IlctBrqSxrqGaXDrPhWMjTAxOs/2uTTi9DiYHp+nZuZbzh4c49/YF9j+2i6GTlwjU+ME0Ge+fxO13oSgyG/Z18c6zx/FXe6lpCaGVdDq2tPLqd98i3BBELCfRcuk8L33rIPse3MGm/esQZYn6tbVs2r+OF//+IGcP9XPzo7uWG9NFxlASRTrXVNNQ6+PVv7jAnq1rqPK70HWDD9696ar958F6s7x2G3ZFJux1L9nmL27Oc9VjlF+rVL7ATCJNvd+HJIq0hvw0VvlQJIntbQ18/KatDM9GuTA9j02WOdCzhjvXWzFtwbAYKoZpkCiUCDmdeFZItC5cl9/r5L47N6xYerxY62Axkqkck1NxwOKy3nvnBvKFEt//8THOnJtg/77VJZmuhl+oAgqWl5BeCT61jlR2dsXPJEGhy3sb7Z59HI9+j4HUK4iCzNaqDxFQV27IZ+Xsy21EEK9Ynrrq0kDTZDyV5Ne27aDJd5kMH3A4+O3de0gVixwaG+WLRw4jiyJ/vH8/d6/t4OT0tPWC6Do/Hx5EEgUuxuM8OzAAgsAzA/18qHd9xaAapsmbY2Mcm5zioxs2cmtbm5Wxdzj4+KbN/NXhd5jLZniou5tPb9uGU1ExTJN713by6sWL5DWNS4k4f/b6a7w4NMQnt25lZ10DF8aseGVTtZ/D58dorgnwwtELZPJF+kdn2dbZSP/YbMX45AolbIpc8QLTuQLjcwkMw6JWpbKWsYumsjx76Bz5Yomw300snWNyLoHPZSmImYZJMm7F/nxVrkp2NjqbJFDOdhdLOmcvTnNkYJw3zoxYMdlcEQHLo3WvoHm6MFaDE/N87YUjrKmr4skDm2mrDTIyHaV/bJbhqQivnbocElJk6bKAjiDQ01xDa20VJ4cmKWmWTmlB0yrqXx67jVgmb1GVBMrqRSItPQ2s291BYj5FLp0nWBegbk0Nr37nEJlElly6wD2fPEBtWzX+sJff+h+/zJHnT3HqtT5s5fYcekknMZ/CE3Bhd9nANDn9xjk27V9HQ0dthePqDbqpqvMjigLVTUFqW8PYHCqFXIGJC9OoNgWn910tvc2l753f6+T+29cTT2aZmUtWGAbXgiAI3Le5i4DLwda2Bkq6zsRMkmQuz6nRqWu2ZgEryRTL5EjmCgzNRtncUs+m5jr+/aN38VLfEH/3+lEUWeKejZ18ePdm7IrMGwMX6Z+a45nj5wm6nTjsCiXdQCrrJrgUlSuREQTgzgPruPPAuiWVeKZpUizpXLg4S2tjkJKmE1ikX3txdJ6//PJLleM47Ar337WRickY7xwdYe/O9rJs3zSWZq+BoU8iK+t4twj6lXBNYzoTTVlybh4ng+PzNNcGcNgUSppe8RmHJ6MYhkFt0LuMagPlGnApgHSVtr6CIFKltHBT9a/iUWo4GfsBRyLf4tbaz6Ku0FO9TJ6oOK6mafWjWcYfXJRdXFDTWVzpYZhm5fNbW9uWEOdN07SMbDLJ9/rOcmxqijvb1/LB7h6afD5EQSDgsOO325nNZDg4OsrB0dElp//JwAB3r+3ALssYpsmFSISvHD/Gwz09fGbHTmyShGmazGezfO3kCQ6Nj/GZHTt5pGcdAYd136IgcEtrC7e0tPD80BCiILA2GOSO9naafT7i6RyFksYn7tnBhXISqNrvZt/6VtK5AtFUltu2rq3QiAzDpH9slp4WKzFjmiZjs3Gr6ZnHwdDEfEX+rNrv5sO3b6lsFRde4oX/jg7O8PTfvoZpmtS3hrjj0R3kMgXeefkcOw/0UNcSwqZIbOtspKMxxHQsxblLVjy4rsrD/bt6VpS5M0yToYl5Xjs1zF3bu9jV3YzbYbMq0kJeSprOd187xejsZVX6lprAEiWggMfBB/dZGebtnY00hn3YVYWwx0VPfTVddWFyRYtPWZEbN02mL86hLWq6Nz4wxfc//xytvU08/Fv3YhoGX/vT79HUVc/H/s3D1DSHKGQL5DMFXv3uW/jCXmwOlXd+egJBEDjxSh/r93VTKmr0Hx0iny0wMTiNzaESm01w4pU+Mskc6USWE6/0YZoG+UyBL/3v3+Dmh3fywX91T6X/EViOhCgIOJ1qRb7u5p1ref61c0zPJbl1T+ciit7l92VBUU1YmPeCQLXXzQe29qBIErliiblkmi+8+BanxqbRDAOHolxVVCSesbx7zTCYS2bQDYN8SePFs4N8++1ThL1u9nY0c1NnKyGPk3s3WdzOP/nBi/z9oRN4HTY+fetO7u/oZDRRg022tEddylJC/4LBXOAVLzakhmEyH8/w9okR3jw+wsauBno76vCvYIsWw+ux88gDW/nqtw4xF0lRX+sjn3sOWelFEGTyuedxim4ksRpBdHCtAourGlPTNDl6foxsoURPSw1ffe4wPa013LWri9NDU1ycihLyu3jt+BAOm8L69joevXXTiplTu+y7qjFdGCC75GFb1YdwyUHenv8qQ6nX6fbeedVBMU2TRLHAM8Pn2VvfzFQmhSpKSKLIlnBdZULNZNO8NnGRD7R14yh7iuejc0xlUsxk06wP1jCaitMZCNHhDzKTyfD6pYsMRCK0V1Xx5PoNNHi9SyZXmz/Axzdt5nt9fcTzOTTDRBZFPDaV7lCYX96ylaDDgWGa9M/P8/T5czyxfgN3tLdjkyQypRJHJyd57dJFfDYb//nOu1kTWEqMB0uM+vf27mM6nSbscvFvb7m14kEf7R9n3/pWcsUSRwfGLa/LaeNjd23jz7/1Cnfv7Kar2ZKh03WD8fk4r5wYorW2CrsqU9J0jvSPE/Q5+aV7d/CTQ5ZyvVGOJ7597lJ5e2lVxhRKGnVVXtobghTzJWLzKWwOBcVmZfFjcykyiSzH3xggly2wtrfR8sKcdu7Z3kW+WKI+6OXA5rX0NNcs2ZotGGnDMHHaVT60f9OSkIFYPs761lru3NbJ4MQ8XqeNda21PHrzhiXaArIk8YFdPdy6qR2nTUGRJbKFIj89OUBbdRUD0/NMxlK0hgM0Vfkrc1C1K6iLGsDJqszseIRbH99DfXsNpmHyyX//OJIsoTpsFLJF4rMJdt27hZe+/SYHntjDHR+9mf/8yS9w88M7MYHf/O+fwOVzYpowOzpHY2cdf/i3n7GKC358FEEUaOqo480fHeHJP3wIb5nob3PalnmacS1Hz546CrrG+dQMa7xB3LKNjdsa+FzDPaxvqq8sfkVNY3AuQrZYoqTrxLJ5bl7byrGxCXwOO4okcXpimg9t2YBDkdm1tpkz4zNcmJ6nKuDikR3rCV4hBAPgdzkIe12UdJ22cIBzk7O8cm6YeDbP7993C1ta6qjxuivhDYAD69o5NDjKz04N4FAVclqJkzOW8a5xuTk2PUm9x4tDWZTPMCxJzUymwMh4hHzBSjals0VKJY3Othr6hqbZ0tPIyf4Jdm1uXXJOsFSjFouQC4JAa3OI3dvXMDoepb7Wh2nmKBWPlef6LNnMN3A4H0MRr63xe1VjOp/IcGpoyhICzuRJZwuMTEaIp3OksgVSmTx+twOXXUU3TLZ0Nl6RgmIT3ciitZ0zMa7qOsuijR7fHYDJ6dgz1Ds24FVqr2hQU6UiXzl7lLORWd6eGsMAGt1eOgMhNofryJZKvDg6hCgKHJy4REk38Nls3NvayWA8wvOXBtFNw8rYJ2O0+SwlJEUU2VHfwPpwDQ1eD95ySWmuVCKeyxNyOZFFkV/bvoMP9vSQzBfQTRNJFHCrKiGnq0LCj2SzxPM5PrV1K2GnRSuK5XIcGhvDY7PxyU1bOHlqnAt9M5wpjbNrfSv1i+TYTBO8psrvbtiDXtIJ2y9zJjuaQnQ3h/nZ4QGODYzTVO3H47TxnVdO0ttWyxMHNiFLEg6bwokLE3zuS88yn8hQHfDwoVs3cnp4ivG5OP/6iVvZ1tnAxjV1fOulE7xc0rk4FeO3P//DSjjAMExqqjz8h0/fa7XtsCmE6vwU8yUS0TSJaJquzc2cePMCd31oJ7JyWYVJEAS2dzXREvaTzhZwOlSGRudoqPFjmiY2VWF6PkltyIOqyDSElsrRmaZJMpFDK+l4/U4rBup2URPyUu1zU129vDWNJIlL4rsOVeE37tqN124nmcvzzPFz3LG+g5pypt/usrFmY0vlfADpWAZBEAg1Bmlb37TsHKP9k7j8LrbfvYnzhwcpZIucfbMfSZF56Dfu5v/9w6/zN3/8LR7/vQ9Q0xqmtrW6cvzRcxOceXOAA0/s5e5fupVnvvwC3/lvP+H+X7mdNRuarcKAJUUVJucSM0yJKfqSU1QbHlyKimE3OZoYIxxwEzGyuLHeNQGBiXiSExNTiIJAS8BPNJPlxf4h0oUiQbeTWo+H75w4zRNbN1aEoPd0NFPlclLtdV9RIBugvSbIX/3SBzFMk1q/h0Q2z0f3biHgdFyxcMCuyPzuPTfxxK6NtIQCaOhWixJBpGQY3N3eYWldLHn28JHHdtHYECCTK1YKYgI+By6H1YY8X9BIZQsUi9qyoJ9hWN58OpMnsKgtjySJ7NnZzrn+y4lMQfQgCCqUdJyuTyBJDaym7PeqxjSTK2JTJLqaqxkcn6Olrop4KovLrloTYSZOSbM8FZddRRQESpq+JEi+AFEQccuWd+SU/Gyt+pBlXCv84aXhbklQ6PHdRcnIcSb+LLvDnyBVKDGTyVSoPkVdpy86y776FnqDNZTKAzyciBFyOLmjud0ihRsab02Psq++BUWUSBbzzGRT3NPaiV22trmSICKJIkGHk3jeYhV4VBuJXJ5nzvXTW1NNa8BPtlRiOBojlsthl2UeXb8Ot81GvcdL/cpMDgCCTid7nEt7CQUcDu7rtFa82WiKbL7IhdE5FFmitT5IvqRhGAa5fImAx8n4bJyJ8RglTSfsdtPbXmsVRTgtY3H3zi46GkPYVYVIMsN9u7pprauqeNKP3LKBkmaQKxTZvLaBTe11pLIFSprB73zoFqr9lkhvfcjHbz92M48f2MzQxDxDkxGmoymiySzpbIFNa+vpaLSIzP6gm4d+6WZmxqP4Qx6a11rCHbVNVUiKtKwkMpHK8bM3zuF125mYTbBvyxpOX5ikWLRU4S9cmuVjD+xYljwxDIPIbIrXXuwjly3S2l7Nhq0tnH9jhHhDgGFZ5K4HtuBwXl2sRBAE/OUWI36Xg4/dtPWK3y3mS5x45Szf+W/PkEvnUVdwFLSixtzYPLc+tpvqxiCf/o8f4dK5cc6/Pcgv/+kThJuC3PXxW/jPn/wrLp0d59P/10fo3tlOPlPg5Ct9vPq9t9hx9ybu+eStONx27vmlW5kcmuHPPvkFQvUBHv6te7jrqVtQF4k3T2UTzBcyZLQiLlnFKaucT8xwJjZlZdHzWX6391Za3FVMJJIMzkeYS2ehzBttDwdp8PuYSaUqhtq9qES5yu2kapUC2bIo0l5zuSTcs0pN34DLQaCsg5sqFKyFspgnXsihSiJVdgevj1+iMxDkUjLOhnANpSqBZ8cvsLmmjnW1l6sNdd1gaHQemyIR9LtQFZmDx4ZpqPGjlsMjNdVePvvrt1c4pYvh8zrYstF6N00MJDGAIDiQpDpE0YdpphGEq7zcC2NxtQ9bagP0tNZQ1HQKJY2N7fW8cnwQSRSpqfKwb2Mb6VyBupCXSCLDD187zW88etOKxhSg3rEeAK9Sh1epw+KaW11GC3oG3jVXRSR6/ffxzvzXmc1fQKGZnF66HLcD1vqD1opTKlDn8nAxGUMRRUIOJ69PXOS+NktAwzQt8RC9HFuFy/XZrb4A6aKVEFFFiUg+i4nFUc2USmSKRWK5HGuDVfgddsbicTLFEl3hEE71/VEasqky6VyR6UiK9nLL4kKhhG5YcSLdMMjmiqxtDnHs3Bhrm0LLyumcNoX1bVbPovaG4DIhj93rWtjZ3UxZYL8yGYPrrIm0+LuSKNIY9tEQ8nLzxjXWAlYW1138W3/IjT/kpqm9unIM0zS5/ZHtK+4kDNMknSsyOmW1jzg9MMmaJotyVB10MzETx7GC6rtpWtzBXLbI1HiUTdtbcThUJEnE0AwCNd7Ki/N+QbUrbNq/jtOvn6eps551e1bY6gkC3TvW4vQ60DWdyGQUm9PGA79+p5V4Arbetp6P/fEjBOsCdGxpZWJwmoEjw0iKxMc+9wh1a6orW3m338Wn/+OHWbupldHzE9zy6G6URUZcFARMTJpcATKlAuv8tXgUG+v8dZyITuBT7NTV+mh0WdSilio/mxrqaAtWEc1k2dJUT3vIMrKxbI65dJpYNk9TwPceZEPeH6iyRNDpxCbLhJwu0sUC05k0r1wa4eWLwyiiRL3by6ujF5nLZlBEie5geInHblNlPnDbBkQB2ptDqMrSvlZOh4rToa44JwVBwG5XME0dQ59Dw0BRNlAqnSWV/K+oth3Y7fdeMxF11dm3QHQXBQFVtmKQoiCgKjLRZJbZWBpN17EpMn6PA4eqrKjYXblhaXk5n01ysaXqEbzKcikyQRBQBDsb/B9gKtdHp7eTkGP5MQq6xqVkgjZfgFSxiF2SORexWlDf09qJKkpsq6nHp1r0i3q3l0QhTySfpahrXIjN41UtPdKcptHur0IAbJJEncdNg8+LLIoEHA6Kuo7bZmMkGmdrQx1FTcd+DQrKaqDIEs21AeZjadobg7idNprrLms9Fks6b54cwe2yUR/28c7ZS9y0Zc2ShNviibLSiyEIwopc06vBmgNXOuLVfrPy90VBoK2hitqgx4qB5Syv5NTABJu7GwGIJjLUhpZu2UVRIBT2UFvvRxCgoTnIuTPjJGIZVJvM7NE4a7vqqG+6cmvs64UgCNgcKp/4Pz4EsCRksQBZkZDLBHpJlmhZ14goigiLtriKTeHBX7fi/oIoUNtaTW1LuFKGKrzrGbq8Tu795QNW1c4K59wYaEAWJYq6Rou7Cpds41I6yr7qNt6ZH2WtJ1RJpKbzBeyyTHdLmKNjk7hUawe5sb4Wr93Gm8OjhNxOgs6rN5z8x4RNktlSa2mTmqZJyTAYikUqMVS/zU4kl8Wj2jgfmWcmk14icCNJIi0NV3/uq2P1iLjcn0IUA4AIbhHTzKIoPau6D+FKtdZlmBNzCTBN0vkifreD8bk4G9vrmYun0Q2TgVErQ9xWF8TrslHldV1TZGHJCcpKNVez+qZpUjLzKIJ9xUEp6jrfHThDjcvNdCZNvJBjV20j9W4vdS7LPddMg1g+xxdOvm2Rik2TJ7o2AAIvjg5R5/agmwZ761po8VptQEq6zmAkik2WGY8nKBk6W+rrOTszy3A0Sm9NNZ2h5e1M3gtKmo6mG8xGUgS8TtxOdUkA3TRNIokMAgKqKjMXTdFSX/We2jf8cyKezJIrlIgmsnjddo71jbG9t5m5aLrSSkJVZFobqpY8a9MwmZ9PkYpnGTg3ia4brO2qY24mSUt7mHOnxtl3oBvXdXYN+F8RC4ZEM3RLzAeL2icKVh8zm3RZnnGhRYsoCGhljQXLuy2/V7qBKFrkQmkF3uY/F5KFPC9dHMZts2GXZOrcHsZTCYbjMXqCYbbXNSxh3vwT4ooDdE1j+v5fy/sP0zTJ6xqKKFa28XZJXmZoDNMkUypSMnREQcSlKIiCQF7TkATL61YWVRUt0K1kUUQ3TDTTamGiG4Z1jjIj4F/KBPxfAQvZ1AWK2oLKlF5OEFgwl2ViFygwgiBQLJTQdQO13IhPkkUKBQ1Vla9rIb+Bf7lY6JNmYsVlpfJiYMKSd/SfAf//NqY3cAM3cAP/RLiiMb1WsO/GMn8DN3ADN7AK/K8VcLuBG7iBG/gXihvG9AZu4AZu4H3ADWN6AzdwAzfwPuCGMb2BG7iBG3gfcMOY3sAN3MANvA+4YUxv4AZu4AbeB/x/HMf7ZNcvk4EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 示例代码\n", + "from wordcloud import WordCloud\n", + "from PIL import Image\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import jieba\n", + "\n", + "# 打开文本\n", + "with open(\"lhy_comments.txt\",encoding=\"utf-8\") as f:\n", + " s = f.read()\n", + "\n", + "# 中文分词\n", + "text = ' '.join(jieba.cut(s))\n", + "\n", + "# 生成对象\n", + "img = Image.open(\"/Users/chenqiang/Documents/the-craft-of-selfteaching/images/code-review.png\") # 打开遮罩图片\n", + "mask = np.array(img) #将图片转换为数组\n", + "\n", + "stopwords = [\"我\",\"你\",\"她\",\"的\",\"是\",\"了\",\"在\",\"也\",\"和\",\"就\",\"都\",\"这\"]\n", + "wc = WordCloud(font_path=\"/Library/Fonts/Songti.ttc\",\n", + " mask=mask,\n", + " width = 1000,\n", + " height = 700,\n", + " background_color='white',\n", + " max_words=200,\n", + " stopwords=stopwords).generate(text)\n", + "\n", + "# 显示词云\n", + "plt.imshow(wc, interpolation='bilinear')# 用plt显示图片\n", + "plt.axis(\"off\") # 不显示坐标轴\n", + "plt.show() # 显示图片\n", + "\n", + "# 保存到文件\n", + "wc.to_file(\"李焕英2.png\")" + ] } ], "metadata": { diff --git a/Part5.C.NLP.ipynb b/Part5.C.NLP.ipynb new file mode 100644 index 000000000..97e3d8faf --- /dev/null +++ b/Part5.C.NLP.ipynb @@ -0,0 +1,294 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "I have a dream that my four little children will one day live in a nation where they will not be judged by the color of their skin but by the content of their character. I have a dream today.\n", + "\n", + "\n", + "\n", + "I have a dream that one day down in Alabama, with its vicious racists, . . . one day right there in Alabama little black boys and black girls will be able to join hands with little white boys and white girls as sisters and brothers. I have a dream today.\n", + "\n", + "\n", + "\n", + "I have a dream that one day every valley shall be exalted, every hill and mountain shall be made low, the rough places will be made plain, and the crooked places will be made straight, and the glory of the Lord shall be revealed, and all flesh shall see it together.\n", + "\n", + "\n", + "\n", + "This is our hope. . . With this faith we will be able to hew out of the mountain of despair a stone of hope. With this faith we will be able to transform the jangling discords of our nation into a beautiful symphony of brotherhood. With this faith we will be able to work together, to pray together, to struggle together, to go to jail together, to stand up for freedom together, knowing that we will be free one day. . . .\n", + "\n", + "\n", + "\n", + "And when this happens, and when we allow freedom ring, when we let it ring from every village and every hamlet, from every state and every city, we will be able to speed up that day when all of God's children, black men and white men, Jews and Gentiles, Protestants and Catholics, will be able to join hands and sing in the words of the old Negro spiritual: \"Free at last! Free at last! Thank God Almighty, we are free at last!\"\n", + "[('be', 11), ('will', 9), ('to', 9), ('a', 8), ('the', 8), ('of', 8), ('and', 7), ('together', 6), ('i', 5), ('have', 5), ('dream', 5), ('one', 5), ('day', 5), ('with', 5), ('that', 4), ('able', 4), ('shall', 4), ('this', 4), ('we', 4), ('little', 3), ('in', 3), ('made', 3), ('faith', 3), ('nation', 2), ('by', 2), ('their', 2), ('today', 2), ('alabama', 2), ('black', 2), ('boys', 2), ('girls', 2), ('white', 2), ('every', 2), ('mountain', 2), ('places', 2), ('our', 2), ('hope', 2), ('my', 1), ('four', 1), ('children', 1), ('live', 1), ('where', 1), ('they', 1), ('not', 1), ('judged', 1), ('color', 1), ('skin', 1), ('but', 1), ('content', 1), ('character', 1), ('down', 1), ('its', 1), ('vicious', 1), ('racists', 1), ('right', 1), ('there', 1), ('join', 1), ('hands', 1), ('as', 1), ('sisters', 1), ('brothers', 1), ('valley', 1), ('exalted', 1), ('hill', 1), ('low', 1), ('rough', 1), ('plain', 1), ('crooked', 1), ('straight', 1), ('glory', 1), ('lord', 1), ('revealed', 1), ('all', 1), ('flesh', 1), ('see', 1), ('it', 1), ('is', 1), ('hew', 1), ('out', 1), ('despair', 1), ('stone', 1), ('transform', 1), ('jangling', 1), ('discords', 1), ('into', 1), ('beautiful', 1), ('symphony', 1), ('brotherhood', 1), ('work', 1), ('pray', 1), ('struggle', 1), ('go', 1), ('jail', 1), ('stand', 1), ('up', 1), ('for', 1), ('freedom', 1), ('knowing', 1), ('free', 1)]\n" + ] + } + ], + "source": [ + "\n", + "import re\n", + "\n", + "# 你不用太关心这个函数\n", + "# 生成单词和词频的字典\n", + "word_cnt = {}\n", + "# 按照词频排序\n", + "sorted_word_cnt = sorted(word_cnt.items(), key=lambda kv: kv[1], reverse=True)\n", + "def parse(text):\n", + " # 使用正则表达式去除标点符号和换行符\n", + " text = re.sub(r'[^\\w ]', ' ', text)\n", + "\n", + " # 转为小写\n", + " text = text.lower()\n", + " \n", + " # 生成所有单词的列表\n", + " word_list = text.split(' ')\n", + " \n", + " # 去除空白单词\n", + " word_list = filter(None, word_list)\n", + " \n", + " \n", + " \n", + " for word in word_list:\n", + " if word not in word_cnt:\n", + " word_cnt[word] = 0\n", + " word_cnt[word] += 1\n", + " \n", + "\n", + " \n", + " return sorted_word_cnt\n", + "\n", + "with open('in.txt', 'r') as fin:\n", + " for line in fin.readlines():\n", + " print(line)\n", + " # print(word_cnt)\n", + " word_and_freq = parse(line)\n", + " # print(word_cnt)\n", + " sorted_word_cnt = sorted(word_cnt.items(), key=lambda kv: kv[1], reverse=True)\n", + "print(word_and_freq)\n", + "\n", + "\n", + "with open('out.txt', 'w') as fout:\n", + " for word, freq in word_and_freq:\n", + " fout.write('{} {}\\n'.format(word, freq))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: matplotlib in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (3.6.1)\n", + "Requirement already satisfied: pillow>=6.2.0 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from matplotlib) (9.2.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from matplotlib) (0.11.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from matplotlib) (1.4.4)\n", + "Requirement already satisfied: pyparsing>=2.2.1 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from matplotlib) (3.0.9)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from matplotlib) (2.8.2)\n", + "Requirement already satisfied: packaging>=20.0 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from matplotlib) (21.3)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from matplotlib) (1.0.5)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from matplotlib) (4.37.4)\n", + "Requirement already satisfied: numpy>=1.19 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from matplotlib) (1.22.3)\n", + "Requirement already satisfied: six>=1.5 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: You are using pip version 21.2.4; however, version 22.2.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.9/bin/python3.9 -m pip install --upgrade pip' command.\n" + ] + } + ], + "source": [ + "%%bash\n", + "pip3 install matplotlib\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " CloseTime OpenPrice HighPrice LowPrice ClosePrice Volume \\\n", + "0 1661929200 20358.06 20484.98 20211.13 20250.07 68.357146 \n", + "1 1661932800 20257.32 20302.44 20194.65 20273.36 8.685938 \n", + "2 1661936400 20250.32 20325.13 20126.42 20229.54 41.947429 \n", + "3 1661940000 20227.91 20239.09 20167.63 20176.93 16.156967 \n", + "4 1661943600 20176.93 20400.00 20167.63 20336.43 19.578004 \n", + "\n", + " NA \n", + "0 1.392026e+06 \n", + "1 1.759082e+05 \n", + "2 8.489017e+05 \n", + "3 3.264651e+05 \n", + "4 3.976858e+05 \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAGbCAYAAADp8CC6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACbfklEQVR4nOzdd3xb9dU/8M9XW7K8d2Inzt4hIQHC3ruMTuDpHg8tpbtPW7oXtHT8eFra0qeb0kk3LXvvJBAgZO/lxHvK2uv+/rhDV7JkSbZsrc/79eKFfDV87chX99xzvucISZJARERERERUTgz53gEiIiIiIqKZxkCIiIiIiIjKDgMhIiIiIiIqOwyEiIiIiIio7DAQIiIiIiKismPK9w5MVkNDg9TR0ZHv3SAiIiIiogL1yiuvDEiS1JjsvqINhDo6OrBly5Z87wYRERERERUoIcTRVPexNI6IiIiIiMoOAyEiIiIiIio7DISIiIiIiKjsMBAiIiIiIqKyw0CIiIiIiIjKDgMhIiIiIiIqOwyEiIiIiIio7DAQIiIiIiKissNAiIiIiIiIyg4DISIiIiIiKjsMhIiIiIiIqOwwECIiIiIiorLDQIiIiIiIiMoOAyEiIiIiIio7DISIqKhFohJGfaF87wYREREVGQZCRFTUfvLUAZz09UfRNeLL964QERFREWEgRERF7fXOEQDAj57cn98dISIioqLCQIiIilq1wwwA6B8L5nlPiIiIqJgwECKiouYJhAEAkiTleU+IiIiomDAQIqKi5glEAABRBkJERESUBQZCRFTU3EpGKMo4iIiIiLLAQIiIippHC4QYCREREVHmGAgRUVGLrRHK844QERFRUWEgRERFzc2MEBEREU0CAyEiKlqSJMETZLMEIiIiyh4DISIqOAf73Vj9tUfwwoGBCR8XCEcRUboksFkCERERZYOBEBHlnSRJiOoimd+8cBgufxhf/89O+EMRPLi9O+nz1LI49TWIiIiIMsVAiIjy7q6nD2L+Fx6EPxSBJEl4cHsPAGBfrxtf+Md2fPgPr+KVo0Pa47tGfIhEJa1RAsCMEBEREWWHgRAR5d33HtkLAOhzBXB4wIMhTxBnL2oAADyxpw8AEAzLkc6QJ4gzbn8S33l4T1xGiGuEiIiIKBsMhIioYPSO+fHK0WEAwBtWtwIARn0hAIDRIAAAQ54AAOC+rSfgCciNEgyCGSEiIiLKDgMhIsorbzCW1el1+bH9xCgqrSacs7gx7nH+kBz0DHnkwMgbiGDML9+utpu5RoiIiIiywkCIiPLqtWMj2u1eVwCD7iAaq6xorrTBbBTafbFAKAgAcAfDcCmBUI3DwtI4IiIiygoDISLKq+f2D8CklL31ufxw+UOotJlhMAi0VNu0x/nDUQDAsFcOhCQJGPPL2aQquxnR6AzvOBERERU1BkJElFcvHhzAyXNq0V5nR6/LD5c/jCqbCQAwr8GpPc4fjM8IAcCJYR8AuTSOGSEiIiLKBgMhIsqrE8M+LGhyoqnShl5XAGP+EKpsZgDAhUubtMf5w3IgNKwLhF49NgyLyQC72QDGQURERJQNBkJElFfuQBiVNhOqbCa4A2GM+eWvAeCi5c3a47Q1Qt4ghLJ0aGvnCKpsZhiEYEaIiIiIssJAiIjyJhSJIhCOwmk1wWExwRsMY8wf0gKh2TV2PPOZ8wAA/pCyRsgTxIpZVairsCAUkVBlMzEQIiIioqwxECKivPEoA1ErrCbYLUa4/GH4Q1FUKqVxADC3vgImg4BPyQgNeoKoq7Bi5exqAECl3QwhwNI4IiIiygoDISLKG7XrW6XVBIfFiP4xeViqmhFS2cxG+EMRbDkyhGNDXrTV2rFqdhUAMCNEREREk2JK/xAiounhCcYyQg5L7HCkzwgBciD0+01H8ZsXjgAA5tQ50FHvAABljRAQZRxEREREWWAgREQzTpIk/OjJA6itsAAAnDY5I6QanxEyYMAdi3Tm1Dmwqq1Ge2wwHGVGiIiIiLLCQIiIZtzxYR/ueGyf9rXTapwwELKY4qt459Q5MKvahlWzq7FiVhW2do5yjRARERFlhYEQEc24LUeH4r52Ws2w6wKhqoTSOHUtkWpOvQNCCPzno2cBALYdf50ZISIiIsoKAyEimnEvHxmO+9ppM6FCt0aoTimZUw0pQ1Q/c+kSAOMDJTZLICIiomwxECKiGdc55I372mkxxWWE6p3xgVBE6YRw0bJmLGmpHPd6BgPbZxMREVF22D6biGZcMByN+7oiYY2Q1WRMfAoAYHatPel2IQS7xhEREVFWGAgR0YwLReIDIZPREBcIpeK0Jk9iG4TciY6IiIgoUyyNI6IZF4pIOHNhPXpG/do2uzn14eg37z0FB/vcKe/nGiEiIiLKFgMhIppxoUgUFRYTHv/UuQgoZXIV1tQZofOXNOH8JU0p7zewNI6IiIiyxNI4IppxoUgUZqMBQgjYzHIAZM+gNC4VIcCMEBEREWWFgRARzbhQRILZKOK2OZT22fMbK7J+PYMQ7BpHREREWWFpHBHNODUjpOe0mvDdt6zG2Ysasn49AzNCRERElCUGQkQ040IRCWbT+IT029a3T+r12CyBiIiIssXSOCKacaFIFGaDSP/ADHGOEBEREWWLgRARzbhkpXFTwTlCRERElC0GQkQ048IpSuMmi+2ziYiIKFsMhIhoRkmShOA0ZIS4RoiIiIiywUCIiKbd5kODGHQHAABhJXWT6zVCksTyOCIiIspc2kBICNEuhHhKCLFbCLFTCPFxZfv3hBB7hBDbhBD/FELU6J7zeSHEASHEXiHEpbrt64QQ25X77hRCCGW7VQhxr7J9sxCiI/c/KhHly3U/34S3/mwjALksDkDOS+MAcJYQERERZSyTM5EwgE9LkrQMwAYANwshlgN4DMBKSZJWA9gH4PMAoNx3PYAVAC4DcJcQQh0Z/1MANwJYpPx3mbL9/QCGJUlaCOB/AXwnBz8bERWAiJIBOtTvAQAEI1EAyHlpHMDyOCIiIspc2jMRSZK6JUl6Vbk9BmA3gNmSJD0qSVJYedgmAG3K7WsA/FmSpIAkSYcBHABwqhCiFUCVJEkbJbl+5R4A1+qe81vl9t8AXKhmi4iouIWUwCfxa7Mxd3/iBiUSYsMEIiIiylRWl2SVkrW1ADYn3PU+AA8pt2cD6NTdd1zZNlu5nbg97jlKcDUKoD7J979RCLFFCLGlv78/m10nojwJpgyEcpcREswIERERUZYyPhMRQjgB/B3AJyRJcum2fxFy+dwf1E1Jni5NsH2i58RvkKSfS5K0XpKk9Y2NjZnuOhHlkbomKPHr3JbGcY0QERERZSejMxEhhBlyEPQHSZL+odv+bgBvAPB2Kdau6TiAdt3T2wB0KdvbkmyPe44QwgSgGsBQtj8MERWexNK44HSUxjEjRERERFnKpGucAPArALslSbpDt/0yAJ8DcLUkSV7dU/4N4HqlE9w8yE0RXpIkqRvAmBBig/Ka7wJwn+4571ZuvwXAkxL74BKVhGB4+kvj1IwQAyEiIiLKlCmDx5wJ4J0AtgshtirbvgDgTgBWAI8pfQ02SZL0IUmSdgoh/gJgF+SSuZslSYooz7sJwN0A7JDXFKnrin4F4HdCiAOQM0HXT/HnIqICEY5Of2mcEGyWQERERNlJGwhJkvQ8kq/heXCC59wG4LYk27cAWJlkux/AW9PtCxEVn5ksjWMimYiIiDKVu0uyRERJjCuNC09naVzOXpKIiIhKHAMhIppW40rjotPRNU7+P9cIERERUaYYCBHRtJqJ0jjBZglERESUJQZCRDStQjNYGsc4iIiIiDLFQIiIplWIpXFERERUgBgIEdG00meEJEnSzRHKZdc4NksgIiKi7DAQIqJp0zPqx51P7te+DkaiWhe53M4Rkv8fZSREREREGWIgRETT5mN/fg3bjo9qX/tDUa00zmLiGiEiIiLKHwZCRDRtXL5Q3NeBUEQrjTMZclgapxzJuEaIiIiIMsVAiIimjdrWWhUIR3Fs0AuLyYAquzln38fA9tlERESUJQZCRDRtEnM+/lAEWztHsHJWVY7XCLFZAhEREWWHgRARzRh3IIztJ0axpr02p6+rVtlJzAgRERFRhhgIEdE4o74Qrv7x8zjQ557S6yRUxmFHlwuBcBSr26qn9Lrjvg+YESIiIqLsMBAionGe3tuHbcdH8cMn9qd/8ATGBUJKB7k59Y4pvW4iDlQlIiKibDEQIqJxTEobtnAkmuaR2dl+QgmE6nIbCAk2SyAiIqIsMRAionHUPgahyNQCC5HQLmFXtwt2sxH1FZYpvW6i2BqhnL4sERERlTAGQkQ0ji8UAQBEornLCKlzg9rr7OPaak8V22cTERFRthgIEdE4noAcCIWn2H0gEI5ot2scchaovTa3ZXGAfqBqzl+aiIiIShQDISIaxxMIAwBCU1wjpGaWAKDKbgIAdDRUTOk1k+EaISIiIsoWAyEiGscTlAOYYDjzQEiSJPSPBeK2+YKx53uVLNOiJmcO9jCeWhrHOUJERESUKQZCRDSOmhFy+cPj7nP5Q+i45QH89sUjcdt/9uwhnHLb4+ga8Wnb/LqM0IBbDpIWTksgJP+fpXFERESUKQZCRDSOGgiN+kLj7js64AUA/OK5Q3Hb1cBoT48LgJyd8QZjgZS63mh6AiE1I5TzlyYiIqISxUCIiMZRS+NGfaFx5Wadw3IgZNB1fotGJS3js6/XDQAIhKNxGZpPXrQYTqtJa5qQS4IDVYmIiChLpnzvABEVHjUjFAxH4QtF4LDEDhXHhuRASN8Bu28soM0c2tczhq/9eyfu39Yd95ofv2gRPn7RomnZX7bPJiIiomwxECKicdRACAAG3UE46mKHiqODciA07AliZ9co/vJyJ646aZZ2/3MHBuKaJnzm0iV408mzp3V/WRpHRERE2WIgRETjeHRre+59uRPvO2se6irkkrZOJSPk8odx5Z3PAwCMyiCfOXUOLWOkmlvvQGu1fVr318DSOCIiIsoS1wgR0TieQARz6+XBpz9+6gA+/ufXAAAj3iAG3AFYTPGHjn29YwCSt8autpuneW/1c4Sm/VsRERFRiWAgRERxhj1BeAJhzKlzaNuOD/uw6dAg1nzjMezpGcOFS5vinrNXCYQWNo8PhGrsuW+OkIgZISIiIsoWAyEi0vzrtRNY+83H0DcWiAuEnFYT/vHqce3reqcFHUrGqK3Wrq0JWtxUOe41ZyIjxIGqRERElC0GQkSkeXpvn3a73mnVbjssRuw44dK+rrCa8O+PnoWXvnAhWqps2vZkM4JmMhCKRqf9WxEREVGJYLMEItJEdAmVCotRu7358FDc4yqtJlTZzKiymdFcLQdCTqsJs2rGN0WotE3/YYZzhIiIiChbzAgRlQl/KJL2MRFdSqXCGh/A6DM/+vtale0VViPqlc5yVbrgx2DQDRyaJgY2SyAiIqIsMRAiKgM7Toxi6Zcfxi+ePTTh48K6lJDTasJznz0fl65oBgCsm1ur3acPhFa1VQMAel0BGAwCf/zAaXjkk+fkcvfTUrp3c40QERERZYyBEFEZ2N8nd3W77cHdEz5OX1rmsBjRXufAgkZ53U9HQ6x5QqUuEDpzYUPca5yxsGHa5wYlYkaIiIiIssVAiKgMqF3dgImzJsGEjBAADLjl56YqjWtQmiqcPKcmJ/s6GWyfTURERNliIERUBvpcsUAoPEHaxOULabcdSrBzw6lzYDMbcPHyFu0+Z0IDhN3fuAx/vvH0uG3VdjPOWFA/pf3OVGygKgMhIiIiygy7xhGVgV5dRsgfisBsTH4NRB8IOa1y17i1c2qx55uXxz3OmdBIwa7rMKd6/auXTHp/sxWbIzRj35KIiIiKHDNCRGWgz+XXbvtDqYftjOgzQpbU10kSO8rlG0vjiIiIKFsMhIjKQJ8uIxQIJ2+jLUkSRnWB0ETBTmJGKN/YLIGIiIiyxUCIqAz0ufxocMozflJlhHyhCCK6SKIiSbmb2ko72X35xIGqRERElK3CuqxLRDkXikThCUYwr7ECA+5gysGqbn847mtTknVEP7x+LfpcgaT35VNsjRADISIiIspMYZ3NEFHOjSkBTlOl3P46EB6fEQpHojg04En7WjazEXPqHWkfN9PUQCiSevkTERERURxmhIhKnNoJTi2NCyTJCN324G785oUjAIDPXLoEC5ucM7Z/uWAxydd0ginWPxERERElYiBEVOLUjFBjpTz41J8kWHh8d692++Q5tTh9hub/5IrNLAdC/iTZLiIiIqJkWBpHVOLG/HJGSCuNS9IsQT9XqNA6wmXCZpKbN6Ra/0RERESUiIEQUYlzKYHQRBkhiy4QqrAWVke4TBgMAhajYcIZSURERER6DISISowkSfj8P7bhmh8/DwBwJZbGpcsI2YovIwQAVrOBGSEiIiLKWHGe8RBRSq8eG8afXuoEAPiCEa1ZQqNTDoQCoQgC4QgkSe4CBwBmo9CeX4ylcYD8s6QaFktERESUiBkhohJzYsSv3R70BLRmCfVK17hvPrAbS770MN7165e0x+kzQnZz8ZXGAXLDBJbGERERUaYYCBGVmIGxgHZ70B3EmD8Mp9UEh0XO9ESi8tDRlw4PaY+L6gaRChHLDhUTm8kIX5AZISIiIsoMAyGiEjPg1gVCngBc/hCqbCYYDbEAp73ODgA449tPYNAdgCdQ/AGEzWxM2giCiIiIKBkGQkRFbne3C3c9fQCAvD7o3pc7tfv29Ixhy5Eh1Dgscc/55EWLAQBdo368dHgIvhJoMmBjswQiIiLKQnGuiiYizXU/2wiXP4zr1rfjTXe9CACY31iBQ/0e3PnEfkQl4FfvXh/3nBWzqrXbRoOAJxCe0X2eDjazUVsPRURERJQOM0JERU5tj/3Hzce0bYFQFA6LEf5QFG8/bQ7OXtQY95w5dQ7t9pg/DG8wgnVza/G3D50+Mzs9DWxmIzNCRERElDEGQkRFLBiOdUn719YT2u0TIz7UOy2wmgy46dwF2naTQeCk9hrYLUbc9faTAQBj/hC8wTDOWFCP9R11M7fzOSa3z2bXOCIiIsoMS+OIitjBfrfutgeA3AjhxnMWYNgTRLXdjKYqm/aYPd+8TOsKd/HyZgDAgDuIqAStq1yxspm4RoiIiIgyV9xnPkRlbtAdjPu6xmHGc5+9IOXjTbp5QWajATazAT9+Sm604LAU5/wgFUvjiIiIKBssjSMqYu5ACIDcHAEA6iosEz18nEqbWbsdihR3WRkHqhIREVE2GAgRFTG1UcKiJicAoM6RXSCkt2F+fU72KV/UOUKSbjgsERERUSoMhIiKmFsJhBY3VwIATEYx0cNTPv9HN6zFytnVaR5d2GxmIyQJCBZ5ZouIiIhmBgMhoiKmzs1ZqGSEgll2TVMHqc6qsed2x/LAapIPZ/4gAyEiIiJKj4EQURFzB0Kwm41aIDPZ9tGzSyAQspnlZg/+MBsmEBERUXoMhIiK2Jg/jEqbSWuS0FRpndTrNE7yeYWkwioHQt4gAyEiIiJKj+2ziYrYmD8Mp82EBY1OfPfNq3Hhsqasnv+rd6/HiwcHYTRkt7aoEKlzkDyBcJ73hIiIiIoBAyGiIjYWCGstsN92SnvWz79wWTMuXNac693KiwolEGJGiIiIiDLB0jiiIjbmD6HSyusZQKw0jhkhIiIiygQDIaIi5lbWCBFQoQSEniADISIiIkqPgRBRERtjIKRxWJRmCQGWxhEREVF6DISIitioL6StESp36hohZoSIiIgoE7yUTFRk3IEwBAAh5IGoDc7ib32dC1ppHNcIERERUQYYCBEVmZVffSTu6wanJU97UlgsJgPMRgEPu8YRERFRBlgaR1TkmBGKcVhM8DIjRERERBlgIERU5BgIxTitJmaEiIiIKCMMhIiKXD1L4zQOi5FrhIiIiCgjaQMhIUS7EOIpIcRuIcROIcTHle1vVb6OCiHWJzzn80KIA0KIvUKIS3Xb1wkhtiv33SmEEMp2qxDiXmX7ZiFER45/TqKSxUAoxsGMEBEREWUok4xQGMCnJUlaBmADgJuFEMsB7ADwJgDP6h+s3Hc9gBUALgNwlxDCqNz9UwA3Alik/HeZsv39AIYlSVoI4H8BfGcqPxRRObGajOkfVCYqLEauESIiIqKMpA2EJEnqliTpVeX2GIDdAGZLkrRbkqS9SZ5yDYA/S5IUkCTpMIADAE4VQrQCqJIkaaMkSRKAewBcq3vOb5XbfwNwoZotIqLUahycIaRXwYwQERERZSirNUJKydpaAJsneNhsAJ26r48r22YrtxO3xz1HkqQwgFEA9dnsG1G5aamyYetXLsn3bhSUCq4RIiIiogxlHAgJIZwA/g7gE5IkuSZ6aJJt0gTbJ3pO4j7cKITYIoTY0t/fn26XiajMOKwmeIMMhIiIiCi9jAIhIYQZchD0B0mS/pHm4ccBtOu+bgPQpWxvS7I97jlCCBOAagBDiS8sSdLPJUlaL0nS+sbGxkx2naikyFWllIrTaoInwNI4IiIiSi+TrnECwK8A7JYk6Y4MXvPfAK5XOsHNg9wU4SVJkroBjAkhNiiv+S4A9+me827l9lsAPCnxjI9onFAk9mfBVXTjOSxG+EIRRKI8fBAREdHETBk85kwA7wSwXQixVdn2BQBWAD8C0AjgASHEVkmSLpUkaacQ4i8AdkHuOHezJEnqJdqbANwNwA7gIeU/QA60fieEOAA5E3T9VH8wolIUjES121U2NkpIVGGRD2neYBiV/P0QERHRBNIGQpIkPY/ka3gA4J8pnnMbgNuSbN8CYGWS7X4Ab023L0TlLhSWA6EGpxW/eNf6NI8uPw6r3ErcG4wwECIiIqIJZdU1jojyS80IffLiRZhT78jz3hQep1W+tsPOcURERJQOAyGiIhJUMkJmI/90k3FY1ECIDROIiIhoYjybIioiakbIauKfbjIVFrk0zsMW2kRERJQGz6aIikgowozQRBzWWLMEIiIioonwbIqoiITCcltoCwOhpJxKswSWxhEREVE6PJsiKiLBiHyCb2ZpXFKxNULMCBEREdHEeDZFVESCzAhNSJ0j5AkyI0REREQT49kUURFRmyVYTKlGe5U3bY4QM0JERESUBgMhoiKiDlS1GI153pPCZDYaYDcbMeIL5XtXiIiIqMAxECIqImpGyMyMUEpz6hw4OujJ924QERFRgWMgRFRE1PbZXCOUWkeDA4cHGAgRERHRxHg2RVREAmHOEUpnXoMTnUM+RKJSvneFiIiIChjPpoiKyK4uFwDAwvbZKc1rcCAYiaJrxJfvXSEiIqICxrMpoiKxs2sUd794BABL4yayYlY1AOAPm4/leU+IiIiokPFsiqhIDHmC2m0OVE1t5exqXLmqFX/YfDTfu0JEREQFjGdTREXC7Y/NxmFGaGLtdQ4EQtF87wYREREVMJ5NERWJMSUQuvXalVwjlIbZKBCOMhAiIiKi1Hg2RVQkXH55SOjVa2bleU8Kn9EgEJWAKDvHERERUQoMhIiKhMsXghCA02LK964UPLW9eJiBEBEREaXAQIioCPzrtRO488kDqLSaYDCIfO9OwTMqvyOWxxEREVEqDISIisAn7t0KAHBamQ3KhEkLhJgRIiIiouQYCBEVEU8wku9dKApqIBSJMBAiIiKi5BgIERWRUV8o37tQFIzKGqEQS+OIiIgoBQZCREWgvsKS710oKmY1I8TSOCIiIkqBgRBREajg2qCsaM0SWBpHREREKTAQIioC3mAYJoPAPz98Rr53pSiwfTYRERGlw0CIqAi4A2G876x5WDunNt+7UhRiGSGuESIiIqLkGAgRFbhwJAp/KIoKDlLNGNtnExERUToMhIgKnCcgt8yusBrzvCfFw6SUxrFZAhEREaXCQIiowLmDYQAcppoNNSMUYmkcERERpcBAiKjAeQJKIGRjIJQpk5Hts4mIiGhiDISICtyYXw6E2EI7c0YtI8RAiIiIiJJjIERU4LSMEAOhjJm5RoiIiIjSYCBEVOAYCGVPywhFuUaIiIiIkmMgRFTgxhgIZc1sUDJCLI0jIiKiFBgIERU4NSPENUKZM3KOEBEREaXBQIiowMUCIc4RypTaNS7M0jgiIiJKgYEQUYEbC4RhMRpgNTEQypQ6R4jNEoiIiCgVBkJEBc4TCDMblCWTskaI7bOJiIgoFQZCRAXOE4hwmGqWYgNV40vjolEJP35yP0a8wXzsFhERERUQBkJEBc4dCKPCwkAoG6YUA1WfPzCA7z+6D1/798587BYREREVEAZCRAXO7Q+zdXaWTCkGqqrNE0Z8oRnfJyIiIiosDISICpwnGGZpXJbStc9mEwUiIiJiIERU4NyBMGcIZUktjQtH4tcIuQMRAEBUYiBERERU7hgIERU4tz8MJ9cIZSU2Ryg+4HH75ZlMzAgRERERA6EyEAhH8r0LNAWeAEvjsqW2zw4nNEtwB+S1QZsODeHbD+4GAOzsGkWvyz+zO0hERER5x0CoxD23vx9LvvQwntrTl+9doUmIRiV4ghGWxmXJaBAQYnz77DElIwQAP3v2EADgyjufx2nfemJG94+IiDLXNeLDx//8Gg70uTHgDuR7d6iEMBAqcTu7XACAz/9je573hCbDr2TzHBYOVM2WySAQSiiB0wdCACDp1gp5g/H3ERFRYbjzif24b2sXLrrjGay/9XHs6XHle5eoRDAQKnHegLImgovDi1IoLP+7qYv/KXMmg2HcWiB3ID7Y6dddWfzFs4dnZL+IiErdiREfvMEwhj3BccfdyUgcIfHUnv4pvyYRwEAop/b2jOHiO57B/t6xfO+KZsgbBAAEw9E0j6RCFFJKuywm/qlmy2QQCEUSS+Pi5wft7Yn9rd755H74glxPR0Q0VWfe/iRu+MVmrP3mY7j2Jy9M+fVEwrXA7SdGpvyaRAADoZzacnQI+/vceP9vt+R7VzTDXvnEzx/iCV4xUhf7q4v/KXNGo0ibEVIDobMWNiASlbDsKw/j/545OGP7SERUatTzjdc7RwAAB/rcU37NQU9Qu33B0iZsPzE65dckAhgI5VRUOek6NuTFM/sKI207rBw8AuGotn9UPNSMhtoOmjJnMhiSts9eNbsan7l0CYBYIDSn3qE95vaH9szcThIRlRh90AIAuajsHnTLr3nh0iasaa9B55CPHXEpJxgI5dCYcrW5vsKC99/9MvYVQInckO6AFGB5XNFRT+TNDISyZjKIcQNVx/xhzKl34L/Png8hgN3Kgtu5dY64xyVrLvLknl4cHfRM3w4TEZWAIXd8INRW60jxyCxe0xPEeUsa8av3nIIahxnA+OY3RJPBQCiH3P4wTAaBn75jHcJRKW79AQAMuAN44cDAjO3PL549hD26fWB5XPHRMkIsjcuaBAl/2XIcfWOxGUFD3iDqHBZYTAa0VNm0ropz6+M/qP/00rH415IkvO/uLbj4f5+d/h0nKiFj/hA6bnkAf9x8LP2DqSQMeuQmNO/YMAdXrmrNSUfOQXcAdRUWAEClMlePgRDlAs+ucmBf7xi+98geuJXBl7Nr7QAwbuH1f/1iE97+y83jFnBPl9uUgZFWZaG9j4FQ0VHfK2Yj/1Sz1euSP4x//fwRAPLvcsQbQoPTCgBor3VAbaY4p65Ce94Vq1qUGUSxsjqXT/7AZdMRouzsV9aH3LPxSH53hGaMWsb2gbPmo63WPuWARZIkDHqC2rG7yqZmhEITPY0oIzy7yoE33fUifvLUQezscsFpNcFhlme+JF4F2dcrfyC4fPn542VGqPiozRJYGpe92TXyBYmeUR+AWJlovVO+qthWZ9ceq7+9oNEJSQJGdX+nPa5YVomIMndQCYTUq/lU+tRjbZ3TAqfVhEA4GncRaWfXKDqHvCmfv7vbhfW3PoY+5bjrDUYQCEd1GSE5EFIvUBFNBQOhKRr1hbROVK8cHYbTaoJdGX7pTRF4jM5QINRSZQMAfOkNywEwI1SMwlG1WQL/VLP16CfPwZkL67G7Wy4PVaeRNyiBULtSt24zG1Cpm1HRUS9nh4a9sTp3fSDECwpEmVM7hlUkzIGh0jXoCcJsFKi0muBUytj0HTuvvPN5nP3dp5I+d2/PGD5571YMuINa0yk1wzS+NE4+lxr1hvCB376MnlFesKLs8exqivpcfixvrdK+dlpNsJoMMIj40ri/v3Jcuz1TgZAvFMG7Tp+LdqVUzx9iWU+xCakZIQ5UzVqF1YST2mpwsN+NQDiCAeXDVC2vaK2WLxSsmFUNoRtSoWaMRnSBUK8uEJroSiYRxdurNA0a9bKMqVwMeeT1PEIILXvjVsrj9JUyJ0Z845576Q+e1dY2qyXh6poj9SKWGggdGvAgEpVw//YuPL67D3c8tneafiIqZQyEpmhRcyUe/PjZWDFLDoacNhOEEHBYTPDqAqFP//V17fbIDAZCdosRdqVUj1eyi4+2RogDVSelo6EC4aiEy3/4HH6/6SgAoF4JhC5e3oz3nzUPv373KXHPqXXIH7bDntjfaa/uSuMxBkJEGelz+bUGQerJLJW+IU8QdRXycdapZAJ//txBSJKEg32xzpvpmkep6zS1UjvlNavscnD1vUf24o7H9mrfY8jDYJuyx7OrHFnSXAkglv63W4xxgZDeTKwRikQlBMNROMwm2BgIFa3YQFVmhCajUQl6DvV78NiuXgCxq4r1Tiu+/IblqFZasaq0QEifEdJ1nuti+QVRRv726nGEIhLOWdyIwwMeHB/mRYRyMOAOjsve/H7TMWw8OIj9fbFOtv1jEwfHaumbWhpXr5TGOS2xMsvHdvXCE5DPbfTHbKJMMRDKkYXNTvmG0mjKYTHCp6SAE6fbz0RpnLoeyG4xaGuWuEao+LBr3NSoZW4qi8mgXT1M9J+PnIX7P3oWairkwEj/dzriDWFeQwXMRoF7Xz6GV44Oa/c9tL0b7/3NS9Ow90TFJRyJ4rIfPIvvPyKXKG0+NIQlzZVY216DqASc9Z3k60KotMgZofhACAD+/HIn9ve5YTII2M3GtIGQyx+GJElaCZ16PDfoLgxW2cwY8ckB0LCHgRBlj6sXc2RhoxwIqWsJ7OZYRigxEzMyA7XSah2u3WKCzaRmhLhGqNioA1VN7Bo3Kep6INXiZmfceiC9VW3VAORWrSaDiLu66A9FYTcb0Vxlw44TLrz5py/iyO1XAgBu+sOrAOQ1EInZJaJy4vKHsadnDHt6xtDRUIFXjw7jqjWzOMy7zOgDIYdyIRYA/v16FwCgrdYOi9GAfneaQMgXws+fPYQfPrFfea3xp6w2s1G7aNU96ockSSmP8UTJ8DJzjsxXAqFupWzGYTFqGRg1EPrGNStQYTHOSEbIH5Q/eOxmI2wWzhEqVhyoOjWJLXtXza5J+xwhBGorLOhzxT6kA+EIrGYDLEkyc0bl6uThQc+4+4jKiVs3L+Z//vo6xgJhrJ9biytXteZxr2gmBcIRuANhrYytpVpu1vTdt6zWgqKWKhsanFYMpM0IhfD47t4JHzPsDWqNOHyhyIxcaKbSwrOrHOmod+C8JY24420nAUBcswS/cjXMZjKi2m7O6R9qIBzBV+/bgRcPxi869IbCyn4YtTVCAQZCRUftGpfsBJzSU9/7qnMXN2b0vIWNTuxT2v4CQCAchdVkSFrKUaWUfhwecI+7j6icjAXkz7azFzVo29bPrcOqtmq898yOuDb1VJoSGxs4rSYcuf1KvG19O1bOlrPuzdU2NFRaMsgIhTG/wZn0vqtOmgVAHougv7jczTWclCWeXeWIyWjA3e89FafNrwcgn4ANuAPwBsNaG22r2YAquzmnGaHd3WP47caj+K9fbIZLN2VZDcLs5ljXOF+K5g1UuMJqRoilcVP2wMfOwmUrWzJ67JKWSuzvHUNUKU2UAyEjTp1Xpz0mGpUw6g3BonT0++2LR3HZD57FxoODud95oiKgZoT0gVC7MqzYYjQgGGGJXKlLnPmj16YMuW6uTJ4RkqT49dQuf2xO4+1vWhV3349uWIubz1+AAXcQw96gNnS8xzW+JTfRRBgITROHxYijg16c//2ntdI4m9mIeqclp51N9EHVts5RAHI5lRr02C1GmI0GGA0C/jADoWIT4hqhnFkxqzrjxy5tqYQ3GEGn0uUqEIrAZjbgB9evwXXr2wHIf3snfeNR9ColdFs7R7CnZwyfuPc1LYAiKifqSeu6ufIFA4vRoK3XsJjkQCjxZJdKy6CSEUpsVAPE2l7XOy1ocFrh8ocR0J2XqBUQ/3PJYlywtAkufwgjviBOnlOD60+dM+71GpxWRKISjg56saRF7tzLjBBli4HQNLGZ5V9tryug/aHbzUbUVVgx6A7gl88dwk2/f2VcR7ls6QOhrZ3DkCQJi774ED71l63a9wQAm8kAX5BX44qNmhEyc43QpP3PJYvx3jM7snrOMmVI8tbOEQCxjFClzYwzFspZ305dK+A17TWosplwyfJm9LoCeGhHT072Pdc8gTCu//lGXP3j57X3FlGuqIFQjcOM377vVDzyyXO0+yxGAyQp1gCGStOQMi+qPklGSD8GokUZaH3fa11aOZ16sdZmNqLKZoLLF8aoL4Qax/jXAoBZSoape9SPhY1OGA0CPUogFAhHeEGKMsKzq2nSp0v5qt3abGYj6issGHQHcftDe/DQjh788aVjWb92OBLFdT/biEd39miBUKXVhBcPDuJRZVaKepVaXZxoNRsRjDAjVGy0OULMCE3aRy5YhK9etSKr56ycXY0GpwWP7pT/ngKhCKxKCZzaiW5fb2xN0FvXt2HrVy7B/1PWCN78x1dxQDcvI18C4QgO9sf2c0/PGDYdGsK246Mz0rSFysuYUhpXaTXh3MWNmNdQod2nlpCGGICXHG8wjLtfOIxRb0g388c67nGnKKXFK2ZVYVGTvPbns3/fho/+Se68qVbPWM1GVNnNcPlDGPWFUG1P3o1zTXuNdru1xo7mSiu6RuTOcRfd8Qx++fyhnP2MVLoYCE2TIwOxDlJqmZrNbEB9hQVjgbBWP7vj+GjWr72r24XNh4dw4+9e0YazvuP0uXjx4CA++LtX4h6rLhY3GwVC4dK+OtI96iu5q9xBzhHKC6NB4JIVLXhyTx+iUQmBcFT7W1JLPvb1xgIdbyACg0Gg0mbG16+Wg67+sfzPtPjOQ3tx4f97RrtKOqBbnDym6/BFNFWvHRvGl/61AwDgtI1viqAew4JspV1yvvjPHfjaf3bhw398BUOeIEwGgSr7+PfApSta8Pznzsd5S5qwsCnWBOHIgJxdV7vd2kwGVNnMGPOHMeJJHQg1V9m02xcvb8aSlko8s68PRwa96BzyxV2sIkqFZ1fT5G2ntGu31TVB8hoh+SqJmjEaSNM1JdFft3Ti6h+/oH3t8smLtT9y/kKcqZTs6KkZIbU+u1SNeIM4/dtP4hv378r3ruSUmhFiIDTz2mrt8IUiCEai8CfJCO3udgGQuyJds3aW9rzls+SyunA0/39vO07IF1r29Mj7qj/eqGVMRLlw3c82abftCd0agVhGiIFQ6Xlkp1wK/MKBQZwY8aG2wpJylk9brQMAUGmLBTeza+USt7jSOLsJkaiEsUA4ZSAEAGcskM971rbX4CMXLMKAO4gfPr4PQKyDHdFEeHY1TT583kJ8W+lyoi7es5mM4zqpDGTxhypJEm5/aE/ctq2dI6iymVFhNeEPH9iAQ9+6ArdcvlS7Xx1AVuode1w++aTuyT19ed6T3ApHoxAiNquGZo7asjwYicprhJR1f3UOC8xGgV1dcnDx0MfPRlNl7MqkWgevBrH5pJ5gfP/Rveh1+ePaf+u7TBJNlf7zJdlJsBoIcbhqaQmEI/AGI1p3wP297qTrg5JRz4f8CTMX5TVCseCnZoJB1b9+zyl4/auXQAiBNe01MAjg+QNy585BBkKUAQZC00g9GHSPyu0cbRYDGnSdVBqccuOERI/s7MFn/vr6uO3HhrwY9ARxzuJGfObSJQCAzYeHUK1LQRsMAh31sbpstWmD2WgoiytxpTZQOhSR2CghT9QTN38wgnBUgtUkX+U2GARaqm0puyOp2btCWAuh/j3sOOHCm+56ET94fL92n1oaN+YP4aN/eg1f+Od2fPfhPSVXXkrTr28sfacuSwH9XVDuqGsN1Xk/B/rcSVtnJ/Pkp8/FeUsatTbasfXUBq3DHDBxIGQzG7WMkdEgUFdh1TLfauMGoonwDGsa1SoHg64RJSNkjs8IrZtbgwF3APdv68IrR4e07R/83Sv46yvHx839UU9c3nHaHHzo3AVa2Vti2nhVWzUqLEb85L9O1q7MWU2lHQgVQhnSdAhHomyUkCfqiZtL+btTLyoAQKsyLd1uNmpZV1UsEMp/RkjNlALAiZH4+RrqzJeNBwfxn9e78MfNx3DX0wfxj9dOzOg+UvHrc6U/4dRK4xgIlZRRZUC82hgjGIlmHAjVOCxY0lKJAXcQkiRpGSF7QkaoLknjhVQaK2OPHXIzI0TpMRCaRrWOhIyQyYhZNXbMrXfg5vMXYO2cWvhDUXzkj6/h8//YPu75+va8AOALxWYDGQ0CK5W5KFUJgdDsGjt2fP1SXLm6VdtmNhpK+kpcqX64hiJRrg/KE/XEbUwpIVMzQgAwS2n9muwDXw1cCyE4d/lDOG1enVZHr6f+XEcGPXHbu0Y4kJCyk0m5m4XNEkqSlhFqjFWiZFoaBwCNTiuCkShc/nB8aZyu0qW12pbq6eNfTxcIeYIRvP2Xm/ADZc0QUTI8w5pG6knSiWEfDELu3GYzG/HMZ87HZy5dGnewUK8e6/vedw7FB0JeJUOkZoIuWNYkbw+Mb4udWKNtKfGMkPqzCZRW9iQUlbSJ2TSz1ABUzcSqzRKAWMOElbOrxj/PUEgZoRCq7GbMVuZt6I35w+ge9eFAnxuVNhMe/9S5qLSa2FabsqYefz94znzc/d5Tkj6GzRJK04g3vjQOgNYUKhPqsfRT926FP6wrjdNlhFqyCYSU11Nf94UDg3ElwUSJ0gZCQoh2IcRTQojdQoidQoiPK9vrhBCPCSH2K/+v1T3n80KIA0KIvUKIS3Xb1wkhtiv33SmUs3UhhFUIca+yfbMQomMaftYZV+swo9puhicYgc1sTBqcqHpdcu/7Hles1vpYQiAUa8MtB0I3nj0f/3PJYnziokVp96XkM0Il+uEajkRh4hqhvIhlhJRASFcapzavuHL1rHHPM5vk+wrh723ML3dcMis/y9o5Nfj3R86E1WTAL58/jNO//ST+tbULK2dVY2GTU57d4WM3OcqOmpG/eHkzzlvSlPQxZiNL40rRiHLhRG2WAMQGnWZihdJl84k9ffAr5zhWkzGu0qXSOr4VdypNVXIAdEpHbdL7g+FoRmvaqHxkcoYVBvBpSZKWAdgA4GYhxHIAtwB4QpKkRQCeUL6Gct/1AFYAuAzAXUIItabkpwBuBLBI+e8yZfv7AQxLkrQQwP8C+E4Ofra8E0JgSUslgFjwonfe4iZcddIsfOjcBfAGIxj1heLmD3UOxZeo6OtnAXnR9kcuWIQzFjak3ReLyVCw3Xru39aFTYcGp/QaWkYoIXnywoEBrPjKw0V7lTsckbhGKE8SS+NsutK4m85bgNveuBJvWNU67nlq4FoITQdGfSFU2cza1dV3nDYXq9tqUGkza38TwXBUO05V2kzsJkdZU4+/+vLRRMwIlaYRZTxIjSNW4ZJslEcqi5or8bnL5E63+lEjlbpZVKlacSejZoQuWdGsbWtWgqOfP3sQi7/0EM76zlMIhOMraSRJwv7esbiqHCoPaQMhSZK6JUl6Vbk9BmA3gNkArgHwW+VhvwVwrXL7GgB/liQpIEnSYQAHAJwqhGgFUCVJ0kZJkiQA9yQ8R32tvwG4UGTzzi9gy5QTDH1ZjaraYcaPbliLk9rktT5dI350Ka22HRYjDg3EDwPTrxHKlsUUnxEa9YawtXMEb/jRc+NK8Gba9x7Zi589c3BKrxFIcdL5wyf2wxOMYOeJ7AfXFgK5NI4ZoXywJpbG6TJCNQ4L3n7aXBiStDVXSxmnuzTuOw/vwSf+/FrK+8ORKNyBMKrsJnzkgoX49MWLcfUaOYNVmTDw8rwljQCgZIQYCFF21ODGkuRzTmUtoUDIEwhj2/GRfO9GQRj1hWAQ8VkbtZlMpmqVrnDq+kSHxTjpz73zljTi2jWzcMWqVmz9ysW4aFkT/KEoRr0hfOtBefxIMBzFpkOxBlWSJOFNP30RF//vs3h2f/+kvi8Vr6zeaUrJ2loAmwE0S5LUDcjBEgA1Hz4bQKfuaceVbbOV24nb454jSVIYwCiAcZcUhBA3CiG2CCG29PcXx5t1sRIInTlB1qZVSSN3jfjQozRWOH9pkzanRKWWxiUbVpdO4hyhDd9+Atf+5AXsOOHCPRuPZP16ueQJhLUBs5MVWyMUTz1PLdZyjFA4yjVCeWKeoFnChM9TPsCnu1nCT58+iH9t7Up5vzowtcpmhtNqwkcvXKTt2+GB+AYJG+bLh9tqu1nrkkeUKfXq+kSBUCl1jfvEvVtx9Y9fKNpKg1wa8YZQbTfDYBD49XvW4w8fOC3r11DbYx8e9MJiNGjroIH45geZmN/oxA+uXwuryYgahwXLW6vg8oews1u+GPrNa1bAYTHisV092nP+uuU4Xjs2AoBDWMtRxoWXQggngL8D+IQkSa4JEjbJ7pAm2D7Rc+I3SNLPAfwcANavX18U+cs3rp0Np9WEK5OU0KjUDlTdoz50j/pRV2HB2vYaPLCtG/1jAe1AMKWMkG6O0IPbu7XXApD3NQHuQBjIoP3qRFJdZTQo71M15V5swlGuEcoXtcvVCa39fWb/DqYZyAhFdOUbcov18fum/l0nZn8A4IPnzsexQS8+d9lS9I0FtNLdKpsZu7t78ey+fpyzuHGa9p5KTSYZoUKarzVVajbIGwyPG19RTk6M+HBsyKsNlL5gaXOaZySnltUdHnCj2mHWSuGe++z5SY9f2ah2WCBJwMuHhwEAl65owRN7+vD7TcdwdNCLm85bgM/+fRsqbSaM+cMFMQibZlZGn+xCCDPkIOgPkiT9Q9ncq5S7Qfl/n7L9OIB23dPbAHQp29uSbI97jhDCBKAawBBKgMNiwjVrZic9UVHVVVggBNDvDqJn1I+WKhuWKwsId3XHskK+YAQGETtBy4bZJBCKSBjxBvHxhHIa/feYaeFIFP5QFIOewJQ+INMFQoNFOk8gFGHXuHxRT+r+/qqcyM44I2SY/hM+fSOVgRTvbXVBcLIrqp+/fBl++o516GiowKnz6rTtasvad/36pVzuLpU4NcuTrARcVUprhNSLU6Fw+Z00j3pDuPYnL+CXzx3Cmbc/iWf29WNNe82UXlPNCHUO+bQyOQBor3PErT2aDDVQ3XRoEPUVFjRWWnFKh3zMe27/AP7zejcA4G8fOgNAaWQsKTuZdI0TAH4FYLckSXfo7vo3gHcrt98N4D7d9uuVTnDzIDdFeEkpnxsTQmxQXvNdCc9RX+stAJ5U1hGVBZPRgPoKC/rHAuge9aO12oY5dQ4A0ErlADkjZE/SfS4TFqMRwXAUB/s9CEUkfO8tq7X7dne70DPqx54eF149Njz1HygLXiUzJUnQpkFPhnrwSvzdqNv7p/Da+RSOJr/aT9Mv8ep2pjXrBoOAQWBaryzu7RnTbus7Teqp6w2z6eBUaSvfq9s0eZlkhEppjlCszG/86IpS98z+fmztHMGtD+zWtq2dUzOl16zVBTs19qkFPonUQOjVY8NY0OSEEAInz4l1lNt4cABz6x1oUi4YlULGkrKTySf7mQDeCeACIcRW5b8rANwO4GIhxH4AFytfQ5KknQD+AmAXgIcB3CxJknq0uAnALyE3UDgI4CFl+68A1AshDgD4FJQOdOWkwWlF/5gf3aM+tFTbtFIV/YeGLxSZVFkcIGeE3IEw3vzTFwEAJ8+txbtPn4vb3rgSEoDfvHAYn/jzVvzPX16f8s+SDU8gVpbXO4XyuFQfrmpHm2LOCJmSLMin6ZeYeVUvTmRiutvV69u/furerei45YFxj1EvomQzg8OvK5kthRNWmhlqR9KJqhXU4KFQu5dmQz0m+4LF/7NkS/9vrFYrnKLLKk+Gvryw2pHbizFqtikQjqKjXj6GnzqvDmcvktdtHxn0YsWsKm1NKEvjyk/a4ktJkp5H8jU8AHBhiufcBuC2JNu3AFiZZLsfwFvT7Uspa6y04vHdcnXhmvYaLRDyh2IHWr8yj2gyrAkfUG21dnz9Gvmf4qHtPfjLlk4Me+XuL4FwJOMyoKmKD4Qm39s/VbOEIY+8mLV/LIDDAx7Ma6hAMYlEpUk1x6Cp01/d/tW712d1EUIOhKbvA9Wt+7s5pDQ+8AbDcFhih/TuUT8qLMasZnDoW8eO+kJZL1Sm8pRRIKStESr+E001O6xfa1suRn2xi4pfvWoFLlvZog0vnSyb2Qi72QhfKBJXGpcL+iBrbr38+W80CHz+8mV4bv9zAIAlzVVacMvSuPLDmpsCoZ5wtFbbcM2a2Vqttb7XvS8Uieumko3EkgV9oLOmvQbDynToqDS+o9R0ufflY9jaGWtr3TeVQCjJwUuSJK1JwjP7+nH+95/GK0dntvRvqsJRSRveSTNLf1KnDzAyYTKKae0a5w1EIATisoWJGdXuET9aa+xZldJ+7KJFWDdXLhvRn/AQTSQYjsJiNCRtJ68qpTVCavagHAMh9eIiACxsck45CFLVVcglcVNdE5SouSqWEZ9bH8vq6zNPrdW2kmrmQdlhIFQgnMpV28tXtsJiMsCkrDMIJJbGTTI7MNH6hpOUhY6zlbUE+3vdKR87Vb/bdBT3b+vC8WEvPvf37fifv8ZK8XpdcsOEp/b0IdslYurvSf8sly+MSFTCSe012kA1/dqKYhCJRlkalydm3cWDCmt2f3czkRFyWk3aIFRgfEa12yWvN8xGlc2Mj1+4CIDcFpcoE8FwdML1QYB8Fd5oECWxrsasHJP9ZRgIjeg6sM5vzF2FhXosy3UXvriMUF1sf2t025uqrNr7k6Vx5YeBUIFQhxieOk++GiuEgNVkjA+EplAap/+Q+ssHT4+7b93cWlTZTPjc5UshBHCwf/oCoS//awc+8sfX8MjO3nH39br8+MS9W/Heu1/G1s6RrF5Xvcqov9p4eFDObN107gK8eMuFMBtFXLetYhCOMCOUL1PJCJkNYlqvLHqUQEhf6tnr8kOSJLx8ZAgufwhHBjxoq818XZNKralnIESZCoQjaQMhQP6bKoXSOLVFfjkGQmqVxTeuWaG1zc6Fk5WGC1MpkU/lzzduwCkdtVjU7NS26atr1KyRaZqP21SYptagnXLmUxcvQV2FFRcui/Xht5oNCITiS+PU9HG21IzQqtnVce1yATkl/fpXL4EQArfev0ub7qwacAdQbTdPetLz/t4xDHmCOG1+bEbu03v74h5TaTPhYL8brypDzcayHOqoBkD6g9gepS348tYqGA0CbbUOdBZZIBSJStqHLs0sfdvybDNCJqMB4ekMhIJhVFhNcR3h+lwB/PjJA/h/j+3DG1a3YtQX0trwZ0Pt2jTCYZGUIbU0Lh2zUZRGaZy6RihYjoFQCEtbKvGu0zty+rrXnTIH92/rxvWnzMnp6wLywOi/Ku2xVfqSYbVjXOLgeSoPzAgViDn1DnzlquVxwYbVZIhrluALTr40Tr1al2oopHpQaK2xo3s0dkVmxBvE+lsfx/ce2Tup7wsAF//vs7ju55viFmI/t38AK2fHTtLmNzq1IAiIb6KQKFnZnFpuoT+I7e52ocJiRFutfLLYXucouoxQJCrByIGqeaH/oHSYs18j1OsKoOOWB3Df1hO53jW4AxFUWIz48HkLcN16eWxbr8uPB3fI09Lv3ybPxlgxiUCoWssIcY0QZSYYicKawcBho0HEDQMuVpYybpYw4g3GtbvOlcZKKx7+xDmTungzVerPYzYZWBpXhniGVcBsZmNcs4RhbwhVk5zzoR6405XWtVbZ0D3qh8sfwtU/fh7ffnAPAODRnT2T+r76DExiluc9Z8zTArQFCd3cPCmutP3yuUM453tPjZs5pGWEdFcbd/eMYUlLpbaAd06dHUcHZ6YRRK6Eo2yfXQiybVtvMRpwRHmvffvBPdhxYhQdtzyQs7JTb0DOCNU4LPjOW1ZjfmMFtnaOxL2+QQDLWrI/qai0miBErFyXKJ1MM0JGg0CkBEYEqln6cgyEhjxB1FaU1rwx9RyBpXHliYFQAbOaDNoaoSFPEAPuQFyNazbUgCNdW+yWaht6Rv146dAQth0fxb1bOgFg0kM9Nx4c1G6PJHShOmthA05qq4YQ0K4mXrNmFoDkGaGeUT9ufWA3Ood8+MHj++Lu09YI6Q5ixwa9mNcQ+33NqrHD5Q/jo396DQf6pm8dVC5F2DWuIGSy/kHPZBTaGpselx//2dYFAPjbK8fTPvfr/9mJN/zouQkf41YCIdU7N8zFlqPDCIajWgZ0WWvVpOaOGQwC1XYzS+MoY5k0SwAAgxBxlQHFyqRk6fUVG+XC5Q/nvKFBvixqcsaNFzCzNK4sMRAqYPpmCWq3s8XNlRM9JSX1Kkeq0jjVrBob3IEw9vbGd1c7MuBJWtt93c824oeP70/5evqp92oW5y3r2vDIJ85BS7UNlyxvwaImJ964tg1r2mvwucuWApDXQCRSsznzGipw78ud6NGV8KkHr1BEgiRJCIaj6B3zY3ZtbA1Fs7Kw8z+vd+GGX2ya8PdQKMLsGleUTAZD3NViNbtyMCEAdwfCce9jAPjNC0ew44RrwhNGTzCsdZoEEFevf/6SJgDAm05um/T+19jNRd8sYfOhwRkbBVDuAhkGQqVSGqf+DOXYLMEfjMCeZalwoXr4E+fgta9crH1tYWlcWWIgVMDkjJB8oN2nBCb6drnZCITUQChdRkgOHJ7b369tO31+PcJRCc8f6Mf6Wx/TZvEMugPYfHgIv9t0JOXCcH0HmOPDchOGG06do/0cHzh7Hh75xDk4dV4d/nXzmWittsEgkmeEBj1yRunzly9FKCLh36/H1l7og7Qzbn8SPaN+SBLQpltMrp8n0D8WKIoPMWaEilNimdDzBwYAAK8ldEN8010vYMO3n9C+1q9/608o/9TzBOJnihkNAne9/WQsbHLis5ctwS/etR7vPaNj0vtf7bAUfUboup9vwvnffzrfu1EWguGoNvtuIgYhUAJxEMLKD1GOzRJ8oUjaC6rFwmgQcdUuLI0rT6Xxbi5RVnOsWcKBPjeqbCatu0m2/EpAle4AtkwJUDYdGtK2XbtWLlf7/iP7MOAO4pWj8n3bjsvDUAfcQTx/YACj3hB++dyhuCt++iGPJ5RudDW6QWZCiLhF6UIIVFhN8ATGf8CogdCaOTWosplwQgmsJEmKW3/UPerX1kroM0It1fG/u2LoIMc1QsUpsdNf55D8Xh1NCC72KTO71AseXaP6Cwep359q+2y9K1a14vFPnYtKmxkXL2+ecLhlOjV2M0bZLIEyFIhEYUlTdg0ABgMQLYE1Quqw5HJbIxSORBGOSpNu2lTo5PlvDITKDQOhAmY1GeHyheAPRdA96sPsWkdWU+L1ligldWcuaJjwcYuaK7Vg67R5dXjT2tm46qRZMBoEdintqI8OyidoWztHYBBy6+v3/OZlrP3mo7j1gd1x2aT+sfEZoXQdZyosJvS6/OMyNoPKFfJahwWt1bHudr/ffAybDw/FPfbJPXJ77tm6jFBTVfzMgxMJbcILUSTCrnHFKNWaumA4GtcARdU7Kr+3d3e5tG1q8JQoHIkiEI7GrRHKtRoH1whR5jJuliBKqzSu3AIhfzizypJiZTaVxpwryg7PsAqYzWzA/j43ln/lYXSNZD8lXu+0+fV46QsX4vJVrWkf++03rcJb1rXh7veeijuuWwOHxYS59bHBjGoL6tePj2BxcyUuW9ECAFrJw6tK6dwPHt+H14+PaoGVGghV2SY+gauwGvHQjh6c/d2n8MvnDsGtlMkNuoOoccjzjFqqbdr6o4d3dI97jfu3dUEIoLUm9jurTDhx7BrJ/eC2XAtzjlBRUifP6xcVr1UGBv5+0zHM//wDcWU1XaPy38YTe/qgJnJSZYTUbOm0BkIlsEaIZk4gHMmsNK5Eusap60gCZRYIqcesUimNSzTdg7CpMJXmu7lEqB3eopLcdGAqgRAwPiOSyoXLmvH9t54U13FKzSid0lGLI4MeSJKE1ztHcFJbDb545TJ8642rsKBRboG98ZDcKe4HShMFpxL47OoaxaxqW9oOdOrVpv6xAG59YDc+de9WAHLnvHploGyL0uYbAAbGgljSXImzFsayXcPeEDbMq4/rkqfPphkNAt2jRZAR4hqhvPrd+0/Fn2/ckPXz1HlgtboyULWJwTfv34WoBG2tHQD85KkD8AbDeGRnD65Y1YoGpzVlRqhfy4xOX+emaocFLn+oJK7e0/TLdI2QsUS6xql/F94yWyOkVmmUbEaIpXFliYFQAdN/sAx5glMOhKbi3Wd04JbLl+K0efXoGpHX4Ax7QzipvQY1Dgv+67Q5eOLT5+GdG+ZiT89Y3FoItRxvwB3MqNmDyx9/JXqnUi404A6gvkLOLrVU2zDgDsAbDONgvxsXLGvCJy9eBIvJgPcoi8SvVlpx69174wY8+LGz0VJlK4rSOHaNy6+zFzViw/z6rJ+nZvGqdBmhxI6P+hLS5/YP4PuP7MOQJ4gN8+vRXmfH8ZHkGSG19fuCxsm10s9Ejd0MSQLG/MwKUXqhSDRuGHgqpdI1Tl0jNOgur3V0JR8IsTSuLJVGD8QSlfjB0lptT/HI6bdhfj02zK/HfVtPIBKV8I5fvgRAzhDptdfZMeYPa+Vx33/rSTi1ow6/23QUALAkgwGPQwkfLr0uPyJRCUOeIBY2ySd/rdU2SBLwzl+9hHBUwtKWSqybW4d9t16OaFTCeUsacfaixnGvfZpyUttabUNXgQdC0aiEqARmhIqQ+rdbbTfjjx84Dd5gZNxMn589eyju66f3yuvaWqttaKt14PWEDnPRqISn9/VprfQXNE1jIKRkm147NoLzlzZN2/eh0hCOZFbCK3eNK/4TTbVrXOewF5IkTXrtbrFRmzeVbLMElsaVJWaEClhis4B8ZoRUq2ZXA5BL9T5z6RIsSrjK3V4rryVSmxWc2lGHSt2aoCUt6U/ePEq5QVOlFTecOgfhqIQXDgzgQL9bu6o+X7ka/srRYZw2rw6XLG/Rnm8wCJy3pGnCAKK2wlLwayDUWnpmhIqPWTkprHFYcMbCBly0vDnpmp5PXbwYf/3Q6Vg1uxqHlJk3zVU2tNfa0TXii7t6/vKRIbzv7i3438f3obXaNq5rXC6pa5vee/fLcS29iZLJNCMkd42bgR2aZuoaIW8wonUzLQe+Us8IsTSuLDEQKmD6ltCAXA6Wbx31Fdrtt61vH3d/e50cCL1wYAAmg8DsWnvcCeD6uXUZf68XbrkAFy2Tr0Z/68HdsJuNWtnb6rZq7XEfu3DRuKvt6ZiKoERD3T92jSs+amOQ9XNjGdPEwOXD5y3Axy5chFM66nCNroyzpdqG9joHwlEpbg7XsK6ddeIFiFxrqowda8IF/neSjD54YyA3/UKRzNr8l1LXOLVL3rEiGMOQK+rFWbulND+TTEbBgaplqDTfzSViLBCfschnaZzKYBBa17fGJDON1IzQoQEPGpxWGA0ibuK4GihN5E//vQGfungxzEaD9jPv6RnDmQsbUKs0S9BfkTqpvWZSP0ehdy9Sr0wxI1R81HVtaoMEAHGZ0S9esQyfvWyp9vXqthrtdp3DgjZl/pX+JGvIIx8PPn3xYnz96hXTst+qlbOrcOVqucOkflhxsdCfaweKcP+LTTgahTnDrnGlURoXRUeD/FlWDPPockUNhKwZzIwqRhajAUFmhMoO1wgVMH1GqMZhzjrrMV2e/ez5SPVZVu0wo8pmgssfjguUvnTlMqydU5v8SQlOX1CP0xfIa3lm6dpfn56waP3bb1qFrcdGJlUiVFwZIQZCxeZHN6zFU3v7MEfXdl6fGdW3dQeAFbNia+cMBqGVgO7qcmnNGtSM0H+fM3/aS1OEEDhlbi0e2NaNYDiKisnNcc4bdTE7ILf8LdVSnkIgSRJCEUlrGT+RUskIhaMSFjQ6cajfg+3HR3HNmtn53qUZwdI4KkXMCBWwd5w2V7tdCNkgVY3DomVmklGzPg3O2GM+cPZ8rJubWSCkV203400nz4bJIHDukvjmBzecOgffecvqrF8TKI4PZLUkiXOEis85ixvx1aviszYO3cmDutZOlbh+qLnKhtZqG7bqGiYMe4JwWIwzdhKiXuEvxiuk+r9tb5nNeplpEe04leEcoQI/7mYiHJHgtJlwwdIm/GvribI5eQ6ozRIK5KJsrpmMgl3jyhADoQL2tlPa8cItFwAojEYJmVLL4xqcU7+MLITAHW9bg13fuCyn7YKNhsKfZ8GMUGkx6P4d5yQpEf3Tf2/AXz54uvb1mvYavHosNmto2BtCrSP1BYhcU9dAFGNpnH5dkzcQnuCRNFXZXLAxlkjXuEhUgtlgwA2nzcGAO4j7tnble5dmhJYRyqAMshgxI1SeSvPdXELU7k2F0CghU+11cvaqIckaosmy5PjAazSIgl8Erp1gMBAqOcna7Z6+oB6nzos1EzljQT2OD/vw0uEhAHJpXM00DlFNZCnijJD+Ike5Db2caeqJozmDpi6lM0dIgtEocN7iRixvrcKvnj+c712aEbFmCaWZEbKYGAiVIwZCBa7CYsTK2VU4tSPzbmv5ppbGNeYgIzRdjEWwaDcSYde4UvPH/z4Nj3/q3Iwe+5Z17aivsOC3Lx4BIAdCdROUpOaaOtC56DNCDISmldplK5OMkBCl0T47ogy6FkJgfUctekYLeyZdrsQyQqUZCJkMAv5QFEu+9BDufflYvneHZgibJRQ4IQTu/+jZ+d6NrGilcTnMCOVacWSElCutXCNUMs5Y0JDxY+0WI5a1VqFLOcka9gTRVpu+62KuWIo4ENJnHXwhlsZNp5BynMpkjVAxXIDKRDgiaSXLDotJm31X6vyhKCxGQ1yZbylRZ2EFwlHc9sBuXHfKnDzvEc0EXmqmnFvXUYsrV7Viw7zCzWIZiqBZAtcIUY3DrA3+HfIEUTuTpXFG+apvMZbG6S9y+ILFt//FRF1cXspd4/780jHcs/GI9nU4GpubVGExIhiOlkRJVSQqoU83u+yKHz6Hr/17p/a1PxSBzVy6p436Evxcl+NT4eK/NOVclc2Mn7z9ZDRVFe66pmJon801QiQHQkF4g2G4/OEZXSuoZiJDRZgR0q8R0rfSptwLq2uE8tQ17qHt3bj9oT05fc1Et/xjO75yXywgiEQlLQPmUDo+egPFnxX67sN7cOq3nsCwR27Vv6vbhbuV0lwA6B8LwGEp3UIiqz4QyuD9TKWB/9JUloph0W4sI8Q/03JV67Bg1BfC8WG5PG52zcy10VeviAaK8Eq3PiNU6H/nxS6UxRqh6egad9MfXsX/PXMwp6+pp8+QqMLKGiFAzggBgCdY/CWYave7EyO+uJLYUCSKM779BB7Y3o1LVzTna/emnb5Zjb8ILwDR5PAMi8pSMQRCzAhRtd2MqATs7RkDkJ9AqDjXCEV1twv777zYxdYy5rdrnP51XzwwgD9sPprV833BCN780xfxum52FwC8cnQ47utoVEJUipUsaxmhEgiE1PK+N/zoeXzu79u07YcHPOgalQPCm89fmJd9mwn6+W5DnqDWJU9vV5cLG771BLYfH53JXaNpxECIypLRIBAp8EW76skc1wiVrxplbtDOLhcAYNYMBkK56hr3n9e78M/XjudilzLGjNDM0brGZXCcMhhETrvGuXUzosb8Ie323S8ewQ8f35/Vax0f9uKVo8N4aEdP3PajQ17tti8YGXeBSssIlUBpnH494D9fO6HdfuHAAADgXzefWdAl71MlhMB/PnIW3nNGBwCga2R8N8Av37cDPS4/fqtbM0bFjYEQlSWjQUCSUNBDVbM5waDSpDZH2Nk1CqNBoGkGOzFqzRKmGAh99E+v4ZP3vp6LXcqYPvgp9AsexS6UzRohgZyWxu3vHdNuq01FAKDH5Ycny0G6oz75+YkZIZcv9rojvqD23tLWCClrZkqhNC5Vw4en9/YDAOY3Vszk7uTFqrZqnLukEQAwovzb+0MR3PT7V/Dwjh68pgy5fnpvHyQeW0oCAyEqS0ZloGUhnySxaxypA1R3d7vQXGnNqEVxrphN8vtusl3jJEnCwzu6ta9nMjMTYUZoxmgZkgzXCOXq3+PvrxzHG+96Uft6VBewdI344QlGsrrQpT5/+4nRuOe5dJmmYU9IKwXUMkJW+YJBsTdL8Ici8IeS/60/s68fDU4rqmwz17Uynyos8Q0w7n25Ew/t6MGHfv8KohJw9qIGDLiD6BsL5HM3KUcYCFFZMiof2oV8kpTNCQaVJrU0bsAdROMMz+VSuyZNti3wiwcH8aHfv6p9fWJ45oZOsjRu5qjvD1MGTV0MBpGzLPz3HtkLAOiol2drqVfvg+EoBtzyCao3yRqPVNSAxx0I49CAW9s+5o9leka8wXEXqEolI9SbpCmE3oIyyAap1OBWLb28b+uJuPuvXNUKQF47pecLRvCOX27W1pXt6x2b0mDWUV8IH/zdFnTqyjMp9xgIUVnSMkIFfJLErnFUY49dgVWDopky1WYJf38lfl3Q4UFPikfmHjNCM0ebI5RpRihHWfiGSgsqrSb88Pq1AGIZHf0JvdufeXAyqiut29oZWwjv8oW0iwIjvlCsS15iRqjIh6rqM2p6ajnc+o7amdydvHIqDTDU8squET/esq5Nu//MhfJg7KMJx7SXjwzh+QMDuPGeLQCA//rFZnzu79sx6J5c5uiRHT14ZGcvvnH/Ljy7rz8uO0m5wzMsKkvq1bxCLo1j1ziqdVi092pdRX4CocAkAiFJkvDU3j5cuLQJ33rjKgDAoX53mmflDgOhmZP9HKHcfF9vMIJzFjeitUZevD/qlWffdI/qAqEs1gm5lKDJYTFi2/GRuO1zlKzTcFxGKGGNUJZrkgqNyyfv//vOnIc73naStj2glMudNq8+L/uVD+q/qTcYRjgSRd+YH63VNjz2yXPwhw+chlk1dpiNAocGPPjdxiNa+3Y1EzToCcIdCGuZyRcPDk5qP15X3oeP7erFu379Em7RdfKj3CndyVhEE9ACoUjhniSxaxwZDAINTgt6XQFtvdBMUa+CTyYj1DcWwLA3hLMXNeCGU9vx/x7di11K57uZoA9+wgyEplVWc4QMU2+WcGTAgx88vg+H+j04eU4tqpWsqZrR6B6NlWBmEpwc6BvDRXc8i3MXN6LCYsTK2dXYcSKWERrzhzCnzoEDfW70ugKxNUJGtTSuNDJCarbhrevbsKy1Cuvm1uLIoBcH+9z4xv27sHZOTX53cAapGSF3IIJ+dwBRCWiptmFRcyUWNVcCANrrHPjlc4e1Y83CRiee2tunvcY/X41lxJ/fP4CrTpqV8feXJAnHhrx46fBQ3PbtuvelPxTB/3t0L244dQ7mNzqz/yFJw4wQlSVmhKhY1NjlTFDdDJfGCSFgMRom1Sxhd7cc9CxtrYIQAqvaquM+xKebPvgp5M6QpSCrOUI5aJbwxrtewL+UwZ8OixFWkxF2sxEj3hA+9qfX8PE/b9Uem0lG6IFtcrvsZ/b1o8puRnOVDUOeoHa/yxdGg9OCk9qq8dSevljXOOW4bDYaYDEZin6NkNp+vEoJLOfWV+DcxY1475kdOHDb5agsk0YJAGAzG2AQckaoR8kwtlbHtw2fV1+hvRfqKiz4wD1bsO34KG69diUA4Mv37dQe+9juXi1zmo4kSfj9pqM493tPY3+fG+/YMEe7r3PIh188ewij3hC+cf8u/OK5w/j1C4en9LMSAyEqU2ogVMgnSewaR0Cse1vNDJfGAfK6j9AkMkJ7lAGwS1vkq6erZ1djX+/YjA2d1A9UZUZoemXT5l8IMeWM0LBuLY/dLGdjah1mDHmD+PfrXXGPVQOhYU8wZatjtQQUkAcYV9lNcQ0SXP4QqmxmXLGqFdtPjOLIoLxwXX9cdlpNJVMaV2WLLxQSQsxot8pCIIRAhcUEdyAWCLVUxc9w62iQ1061Vttw0bImAMBp8+rwjg1zcVKbPJh1do0dX7tqOYY8Qdz5xP6M2m1/9E+vxQVRb1w7O+7+2x7cjR88sQ+PKPOudpxwwRsMF/S5TKErr3c3kUJtllDIJ0mxEwz+mZYz9d9/pjNCgHySOJmM0PFhL2ocZq3Bw4YF9YhKwBf+sT3Xu5iUfpdzObeGxstmjpBxil3jEss07UpZWku1DQf7YwvX1bJOTyAMdyCMtd98DOtvfRw/fnL8kFV90FxlM6PSZobLH4IkSQhHovAGI6i0mbFhvrxGZuuxEQDxP2+j04qe0eJupezyh2AQsdbR5a7CaoI3EMG+XnltY0tCRkjtVmg3G3FSew0A4NR5dQCAX7/nFDz/ufPxwi0X4IbT5uDcxY2488kD2hqiidy/rTvu61Wza/D4p87BV69arm177dgIBj1BOK0mbO0cwfKvPILvKl0UKXs8w6KypJXGFXAgpGWE2D67rKnduKrtM1+aEo5IuGfjUfxu09GsnhcKS7CZjNrXZyxowFvXteHx3X0TPCt3mBGaOVnNETJMrWvciDcY97W6Pqe12h43CNVmjgVCQ275OYOeIL7/6L5xrznkiWWYquwmVNnMCEUkBMJRDCjPrbKbsKBJXoex/cRI3PcG5PUixd7i2OULwWk1wcAKBACAw2rEgX43fvLUAZy1sEEbbq1SM0ISgLesa8Mtly/FTectAADUO61oq5UDJavJiJ++42RU2Uy4Z+PEx9FIVILJIGA3G/GjG9bizhvWwmIyYGFTJd575jzs+salOHtRg9ZE4dOXLNae+6/XTqR4VUqHgRCVpWIIhEIJg/uoPKnvVZGHt8GYUu7z5X/tyKp1aygS1Ur6VB0NFXAHwvBnMdtlsrhGaOaEs5kjJASiU+gapy+LAwC7kr1IvFqvlruNBcJJ37fDniA6bnkAf3rpGIY8sUzOstYqVCqlYaO+EK75yfMA5O6NTqsJLVU2vH5cXutWYY1lTtrr7Ogc9mZU+lSoxvxhbX0QyeWOrxwdRjASxReuWAaRcABuVwKdtlo7rCYjPnTuAq3bXCKHxYTTF9RraydT6XX5EY5K+PIbluOqk2bh6oQGCw6LCU2VNqhvs7esa9MFXzNfMVAqGAhRWSqGZglcI0QAcOu1q3DRsiasm5vfOR4jnswDoWAkOq5UqsGpDoed/hKimWqf/fKRIQx7gukfWMKC2cwRMkztmDuU8LtW1wglLmSfXeuA0SDgSQiEKpXgpXNYzt78cfMxDOmCqwuXNWuB0EPbu9HrCuCyFS24ZEUzAGBhkxP9Y/L7V19CNqfOAW8wgkFPEF0jPhwd9ODlI/EdvwqduhaKZOq/r8NixBJlraPe3HoHvv2mVbjjbWsyer0qmzll845n9/XjR0/sx3Fl6HRbrT3p4wCgucqqff9Kmxmfu2wp3nX6XBwbLO5APJ8YCFFZKoaMUDaLkKl0LWxy4pfvPgU2szH9g6dROItL+aFIVFunoaqvkD/AB93THzjMRPvsMX8Ib/2/jbjpD69My+sXi2zmCE21a1yq0jg1I9RUacU3r12Jn779ZDitctMDtQnAWQsbtCy7ug8GAS0j1Fptw+rZ1VpW5J6NR1HjMOOHN6zRrvTPVdaFALFBqoAcCAHAtuMjOOP2J3Hu957GW/9vI37+7MEZaxAyWS5/CF/853Z0j/pRZef6IJX677tqdnXSi5FCCNxw6hw0Vlozej2nTX4/+kMR9I3FZl1FoxK++u+d+H+P7cM/lfK2iQMh+b2+vLVK2zanzoGxQBhHB70F/34rRAyEqCypzRIKORBiRojy7T1ndKBJ+aDPpulAKCKNzwgprzPomf6MUFxp3DRdJVXbgb+mLJ4vV9msETJMsVvnUEIgpDZLUNfPbZhfj3dumItZNXbMqXPg8IBHawvd4LQgEI5CkiRt5o/BIDDkDuLNJ7dh4+cvhMEgtK5phwY8OHdxI6y6tW61uoYl+tI4NUD665bY7BgA+NaDe/CWn24s6Cv1v37+MP6w+Rh2drnKqkV2Ourcs/OWNOXk9SqVjNBtD+zGqbc9gaODcnOPFw4O4PCAB0aDwJ9eOga72YjZGWSE9IFQuxKIn/f9p/G+u18GIGerO255ANuPz9zYgmLFQIjKUjFkhMYCYQiBuA9iopn0tatX4KtXrQAQ34ktnWA4Oq5Uqr5CLY0rzoxQ55AXZ97+JG74+SYA0E4wKm3lfRVd6xqX4RohYPLB6YhSxqZeG1JL406fX4/PXLoE31RmuABy6/bd3WNwKa2wGyutkCT5/aC2xzYIgSFvEHUVsQBAXx523pLGuO+vH2rstOpL4ypgMgg8pLQ0Xt1WjZe/eBE+dsFC7Op2acNeC5G+fXg+OlMWqnee3oFquxnvPbMjJ6+nBtjqe+R9d7+MYU8QT+zug9Vk0BofXHVS64Sf+fMa5KYd+lJp/e1Nh+SSzIeV7/P8gYGc7H8pYyBEZSnXgdDvNh7BHzcfm9JrdA55cajfHff1rGp73AcV0UybzN9KsjVC6mLerhEfvvXgbtyz8UjO9jFRWFf6lKtmCQf63Dgx4sPGQ4MIRaJaRsjlCxf0BZXpFo5IMAhk1G1sqmszhzxB2M1GrVRNLY0zGQ24+fyFcZ0Vl7ZWYcAdwOEB+Zha75SvpAfCUS1LFAhH4A9FUVcRK2/SZ0XOXhQfCOmbCVh1x2WLyaB1ETuloxb//shZaKy0YrGytqTXVbittfU/b3PCWqtydtN5C7D1KxfnrCRZDZxHvEG01dpxaMCD3206imf29eP0BfX4wFnz8YUrluILVyyb8HWWtFTi2c+cjzMWNmjbGpxW/Pyd6wAAa5RW3rGSVVaUpFPel7KobOW6WYI6AO2SFc1ocGZWM5zo7O8+BQA4cvuVODboxbbjI1rtOVG+aMOHsyqNi8ZdMQfkjkcOixE/eDw2y+WGU+dktLYkW2rwYzEZcpYR8um63Q26g9rC5mAkihPDPsypL8+/1VA0mvHATS0jNMnOcd5gGE6bSZsnpG9hnWhZqxyEPLOvH06rSXtsIBTRDVqVA6J63bBidZ3M6rbqccdyfaCV2EVMfR9fsrxF26au5+hx+ZMuuC8E+jWoiU0nyl3iv/FUqAFnOCrhv06bg6f39uOOx+R27h88Zz4sJgNuPGdBRq+V7FhzyYoWXLaiBYcH5JI7tYnJTHTpLHa81ExlKdcZITVr8+eX4rNCO7tGtdKRiQTCsYOVPxTBOd97Cgf7PXGLc4nyQT3HzSagCCXJCAHj2xxvPDg4pX1LRd1Xq8mYs4yQLxj7G/3ve7Zga+cIFjfLZSqvHks/KLFUhSMSzBmuY1TfEpO9AOUPRWEzG7Tjt32C4Z/r59ahpcqGziEfKm0mLYMjZ4TkQEhtvlCrC4TsZiOaKq24clXruNecaJbXQmXO0BWrY89rUQKhXpc/6XMKQUB3oqzuL+WevoR2YaMT7z69AwAwv6ECb17XlpPv4bAa4QmqQb783p6JUuRix0CIylKuAyG1y8uD23u0bUOeIK760fP42yvHUz1Ns7MrNl/gxYOxmt5qBxevUn4ZJtFYJBSWkpZkLGmWr4qvm1sLIZDRpPXJUAeqTldGSC2LO39JE+orLHhqb+aDYrOZx1QMQpHsM0KTPe76QxFYTUatI6Fxgiv2FpMB7zurA4Dcsl1ddxEIR7WMkEcJbut0gZAQAs9+9nz899nzx71mzQTH49veuBJ/v+l0zK6JLXRXO4r1jhZuIOQPxy7UNTMQmjZOfSDU5MSVq1vx4i0X4G83nZGzrHiFxQSP8t7uUYLvwTJv758JBkJUlnLdNU7N+uzqdqFrRC6ZGXQHEJWAfb1jaZ+/80Sss8tfXo4FTqtmV+dk/4gmSx2UmW1pXLIPd7U8qKO+Aq1VNm2eS66pwY/FaMhZ+WuyEpPmKhvOXtSAFzPMbO3pcWH11x7FfVtLZwp8qn/rZIxT7BoXCMsZobvfdwreffpcraNhKlefNFvZR0mXEYpoa4RU+tI4ALCZjUnXPE2UEaqymbFubt2416l1mNHj8uOVo8P4z+td2n09o35tHcdEguEoNh4cnLasUiAU24fEjC3ljtoswWI0aCXvs2rscUH4VFVYTRj2hnD/ti7t/TI4A3Pbih3XCFFZynVGKByRMK+hAocHPNjXO4ZZNXatW9HRwfQne0NKrXpdhQUP75SzSo998hyt3IIoX9RmYNk2S0icIwTErpBHolG01znQOTQ9gVBUK40zIBLJfWmcqqnKirZaBwbdXYhGpbQNA7qVzMC9L3fimjWzc7Jf+ebyhzOePzPVtZlqRmhpSxW+fs3KtI9vqbZhdVs1lrdWwWpWAqFQVDs2q2ozPBmdKBBKpbnKhkP9Hrz5py8CAJ7a04f3nz0PV975PBqcVnz96hW4UldO99OnD+LIgAe3vXEljAaBHz25Hz968gBO7ajDXz50etbfPx2/riy7lhUI00ZdI9TR4Mg4g5qtCmUd3Ef++Jq2TZ3bFghHIEnI+zy6QsSMEJWlXAdCoUgUS5Wr3Qf65C5F6lVHdV4AAIx6Q7hn4xG4/CF03PIAbn9oDwC5XKbCYtTatXbUO7CouTKnizWJJmMy2dNUWYKLlzejrdaOG89ZgDl1Dhwb8uLKO5/DXU8fyNn+ArqMkGnqGaF/vnYcHbc8gM5h77hyv0anFdV2M6IS4M5gkKGalcjk4kixGPWGUJNhgCCm2D5bzQhl498fOQu3v3l1fGmcLhAyG2Ozg9KxT+IkcnVbNTYekjOGi5qcuO/1Llx55/MA5JK9W/6+LW6N6Hce3oN7t3Tiup9vwvKvPIIfPSn/bezqdk3LPCI10/mzd67j5800UpvHTOfFzYqEBjV2sxEDSkbogu8/g6VffnjavncxYyBEZSnXgVAwHEVzlQ0OixG3PrAbv3j2kLYgt3PIp32ft/9qE75y3078SWm1/X/PHAQAuHwhVNnNeNv6dgDArdeuysl+EU3VZP5WQhEJZtP4k6qmShue/9wFWD6rCu11DvS6AtjZ5cJ3H96bs/0F5H0VQh7yOdW/cXVI5pYjw+OuptZWWLQswag3/dqfkJKdOqGUz5aCEV8QNRnOnzFOsWucmhGaDDUIDeraZwPykNRMA4DJBAob5tdrtx/95Dm4VTfr6NfvWY+xQBg/fHw/fvLUARzXlYq+cnQYwUgUp86rw3+dNgfuQBhd07DWyB+KosFpxaUrWtI/mCbNYTGisdKKk+fUpn/wJFVY4/82zlzYgEFPEJ5AuKSOObnG0jgqS+rJXa4WUoej8uJwdWL5PZuO4KZzFwKQy4S6R31oq3XgUL+cHTqomxcEAGP+MKpsZmyYX499t17O2UFUMAyTKGcKhdOvG5nO1vDhqASTQcAoph4IqTX8x4a8qKuw4BfvWo/OIS8e3dWrlcMCwKgvhPY0rxXULUyXJKkkrsCPeENY1JRZa+ipdo2bTEZIFcsIReJK47Idd3DH207C3PqKjB+vBkLv2DAHQghct74d92w8ivVza3HmwgbUOMy462n5gpia8VneWoVd3S584Ox5+Pzly7D50CD+uPkYbv7Dq/j9B04b15p+KgLhyKR/p5Q5IQSe+cx50zog3ZHQRfGCpU14fHcvjuiqUmg8vvupLE1mNspE1M5JX7tqOQBgaUtVXHeoo4NeSJKknQipJ08qlz+ktddkEESFxDSJBe7BSDTt+7h9GgKhv2zpxN0vHEY0KsFoEDAaph4I6ed/OCxGbJhfj7eub8cv3rUeZqMhlhHyZZIRigVC3iRrjgrFG370HP6UMAoglVFvKOO1M7E5QpNfI2Sb5ImkRdc+e1jXSeuUjuyu0L/p5Dasm5v5c2bV2PHoJ8/B165aAUC+sPDgx87CN69dCavJiHcpbZQB4PuP7kOVzYQPnit3rDtXGei6WOm2uLVzBF/65/aclsgFQlGuG5khDotJO/eYDokBsjpcdfvxWDMm/cUYkvGMi8qSKYelcZIkyaVARgPec+Y8nDavDqO+UFz5xdFBL/yhqJaBOjwQK4EIR6Jw+UNxU8uJCsWk2menaJagl+uMkCRJ+OzftuFr/9kFTzAMk8GQk0DIp1v7k+yEMZtASH8SorZwLkQ7Trjw+X9sT/u4cCSKsUB4wrbSelMtSQ6Eo1rTg2yppXG+YAQjun+ri5dPf0nY4ubKuAXy+kzgRy9YiJ/818mY3yBnmdbNrcU1a2bjuc+ejzMWNgCQSzDvfu8peOu6Nvxraxfu29qFZF4+MoStnSNZ7Zs/xIxQqdAPGH77aXPQ0SAfY2/R/S2rs7Mohu9+KktTnWehF2vVK79mjcOMUW9IKXczwWIy4OigB8O6A9CArqVlj8sPly+c8YJdopmU7clrJCohKiFtaVyD0xK3+Hyqf4sH+2NZ1qf39sMgkJNASF9GZbeMD4TUICDbQCixhXOhyOb3pf5uMm2WkKuucZOhBlAD7gAiUQn/c8li/PZ9p+KsRQ2Ter1cMRsNuHJ1K/77HDkLtEjJ/iRmTM9b0oTb37wazVVWPJ1ibtVb/28jrv3JC0nv84fGtw3f3e3CpkOD01quRTNHbZbQUe/AbW9cNa5UDgB6XQE8v38AfWOFO9tqpjEQorKkzkbJRSCklruoV/yq7Wbs7R3DPRuPotphRnutHUcGPRhJsZj62KBXKY1jRogKT7Ynr+rfQ7pASAiB9rrY8MmpXqncdCg2y+f4sA8mo5IRSrPfkiThid29KY8FLl2Ak6xrWFYZoYg+ECrMjFAog9k2KvXfLNNmCVMtjQuEppIRkv/t1EGTs2rsOHdx46Reazq8bX07br12JW4+b2HKxxgNAnUVVrgD48sq9e+/oSRDNK/9yQtY9bVHta/9oQgu/+Fz8ASZESo1+sz1r9+zPu6+z/59G97xq805b1BTzPjup7I0mdkoqYTC8muoJ376k4JRbwgd9RXY3+fG9x+NP/CopRoH+91y9ijDWRxEMymbjFAkKmnteBNbTSejL48b9ARx/7YudNzygDaUOBudQ15YjAYsUtrTNlfZYDQY0u730/v68f7fbsFdTyVv4a0/wUzW28BuNsJsFCkvdOjFZ4QKMxDKpoGMWmJWnWFpnBYITeKwG41KCEaik14jpB5v1UGTtRkGbzPFaBB4x4a5aX+XTqsR7sD495p+HchGZcDv8WEvHtjWDQDY0yMP9g5FopAkCZ/7+zbt8ZP9nVJhmVMvH08/dfFibdsFS5uhX5a0u9sFANM2oLcY8cyLytJUSzT0QkovWLU0Tr9w2OUPo73OgSf29Gkd4yptJoz5w1g1uxq7ul3YfmIUkaiEKmaEqAAZs5j9cvEdz+CQ0ggkk6Yfb98wFwDw+O4+DLgD+IvSqnpPjwuzauwTPXWc7lE/WqptmNcgX3hY3OyEyxdKGwip2Yln9/fj3i2daKy04k//vUG7quryh2A2CoQiUtJgRwiBarsl62YJhbpGKJTFYmq1ZXimzRKMU7gAFVD2a6prhNShtpkOUS00TqsJ/brSapU+I/rE7l5cuboVN/xiEzqHfLh4+eXaffIMKwn3be2CQchBaa66p1J+VdnMOHL7leO2m4yGcU0ShrlWSMOMEJWlXLbPTlYap1rTXoO22vgTurZa+apNc5UN8xsr8NLhIQBgswQqSNrfSiT938ohXTfEdKVxAHD+kiZ87rKlAOQJ6GoSKYvqLE33qA+t1TY0VsrtkBc2OjPKCKl/ty8fGcbxYR9eOzainSwDgMsXxtKWKgBImfWpspviukSmUgxrhLIqjfMppXHZdo2bxAUodejoZLMXaqlkrxoIZZjFKjROmxk7TrjwkT++qr23//bKcfz4qQO4cGkT3rquDY/t6kUgHMGJYTmzqg+c3vzTF/H4bnmN0XvPnAcAcc0jqPSYEzrVzW+owLCH/+YqBkJUloxTrFXXU08Q1RM/dR3BuYsb8ecbN4xb9Dq7xgYAaKy0YkGjE0cG5Yn1q2ZXT3lfiHLNkGGr+cSMSCaBEADUK3NcBtwBLeiaTIvXrhE/ZtXYtZPtKrsZRkP67EOy76VuC4aj8IUiWNIiL2BPdRW10mbOqNStGNYIBRMCoUd39mDxlx7SAjdfMIIv/2sHukZ8WmCY8UDVKXSN84fk/ZpKq2eryaCtEcp0nwuN2iL5/m3dONjvRjQq4Qv/lLuCfezCRbh0RQvGAmFsOTKsrYvqdfm1jmKjvhBuf2gPAOCMBfKMo1FmB0qa+nf3vjPn4S8fPB3nL21Kuo6sXLE0jsqS2iwhFxmhoLY4XD7YeJV2ux31DtjMRrTXxgdC6oDGxkor3rC6FQ6LCW8+eTZWMhCiAmTUOiymfszxYS/O+s5TcdsyWSMEyNkEg1AyQsoHdrbZkkhUQq/Lj9ZqG955+lz0jflx7drZeOnwUNryVzXTkGybmuVZonTySjUDpNJqymifg5EoTAaBcFQq2EAolJD5++ET+xEMR7G3ZwzrO+rws2cP4nebjqLGYY4FnRl2vJzMcF6V+m9incKcNZvZCG8wAqNBFG2XTqc1Fgju6nLBaTUhGI7i1mtX4qT2GngCYZiNAs/u74fNbIAvFEGfK6B91r1jwxz8fpM8I2pBo7yebjiD9W1UvNSs9wVLm3DqvDq8fGQIvlBEaZ3O9WHFeSQgmiK1WUIuMkKJXbKuXTsbrxwdxscvkhcs6jtjvXjLBfjFc4cAAE2VVqzvqMP6jrop7wPRdMlkPV3/2Pg1C+nmCKkMSiesQU8sI5TJehu9Qbd8otdabUNrtR0/e+d67bWnkhFSu6I1V9vwtauWY4NyBT1Rpc2U0eLjYDgKu9mIqCRpa4Q6h7yoq7BorW/zLbE0Ts1AqOWCj+7sBQBIEjCqDII2ZfhvPZVMfC4yQmq23mExxs3yKSZOa6yk72+vHNcurKlziCqsJqybW4sXDwwqv6sQbntwF4LhKD5z6RK878x5WiDUUm2b8f2nmafOTXQoQbT6nhn2BtFand1azFJUGEdeohmmtc/OQbOExNK4SpsZP7h+rXZ/pc2MN6xuxRtWt2JWjV07sWiq4ocQFT4tEJogJZTs5DTT0jhAnik04A5qH9iZrLfR61JO0hM/1E1TDIQG3XIgVOew4OqTZqV8DbUBSjqhSBRmkwFmo8CYP4RwJIqzv/sU1s6pwT8/fKb2OG8wjDufOIAPn79gxpuoJP4+1ADt6KAHkiThYL8bgNyGOhKVMh6mCky1NG7qGaEK5USwIsl8lWLh1GWynj8woAXgHUogBADzG514dGeP9nfZOSSvFaq0mWC3GPHD69egsdIKm9mIz1++FGcvKpw24pR76rFYfd+rHROHPOkDoXAkCpPRgAN9bvz82YP4xjUrJ7wYEYpEsb/XjeWzqnK099OPa4SoLOWyfXZiaVwyP/6vk3HZylYAsROLRmVtBFEh00rjJvhTSdZIwZzFCWuD04oBd0DLkmSbEepW2m231sRfXDCI9IFQIEkgpG5T1wTVVkx8si+vEcqsWYLFaEClzQx3IIwdXXIr29eOjWgn+oDcRe//njmIb/5nV9zzn9vfj+8+vCft95kKfUZIkiR4lH+TI4NeDLiD2u+m1+XHiDeYccc4INZ+/MdPHcBvXjic1X6p33dKGSHlRNCRZDBusahUPj/UJjz7+9ywmgxo0V1Yq3NYMKwM9Y57rhJEXbNmNs5YIA+S/eC5C4rqpJWyp16AUDt5ahmhNA0T3vXrl7Dwiw9hx4lRvOmuF/CXLcfx9N7+CZ/zrQd344o7n0PnkDcHez4zGAhRWcrpQNVwZgMkVW21dtjNRsyuZUqaCl8mZaRqC3m9TNcIAUC904JBd1A76R71Zbd+pjtFRiibZglXrmrFpSuaAcROuoeUE4X6iokvWjitJniCkYy+l8VkQF2FBdtPjOLjf35Nu0+d/aLfp4d39GjbthwZwjt/9RLuevrghN9jqvRrhALhKAaUjmP7e8dwfFg+uTEbBbpH/RjxhVBjz7zpgBpUP7d/AF9PCPLS0TJCUxj+6VBL46zFGwipF9Lm1Dlw5kK5VHNpS6W2/goAahxmRKLSuAsKHNFQnt6yrg1ArFNiq1ISee+WzpTPCYajeHafHPRsOjQIlxJUP7mnd8Lv9dgu+f5HdvZAykHFzUxgIERlSf3MyEWzBPU1Mg2ErljZihdvuSCrK6lE+ZLJGqFkGaFM1wgBcqAxqMsIubLNCI36YDUZxrVENhoMaf/G1UX4P7h+DT6rtPJWt6kZoXTlX+qV9nSzgUIRCWajwCXLm9E55MPRQS/mKkMQdymDDgF5zRMAjAXCOPP2J/HU3j685f82avdncgFn9dcewef+ti3t48bvYyyo9QUjGFDKA18/PopnlBOj9XPr0DPqx6g3lPEwVSB1s4lMqP8WUzluqpkgRxGXxpmUCww2sxFtNfJ7Z8P8+LVrdboZSZ+7bKmWRapkIFSWPnrBQuz4+qVap8T2Ogfed+Y8/Of1LvSNJV/beEI31PqwMhZBCGDLkeEJv5cvKB87b31gN7714O5c7P60YyBEZUkIAYMAIkmuZGcrk9I4PYNBFO0wPyo/mazrSDZ7xprFvJcahxmeYERrx5xtaVzXqNw6O3EBvNGQvu13MByFEPJ6IjV4068RqrAY05ZjqVfa05XHBcJRWExGXLNmNkwGgfefNQ+PfvIctNXasadnTHvcgG7uy4kRH977m5fjXkdfRqcnSRIiUbkRg8sfnvCKbyr69tmjvhBGfSG854wOmAwCP37yAADglHl1cAfCODTgyXiGEDB+yG6qnyOZIwNyNmpOwjiCbNgtsWYJxUp9b1pNBi07lFjaVqtrDV5XYUaDMlurmH9umjwhhLY2WXXqvFoAQJ9rfKObnlE/DilrAQHgyKAcCC1tqZpw/eaRAQ8GdW25r1kze0r7PVOK97II0RTZzEatE9FUZFsaR1RMYu2zswuEquyZf7yoJ2jqh2i2zRJ6Rv1auYeeyWBAOM2A0EBEXrcjhNAW4qvBwLA3mNFFC2fGGaEoLEaBxkortn71ElQo3cuWtlRhT1xGKIi6CkvKWR/eYCRpl7mP/PE17Owaxf9et0bbppbjZSqkWzN1XBnIuajZieWzqrDt+CganBZcsrwZdz6xH0D6bJle4snY8WEfFjY5IUkSfKHIhJmaI4MezKq2TWmNkLpYvJibJaxprwEAXHdKO9a016DGYcYVq1rjHqN/z1bbzbhiVQt+8tTBrP6tqLQ1VsrHy8SOn0cGPDjv+0+jQbeGWb0IMa/BERcgAfKxOhCKorHSil+/cBgWowEfu3AhohKKZiQIz9yobMmdnqY+PyHb0jiiYpJZRmj8fdmsR1Cv1KvfI5DlBYqeUT+ak3RhNAiBdFVkgVBUC4DULJb6/Yc8QdRnEAippXF/3HxswsfpgxKn1aRlsJa0OHFowKP9/AOeINrrHGhwWrRyv0qbCV+6chmAWPlJoge2d+PIoBe/eeGItm1PjyvpY1PR/1u+41eble9txuo2+aTmzIUNWDGrSisvPieLjmNOW2Ig5MWgO4Crfvw8zvrOUxOuKTgy6InrjDYZpZARaq9z4MjtV+K8JU2ocVjwsQsXjfvs0ZeINlfZ8OmLl+Cp/zkPbbWTz6ZRaWlSsoSJbf/velrO+g64A7CaDHBYjFqZXEd9BQLhaFxnybf+dCNOue1xRKMSHt7Rg0tWNOMjFyzCxy5cNEM/ydQV72URoinKdBr8RHzBCD73d7kOP5vF4UTFQggBISYuMUuWdanMYmClPeEqf7IM00RSBSwmo0A4TflrMCKXqwGx0i01IzToCaRtlADE1l7cs/EoPnXxYq0WP9n3siVZ7N9UaUMkKuH0bz+BO962BgNjAbRW2/CXD26AQQj0jQUQCke1dUTeUPLjltVkQCAcxb9f79K2HRvyYnVbTdqfQZXsd283GzG/QR6+eeq8OgghcN/NZ8EXiuDUeZnPQUvMCN394hEcGfDgyKB8xdkdCKdcx3JkwIPLEzIf2XKUQCCUCX1GaOXsahgMAvOmGERSaWmqko9rfbqMkCRJeHJPn/b1Se01ODLgkTPQFiMaleDJEwjDYrIgHIlib69c0vvZv29D31gAa+fUzuBPkRu8hE1lK9PZHxP519YT2mswI0SlKt08npBy3zevWRF7ThZ/D/pASIj4dSrp+IIR+EIR1DnHBx8GIZBuGWAwHMsIqYFQIBTV5mEsbHKm3Qf1BAGAts4pmVAkmvQ4oZah9I0F8Om/bpUDMKcFVpMRZqMBs2vs6Gio0H5PXl1GKBKV4AtGMOYPxbUCV9spe9KU6yVSf/dnL2rQttnMBrxjw1x8/60n4fpT5gAAVrVVZxUEAfH/zo2VVjy9tx9HBr3a768vyWBeQF5LNOwNYdYUB4CqAVCpH6srdQFnqf+sNDlWkxE1DnNcswS1Rf4pHXIw8+HzFmhZ3IZKq3YhQy0BVtv/A/JwXwBYUYSt2PkXQmUr09kfE9FfPeUHDpWqdPN41HUlk+1KZdddoa9zWOLWqaQz5I0NPU1kMqTPCAV0gZDRIGAyCAQjEeztGUMgHNXWZExkdo1dK1ubqNGDOkcoUYMuiOt1BdA3FkjaFED9Pfl1gdAn792KZV95GD1KC3E1M33BsiYAyPpij3pMWzErVt9vNxthMRnwlnVtU+r8pm9mccXKFu32BUvkfU1cr6BS14xVp8i0ZUo9RosST94LIfC+M+fhl+9an+9doQLWVGnFq0dH8KHfvYIDfWN4+fAQAOC2N67CM585D+ctadKCn0andVx3zAe3d8NoEHj8U+dqr7mstfgCIZbGUdmqtJlwfIpDv/RXf00sjaMSZUyTEVKDjcTSp0zpMwW1FRYcVboUZWJIae9cl6Q0zmCQ1whJkjSuo5wqGI7ENROwmAwIhqN4rXMEADIKhAC5jASYuNFDMBJNOmi2PmG4siQBV580vuOSmtHQZ4TUMrityv4ub63C68dHsW5OLf64+Vj2gZAShOqbXUylQUEqC5srtdur26tx75bOlBkhtZ36VEcOlHoApPeVq5bnexeowM2pc+Dx3X3Y1e3CE3t6EYpI6Kh3YGGjU5tLpTYWaam2wWmV//7cgTAC4Qj+uqUTlyxvxsImJ/5+0xnYdGiwKMeCpL2ELYT4tRCiTwixQ7ftJCHERiHEdiHEf4QQVbr7Pi+EOCCE2CuEuFS3fZ3y+ANCiDuF8qkkhLAKIe5Vtm8WQnTk+GckSqrKZtaGhE1W92is1z4zQlSqjEJMOEdIXWCfuBg+U/puYXUOC0IRKenC+WhUwifv3YqfPRMbKqpmhOqTlMaZlA/ziRom6DNCgBwIBcJRvN45gvoKC9oyHHysngCkywhZkxwnGhMCoctXtmBO/fiMkBYI6dpOqxkmdZDhbW9chc9cugRXr5mFCosxbSe7ROq/pf6Exj4Na2o6dD/f6tk1AIA+V/KZJurvtGqS7y+V+pZKFRQTlZOrde2tT+mQy1w/dcmSuOG86t/+3HoHKpRBxMOeIJ7Z249hbwjXrJkFAFg3txY3n79wpnY9pzI5qtwN4McA7tFt+yWA/5Ek6RkhxPsAfAbAl4UQywFcD2AFgFkAHhdCLJYkKQLgpwBuBLAJwIMALgPwEID3AxiWJGmhEOJ6AN8BcF0ufjiiiVTloGtc10jsgzubAZJExcRgEIhm0D47mwYJenZL7G+ntkI+AQ9GouNmEf3tleP452snAAA3njMfQggMeeQsQm2Ssim1jCscjcJoSH4yn9he2qpkhLZ2jmBNe03GJ81qlzyXL3XgkaqVtT778sDHzsLyFOUldiVg9AVj36Opyorjwz48uqsXNrMBi5qdWttap80Et3KxJxSJIhKV0mZ31DVCcYHQNGSE9GWUi1ucsBgN6HcnzwiN5igjREQxlyxvxvq5tfjA2fNx2coWDHvGjwtQs7Fz6hza8f2Wf2zXWvuvm5vdOsFClPbMTZKkZwEMJWxeAuBZ5fZjAN6s3L4GwJ8lSQpIknQYwAEApwohWgFUSZK0UZIv890D4Frdc36r3P4bgAsFL9fQDKi0mca1gsyWWpcPsDSOSpfJMHFGKKxkESqtkztR1Z+cqyVuyf4uXz8+ot3ecUJeqDuolMYl6+6WSevvxODEYjJgwB3EwX63Vu6WiUwyQv5QJC77pNJ/5K2YVZ0y+HIkaZagv33B0qa44NFpNcEdCKPP5cc7f7UZS7/8cNqfIxbUTm8gVKHLMllNckeq/iTDHZ/b34/33b0FwNQDoTSd1InKis1sxN9uOgOXKev1ks1MU2e7zamr0Erj9PPN9I1iitVkL2HvAHC1cvutANqV27MB6EdZH1e2zVZuJ26Pe44kSWEAowDqk31TIcSNQogtQogt/f39k9x1Ilmlbhr8ZIOhrlEfqmwmLG+t0spwiEqNIc0aoeAUM0L60jg1s5NsNtGoL6SdlL/WOQxA/lA2GkTSAa7qybZ7ghJYuTQu/qR8+4kRSBKwKouBgDazAWajSBkISZIETzAyYflgupMKe8IaoXAkimFvENesmYVlrVX44DkL4h7vtJnR4/Lj1G89gU2H5OuZ6VqTy53tRFygMh2lcXaLEZ+4aBGuPkkuramyJy9V/n+P7tNuTzUQunJVK6wmA962vm1Kr0NULgaVLO3cekfcsavCYsSnL16cr93KqckW3L4PwJ1CiK8A+DcANTxMdiYoTbB9oueM3yhJPwfwcwBYv349L+7QlKgnbR/+w6vYfHgI97zvVJyzOPPhgO5AGGP+MG65fCk+dO6C9E8gKlLGNF3jwglrhNbNzW6WhD1JRuiKHz6HWTU2/P4Dp2mB0qgvhMUtldh5YlTLxg57g6h1WJJmUdQmBIOeIJqSDFwFxndysxgN6FUyE9lc7RRCoNpuTtkswR+SS9OcKbJm2792SdqObFaTAULImSUAeHZ/PyRJ/n3/8Pq14x5fZTPhtWMjcdu6RnyYW596pkwoIsFsNMRl6ZJlsaaqwmLCJy6KnUhZUsx8mlVjw1bl8mrVFAOh9joH9t56+ZReg6icfPWqFfj2Q7u1dvxCyMfrl790UdwFrGI2qZ9CkqQ9AC4BACHEYgBXKncdRyw7BABtALqU7W1Jtuufc1wIYQJQjfGleEQ5p2aENistI7cdH8kqEOpWpi23TnG2BVGhk7vGpb4/HI3CIOSGIf/5yFmY25DdBHt1yKgQsZPdHpcfPS4/7nrqIG48dz6qbGaMeENocFrQVGlFj7KwftCdfJgqEAuq9KUcieSBqvGlcapkpSITqbKZU2aExgLydqc1eXYlk9bjQgg4zEZ4gxE8uL0bH/7DqwCSlwXK38s0rlnC0UHvhIFQMCzPOtIPHZ2OanVHwu/BbDQkzVa1VtvjHkNEM+fN69rw5nWx0/c6hwXnLG4smSAImGRpnBCiSfm/AcCXAPyfcte/AVyvdIKbB2ARgJckSeoGMCaE2KCs/3kXgPt0z3m3cvstAJ6UkrULIsqxxDKe48O+FI9Mrku5Iq3/oCYqRUaDQHSCw3IwEtUGqK5qq9YaB2RKCAG72QinxTSug9uPnzqA1V97FD2jfoz4gqhxWNBSbUPPqB+RqIRBTzBp62wAWoA0OEEgFEhYt6O/XevI7ueospu1xcWJPAE5izPZznoqu8UEbzCCu54+oPu+yV8zWTvzo2lGBqilcdNRDgcAX37DclhNhnHNZcxGA0Lh8e+x6VifREST8/sPnIavllhr9rRHZCHEnwCcB6BBCHEcwFcBOIUQNysP+QeA3wCAJEk7hRB/AbALQBjAzUrHOAC4CXIHOjvkbnEPKdt/BeB3QogDkDNB10/9xyJKLzEQ6hzObqZQzygzQlQejAaBcJrSOPMU18jZLUZYjPEnyEtbKrHt+CgA4LVjw+hzBVBtN6Ol2oY93WNY8IUHAchrP5JRA6TBFN3IgNQZIYvJkPVJeI3DrDVvSKSuU6qY4pVUh8WIPpcfu7pcuP6UdhgMImUpoj7oumJVCx7c3oND/e4JX18OhAxwmKfniu/7z5qH9581b9x2s8kAX5IgMt2aJiKaOcU4MDWdtEc6SZJuSHHXD1M8/jYAtyXZvgXAyiTb/ZAbLhDNqMSr1llnhEb8EAJoTrH2gKhUGATSts9ONig0G3azUQ6GdK+zsNGpBUI3KWVgNQ4zhAAe3N6jPS5VRqjGYYFBTFwa5w1G4gIeNSNUYzdnXRJWX2HFvp6xpPepJWpTzQjNqrHhuf0DiErAlatbcfai1OW8lUpGqNpuxl1vX4frf75Ra5qQirZGyDKzZWhmg0ga9KiNOL55zYoZ3R8iKg8suKWypc8IVdlM6BrxTbggXC8UiaJrxIcGpzXpXBCiUmJM0zUuFJFgMkwxELIYUWE1xa0DWdjsHPe4Grt5XBY2VSBkNAjUOiwpS+OiUQneYAQVuhIyqxIUJZtLlE6D04IBTzDpMFg1EJpsi3HVwiYngpEojAaBtXMmbkqxYb7cgFUdXnru4ibs7nahN8XgUkAOPMxGMeNz0VKtEQpFoqivsOCdp3fM6P4QUXngGRyVLX39/OLmSoQi0oQlNCpfMIJFX3wIf33lOBY0pl50TFQqDCLdHKEoLFOco1VpM6Habh6XEUpUZTejrTa+GUOqQEi9L9XftUcZTKo/FixokP+m1QYO2ah3WhAMR5O2gXYrzRIqUjRLyNQC5XeyvLUq6RogvTMWNuDxT52DH//XyQCAi5c3AQD+9NKxlM9RmyXM9Dg/s8mQtGW6uj9ERNOBRxcqWybdh2tbrdzwYKJhiKrjurVES1tKr16WKJHJKNKWxpmmeLL69atX4POXL4076Z1TP777nCcQRkdC17OJ1vLUVlgw7J24gYE+I7RSmR3UNZo6a5KK2r3tpK8/iiMDnrj73DlqlrCwSQ6E1ndk1qJ8YVMl2usc2u1LljfjV88f1rJWfS6/1o4bkFtzO6apUcJEzEaRdJ5bKCLBbOKMNiKaHgyEiADMzioQiq0lWtJSOW37RFQojGLiZgmhqATTFDNCq9tqsKy1Kq5r25LmStx6bWxp6ZWrW3HVSbPQkdCee6KOdlZT8pIrIFaups/SrG6rAQD0j6XPDidq0M0dOpbQnU1tljDV0riVs6oxu8aOy1a0TOr56+bWYswf1oaynvqtJ3DDLzZpvyNvMJKX1riWFKVxwUh0xsv0iKh8lE4jcKIpmF0jn1iNpLhyrKfvLjenLrt5KUTFyJCmfXYonLuTVX1GSAiBd2yYC6fVhO5RP246b/zg4g+ftwDXrp2d8vVMBqENfE3kCYwvjWuusmJJcyXefUZH1vuun2eUWM7lDoRgEJMrudOrrbDghVsumPTz1XlF7kBYK0N87dgI1n7jMWz76iXwBSPa+qj3ntmBuTN0jDMbDUmD7RBL44hoGjEQIkK2pXFyRujbb1qFMxbUT+t+ERUCo5i4WUI4BxkhVbLmIxMFOp+9bOmEr2dKkWkAYoGQvjROCIFHPnlOJrs6ToMzlhHyhyNx93kCETitphlfe5NILc0b84dg1LU8dwfC6BsLwKcrjfvqVTPXqU2eI5QiI8SGNEQ0TRgIESHb0jgv5jdW4IZT50z3bhEVhPRd43J31T7Tk95/fPgMLZCZiNmYuqzPnSQjNBX6pg2BUPxJfb87gCr71MrickFtqT3mDwOID8qODHrgS2gnPlPMJqG1ytbL5XuLiCgRjy5EiA1F/cb9u/CXlzsnfOzxYd+4rlVEpSyjQGiK7bNV5gwzSyfPqZ1who7KZDAgnCojFByfEZoKi8mAv37odABAQJcRkiQJmw8N4eQ07a5ngjo2wB0IY9QntxX/prIO6+igB95gGPY8NEtItUYoFJa4RoiIpg2PLkSI7zr12b9vm/CxnUNerZSOqBwYDanbZ/9h81FsOjSUs9I4qzG3J+Emo0jalhmIdXKbaktrPfWiij4jtK/XjQF3AGctbMjZ95msWGlcGINuORBa3loFk0HgyKAX/lA0L4GQ2WhAVJJbsd/8h1fx1N4+AMpcI5bGEdE04dGFytptb1yJUzvqUtbtewJhfOh3r+Cs7zyJ48NeuANhDHtDaGdGiMqIQQjs7RnD+lsfx7HB+G5oX/znDgDAUIqhpdnKdatks8GAcHTiNUK5Ko0DAJtyUUWfEdrT4wIArJlTk7PvM1nqz/q7jUdx4+9eASAPgp1T58DOLheCkWheSuPUQLp3LIAHtnfjvb95GYA8R2iqM6qIiFJhIERl7e2nzcVflFIWlRDQZqbc+sAuPLyzB8eHffjTS8dwQmmUwIwQlROjQcAbjGDAHcCTe3rj7mupkjMge3vHcvK9cl0GZTJO3DXOICaeQ5Qttf23X5cRUucVVdkKYI2Qsg8bDw1q22rsFly0vBnP7usHgLzMEVL/3fcqQWOtQ95PrhEiounEowtRAkmSW2RLkoQndvfhmjWzcMHSJvzrtS5tmCoDISon+u5iiSFFe538tzBBd+1Jf69cME/QNc4dCKPCkttOblbT+IyQmnly5LAEb7KSZb8qbSZcd0q79rUtH80SlGBnd7ccUBuEwM6uUQZCRDSteHQhUjz+qXPxhSvkVrx9YwF0j/rRNxbAyXNqcfr8epwY8eH1zhEAYLMEKisH+9za7V5X/KBRtSPb+UvSNy7IRK7bS5sMqbvGeQLhnDVKUJmNAgYRywh975E9uOOxfQCAijwMKk2ULNA0GAQ66iu0r/OREVKDnX1KZnHQE8SVdz4PXyjC9tlENG3yf1QmKhALm5xw+eX22e5AGFuVoGdNe43WZvc3Lx5Bc5UVDU5LqpchKjnXndKOp/b24UCfG31j/rj7xvxhXLK8GT9757qcfs8N8+ty8jomoyFladyoL4Qqe24/BoUQsJqMCIQjePnIEH7y1EEA8iDVXGe7ckm/b3lpn62sA9p8aChue68rwIwQEU0bBkJEOuqMja3HRtA57IXFaMCy1iotEBrzh/GG1a15H4pINJM+eO4CfPDcBXjjXS+gLyEj5PKFUFdhyenfxCtfuihnmRqzUSCka5bw2xeP4Kv/3on9t12OYU8ItY7cX9Swmg0IhKN4YFu3ti2XDRly5bnPnp90dlpe2mcrWZ8el3/8fWyWQETThJdZiHTUk68fPrEf/3j1BJbPqoLFZEBdhQXzGuTSkctXtuZzF4nyprnShl7X+IyQOpsmV+qd1pytUzEZDJAkaHOQfvLUAQBAr8uPYW8wbghqrthMRvhDEew4Mapty3UJ3lTUOsxorrKivc6BlbOrte1qMJKfjFDsdOS69e0p7yMiyqXCOTITFQBnwgmdGvwAwH8+ehZ8wQgaK60zvVtEBaGpyhrXbSwUicIXihREN7RU1LbMoUgURoMR9U4r+sYC6BqRA6HaaQiErGYDvMEIdna5tG2OAlgfpNr4+QuTbq+ymTDgDuZlX/XBzpz6+DWYXCNERNOFRxcincTFzKcvqNduO60mBkFU1qrtZoz5Q5CUFnFjfrlkNNcZoVxS156oDRPqlcDn+LAXw96Q1qY5l2wmI3Z3u+ALRbCkuTLnrz9VNrMxacZNLd/LR+Bh1pW/Ja7pYkaIiKYLjy5EOvoFwx86dwHeuq4tj3tDVFisJgOiUiyoGFOai1QWckbIIH/MhZUW2mop3Kf+8joiUWna1ggd7PcAAM5a1AAAiKQY6lpIVihlcqY8rMnRz49KHKrLjBARTZfCvYxHlGfLZ1WxKQKRTmxGjjzbpZgyQqEUneOmY42QVbfWZu2cGgBI2cK7kHz3zavxhlWtWNDonPHvbdIFQu87cx5CYQkD7gB+t+koeBgmounCyyxEKdTYC/cqN1E+WM3yR0YgJA8LdRVDRkg5wQ4rGRl/KBJ3/3RkhNSys+WzqlCnvH6kCAKhCqsJl6/KTzMYfWmczWzExy9ahJZqGwAk7WxHRJQLDISIUqiZhrUDRMXMpssIAYA3IAcVFdaZ7zKWKZNS7qquO/GHo3BaTVpntFx1p9NTS2xXza5GlXJBJdUsI5Kp64AqdK271WzdkDuYl30iotLHQIgohRo7h6YS6akZITWr4lX+78jD3JlMqSfYoUgsI7RiVhV+9e71sJkNWNKS+2YGhwfk9UHr5taiWg2EimCNUD6p64D0bcbVQEgtwSQiyrXCLewmyrNqZoSI4qhrX9SMkD8oB0L2AmoNnciU0DUuEIqgxmHBGQsbsOebl0/L9zw66AUgB0Jq5mluXcVETyl7ap8a/eDZ85c04br17fjIBQvztFdEVOoK99OLKM8qC2gAIlEhsCaWxgXlK/X5GMCZKbVrXCwjFIXNPL3FEDec2o4/vdSJWTV2AMDP3rkOp3TUTev3LHbBsByoNuhGFFhMBnznLavztUtEVAZYGkeUYHWb3ELWYGCrIiI9LSNUVKVxiWuEItOyLkjv229ajYPfukL7+tIVLdPSna6ULGutxMcuXIQf3bA237tCRGWEl7yJEvzpvzewJp0oCa1rnK40TohYgFSIknWNU5s+TCcjL6RkRQiBT128ON+7QURlhoEQUYIKqyluwS4RycaXxkVgNxsLet6W2RA/R2gmSuOIiKg48NOAiIgyYkvoGucLRQq6LA7QZYS0QGj6S+OIiKg4MBAiIqKMJGaEfMHCDyrUrnGhaBSSJCEQjsJa4PtMREQzg4EQERFlJNY+W2mWECz8jJDZEMsIqQEcS+OIiAhgIERERBnSMkIhJSMUihT0DCFAN0coEtVK+gq53TcREc0cBkJERJSRxK5xvmAE9gLPrpi10jgJ/pCaEWIgREREDISIiChDammcX5sjFIaj0DNCWmlcLCPE0jgiIgIYCBERUYaEELCYDAkZocLOrph0A1X9ytqmmZgjREREhY+BEBERZcxqMmjNEnzBCOyF3ixBaZ8dika1QclOW2FnsYiIaGYwECIiooxZTcbYQNVimCOkDFT94j934GCfGwBQ67Dkc5eIiKhAMBAiIqKM2cwG7Ol2YcAdgCcQLoLSuNjH3GO7egEANQ5zvnaHiIgKCOsDiIgoY8eHfTg+7MP6Wx+H1WTAlatb871LE1K7xgHArm4XAGaEiIhIxowQERFl7J0b5mq3v3TlMqxuq8nfzmTAbjbi5vMXAAC6R/2wGA0FX85HREQzgxkhIiLK2DevXYlPXLQIj+/uxVvWted7d9ISQuAzly7F03v7sbPLhRqHGUKI9E8kIqKSx4wQERFlpd5pxXWnzIHRUDwBRUd9BQCWxRERUQwDISIiKnmr2qoBAKFINM97QkREhYKBEBERlbyzFjYAAA4NePK8J0REVCgYCBERUclb3loFADhzYX2e94SIiAoFmyUQEVHJMxgEXvrChaiw8mOPiIhk/EQgIqKy0FRly/cuEBFRAWFpHBERERERlR0GQkREREREVHYYCBERERERUdlhIERERERERGWHgRAREREREZUdBkJERERERFR2GAgREREREVHZYSBERERERERlh4EQERERERGVHQZCRERERERUdhgIERERERFR2WEgREREREREZYeBEBERERERlR0GQkREREREVHYYCBERERERUdkRkiTlex8mRQjRD+BovvdDpwHAQL53gooO3zc0GXzf0GTwfUOTwfcNTUYhvW/mSpLUmOyOog2ECo0QYoskSevzvR9UXPi+ocng+4Ymg+8bmgy+b2gyiuV9w9I4IiIiIiIqOwyEiIiIiIio7DAQyp2f53sHqCjxfUOTwfcNTQbfNzQZfN/QZBTF+4ZrhIiIiIiIqOwwI0RERERERGWHgRAREREREZUdBkJTJIS4TAixVwhxQAhxS773hwqHEKJdCPGUEGK3EGKnEOLjyvY6IcRjQoj9yv9rdc/5vPJe2iuEuDR/e0/5JoQwCiFeE0Lcr3zN9w1NSAhRI4T4mxBij3LcOZ3vG0pHCPFJ5TNqhxDiT0IIG983lIwQ4tdCiD4hxA7dtqzfK0KIdUKI7cp9dwohxEz/LCoGQlMghDAC+AmAywEsB3CDEGJ5fveKCkgYwKclSVoGYAOAm5X3xy0AnpAkaRGAJ5Svodx3PYAVAC4DcJfyHqPy9HEAu3Vf831D6fwQwMOSJC0FcBLk9w/fN5SSEGI2gI8BWC9J0koARsjvC75vKJm7If+7603mvfJTADcCWKT8l/iaM4aB0NScCuCAJEmHJEkKAvgzgGvyvE9UICRJ6pYk6VXl9hjkk5LZkN8jv1Ue9lsA1yq3rwHwZ0mSApIkHQZwAPJ7jMqMEKINwJUAfqnbzPcNpSSEqAJwDoBfAYAkSUFJkkbA9w2lZwJgF0KYADgAdIHvG0pCkqRnAQwlbM7qvSKEaAVQJUnSRknu2HaP7jkzjoHQ1MwG0Kn7+riyjSiOEKIDwFoAmwE0S5LUDcjBEoAm5WF8P5HqBwA+CyCq28b3DU1kPoB+AL9RSip/KYSoAN83NAFJkk4A+D6AYwC6AYxKkvQo+L6hzGX7Xpmt3E7cnhcMhKYmWU0j+5FTHCGEE8DfAXxCkiTXRA9Nso3vpzIjhHgDgD5Jkl7J9ClJtvF9U35MAE4G8FNJktYC8EApUUmB7xuCsp7jGgDzAMwCUCGEeMdET0myje8bSibVe6Wg3kMMhKbmOIB23ddtkFPKRAAAIYQZchD0B0mS/qFs7lVSw1D+36ds5/uJAOBMAFcLIY5ALre9QAjxe/B9QxM7DuC4JEmbla//Bjkw4vuGJnIRgMOSJPVLkhQC8A8AZ4DvG8pctu+V48rtxO15wUBoal4GsEgIMU8IYYG8KOzfed4nKhBKF5RfAdgtSdIdurv+DeDdyu13A7hPt/16IYRVCDEP8gLCl2Zqf6kwSP+/nftViSiI4jj+PWBRjEaDzVdYsAj7DDYVxCTqA2ix+gwGmwiLXSx2iwqyRoMa7NaVY5gJIrL+CbuL8/3ALQOXO+HHPfcMcydzLzPnM3OB8k65zMxVzI2GyMwX4CkiFutQF7jH3Gi4R6ATETO1ZnUp/7OaG/3Ur7JSt8+9RkSnZm79wz0jNzWuB/8HmTmIiB3ggnLSynFm9sc8LU2OJWANuIuI2zq2DxwCvYjYpBShFYDM7EdEj/LxMgC2M/Nt5LPWpDI3+s4ucFIX5h6ADcqCp7nRlzLzKiLOgGtKDm6AI2AWc6NPIuIUWAbmIuIZOOBvtWmLcgLdNHBer7GIcmCDJEmSJLXDrXGSJEmSmmMjJEmSJKk5NkKSJEmSmmMjJEmSJKk5NkKSJEmSmmMjJEmSJKk5NkKSJEmSmvMOw2Z3zFb/Xn4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import requests\n", + "\n", + "# 选择要获取的数据时间段\n", + "periods = '3600'\n", + "\n", + "# 通过Http抓取btc历史价格数据\n", + "resp = requests.get('https://api.cryptowat.ch/markets/gemini/btcusd/ohlc', \n", + " params={\n", + " 'periods': periods\n", + " })\n", + "data = resp.json()\n", + "\n", + "# 转换成pandas data frame\n", + "df = pd.DataFrame(\n", + " data['result'][periods], \n", + " columns=[\n", + " 'CloseTime',\n", + " 'OpenPrice',\n", + " 'HighPrice',\n", + " 'LowPrice',\n", + " 'ClosePrice',\n", + " 'Volume',\n", + " 'NA'])\n", + "\n", + "# 输出DataFrame的头部几行\n", + "print(df.head())\n", + "\n", + "# 绘制btc价格曲线\n", + "df['ClosePrice'].plot(figsize=(14, 7))\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "crawling url_1\n", + "OK url_1\n", + "crawling url_2\n", + "OK url_2\n", + "crawling url_3\n", + "OK url_3\n", + "crawling url_4\n", + "OK url_4\n", + "CPU times: user 6.29 ms, sys: 2.81 ms, total: 9.1 ms\n", + "Wall time: 10 s\n" + ] + } + ], + "source": [ + "\n", + "import time\n", + "\n", + "def crawl_page(url):\n", + " print('crawling {}'.format(url))\n", + " sleep_time = int(url.split('_')[-1])\n", + " time.sleep(sleep_time)\n", + " print('OK {}'.format(url))\n", + "\n", + "def main(urls):\n", + " for url in urls:\n", + " crawl_page(url)\n", + "\n", + "%time main(['url_1', 'url_2', 'url_3', 'url_4'])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "'await' outside function (, line 1)", + "output_type": "error", + "traceback": [ + "Traceback \u001b[0;36m(most recent call last)\u001b[0m:\n", + " File \u001b[1;32m~/opt/anaconda3/envs/myenv/lib/python3.9/site-packages/IPython/core/interactiveshell.py:3369\u001b[0m in \u001b[1;35mrun_code\u001b[0m\n exec(code_obj, self.user_global_ns, self.user_ns)\n", + " Input \u001b[1;32mIn [2]\u001b[0m in \u001b[1;35m\u001b[0m\n get_ipython().run_line_magic('time', \"await(main(['url_1', 'url_2', 'url_3', 'url_4']))\")\n", + " File \u001b[1;32m~/opt/anaconda3/envs/myenv/lib/python3.9/site-packages/IPython/core/interactiveshell.py:2294\u001b[0m in \u001b[1;35mrun_line_magic\u001b[0m\n result = fn(*args, **kwargs)\n", + " File \u001b[1;32m~/opt/anaconda3/envs/myenv/lib/python3.9/site-packages/IPython/core/magics/execution.py:1297\u001b[0m in \u001b[1;35mtime\u001b[0m\n code = self.shell.compile(expr_ast, source, mode)\n", + "\u001b[0;36m File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/codeop.py:143\u001b[0;36m in \u001b[0;35m__call__\u001b[0;36m\u001b[0m\n\u001b[0;31m codeob = compile(source, filename, symbol, self.flags, True)\u001b[0m\n", + "\u001b[0;36m File \u001b[0;32m:1\u001b[0;36m\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m 'await' outside function\n" + ] + } + ], + "source": [ + "\n", + "import asyncio\n", + "\n", + "async def crawl_page(url):\n", + " print('crawling {}'.format(url))\n", + " sleep_time = int(url.split('_')[-1])\n", + " await asyncio.sleep(sleep_time)\n", + " print('OK {}'.format(url))\n", + "\n", + "async def main(urls):\n", + " for url in urls:\n", + " await crawl_page(url)\n", + "\n", + "%time await(main(['url_1', 'url_2', 'url_3', 'url_4']))" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "034c70736e9d25f3f57bc70ec9a2164e1c27bdcdecfc656ea6098a86262350a2" + }, + "kernelspec": { + "display_name": "Python 3.9.12 ('myenv')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/in.txt b/in.txt new file mode 100644 index 000000000..1288c03c5 --- /dev/null +++ b/in.txt @@ -0,0 +1,10 @@ + +I have a dream that my four little children will one day live in a nation where they will not be judged by the color of their skin but by the content of their character. I have a dream today. + +I have a dream that one day down in Alabama, with its vicious racists, . . . one day right there in Alabama little black boys and black girls will be able to join hands with little white boys and white girls as sisters and brothers. I have a dream today. + +I have a dream that one day every valley shall be exalted, every hill and mountain shall be made low, the rough places will be made plain, and the crooked places will be made straight, and the glory of the Lord shall be revealed, and all flesh shall see it together. + +This is our hope. . . With this faith we will be able to hew out of the mountain of despair a stone of hope. With this faith we will be able to transform the jangling discords of our nation into a beautiful symphony of brotherhood. With this faith we will be able to work together, to pray together, to struggle together, to go to jail together, to stand up for freedom together, knowing that we will be free one day. . . . + +And when this happens, and when we allow freedom ring, when we let it ring from every village and every hamlet, from every state and every city, we will be able to speed up that day when all of God's children, black men and white men, Jews and Gentiles, Protestants and Catholics, will be able to join hands and sing in the words of the old Negro spiritual: "Free at last! Free at last! Thank God Almighty, we are free at last!" \ No newline at end of file diff --git a/lhy_comments.txt b/lhy_comments.txt new file mode 100644 index 000000000..07de17b34 --- /dev/null +++ b/lhy_comments.txt @@ -0,0 +1,274 @@ +把二十多分钟的小品拉长到两个小时,没有好导演和好剧本还是省省吧。 +有笑有泪的,不明白陈赫这个人物有什么作用,完全多余 +跟唐人街探案三的分数相比,很明显观众们评判电影的标准不仅在于你拍的好坏,而更在于你拍的态度是否真诚 +这次感受注定是感性压倒理性的,所以就不打分了。 +贾玲还是适合做小品,她的表演方式、她的叙事能力都更适合能和观众互动的、短小精炼的舞台而不是要被观众一帧一帧检视的电影。更何况她非科班出身,参与电影项目也不多,要执导筒讲故事就更是自曝其短。 +这是一部非常开心麻花式的片子,如果你喜欢《夏洛特烦恼》那么可以去看看,如果是抱着宁浩电影的期待那就赶紧睡个回笼觉,或者喝杯咖啡把瞌睡醒醒。 +但说一千道一万,《你好李焕英》只能是贾玲来演、贾玲来导,它是贾玲自己的情感寄托和内心牵挂。哪怕在我觉得很尬的场景里,她对母亲的爱意和思念都饱满到要冲出屏幕来逼我落泪。我也确实掉了眼泪,在大年初一这天。 +这种情绪不是浓汤宝能兑出来的煽情,哪怕我和她的人生轨迹并不相同,但我也在电影院里体会了一把贾玲的过往青春。 +我以为是我在为你圆梦,其实还是你陪着我做了一场好梦。 +贾玲水平有限,奈何感情无比真挚。虽然结尾让我哭的稀里哗啦,但也没能改变前半段就是个低配版夏洛特烦恼的状况。 +这完全是贾玲拍给自己的作品,不是拍给观众的,充满了个人的执念。 +你以为你已经很爱很爱妈妈了,但妈妈远比你想象中更爱更爱更爱你 +贾玲哭的时候很明显没有在演戏,这是最让人伤心的。 +前一个小时强行塞包袱,后面干嚎占二十分钟。。。 +我不喜欢,我不觉得好笑,也不觉得感动 +以为穿越是为了改变她的人生轨迹,竟然只是了却自己的遗憾。原来从天而降的大胖妞无论有多重,她都会毫不犹豫接住她的宝儿。裤子无论多破,她都会缝成小狗。今生母女一场,只能化作目送。以为她希望我有出息,原来她只需要我平安。以为她想换个女儿,原来她从没后悔。以为多了解她,原来还是误会了她。 +7分。豆瓣8.2分过分了,就电影论电影的话,贾玲这部作品最大的问题在于它不太像电影(但也确实比小品形态提升了不少)。如果无视这一点,主要凭是否感动或者哭了多少眼泪来评价它的优劣,那就好比让情色片与AV同台竞技,主要凭观众生理反应的指标来评价优劣。 +同样是女性导演的亲情题材,许鞍华《桃姐》8.3分,张艾嘉《相爱相亲》8.4分,就是把贾玲纪念母亲的真诚用心全算上,它跟蒋雯丽《我们天上见》——同样演员出身的导演处女作,同样纪念自己至亲——也差了几条街,后者的确是一部电影,蒋雯丽之后没再做导演让我觉得可惜,而贾玲如果之后再做导演我只会觉得她是飘了。 +如果你只是把它当成一件商品,那么眼泪的容量可以跟商品的质量成正比。如果你还把它当成一件艺术品,那么真诚只是优秀艺术品的要素之一,技巧和手法同等重要。【仙桃金逸】 +8.3分绝对是太不正常了。《李焕英》你不能说它差,但也绝对称不上好,只是前些年综艺大电影版的变形罢了。主题选择了“子欲养而亲不在”,表达上却仅限于一味的情感宣泄,里面其实你很难找出一个完整鲜活的角色,母、女也只是传统文化几千年来堆砌出来的固定形象,除了伟大和孝顺找不到更多的形容词。 +贾晓玲撮合李焕英和沈光林这段有很多笑点,但内核是很扎心的。 +因为它体现了贾晓玲的自卑和丧,她觉得自己活着什么用都没有,她凭借自己无法让母亲过上更好的生活,所以她才想出这个办法。 +很多人看了《李焕英》后都说:如果母亲生的不是我,她是不是会过得更幸福。 +但这并不是电影想要表达的主题,电影想表达的是,你的母亲觉得有你这样的儿女,就已经很幸福了。 +贾晓玲说她会看相,她看到李焕英未来的女儿会出国留学,而且收入很高。 +而李焕英说,我的女儿,我就让她健康快乐就行了。 +其实天下母亲都是如此。 +如果我们能功成名就当然更好,但如果我们没有功成名就,难道她们就会觉得我们不配做她们的儿女吗? +事实是无论我们贫穷还是富贵,成功还是平凡,她们都会以我们为傲。 +因为重要的不是我们做出多大的成就,重要的是“我们”。 +贾玲:我给你们讲个笑话,你们别哭。 +我要强烈批评影片最后刻画母亲买票又退票在大雪天中一个人走回去的镜头,我不接受,母爱不是因为牺牲才伟大,爱与关怀本身就是伟大。 +其实还是小品段子电影,最大的梗电影看得稍多些的观众一早就能猜到,但胜在有真感情,没有绝大部分国产喜剧那股鸡贼味。这片或许确实只能由贾玲自己来拍,换别的导演,就算拍得更成熟、更电影,恐怕也达不到现在的效果,或者说,就会是另一个故事了。 +这个底太好了,比起以往穿越片的个人救赎迈的更深了一步。本以为影片会如同以往的俗套一般会终结在「希望孩子健康快乐」上,没想到结尾以针线为引,将「无论你在哪里我都会找到你并且保护你」的母爱穿进了观众的心里,以个人故事为本,动了真情的贾玲担得起导演的称呼。在喜剧元素上,影片也做的十分自然,不刻意不尴尬,更是在演员的选角上玩出了花,乔杉和贾玲的父女堪比去年黄渤和彭昱畅。 +看到8.3分才决定去看的,看完了,就这?是我要求太高了吗?很多桥段感觉很刻意和做作,张小菲的假笑只有我感受到了吗……最后的反转的确有感动到,但也不至于如热搜所说湿了两个口罩吧,我还特意有所准备,我的感受是这部剧营销过头了吧 +贾玲昨晚的喜剧已经尴尬到我了… 这个导演的电影真的更加尴尬… 还是好好当个综艺咖吧!电影就算了…别伤害影迷的眼睛了… +“我宝”那句出来的时候真的直接泪奔 +我以为只有我回到了1981,我以为我可以牺牲我自己改变你往后的命运,我以为你可以更幸福的,我没想到你愿意过的就是摊上我的这一生😭 +国产+喜剧+催泪=烂片,这是豆瓣一贯的风气,因此我知道自己的评分一定不会公允,这里有掺杂太多我的主观感受:有生以来第一次在电影院哭得泣不成声。 +昨晚是除夕,我和妈妈大吵了一架。她气得直骂我没良心、白眼狼,我爸也心寒地把我妈牵到楼下,说不指望以后让我给他们养老。 +凌晨的时候,我给我妈朋友圈的拜年视频点了个赞,并发给她一个拜年红包,和她说“今晚我脾气不好,你别往心里去”我妈收下红包,给我发来好多幸福快乐的祝福。 +今天看到这电影,许多情节点都让我泪眼婆娑,直到女儿明白真相后,一路奔跑的那一段蒙太奇,我极力掩着眼泪,把哭声压到最小。 +观影是一个创作者通过作品感染观众的过程,无论它是否合乎艺术规律,只要能让观众感动,它就值得那个观众为它叫好,不必因为它是国产片就舍不得掌声。 +感谢编剧没有让李焕英以少胜多赢下排球赛。这个剧其实好就好在它的质朴情感上。没有什么输赢胜负,也没有什么人生逆袭改变命运。穿越回来只为了让你开心。不完美的小人物在闪闪发光。 +2.5 穿越梗是人家三十多年前玩剩下的套路,拍得也很糟糕(导演问题),全程味同嚼蜡,直到最后那个反转。这是皮克斯式的情感/视角反转(参考瓦力、玩具3和Coco),学到了精髓而奏效,可惜又处理得过于繁重拖沓。当然电影之外的真情实感的确很动人。 +真诚打动内心,没办法客观评价 +我最忘情的哭声有两次,一次,在我生命的开始;一次,在你生命的告终。第一次,我不会记得,是听你说的;第二次,你不会晓得,我说也没有用。但两次哭声的中间啊,有无穷无尽的笑声。一遍一遍又一遍,回荡了整整三十年。你都晓得,我都记得。——余光中《今生今世》 +8分?是因为我没看过开心麻花,对这个体系的喜剧存在一些误会吗?我以为自己对贺岁片已经够宽容低期待了,唐探,飞驰人生,流浪地球,都是手松一松能给4星的贺岁片,但李焕英是真的不行,毫无新意,所有的场景台词都是能找到一百八十个前辈的陈词滥调,听听你妈年轻时候的故事都比买票跟着别人哭强啊,脱离不了屎尿屁和融梗的国产喜剧,太廉价。尊重贾玲的心意,但不认同这是一部值得被夸赞至此的电影。 +在电影院哭得稀里哗啦。隔壁座的小姐姐也在哭。她问我:想妈了?我说:嗯!小姐姐:你也春节没回家?我指了指前面:我妈坐第三排,我俩没买着连号的座。这下小姐姐哭得更凶了。 +有一种“上当”了的感觉,第一次觉得豆瓣评分不可信 +贾玲你这样算不算恰烂钱?我就想问这个电影要干嘛?你要煽情没问题要找人客串没问题,要搞笑都没问题!可你什么都来一点。大杂糅无非就是要保证票房而已! +我讨厌煽情喜剧!即使再感人 流泪会有种被“打亲情牌”而被占便宜的感觉 +最戳我的就是在知道了48岁的李焕英是穿越回去的后,想起那句“我这一辈子过得挺幸福的,怎么就没人相信呢。” +意识到妈妈什么都知道的时候,我哭到抽搐。贾玲太有才了。在读你和我时就在想,逝去的父母是靠儿女的记忆继续活着,而如果你可以写作,或者像贾玲一样用一部电影来纪念,那他们就一直活着。他们的精彩也都没有被忘却。这是贾玲给自己的交代。我不停的想,到底我不能接受的是什么,如果她的一生在自己活着时就去全都熠熠闪光,那死去时也不能称之为遗憾,只是命运。 +贾玲说她把心掏出来给观众看了,我想说,我看到了。 +打着亲情牌圈钱 说难听就叫消费亲妈 +张小斐还行,整体观感就像看现如今强迫你笑你哭的春晚小品,对不起我真的入不了戏。 +这是今年春节档,我最最想看的一部电影。《你好李焕英》的小品,是千禧年之后我心目中最佳小品前三,即便珠玉在前,当得知要影视化的时候,依然期待爆棚。作为贾玲的导演处女座,这部作品是值得肯定的,笑点泪点恰到好处,没有硬搞笑也没有刻意煽情。子欲养而亲不待,她在讲一个珍惜亲情的故事,也在讲当代女性意识的觉醒,不鼓吹生育,不鼓吹婚姻,而是让我们看到,任何一个女性在成为妈妈之前,第一个身份首先应该是她自己。祝天下所有“李焕英”永远快乐。 +不想在大过年的接受情感强奸。 +基本上和夏洛特烦恼一个套路,穿越过去弥补现实生活的遗憾。但剧本比不上夏洛打磨的千锤百炼。能看出贾玲对母亲的真挚感情,但不足以撑起一部电影的篇幅。 +逻辑很差让人无法共情,前面笑料勉强可以,后面哭得可尴尬了,作为导演,她想导观众的是,看我都哭成这样了,你们快给我哭! +放在大过年,大年初一给老子哭????为什么喜剧一定要哭!不哭不行嘛?? +为什么表妹撕了你刚拿到的结婚证你都不生气。因为那是你女儿啊。 +最让人泪崩的是,我知晓未来所发生的一切,依然选择你这件小棉袄来陪我走过一生。 +不是我拉男女对立啊。当屏幕上出现 “贾玲 执导”字样的时候,就比起那些拍了几个直男癌片子就写“××× 导演作品”的,要真诚多了。 +“作品”这个词是自己叫的吗。。 +说实话吧,这要都算电影,电影的门槛是太低了点。 +散场以后我挎着妈妈散步回家,我想着她,她应该想着她妈妈吧。 +电影有一种聪明的真诚,可是这种真诚并不新鲜,每隔一长段时间,从让人疲惫的视效大片出来,你都能找到类似的感动,在国内电影市场上成为黑马。我们被这样的片子感动过太多次了。创作者不能老是这么拍电影,观众亦不能老是做煽情大保健。 + +它起了一个坏示范,无法从沉湎于悲伤中,走向理智,走向探索生活本质,因而它用冗长的煽情,绕开了现实的复杂。在某种程度上,它绑架了大多数母亲,建立一种刻板的母亲形象,抹掉了母亲形象本身的丰富,也绑架了身为子女的观众。 + +从技巧上,即使对比《相爱相亲》情节剧,它也缺乏力量,就更难对比类似《痛苦与荣耀》里母亲和子女作为独立个体相互平视的亲密关系。真的,我们不需要黏糊糊的中国式不分你我的亲情,我们不需要下跪父母,我们更需要在这种亲情中,走向人格的独立、人的平等和思想的升华。 +实际上三星都很勉强的……豆瓣分太高了8.2,好吧2星……没有任何创新,剧情拖沓,强行煽情…… +仅强于《囧妈》,结尾不错改分了 +如果你要陪长辈看电影的话,那就看这部吧。基本上就是贾玲版的《夏洛特烦恼》,完成度很好,笑点和泪点都到位,感觉会是春节档期大众口碑最坚挺的一部电影。一开始你以为这是一个熟悉的穿越设定,最后一反转,你会发现这不仅仅是一次穿越,而穿越的背后正应了母女情的主题。完了结尾的字幕又补了一刀,原来这是贾玲自己的经历,用这样一部电影去追忆母亲年轻时的样子。穿越回八十年代,从工厂记忆,女排比赛,黑白电视到祖父悖论,都是能引发几代人共鸣的设计,以前都是看贾玲笑,这次是看贾玲哭,很多人却是跟着她笑着哭。 +笑的不尴尬,哭的脑壳疼。 +看完真是气死了,求求中国的导演了,拍喜剧就纯粹点吧,咱别煽情别拔高别搞低级催泪行吗?我花了比平时贵的票价是来寻开心的不是来哭的啊喂。 +本来前半部分还算是精致轻松的风格,后半部分就又往煽情的低级趣味上去了。对,亲情确实很容易感人很容易把观众弄哭,咱们能不能选个难点的level,把它拍成云淡风轻,春风化雨好不好? +真TM妥妥春晚小品风。躲过了春晚,却没躲过这货。 +实话实说我哭抽抽了 看见张小斐想喊声妈的程度 +笼统的看下豆瓣评分就去看了,真的很失望,感觉评分是刷的,不值票价和时间,贾玲值得尊敬,母爱更值得赞扬,但这种形式,就像小学的感恩大会,有一个人拼命的在台上讲,拿出各种故事拼命的渲染,好像不感动不哭就是不合适宜。 +感谢贾导。感谢李阿姨,是您的女儿在开局落后15亿的情况下,阻止了《唐3》这种烂片成为2021年春节档票房冠军,她永远是您的骄傲。 +我未来的女儿,我就让她健康快乐就行了。 + + + +大家来看这一部吧,别看唐3了 +我求求这群演员了,真不是是个人都能当导演 +现在的喜剧已经不是喜剧,都是让你一会笑一会哭的,pua套路 +80年代性转夏洛一点不烦恼,从头到尾的无聊和尴尬,贾玲说说是讲述自己和妈妈的故事,其实真的和妈妈一点关系都没有,尤其是李焕应这个角色,就是一个工具人而已。一个小品撑长到电影长度已经很勉强了,结果还在小品里面套小品和段子就更让人难以忍受了。整个故事真的可以说一马平川,没有真正的人物矛盾,没有真正的情节波折,甚至,连整个故事的情感支点都是虚的,剧本的堆砌感实在是太强了,结构散得一塌糊涂,观众是真的好骗呀! +值得一看,但没有你想象中那么好看,尤其是当你带着豆瓣8点多高分期待去看!都说哭的稀里哗啦,但我确实没有哭…… +到底是一种怎样的执念,让焕英这老母亲,在人生最后的回光返照里,在明知晓玲的破洞牛仔裤是流行的情况下,都要把那洞给缝上? +看过这个小品,人都没换,变成电影了。。。作为骗钱贺岁档一点诚意都没有,史上最i差,看不下了。 +如果你看过贾玲的小品,看过这个的话。我不知道你什么心态。看什么不好看这个。实力劝退。 +嘴一句,是挺感人,但是我都说了。 +这并不是一个穿越的故事,而是是一个母亲在弥留之际创造出来安慰女儿的梦,真的特别特别特别好,贾玲值得。9/10 +让她再选一次,她还是义无反顾的选择了有你的人生 +咋说呢,贾玲太牛了,不玩梗的那种搞笑,一点都不低俗,但是笑点通俗易懂,演员也都特别好,而且有一个点很戳我,就是后面暗示了王琴的发达不是因为靠男人,中国就是应该多有这样的思想纠正啊!!催泪的地方也容易产生共情,后半段我一边哭一边骂:这特么咋没完没了了……然后继续哭....好了好了,我爱我妈妈,虽然我们也会吵架,但是我很爱她,一直爱她 +自我安慰式小品 +豆瓣也开始水了 +“我的女儿,只要健康快乐就行了” +神不能一直在,所以创造了妈妈 +陈赫的戏份太恶心了,和贾玲一起躲雨,陈赫和贾玲肥胖身躯挤来挤去恶心死我了,尴尬到我脚趾母都扣起了。 +贾玲好棒 抢结婚证那里 结婚证被撕坏了 小斐眼里含泪的说 我这一生真的很幸福 你为什么就不相信呢 当时看的时候觉得很奇怪 后来全明白了 剧本好棒 拍的也很好 不过李焕英不管票房多少 她应该只想让贾玲健健康康 开开心心吧 +感谢贾玲,我们太需要女性视角的影视作品了,在女性眼里,女人不和性挂钩,不被凝视,所以不需要少女,不需要磨皮,滤镜,让人看的非常舒服,今年春节最佳了 +那句"我宝"真是让我眼泪都要下来了 +吹的太过了,6.5分顶天了,整个就一个小品,这样的画质和声效离影院标准差太远了,网播就行了。据说投资3.8个亿,少两个0都不影响效果。要不是我的免费票没别的看了,真不会看。 +一开始觉得冷特的角色多余,晓玲总要回来的,这样留下一段感情对冷特来说很残忍,后来反转了才明白根本不是穿越,是妈妈为晓玲创造的梦境,在妈妈创造的梦境里,为了抚平晓玲的自卑而创造了冷特的角色,妈妈想告诉女儿 她也值得被爱。 +挺细腻的一部剧吧。 +以为是帮妈妈圆梦,其实是妈妈陪女儿回去帮她圆梦。 +我这一辈子过得挺幸福,你咋就是不信呢? +不知道有多尴尬 全程尬笑 +作为一部电影来说,是不及格的,严重过誉。剧情结构太弱,逻辑基础混乱,表演舞台化严重。强行抖机灵的台词和用力过重的表演,都让人尴尬得出戏,反而掩盖和混淆了剧作本身表达的内容。前半个小时,我深刻自我怀疑:就这?中间一个小时我满心期待会有更好的编排,却越来越失望。最后半个小时,我感觉被捏住脖子摁在地上强行质问:你哭不哭?体验极为不好😞 +从妈妈张开手喊着“我宝”去接人那瞬间开始,哭到停不下来。你以为自己已经很爱很爱妈妈了,想尽办法让她开心,其实她更爱更爱你,她包容你、守护你,甚至下辈子也舍不得让你当妈妈。笑点有,泪点足,反转到位,其实剧情的反转就是感情的反转,因此带来的触动是极大的。除了陈赫这个角色以及这条感情线略鸡肋,其他我觉得都很好。真诚永远是最打动人的,这部电影真的很用心、很真诚。【8.2】 +观感有些复杂 哭了 +但你又知道这个哭是生理性的,被煽动的 +你不太确定那是不是感动,你为这样的自己感到厌恶 +贾玲第一次当导演就能拍出这水准的片子,可见用心和不用心做事的区别到底在哪里,我觉得做春节烂片的导演们真的该好好反省反省。 故事虽然有点像某个电视剧的剧情,但也不全是一样,加上看得出来贾玲确实放了真情实感,后面的回忆杀真的让人泪目。 前半段的笑点也很多,划船那段真的笑到打滚!沈腾贾玲真的是喜剧质量的保证。而且演员们的演技还是都不错的。值得去电影院支持。 +看完之后感觉可能是春节档最好看的吧…… +有泪有笑,这不是一个人的感觉,是整个影厅的反馈 +````最讨厌这种电影!! +女性导演还是会更细腻一些,结局并没有刻意要所谓的“圆满”,贾玲第一次导戏非常成功啊👍 +看哪,贾晓玲考上了艺校,打铁娘子队赢得了新的搪瓷杯,王琴靠自己的努力过上了更好的日子,而李焕英,她得到了一次重返青春的机会,真好。这些女孩都有光明的未来,而这也就是中国电影需要更多女性视角的原因。(理性角度来看,这部电影自带的一些争议以及很多稚嫩的处理手法,确实不应该拿到五星。但是揉揉自己哭肿了的眼睛,我确实没办法公正的打分。一颗心都捧出来给观众看了,这不叫技巧性煽情,而叫真诚。)每位演员的表现都让这个剧本变得更加熠熠生辉(包括热评里觉得多余的一些角色的演员),而这部电影也证明了,不用一些带有性别倾向的梗(无贬低之意),也能让人发自内心地笑出来。最后表白结尾的文字:每个母亲,都曾经是少女。而在母亲这个身份之前,请不要忘记她是一个独立的人。 +“你以为自己已经很爱很爱妈妈了,妈妈却远比想象中更爱更爱你。你以为自己是在为妈妈圆梦,没成想只是她陪你做了一场好梦。” +好无聊好无聊,旁边的小朋友被无聊哭了,真的难看。不知道要讲什么,笑点还都很尬,贾玲演的这个人真的好奇怪,还一直愁眉苦脸的,她煎熬,我看她也煎熬。看在沈腾的份上两星吧,张小斐也还行 +看评论时有人说了这样一个观点,我特别特别赞同:“看这个片会哭地很惨的人都是特别幸福的人,因为能和贾玲产生共鸣说明有一个爱你的好母亲,一个只想你幸福快乐无私付出的母亲,但现实中也有一些人不那么走运,ta们的母亲可能自私,也会让孩子寒心…因为不是全天下的母亲都是合格的母亲,所以看哭了其实真的是一件特别幸福的事,这足以说明你幸运地拥有一个好妈妈。” +“我的女儿,只要她健康快乐就行了。”本来以为只是贾晓玲穿越回了1981年,没想到原来2001年的李焕英也穿越回了20年前,这里真的设计得太巧妙了。重来一回,李焕英还是会选择当玲儿的妈妈啊。开头李焕英看见从天而降的玲儿,下意识地就要去接住玲儿,这就是母爱吧。这种感情可能真的只有母女会懂吧。 +前半部分贾玲沈腾真的好好笑哈哈哈哈哈哈哈。 +贾玲在影片里用了好几次华仔的歌,不愧是华仔的真爱粉。 +啊对,通过黑白照片染色这一方式呈现画面也蛮有创意。 +哭笑交叉的一部电影。 +前面一个半小时三星,后面半小时五星,眼泪水真是摥勿牢 +1.5。喜剧元素出众,笑点属上乘。靠细节抓住时代感,通过时代落差反过来促进笑点 +"自我记事以来,母亲就一直是一个中年妇女,但是我们却容易忘记她曾经也是一个花季少女"。说得很好,可惜没有任何意义,在鸡汤里都算下流水平 +电影很好地完成了风格的转变,至少效果是达到了的,电影院里前半段笑声不断,后半段鸦雀无声,真正地做到了"有笑有泪,喜剧的内核是悲剧"的大众低俗标准,可惜转场的生硬导致全片漏洞百出,然而这些都在观众的哽咽中抛在脑后 +贾玲的确用心拍摄了这部电影,真情实感在影像的流动间溢出屏幕,对母爱的赞美让我们感同身受,很好地做到了共情,可惜这不是电影的评判标准 +"献给所有伟大的母亲",主题一下子升华,电影结束后观众的赞美声再次证明了煽情永远是电影最低级最取巧的表现手法。片中的母爱远没有达到伟大的地步 +新年第一部觉得最值得五星的片子,很好笑也很好哭。阳光下张小斐穿百褶裙真的漂亮,打排球真的飒。 +另,沈腾叔叔的表演让我相信雪姨阿姨是靠自己让她女儿去米国念书的。 + +微博上发不出负面评论,怒打低分。浓缩成一出小品 或者 拍一个短片,也许会不错。作为一部电影,一塌糊涂。难过。 +贾玲和他爸的乔杉真像啊! +是不是被隔壁唐3给惯的了,明明也就一般的片子,怎么一下就彪到30亿了,贾玲真应该感谢一下陈思诚 +催泪神器,给四颗星五颗星都可以理解,毕竟大家都太想“让妈妈高兴”了。 +“你以为你已经很爱很爱妈妈了,其实妈妈比你想象中更爱更爱你。” +歌颂母德,令人不适。如果一个创作者的私人情绪泛滥成灾,那么最终成品也只能是一个灾难。 +春节档电影票价很贵,选来选去还是看了这部,倒不是喜欢沈腾和贾玲,而是抱着宣传的噱头:喜剧片才带着爸爸妈妈去看,看完之后只有一个感觉,喜剧片不是各位的噱头,特别是春节元旦这样的档期,还有希望各位对喜剧演员的包容度稍微减一减,沈腾贾玲尴尬至极,还有一个要命的陈赫。。。。 +“可是我妈还不会缝啊” 自此开始眼泪止不住。 +以为穿越是为了改变她的人生轨迹,竟然只是了却自己的遗憾。原来从天而降的大胖妞无论有多重,她都会毫不犹豫接住她的宝儿。裤子无论多破,她都会缝成小熊。今生母女一场,只能化作目送。以为她希望我有出息,原来她只需要我平安。以为她想换个女儿,原来她从没后悔。以为多了解她,原来还是误会了她。 +豆瓣也开始水了 +有时候不需要太深的立意,故事流畅,人物真诚就很足够了 +催泪神器,给四颗星五颗星都可以理解,毕竟大家都太想“让妈妈高兴”了。 +承认是贾玲的真实感情,但仅限于此。 +什么电影手法,在真挚感人面前不重要 +所有不是沈腾主演却写他主演,预告片就减他出场的部分骗我去看的片子全部最低分 +如此成功地调动了观众的情绪和心理,诠释了电影作为一个现实生活的宣泄口和安慰剂,在意识形态上功能可以多么强大。越是回到过去,我们离现实越远。实际上,你和你妈的矛盾,根本不是靠两个人重新选择可以解决的,而是靠你妈接受了你的平庸,达不到社会成功人士的标准。可是,有出息的标准是注定不会被质疑的,只恨发财买车没有早一点,让妈赶上享福。这难道不是一个成功人士对“失败者”的冷酷规训吗?最后,观众在愧疚、自责和遗憾中流下感动的泪水。可是,女性之不幸,原来终究是子女一代的错吗?社会变迁、家庭结构,隐没在母爱的伟大里,逃避了追问。我为这样地利用一个母亲而感到悲哀,因为她的不幸仍要在这个大地延续下去,在循环往复的过新年里被虚假地应付,实际上这不幸是永远过不去的。 +完虐隔壁姓唐的好么? +被捧得很高的贺岁档 感觉剧情有点俗套 全片唯一的亮点大概是她妈也穿越了吧 +30/100 俗套至极的剧作本就奠定了不佳的观感,而后大篇幅的自我感动更叫人尴尬得无地自容。也许贾玲真的把电影当作了小品,如乱炖的类型语气割裂了所有闪光点,却依然妄图用“真实事件”来掩盖除了俗套的情感升华什么也不会的事实,并且前者早已在矫揉的煽情桥段里被消弭得一干二净。在影院看纯粹浪费票钱。 +你好李焕英或是春节档最佳 +陈赫的戏份太恶心了,和贾玲一起躲雨,陈赫和贾玲肥胖身躯挤来挤去恶心死我了,尴尬到我脚趾母都扣起了。 +提前看影评说会哭的稀里哗啦 所以看的时候我一直在憋着等最感人的时候再哭 结果憋着憋着就结束了…… +真情动人 +多一星给最后的反转 +电影一旦入了真情 讨论技法之类的似乎就落了下乘 +好无聊好无聊,旁边的小朋友被无聊哭了,真的难看。不知道要讲什么,笑点还都很尬,贾玲演的这个人真的好奇怪,还一直愁眉苦脸的,她煎熬,我看她也煎熬。看在沈腾的份上两星吧,张小斐也还行 +mv级别的电影 +贾玲现在不仅健康快乐,还出息了,焕英阿姨你看到了吗 +得知两个人一起穿越,很催泪,想要用手接住从天而降的女儿那个画面也是泪点 +所有人都把它吹上了天,但这就是一部笑点低级强行煽情的小品式电影 +带着口碑去的,有点强行感人的味道,评分高可能都是同行衬托得好 +剧情感情不落俗套,但煽情手段太落俗套,为什么国内电影都是这种【外放】的形式来煽情升华啊!!在影院里一边心里吐槽一边忍不住跟着哭的心情真的好崩溃 +题材很容易共鸣,不代表就拍的很好,就很中规中矩,甚至不如唐人街 +建议以后的导演处女作学习一下,老老实实讲一个发自内心的故事。 +太刻意了,结构方面甚至可以说还是个小品 +这么说吧,带了很多纸巾,没用上。 +千万别和你妈一起看这片,特别是知道你妈当年有的选并且选错了而且你现在不太行的情况下,看完我只敢聊去哪吃饭 +如果没有最后二十分钟,这部电影也就是一般只能打五分的程度。贾晓玲吃着包子忽然意识到什么开始哭,然后前几十分钟铺垫的情感一泻千里,哭得我撕心裂肺。结构能让内容翻倍地表现出来。另外,女性视角的女性真的太美好了,不只是张小斐,中年妈妈和阿姨也很可爱 +其实影片前面部分很一般,最多3星,但确实最后情真意切,加一星 +从前有个女儿,为了让妈妈长脸,宁可让别人家的孩子代替自己的位置,结果呢,妈妈从一开始就知道她的小心思了,默默地陪她玩这个游戏。因为,妈妈只想要女儿健康快乐。 +单纯对穿越梗感到反感与厌恶。 +终于有一个女主角,或者说是妈妈形象不再是人忍气吞声,忍辱负重的了。就喜欢焕英的洒脱和大气。 +诚然这部电影有很多不足之处,但它是唯一一部后劲大到让我看完还哭了俩小时的片,我中途还纳闷过为什么李焕英脾气那么好,晓玲把她的结婚证撕了她都不生气,后来揭晓原因时我已经泣不成声。对于电影,技巧只能加分,真情才最动人。 +从片子本身来说,算不上优秀大作。许多人抹着眼泪给出了春节档高分,一方面是其他对手太不争气,另一方面,最重要的原因,大家把高分投给了全天下所有人的妈妈。 +玲啊,真好,真好啊。 + +妈妈飞扑过去接住女儿时喊出地那句:“我宝!”直接让我在电影院把眼泪流进了衬衣。 +真诚的编导才能换取观众的真心,打动观众的故事才能称得上好故事。中国喜剧能拥有这样一群创作者实在是非常幸运。 +大过年的,一家人看一部有笑声、有泪点的电影,出了电影院还能一起开心地聊聊,还有比这更适合过年的吗? +这是这几年看到的国产影片中,从头到尾让人感觉最舒服的,这应该和导演及编剧是以贾玲为中心的女性团体有关系,在脱离了男性凝视,在不用女性当工具人的电影中,女演员的魅力被无限放大,不知道男观众如何想,但是作为女观众完全感受到了,那种仿佛闪着光的被超放大的魅力,把李焕英不只是作为母亲,更多作为一个飒利的女性的角色呈现在观众面前。 +过誉了真的。。。大概就是贾玲小品集锦+王牌对王牌煽情套路。 +镜头像微电影的质量,几个穿越情节设计得毫无新意,甚至俗,立意容易打动观众,但没有任何艺术感。评分这么高票房这么高,说明中国观众的艺术审美落后。 +女导演太棒了,喜剧并不是一定要黄段子!!前面合家欢喜剧尬点很少,后面猝不及防的高潮呜呜呜呜呜呜,世上只有妈妈好。 +前面笑到人仰马翻,结尾哭到无法呼吸。贾玲对妈妈的爱在电影里淋漓尽致的展现,忽然觉得拍好一部电影或许真的不是那么难的事情。你看贾玲就做得挺好 +谁不想去父母年轻的那个时候看看呢?!老生常谈的故事,司空见惯的段落,有些笑点,有些泪点,但大部分是挺无趣的。放在春节档里,倒是有挺好的宣传口(带着父母等等)来吸引观众入场。 +当你以为自己和电影中的贾玲一样拥有一个全知视角时,可能正是你要被这部电影深深催泪的时刻。电影最后,当另一个我压根就没有预料到的视角被打开的那个瞬间,我的眼泪就止不住了,真的太感人了。 +要说贾玲才华横溢那肯定是没有的,这部电影也确实像一个大型小品。但是以近年的喜剧片横向比较,至少这部基本没有那些低俗笑话。虽然离高级幽默还有距离,但足以为同行表率。在悲剧内核里嵌入喜剧是本片成功的重要前提,而这悲剧不仅在于对主角的同情而更多是共情,就再给影片增加了后劲。结尾显得长而直白的煽情是减分项,我想说导演不要太低估观众,最好的表达方式不一定要说出来,让悲剧在喜剧性之下涌动可能更好。 +太过个人化了,贾玲哭了太多,纪念自己的母亲没问题,但是拍成电影给观众看,能不能考虑下观众的感受?一味宣泄导演的个人情感,拍成家庭录像自己纪念不是更好? +2.2 真的太无趣了,根本不配称之为电影,贾玲的导演成分只有小品式的搬弄翻版,表演只会大哭和傻笑,每当镜头从近景zoom in至脸部特写时,失效的脸部浮夸表情与镜头的运动衔接此刻极其地不匹配,还在拿舞台的思维进行电影表演呢, 而且这个镜头在全片还有滥用之嫌,一股狠不成熟的视听手段暴露显现,可见当下院线电影的导演门槛有多低。如此老套的穿越梗情节,黑白到彩色普普通通低级的设计真的不是大一编导学生想出来的吗,尤其那几段剪辑太差了,几乎每一段情节都是如此尴尬拖沓,况且连处于时空错位之下都不会有效设计笑点,《乘风破浪》处理得都比这好。非要说真诚,全片唯一真诚的时刻只在片尾对于电影之外真实人物的致敬。 +女性主义的电影,描绘的每一个女性角色都很可爱,我喜欢王琴阿姨,看到电影最后她是靠自己的努力工作抓住机遇才得到后面富裕的生活,就很庆幸贾玲没有让这个角色流于俗套。整部电影最巧妙的地方就是在于最后一部分——双穿越。确实催人泪下。但是父母真的对孩子没有要求吗?我想并非天下父母都是如此。但是真挚的感情可以打动人。 +没有想象中的好看,中规中矩,评分虚高。 +额… 电影不差 ,但也没有那么好吧… 8.1过誉了 ,6.8分差不多了 +前面100分钟笑点密集,笑得人仰马翻,后面从贾玲奔跑那里没忍住看哭了,全片没有拉垮的演员,满分好评。 +既没让我笑也没让我哭,每个“爆笑”段落都尬出天际,最后又来一个大型煽情。片尾曲第二首是啥玩意?第一次遇到这么赶客的片尾曲。还有那段女儿撮合妈妈相亲的戏,跟这个年代催婚的母亲们有啥区别,约等于把“时代倒退”几个字打在了大银幕上。唯一让我共情的点在于即使是有李焕英这么好的妈妈,做女儿的也一直一直在努力想让妈妈高兴。这说明大多数母亲都让孩子感到亏欠,而孩子却在无条件地爱她们——宁愿不出生,也希望妈妈能过得更幸福。 +真的很好哭。 +脱离了男性凝视,镜头聚焦的胸和屁股。我只记得李焕英的每一个漂亮裙摆,被风吹起来露出一截细长的小腿,原来每一个妈妈都曾是美丽的少女。 +“观众已经笑得不行了” +结尾给整部电影涨了分,前半部分的笑料设计其实很一般,处于也可笑但又确实又有点勉强的线上。 +就这?就这?8.3分?我居然花了60块在大年初三去看了这么一部电影??大家对中国电影要求这么低了吗?我承认有些许的小亮点,题材也不错,所以在我心里它可以打到及格线6分,但是这完全没有到优秀吧?剧情老套,转折生硬,最后一大段贾玲的哭戏哭了我一地尴尬的鸡皮疙瘩…哪怕换个有演技些的演员我都能再多打一星,一整部电影就像是强行煽情的哄闹小品,居然能上大银幕还有8分的高分?我服 +“人在委屈的时候就会想妈妈” +故事说不上新颖,可是母亲这个点总是能打动人,希望每个做母亲的女生记得对自己好点,不要牺牲不要伟大,让自己开心快乐很重要。 +3.5,之前从来没觉得乔杉和贾玲长得这么像。 +前面这些天听够了大家的笑死哭死等夸张评论,眼瞅着春节档这唯一的8分电影满怀期待,看完后内心一片狐疑“就这???”不管是造梦还是穿越都特别偷懒,甚至编剧都没想怎么去说服观众,只想我逗你们笑让你们哭就行了,然而这电影既不好笑也不好哭。一切都特别矫揉造作,甚至还不如当初的小品好笑,也不如贾玲在综艺节目里回忆自己妈妈煽情。沈腾的出现就好像贾玲需要一个拉票房的演员,然后靠友情求过来硬塞进来。你以为这就够工具人了?那么陈赫的出现让你无比困惑,他存在的意义是什么? +哭瞎了,啊,女孩子真好啊,又甜又暖 +好真诚 诚恳得不像一部电影 像是一首散文诗 +在贾玲说出对啊,我妈怎么会缝的那一瞬间整个电影在这里开始反转,从这里开始显得不一样,我爱这一瞬间!!!! +有一个影评人说过,其实好作品没有什么标准,只要她打动了你,就是好作品。张小斐那句“我宝”出来我都哭抽抽了,无论在哪里,妈妈的本能就是保护孩子。BTW我真的无法正视沈腾了,他不说话站在那我就很想笑 +“打我有记忆起妈妈就是个中年妇女的模样,所以我总忘记妈妈曾经也是个花季少女。” +熟练地搞笑,稚嫩地煽情 +想让隔壁唐探3编剧瞧瞧 +什 么 T M D 叫 反 转 +贾玲最后干吼的那一段太尬 ,有时候悲伤真的不是靠哭来让别人有共鸣 +让这部电影挂在中国影视的前列,告诉所有电影人,电影是抒发自己情感引起全国共鸣的好办法,质朴的手法、真挚的感情就能获得观众的理解。 +戴口罩看这种电影太反人类了,哭得口罩都湿了,糊在脸上好难受 +诚意之作,希望往后能多一些这样的电影,少一些圈钱工业垃圾,没错,说的就是陈思诚。 +最美好的一幕是贾玲在山坡下,看着她爸骑车奔向她妈。我就想着,我也愿意去我妈的年轻世界里走一走。 +好好笑啊! +而且没有令人不适的颜色笑话,女性视角就很棒👍🏻 +虽然有点煽情但是不妨碍好笑 +这破烂电影能成为中国电影史票房第二,是中国电影人,乃至世界电影人的耻辱。煽情、刻意、莫名其妙,什么感动,老子只想笑。 +看电影最厌恶的就是电影里的人强行煽情哭了但是看的人很尴尬。喜剧部分也做得不怎么样,沈腾说是男一的戏份但是存在感比陈赫还弱,更看得人难受了。 +这片子好时机,能这么高分,只能说明人民群众的情感匮乏到什么程度了 +上映前评价不好,我就觉得就当爆米花搞笑剧图一乐吧。看到一半觉得这绝对算搞笑剧里的一流作品。看到最后,我错了我全错了,这一流喜剧啊,好笑但又戳泪点,而且这泪点真的不是一哭即完。还有片尾那些话让我回顾起剧情更难受了,说贾玲靠妈赚钱的能消停会儿不? +李焕英阿姨 您女儿可太棒了 她真的好爱您 也真的很遗憾妹让您坐上敞篷车 看着她现在事业有成 我也好爱我的妈妈 希望您保佑所有妈妈都健康平安 长命百岁 +没有想到这么好。一开始笑死,后来又哭死。结尾尤为动人。 +不太是电影的视听语言,像是抻长了的好几个小品,但沈腾贡献了很好笑的表演,以及妈妈对女儿的爱永远比女儿对妈妈的爱更多这个题眼还是很动人的,是强烈的抱憾的女儿视角。在穿越回去的那场母女对谈中,双方都心知肚明,但都打着哑谜。女儿希望母亲幸福,即便这样的幸福图景中没有自己。母亲希望女儿健康,即便时光倒流也从未对当时的选择感到后悔,从未想过没有这个女儿的人生何以可能。希望这样题材的电影越来越多。母女之间的共情和联结,是一个眼神,些许沉默,无数眼泪和一声叹息。 +1.道路千万条,安全第一条,各位上路一定要看路啊!2.感觉像是夏洛特烦恼的翻版,夏洛特毕竟第一次,还有点经验,这个,,,毕竟这年头穿越剧好多好多3.母爱太过沉重,看不下去,反正母爱伟大完事4.作为男的,看这片怎么老想着名词“丧偶式育儿”。。。 +电影的所有呈现,打四分其实就可以了,但是多出来一星要给到女导演视角下的女性主题,完全没有让人有任何不适(拉踩隔壁某探3)。没有刻意制造的笑点更没有刻意制造的哭点,一切都是很自然的发生了然后触动观众,这很难得。好喜欢贾玲,有谁会不喜欢贾玲呢。 +得比唐3低两分 +就这破电影,一堆人哭的稀里哗啦,还觉得自己倍有欣赏能力,还觉得自己共情。打个三分不吹不黑,但硬要把他推上45分我就不敢苟同了。 +摊手。打个两星凭着我的权重把分拉下来。 + +我又回来了,改一星了。什么鬼剧情什么烂演技,这玩意有脸刷8分?????恰烂钱??? + +来杠我!三无小号尽管来杠! + + +……3月16日更新 +听说这玩意还能出口国外,真把自己当啥了 +“可是我妈现在还不会”这句话出现后的转折是我怎么也没想到的 一贯的思路都以为只有晓玲自己穿越回去希望能让年轻的妈妈更加高兴 谁可知母女两人一起穿越回去了 这是这部电影最大的转折 也是全片泪点开始 让老套的穿越剧更加新颖 挺中规中矩的一部片却也很特别 母爱一个讲到烂的题材 可是这部电影还是刷新了大家的印象 妈妈怎么会不爱自己的孩子呢 +生女儿的妈看不了的电影 +眼泪哗哗的 +但是还是推荐阖家观看 +贾玲说了这片“我把心都掏给你们看了……” +任何时候真心都是最打动人的。 +有的人见妈妈坐飞机,有的人见妈妈要坐时光机。 +其实如果从电影的角度来说,五星是肯定不到的,四星顶多吧。但从整部电影的情感来说的话,真的太真挚了。我相信贾玲一定是把那个充满了遗憾的自己刀剐了千百遍,抚慰了千万遍,把见母亲最后一面的一幕想象了无数遍,才能产出如此真诚的一部电影 + +当然,导演水平挺普通的,艺术性也基本没有,但真的就胜在了真诚,嗯。 + +确实很好哭,也挺好笑的(但有些笑点还是比较冗杂) +这应该是贾玲作为一个女儿最极致的浪漫了。千千万万走到电影院的人,去了解李焕英、纪念李焕英的同时,想起总是被我们忽略的母亲。 +"我宝"那一句真的泪奔了,五星好评,前面笑点不尬,后面反转真的流泪了… +缺点:1、诉求和故事主线不统一不连贯,主角不够聚焦,故事成了拼盘一会儿是张小斐的戏一会又成了沈腾的戏(在这点上同类型的影片《夏洛特烦恼》就要比这部强,主角欲望强烈,诉求明确,主题突出,当然夏也有很多问题);2、情绪缺乏克制,没有留白,这是无法成为经典影片的最大障碍。优点:1、女性导演女性视角,难能可贵(当然并没有突破男性视角);2、结尾处理很好,催泪全在这段,准确说是104分钟到110分钟;3、笑点设置比原版小品好,尤其沈腾在舞台上演出那段设置特别巧妙,打破了荧幕,直接和影院观众互动那种。影响:好的影响是未来大概会出现一批女艺人来做导演拍自身故事,这部片子8.3的评分说明我们影视欣赏水平稳步降低,良好的市场表现会引发大量模仿,咱国影视质量又将大幅下降。 +大型欢乐喜剧人小品一则,胜在感情真挚。张小斐可以的。我和我妈全程无表情看完,无情母女。 +这分数真是绝了,太虚高了。没啥笑点也没啥哭点,唯一感觉演员演的都不错,尤其是张小斐。全国人民给贾玲的情怀买单……还把全国人民都感动了……好无语…… +不至于不至于,逻辑都没有,从电影层面来说问题太多 +6 看简介以为是女性版《乘风破浪》,其实是80年代版《夏洛特烦恼》。细节工夫到位,OST有流行音乐,也有真正属于那代人的《年轻的朋友来相会》!情绪处理得挺好,也善于营造气氛,很让人感动。尤其处于疫情背景之下,“亲情”与“告别”很能令人共情,更何况是“妈妈曾经是少女”引发的女性意识呢?到了最后20分钟左右,很多人都在抹眼泪😢 影片不乏许多问题(尤其是剧作结构),但作为贺岁片,绝对及格了。PS:场下UCLA毕业生一脸辛酸笑。 +张小斐喊出哪句“我宝”的时候 +宛如某晚小品,前面不管咋地最后反正都必须给你一个煽情。感觉前面拍那么多有的没的都是为了那个煽情结尾,可是你起码也把前面故事编圆了好吧?真要图个感动就拍最后十分钟足够了 +贺岁档基本都看过了,怎么说呢,这部片子的口碑真得感谢同行,不差,但也没有特别好。 +从另一个方面来说,真正用心用感情去拍一部电影,真的是可以弥补专业水平的不足,甚至可以打动观众的。相比之下《唐人街探案3》就输在这里,陈导很傲慢,砸钱就完了;贾导很真诚,只想记录一段平凡的母爱和想念,人民群众真正喜闻乐见的是什么,答案已经有了。电影不过是影人和观众的交流,真诚的情感可能不会被所有人接受,但空洞的生意不会被任何人共情。 +我也曾想过,如果母亲不用为我牺牲,会不会成为更伟大的人;或许会吧,但她就不会成为一个伟大的母亲了,我又何必帮她做出选择,我能选择的只有如何回报她 diff --git a/out.txt b/out.txt new file mode 100644 index 000000000..65925f14e --- /dev/null +++ b/out.txt @@ -0,0 +1,127 @@ +and 15 +be 13 +will 11 +to 11 +the 10 +of 10 +a 8 +we 8 +day 6 +able 6 +every 6 +together 6 +i 5 +have 5 +dream 5 +that 5 +one 5 +with 5 +this 5 +in 4 +shall 4 +free 4 +when 4 +little 3 +black 3 +white 3 +made 3 +faith 3 +at 3 +last 3 +children 2 +nation 2 +by 2 +their 2 +today 2 +alabama 2 +boys 2 +girls 2 +join 2 +hands 2 +mountain 2 +places 2 +all 2 +it 2 +our 2 +hope 2 +up 2 +freedom 2 +ring 2 +from 2 +god 2 +men 2 +my 1 +four 1 +live 1 +where 1 +they 1 +not 1 +judged 1 +color 1 +skin 1 +but 1 +content 1 +character 1 +down 1 +its 1 +vicious 1 +racists 1 +right 1 +there 1 +as 1 +sisters 1 +brothers 1 +valley 1 +exalted 1 +hill 1 +low 1 +rough 1 +plain 1 +crooked 1 +straight 1 +glory 1 +lord 1 +revealed 1 +flesh 1 +see 1 +is 1 +hew 1 +out 1 +despair 1 +stone 1 +transform 1 +jangling 1 +discords 1 +into 1 +beautiful 1 +symphony 1 +brotherhood 1 +work 1 +pray 1 +struggle 1 +go 1 +jail 1 +stand 1 +for 1 +knowing 1 +happens 1 +allow 1 +let 1 +village 1 +hamlet 1 +state 1 +city 1 +speed 1 +s 1 +jews 1 +gentiles 1 +protestants 1 +catholics 1 +sing 1 +words 1 +old 1 +negro 1 +spiritual 1 +thank 1 +almighty 1 +are 1 diff --git a/params.json b/params.json new file mode 100644 index 000000000..a3db5be58 --- /dev/null +++ b/params.json @@ -0,0 +1 @@ +{"symbol": "123456", "type": "limit", "price": 123.4, "amount": 23} \ No newline at end of file diff --git "a/\346\235\216\347\204\225\350\213\2611.png" "b/\346\235\216\347\204\225\350\213\2611.png" new file mode 100644 index 0000000000000000000000000000000000000000..88852f77c774f2c834dac98e55ecf301bf6b4117 GIT binary patch literal 299564 zcmY&fV{jPX+uhh~>@>EUq_J%_Ns~0TZQE$VqhKa9WBG+ff?{)HVT zNu4VpuZLZ0?SB``=Ho&8rN4L_xaSPT|F>3%U(I%gIt+IbS#Ox66on;qb<^XK;Y2n` z${~NAq!>ONueK~veY*G;D@q#Dgv%H3m%Lwt31vkdZ&9GtJ$G~DUh?IBGJs3auXUcf z{1J#tVowsa-$M=5789C6Tssx~HGHQaPCRi>9=98ZT z;@Q>y-x_Z9S}h5kFX6rJ4{Kwi*R#`)-Owdq1|fkw2)$(9eNq)FcI*$@p{kuDx%;4jfFn2>6W2iC;ByK-vdS%t{oRYmip6X`;q z6uV1M_g@w{HvXzJAZKe>zac}AL(LBhg6xvN6^}QSO=P7N{ln{zGtW$pn?)kQ ztJC@ra7+=_BLU_&5D|*QN*N$1kS^A{^U2e>tV=Y8)Y4>wK}Yb@)y^Bu^Xlq%VK2ST z2%qhateaa(KNTkCgd88=_D+v!W1LcbCmNMva1$?1FD{hOgWGXd&7+j^G2kP-eOG-k zNhBXGA`>?M<7C7W>-|W)w&Cjch8BJfB=E$XhY3;Usvabt`NW0MpCuN)Bi};=eN0xa zcm#JL;boAm4Ijq-?cON2LpqEQbozzYwJ=|i+3kAxq-G`B=wAz>Y3cIC_eTsAd>$GueUp~ zx2T?CBqDQ^zC#PTHZrGzb7XP$ZthcL2xmv=b(`!;1N zy6_ZK!C6l)6+L;KhbmFjdTDj;3Gn>u=Fcxk)M|=xepbxXC~usfcvL;pc5S{-kUPB)%3vfo%-7BfZu zG!S@j1*&*=nZFYD-VF%(r6 zj*E6)#bL#A;{MFMwl43!Ixi>{v%g&&PsX7|{W;?Uj#TL!1h3=d^2xXCj74c^Cw^of z3MLfzy+9iY&{Zg&!14NQiMNVc0Rc3bXTwN$bPC6+!05-{4NA~%?u!?>-el#_(B+Z$ zf+4k-|Tw5ybq5CkYHLds(6ZDNNLpcE)k=tJ;*mONJhBc49GEOKCPhsf$?OcRBf z*K?)SKn1ev{&2!n@h5GXCT#I;ZQzn=zPaaEu)~PU9c;;ewF~s!p~ zWPGNjy#v)oo}oh)v8ae68xn~)v~ZR0v9tX0dDELMDt6}@0weXHfr6`6&$+oT^QB1M zH^X?ZX?5fjDHQ$-X^5F6@6Ey~6M_%~cU!guqcVePhteQGmApWWiR`K5)-}Q8{&3}5 zZ05pNSaSzqY_@BulK8z_ND#8b4tW{v^gpS(@95R-i`4iz7~t&&e_pJQmsZHb7ju-U2RqI@pvA^ zOsP39_GVe@jDm9Xt|)~5=6bsSa&r{7vbNA}X>c^YcFRz=EY`{C=SWxgX1>-mR+XnK zC)DM>C##2Ye)#EIJ6CH-7DG}}MVpJ&I7b@fdc!IjdzRZo;&R8W_Ez+!1|Ig&`K`uH z%mo%5j=wJvbg7q2!(OZT;vGi^9m}nS!gNXX?f`gw<#d6nO3LnsR6&70sK3Ea{BS|v zGMVvGdaW)PJ?DpYDZ>JDa%sGaOKWd4$_kx;E<8j}gW6iyW`RGIZ)uvB~sB{ zB=={RvFt6n7Xp`sKO;Q?!c7+23oU_tSml*D_(3XWwo(u4ODh1NyfR_wu~9b^)h$wm zK*8QF*9kD+Go`#>1*z=@lvP>DCLhAU?o30iWgv&r%LS^q*8~wEx2IVtkZyXbwRJx^ z7w@PS?<7;$i$@%JgKD@q(^fK<`9@WZBe<&;XlwQqy2<|$jaKi6XPjf-Ajnt04}RYA zPstl}kPpV=GICt?XXxPQ=tTzw7~#DgKB8k|H+qAD5pXds&grUjI`Z?kAIjr28zq^U zM;PIqPqfu4*H&v^2il&8Cypoq>Pga7XXhMUDD2Ca;>eu_5|=k^K}>MULt zUE9wlxq-UcJeP|6CPOA1&YR%?VfaDJ^JOLK#HG%vuRv+BzWj`f-^5~`+t>qgIEeM- z^|d%h0l-bDK-v=?Akt$vU>d+3T`PtL0Zgj7!H5eQATLN60RRVGQ#Zu+6Ia~<1NhI-0 zy$EY$E!>GY3u&BfrRlVZ>ihL8=+MHC1_;-N(YJbtLak_{X7C6pk*BnX3q_UlC6!Qi z#(iPh*~D-3fkRJ|5MK!rT6kMt_e3f;(R+LA^^m;%s^3IB-r*l`reGG8_p0*v)}%!cZ#d(qtS zzqr%YF{*nnbwN|B7r^NylmZ2%U;+SG1=j>sIFHo5qL7o*$uP$)mPJF>HX$Lc;}9;e zdjmy}WHfJTi+h0~>U{;A?|X_Q#o~nvE^&2@VeX8B%u}+*#JuTZR*UT##jDnD!@{0x z$t3MdO3!smPBJVXBv%NnJVIfoRLJa3j6NKYwi+ zg$t`c^b-&!iYNxzNt4ApJ+GtRmSQ~zqZ(lZ;&imyO}t1;J1){r)qY54q-<^9TjNvE zOCNMVz;Uvc?1FPpz`<>D*{|FwRm?6k=+MTZv9e)*W@4i}8wh>}eEf(sjmA-#QY<6i zWz6oYWI9jbA!oy1_YcOIdN#Vv8!_|H|MokG% z3?8~mNt!20$s>AoiXDLBhKnXKreD`_dbr+MiC7d zU@$rXRkLeaCBxGDdzlk8hN+DS;Ln!(U;!0Ch8F^#wrCz6FP|9axjU^iE|iS~LrzFj zN=#DAQ#Lzax${-7cV#=ub%m}WhEF! ztE^s0$Ennc610WAVf~9m;178M-{z%KO2IHYW9^z#+H!oQ5NXBYr^M1tV* znmc;O=#iyxp=1J-zd@7~6p<}mF8o1HW?x=N=6rs4XDrAW#K)zMl3~HX`e6)_$ORQy zmF{AkTxj5mqp_0f`N1^AyylRw@l@MlE*}8qf<_dd8x)^^(6fD4zT$H}z)EB2s|dK! z;U^N^95jr>jztmOvPxi>)JdIZhzrUUjWP56CF4yvVHq0XK}-Lzd##TgJj_3Vj-fVU zFwlvOcK6sEy(DnXL&UqL8bDykT%6IfSW0b{C>id5LE8XA@v**3s=SvjYJgZ@3|-@N zWAM5kz1eEqGL5-A2nNhyIhD70XjM4|Uv@GxOBdmTZru|LB@GO6?T_v5aYqNZXBOo0 zGWO*w34#F0IbpIer-$~1`Cbxo6k+iH5k-Z?N?&i69AAb+flq91xYW4 zsjybqlC5Ueyh7T_ZxD3-C+Hd!1r65B@>Dl9p5q4%znPO84Nm<>%;atYUPq0hI~vp+*rt~)_+AR!8EwE z0|Z!0%=GL#{0-T2u4&#X!8n$^i0h^jj|@&8qAJUvSADWm&=&elFCHo|0uNgvFNgK# zmvE~wFMHgjhd$tu5DAES1pX|pT}%)YGBt1*2mlE8=``TmJP-)qrMP5E zD@vk3axu@he=YD{lVsU$)-f6vzq1;Ymx%)?pm7UZd|;zzan4<9&QYY#Cz{P|4Q!>? z3iAe>wsB2Q+dgz+-kUkUiecCXqaihz2nYaWXV1ssPCl^yUf(Sw3em8FV5MC8DK5wI z{$?|GRB(NbxKSi=og`>a0PwG6G2-sw=9l<8(HF;7sGd~xW*eqYO#xU&nDgT#AXY@A zfRDy9`-Wd);*PV#48O>`-@22$0$*)$1OyOMf`nVm70sD4n7(GDIDdkWIPtJ51i5w@ z#x8yjaUdp%E{0oY>c7V4m^0|;QS4JLc3^62TVWtI$*oa;GLkYvG5BI}g4&1;?I++K zpEf|$$bs66dpaI+M!!E_CV}j;@)IPDN;W9Io{zm#M`hq(M~&eARayA$J4{tatGZVy{)E!mByeTSnWCvtUhZl&j2smU=k|PP+)8&HF?&77|M7n z5KMfO@r_Rv-SS@Xy|iB3ZV^5}v_s4EGwBo|(QX_Y@S$;T z4n{WKk=#->bMLZYP(^*bd1Rj{_mBia z&S9)PH;M6sy6T2{K9J~wgvXwX%?f7iTObQwTZ4d_M)5>WkMz)XxuTziuO2Cp{T`-e zVwtkB)E%7z8FSgit?DuzJ!XG9T+W{{fL1p8Z zm6kJFmzOQ6L3N#zMr$W^q0tJB^ki!2|`=rGT;+5V!%eP3k9p6E$8vkT^ zW^savV7}KH&$j(Ssrc&Bh;sP5bj4Z6H8yMVUA_tI&4t)tlAkI{P=!mn)_F(7EOR3^ z78rs8AB#Bk-YzF)IKA3<=@yDGD`5nKYFV8Qg!OW`xTs}wr;Yy%Deqr+el1(W6TYZ> zSggKr^@6?`-`84+NK#cU#V4*0Bc@>Cy*PO66z>RPLY~$O2%+*=UH}%IX`$QYkW0p2 zStJwK5d0U++1EE8-<3f$?8(U~AowRlerccknnS=ND-IOE`i53VNVI^BU8YpVZYEDXkv1Jpjhp!wc&3y z^jOjd0(Pd?r-Q$Sz+%54|1?FbSayX{_VFv8SOEjJK;d`{1A4Tu#V-;MH``flyXo zs?RtZ&)mRh0s~U(iswi2w9icGZuv}+npp7j{yjUxK?np$4}3ll@?OuOQu|HG-&Kko zzIomL70$!QMyn#NPP}Gbo}^f=R7udTR<|oJ^RN|MJ2fhLR~Fcgir@l#NSdGJki1sTkn7JHVA)|;NM~dSq@9H^D&c=T3Bp(_uRq;Wjo7dF+*}bUAxGUk<(ug zE|Rfbjt@VRoI6~;#T|5Y@#1w# zuZ7g`o7)P&1NdXceHX!Veh@JA#^y)Hg1%`jq|KC>-7PPs`Gw@nH>q(qI;SPtStk>H+fDm zg^v`uX-7+z@m;1|3(s{mo2Rn#H02u2Iq7*W`HZ}KnRZQbcJJ*m4m zW#u&$b^lyk>XDhQ0u)GAlzJEzqIM|+YgoD1afn}a8x;0sldRSN_~E_JCT@^CQ>J&< zvTWakh(Hu7MnC}GPhtGjF_D>=xTZw@Z@&|Kry*zk6lI`dhzRpKq7CYD@_ zJNN8ne-R$uRy$hZWKYhEkmu+N20#JmBbWwR6-uN!(2FkZ7)bw}*+-QfaD`HNN!C=I z%EG9otQrSfK^DZ(vWjZ&=Y~5jrpybL-0#d|k{>o?{mRclxW$9FaJ*?8PA2ANLuD&1 zgcaJxid3CrseiZ&*s#3h+6}eI+glD|`5Lo4oqh!qmcPDON*SdJmog33z`gXxw1+Z+ zT*5|sYYGY>M|J~1ks@W#%d@je{j0sb9WD+4RM0Mn9Zr3izy_)35Qs(S=g5BWz}Te66xUIa zZ^_0`7r#usFXsF3*UBto9l`=WTqAr|oR=)}Np3P4{^aMx8JVedzZ!8n@b*5Id*>~1 zz8_i5Ap%1Q>D)SxVl7Wgpr0zBB}t&>AQ!aC$iwv(UA`p@;b_HqYe@*m8rK~+dI4!d zZ|{jZ;8i2Uuv+i;C+@(mn50B)a?9A zvBzCs6erkEvC{i_N&zLl+Ex}Wcyu^Y%G0 zJYG^V+sL3FE~43*WyJ`7Ke19yzEaKO8f z*uDG1mhU$R2ntwO-cFZ4g5pDAC?xML+~$^yG5H_>kpU02?l=f=gpi0j|5aH+YMc58 ze|sW}thq#7n|ZbbcEX0I`h2(2_CrcsDJ4S~HA&d|YFZ3aze$_ng)f|m<}4UXCbWV8 z7j0@hF4oBviA4{k4#faKeIh5oU9V060D*xfY2y<3s&mU@#kTa7nH4Uez|EiZOx+N{ zQ?uU5PNBPi1I1odzz41Lz4dN<@U1i9NYjD>Or(}}rrCIues8oA6quN^DpEX@zIV$2 zowac0Qp|4hl8e==BN4qFXqg6G@geQ;SfN&1XX4Y$m9(Bp{Q4eoxy{53IW%e9?S^F7 zN2Vr6D%o@FtqTK;{Dv6}q1BP+6^Z4J^A$pGEpPyjGyVD^%v4+Zyi!_HX!iae53-Mu zOQ(qcFO;=E6y^&w@G@ehotk)8ktFOgNd#bkysjIqH6GYLjtmDWkvS{G+H3j+Z5=KJ zll4PgLl-`f-6v^BwkaCUTW7hdwE9y-tR-*-Dd?Cy+QVHast#%`1?}_mDcGBo{c{v9 zDQ%t@)=hVK7r$sv*0LOg0(ERjm)fAl_>rJ4J9^E7hEAMP9SaiWU6+ztBGE3g#ui-e>}u9jXUt@MIH>l zzh2JG%OXXqvpLZoc4T?hrLBGhMvt#Q%Oz^bg4)znU75K)FErchudlAW5~)qFp!NBW zRu!6vyt2O1t4gW4+UT%pGT9>h&09=YHkk}xl1d${I?#%|gCl3#(7b~2$MOF*a`R73 z+~*6SwZOU|lkHj$jS#qY zK7`}c2(A5*FI4F=g)oQsP4}V%JS>c~dD{SOt7Y09bitNt%hQ%?)7+0kvlm+;~t9^l&C}W(r5u1#4RE z8)U81B2-L5)Y2-o7maK??kB`TwUg!qRt&B5b3dr7bJ%DEqeJw}%3_AXX95rqJg zibsHPqJHwdSoL*2a5R$oz9_p3Jx>fgJOJ=fIiyd{bNZ1uQZNe+AH*IF2Z)!J5Nw^c za}ZCwnQMEW2QldsD{Npf%>}H$#LcDsk^dP6i?u-EEpl4Ndx6M*_&xMV)e${dl;y`i zY4Y(R%LdK)Qf0z)zFG=)_f?YHF(KJYHa4sA8d>vOj~#xDz?CpEOP?as2&EMR;Dbbx-OpadZj*`@dB2zqT~wa^SIPcV=25n3<)i# z1OD{s6knsC;{CSdbr|wvyJ6(yN!54aR|UdtHH;8E5iLEB%M`_mutY9mpC;R^+P9`T zD5?;9ddP)y_4fcd=WCo|jt!$NNqf>X`vULhnn95(Ld>b}0$ChXf+dp`H_`V2sZmv{ zwAFMh*~&Wh^|oTTECi-{R?|Br*0%?Ba2!s5y_-n4xRyjksbQsAw#MnJDp)@o_D(y| zcujLFMTth>ax`g;E8NS^_`gyv-BRUier;Dq73f-RElukKJtWvyd7rHOFIBF&g6Zp} zJ1Lu(+ZsE7*?fAP!}#Zj49b@}W_i?jZ})V|@$k%)tV%~7Y{Z^iwqeKKzVU7+#}2zN zk&Mj$>KHT0=ZUrlE9O(UB>}pEvDwBPbFQ}>D%mfoDnzbDuPLq2PYz;QtsK$)fwLYg zt-P8zEkAJKW<9n1E6dY!3Jdb$0>|k73{cy<{JL{nLMNI-o>IvWg`$ucP!a`OP zB;~aYZ8vlhcs@jRobLKVm3s2SD&@+kJ=gx5cRdI%)!UwmPUjLyx(EH106U(bmLMkN zQ%;kp!%Y^kuX)#+J~)hM+426%__W#ycDFl7ndletGOin_?i;2%_XTZ-_h)L1A<1E| z??%ZC0UxgmD>>2uq=(1*y}FY_aO=u|1%vbEdj#(dE0{ZvKQ=eF{*VnO{pvI|(-f$? zGW1UvcJ*a%c}m8v4jN6Rr%f^0Uor`&*Uk9x=bIHW`>*utt2Bh}mI2eW3x0i&^3AF3 zFsW}KY1AN%+3Iq9oLAfBay^FxW3Z2tmw=YwhcKl>jLJb`yqHY93!uZuMmiQfiradR zf<$(St!060B8 z)kt&E^VZtS4~N}>nWupM_g9iC$5zFF@Y7F7a&PzZl567}^)vA^-{JB$g=?;`E2yvC9v0AITuhwAtmg}3zD7pC|>=>vV$-w(w=4g58c1M&*Bv-_=TNd znpJ5LZexCb&>JnTdv+QxYL|F!lysieYzmV#b)Ehx^z}lWzy}xlz0qv&jJ(*gfSaF+ zXt0#|Jk<|rAD8AGgXW!lD0`dSQ%wuWESB7Ff@137U>z9p?JIt!x8m|&bdlIQZN^91 zU1BFXFC3uzy{(#HvM%+s)SEHJ4Kvl7k!!fm83f4YXNC4V_gWd>5k<1gd0wRgG~!Qx zB_4I87yqWSwA`k}IDd5v&yGqp%hdb`=6rwv(7js;_M*oc~t1Y<(Ya)Of0=fSbrqE%?@@t72leD(S*1Fd?3f!G)2)O zI}B{)`@|m()B)#|a-5|EezAEC)Jd~9@lfaP`cB+nYD7Dc}-u$g|jzQ z0RXlw zv*eU#!`tvk7WJZxlnK#;kqg*1YCmYES7(EbSunTdy*q0sS;cBL%8Kx=M=!sY>`Z6w zMl>Xj7hGm>&WV}ORZPoq?VCK+aIi*veCi=PNc!}6HB$9l_gqJs*0dLMwZE#eFX$&z z48`f?ZLxW9a=cHq{ZFLN4!uE-r3tH85s*@f=#ScSz0h| zxCkht_a&cQ27PIV)yqWrW@HvOG36czJyY-d`(^t}>h7~c+T2MYB7uo~@qw6_H?I{p zIDei-`^UgN(6QAQM{(3(>n$lFlFfhRpto~z*1FG(4d{BWhU!le zXxOY}Ze9y9dos-CRen-~w=4ck|68QKjJL?Qc7AQLfn}eU&17hrS5c;*Hc;r&cQc5D zHlF)77_m7xv2p)}R|GdH$?xgh%5xKdiJ2JL4WoJjtS|j0NWX38$ z0$Vp&0=`z&)g2^aA~(-t2%VXwC2;^Cj(YZX=q4a=E=D-MWAl?YpuxJe!E?1f^SEF% z>9+G}XKIjevW4&bN9A%k3t38I-$v1JCIfCKIaqNgMdx3V z&LUQEWynxGa}!8d#@?jmO3kck3>{K{-(O`(`3<_jl0>l40_BTz`l6(gjV&Avqe7g2 z>vt!b4(?3YVKr^WS5zt!fCJ)=zeH;IK%1f=ZnOS%o#)qd(9vIK-?pXnEHqG`xhZWI zw6saxH|w?U{|LmJZA)(1pCq1ao-J42$XA*(Pa`~hKN5>5TIb&}F+Y_qXc>MQ%=_^7 z=ez)yIDrAfuU<>WK}Wmlokxoo3jfl-t!0DAoT&Z*v$A-=j32089mVbZlE#ITFu+SV zA%9_9UTsc1r418zwW2vsPj}6EqZnzPVli~zTIr^7;4ks`0^|3J{d#&j)4bAd#eICN zOKqz7O*C8clJg$YR1#0E{v{)SM#ul-adhcqyNdMsVYZeF)*8u&v@x1^!ixKEBA@uY zx1@0QTUM0ZSr_K@!ImnFd847>Mo9(pNBPWY7MI)Ay?~Go9^(;61v6sqL#v~s8qElM z{y)k36_{>fYj|vpO63!qHc9$49E^&AFS*3NzJHl!HjP0|A>!E=TE4zb(lD9UNpc#6 z8O*{y(wzeh(Ryi-V6Aw{a_7P(J0yYX4}kVc!|wFwk~Q1v_z+`AoNzyl<3=mbt!iEs zYuN{h!q{zdQ>hRx=s~cu60P0B!~e?p{0@RB0F8hktZS90SBpWTI}0Utr4u}M)c|#Q z@Af^9L4_CW$PsZJV_aFKly?sjnNZP?+ zNS<+1FzrX7>Nm5NiUP0sHpXdySFMdgx{*m&k^#Es4;TG+Xin$dA&y9b8X^+*_Ka{J zA9w#7?zYS&WN>6=LSJ9kH;T=LQv_CxMUN*!ue*@M%l10k%MImQ64OR09k1s~hE9*U z^^C)*u@$3}!)q*BRixr5WN-s!Hi4Ld-=Oh_FJD|4r&*kZWueK83SP+zPEZVlS1IT+ z9a=D@aO6%T>^}U4)>|CRms>zKkDXskA+{bEq_vu1(bqeM`8vVb98Tv#x_K2Xm(d5etiBF~BA{*y|EQ!NR< z%PwOFA9LV(C{EQte558H-L1z)2SI3=GE(RdBQiC9PBx=pOaR{On~KMCd6B6ljWl`^ z)~8M3ZJe+#-~%tQOw;(Gfx=@SXUq~`r(CJ3JC0lO?!pWBAOspCsjg|yduzuP&EJZ; zH+|78D-4U)s>6HlYwNrO>>6FVA@k*J?!CW7^88Zg)8@jcdHpX&50{yoaP}KHSq8zm zT57WtRj;K^la+z4Zi-Y-68lr!ip0d)B4y+DI%_pmHSsid&9MHsX79@<&kGV;?TnE| zl|sc1o1H3K}ahQE!C$4qM!pBy-7DCYUG`%*j zji0*xx!tMAHxKuBvkb}Sthjo7T^U>P!Eg6|Pg`5*LAKI4=3&U$;gL-&NrjRh4$D)3fjaQATMg6`K1i<=^unC8M#KYiPa<0H8s|z*`5!Ui(E}`$S(D z-DpCRhFOupvEWNoF6^N}e+RBu4!2y&)fLz=FqpgDCzhLc>g;V#^Ez4M3cv2flN8EC zdlS8f#zX#~zR8A~ywzN`+OB`T)iMFO_B%+_6f3&jOEOe{SFT(fYo8bk1fBivN>agU z5llSiPk={}yq3k6(@Gc?v;;3vrysHS&B>=#jh!t~EGOK<+ zqYv8EY4#93jAxpj@Y?jfTzg2k81PY4>79I(?ZjcCia1T7gf~z+vPhT^IJSVzfNlJ2 z4s{%H%SZ<$27KTg$H6fraIef%dE;=rP1MGRy9Kt%K zDvoTkP zuf}Qw-puz7uFOQ{Ju;;bW;I$o(!oUyA%-ZIzVD4aze^FE+8~(0yB`esiq_)*Ta&w= zKOBvcheXy_2-gJ(K)(M#4`4$r&k?n@%X6Q}q7P5=ER(EXm;IW>(vyhF>g3DZmL{{H3*jkrAxGPL}b z*FXbLelNi09=1pmh3Q4-;Y{NJ&+>Xp(cnJMxH$L?V)h6cH^_}Lkqu&-1R1~aFU))} z%jklN6YYh=oGD8oER8=gHN-(SV`=!6cWPWY2JkK zY}pg)tFwz00AU2rV4ybD3=%2$U~>M8n|9t~W;{`uFf3-dWZ-3RxfA%#(`wW>$d5c4 zO~9Iah2jOmC!IQySKm3x-h{9{+)ySBxAh?|tPJQNpPz^_-TG{%WT1aX6KQEmRa#E& z^TW3*s@(jGZ7+`niIj8JmUh2Aq<~@Y=bN8UL|2AH&R9r@I@UMb-3@Bl-P-Ei4Se1n zv}?S&ht>lLbdk?Y9*W^tz6``>_eGfcoCaxAhAXm!&!P|lu$O$}{l8C)Q0S459v_W8 z#<+C_cwgnBa`A72q8}$1e%Y)+r693coQ)f)bAX7i{`{$Q7e1&w+9ETdCBdU)^9iEp zQQYqXQs{pxIgyvD)A~W0DTe1JR2;VKl`mG>_kVv=u~M(_jTrN5b#*oQ5P2s-eb@~~ zhHo^o*Jo!h^e0LcvN6D*qpQY5Hbzga!RF5X`EnSia7WQ1W#!_zYnSsUUu4TA>trOv zrpFLlNIfSC+g6qEP#S%cubuC=1>xyV(vR1b6jL7@WbH%uP5;m+O%#L8?{s*K&#X*d zdX^ODM;mRRtd1jn%%T+|U%A=B|Bwz~eaKO;<_D-17bZK~5P_{hR7;$@GLdRn$9S#` zvB2qi*TKfWS|GsK1AbNR=2*oE4gBDKxvQEJ&qooJts)dS#jqL@A%hiaC!f*YOn!iK z)G|1j!UcXr-SOqIK+Im=s*~MuU1gy(Dl^xS{=dO%OgX$}MTLQU`3-Dl4_k{i|I3-I z$zYAbp(3@?6%Q+-jo#TEr^`$(2!Nl6Qke4O@*;L?n{91!Gh9EzhI3#%kIqcT^IlOy z=DsCV$>R6C)Sj8Et7dc(3~_hozkj?agpV#3-lf;*S~%k+VDQ0`@6mY=|Ca>H^DWhk zetwU@;9Z5vf={n)bEHto;$BX1n7*cFE^{v)W+gFD7lrjc{5 zeGU8r7uSpp8Mz?8>b_(UBxs933)Qv`{i~{}r+j|!pgN7-mCC3-GDuo2?u6l*8)(CV$gH-;*LvrF z19y+7+fWf`?d9F(hAkL;qL>3)E{&IG(j*P=t7C|k;*i%_CGr=uI41;uQyL`fd-;px zn^ZV(#>e^)S2KLQ={QPRO|oFH$MYD=sjUH@grEa>ERywHW-`M}cwf$f2!`6_9>srV zZG3$0PTOD$rOF3{nVmkH*k9z;)7Bn#wT7q5aV~#O_Up#zM%mfj2@cSeUe47pmUhly z<2FCF{WL3vs723!{|))>xTtz#VoMjt@8$aGOTl(5o?PW=_O|lMnQs#}W^MLmYl-%Y ziNh^-eY5AHm{|K364TbEU*$2SwZSs=$Ee0djy5rbjEsn0HBK+>4-D?5bn{7W{X@aX zZlYN;?j^h_3Lcm>$EG@UuPIqyj-*9O#@0)G2UV^(o#BMc{O&T{2_Kt@7+oht%{AKI zlZk~7E24X`(#07R)izy8Mt1=40i6v`Y!q##V-xu2W;v=#9=&t0LJm>_(I**?CqfiP zbz1UQ{)=oa6&cS{kl@F;9Y~YP+4%=w3I-g(j7R=!KaSJi<<4~Mo6R=g9~tjK)LEre zCE&~QeDnALFT{kh;s4D)2m$`#5#|1h1RT81`l*rsykT#=@gIlRX6I*z+oA099F;AJ zsHj8GXLWfvcl^8|hI6x)(3dn#gNqn8XFD@I3-9__?6rn@^whjSj)xu65}ze|UeCI- zro38!_w%}2j+jf#z%~ykkkZGROQ9oZdr2CcPDNM?0J+PcTd7}jm* z-0Hj7MNj~~16Yh1%LS{(nLi19buQ0h^>pATI`XW!wfc+F@%U(>Q_qOpxBk+Sa1%CnQi8?)Scv*f zAnT6NW-`gD_C&}O4R-8HVk)4=D17XW5CF!BY57Qs0A!OWbJoCdE(i*Kd6YN3NvO`k zP6@1I16t|65;wSV1} zUR-0EeI;jT2|x43u-2_WR0AVfLnGP!N^hN;d(;Rlw4X*MF6uF_oi6Z)2dbaV`=}Cr zb*lxuX@OFI;c;1hl<31>W2{{P0D0}QR=Mga*X|D`?S;EF`!of#Om^$7H!-MRk+bh- z{_XTu>0LyPzW!-KFJGqwvp7;+?{rf|K-E%|MUeOSymj(si=!DVjkpAmv3jqbqY)nN zF;&#Ukj`5nfaISne?}r)5R-g!uf`L49yi~h{Bqbf`3RD*u5>qXf^p0!aO&?LDeKv? zxF!;himL_q>XQ|nWl;zG=+zpoXc-KP_CXsV&7SqMJxIwdI#dDRWltcoR!ClFT zsifyRdX&D`?k(zMa`5vv9v>=ETK)83n7q54YHt%|k(FZ$;<3N$Qqw0N3q8}r`4vA? zFld{oJ(>HH{n2P~(Yn(f3aI)*%n(?N8dSES<7g8l?N3f?PfusfN@`C|?l^e4s87Oe zcX^gPRo4liE~v|1G96koK(TU~6mNq<2v{Z#qdOLLWtGqFXaY1mrC|JuH^zp31R>mr zt4LKzEp7Juy~9_lvGqP{dN<92d|D44nL&}!89ARc%5i(6V)gXaSSAy zY*`BAOZ%TdRc~UZ_K1m_msM^FaJkJa=IX>yX(f4^uad%UzA#pp`c+hLUkJg!62)M^ zSPCB_J(CZqIJ6f>O@t}@e1mK?CDP1XVULAqzD;pd+|mjXoG4Myxzc#ZY~TPV=fQ8F zYgf(t#kNb4xIWR+OGo77&>1P&Yr}+=R2L(ggBb{MXTCwkwl@^cG0RuX&Ygwkjo8*nlcpNK$Ft!h$U5h zE_How3d!62A6XhOG$=)sX@$GzZm{V6^>7FKK;oj`U~P((n<>j?v8mr?E6+VwjZ)1I z&z&bOkU*+9$R~=&ibZx*f1<_6_ghl3T3CxZ5hJ`G zM<{&WF1hm)ibU*Z?lTryLGGK~uV*QLNG5r-x1{{m%pdL7T}!8?oEZM#k`bPr z!%W$RxAw=eOy5G7hk;lju7Rmvf8);liq@Go0Kks>CZvVYg{)XI!kT!U9b9)vq2I=} zBY2AOs0G=>sd#VcUvXA(c80f!#B;oNd9^n@}W3D5{-qD zK$%)NUH>~bC$8Z2I9Od?+ zjTaRPMu5v=<@~|R+l4avF;DZz%%TB3baJ|X+1coRmt2&jli9W3K*Rzb2m;_C{w6Xg ze{mBSYe~uP8k%-iukE z0i14mSDj{9ntflCn5^JgzS{Q=1DyzCx*E#5kL&FPD zC89T$l#ES6UO^B>;Bk^u4qZ1$)UPB(5uls17Q(`LrSOs{lY)L?A7gB3mv(3uv@BUw zPj7U#Fz>hvF)R&^->0tHt%j>EvSxq7ctjKjcP?VuFJUT=>zPU*=0WMjHJ2=e1;mkM z>y`X5)Vh(S1CQ4S)iko3Di~QozD}a_F3dC@K6zmcoor0&b%lmgJ+}OhqjQRmgxR8S zPm+m^NhY2c6Wf^Bwr$(CZQHhO+qUi8{_k4#l$Tz;(p7cpoV~x@e(&hk4}7-;7Cx3M zPq_K$Z!Is|rPU8opdjrsnK>-H+Oq*i=sG=?#Iki_8lV7HXXf|XVeog3iDrM@q=;z; z_Q3-_slq%XIOYtlbk8S?rgE(1&B{-gx-l`^b^qh(Lj$7(&xhNJ6bwqFB-2u2Rw-b? zjv;!Ba3NY*o=63(+}CmGrV31Lv$Q_m*k51gCug(C!V0u##5%Q5k&k+J=af5|aQb19 zYtN1yi*>-#*ox6-2h||1R6-w#!HnqIBL_B-WKSx+>n+S6FKCzHz*gn|UaD+F4p{?# zBe|O_;VoBx#a$P?V@5Ho@o&c;T}eE?9d1&Zj&3~BSi(^q0e~NgiTD>Xx{H7TP_V6ov6k=E`23D^^=Z z8gCUJp6IR8kdNr0$fMa)9<6q*1){C^M4YR$I-{`x;9M8M>A*Qyk*2;%u|>Sv5hfMw zw_|O?&kr((HsD!f9L}*PNnt=6*O5jVR;sHDl+OK|MF%ILkrvCt55XOV1Jg~!tFNr+ zw$-ed1pvZ`<5W4Cs&RRA-CS5-tVNbVo&6YDQ_K?nJ(eqJRxKCM$vWdwsR*10bK{>` z`PDSD#i)I|KA%4XLEP;C=jPB7{g9i5Z`~qs10hDBf3VO5?}t`eYcxEKtp|;9x@e^I z%I()e-5B$p-kC`+x5A{eq2EM#FNH#EKAl1}N-tBhy6x&qaz#%m+;r|AlX$40GAruF zFbrSs=%RVJ!G=SVwcp;4wXp|LJWc5a~@&|5q%hySX-A8aZHR$7+pc7dY>;6W{*aTBfTqH#L|u@TKYDReF> zDUqWAz?-7=zQZHnNQeW&bjZxQlgINF1q%sGtJQ5Q*!sFaCT7cj4d^c^X$2ZaHlGrZ z>$}wKOJg@PEeEpdB*_+oD9Ve$8d#0Z>YgD>EO)HNzQ}TzX|!(nzqiAu@G3gE)|+1& zwMwUx^(VO>|t}e{%6L*f?jUxmY&+nv%pg*h_nS`fF zq0}eh^*X~M=dcZ8n@2Lt76_t_4x5)0@i(dpQ%yXdJY+`~La2QtY2a`i+Hz>CbCCcs z+cPgOQJca^RCl|#ZB8pEH%c&78rA0F?sHFQ&WQ=*21mGOhye2{%_-9oZ|fD2X)U2V zdP0IcIqLV*AvpWsBzO^^_q;!$lz`-(+Xg|~@s>ae5wz2@D~+}{dzuATS%0OV`>R5^ z^g>~=L@AwhQ!;O;MmZYiQKue)Q>JJnJ+<)stK(+Vy?#?O1D_;rWMT2K&MQ}nR=|<# zziQrbgZq;ITKg|g3e6@^!U>ot4s2zJ+ejU?iU7knV>>d6P~cga_IKg!!SN;Ynn)oy zq=Ktrm2d8K@W?Sq^2~muo!a@)mr9UE180jG-ST~Q3_7-pN z$(**HJ)WexA^|GNh5P%k(;khc-?}dOtgU@LzTOBw4e9SeXbU+4{ z!$MFzbo1GP@nO;h%#3CyaTkYGl-rI8WH{B@9wFP#Q$pGfCTy>*Mb2Mj|kid=(Z9U>F>)Q-rOT4 zHRl#-!6w6^)I7UZ%|%L=uiN53-){bBvKql}kH6oo8Qv2%iXHBOx_f1Rg)H94z$9$D zwkm9a#F#*~S?wjDOJTFg#dw#s*choC3Pbix z{^EH|SU2opNIxRc{9h3N5JCDCz;tuS!o|?&F|7VNg@~{YEVHZ*FLTl_29A0V5fA{; z4J34(Y7H9qv&$IYSUEiC!i9*^+RJPbH%S>b0Uf%BU0!;3D z8|l)Kp0quh72}o`4EI<^ulLO zQDZ|qcX}#I<=@q31~(?lEY!WeJ`9XyIRLzsORCtnHwWq}5L5;|J~>mI%i=VW7_>E+ zm}CkA8~jImX8p86an@ZdoAcp#SlbgZD+?trHs&9e0+RP zkO{glWOS!NG~B)|2lAS|-l0UCl7<^@$?PhLMi-p*~iBo5NczdcWQN`f954 zeEiUNi|8+fqn*jh!Aupb;j3GoV;adYp}c!~#ioZ;;VdX1fg-chm#^s{hN=>|`+GB& zBorD@b8Rr>gV7xeinI4}HZ}-s?Nu*#ZU5M}#dl7_Vz?FB9EMAKcvmznQ$PnU#E`Q= zOeA1mZt7%c)4<=7nihjUwZ#4T^`?fL+v@`APlqd9TEjY=xd^X9IW>aA`${lZTd)s@ z^}uRdB&LRL&`7pmuD5-jSh?M+kgvRJGCO{kmfvBxaD)iF=Lx?1croUQ+qu$c=)NLhIsdGT9|81bU=17~OpwS2Cum z)b>B-8N6a|JQ@#IXVySqy%Bj6mHCB3r*6QMpK6icYQ2(?j-3h4RGH z264T;Y*7&q&p9>d0!e4AbHCR2?@wU*y zs26Z%cDWwwS6G|({pfQ~283YU4yB~F{h`XWvyviG0Pr%V+yXQ;IcS2VwojMdj3q)m zPe*4R)T~FrpOegx8Q# zC+_qg?mbygKsY&Hvpv|NNArGvx(*>|{sg=jeeSJ%c_G4*AEd3ucmD*KFuDPJ+K2sF z$`mQ14?>ntZ0X=^aSmEj1)*vb% z=yE(Eff81Yt!OAjseKRjO%Pp zdHZZOq6NW+tawhUSGY)J@o^Er)URKXkd4Co{_*gthg@tK%E54}9+Z($dEZ!^HZj`b z3oUK=OU|f%)rv{!`A@(e*W^m55Kkm4!t~_4F^{cDHD*6^(e_%3*LZk891`TF%3qQ| zF+m+aFmS&fs6Jj~cHlEm*G!_ik2X+>bkVGky>c+9f2C(9n?ySQkJ8QJP=or=&JX6q zxABA1q6qP5p+SKVjcs=OJYI{z(-IW|>ZA}Hj}_ut&yr2K2iC9MMh1@iYYbbvgptes zgV}!_>>?q`+XW?-3By6|=@xW6ACA2aPfALwbF0kqQ_`47Or`<~@d}Q2c2`~TzZV~= z#MG>0EA#hT%ijutzH$Mt76v9>#JHU|=ICE;?O)?fOE{@rWQAA$8mHN})YdI@Z7%jn zzAbiSUXT*`Jr=*tCJW#0Oa4$lU{K5%hM!|x!?E)Z33aBTMmL=cH@!F$FHsCoDAx)4 zCc@c$qx!Zj(;MSI9vRRBVuZ`OD(6w7?6i+^HamsnYw|C+imlE>Y|Ny^R1M{goD5kM z;s4EyOGjogFy$&s8Z?RMT!`z*^$bPw{#B|}bJUqk`zaKhDqno1wldeEF|^SN%CS@v z1RgjTo1(G}u_!)8-+TMBA{C|U>0z(?b<1HN$=B!cseJv!VXV$rm`VDrksiQn(0wGj zt<&TF)w-bax>+=h$wUq`q3-G70Tna@YwJqU?exK1J#-ZVVGk{i`${c4Or_NM{I$~2 z;uNUvz?D)Wjc;9wVEjuj(hR)$k}8y+`P1MbAXh{c0)TOVthbw4m$w~JNZy@Bz&h+I zF#U{YaIC6fk|CG)IMC1y>oGSK=uT+`00gxQRz$fc__B7&w;k;r{$rb53q((@H~g{? zO2?2)T{>Fop3-?aSy0{o=jC!&fsl-4m=0EC`9`FEw-Be{sY8AK$7(X`~ztC&Kx8*KS!d1?ZGKW?ZoD zPKWvre3f224Zj03G5zHH%-Uo#S`@L4H77^4hlrib+qL7bOURd<5(+&}!_oRIWI2wU zJ+IJxvodA)iOem68`(Ft>IcVqyQB=^z;5yWJRT9YeR**Q%|Pj{<|L?Ps~NEA5l+B; zUVAEfUrhAT@i@mLoNl}<6dH#wA{-ax3}=&kF5VvIMx4SC4s9=Y#*HsZd7i4EY}0l2 zs&hqnTV;)pSXsVRj&7cUUhb|8JPaqKu7CI2Q(3Z&-5=K+_IEDLA(3kQv^zl0?88ew zZw`A*YJe@>^A{Xbm+#QJHEhB=L+uF*N0Im?!?jw{>6G>kgs8DEo-2yKXOmnvy@dR3 zxn|?FzcDakS&SgK8DlAq#ztLRKdP%gR#L&P?WdU6D}uh=xlffVWxsSfo#x4O-5tCI z=Ebh|=iOmWYn>{d_k20Z67fP*h^%qh&PG=+5#Wh+{+@{US@S z!WY2-_=G{mad|aIuhH>SFR4OYSxv|y*ub)s(5%;iw9*N?)E5JKb>_s$Vr<6;j36=a5)R(aba1*pK5OFC?U`-{ zZk8-*Y>a)Q(DJyBj^_!@mxbL=MQB%JtA{-wJ|%rhCh&{OdQ#gs;HPT5dw z$)vC<$XLyk?^jzL7Zq>p#@AmG9&!F`abJXb_#ubJ@M-x@@fK53 z&h+^?4Y+`sXMv%P(OZB|0NHk7ef&3DTG65|A$Wj>7}bYa|7rDB)+xze0}O(e2L0XM zq+c3%tF2*dd4mUhKB-T8R*ZI)>*fiB-k+fsxe3u_80{xk$ev|0WtGP=FrUA1*Vc1e zI9H8Lr2ee!(sP(gD{Cca=XO&{++1VkT;Y3UaCxqGvrdId>Mr@Fc>hgXTTq)xG{cMI zRkRx$A2LO*Zep#ZAxkc0oFtw+N`a`t5>;#5jI|^yWM3Kk9r(wD{YYGfjFy;r945j} zv_>Fc22vsewf#Q(9N^>mZgu(?^kw_i$Ru}9kBi%p%D~apsZ)zKGuksR6&AZEbkO(u zHZ17Cei)wkzSu-=2mqKRM&XO(hD^3k2h`t%yLNpMpi~Ug_V2ZxZ*I6|d)M#yH-G(s zit8!V>L3E*?pWE ziCyg<>?nnS_MA|0kjHLbSDa?u%PS8@vnXtij{pFMA8z#Z_f*NQL;XYi(UOTD5zB_i zrVU}^=k=hDiu-FC)lQYOoxQ0~^)v7xzG>2rpj@rq*9j4D(8xrMW_b*4oou|Pt&6hv&0w*iZjF1Ov2!!kMbpH+&+F-ufnzR-Mb|-btO`e~NCDw|F=W`fiUxm9*+J?GW~t%W=NxbxeGi4jAMP0&Ds zh%se0?*1oM_#8J}26B1K`FIIrI*5IY)-Na3>Q>ES(Z=nUdPV8z+pV4=)&trag0qyy zDUv{<7zzy=11A)>_|*MC~zUjq~a3n7?WB)E?H; z3(HZhgNeU-ganE3!4#tLmEX?3M4(HvesRdCcB;!-KB($5D0 z?Cg!PIiFQ6f^1i_70v4c3)<;r?T5E8Q|qpm=U7lv+t43`!vc=y{uq#kT?U$|A9yI9 z&>*vM8{T`e>)qCwXAz70S{3A*NVW$rD54euMQ$}|`n;X0^Y;VWr?%q9JJ5q#84Clg zRi?kUS{9BlP5VRfNJHZnRmlQ6@VM#~56_BNtgNZzmOueTuB3=WwiWFAT}%Rvg)e(a zd*OT*%}7>Ap?y6VUD>ntI3P1ez2lJ&u}(xO`(I`Q1+HJC<#kWRjLZ=IolfrO?Vm;N zbYM{r>HNj&-j_q!&GV5D2cVvwTR2PvOY?JJN5jYH;lwyDG`CvJ$xxcXEj^}WZ%ZS( zj$((t7UFGNHp<5sB4m(v=LxA|ol$1%B$I`+O0YP$dp-x0Xouuzhpm!ujbec+`LjAH zIKp_SL8XxVf-$zfy_T;#ws9Ws6QLhPLz4_f(RT$F$x!rIs}HSW9N z1+4JdhC97xnaPu0AMDGzIlM=^p3^rZuzCOK6-SSU@PjYLG4hU1+{No_C_HHBgB90G}}tzR+t9xwhhT&)?d?MrL=cgtCA)bMfl<($(EQxU1ugd%y_@G=gO5@5mo9e>aS{+`RW+3=Ef*mHobrfKKscta_gxHh!-=n zMdM16j359IhGFFYK`>=o|?0w9;ZFSBV!`c&PB`oDMrbVOLLq0W>T}yg$rdv;DKJ%|}?!Lxt|0)rOMPPwg_{eRrX9 z{{WqDr0=gP%BuT%)Tqg=)QT9ef&Zy{IVWLWHu#kiR2eECbr)=i2ytS9K5p<6BA`}4k2yPJbDS36wO zv7cuWTN1;_KHPLV)B(lDIIWfyL*Bue#zxxuqe{cI?9!H<0Q&%kof6#5<(X7trF!j-_HT9s3O_;W(P1%V`{APM4OCo!~*K8-|6(F z7d}*SyTpZ8?md*>XwxgLzAC;@xW1k9j*6QqhKTS{!D|JyH>quwQPSiT*})Jo_(kGo zkjF?g4U;Y;t}j;d=7QQ?7dI7Lm9!Q|VOHaXp3egjs1wV~%?cbH>)za4|M}^d7Qh=9-Q8Ccl8xcN4(u!W&(UB9_V2i4vdrw3zH(Uv9WN@ z&1rYg4kg*Cie^vZsp6?u~{7%E&aCljD4L{LgXepdTKQ}(X+a?R46yb+%X`MmmDm}({%#_;h7w1cmLmIB|J7J9Egu_ zG3lENjg(E8As&&7>(B6jMY~p(cbw#UP`N>#i-W_JBP;lqhVAr%(=GieZ z7@)vV+2F7_nhbM5td!q=JG0XeL%toW#hCfiMfy#8ecvK%TBI5e`{BHX22ucT=c)I# z?D*1Pm`phXc5lie`H(BFyFkpfH=99J}aOdXKGU8=p{g2|oO>+B3(a zH^9##=|?xJIF60jqCUjD{zc-l2O!P8Gg32Zs~@F%U&pL@>3duoJ(x7OE`{r@L#$A# za84JaO6eR8Idx5j)KPW-PT@oLL$-v%3~L~iQT z*yTEv5I2waYy$bGyO+ocT|5A=V)51@TAR+2(e07z3b8cb{)(kM!nCLuH{GoX3BX`v zba)NlXRhF>zdHZ5+$errS$x!KTdA|uL9Hx10zKHpdCP*Kdy0ug?$K`$Z&eJqZgMeDTApiM^v#)PD1fT>EN6NhcQBX#L6_fwWO*joR4vU3oRQ$Yrn-gBwW2SSoi) zDzu*~OMf#LH7bi?3y?ZZO5-IbEQ;hSc!WLEbamd$nB&q*hu zvAb6;>8PaIIn4*GUi#BPBcq?9pr79F?ZrA@E8?+vKR+yXpl#!-(J~?%S>Qg2>T{N=o@oaRi zt3Ju3u#H~har`t}Aa^`F_fSjm`88Sy&brrb`b|grW_2hB>aJ6BM|RbF@q-{O8i9}^ z#M1tnBZ6U|1v$G!HTw@+7EuP<8u+gMUvEydBD{*XH4J)~e(2tZX0d=o@q3EhV+ zaH(lHmhM&qQRhny?OL&N#kr!kPj*_%ORF>!_gc1GPTRf$e-*9QY!45MhaL{>FSnh| z$CJi4-NFlg_*(k5t5t5-zaM>hHiN^$rm@mFjl>`pXKaebb=a|OKisbx3-{YdxBvbP z3ns<~;-_)Rnwd}5aWc9~8f^puDInlVj}Cu^e(vt_eYw}y zRwPs?SIV>^1BL6Zhaq+Rgaiafxa^(Zgu{&9sG5Ie zmxiG~yzm|@SeNIk1VOXTlR0PWzkyX}Fom@@BE$GE;KNEMz&BJT|FsK+Q{P1)-8Z6& z@oH>^4R}_f%cy?WCvBSQYFzZStWclY=Xa)x=L6wx@wl`=*#RgYt;_;NZILV^cm-cR zMUp5qk>u&);<7nKTEiLq_N|2LZ03+!u^oe8uq$wNwwN4z&8N0U1F@J{X&ePD9pv2w zSM$ontW|ShF3U&G+W-k!yYZt z*}_&|atOvxun~%z$!&qAs^V05Z0wt9VZBke4(hbLg1oW;?_1Y?4Fpd{a7w*qHDf_% z?@Qac?HI$Kj92#?>48^VIjnmZN&7+CR>RMpdADmW->uh$`+GCTku3YlSt zRSJ<+6cJ1m1UUv0ww_HhwcHoKc3iRE#{7#)>!K8>M#f&szj2Slv)Jg1k^5u~N8TAv z-5*X3cACX4>UUzw0|NceN_Dp6e=(!mH>Wa-q=|KQo1MVIG5?^nfZBM6Nh>y|4!kuR zAS%Y3&YjVQ&VB**-`@vQ$S&^!qH#)X3e*oqYGXZFtEImr>j+Lfg+zk>id`KaJw zb4UqMa`=!sthuDHc9~L^Cwm6R-3D6@v|@`ID}UGagu&tQ5bsvZ(>pg@yS;B$ZUW5- z{Wd%~)g*E7JiWmHw2X8Z0GW0CX{w5!fDpqodF3=`z26RD{!`jhKb(;fo6o!d#;MOK z@F5}txw{eFIUHJlqA@Q9F_kLYEQ%GG&dh-z)y&rLA&Wg`#58b8H~%6wReYF72SXya z`XKjuVaGq=AW$LYjn@n2R%l~Sz<%{WFt9Vd3jMfg@0hOly1x$=kL?QWt#lF3$8$7V zO$1f!eAE@YvHPnhQ~D8OuWrXz8jhmzOGY`k@XLBs#2Vqtht=C2h`Ks3-o|^se=oF9 zLikvm4M982Lg@*U*e`MeR zc1dM@hjP234w<6)JCjRk!{Vv~Eh#F3A8efD27NUmBN1I|86fn{CCv0Ks{z?r>Z?Su znXO6IVn?aI^j9k-q3-W9H&Gc^MMtfiew?F3tokuqB!R%bm5w?86gs2{%l zpc$~c!^CZI$kG-^)gkIoJW^yE)A&ioP-Hy`TKe-{2s6!uSVnW@Qz;s|U??TduD?eL zSOGmgUtd_wnshvh+a)hY%kz}mDNFwVNPa?*VH?fYNtGb9u*4)krP5G2985374X9b9}x0F3uF}!sH%HB4_#yc={M+I2xQjvM6 z$=JIEhz0(w>>_EbqHk=X*Pat$O`Tb@o!x(_jdO<~yl_p9B~p33zuiYqx9`pnZ&g;< zy6GOS9C*_Q{|HQM*HWXmJ1g;mgbgpelvw8TikeGjhX$HP9_%L1CD$sL?Y9dAmYvBq zI~30*F@5`BIXt4&I!fc4WptUIU|i^fo#slcseveCEBWy@5fFmPU2`1jNT3Y~2ZxpS zWyJpt#FWzp;12WRcb85Bjke)Aw5%cX8{T{?$14uTQpN_DrIk?86QJJNL1mO(GV^&y&DrH1x z-(&9iR4&F=tHV@QgJ|Cvju1`G)8zhTF7NnEs#TfGT=~Uh{q*3KhcNT>;>tnTcxDgX zi5AA9JR}2i{gfm>5sREzXhoifz<4OVh+%f|tc4eI7SHYKv)8}-YU9G-M+gAOWj^T{ zj<$yFg`*K8YcAV+XqWu0Mc8P@lVZws%D>=9eErZ@@_Fx!bE|}ZciT_B{$f48oNBJN zk|96Im&caWI6<^YJ`Jy4=%^Y{lU1dYSteRW)2i6zx>-XEA;}Y57gaE@;U11BwrS>Y zeyvOI;pQo*=@pjBm*v)CqhwnpQQYWsZ#9b2WNlY#*K ztHIjB(4$$*;1euqBbU7SQuUYzLy`>AOj$;bnv3XD z`Ra_H2)_Hc1J6KfB<@IV239*Gn*v{aYNezL$_Z{wrGox;3;1p=d8wEJsyw1n{(4jA zut7fcuG2unNiS?xsRZR_3{`x{2pnu&Z=MUdApBqPOFVt+1SyU3J)L5Xr*50U;QW?O z%0v;(_-ZeIp`SIPsF5~tZLW#V^M0YH^W+5b0;23)8)32w1-u4Mi1dH;fA!{&-T^p7`@$ru_J}e}1H{usPVN zA=g(w#KfW_YoM}OK82%Hy54?y)Qk051dV0`CLA-pla4+H&{h*N)nk{_8AS&zqi@7FV~M#t&vMJV)^!8n`AF(XKQSA zD7!sJ=uLeD1jYOIVSEsnP37< zF8WO_@of3w2<8eACqJo~a)PzvC<&27nAh3QheR$U4#g@qrc`N`Xi3f*5*N(ODE7t2 zE$W1GHUIMX#IG4VOS|E=_ahpB2x*3|NouRXEZo;jtR$0KsW^UqgdNC!3T&G1v3tBp zY5I4Ro88+ScD?%%3k%qJ03yTA9+HfFf=CX-79p0rzsM5jF8RXZNrr<0-2(y~#(JXn z1LR6S-6m%#m9OBiF+N`M{>;uU$y2$x+E?;vc`T0>X(RCy2Fz; zTHa8S&gyf)*_wW`)qk?uha0N@g~oz3G`qa}qs5_u`c3U&gR><=_PRQTbua>61Llz7m^!~zD^ee)sB0mID@v~W3e?48!6e=i@pX_8V- zn3gsF+@RU|`|$jWI+KfxZcTYaA7~vhhET5@JYfv`Im0r#xIP%Z{c*qUY%I*$4HdnX zMNCZYh__Ixp5num`Y&H_8roDA;b0Re1~dubHJ-eT6TH1MjJ}jOwDT;@toPmcjZ?x< z`1A?iTr6P=jGP(ytf#&nLQW;>>|#%$fkkVfl@(Lpu{!4u)M`G~YQjrKA3%Atf3*pg zTUr%;vA_>Wp2DGyVVvY{xeV9cKMoLdp68v@59)s2I4N601p9hzk&8CBH%k~LyT&xo|K7x?z}lt`X@wt<2sf!H=EtbOilGN zHWj%k0Kki=^6-Mlk$iBxjLquu-rg7;9LP4172Y@-$j_hY0&Fr7$D6)*81ed;d-!<+ z+r}m(5H2NPeu%$_d&+iK`TbnPKY`l%_H!sxv&(u*D0MPg>zrdD+{Lkp>(R8i|LDiG z{8_U%Pl(kxnkJqt^DnmR26DhEl4sUEN<%8}Re@rA=)*ex7?{Cv3MvHrpLJ@RK)z{Q z^!(hd#VgL>l1Z6QEwdYhi(X+R-l1Ri=G^XO6uqX#`@XunW$)ypP)=3|yG~r#q^#_Y zl`WfNY!?+bI7{Z?gz#AZz{-HgJ3+fad3_ zg^oodSzX}Ob;+vkrx?51)G~vVOM3s~fU-)q_ymd#?a0Zp@zCz{96jm>01-0G$yS@g z%?xq+4-FwuP)2lk;VBvVcDqA&-><)xMCZkWW3p1z-VA(~4vB5GxO50myE2rj_mRS5 zPg|f;wwE=LqQizp)nt`=ZQMYX1Lt5iM|QZulHQ-Iww zyd9Tyr)$?&?HU2W(5+6@_6;dB7$5=HUZQ0t)Z{l8HE^p{QGFA_A;I0O^c1RPf4DY~ z0aYo9;<82KRZ6&yw1VdED9L)t{%>+v@shlL>uQi^3rC5*GG#UN>c*;>BQ>-Cg+X%t z^}zJpEGdl#<=5_Z(Fk;mVX6`_VmR?$JfD|nKLiRF#7C=5W1gcQqTrfanS}H6uBbJf z(XVn^fT5K^yUPq>@ENV~aate%8Pf;KF18lKNj>;+D0aY(G=JxPW9;KdE1Wp@F^F`Cmgn#PE z^S|}TWPiXANpIliFl?k=eE0QBK|{hEKqY5ws8?QuNLv*08=WUWH3H{b?vuXerjs1N zZ~|O5#@ydkCJh*Xor%Sc8NfLMDQrLR&#x;F1;7$fS#DKf9{<~Oxp6s(Eq1gRjc5>Z zG4Kq1V9kQ$?AL%NQ3^}&);O63XzTn3>;Ax+2BaSws<&FY!2%88JC6goB*XL=ei&qh<9OcBv5cV-o5YGxE)&4>&urK*L`YB=4vNF+sj3p> z8@od=KTn#6xgt3Njyn1FaT&(_NXuJO!v3(1^936ZX*zM-jG>xu8@tUUqKOyj<&gYe za-`H*Q4(jjEl;Lj7n6QLat#h-NrI`@_X7PhcKR@Ci|tQp>|74zlOdEgdqG@}SPtof zQTy8idD8?dGpB$Zrch?hvidmJu%M8*jb*}^{Mr$EO((O>d&^W}Pd5Aa&@KP<@qo!9 zaL`05e-WTtIdcPkaTm_iu^O?Gt>vUd7#LpT&;SFOcD8tYnQ3-U#{qby1{tEEfcG7CJXAAVZct1_uR_6KY zbqP^J5rRLITwb8{f?ic-8$hSXZhIvLw&Z-k5kcskx3U!9YM{mtZg>1LMlVz-s_gMGn|8(^^eu5SqZ#i|$GuEL8t@ zZ&oOwDJx^HiH=;S+4*9{&F`!oTbw<@&@)ImGuf{kkdv9I`3Ex6`TYslH;Ra9T$&(< zvf7@P6~=j{M0>AKS5h@lE6l%|&5PblA;d2A^<62j|0C+372^;DfkSA(VxGOY_gGmB z|Lu$0P1ifBVol+!J2|d~{hrUl_@bGSU<9`q4drS+F9WtAM7^9oH6p^@)r~^D3twzp)Jdna zU2V$ixf$#_rOatn8l}<C__)1K;m%m<&6&?L_ zZ+EP?JbIC^+OS`yQ0019O7|^vo@nU~>IayC-N?pBG=XE_dnOe~k#g))zI0Ow*(;#V|I*}O<8^5$al$z%4?CB>?7(ID+p+C~ zPmy_7{h@ZKclhS)j9dwoc~(x;?#*3)yj%||Bs}SD>(TAo`|U@{^|Xuzd~=q*zkY6_ zBNTPMP3m*^BCv#iuO~}m$hy~4!}T;bS6^hb?eNsi1l$Rh2TQuVejpjsSj?1ouyLvz zQ<@PGqe(tnlJSlh1N+wnx5ZM{EuPJNvFZwoqCWtr(08xr^XQ$mhkKEJB&A{l&Ld`_ ze%~D{c?v9HztFWy-2V756n2k~KXh#@!;i~U8<5~2$Y$n8`;V^NcpHd}u%fdng!%anfzRyO#L|=Djlq6B^{vJa` z_5CL72W74gaffQ72YG)D^-qqHGCTL0SHeUq`>p*|I@5rWE^YXWact4M%OEo}us4qn zQNSrpWJ{-q650&7Xz)ZK06C~cMlvHau zmy;ZDcxtr0KniFOjJ9*w15lgT$INwALYoa@&%Pw?rV*$1+##`imj0*{b$Q)}X^Za- zDP{J@XXR$@Poj!x{*hYgg>_@@oD?y^TaS}K`|1u5oae$QwFquCNCAVI6Cyn;qZ4d1EIOQmuRNXIIk>NP^FBZUJ76Iu3h4< zew%qYf&;p37qg3C^XLrm(QKC0+=J3@M_|)8i2V`HJO(Bdr4uOk&$M--P{giO$VAwk zfF@w`Q&inMq&LOliTMDCukx`{J;yiel!x zTch{E$q9z-oFysF0QOITU2s`2otcUiw|}1IxLAAY+w$-W3I?3Y%N|l`~CZ; zl0qeCUty4NIJXI&338an?V8=7)qRKrE)_ffO<4$C2_cSD?Qg!Tz6+g?pdlI0`X^O1 zrM0*x$fG#t1txkv-h`+DQsV$TgdxG6KlJOssbSJ!C ztU5X9dO7Itk26T+ktjS|ZXJmQA39m7&Pgq@pQ(q%&P~_4DXx|H_Dj#B`}xV0DZ6-A zue98!tD7uTT~?j&>vxB{=?@zZoC&3e)1p*|hj{AO#^7hdeI2oRVk5{>J*_a9K8_(V-P{wQ`l{sY_>?-F=STbX0e$A0&v)v)ont z4Wuc3Z>`@Bwli>TxO~4|!_)6)6%Zik{91GWyn4ML0PxzCY}d_-`uBh6Ku8q8{;C}J zZD$i>y*oZkh*#ad@LuenhJs^WI+Xu4xSh;}Wkotns#?gILHRYr3BMRfN0jnxFpTeB zzZKYaZz4;tDTTETfq6kYWz}i0C06de*%2$TK)U3Z7;`1yV+U}S1vtkdQiNid zXZh(v3021b_Hrv%99|pD;mNjg1ujjS`s>(2^)V;Q)9o^;vv!NCGS*ZNN3ygD?2`O9 zqnSb^R|=I{;OTakgP(A|^aH}B4KdqZ8<{SI|E#}@ADvfk@i;V2w?JO~GT(ksfI4mU z_QYS!=Vf5^S!qjEW>jB zIvRx^=PV5{-=gp4eKbEJXM-Pza!;+x+ui!XQN(5TH-}lrT9e&2zi2PkU;WvcI+#Da z%5Rs)x^?E&O$X!cVe*taOX`|-D*MU=)tgWBbKcsj)3f+P`+GB0hW;mChTRoUY;5&Mqe#&&i#17jba(?o49L`F)wS>d}k$FYVn|ANfd{S&!TLED7+ zVze=HhcVayt-!sJG}ck4an7)HCf}t{C}P)Y(geQP3w$uXtpbuxC)~O% z)8j`>kB>+Q=*_$(nBK5?^`VYktCXpK`C#|yo!4Ld^3m`(|K2|l9sIq0<4#p^{Tq+0 zo%`I_#cxfePTCx{M*ferKaM`75)hsUm^!-*}4=upqIf4!ts>(+0*bo6}7?s{f!m7T;) zZDsDHxUBrDaYNdVGU|cB*L$rC_oO>;(h^Wc3Z5``gP|kBG2Xvjsd=+eo9R^L$IItY zVJ-#cpfCf483;s!AqospAOJ%E0ssPlBmqeRf*>)HG~lEjCv^rwgAq!MP~HdYEp9xX z%)xGqgw8xK0zpS+E!m!z`BVD!294^UsS5^rw({Ex`{O&)w^aH}t0c8@y)O38ADWF! zCbkS(D>B zeEFi;$qoW{002Rd>o;G>E3AF%`3X!075p2;1Xr8_?%y81q%#-*02gzL7k2>4A;s4{SW|<|7`tS|i0-an@|t}T@9alC%HzO)Nl>%$&B#C{LWG%>HQwTE&PYO4jx8l+3s?>zDTQ%uLaPAyC|&y2N_ ze)UdS?UwVm-hO1H2j4muN_U&t0wO#=+xkBSi`L0{G=`dD*`^A`UI2g_W285Gnj3Re zXEy5`Q^rspE!x?ulvq)AkJU+U2PDh6}U2w{OsVu+d)oI@>czNQ2S0gDNoqHdz8ot;I426xVL(c z;ikGV5(m3~-g(si!r4RRa;Xo87swNi@e6Vm@jn*X|4>n`fxz=6jQ{{w zW~&eiDuP%=?ErvZGp&#k^b@&NE9Kv(U41iYcsKRi!IK$Tc~zaPBsjozknl^Fa;O9P_+evR66;@g#+f<`GE}$p$6Mg8x8sA|; z#_kq9E-sXAC{yeN0Jt$nda)+Ev&K1Y=k9>C8*IuzJ)>P#x-y13Rc+^O$%R=Jg;^E9 ze|BK-q}a)i59vQN?18(`Z2$g*O5SBw+ooFS%B34d&P;sai}}4rIcff66q?h!oKDP# z8;EV+9lvqzvci;_Ud?TAr?GZM zaKw)zW~ zawS{J6vqhC(A}+#5G-O*x<;W#%pyN#hxT*!a`V8EAfC_>)D8exmv+sB)FA-Oxl|vE zj6G3$@9m2xWIEl`F8N{z@bwzyaR31d%%>tk4kegRi{;Ux z?dN}O2e>o4_$jK2>wjCh@3)ovz`st!_3{rF{W4?Oh-W^YjZz-GlZjr39o%%Glj_zV zUmQv~nf1o^i@bv#WR4e{B)_`n zq`(c_XTo^t(!q_R=Ll#F0KoC`d{fC-k;mKdBip^T58DarfXXr8e)nE=zfdm+ZAKa$ zcKB@8kc1!~4}K@Ru?H;fy$iULfJmwPK%p-)*;=B6Pxcc&13ANt$)WfTbo($`_)NZZ zTdCrh9+!7hYas{;=FaXVUDtu#+f$_l$4l-R|Ndam=pWNlB-)nk*AYH}Q6jgTrutRa z&!^T_emZoVJF{z&m7KYpcQNH&r`C8nWz7e({e8MJAyj0D$H>899c!3QZ}|1^OQ$dA zzWw}!sIZ5U5W1D}e4i(dYZvt31o83C(@YxWsWAiH`8LPKr;kpcqKN&fniT4>pKLV! z%=qS&c1AmZ+WJRzlRs;3rWWZA@nlVWP`3`^Eeql;>)JYd0|0%vgX3-kN%4=!G+YY7HHptIh%l~cFLesLYROy6# zma{8Bw_ERez$WdKWHf$Xt!nn5;8BCe`1}?vTn=@pADE~|yvrLi15S?c`aXa&l>&Et zz6np}UM&+HC-{K69>JG_Yo04OSLc>dk(YkxbdQtQFPEcks|E-u5Ko563VZyrp| z*>NRv>gvrKPTw%tpoMnlvjuDh0>gIxS)g$Hh1-^I9vIXZl`}+RzS9RAye)7r&e&$z~&z9y3^k7VtO> zHk0<-&MTuAt()`0#&0*Bt!*PSvYb0D$NFC%-+=I!nWN|Bz`x;YW(|jXLi4Y1e+clR7;(;?eNf z1ow`xsgNXCweGl5)o~{o2md5{nd=>zV4(q;)j`ha^!L?Knb zzu>1=zkO`%+<_0I0hf=Y*OoPQZJoEyJBRYtAGnQ)pKI zdNL{6*WJa@J%R28?gXi~WpU?GL+FUG2L}w9-uT@;=|3pU2;(h`5GlAY^86RGga=mhWAMZ#f$PY9X&bJ8t}l$nNWz zMRSr*oX<8Y-yIgQRQ1)*C-)pndtvFQ0sZ|Sy5XV6nmy<~nm2ZKvdtClMnT2$4b7gu zUIOlG(}q3RX7|}v`^3s3+UF|MQ85_sZ(rMrL?qqk=ENfD(T)JWU z(h*O8^hmezP_;Y@02{MXABs1wZ4KNv=G-*@ncmQfG1=S?-l{wik?2(BZ4ra%AaJ*D zaZkNd)+A}kv6GQonO#s*Sk{0b@U+pE%UMLQ`8zX^F3+=J7LXd`=^`BO$E`;+JMFyGXK#dJ4$4&zNjjtJfpsLt}}!)#pR6~wswk1 z=GCXiJTfV+TRVqFMPGS(?26UjFavK?l6ST2sloVdK6|t;DOC^h-~Uo-;L}2YPAPz~FJiBhFmT>yp~8rWO)Sd^`oce~?I2 z&F*tB3`P35Jw(GBLHlg0ebQ!B^jX|HCj?G>^YUMRT>F^TQ;DKUg53W7iSE8jXmEbQ&cw+BYJ|BPzsWK&(INjQ-y>z+J3R3pv)g6cLDu zKo2-=dmwju2d>&wc;SztOMEKx!ms2H#IU_carx`mhJVla12U+~e@GduIM004X%{im_h z9Y^f|fOVVB6_qx0xO4vZ#K`&6d(JWG)n~@0WtEGi>aJP&2=c`F>{AzW#*c_xI)894 zhwtT$&Bmci{|@SEl{kiPZyWX@oSlqv;T@MMKc9Mob#z8?^ey#YItZ zE(|AFdQM)*Ie0R&!=1By@$iL@^k^I~kHdI<`S=gMI@pzlD}p?EA?Ng^+;PJrpO`nu z&%2k-=4B1dzp%GIscza*m=hYE*-*PRH>3A|ERzGBnDga&U9n7@Bd+^>%-mLL zo=(#OJo3}N7&OVzW!D+tZq-tGucS_SKR*nGf&c&#`uQFG{rO9&MdwoTZ)B93K+eH4 zckbj@l~syOM+U_OOc@pR<6jp(_}}EoBb#%OktF!`kF!^96}`A<#JKxL`Ys0Ud6o6& z?i8KQC`d1^I&eLkMnR8!w9JjihG9sd(Rm0s0D!ZZ1@HWMOvGV*y=-biur~kzMc_AQ zjmRjj+MjawY-Zt!Po9#iwSSyW-FzlBHo%i|-&`S8X$otaaw_Uhr5CJydb)tkc(5ak zVn#S~S6Ugwaob#UNr73C6&|Wg)8g3E*MDD|`1oMgPym3QFi>IC1aLpf+?yk-%9NCU z96PJo@rEP;070A{brSGqbK~7TZ`M=-0ET-9{5@q}2cZ9=W4nxh<3uY6z9TO)@c-;x zWport7k%C18h3Y3AS48W1$TG%1r}LYSY%-rTUcyASY&Z`cXtaGfrLQZT_@w({r#9Q znS>-vl1T_K_i#9w?&|99>gwuSuim>)&){s|ku}#K$1qJ^>{`9s0FazkxM^42^&e+W z2pQ2opz%9chgL3qy82wZ8?D`HF$}-+_`}^NAA$p%hV^aX?_=B4#_q_JEC8U9N&N%8 z;F|)9>b#kC`0OL9JqIcmKii*{5AqIj`k@*SL68AcLfZH9Z=BOTxbP-DKDUwYG3>#I zH9s9#d3ahwtlAL}WKEl{-RzuKyttoSTGB+HGC&Up*QwqW3}pL1ya_b30e~z)DMuoT zDk^_2iKT_PLLLB=NJJxUpHM%lL?U!IFfpMrp5~-pPX4ewu#1L^^Q_wB`>Pa3s{~&t zH8)|88xUk>%<^YHD0AMkwy+gcuhj^vul$^No=H`q%ia-q0&QbEkCv5SNpjUa0k&aU7n%NqYV!$=Tjy zSigWS?c7OC!#^9t@Mj;>0ANDL7J77QW1d$F-yWUCU5C$UllFYvTXy#P(OA1rYv=I` z`*^i%q`Q{O6h}8*|0;L-=0VJby$=UZYpC4D9jqPh4xV)E3%8G%d43L-@!19LpCZz#%LMzz zh3+nu3QMKJE$I zx4)r%BivwTTc;XaS!xEINFt)BA(iH0U_8>@x3-5Xa2!PtLn_VP&}4|K)--O{Zo8S8 zQx_Wpfq*XirB|1B)h7nSHe#6?F-?qErp7EY6Slbto34#TPYRj1 z>bJgA796YF#6uG#rWUN-dUMy2$NjrE>(j-@)cEVXSt`7UPv?rn&K5>fyELqLbESD# zY*s=2>qK35{XLG6>5rlVrJ^@*$I7x~Jn{pIr5mgfRmD_HVlnV2TcnU?e z4h6${`5Wrd0l>_dT~N$FcKJ=%`!sbg8YQA)v$Rj#BU7?59Cx)e?i=VSl`GhEsz5B8 zf8ZJb;5ZHd>(4)8P|5k63YoF4zxjASD$&K#cyO@Kj_CsdVAsu;o;I|mIhyE^XggYt zXA-FZa3uNJme^YWaH0J#^{+XyI28xjoA^+okPGAz0N9i8;CRaOG(jN%{Q2(u;oxbF z>GEC&_?uZKPM%+PyA*=NPx@86mvrLd>nAVkl6#L#BCh(aZ=1lH<}fr0iN_c7_~MkR zEaEIC)zVDQ!c5QF+`z`tz}nKl&e~9qRqKvzXKl3b=WeSuH>?q;m?J!RI`r_F7Xi)e z`gZYc)6(f{8Q>2-d_y4-{~FPq)WFG%K4#|Mh=_ZWm{BSe0|L1vJawyyjydU|!&iZs zjo~jFNBOpPY5c4RBEID0);nME-nqs6qFj!tb;Cv<(TJp<{emWWwK$jXeoyq9Z$&Bc za~M!)=X#8}m>jd}&Ak$d2mrzhvie*H31C?a>*~^N5y6BIR2zVkPD4M0ss?3=Ddj=0idK*c>Ph#!E-M} zpUid{8k-<%LEP`XO#lEh16EdXsg1Gz@V0*Y@4dD)*6$bO>1Av7IzFSdyWNO(elKFv z796*mXI&!aE?J}$k0W2RqDPw&1>Xli{$$=a&~4tU*sTCQb9 z{`u~FZ>wfo1I7_iw8f1-0N{7;eqMUkLARCzz!--%O`NqiK|Fh%xcg{bRNLt^^507a ze9`%vQe*B69$y^C7sn;#sc+P0(;e-Mo$XCr9nIWb%xx_VHL=llZSRqiQF!#+tA=hd z498zbroN6$)nn7Thj{kx?Bi%_+?bE-ZdAhC)SMkt`g_^bTH9DEubt4RmyMa1jTwgH z$Dc-Sxb#?km$_aYmmLtD$z2B>>IWlp{YI8-SK-{wd)#9F*SvQ#JwtQ7#yJ<2NF3wQ zOo3y6hTdbOTR!H$i(KJ*6jkFJGOGwXVK&eY}3B`SMEoh zx)wfha4P`7Fg!VNHLL@2LRWz-l7Py)VsfG zhJbxaMo?REQyt=y^Hy%YUb9S1l`t`4Zdf+h+1}*Kb_;5)9}0&njEGKGrEX<0seYbT z0e<#v0-elFYRVxnbyU0b%;Lu{8)+U}$`zft5`N}NxRbp}=Qi%0+PYbp>o@dCb2+>% z*PiW|G9bvsrVfV_>SQKI5oBz8|I4pG#AO$JBHu8!LtVq*bi}=JA;Wl~xxcqI`-@D_ z)3t^U^+90{=lt#mU+e4$iuks2p1yhrQI`us{d4@uorX!GPzWS-@0uK8`SP_9l@0*w zgL^K2byw-ZVoWX5A0O=Gv;6hl6mGGz-j`Dl(rZJsRKCqBh{Q69n(`x&fXWq^i@m9p znH~TGx9336dGsa(Do0F?i0leizgA8w}4OfTR70Es{lNTkm{rUJmC!5zJ9&2Stn4cPz? zR?G|m2$C*~&e%Pw;4 z^PSUNI?ZzH`o&~SM1-)?cd*iSem^(nw}_JlWJW)0{{yY3mUAX)nRK@SnITsZcLG`W z4r`8rBL1Q^7scXQ`-MB&8E^Vyu!)gI23InvzF7`oM_lW8ao{q_R#g>Mw04M7~LEgT07P^$(9zP~#K4rrVAGjwnyIxRm9G2B zR|_eo2+d8qko=y6mQ8HZc^sZp5>uS#WmvX6JHWxq$IyJj{j*%DSmpH6)6Q+>n|m4( z_gZC!k$onDhoZ=;UwSj>6g?KrNS|(~$LKJ6%bH*NvYFJMmYoCuCtG6@k#O!-$^qcS|!netUP&_MkX;RWIa0d+MAD)x%A&Y)%6rjQ7K4C!23gSC&XdH9Ao z^*{UUUcs|_1?%3Ori_S!jfth_l*Bzp7-~ifd{?x!KoqH72E*kjLe#aD4z)#GWa^`f z;SGHjlz{db-){KqZic38U7ObmH_~Er1l(VrU8}Tx!u>O^ht5`gH#`l^F7zC`d-*T^E3r;&Gfm6=ehCGMZO%23Eeb*Xh_G%AK+OEz6j&n~0m`9-{)C#vw^?a|)z z%KfO!Tuy}n4a1b5e&tWOLQ{88jc(&kWWtuI{RHB&*(z5kKK?ioMGy?f*H7r>U}hMW zkU4qVSpYb(U{qvs*4({UR*ml7!Mj47FOI{pM-jgd>)gaU5RE`qvUUQ3D&=1^XYJ+W zQX##U`<_A|E%EAiJ?pKHzD;vOJEebou~Yy6)^r0DL8PBV6&b{O<=T+R6uXZ-ee@#U z#?qi?N3SmJJigcPI}FEH{_k2sO08Y3dUW(!G_!lHvI>*Q+F#Rr5uTiuS?p+6wP(2= zo3?qyke`>F%q`%4mFC59_?VdcF)?@l$>+v~%+@U&g9Drb{A{U|`nqy8bSSD0-!zg+ zFC>U4z#aX*|x$-1I7U6^H~m0&LO!OB)=ud> zjz+}2eirwt$(}@(S6Hrmu=n(HQB}SGa)qK@fYZrq;Q(N4z%{a0KGHd$0UAV_<7{ zJ5?pe9))KVmipS8tJgev>)EE(hX&gQo=6QH>(G`;ApIAAuWprG$&3&wWb2y`4>oa8 z;MkOx`<$4j8~jH)Fio>>cG6w*GqO3{j^&svtnPTCZ3t{il03fe`8}=^k;OQ5$ zCxrwDe203#|L%S8{7q7=4nYu@JhJWhp{;6rE;3R3wmok*ONSccK~0QUn^z8<`TNOY zj_~U?bzw38>fNZTccVxof{(kEzmKiIkBx_m1(BdjLZpK>Q7TQ2DEz0)DkMz}%U=rs zRDuzUY{!$PsfxWX-d!k;DilX0bHA8x7_nh?Zf(8>0bO6!0UlipkBvxe&{MSP=Cfey zSO$xxYwbGVNp^A#d-H^Rb>a>HNgI9E1c6v@pmtZ#WtoY?j5b12%n{8lw%6M zOlrq6sQGX|BMXj1qp(hLZ7l9`jSb-xGI8SIR!ZXT?`3mv{n*aqw$2#c-ok_p0Q=8| zrezg(ZtWHoo3(sa&(AZ!@P!f;UC}0SuLKoquX+?N;SF7Pbiu$5BilElkcd57xZRG3 z+k5*p0GR2szKL#RLaqCCKFyE&GwM77a5DA9p2UYdnMi?SCKNURL~}BDGV!y5cm|Qu z$;=A?N+f0J%~+&5&eU%{jJf&Xebra;Dlz(F_QIdL)s40`HJrK}cI4d4S{-6;!e00L zKqn0ZWU3+VT4SXsf(+^FKYdJl4gKcrtPHpPHDd1aGkIUhXQn!c#WJO!q;j-!b29UC zv-EPc@N~7%FyvPU9V)@yU@V!yjxPF7tSCm*1ONyK#oKV2lDLN#tjD2t3(9G{n>ymI z!_iIGi}M?56eUwh^EZ!a-_Kvy&b5WoZ%H7NGDu`YD!o3+_Cyq|WRkCTmIXjU2^yNx zH7r&YbEtX>H*aDm0C@c_l}aV~x>*4Ljze-rp~}-nU*i><`Z@!A?ka=fxQDgrt%$h3 zfgVg61pvDHyWM-2cqcMmB9njj-7%S;uhfmr+VYOy)e|>h{7aX)j-1XSB4NC`ky4Fs~#M(lC`VD_aIE?#TJ5fmW}e&P?sPWy9^(+~qhF?1?Qdv*w*4Fe zf=+s|$Bk_<$*F^K`v-0|02ou4b<6AYzdiQ^!Y}Jvoxc(JJ}&#OMg41*5^u727#g?n zzuKj{>)+k)mnog!_xmbwyo?dtr$H0M_rhYrv)fKw?^fKqOtg^rHB3kL+Q9vpw`CYz3z=_D)BpUYX1+OOOkr&e7#CTR8eNi+ zE#lnDjsgH@R$X-WUW6w_50#Isx7Az1C@VVOY2wb7Zy+pM)1dyLme!)nbBK* zix1+~@z7hxLvjShlpI0h@XhE;Z71LE;(-hz; zo%kqsquu;0o z;5gpQ(Naak6&UVdZg}zQ24or_8O~mRUu2sl?g^a>>D@C#Tb14z&xK;v7OJkWHwp z^XXxCbE1_6dRsNC_3T1{Z9DL=R)>`GL*C&r{U>)AGNTKF-5_!qLV2EcE2I*PteKs@QP!@57Ezqf-M9KuL)1L< z=Pna}@23kz{YIg=#k~f{iZ9F_lNFX`2_0H8pPlx{8W#H6~WGYF!XBW%0oNJ6i zFtB6w&^=ZicKm)uz!hnk^N|R1HjL~#EJ)Y9+MdA6{(1XkxU*j+!+D8BbT~GAu3uYi zK1A)g%2cVpo|smUmRU@rlGHP=OQmv&R9?yxdAV3TJ~3AdccFPvM>E5lD<&)dCKCza zn}5;#*tKJOtQ}iEp7siG?-fvmPtxPRr#BTkLS;Ye{%4iDtmp<$yZxa_B`AW7b*Q?} zbustqV(wMPUM`XzKJ&89w|47cOlEe;-@gy2PvB-l1YFUfbyu$*dOB`l@2*3G5UsssxEvFHdV>)FzyVV#udDu0{;he9 zB$Q#r=%9P7KRBLUe;a!9op$SF8#4dcH^n>1N!PsEg#yQ?J-YBTJH^+?LY=q^ z$g*OvsTO@nbVjmo52vq$aq1T>^gb?o+QQ=-{upd$W!MC7@WJ!ARhzFXG-K_0Y}y}l zdj&Pue!jXUNHSZuaNM_P%#yz^rDha;-79f(GW%m*?=SWr5{VG@;6vDh4*;NV%xc!w zwRt=DW^G+ftqpZA@>fSuUg@FrS2Zo1%h~+v@k@IjO7Y6IrNaM~X*sc@lehJs`=@Gg)OzB+6=@pHSe z>k&hemsPTO;=T!UyLIU0_su<~7rAMz&FuhS%e$vfvr_;dUsNG)$^2*6V~WdN>Hc_i z+nCCzzx7>n-}*0F+?6gd>Dk5U*=4dTO7C_RjPx0;n>+Ll@$&Pq2DOApu}OJ1pTxX+ zmzGz^)nn0Gc-u@K8f>Ytq>PTZe|zBZ#iy@?)xVzXywVwqPpnPd={s z_lAaZQ(q6O74!R=7%_jG4q$CzuzUUJ4gcM_|19=vT|=KPKEM9dMH6o;8nfIzj8n*a zbSeDNrEmbSaxe+%>eITrk7uAGs>|Z^m9T&HB@w@Nt2Zehvlb8A*1Egzls^Yp)-^+d z3M$sF329R~%>-8f1seqvdvg^zDWJ-qrhGo=6k zl4En$AD&94l+iG`OhF)`nlDQp+I%}Vqj=r?Q!(LbGnV#6&~Iiv^KM4M)Q9I2#{3pr zQt)5&3+2XZsUN3$mPMyrN{+de9#=lkDa<(@7l{LGdH1a10D>4%8NKb@mj!etXx46; z+v95XN|i|E)u}p`8#_3HYY*RFd-&ep%jUN!U6gjN)7Qf<-;2u3 zs5U=f@=iL9ykdTz0AIT;`|hiC{aZyv-9{HfE(U%EHiQ_B)O27rfIKP&xe zuBQ!9?Na}{?2C?4J6Qf}Ol_un&_5Jj+={w??zOgRLkZ}VKL!k(T5Da=mk&N(JNYuC zw_k@|zI>keV`N(No0K49D^CXYt|B;$tFG-F$5*6q0vhN+c3643o(fBC)KLCn_uvWaN~@CFjMb{ z+`D{Rqi~`Qtz8%X+>Ono>iUDdjnSTsV|E^XeBowfBZ$rXI<0H1SUUh9C_OH;z4@_4hD) zcT4S1c3c4f#gY$9l2th;lf-kSwbSG-k;Hy;&&98e>zMhyn%Y&R#pQex#C_|cQ>8_G ztyJagWAn%Usisy2bvs<;{?}_*OBZkJS{)l7ooQif$kHpfyO$L4hfZ!kX+cl*Vs|fw zdp5VTvN!(bI{Epea$RF0f{u4@u{Qi+h?QfAm1ATAtP1LOBL1x@ zo!Qaa=|N^v7i;HA^OhI6>3o?401`Nw27RHLC%dfio9g9ap?SU}nN0EGZOVl^@BTgf zP>)6H-p&I6Py|`^OYd2$&ZJ}%S(@pM=u-<1Kpk=aW*`#F&RvUWh?;R6w(NU=;V`t% zSK#hanS8}R*Pg!maxy6zl{9B^r#@YLbe%y33Yj=}YUlQ?T>jp6E4P5#a3>l&BxpeQ zx`aT{m{f6XW}8y6?8()LCs!j_`t){vns*!&s8e##E);U?@Vcv7tT5(v(yZ?52TTqb zJ-=7|J!fQ?z?2qXNbykLm?fxn;(C!hU-ztk9Natm>cy=ntyI-%aNsW+M%Krvo$$$y zUUT|k9LIO9y%y5j&!buS>hatW|KS*JWX3kLG5`P^!!ZnxiAvnV)Kp|A1tUKSoTp#hso@L-~Vx_4q>1!-mkVu5~fzIs%og-p0{@H)u+FV~r`VI8x zM>md7&ndAo)vJ|4ceTX*ZA?adQof-9!%&}Yphu_E$Ye5+Od^m;L?V%(Q*~>6T)zE| z%NI9X{o4*apixPUOpAGZ@#3`?qdsPRv81nu)$en9TAAzXdcx=M_pv>+Wy1D@53k*e zZixE3wfC4hs$JcVr8B8@ixuN>gg1^ozj5rjjf;8jv2D8yYsp~IbkDl}xP9tHR!V`^ zCj;kqKX`m4V&>Xmt-94^48d?IijV++L|}RtjL#LmG^e*>lB@whj*BcA?M!L@2trWF zL{`m&0LO8K0v9WA38FJg{V>Q$E7XdT43R{b`scuYleDHNN~YAr{%@RqedSo_^^-5B zFYViBWUI1kAQEI!If+ErbZlB?O5snv{|5l8cTc1GhMu`r}p|^W=g@M z8}C|m@@U`F_Zxax9tNhDdX0BDvabGBSu^#P26US0*&qqm8e$FG-^*s--=j}ok8pQ1 zQ-)Vb~H^>$d#NXXsw=edJ_ zU+Fk7p!c}8&OSD}$6aSgC9)HnZ#7Wmg*lv+6Zf?5=l}CxL-lH_^@JcDEVlwcM8U?y z(sKYnK*((^{s(~Yq^Z`-PP%8OLzR%r73+RJR9k(d&tYa``1`I&uFdSUa7~|v%XRZl z5{NZTHI>n&kFLLK(ZLr9)769j8)se{ zNzuCDeO&g^b(e}cUl64Caku(?P7iAf1Krcn1VPOmj&7Z}>&TOfx3uH+&Sp}V|JsK{ zth=u{jiH@r1c^v`>qO|S6QOR+?Y&z%ewF5Z|0<~=sy(pga-+>jv(pNTaybopiYHeh z-ad_+`S-B)eQV)*$0FIXNVX-CxWv-)pFYgeOu>T?s~u)Eos|3c1BJ%Pur9( z5sa@la#Pf_m^gY+(AB$9U!+z#d{5vDBx|?b+PZppgP!Hq!_@5pK#!D&>|)Y0t* z_inB;wAYR(Q%UoF>fEKh`}*y-)3S=|S=*A?Jxz^S^{IhMCu{cx<04bzB2&MoM|NS) zgYT>pa!Uk%Pe1tjUd+#b4W+ZHow>;{K3|q$pytk=!M~?kqb8zsJ7y0PT65h?{XIdZ zRR!CKC$Z;u)$8>k5Yh3A`VN`VS&QD!$~+_pico3fjN}31m=WM1) zh3XFO-zyM6e2mNi07Vc-wx-@A={!!cL}W4D*BH{<+sNualPUnOvQBQ)214nBu+m ztllcuf*iqf1Bx4qWJg442tr8X-%8`x+OY=#)ZJhlgJ_|91m8DtFDc+{`sFBIkF`Z3 zbNwYdCwR5ga`?MKt^fc!gMy&Qw7#2(M1r-0vAXG9DwZXF$VL#PWe2wz%lespNxtTv zEr(0fG3lv2b&TQnsV3XD?V8E1$>vm(ZQJ$V&--52{&dc{_J_0fUhBSpx~(TNIh$lx zQ+Y@dUIN8PHO3Wm%Zc1$(0WoXP2e#=OpXr*G0P@ zRnw0LQKXoycS%C8Wy&JCnxqj`4t1i`lhKDKE1$fS7wO=-oV(wB5{qA2fT$9mP6G(? z4UGd?V|-?izZ|8^Kz*!FCQ^DV*P3cY|FX8|Z3sjDH;#7pKrjk-2+cNtjRr3}ckLid=$Ss4YlIsA!jWjFbL_gVa(sJV%w|dQCodhh)2)j8%!XST z;Nx@^pJrn824Uy)+02|{<*2n7b7wq6r^9d1*V@Fg6;OlACyD2;(BXlVW1 zikC6X^5f6VNawV&`ji1s=?Em(IlXNJ5TTPp;=6D);b4^LX`OhNRCxot(ZriUzlEFX zv|q6}tfw*PS2Jg*;!6;@^MYQ~pF$Qb!&vYaMt!qj=L{u-MO^s7KpF4;8`f8@AD~_) zMMk1C7CBw2l%>8M12WFiI3cC>zz&%%`{*8A5a@9G=7t>ogcT}yPm-ArQOf5q(lEEX z5zf{6!VcqE00J~2_b+Fq^|@77Tl?trx20I%RO*AzZ+G+n2@1|&+2^RMy#-zStID(n z+s!ev#b8tfRtA_s%4?C!Lwok3_Gb1RTe07&TP)xriMxqQAyjs_9~!Pikn!O=2&HNk zHtm;>FIs4jULFrtt8<=92~z~-kpEMsvsltza|0yOpXyo~@B@7Nf4F703ctG-qgK8@QMjZT= zW#8&>O{u`u4yYCGYg$CxY}TekF{=D3NJujD`Y<6mJWyN-)z8#?% zLPc-+)i%)z{W63gjfW+ONB6Cd9M7-rT_#Rk7ht$Arv$PdH{ukhszy`&i5nLq#4jUP0hwQEF7@SLg2v15<}y--ft(j zlbfZXWwG?25CmaSL#SZFQ9UPXE&~RF3~4?6>VcHLS+B|sLWJFZ$|PS82@H$cV7dzATeJS$96PzRc_*pp@E#>#jE`n%z((uav!c3FcPqj z5GV>c*RN&_wTIzlXigq3EWE!>SRy&}$EJ3psF?U7jarLpewRgsEz?$tkq{FX^C`a_|Me8{9E}PrVhikc*5n+Af;K(1``ra5R8E~j4Y~QvNwW{= zJ}*nZEnSLVaz8}(*XS@;n&5MKg9{a)fIv}5IRSq^Q{uOu-DNl zb;}C+(>{V+ft-oB08zBEtYupf8Z(aahbm4j*+q=x+Mvksn6x*Pp0XW^=`YKMMI;p5 znZg1G)Zwf0C7NyqLVcfVx3~`Ix4nf#5n>t48@~;KjO}%JkOEcrsl}xlB`IU8%U z8kR26nrf_(tl>s&J$ir~o^t%c!jO1>lFXM(cR>-iXw8H&>aQ`(Lw;Tx=yE@B9J%wo zAp2P(chDer@j=x7;EuRkBE9gA+L%L|NckX8FPHxpjqh(rVryVR9o72u3D;2Qi2XE} zq%kt2NhkP@y~Zk^`rm9H^2$W}lYk4%Uyc;|X{8y(`FL&UeYLO?#c&|)9)=)s4nAoP ze%c_87+r};a~u#*tUz*c|NDu*ccU+NaN}2tl>#fUX=Xb@AXx3T$tVyUdfg1qj5n2r z4ZlwTyzJ;QQ2xMUP8!A3%=UG8&Jq%?gnwkclzue9oW`*YZP32_T!QpP6!xMJcCMw$ zp^W1~a=M4ln_Yx9NppqQNXv#Hw^o?pf*MTU&zwUwZXx$YIcA?9rV0eO(=@?Qh$HjR6v z9&hSBoY-wQ7sg?yx4bq);#Z$8_XjM(^#EzRdiqlT%Yk!QiR*koIUlR&h!WPv3f)P0ekK~hc z{ZQq^T1-;(3n`vKulTvW5`}g-KW@PR`FAbY&cf{IyUE(h=AWhhcH~<~1l6wdDoHtm zAC1X$;Ghb*TJq~v6n?y!uH|6hAWC-d?>^j18=_F(9wOHKekowy{hHo(`cG9?wm+A! zEA-wzt(h8LCO7=rb>qf&}Q;{M#pt(fR%Z6_4l3zlR_%4#A%fgOf1dXh%mB z?3%3X!=N9WF4;?CJm?N3Y}lGf8b~UeT$-MoNWpHplWCT77v^&p5cDcd z`$=fGYgw3S3ljSLZ3i7~Q)D1_{Hs<;?O{#Hmrb7GF2(nJ!N|Jq)2tM8q$y{zl4ke1 z_t+F%c%c%WAc-0iJ!CDlqK<~OB4#j0kHM)YHv5q;PkhZsP}W+5w?9xEs9%jY? zVx`$2orlxKU&&pa7DbrY?yJ~PlA;L6yuSmv=WJ;M*az$(veXJt_9BgakY3W~eU&W4 zR81BgSli`suzv1Ob(Ga%WVnv~$F}oB1?T639?BF!6OZ^EZ%*s+M8yB zxrJ|I{p4!0TX00NxGh~{C+dn`D%O&sTY?kS;rw%of+VZc^6oBe1$Ah}it%t1!0_sN zZS|`h;?4Jh!^2&Y&MV}yoqK^0Y#;#_(jQwY(MyX_Wvjk}J8LylK_!JI!Q8z??m@1Bo)ub{;ha18=K9mp3CebG5-_&>@G-R*Pj^!3mH&{POfR@|#m?VBtDgghIH6o7_)?jd8O-H~zD7FBB^cw^kc zk5OUwX{c%6IPX=`!s13avY#-?^GUTBroR`(eEm%UAQG9Z5|czV_JU-_ zK$~Z?4}&V-&vul68O$N2E3MvBS_hRO_U0yI!I9*3Wc$Uw2+#p8`{jOY5{dp?t6{6d z5GF2evT;^7-ZqY~T^^zvZc(tU7hsjP3i)=;&7M}EA~k;aV81liR-xZ1M!V^BG&`8( zK!-|?@ID(92x#)GmG)=;&4npbEN!^hyMN0&E!otMl_iU0LiGoM{!n7T!hUPqg3ZY{ zB$f74cH}b5PM=`9bWj7Q%Y7YL%5O<^Wys{=QUQZ*C25OgB)VR+^9X02cOpjhcD2t+3hS`bc+l>Ifu%cu(}hSGXk~n=S3+N4X|ay6wF>( zF(X1i%ukE6wCkFvLcTZ1FN2Tcp;WbvSaq~bI;S6LUr`ys_Zo_IS_uj)C;z?N=M+<+ zINZM2orDF`!d6Mq>;8UzNnpUhY0}oP!QXP-aP>jQt9n|tC}{R^SupZzhFaM+w+7V*eH0wYV~WA2JVwy4kYj`IkXj_5)udL{t) zilFXFaFC}@KFM{cA+CuT)Td8oBxJ0(tBvl&&PfvQHE)tT0R-)0*)flhX90{HDtigYlmUY(2l`q~dWuv){n_wNkn;`OtHd zYhYG2r^x^#H(}1~whthua0!@6WgLudviPeMO*ZlmQoj?9$uX$N^J6(88VcSj8M}s3 zhQu)39lo=!^aL$}r%qk^DkYCE^L;+$%rjZk;oBdY7kInt1gHqJmvT)94?R6!Q-Gch z&oMyhTN}pWlTno+X5x~G4_>bHXB1sR zGHnf(}EqWoKkx*hf;{q0_oQDjJhp;+U-W2a?w9T{hhT1X!$<8oFwj5f z=y)&&uUIRa%MYmb{*+QNOj~M;^PB9fW6}22T+;;G1@jv=&G!TV+lj09V@ya6aY%%v z2mR1(<<51HX%mly>%UoA{pL+7wM%i0dL;&6pu9V^zXyFDBX5~5EsG2P*@;!Go(S z2vG(@ryuNYJvmCgBk*eam|zOiGHlT~>J`SzVmh~(Tcy-L>rFBxO4knU)Q+e-niobZ zW(u|Cfm5^@Qhp*O9n0v8pm(tU@k0+@+ z2BX9Lr+LlX&-}J?-olOvd)J`bmG4k@%?q%zpJ#0?KkYB;KK?r2%KCl0n+l_Cj&2ld zQe6TyW~N%MCb$SRsJru5*}ibe-`#__b;n+-;IRR<&|_--v#&1cw@SCVU{L3aB!JLeWagTGrb-Kd-T)w7JtKHkj)V_CRjE`|ojo zi?H{c2PVya|ZEpTi zr8|tFqp1!#4$x!I`%}UMpbAhH65I}NcbtEoXhFo}mrM&a6O-i7#j(j16|g|KaE7|% z+BX8G16a8jt;{8jpx(ANxQ=#xpu!wQh~v@1pUj+@9dA;`9=zatj@MN>*8}(|U7jkc z6cOM!c|Wl`0bV$t^&030%Lg|iZ3O`jpqK{<^77L4m-0!dp<7xcjpx}WkgHd3Nnq+z z<7Zx9E^FR9-V_U+U&cesnJ|#gxOsd*{-psh;@Rs?BfozM=<%o{arWgK&Yb#MCOx@oH&Oj zT>54L!(g(9o9cvC<7Zg0m0;S@(*+Fn(>WS-sLwO+zs~nRSa(p#vE16`ZxxX-yBW<&LcR z@z+qb0+7Eg*iz!3#jyy|8=Hi7**p~_r!*=J?`V1~5UfNRUiJc80+lA~bCIeIC+g|x zYyn*|m)LE0#$x1vB@L2uvjdNfi7Xoj-) zcwtoy^v`)KASJ|CR`9j%X(ZEomF=Cxlz4_K%|3UW{O^MR-E8Iyfi7%p7onx0HQ@K6u0FXNwY-~LVa>pV^^MaPvqR;`*TxLjH_?TL-a zLB@Yif_vG!Ome~sZ>uVtMyj`RwaNMurtiP zVa8|L^@%0;W(}ZoK>ph|Kc=KX@y2{uqp4JM(^dM^z8+L2wlL#0KqLHZ&|7^q3wL^a zPf!F+#eWnX#+|4nn=Y2Fbxw_Axpwxi{-B7RM5z}f7h>*4+W`x`&C*@?#IYg)w5 zSjU~qcOCbKxwrDx5jHzC5A=+u`N%&~F&VRh!6nr>?n264s&p~JxGldFKcxv#8-;W0 z)#y8Zz4}g?$=tO0$*(_(*N_vQKw#jRG}^e>Ex1#D@RvG$^`Cw}Qzt%h0DsCmDa(xI zh4we@ypNe-kr)4*T3x8;p-P>F&{=G5-u8hIID7#V{rjB)>bc_d3FkZy#dAZ&je#@> zar%B&-NFvpOvwb?pY`osxr|sn3JgTU_gan3d6;X1=*w>lhntBE_J5$H4el^O!2Cu3;ZSkAHRa}$8DECTaSJTH9 z^WeP*1DLEjx9^YYbFPSKf>RkTtUgEMor3u1SOYPPI~y)?SsLpnxxyUm9Ny2Z`c;&d z`&hT^d}6xX(QkqJ&FeZ^4JkawJ_mUw?lOZ5V^jY*Sx&d-fZz(ea3BQ&5Le2;v&mq+ z-s$Y!DcIy~{wVWK%i_8T3FM!3U}JKSvG|+I!TB}Eo^~KdNGNUU;&MpaCIL_M1G`}Oc?n*Ls z?r7|iTG@^OsD)n%$MMpj=KBp+ZI|Pza`Z*h8$qNZ@@eb@@xCCq$X_a5U=>pIgyA5S zs5ESR>h~X4kOA3ht~ZfOrNDC%3QvVGGQu6}YB5}stuvkSh`|>MTT6k(0PSXCb7|JA z#g_ZU7WR^4Zt_NUCr$f;d^5vGlI9w>bwwC?|J`)sBk@jSbKo< z{nT+g|P?zC_x{XZPiW_Nm!j+r{~yy}`v=LrpGf{MlzO_C(E#{#;&zFsJ)% zOVRMIv0_P1j+*~O^QHCmje&~jRpLb%(C;h=oO_ir*#YGF;A9GO{*IFHqn zDKQln*T&5+UuItw`2AiO13wnph3OZU#udz`*zc;$5?#! z?bX~3j@t(z8grf5`8%G@n!;&45~PBg5MJr@R~OKZEDle;-{0ei&m6f7ih_@9b`_=R6&iqo0E-Iu15&~s>cukj4 z_JOvf#&&JAxBuJ5YF+6=gz&zvt1P9tS`x$VdvZi8oERLdK&4U1?vBnOh&ePsDGo-C z707T*Ow~+i6u`oPGVwok=%0xbu^q|btUB>&4}XA0u=v>XTiKzVuq{~&a|$!;R!3J? z0JTrY;q^VYrmy*RqR}cx_UC@o&7KA_r5kTZ08NK}-T}WP%xZ_Nb1@zrGVTvwJ0=Q{bIhYJ;?dB(}IOs4mxBGba_6% z6hV58eIpz!Uc&J5x^o~HR=A>@+wb`E{6SYmdtnwa%EI;0wZe-phl~El=!@)$?vz1X zc#?>w?DpIu(IOJrD=x(+p3d(Ok*Hr<5kZWlKmYXWR&J5PUaO{28nwz1k8h8u zEMTyL2}SIg?5+j6`>g4|v9YVU5#T5(0-eXz1`$3b@JOrXGr59< z93NX?577z!@uSgkW~M-#JBoU=j&!j~o~Z|DFYJ}*yr1O~sRVjXeF>>Vv?-#(?C?1n zPX9r5!3_{ig{KZw+<`~N{tVAvs8-)KgbUr}t031L@zacVp<~}xmZ%4>b9-t&>mt$3!_I-Z^>Vi2zyQ&G zMbHR_3&`I;pKGffvy#UWydcbH+4e&)xV{}CvW;@Rl-CL#QeOo{Q znWk^af1Dut;-2n|*W({zH6HDLotbUW)|JkP_nbe`*s-XX)U1(e3Ep)93~p;66o zg7w#43OXdQyJDmPQlv`9raVbwGe!96zYr(y+)y(RU-?j3eixbmE)gsP&9W?H#v z#tqFF$UOkfm%RTJ0W{&NJfEFsrX^OzTBNH^d)MbwM802_wohrrPi7!VG)6%AQe&^j z3yf~GhCx*mhp;Tp&;1qv1oidMkC+5fvl$9Re&d{@ebCOaR6v;ukuGJB#61+exR$uF z7>HIa$rv@lS@^;?neo{DBMqqmA;*#y*ve9KF=*f!aL*ZzYJw&-4&XMa%fQgZop#qk zq+|!W>@LlFfS7MjPdZ6e9}}#yc+F4MO|FNZdra%gq3qoE&6kIp-FbdFiq}UfPtW>~ z&m|(4#D~5~JgrYFrF+?ohhNe(E`sX;_1BcSU87a^`GJON<+<_agRz^b459Z zC$|M|KZjMTqE&WhJQ~7G7I+Fh(2>KsGjNdYW1Y8;xiT~8lF4izV#~AwW<1f!c%z?` zqmjY&)Q~=Sv%%5zJ6yx7+HY|ZYzox;Nqt?5qt+;(4`LfUs0EWW@rs=xwI0li1rKrE z_n5=Y@$8W_Gr-_<+{S^0UxP~mjoHFCiw}x73Y5r1i8?vmy|{1?v^I$ARWNAcpBWev zq8k9@9{fGmwTI~(NPoq=HS}6rTcS}9OR?7lAKOoV5u1S*t=$!hi?$qCq&B#dCd_#M zTvfjHsz<_!StC(=_tw<~D}7Vhu9Wr;ds{Q>D-<|F`335xdO`XiT#rRdu^;?9p$=V8 z5Iq{>7qTf=-(NwtYF(0h)M{H@`4bngngZk!k0X!kk36j1&_+`BJu$z>h%$Aa(Ywf1Z+sYp*g`Hvly|p5I6FR*jx=^{Vv`+hwH(AGbj1t*7)zVzXQTwD{5NQ ztM%ashA*>ypC3Hm_RQWN>$;0CNHEss9p>gf++ss&P;OWv0XIhBAiNWSV8^b#p4iDw z4hE8(*5-B8L_#q=0CM?Z*zswQ92|2m3GcY z>wl)%%0#R-|L8EKQF47qQpYS}PiKU%ug>J>A}YmfB~Wa+P2{}yHy?8cu`sXYfMg^I zdKZl5-)I=`^vi@v!q2BIzN~3EK(n%tb9#I_0B|_#*%Q$BmWypM9gFHtu1}#?jax-| z0Y0)tUJ+j%yNhQT`}fjV3}JA%X&Qc?G_m|9y^9nGL4U3=CH?PSM z)vg4Btc4vQK>o?voC_3&_?TGDndV3Hti~%Hx;&oR-q1W=O|I2FLxoro-oED2qHI$g zGr>h!_G&IeJ3VDYYVWQ#=A3TNLUpMMhE=3EhdT!yyZLM3`uP3`Zc8Fb$= za`jqW6f2~fd$G^kKnh#BjlrX#@*-cZiZty{ zcBtJCD3YW98S3i=94rg7f2aFb<_AS^eNT>!zj-*9#dKUQ{+t6`dOaR%8}3KSb+H@3 zB6)M^61UI%AwrzZzQgq0xKQ+BF%w0Mg#bZwfxdGY5HmvgpX|uoOWmntT*)i%q)c!c zcyX|ihJ@#X@_WDGmTrxU6I3wkYyF@))X&T(mRHJGG?sI_D75h;w1(oDrJuQrJKFga zy8-`QC>5zrG7$#B*xw5Ju7FZ+a-WYenL)10Gm8mgmMbj0iE;V!hyUIDouB?qxjLST zG#(ZbJV1(a1_zTeYv}v@zfd_0SqKbSA69&_n!_b>O9ySO-UZ(|HZ;SVo;Jyza&ghp z_=68tT2mo}y;GmmL=zSweME=+F+f7tgS5ipGWqLkQ4p}RJ($}5eRSoe4s>mDSu8In zMZq`|Ssot`qZF?!bR{9)yJ471YbBLeW{LU!3j(!!fk4 zBfwn0Mcx>Rfw#N5PsD9&JQ1@ga5p{K>9n{r+3qO;#wYd^eQni`+*Bak^fhsV{2n~<^Jo^1syZu zdCZ1d`vY0W!>8M^OF{ZHNy

MT3Fz9{;=F8eM2pA*^H86`LG11E>N7jXiAzy34kVoRyo8% z4$>`vL%@&UYYf^}M^Qn2lw4Ll|8UwwSGoRh`B>20?^UCB531v5w23gr;X5FzqN#xZ zY4K*t848qtLOM!IR*mO3yo7AVMS5+bQ%V!d>{BJ)vFx7ZdZKNXkJSHPJ*c+)3x`t8Svcpv@_%tsvmKjl1S0H&C9SaK~=x;Cz z# zrmg4t5~thC)#nU(_C2CYYW#EyLnLirtwg*_0UZX9u>a3U7a#SwiIeE1#HJ8VR;td~ znQg;ejWq<-{l)U=rVnJlF?h*?HToatt7eyD)3sw|fM!SJA@>g0kmem7xQu4&^Hyvn zX>0%9{5_F(jb)$gSbwwY**}}{brr|@>>Z=m5Djeb$2ToWSBl8-!+2(qAJ_&|OUyV`%nqCgzL5RtOB-m%B>e|Jr!Y}(n`#V61P z?=4Pc%Dfz}DqDHJ*!Y1&MA^|wf3h%^R1Fev$p@&Q8@se~JJHC4niVa08}5NGz4I@P z2SUeacYDk0tZi~#3SA_fd;bOh>mNnOJjt=Z~2$k@@XpNxs(GGUTpaG6&RM9#8 zm(^;XP9+%^WcD^s4U_F`wBD0PP4DkY)1H}B(T1$jKiun2cpgZ{{OyCj# zxaSub{Z1lDHiXwps;~jm z4g521eV##OHW5}uJ$|~iVTPD$rpwDUE@{~< zQaW%d&D?S$V^TI3ci>@XWwS?wrV4*pw6}%q9SBa1+r4`u!!q>`8pOuso}Ik`u&+?H za_}Lh1@a3Mywc8&Qt{K zCsl8q7G&QND(VF}71Q;D!Nn<^XESB@8Q`%jAKGhoqF%S@$gRd$hpu`P9#8_D)dCoW?QEbE(&c4<$oP z%@*7izjM0*Crd1w&jUALj}%lE7gUazW|@Bq7(x%x1c>)QvYXd?&!LMV4-j4bZ=~B4 z^G;KZ*u}0Ba;MuX;4`Pb%+u{L_$vDqNDeirJ0j4fq>XDL1FcWUST{8!^x+1)+AYx; z-n}&!tkQg!_`#(}^RQYX&`vAQ@|9tO&(t!WnSt_IfzU$AvF6QlZ6hsCJI*lx^)x!< zOG#yptKV*SI@DlBMT?>x`GqASe^?PSTuQQZQ9PiZu(@M?@P7i4g#(ne^awOQBS5%^ z0B)>YWAG~Icl6zZ2o|X)GvQ`xIzPbTrj%k>WSwP$;_C{bXRfJWMbzq*{kF8LQ{GAi zUkQ6!yGgjKV}-vhqh|y7;}Y;D3G9{_s|Mni!y~v~io~L&LZOb_@VWIu>y1uOn3lR# zR;yh8jA+V9u%Z0rl&QeDIGs;ht01U&b?34iBgRB4YqMX`JHKc&{`S2$(H{ew2%bz@ zPVW>XBIPS)XimA1fX8G&rLMuUc47EB=S20DY(JZ;^LJirQMz7?hICbRYZ7Wp|3b$? zfS77kk0L$(MLWrx{9L=Ih0JwiS=i!5+PbBYYNckfTZN+4@!5Ak;vlI=T3CLfEh!0j zj!bt4<7=~Pw3)7McnJvfht8=X8^U|jTyGD847wJ-K<1gVhux}c4RvMa|1y)?g3j{Q zCGu|in7san7iP$bRjMp@fMd!umix&yH$Ex+?cQ^S=XX-3FGHXwMGZFiG^lGt(SD zJ|$~~?WNpk3JY4ok}0%#L&!ApvbJ|r{i7{A{WqaE??7@RW`Fh+T5z}A;4VwR4gSe-#yW7mkGKtM`MxSdbYK&~!CGv#ItR>>+b1+mR=Oa2@=Ly>mR$q6uM`Rf zgzVPVMt)j@r)#-_f{ICTbAEi^m3~=%e?Mvi1FqzwR1Zr6$fQAZ&mH}h1fcJs(_Kwr zbobG#P`I#_^1xVlu^gq(;)TY{APF`3_TO0tFvf}zeVXl?*0cP>UDK=T7gKeY^gb`z zr=vO>;`*lUWHP)D%V>aL+w|XAJ?ChebRPBD%-j+?^u%0&j{g>&fQSWLGW$I2nyHPkir)GZD~uy4^G4F{D$nN=l4V@7Z<$ zGv&t^Q|gGdv*3pjVr>H&ckSPba zLxbZ;*vx=t*A&VNKj12R7|`<8C&HQwECP_pz~53m%7hvUgB!Q_s7D<*4IK?J5~ORyTE*k<|HuKunzrs{;H~!lf3#sQ57L ze2KfBXH)*ps;KPoTzH#5RpW2Q!p$n+{FO=eQbgfhvYk$bLehudo-ACjvKwa2VvBL=?lEe zdS_1)9YGuw^<)hz>)eM;LY;gMSxY(3V5sgPrc!p6}RhT#cCB-p)qevW>zv{I{Z9 zN5^2xdFVHn+(y(85+a(q+kWOJC)PDJM8s6k#C})5=Ip6z9YI}`P!lLJZv1*Ak9iqg z9#AIBoNfQX2bo{Je`x`8I*jeZ#Xd+itxdV3Fh|b!s?+hj@_=(?5YlG)y_bl5KiA%*0x9N}zL3R!EH9frJ9s8#L#8wOH`%dO6|v)KO=Ki2%W`CJg`5>y^x zp@C38UD=HW(Drl>0*Gp^EmFsY!gGw{Z?ETxDN%V)5#J0p`x761D$gM4_ zq!vpkzkgMxDlI)o)k)9?1Hp@^doAoj$;z)#KoUdT7lS~sJU9&#T*%YpVB=pwdv&T= zR{rhz_Js$}U$>rf1&1lQZVz=3Qal{ zZI{fb4&Vd;S{MHI7#MG>82o|BT2o2?%*Ba~7#PqCcfD^N%=CafE@E2B$1ruQhc^Lv z#Z*dL3ZPJs;>rXl%UYjfrOj^qJ$dB|;G!N511Ij9VUWDsHkzW1y(bBFO4X zOH(TDq_NO4#&=Bv?CqTtCXH-Q6~a3JV`?&tg1j+0$7f5*6e5ix0*&Gq5b_K+6GN0B zZ}Yp``S=L$$!2v%o~`Q9Dtd&9KPkz0r77F#@_mz?1w)5Hr}B^m8@C>3?%4J%w;#~& zJiKYc2aD@Fbo~O}jf~mL3?C&P?gfF_TMK0AF@qyR3xmJ`3$3UKHG1&>R4-6JB~53v z@S(zncA&NR!J^1aBFOpUqp5yflf(XyBU7;wXU&$LBcE%cabtj$j|v*h>t6T$_`O#N zI?(y0PYlW@iB3KES9*daD*m5!$O8xTyXWF}d}tK373zP+O)$`x%Ek+l3t*1lV|i+_ zS!6+l<*cR0k0M2m7LLvzAv!&spP_Y1qY;%ob|BR$j|EGqU7`in;x883koTNISdr@ELOJR=hhl{FDWzgS~WLqYpWdT(~#ZX68?=QQ5 zwht#B-`@JB|A58X%MuC_(kCSCoDZDtDJr+|wJ3VjvL)T4K9SB;_%#vzup2g=_c_LC zdrbNDmH0)B5;o-Ks;Rz_4aig^>|XSd#Et2}+*da*Lif}WYRJ)5QQ9bDiuv!F2eM_T zs%CN??+g&=tW{c(=lHEc0y1+)4#h5!a9>wFiCle+AlvDwkq$JB@21+1$IwVV7>pi;#9PDO0s|Q&>x+mjgEnAxZm6NZ07RY=k3-i-M7JA6HJKXxU3n;CFkNOpHiDiKe<$zqoBx6 zF@}RQWOZgrDb^CKII$X}`%8Yu?xxXJ1UTb+xaOF-QhVYdM&Q}o*_{-7SJ345kSwFyF>93M|Dqm?^Dgau1V(tRqQG;k=(k4FoHi zoF}6zyVhJ&5Y!Fd3;Z{zO}LKzQk`#O%|CdDObStEa6$jdc!m?s{JM-3!T8=qW>{E5 z89m}eM65_isdvmW;_02nNV&m*!V16rL#ctDzjw8pxE)5;zc2bCsk?8y4 z*LMaU^rwE{XR-VVL*3qts^chm(eI}E>5T^0_Ttd2&2v&n<krtLyQVZbMZD20?ie$!g$*NQ(pvo{}2f?QE-!KsNu=^G=;^Cw8D9P@6-PWo}?6L&#$t z?X}XBxztcI1|Mka)|t84ZN5vfplZK%>$4r{4|BhkHP&imdw%m!yVVKAYSrsKyZreA zpTLakq~!;jtfX7?gzpDjYzI@nt(%vOsren+sRQ8fNaV*>owB>tMef))7a(x~gzzo= z=U({JH}{Zl?g+gYq2e*}jA(xDre{xMzVIl@hW~crQL(IR$CWbN{(}p9o;rh}s1d$&NlrF> z6{|7(e+zh>?c3KKL*kl~Uoc*ag$Hb6*gigdGrNHQ9fh z@Mqpe#WWNKlJT}dAV;RCjX(tw8pfG~f-$@ou&Uu1F3c_GgC~eSeQdNq2qWiS&oa2>&5_k!KED$V4j7 zC}9maCg9WBDI&f|l=BU|p6X)Ti49VcwTHmcK}hO=;^@{sLL0}@a)_z$_w6}4T6o*o z(!QJ@$Yf{sjXvNXV;Eu$-0cNY2vxOoCzxjb;?Q25ap)m}grWQD%qf5+WkQ@of)5yU=#6TP&E@!vQALt+uqzEz?d=xT} zdITWpnNY8dNi?bVphNuPYtP5EA!<-#&B|rh=V<9tH#a6LYflf~3S zOTqgEGPNhsJxuuf@|nq^`Md89V^5+zrkEdf?F352PHGgyizKC-mavVa8{0D;r;0jz z0%}*nBsePPx0Qhc32tiN0qrwWndr2lN_xkj*CF0CDs;&4giAVIj5?GGwVP=?&@he3 zlVU(_a5NREriAj1&npQte*UN8`M>y79BuQcgZo^zK1B>`(rCM_=YP8;^t>@ob4X(3 zkxg6$wWSAtwo_$HfS#QcLs#^diUmiXAz{!z=r49)xeVyFkl?XOe^6l0ILvQ<0VbHC z&quF|$Dh_2k$!w?sjW*cZA=aGD`4}#;H~i&b$f^U#c}%eG5pp|g)C*yK@j%@Wmw8j)P%Q}!jSU=6Td`&A8Kl|lMvy;H zew)UrlE80`DR34{M-Q``vdSYq&O73NZP|$OsYxORvTrqaqk<#Q5l<&rrsh;}Jq38e zJ7}L;r8EycSf_eb-`(tbVx_jOUC-v#HSL`=#bokG#@%kWHj@k;$uDFiSQ=>;SQ-&F?4Nwke#!;wLcTqL;9fvO*Ta*KVi>DNwVx^y=I=tj zL|j|D=jPXk2NA(jD>i*X=AZ4?lGDONGi2-g3Td=ZC_hC&r3WtMZCSrh>hlj!$9X5@ z&%m|RM$B;%%%o}j$+u03AlSGF#2SC6Lq!v_l`5wDBB0DpX1?cwE(Zg2B zl4q(MqgCk_ue6svxmwQG$6W>#^gDkuuUTK}-@BPF`~N0E=_&wGD%S59#DrE5myE4% zSYx;P#h4C1|LY53Xs8;0ch1mh<8RK0M#p~WM)Wa1QtX2f>aPI)%$NT{u%P@_=~vC5 zBGh*Uetl+Y_p>sa=yXzS5HW?hvbmA+#&23Jr7iY%kGTaPPKY-St7ZZRv2OGx$m5=Iz+B)=R%$WodK_^Oo~z8c72|oSEZld zQAng+!8b-@*+z6+RJ7P3BLp8I8Tcb!R?ZN}q)Ujp3t_fD#k&@$lr5Iqkhofgn%^LM z=qBH_GLS&f43h-*$E_2d(sVsFlHsn2a7M~3QOe^cZ*zP|KTLeGyec3kab-A-$fC%fdQ^zn z%MldaB8m+eSrr?{5leMAlz5Dy#8~GR z;*9Tut8?%`6T>iFWqZW+at93#?=zcs#_~DgPjl+>)YQYDi*(yX{g}uRU^Ou>rE^Ru z;tFNi;y9Nil77w5LSSjSU*tL--Pnx?HYLnrBUbf%#4A%QaJzD@-2KVQ=^A+U`d)X* zS9)cv5Xt$Yb-^AFShc@9z?l zDHEZ$zKRmyaWedP#lc9{QJ(QrBuMSJ+3rKeN@e)*Lp=H=LOLq<<)P~EnsHzt0$H52 zA@}gOZFVXyC~?t3i*-dCaUFQ8>!U_8Y&TIK0klJpma8Hk_IR2slgOJ>Okv#R>=9sL!- znmK`J*LnY-j4z*PXH{-)RcvokW@_zt^v_swNoCx{9Fy%rW>X0G(s=5@!)-Giz6&Th zmWLe(BUDzemlSSa3GoLi4H(P5xetYL@dte#%nes+$*cx7wYoiKe+c{KUJ)D5^JbfhlpYebc9lykMFn%jg*}#?U@BslGMd z)_8;wL(u0f-8MQIlQHO8#&*u%N>FGZ4y1X)j(6XGk-FxD4GPc`^!mH(@ztIW?|mas zUccc3H)>#PqGG-7v^QoAMTj23#q(VHr!;h5y1P2Cs1gN_kw^N*_qfmr!+moNbkhxV zc}{v)3V#mzo_=lr+F4{Id2%rKlpji;C9WDB2(3wmg8Lq zqk{XP8E+x^4<@08&Zai%GOLYFw4SpJPOE6C7F18aj+#(uYQ=VWbX*G5UXJ8@V2!YN z#~2RHu)X^Ace7|ArhE!HyA&xHc(Z?z6t5X&>|yM<>6rTht}|&30Tt3NWZjGy zL4Lr+2w3tWLWsfd<@MfUff#KXv9mQ)D4bLp4WhZ5m6*Quqp zA+a2ARS@Kh8ogCm4Ia?KeEd`#mgh)trcpdiQT8u^5%K&I0~~=DKEwgT;-n6@?R7x2 zkAP^$$nt6EayMYjOU!R;mTfHH{0KLkp6(!aig2CE_|9gxEZwvgJYUsYfny=IRb( zx-W{eDkjo$!-eEpE;2Sx{d@P85tS$xv34p7|33Cz84pal~HF4;5TFupxa{TK-BQYvnn>qhdG$#*AfpRRTKDven z@2TI$5r)$Y<)xLM_Hzi7iGTrkA^)Sxy*{QXhyClzU453&(C6LruPG+*)>~p;UPi~E zly9i!ENv6vVJsodeU8h!>x~Cro=8y;V+;Tthm~`6KO3c5vQE}}$$|nH{mcHlDFZmo z@VpMmU~92G`lz;S^X4Y@h==|C_+WN^S=(6LRvp(OMuP_mJdqF3C(J{>dcj4{QIhUA z#*-JNMu+SRkICmOTX~cE;t!Cw1<^LnMZ z>zb~zjgAhjioDh#_;p`hHT!DBN=_Oa6wk)zG+!;^>h#i?L6_$wW$lNb_}U^}maxSJ z%>Z-`NOjFyPpn!ztypN3f79aDcDJk~g*eWSEOuJGju@yXrBxL{UDZE@)$w6}1`%V6 zq^x~eozV$iu~TfFLhJ2=*FVsHmCcCzQA9KaHvRW2Yf&{Mkglo3;kQ^&t2z-_|Ec$U zyVE~%AZR!WmziSFZhTrbN=pg)vpH!5{0O|O=*LL8Y=w?bC1<~r3I+wdpVh|#cpsOD z5;yd8I%;Y|gVeo}On5t%_%E4qp7+=_?@otOOGH%7uwh z?GX@D>aQY(hm#^B1EpdL(4bFrm+Xz4+Uf~K2e*Cdd%+d-?4^!Jt+h-71-^#lKB`Q< z`e~p|8Ns&o4CtlXAAcsk*E(pGOM+$@wS)6&h|L(DMCjFj?hz2*)@N3O5r~RF(?5UY zvCInMLP`>=X*!b0%-Hr*HwIJAu#ZIKx}XYiEStnIxKWNj67fuEEEEg^$~otIK8ClWsB+BMVp3l=8Agp3CDBNCsI^?aH$j z@XktBttfW@5L&FK0luGmM*xSIfjp4)$|{;eUpM*EX18SfEl!?g#U!f33pGt$qv=!m zNZc@WiwYqj?Yo2>!5?G3`VVIAb=4ZuRK#nFZQtmviU?n>Z8bGD2l<%0eX-jcO1*AB zzc(+urZHbn5n#wzCRK7kM9XIMn@qnsKeU=VDQN53hVa(yVXgU<=^(h6HPX|2GS4(Q zGqnR^=VKvl&GXacygzY)U4F$c3y=&n6IRu$1(gb=%P=>j*lh6dHSNWjTPjn}Hx~U2 zm4A>di_R$&NBg*llI5c3UGN%_XiNTlcjh`XzabhrFlMfIhoXlK6XWpKzB0aONN{D6 zWs3L(MFfG6mD3^l35-!j++&=BBfZ;#nX_~jn7Q(HVPeWsGvLHcl&EdxC3t^xJZ3Ln zT?~YJGOf~i^YC1_xabX8(75p_{6t96hXx0Ut66+z-yLa|paisYA~b$9;%!@P&}6+3;5Q`nOc6c2~`@d zc#A-ww;LFI$zr3@Fn10%Ajc*dj&r;;#ABJ$mny$wWd`zJVYOwvfsVOp zca?GK+u4Q@hxcxOTz+(XP7rWRubi0sQDXkY{b#n|!3YWZ*UU&;!DThm|Stk=_}J0f>3{&U$AS zYu0H7NAVRxT*I6Rn$Kg}vb&B|e>2|0n@{P9zDP=Vi5zeYmUswh-!GYI$K4a`Jsph> zHNRSZAO}- z3Pk6&1S8>asnicYweG1~&v0SHGA)`hLA8t9UYKlx-JIl^IB_8H@l|>0=AZYLK>qde^+MOk$Kjl&6%NNiVc!q$JU0=Q| z{M_zd)5O#7w7Qa~#R&j_n|Yrqxb+)iZ>86lt#%yNs*-$G)t&q(0018reII_ViJ^)F zNwq})fXBu0dwR_W8$vyz<(2$vOMykHKRxLJ|DG`|paX z>!$Z}|84xh<|2>cHJ{Lw+~&?U)l9ZFl>|O};1t&|w5g;T7H8Gj2NzaOYjna<6ZfwT zJKw!)6mFLZ^*r9fJ9l;t9Xip;NqrlYjT+fqWhg!8Dgz_Phl-323Ye31Ts2G;d(r}S z)xE-w(m3a_Di?$u``3G}1I40ZosDD@U4EO;_(0gDh@x!#vTD+;p5vu=GOZMkEFKAOD~QWT<RLzhjlw*dfDECCIn)<#_g00bI1jWl*6pfPRV_dnw9@?aqV;DY~m^p>%w?hiKs z07Nh>(VEcQheQ?N?4X!Y(a2E4+0od=$=Jo&#L_}%)7IPXKei5^d+{pi`z3>jpX1T< z>T3Z2`XtKRNlOW6Oe;0U-1)!B+J;+MiLVQ@00842p5Nbp%n(zX);Iri2ZI23Ibm_D zUzq~_xQFK(|78mWv^JebCfxg!3;;6R!wvv&?^6Ew3~lb0RUsXomP$ZSLJU6rnA>uh(n>!D0LQb`4LrI zd_Of+?!!ee{L9m))f~>^UcJ;eQ@Mmmc8j|lKJIZf`B)U%kf=e%;JacWPN*%Y6R8)ecD){yD*Hcc5JKScFfnfz0?=3BLsT4vzQ)UYh7K664HE?kYt!@up+2mnySq8Fpm4Dy-iAjB`&wW8U?3Li0I(<|iA*A{mRt zq0v|r3fuFgfx7ngo}QA=;jBG>{v{ZO-@1Ic?~QzS|Grc%e?2^W2wwLiaDOfl_cDIt zmzigt!_V1KaC1k&%>lWSe3^Jd(*C`}UUQ|GUcFAHf9CKKMBEFrs_tD%8*EqA+}O5t z-Ts*?qE>$}*(A!uLV@JxEhl6$c~)}idrNnHzkdzWoYEa|*9MoWbk(5YuIW!Y>j#I9 zbhme5@A&fk_&K4jK8Emat*B&zZMXy-ybv#K>_}DagPg)Iha8w z`gq&;dfWJV*?72HVf1HAh6Foe&?sq_@(3bv$2xxruUUa0zGm$CZvOg09vkjosA%IF zxSj$oXYAQM`sO*GKDpsYrH{1kq}3gsumFcb+fnEUf;jL0QRz006h?r#)dwNb76kH% zNs9pho(zk=qjmtm2v3JLp?KrJ7YJC4yLD$_-P)G6I&K?+fKTSeh^4YsJ5GtD(zW9w z*2IQ)t%NF7$N>OUf(}uT&HFD^HSs=}6&>tkGvFO^H^4pE+IpO;>-ECI7NPJtUl~^< zx>a2K62QTlwlkEdge~iQD_ZYb2dfelTv+~=Pb4e(dyxcdlT_*Z4 z?bykYn@rxafsjA`1qbeVX%(Nn_Mc4JIRLNwc-n~ZzB=)}o3E|OFCago^6L$U^zA*j zKd!d2>C-=#^&PvP+I_#No~Qg=S=_K?`9IqZuiL-JIaiJ)yzg5K!b-oW3|x{@vx;-5bb%pdb`q)(QZipiPs=QP#?>ZtJ)efov-kk^O0Xt?C#D zD&2|R*RLyWZCQNbL@!P}Taa_MAjhaKR47<`?fm^EoxBL8Smc)(=V1s|v00iW9X%}z zZ)mob$SK)d^x$CBYiI~o0{6XMWpWIAfQ8`0VYm)_$j7MPr z0O4#CGdY#q5TQi+%ZjNMv<_iSrK(I}9Y-RQzkldTeQVo4Yv)9`+0Xs?;M`&Ui=qP5 zr+Lbm-r_PH>iO)H(({Nr5rvJl^u1V}O2-l@XhQGg3&jdqozPHpgpH@+jjIRV zByMk)b-&a=!Qh$L9%u}sVU!ouT7e)Y*Jo59FDJ+S=9!c~x1N=VHK0agEth4fEjE1l z=#xLUp0jl_A3rxVc4jbxr5pVeWLCAe3Q=eng@$o>43Uf{l5sQ!$$(HyN?bQ(0TS-y zUOxI{`qJS5fYxUI$vyXpWE_c%M`N^ylG@59oh@8Gnt&jRGy5K@Z>%h7{P@+ql_iZ= zk0+9;gbDM)W-J?FZl&?VyMk{OQw2xBytl1W0Pe_Nx2wxJ006mMv3J{*?3A+2Kg`p~ z(eH}d0RSm2H>X>#Q=)dIVPNbchY$9ZexB5PEu1;AUB(3fSQ1Q=vwOX?6UM28AOQdm zDoa(L$2+<9{fma%*dLrW&xd7!L+Kv(7o9(z(OB1Y`vNb&&ql;-zH_BbBK~LMtZqQ0 z=7PLPE_EWC{}i$i08qhiPHiq9&GxJoZ~*{pJk>z4q#Lza)q<9Phrf!3P^ImSy_w<5 z6}{%TOC(aA(}2DM_b|;=Z!#I@?P=rVW$oi-8rE@}xfV`K0=) zSG+T6pT?t0Nzac zFP>A_Eowgyx!#^+HV7UQVlX-Nh2*#+2=e#W7cU%o+;tbXNqZHjuBv&@4_5#HRi%yp zZo9hwm+N8Co|6|wgpP98g0?M z+mRM&WSGB&(|&4?hFs~BJ2`L8{QaZfmKaHVw%u_pjcuX@ENbU{hq| z*_@oVo)?54GE*4}hFL`7I2V_3E-piNqd%-kAn3)i617*r-2zYTYm~0mkgReH+uKOg z4gkn+tL^rf4IUE)18N7)IEeaz`wJOyKY#GCPSmah${Hh+O#Z{>Vuawqrd@r2Yzg#Z9VfwXYiS~zXFPb&aO0RS*q zMkv|QCPiAo5HbaC;rwzM;2T2M%2Jc)v5S<=*bEUVw2obs@M${^Xh zTHx>+v!?b|p?Yg73m>f)uB9gwi-l6vFTH*$>H4W81NTiNluYv2V$2<`uWos7$={#v zToF9N&G594CvEDA+B2 z*d(%wdhTn^Hm#&gS8JC@zIb#;4XHyA1Znk$qwSpl0Po+u=0s!ou#BouTQA}P0Aj7Q zCDCryW}zT>q2n-pC*okVHBm==sz+2Au~-Lix3MycekajR?%BsC{$Kc{>*E-RaSsHvWVFcl@*ZR_7A4Gs^2A2z~f1nT^}8fe?2_>$A=HSEiC5w`bOB=+EA(eCxmyaxL9XesymCdK0JJ~hX?A# zFOE25gU#xDo<9u$7?9GoRf6W6)@no17h7Wmh?>Ri&Ejr;I1@{nZZlXEjb2LNeo+r< z2LQNuYv{-A`{`Ok6$Gc>w*3@U1ZZ`1_eoTue~eQ~}dw?^y4 z7Eb$xLys>VeKK|NFlE@=(v~@Qb@aH|Ay`~D1B9K6#V^O#yZP93)oRR6DSLPE-(64n zV%IDBT6=x!uVsbx{dAKhV%f>v_qzgji9+;QDpR+!NYz{dUP;5O{P$&Cyb7YyE!=5KD9(O9?W!tvb`XGU0eKW{1Lb1d*wRkPUUDAQ+5u{Zt>dPHy;I%(3 ztw|}azMfVvXP95d#@6=Fj^8-;DDBTzXPQxn6&&u5=kEgm-kT9U%3I^j%ByY!0L+W@ z2ZP>>omjjQ6y!jsPjqwZ?+a?+^S9i%p>tOOhx68zE8FAa*M)`6^7cj#iBt}m>8!R_ zImEq-xcAYn84S0x@w6~AW0z&}cs1P~GluPB+R86|f?oU)!o zsn*m1ar{h{Ba70NlRAD*=+X`2APC$zlYHS#{J>HKWfpKpc?TkP$>EkTEqEb{ixxL?N;ix*!w@mgT`#?WDg z-?-GK@>g7<)ax173b{XIU7leVv|gKzRxBCu(u{6rinH%M!^gVc4hY&7HMvzRvLfkC7d~2$z9+kL z1?;w_G&@5rT0hZ2W6esWR_ZIt+Q~(&T9bMpX8WjVUQCO={LEc96A%P>b!^z16Nf*@ z=|~Zo72$IxAuFw{=6q82%y6GK_ndDRiQk(My=;_rfwucOB`$2Ui9zl!4{*n!(a!<3 zBLKX2?V4c)o3fUcEjMob@#M*CVPW%qeS4}+c{xA-_xO0RT#iMdaA-6Ii>2UjEF#g2 zNVKF-tjJ^=D%FloC!mK)Q~iHgxmv9gn%Mq%iVi>^5c4byBtAwK2120m$^D1bdHCQ1yRS0NP!?_e9jx5W7Sdn zJIO~^x{h4xG`w4Mu5Rs`#g#BHijAk8E>GG~&_VC%1^Mvb%L)ISkAL#dTRI{m33=Hi zb-Ui5hsC@kFkq2KfEI8MG`CJ`)QH;nnOOn=66z|qr^Wf2Sx$6t53$f#oiNiRpu5nF zB~KQ$c9tUuXKT#!8-<-YJeEW7TcdVJ^WWmU*ZoHx<3o|3!JFBve zO2jY!A6)68RfPAy*YnCDxvllaDP7bZ%RsBdATu1R`YnD-@g6V zlP9l+hA#H^H@@=xFgv@ny1L8x`IW7$`i_ABuppD27z{TvGZ!Y)oyGDpHy@DL>dS4& zV5&#m3*b&bqjArDf>+d5U)hGr$_xX)~9Pkcg!F ze!ix2@AXqjue?3Mn2Jcx!PKV^I%Q!*BB=_v=Vw%I|M)Zjz{Y_U5#u#tg0Hv!^#`TZ z2umOUxsU@KNk0DckpKX(T!4lQjV3qh_Ty2+V8+;f`pKvAvL03GU_K{8dUZgkf#dOL^e4kdZ@76$`Dc?*@WYb_+Y%mzTGS%)5yv z*m?cQtO%c1W5QG^s-2TYh2ob>4}X1ST30cdu15|5cg-13W8+V8aXmVvfzSW${{6ob z6ITWYFAoefM&iSaNc=cD`lIOR)S8;h`T3Xf^Sf$^AOO_2x7W9~KdJ15H8xbLm$|tg zo9)MD`&n8t353D_y2=N)i07aJ?)e-}Pfwu_gbx_z$pkYUZHY|dTg&2h6LI&Y+mXuVpQz*+KQ$RU)ily8I(Z8E_^*^ z_R5iHOmE^t^IscXRoZy-Op1=TQi0T0w>%%ZZU3wAowq%9bUprV!|^-y z$Ie#$SW@52Gi--`J&Eu(RLOIas!PeHH*4D%A?FX$sBQm&q6ZxP4?sA19x3R}k z!2>dRyHT5IVDI#vgxkycoK|T!3Ya6!JqDG}7zXZC%nLA`)@hb@Ocf_Y-HLN+K3(%~ z3#SvcqcNyS^TQXdkI@H4jkGtn&MM5RE-TPh0E8gO7}ibSEi1Wn%ktg6p-x+VT|_tQ zUK&+r#9hem9O*fA+KZ@lRm}%}yK!{qovnZC)|0U#da&`@QF$zk$LpzzI-E56 zZzrVIUpMsMjFfL4-;*N<1i(UX|1HBt(Qw92LOzU)u4!*ms^4hbHx%mk*r^kp2Me?A z(&L%RQTu0|2n4QllIlW1XExI5=Pj6G5s+ z5%=QeW}RX_J+dCftrdd?xTn_E@+CbkWy&HwZ#qF1x3XH$tT!Zp!j84d-v3^IP^!`7jK;Nr@FW#0ASQ)e`8>D zA59@w{JHgFCBbd=BK1j*&J!6d3SG|vf+gNj_qYI| z#0mip)`ssmm@v+AX+c}+T)VdnGirM5*fQB`*Upu2o3SX=wlNcDxOo8pVjW##9bImf zbyg5p!fSOB>Umjoz|%H~_``cQE*0m)5H!KbZGCWffJM)=CSeHrbNn>V6!Tw` z9;x@?e~g~X9o(`1`&gaadw{N?LE@baWH6B_J}3M6^T^q3D3u*y;@-D4?Eba z`eNq9=S_dSR%<9Nb)1!7kMt0eo4Wz-4kVTn*&GZe;~OmUO2?AGOJNGR;=pe=PyBOF zNhibN(Bo!@&RY|063E`!>A6_Ew{5|9Zy%9KJKsb%U)$&K18<#6Eq|u`*iggWyl}@C zf4^e*6e^vF#bdOH{_W2a1LSf=QLYZ)J}k!j!(SI+@jV0CtDL{qhs%Q)F+q$N2$-^a zZi!RPk#N%?hEk;t|e=ob^P{Ip}5n*W{mWW32_7eXNE_iF)&Ig17Jm> z47arJbyIbMHkI1r`ytUJcw$mM~7e>{0|I6b|m6?p_w>81SqOZoZcB+>#uzoh{I=A?l{5^`ivlVzlXgMy#W z;an>$?8S)|Wb*U8P6dM8s?9QRfbsI}%E36LyNG*?rO#mV87+MYEn{F_hD@@`;)b6- zI8l&U1pr{M$dl$rOkEPmVD*c$4Ik$dHp(OZc8+Sxo*yn3WmmoZ?L5OG?k$}5>e5Cc z1y3a7(7KqTt<8L$Cvxgq6$<3YU$-@S&UW#qYxZ>uug%%C>T-=Wy*6$K*Q>msu50ox zl}>#3$N4=)?EnA+(R9;7b^t(i8*k;6GsP`UtNerC4Iil`v|vxA{WX5tw~z08n6bVb z*@0>JYRkeNOpPj!Bn$?R#`v1ELoID)x_PO#i)6CDQlHecw{49YJKEl{TY*=F8d#U> zq1;5;*xy+A%7M(ZBRT1B1V;?2m+0*U(I4-+Qc}|d04T2JTzZrZ0Qlq7!!R#MMO|d3Xw}g%+VR~O2<6z!XB?y`4 z<`-nHQIbL;m#YK!APeguIR3%__eT{KAK$uVlBUdvL^~RdhR6G{*(-yC`_dGHK=^FT zn8p77AK$u_TwUFZ78?2dKc76=m6SBc+xyL7!>lNj0lB?{C#0>@lwqWSHGx#R;nJnv z&2TKAFK|z3E^QR^^zF4LnFTT&jBhQswWe9ZH+;+_>%hV0GkpEP9flw}_QeM7Qi<&J z-Uml_-jRr9L^5vLlHud#gy3)(xlG=bz-{9g z@GRVJ&u09(app@S2ia4bj9B#3{|158BH!~BLWOp?)JGNlKfu~P@ zc=%AoT6$TZ{7Lx#m&vVJKgg6 z&c`lPr5M;d&8BCQ)wsrd!v}a!tz5_!gUx4n`m<^2SP~4qz(v`TALQ@+`hrLxnYuVK zW_r;5%jw5=-95hR?tolOPHOqLn+|`yca^>a2qfI{P2+$2^vv_Ts;*2S)y(11P3^@f zGzK+!VZ@+)+;Rl@E$Q)%vcexnPZ;Oq+M{z<`3LvwwIKkA)Y1fBP~3z@!OJIx{(kbo zlk857>8b|qTfd$C`#tSM!^1aH?xq$gKfBnl{@Og}41RI{6VR@L~+#M?rd zl!C?W9Xm&=P&}$FC!o;;6h?+93b{?&QXi;}j8tReC}|EVF_{Ko`}K;#7xzAkMN$Aj zMM1)tVRm+}U%1e_0zFFf z{7+KS<^23@6DLO4+CEpO=?QQTv9><3aA6<6aq)>02~|}+xI&rCcny9NT77%_{-;k5 zr>D2~JSSCUHqQ~b3uNLu_1XIN!VomIhrs<|L!RLSdfMRgF|I@}a5u+Mzzb`ci6x2m z@-}`o+ds@1f*}BamA%=mb1A(DX`5zXz@S>1+9e{X0iMZ(xnV7w_Q-KQwvH@)s+2#z zd;IQ2Z6+jxMOpp9$dO`c{>_o9#h5*ne5$85H z6mU7}BaY$IkL0IaDa)r|ar?*3bEC852qKV5etG&Zr9lUUVT^63gB5Z)e`h7!t}I3X zB2~x-dGN7YQz(${_q-Yy;cVJw2L`xTwzjS~eVQv0_3m^O1TFCMdu#Y`v*(f>=)q#0 zUA%b1rAv?ckU?9`<1IUR@~z>+*GD|RAkg4WDmHuxJl|JO6O!py94w z!44=?H|q>@L$|7{uXJ?%Xw*C3&mA+Z_fHvup+)O^LjwNk$U19>-Yk&XyJ#-~)mOIw z0PbH-@0y4?Yem$cecU7r_VcL0%b&);s2n|%n-|es?acjMt(S}sk;xU0v&ybK&Uuht z^2zS2006l{vFm)iQZ>@u-hA!!;n6`Z;Qzq1N>F!IOlK3xn*v7c&Q9Es`J`*I9|3J> z)PCAn^F`uqCn{s-m|0437!(AJvv(V7=la3pt0xOJ6pfj9;zS2`)t_EWi{C~~YY_{# zr^W5hP1R}{`y!Mz)woeatjSUPzySAhE_d0fQ}yk=j3kY6bo?kf+T_F-!$!m7_s*L2 z_SLIb3krHa$3>8zA3dsWYx`>K*yj^v5%pm~q`6H%MOpdJm)HhSg~R028eI2dA`RlUQ%R zVMU;Wm&=C5bZBw5^Mo0RoteZ^i7YF*G%LCE$d21ICh4m^tK58SdfK>)k9A*A`+%5( ztF~lhZABA;AeWCm(c11G?(7j@2Zrqb&*Tb)KK*Yr3LX{UJSxDMFO*zQ%zKrkf`<+899`sZhLJx!1C+$02c1Si=5J2TH0=?Oza4A4-cx< z;B=TqQJcP9wnVc5zdSjjKmdYe-rk9F>vy>jI0_a{RG4cwa>c{{%Btlb8| z5YwDuWp8HdWL{pRH=#`=lsvkgHD+2Mj50Q*7=j>oKU?+12LQnC@2_Yb78&ak5b=LO zco?#-mQz}H;A)ckmQm~f(0A~%FAp0v?!fTptHw``^nPjX5)(%xVX$Nj)}3y?z}=sW z!5KI>+QuoVz6t}w9t`tQ)=qQX{OriOd5LHk{(aOm!(Y8Gb{>KtXd|kkhFaLN2qXo9 zSQ5#jZJp=2`a4k>LmvKIf%}89vh^1(2zwY|C1bI#g@vsO33>jKEc#yH?Ng>KI(|H} zzP>N*eE;y_FgrU>^L||S5y@nOTt~^(%*>(>I`>WthI0N>!R4OH&OVZn(ION+w~LQ* zaCkmnq(G3%)rJZk^pq!ax+2l=0k67@9-I!tlM37Q7hoC;wW99SWn18B0StQ+wt4Sz zdR>(c;Ug=1vsLd+>JQYO7GLz&7w2cL7%_Qa1Y|_41kp@%Llj6;J+G;rmz7j%;H+KW zT)cKN>CVNcpZva*K*AY$ZQj8STEM-9qcNAm;?Qe8n5;eZJseM>;Jc>7>Yf}5_%&^9 zj&!=ROzDulSXSG_GyQ~Ip}6=c$K=3$06mR~CuA>q+sK30`bMnvHCb*R3W9)f5m+h~ zm%QN3A(tL7;J*Lq({JwG>ycVE4vk(C5U@TxoIw~|Tw4Mfy=%sdnTHQI@cF%NL@Jkm zdH3#-`SbhlI)wv4aEFXu60xCDf1NzpBwuPzr@u2|#JceCeW|H?l9PL}q|;NQ;&36> zR<6HZ}+NbgYON@07^dcbe47Pj1~GgQTCq=lzxaiA1vSf&A+QCG^3OTyn?!!Fu(H7L@RskwU;{=p1!ta zs{6e0%mMnuG1AD?%x zU3=UI{U2j&l%pdGeom6%7Yy=bMp}4E74mNDAgXL%@qIa>H(M8m;7uMA2W@Xv+^%<- z%Zp|+7)0C?I7LgHMwqa{tH%?%61V{X7S@b$v-_p$&A~rzsbbiP_wqK){p*X}uh=*k z%IH9Jb%WLpW^1-g+4kNE9dmzV=k|qXJ}Q;H_U0~a_#$H zUB)TRuXXb?c7Cgh$Z$oXw7S}~x=w{k2A<$+!S=IY`&zJl%`NPxFR+l&fY{00tPgMB zP>!4BncPE}>5;Z}8^R(ZZA~){3dB;WOh&+A&?p#&Apk&YyNE{C9nWrU?_9ovVTeN1 zvFw8=fJ`oz$m9Z%#N>Bl$kSe2PkWhxdu40u`imEH8XAnf8W^7IPsVs)6@G8xc8KmWD<>((N0d6^Yiu1c4C~Jr+a#a+1mCWCznkoADBD$ zr?|Mk6BGOI=`Z&8e?D%;lM3(G=Nbm${}n%A;V6~_nk9j5iKkl+8xA&^)=+(Q%YVP#(79{*TjTUe zr}xF`Dw{7K(NJiqF6X?nVCPr6SGxP@twEuX>j3US!(H{Qzy0&wrN&x~La?RzwI3|s zEfN^QMkTp5dw;r`8dr$HqNNfYog3YZ{J~EPyK;vvAAREHYioSItbwJ}7Lo8_McKoO zGUcC40wKuKI@r=G*vi`9!g4@LQoKNRr>sPUrBoJQRT*DZ8EI?x!SGQ5?7kMMA>uHJ zyWdgwyUif(C7uezORLaSy5h?Dk|&3!*3TCr`Of>x`lgXWm35u(?8OrJ*CR{m?GP9mbZ74 zKybgTOs-Ji(P$=tU`3(0FqwXAw(Ij!@Pq((FDeQJL4PGA^hf(X78d#wjnUqyN?^pZ(Me( zUf>=y2!MM$rvLzeN10$utte{9PANP5=Pkaj0JDp?wUKn~9)}YCx-FAwdkC+E|IwN* zFLT|^URV{6_x6n|`qrr9t14%nI6T?aeanbZeT*&}U~4KANL3@3Lc}vD+Uzd{g8Y2+ zUTss`+w-G!wgC4-GRcsqz0jWavH|yYiRAO!x6kF~8gnoii(TaJzdAIOMSQ{h4+TL# zPMkRP;6Z6`#as9iNls&9fMvf-{(3}}v7^ym3k@|1XkHT;eKhU z$y1|aI=9|5qaEL2#lyH*sa|-o&4)ZrwklWoKrK|^TR%VOMbP9Q=I?- z002ouK~#F>B#$k|_EbFKx0?>{zP4Fs5M3hD(bYKWFY%2dU?2eLoB(L$xz<%Sf3xw> zqZ`>uHcsd$k9WSG%c*PK_wzL^evX5?rEiF1*EVmROX2f`T`M;kgj2mCNy`x=tFb<- zv3_5ADgeNh$&9qIkF>KNZfiG`-~BAuO>gv>=-7F+(^No;0<#}KA+n%lgRwfGOe&X3hZBc+0RTcg z>_R;3imEvOT!_DuQV0Ope>KU*oHjf9d5|H8JniN4v=FyFa%Kzy7l~A|lS`=2r1~DM8iLt6EgXm@|`!f?;_V_>MuLT$xNyb8~-7%i(r* zu4XUo8*V`&P51OXm7Q&>2I+YGmtzOGunP`_31HZ(gkPE^{Ir&`L{4#HQ*k+;)9YrF znoB4c{3r`A3p{mjKFvFIdY|J&>wp2jy!ggKC1e-L`^&+|% z`KP1na5xMApsKX-lUM(h%XLiA$Il5}wy}fww06obf_Ci?l#93Z)}1Siyd)GFMQ4)q zNl$hK?&elB;}srN)}}x4)W(sub=L|U0RsTIb|O&=wJYu7;dnZWym)=*8~WgCMs+y{ z06=5*Kz6o~Z^}Mdfgn%oYM<8C{`};Tp9TBf$f!~Fj{jF!iX#yG`1oOuPH7bI-@SG1 za8~-4qsRK1n}EZ4?B-J?YVVkZ$`$I#rmnWEAJ3F;~h4K>2myEP=uCAs6?j$Vs-`TVKB0S$8#>A3h z*gi3A9{@nDkQ>*S|DYi+kyC7d%dXQBI7JDZqVKaW`ZMfeE&aw@`LS?=E8FB=gKp{_ z6GtB1!@{xsVGo{NUW>#8YILEaJVHl#l;+o7JCStvVp>~k=K%lOhf|aqFEW|@%Qp_{ zMD4*N+%|qSTO}5$liz~Ipt>@`duKwvc2cRGOOKV;uANM(tJJ-GM5PnI{AZ<7FS5L_ ze&;tA^)+(vx0@n?WaT>(As7-0B>(+#y`z^V7`vRv6^XQ}!JE)B8|qh_KmFzCvCI4d z|9{}rPw{c>lHN$NJguvpas2QS-+*@`qo_DsU#{Weqs~zPg24QkASO+_Cm$W;8scI1 z-N9Qo67xUXef7xJWdvM5uHy}P+DqwaFAQ)m;BdCyxsy;;W#AZZbMtw=zB9bMX!w_q zgEhs&fANkHq5k@N_$~4ME;;5uOoybZZlQ0P99dTe>#2j2a^--=H0uL zmXlgGZg%LHX+bKGT9~Dy*L8GbfBgH>{*ZXrXKh`Sv+Z4a_TK&T-KDet#p&FI!J55euc?zI9k9rCwzxci&HcQXCfT8FxKXXW=Tt)*#^b_wCyDIBuz5;ET01-}^V0 z(|9sBt1sRD!OXO)#RZ>?96iImm-F+IY7PuTziylv?q!bv0K*U#jS}d}sHPBc->#iv zYfk_7a>DN?AAGR1AJ6c&zZj-y%<7!hXfh6BTF zGMR|M^ik5@m(BiT$`pG#{Y7y|3I;#TCU}}n@V)w+&8dfb)r%?OIfe0@LME0p%Pwqz z!!WY}4ZxqTO3}HUh{7&%96sPTJb_cplXfgNmbaU@Pzwf&j+)>bHNjVXR%jao>9k|OBio@yYzsJXOMLH^w zGYEtUuC7x&JcilX^<87(g|H|Ghfo`vt7W%VZOuI0$3~hZ{Jq8Z4wOEeZWFS~CEAiO0JE1ispwMmQ=PjOI7ZU31FuGP zMeXwRN#B^zin6PJ`S7HUj+aIL?!PtWR?mC9=?dI4lS;?W>4CIV?Cg-^|J>_Jm07et zX7tpK1crS-U3+jPL-~2`>QSrSorEZm!tCnI#FFkoQXSVLz^D*OU+Q5SW1-eI-^Yya z(V&O`aIqkdfJRescnTIv#o-AUG#Z96FbWOBC>TZ!)CX>gzx=wI)4Y#vHLH{S~Go7}1#E3;FP8feY1&7-j z6JzqrKy|4fX-8x&aU9j{iGLPcDQK$!0Q{VL{t2gGtKWPwn$Yc85CkCzqCgb6tyQ_L zReOqWnc*lTgVFa|VTW(#N-*3#>E+jCmCs2u>{Z)w>J z;BHT+&-V6S5ft=7Fy6Xa2DjqPr2qIbu}NB!D&(gt6E9S!EOHpW+I0*G{ao+K*{UR= zTt~!|i6bv}GQDt{98sWpQiPQ&5!|Wo%*an^F6|wy%Sfv(<9znoKCw`H5s5-0e!FkA zjU(&%I~%V>8-m5cwW#oy@so@Z;g(2c5CqbTsz(L(ST6SC72{TZbM#?)$;bfbegW=7 zp7s)Xn##VtasR)>jw*+xO)Vc^zR4gFV%=Q;03TnviN~NnoiOHk1NXS{@}D0)%FrZp zd$3rsE-tYyE`FAl(Est14!5d9X}2ft!RWOX-BfV3*gHHq7rdPwu-%f!FsUy>p6rH;|Y|1Kkm`;*<>k7s5Y zb0iIq_qDJHu(BHK>>Oxi_2RnXz51L_(ogCHy8r-tl9?yf`bKSLPn(r0cSs{hNlSN!ba#Uw-Q6MGT>{eG-3`)6cZale z!*`zdTkHI~*SddQwfD^I86LOJ6ZYT;va}b%M;3?J41QJIVttB8Y8*31I>@KukE&qj z9a?>AyKT-?r*bq<{q8gG@9f#FZGzH#GIW;n)AhEAqbt4y!Pj?tvg}`Le*1pAAfsZ@ zyg*Av?QZ$?fA#K4XgA{}V%>%J_w)i%)Cv#3BS9V)GgVway6=xgmlEsSuCrKpxbDwB zUwB|ckNLmcR)%eVK)fP&&cS&V(R8%AEy#!KiX!1%oo!zYinZ1|Fe``Z8{KmRggo>j zgD6E0!`N*WB`R{GY*=?pro2NSpU!;aF-c@6JSMx~0Mmno`f!DKdL^m&h9Q zl<3hvx*oSUkW^7Yohw*bHS>Fyj0#a2GxwjKf*?DHY*ZTj)GmItF&G>=aN-i5m{^A# z*esR}Z)oPcQIBk)V2cUsyJvHTyQQ6L=6@%LWCPp_{p+cWhVSAu_)9s~CuZ1B*Gd?y z`PO?7)B=k<99HL=J=3i}>~HSeUGA21P+g(>J$gg>TX zg{NRgum>AU=7VB1ROdGKk*X2YU-KGudk-IGq9^#ksf3s${smu{GUX?z zmc=AapAJhq6Pxk{S5}VOcAs)DvOQy#E&XB#sea>*oV5|K4K%0_>}fK^+nmhInesLn zvSUgA37*+5C++~yIS)LoS0}^8IF8~E=2PIrVDU_2x)L(({$c)!?~=Ey-i_YaDB`j5 zE@DuATXm13o#nwL*Z0MXp_q$ZFOebR<|w?z$AkG?;U*JThIs2P5BA!&QD*r;<7plx zUOq7Pf9_cwojvDUKiMi*N0N5|a7lW1sqvdbz=$kHHHIbFFC6<6K@Ol6)mMwEdADxlo^J^MRvp?X^Bi zWkimW|8;8tp7}uR2bJe!m+53bYqx7!J%GMTMt9B)(NZz&pI4u2GFXl@$S6 zhNV@~3R@NV((#76^A|aN?0aQRrMgcfalDKB!z!%&XNzh-YL^_rb)&@LIf1gb?Pqll z{TLd3xd$19N$YTWjR;fpev1yZkErLu^~0z`f}UwpO?lA-XE?mQi_2=E1#HNo%*day z;j7imhw`|%-4s~k#&C*bsbfe^Y)5W{db&iJ**iY5u-8=VXEt>p{)szMh3HBP=ehQO70 z$E=%+o_W^7MQ#fh_>KNJ)tc%z*(uw*HBp0&Ne~*K#0)Kk;~1|ynhc*oafVos*=7OC z%geK0u6?#dbja&t@Bb@oz!`-Q^P&VHbT+qJ8q>mDTOFY%CxDTuOyk{YG|vd|A3+Mu zdN|A$Tg!Z6Nog9#m0xYPBL*pi)qjH(Qb>K##qV00vzxCDZ*&*3EzWx*SxBYF4dmnq zi#A(QRf=gT>%1fL>pv9&tZJ<%_Kt1UIM4UoD%MAA06+j!thPu#m3LvXo;6!;Wr`TgA5=AqU#8gn6s@02C>$?8F<%HhT_nI~!6y!+odw1{vSSm9gs6PqkKQ~n?#+lfOH2RCyo(!| zRSo4-u@~LdYNFvv^rIIDq37x1)B|Ec-X?R+1z>gBqDisF{u?4IWLtMkj^HCyZHd8IYb zGkif3nYGotorNHl@R?G}GI;HxZc5N{E(_B}fn{}vRg`YJYIZh-HyWAK$%A@dv9qL6 z^20x!jm9_NoB{Lg5Wl!F?a3Ve)@QoUzFuI$FKTMdGBLtam|R)Q*6KDv((jD;E`zQx zRjucT_a#XD2)2}UDo-^Tb-b>x`NNxBh+Y537AbEPZ9U<hQffcXRN)W^vR^aZ?W91$1ees3uZ-~Ti`kW!+&P1zL8irT3xmI`q5RjT#-V9 zCZ-}SR?_W(kU*jlaaATWBWnWmv7C?3?R8y1dgt{$iB8sAtvI+EdTG@-tn!6EzsPAH z`iMC`LgB^5M#x;xpCxw#SU zbZF-;1lcxNa2;$(8g_z;B?$-lZllGp?}oPqE<+$rufG@l6C)G zMmTiBo`>2MytwWJVCoq7BzQe#CevqpR+{)9C$d0=ORc5~1)x$D7OF0Ib2yAoKF+Fv zjiG;t5g=q~T8RmIX2{Z!nL}>*ero<&qLqHtxfEX>8hY2cFQfHHt;~uq7Ra4$E|>3F zH_=aI-NqQI#^Kc6;s^q+gS+Her;=?vLoK|S@v>Se!9NBU8m=;6`ij*Wi)ZVUn2GKu ztz`2!?txGVC_o#!4>y3hvg~edmL3~SQHgMdKiCLWLv6{TiHf= zd!Jx^w8BO?R~@keQt2hduT*{MD&=ra|JT0_%0AjT$Z}?Xh`*Q%F)@ufrLz)=fAlZI%d3X`$O<&Sj5OzK|W} z$^VEB{&P)CuHG6|bj!EtADn+0u6b?oGy)3!hH{eERE@Q_-hA$Ylgy$m3Cy@gNpr{e zOBQ_Wenya?D{A^^r@#8Id(js%rP9TmbvS(+CJv@j;-wh%nMnDJYRezFIjlEzyhxgs zss87(td54&;OOT+R?R&ZQibQ+d=+rSd2imY6gi>1xv?^_H5jFTJW$#c{j)Q9eAFj& z2e7`378YfO7DWeBmW0C~h0(=wUkn1i7CNS@GA92{dXM;l881YRDJ?D{g_z^W4Qen zHU~pq=$EcLd7YnvjgKblW1nVL9z(UdNxG|_5}A_tzS40p%=&0Cd6Cxf-Q!+b z*DqJVA0@z}i?&u`Y3&4;V6daQUjFWH5*AMExc%O~{JI9>G~_)r_5#snv|)@cS@psT zH%p_T6zQU@YLCxr(Pg|6fBx(IV&hx=Zj&r+4m*?gdWdGrSRW5!bixQW0PxhO{z;t< z>yn1lK*)Ii-R)a04@dARucrR2KZQ%;XsnEF=pW5^Y;R=OSet#@jHXh)rEnxddx2hX z^OP!8sU5;ME^pF?X`=6S$#lGVS^;JxU*DH0PO_u#AMumBeH@F}40f*qC0iIYIfn#w zo3Fo8vIGMSt&OLOIUSMn?yja8n?Gn{vhndWDPX zyy3E)Eb5B__Undx4ai#O^`=C^12LEuOB3C6$X+AGvc=r0*0bSHZfv$((7HCVx{KET zTVO9u-6D)E44DlcC+^yg<3xn~j?V8a^OWNXwb?3qsJa)1aPtl~CaP6?pX&2hXo$a}n@8|M4M4+2 zx~5xt#?Wfl&htC=x>9#S;s08`d|6r^{BdV*fgb*~anm}NxOh0E$DP+zJ6*0D&E(LC z!Cc9x`>aOCg3Q?5)Gz0r2ZQ~W9u~>W$e@Z84`!s`%GTqID-eMvv7#U*I384#j#?IJ zH-XSsCBw@e+#?iMiYW8Vn*x$#)J3*~#xwbVuz}bvUUBjtmB^afbv|pcw8lz_xg+@u z)GY@Af#Qbq+Z_2L>)}5U9xr42(x-1zkHf}N!|kFyMr+nuGDD#c?HLbB|1ZTUlv}GB zCX$k3va)@2I%i`+jg;sG{OimZLzxUqYXzY(KVw)0#w zxJ=(XWoDgCW%y}~ojgkWwSPbB?04tQ3xw4jhun6Yk*qryKz5#F6#AG#J4TkH{*hWQC z=h%o_(=C7X)~y`e^ko>Lt(s+TNqaLUO6xLnm>d5nW{+G@&`JZ5PZ6(`KRDNftB>LP zYG^W}b_Y0(;k*xVu`+bH=Yn0|x9O9mC5=7yzuBPyLausHfZ^T7C;B?qRK}DM0FXh; zh6bYUo%Ki-d@2qfOGm>@>zJxt2WC*IiuM=S-vsQ+jHr0zS$E_YD3gMKIDNHpSgxMK zM3bZvVu-C&UXW^vl^!KcO`1Zz@%V0y9m&QlBWR%4IhOhr033sNhBMKwP6)fxIjSVD z)KGR7NS&r20U{|}r33x^<*p63)eXuZQ00X-i>CIE5CV9XKL1$}W^l&h8skGjaO@zG zrf%%5u`a=fILnCDH1-38>F8}?0RI@WU=}?xc+G8m0q1A?qH@Y!=zSCS%09XeGvk^` zQ(f6X68$2%d%f$rK+l9#x;e7tiJOyT)La^gEXj4JDlHuF0Jrk~a>$auby}av@7QoS zY%qR&_b_@@v^S6-bEsU)#g-^_^{7BI1b3A7&Tbk2JTr^RJnW%N!w6f=IONbsDsPT`K`(|oFV z-*DrM*uRT2MgA1QTtJO|@pO=oKxlGi$YGh_2fAiRHj^OzsiC)s+{ELx+W-CT+vU1F zy=xoW>~>WCyE=|ZK9UI*sCYFmtJ6=A7tP%Q=Tr$e>71vU=*r+00m3^8RH^aZ-QvlmhNC znOLW_GX~#v=KiRKZb(9Kcjb9yaHq2k4x2>84lhW3Nv*rOAD~WUV}}9|3AnEBhzA8e zX;3F=d-X+_e=5uFV zp^61#Yo6!i`6oZ7jO~#HUSIRZ{8?V76M_twtYbmO12Y(upMkKbz^{tZ!Y%wrScolW z?YoJNJO!$l^zG`*zcb|M8g=mFjr3iHi?7p6y%g$Fo;qosRF% zf4tPo^km4}%42vT3K{$y%pY`oR3k4e3kOkFoAoflDGcm%dJGc)z~TN{e9Dq$wBV}$ zogWd!t#|v0O-1choe0&$pCO1QZfijyq;${^ODNxTj_;tysl$Dhsx#`64es{*g+VUOUWZ@5{|vk@5qKr z-52~5i7VZa-F6=GH-)QjI^Kf+P4Jr;!Cw`xDm0^{8)KP|vpw8&qutxK@9da%K1A1k z8hYgNy1muF3R_wf%#zQ=LVI79d(CI&$6p#+?YBx-4z~vVIBZ*Y!Ltms+k`Htr#kFZ zeW%)(pc^ec*NB%+9+X96(f>6B?kU4^vb(j4bvKL< zGOA#BAZ&_uwaHi8FaHi~RW0~XKt)>qA?(vQ!cA+o&ckrfL*G!*Q`6+r!et>200f9V zl@zR{EtKg*OZ!eoo80kBac8Bhx0CX@O<|Z&XLU3czGrpZ4I!qGJboq8-n~j{$n{ZB zeyLy(J>&hFgBCeD7yH@L`e|=R&S&#CR`{l%TXfi9)b$*hnmjdTOwqS*^K)*zN*=od zFrWPL13q1RNXeEO%dVCPyntm6w9O9?8xm)kF;Ji9$fczav%lZxH@fU^#9Up0E} z+{pZ`zTnmKY}SIq=$muST!nz|g}Vt9T5zD?s-sA&IK`>Z86NWSE|Xa_-aJ3y;liyf zUWm!ikzA#EsrQ!4Wss?|hq~GPZs;T0#eONPQvzlLXVvRPdk$`GWt-HhIFK+>*`bu_ z(fU+cMnMf~bBuVz)4ihV{xy(K=QwG=i~a*KX9wm3URn3c& z!gfp-VU)y%7ea^r2n3M9!!pB4U?}225=aiCr*p9oDl~qoTcfciZL^8x^VnIN4!`dE zij5`H%Ail`bS*0_8og1lt(5qx*YV7=kt6u;_e{#;9j8;2;2@~tF+59yu^RrpA92<9 zl(3djrYtYVUEEaHn%h=bsb+qqtz_HPBth~yVMMkBAhx!Eft{Q=wlrw99}19nEBHfv zgiOuTA1~o%%q+`DU>=pujA|)&E<7Na?05UDQ-5B7>)Um>(oam7q%&l@a=AGic}D*i z@aHDIc($DQW+%x37%mSeawN`da()9VUKRx?KnRe%aU{Gr@}%H?ZP!67xQfBKsxz}? zPfcB&rimv^{=LYULW5qQ6If`w^|p|gF zP#Fw8>THMzk@IdR-5CUQNnf)xWh+;k9=fq;&j_%g`BysBzaxp1I*;3V%{TLTxMg)2 zga(q)cEL?XFRJk;MUa6Y%J|Sd-V`xod(LzL!_k&-qmf%NLVmTADnYG`H?d8e*Q?9I zh`an-c*O7~4E=4vUDuBv)!k?7I^2$}BA<6+M0!WPRp22n{8-lU=JfUEU&iiJ3za?0 zv6);-1qW*&Q#G>IKFZ4EN+ zZ4}3>RgJxoU$Yrdfs$4A_Ly`_ENIaw-jl@$A-}g-vgG)ZHYXW@pZA0WL5}}w^y@rW z0@ilP&?S0v^Vh10WI#RfRbUwC5p;7o%8DstIhyG!aM#wAW4NS9v$Q-rx~u}_^!wWt zM^#OyT8|yp<*K+ym*(%(FtCMIB*%~%BrgT$lfnv>!*w64WoZ+o_LWO@$-tOA$5vgk z)X(V9N;K&HA8FV||6~yxH#8(61PgowAmOm(rEsp)YiaVk81wZ%K|~3EY?)4HL@q)K zI_mq@_GQAlwBaqAG80{XS<~ zHCtmXrZxdCjbxmi?V5^>x2m>$kD=M4mx&@xf0%BSVwfq*EqOLS)HyEpl~?Vj+pJG< zUz_z?^X=?ff*5e4R~*lu%6_98oCq-d&1Vm4)MTTruBsLP2n|pqsZB1qnETck$m>b2 zcX0;@9E13eJsE2=*0*Vki&#SLl?f@jh-%Y~6x^rm&=3_&msmBfaMxXD@?O=+vg`Qn zZ2^liIXjB$>Un{)wo9xWkIB7keijCC4DvQOQ(;o}gF&Y&2*9N;#U{I^Q#l|QE01eG8n~w1_S;=EtmIW}}w=$84y@dtB#Fg=2Om3JmE}pKN60UrYye&<| zXHx~osa-Mh;sqmHQd1q?9`-$rd~H1N;bQw0kDv*nOJY{2<&b`|vB#Op8!?ZBjMb%F zbK4aY(H}Z3xn~d#Iu_Z43HJBq*xvJv9>iJ!RjBNr_Qk=X#-j*S&O|i#|2NBj2u#??N3#=!q*v@yIap($)U5zNiATHo`@Z zADVS~_GLnYlU<1>dE+w;##b;CgovSZ$knG4->tjLwK>A7gwZpq9SJc+gIM7DB4L?- z@LYk;3LOYMtLSC5jT-%DezQA+$Q~O{DlM(z>)LGS!@(_4UOKk?I8`lQI?3so)$AzF z%TvE8(35l|9GQZmL87QTS7Wj6*JcuGfuoK2c{8&j>6eAYf#22J+ z#f?viH(0pt#}~O{p_%Q1q{ic0Z0V{oBK?Y~+^xD`L9e;QGFP~K@9S}}vAmbm&P{r% zi%+y3O>VQNd2vR)VP3MYj4zf#IkB>V%u*^eRCZ6*X`M)^UtXGlNMOEFD{EBYnXE`P zVO=t1T>{q%006|+*YD6;+QC|@Vk;}W(|>)s(_pbM@jNl%l1KNH)4k7{61%(EBZa>- zFwTu*4VWh3acvzZ>O!LOQZ2dso(#@!t72~ei#aWy?%*Vn_#USvM{Y`~xEqAj*&7m7f;(vD{GQi`0e}_L;ZP*nvmWpts4KH% zL<2qE2j1&PzBml-Ki)gRFu%MWsV3f2PtmA<%@XAby!%<%*h&n< zW$LzhJWU<1cJ_nXo?^ER#HcI(b~>sp48ubVLr&+!=v!HmMOC?AWVWBjdQ6}z20*jl zl;o&0xwj7hx_ILj=h;XdJ`5wB-+eQgQCE;4MOEnhZtsUT(}?GXtGm!sO=UORMpg4lPGXjR{A(a9EkO`zPPR zO%H#2(_186vzlKYG4i4^+WJDMz`&E><@3S%4Q?M8KnRSQ(PEoTshSv9huvKi5AG&r&6A_w z@IIhbpjf%)^4R^m4X&yZKeE6jB{ApXpQu{$Jkg5cj`YmZ^pU5NpCe^cs(iL>IUiu` z>P+c_s~Rek4vfP)IQt6sUqY$~#rdtJHwrP)2^AKl^KeEeQOKi#AbzRp7<4Qdb!mya zm7ViLy{@?9eUs~v5A_W_&GqGE1)2tnmPW$tz{#K`IbO=tj4TH9zsI~g4kew;ul=uY zkyg71+|f3%*~!`Av2+hNL0A&U@&cPj8R$xE!ZfRIubASW0CRY=rNnU#4|$@%aAH;= z!FEAAUw9yH44Z~sdLBEI6T?5s0IzkY{|N9G71VP@s)@xrnkv(l!-XUM7s#a? zY+;#))68b4;QpfF*vHb{a~~?Xt=OrR$7wohSPhRXQhQUJ?}otDiI^ZDpF+_Q12Z)W zYipwdS4r94VEeyA>aRD(Kx1<}2NgHEFMT=O9!wm`-KBo2iI)0#g9KHUM}flkdQKe2 z^5Q``qt;+0s9j~)%E0Y3P;mvqfSzU#YV2@j+GR@SH`l2omLy&6ZS-0m?;|DaOJ~Xt zmDvJW&_`tLN}uMy-^|=t2MZXA7N@YWTLr&}D<6TX z!}zKgj2PEg8Cu%|oJ%n<0z-r5>FPMkPL4)doJ$4rRh>edMfLgMvJW5&vtV~>m_om^BN6bSG=4%D#j>ZF*}qaDc?)J+^-iu z&o>j{zcoRKIE|l8ed{ErYHSXdCzj!I{aag^wY(_E*t5;sZjmk<@bRl2!-v@6G@ZZy zmcRr;D>_%5no_$iezK2Wn?DwPUHXhLY8a=^@YY@!Jarg}0TVcwhmavWJB)_(`x{Yu zU=H}4iw(tpb_Z){TVaTxN$i=FMnoydj4OzUhBDG_33vISXH=18ktIVsLeyOek&;|P z`{H%MRBxk;&Q`mq$P5AskP&$jSEa%S6chAZ9*V~R|4XD#n-4~0xZmrpM$RBF=R>)z zStBSTEys$m5SHE#B^8axA)!!0-OQNb?wW5hR!gfJ{brS~GPy#{CW(c(#Dz@o9!S24 zyuaO9^P~gl1<6chme#MYdr&@-zBSGj%4!m04Fw=ykkmQzv4#Jw^c^jvie!$Y)kMc zHfLBJYrYx$;j@enZxW%%#`-?HAP9TZaS$qQs%;!EO=rGEzv_4OP!{~g5yCQYeZoy* ztv(#3yXXyO!8~k(|NaO_wDGu}ipQO~k$Tl>VRfv_1#Y^8^nc(I3;v=PWi6Z+=l9ch zDb`kS%6H(gY+&zz{I*kHRR>Oa%CasDXC?L9yxpyTTjM^GYs2La!2jUjPEF=5Wei(6 zU6(O&Y#-50;Y7)#!=CFVr(6I2vOY_I*Le<)>GtOzq+%6lZwD=@-F8CM=$zB{ry&PD z)5X=C!8s+GrLkeNS+B&e6h8~uv%U^|7JWV@x+nH(6#l2MskhR(d)G18pHdOlXZ**| zKJ90>0vVW!@!Q?t(+m;Y>+>7!Xb6}u5!Qi-q5k>D2Qb%<1JlIS9lnkZB}nv8km1?v z)>cE1mmZ?LU|>Mcm%y!+HT-3$*4@jkocqMY>y?2WrE&o`D>9Kh{518Q#}sz_F9j#u zb+g96lFscLgYW%ty?5@wY&!9tDdC=}44FlTq?*f`Ywl8lc%ce>&>2Qrga^?#?td^2 zvPi`|BFxGA!4q<}{PZ)QCF5{&Eeg=Q2%vABn)1+j)jO=XDg{Y9SI4oKOG9Xxr3>m7 z{dgKrULQwacrYQXY~<;xtzuAIa!B@h_bf!Si|UN!uP0l6F zZDN2V3uW3u6xR#KM1*eDo7S2S4H@?16Y$K)(TFwwD1kCV)MYrIJ4?$yP})UeARn!^ z?`f%*+NQg&^X1d=>dI8nVM){8JmwU+SxW zeT_=_MT3BP8n&%^DHC*HL(ol)=IBRMlk>_wE7dfDJM_odH-VBBRMBY-6%#1y3II56 zi(`hCyK;47zZhb`eep^P9FBE$(#AfnW;GF_V-St(ab~_enhZq%0H(2lSgI&gx4(2a z0U?xaDiz|62&lnixtC`wN=iDFid41<4PJ^B>on@?(np1CA3gyiTPYgwT-a>Ak(O3c zzv}H(zq9bB9T_WpyS+&m$Z$g731RccPub|=K!}Y5fS0?N{SO~FT~DFA|Kc&3CcUog zJA;6?nVPHFyqm$#*~Q6dI{b7CoOZO1B9eMIpn}NP9Ok|N!(6}Gw{Kx?nj$klh)y3c)1P!l)M@8XO7o$=SuHXQ&v02 zQs#r2BN(;X&{1Zhp==0$UIjRO6*T*1U>pR`Z@XNKbGiZ>i*|G|`<3I&W{}%K8uIHCJVDnYP^j?{aL@n_y^( zOV;SOBHTS7vbNec8H~BLcW7pge6`x_HNEBuQ4P-PiZ&SARcmNSvCp_B-~wwWIqv{Z zUcd1yp7Gk@$fQ(mkEP|8SJ|%{ zK@*5hHA)*)C=}mKbDfTQr!rn63GnrDwx|DwG~Hp9rh{^bPg$p_Auudq1b^~fYsFrt z>ddM%sl4ub;sh_;%xghHgmKl+QU2G|FqY)K`0`M&b*rFb{!@pI#-C`YLN_K=Y6!p_ zZ-;Ble}B?s+`-d_v9$Elz-02jR!jjX8T~D0<3KeqOGyf;rCpgGt_ChV%vlZ6jU3?v z?}pp)xFPii6j^^II;0w(Lqtxr=<+PgYtdn+;oJ`lq<@m*6jj!R4X!U|(}JWZ>h4_Q zEt`Hd@bg~$bMNEGE{UezyZphfmZcVBRi-Vl=6&-o9fd6)12fM&nQaJCY-#gek<6FE z>J?dTv#1lQ@6(mGm_CvaEtu!T_EVhC{~t4l2$?Vat__UMW?opN;$Ad*1+QkLd6B3P zjSL>=lQ`T?7-aky&d`SgzJITS2^D2iDQ~w!%}7NZEYgQxw3kbGdVLfaKG(m5@^h9G zYC`~UOcd&KP2O)q6p*Mv^RjFAB1$W><7 z;&U=P;J+7fycb~!iseE&=_mBYL9rCAZ8^&cCQSbVTLgPFrtzZGIHS3BM*V#lB3+lu z!Bv3i_1c72Q^z!leJma0ruPA&291dDbf4mT^H9_;*O4YwJz=;QkGqc`6<3PGzT3IJ zARg?cStHQpu3}XN0sO0Dd$(KG<$*v0;y(T6Ev{}rop*MRn_^f?CK*BrQ&V`I)^Tu<~m*Bk5LuzG?S2EsH2VEW<=i=GWY2^URRb zY+me1wfLpxmOnN(hR%%`C|3@}Wt=ozx{EMt79yKXGN%@(7rFSYx9E7c99^nKN(HLj zwz}#R*j&SXYfJVTAh+;pZ|T&dNE`*x3rzNn$b%wRO#CTlip1YsmOyHXTj;!V)U zFbfGY7OA0pegODU*Ej74!JOY-;(AYIK~#MCrm_)onUSceNo}FL>uap_0r=s!&?gc6 zmxr7#?)siiZ1K;{rcnjswv5;(j}L)xzQ4af*h|K_6}|oFz4g~E*y~y2&E&HV?3U-g z%VDxUZ&Si|xCl;OWP5jbc*|EsDQ$n23O?!HdTldB)l%7oj~1EdxYBlq3{VuI+9s+< zgZ7?!xM7d3)MnC7%jst#9asNwR~V0Abr}0#w&(%?f&TB4RLms;`*d6fZwULSVjVmqdF z%C&Ub{K&7YPaldKwK$A4Wnn>mejG^iBcaCO;HVVvJQ$#hjQZff3B3mT@fe_Gzq~Rl z1$56~Mbg13nhKpswzr0Yfd2}o_=gHJ{p;+( z`UVz<)EBort!aE{{zlI)2&>$auMY1c$=^k;z?eo7!O7YAz3K_&VRK4*4edD2 zdG;G^BNCys{!e($JTkMUOvVS^Zh?^4`z`lfe(+o=spG@dqzcKA&0(F07Y2ums$ZD)ts)9 zjwC4HBYMq+b-LrBL`pHpibYYQ*NTy=OO+`dwsgObIA=xcw*QpR$MX8I!uvuh*t<6g z)r*Yn5u_w3LNgKm<7tKjQO;L%bR8NH+H;vX*vC8QW_Hy~Ev{guI=xIZC9 zp0paHs}yvl+*kMR($xq~>X><2?B;8FmWhrLp-N?PKQuV1*T)VH`~>w=-+*mqd12|u z*g`GwKo)r0n%8try|;C4$;51-I~$mvtLk|jXesXlecTl8>)WtKz}q2m!;BB41X96 znPhi@hA=p7H?ol@#NXokUxCSwW4&#OkY}zXs`I>m>TUX&3<;5Y<`3h{AKRA1Aj)KK z{%UmKpRMd1vS4*-SN7_Kz|*0_Oc85p41G>)V017|TY#4^)c3K+6OY@UBLe4E5!_essQ&Gu{mr=Cq@Vzysyr zmy^@PvLX_Wg9^{9LxtXIysa)ytFmc6o6kN=X`;R8pngTAQq^0ZWtVbJIT;OGmv))*n)^$Geo3$RAk z!rAj0o2TcDydHXtKk&~_Ym5W`*C?I|17C0D!wcPg{k8N-`}v@uA_p#86MpjGN6`2YFGe#Qd{PB_D&THZkE>&9&aot)Z^^D3*}USX}S46f8CYY z`AetdyFMH1?*-b0S<@ep{ka3hBRKPsqEKuk+1j+0zbfZv{`EWu7nU*5JKp~=WZ1Hm zAivA$9>oyT3rY+e?uF`|6%($($<}AE_Jytf^_e60X{+waA6#%Ny?n^KDDElRK3Vyddp$?-Be=pR)-J9p&bep97skdy`Ex0_p3QepltdG*I z7uBEpfsy@qUIhEAhSWn|U>m4;8lJ=@+n#(q{Sc<>4m%Wm&f7S|r5YRHkdKo$Hs$LT z+2I41@svIUV*%lo6tirYSiqh8*)++60$*-&d;g4yx2eZgojE^0)f}Buz(N`pP(`wO zG2g(`WQr8ci|a~!!@v;NJn5JTJ}v07+MPvfnOOkZF3j#Z;i&B|h}DW()$EyS|LH3m zNxKG%1Q>oXw?ZNa_h+DAbk7$w5VSaD?v#0_!5%kL^7Hju_$lY5TB1#nLc*8xFrhOW z)%uW!7~@HA@_1vvf5_yfKfz>U-^h9IY83j+&9j_QJ5f?r9R_dzgRG>Y?Qx({wR1|9 z_W5<1pOC{wwZzJA%~fSk7*1EC9ZEi24jt}HhQ*xP5+6Rs%M|JZ=v;}e6edyGR!-}S zez{cI-&u@$A2UYtcyf~uy5L`+ZM?nRmi})W9uHAq;zC=g&Tq+3>`$yU9IsSrT*%(t z{kAiwx3WCSpfAVvG~guHB_@ixwtuzSXoxOmQn@Z>4?9N` zF^EL8!U-2WvuUtQa&26D3K6^zRNCyriBKouYjoO<`bzBu3EOEVwv>Uff_h=$_*4FQf(WQ}y$Nh_Sa z{kfOdVFsXQ|GE_X*@XH=UsrbF4ob11|Ho&rf%s0Z%g9A$^@=Ve#`cJU?IGv)nXfF? zyTu;I9uA-pTMVGGhl5wRh9yn+OIe5|i_nnLNTmGsxywK4a zYVsP4YyB5yiM%)}j^Zdoac7jy{Esc-eKrufbdWkBzZKD?U62t)Mlf1G{UHGq`ZE_Inz%3X8Jckc0i7B*X_Yr z`EXCm%=%5sR*L$9)hw;Ol2UKpQHrv-Ai-%@i4oWuLs2n{MS3urk^_Xk{hH;ij)DL> zc&Hs;;1v|8n-XTI;z#pR--|XLj$8Y|C;sUORy_?_9wlNAC3^tcL6I;5;aEP678UXK z2Q5~r5+soJ)~k;fGR+(%(My9JC7l0HlZ_;@cbD0nJ|k*4A>5rO*ieE}J6-8)8TmUQ z>nSTl5RKoVkw6UZqyUdS`;oe%uyqMIIScZG5TA@{K|*)5WAv<^8VY=AwTw(uY<)~z zZA6vD)s##U>zW(CPv`43KG&LS6i-pbJRS^nc1D_kd8+v!ZG>3mVyZ(u?7W)ymFjt4 z{^t`eEr~+UuS}S}_1J_@SvO@{xkm1{_R;2FiaW80cnKlaR>cT<^<>I6+TZ^K6M`Id z(U*QNVhTI!#ebMcyHp6vjVPF{e7_f_>4paqhU;EqH297O)j$Rvu`8FJC|=j{!M}3jMH}xDCK18Kb~kBP$fa}* zzVTl^a9jC4fFeHPSyRHH(447%Hyo;lR+p!OQQc6+wWmY#Q9XvC9+4sVTv3xB9SC?S z*f%x{G;(zrHN4;FJp>Hqth!JX8%AIx_X7LTSBT|&p{QhGg`&H{;rFEDCB;5ktx|o^ z1N)MIX)5{Jne$V&^3P<5XT1nY_Uy5X7>pvqG=RS<+3VVK&??G3T5=Akd?20BL1-uC zqy&HpgcNxS&<(P1#j3cRk9^Jb}m~aJ0@-iW>4d_Z_L&u-PRw%%1?N6 zuCDMgjz2{{#qWlAK>{Ig+}kzgE371t$x-(X>~mkbc&O`g&Rb=3nWc!5VupE9oP~)B z8#4kyjT)DEzK~&p!2o%JGp_F+3#lnbSsX;Myf~StOpl$Kzwk`YX^Qs<+a!2wh|z(Z zlf)Kw!tb{auNc1a&??vhgjWrzB>?Tm}fRScjYKRzO;$y%|6M#u)4mAtFM=>T~Yx>vV>iC+dmlfj8p0 zU}`PzN)04ajBfWuD|7kSFZCT;G2(ZWMeoEq3-b~gL!wToKvpSsuK#rkn} zl5}ZQWf@#3!2V2`AX?((^n^PkKt`(~RRd#lyG z5}!l^fU1JzfWlM++BXLNn~)O%K#1s2%Ge1}QK#Xt++2Z&6A9vX%6KI*Juxs%zYPhT za|%e?daTeK06^E+^ZucKb?raH&jglfv??kq4}Y&_xvPi!XlCgtbCqhOr!;O4T9;~Z zLDFa;(P4l)q3>vC~}CNLwGRCPlE&5ql}|+HmVf9Mc=Uid`;z#{UgD~%fsV*Fo7NS z&VGE<1_;&PmnG<(!;B5RhUm+1Im#1MiZw&iD6|wS;w+U+$7_bV#H*_!ORKCogoKq+ z7kdm9pY}eAlcP91saI`{4mOZBF%>DcODTE!%({~!+;8dIit3e5A{)U&%Cbfn_^;2U z_wtu*&J~iOB!!b#ieUU7N!J)$SKGBuoF-|SG`5|_wr$(CZ8vUg+qT)bjcwa(l5aon zH*+R4`FZxa_qx}*)&&g9A=lL&^$0t6d;uMV{&$)(n0#HLCU{~RXplf1R>tekM~jMW zi}f!m><_=CUJf=@W}bN23=LR7+XgQ;N`9R9p>L~CDAZ!D(jiRXy1(U2SR?}}7h7!r z?y!SS5yD6zVOj(+IA~MyvrKOu)0WRD_QK^Fe6`k|VA4w|>85RaP`C0Ys?QeAkm273 zbE=Bdc%!+7zqON*eFcBb?MpF|SV5qiL$&VPo%}2InQN!T?6Qno+Q~111`q2y^nY}J z9JHhrWeW;%Lz90$X=IeeomX)fUyh=xv_AZjquL&3NDB=$hy)h|X#VnIjbP!R3KR&P zM2LQkcQW;3w_ot%b$j0^KAO{vdM|5F#(i1$XSMuqTU)JtXOwxBw)OT43Tn_=JOl^L z;pFWq#IUR@U3+s<)z;BuwppQbyr;)a{>$jyDbCS3-+v2mMLI8JnPFx^xgn$2ViUa? zs&ytluJ(f0LU{K1Z{7+jZ0DuD&5GDT(a#6DcJzK%d;4g}f&d0%D2xIPwa19rjLu>< z;>sfnm0Y3qwM>@O0*^4>V!QWz^|dNPE<2nXiVP@EE1fQGtzRIhrLE}3_fvovcTA(Q zbZgQHW5|ibSh9!RU)fb2MIskKR$ckEz)5!^THMj9IGr=DY(HkEU~LyBkPsp^Q}>m9 zjGIIOC9IW*p>!?mhZCmhetXX5V%VJmBM{Rm*Ho7W9mc_ww%Uk_qfH(@XJ$Q`l|N?C z?n`2Q*6O^HvLXF<$KiNs6Z35q$N0cW)H_pxG=aJl4hb^ylvsOomI(t2^;|~iXEhJsb-5j^AB=6Bx{aTR=9?P|juy9a- zMik@QIHK|&6a5Tz4rT7LIPslo1&;?H`;;76acETbClSI1Lf@HdE6LQr!xUsr@O#UP zgQy`MD6hKRc%D%pxtz|njJgH}M7lNh;`rWE4WkbOk|=6m>q!$M%JW7Grr2hnw#BL! zF?Nj-BX?-~*Il}&s*RnowrI=yIM(q+swT<}CV2&H{V(Nwj&j^PuZ>yk0|kns!5?kO zD9ddX1$PJP@{-fcwl~oqQ-U^?oO*nTx*PS~x=HLdw!UG?7MN@l39ri$3goKtDrYz? z%#UQvtfd<-#=JlyRuI$C3I|1uDy{u8kiur@E3NHnY%M5itYzrxCptK8A8V(H&dob+ zK3r5sBoEw;o0^>(LL*q61=jn&R?8Gg6Bk-q{(kY;LnC9X3lsLJ)BF#IL;d2VqT~nA z@tkYOzjwRspPMHdqlZ18L0`_0LjYJ^t{g7P+h|WY_qQqnw0c^eKU*US5r02I{nz7W zD(zLWmHw`Cjg4+>ts(^`M~+gRoTxk9y7NddIGEf&Za_c!d7Y@SGqj3nXa4}svw~3u zdi7R7xfN-%6jbXOliiYOACir*I&}xoh^C`OMW#7G!9UrHc`Nq}(^T z;A;jscSHo@B?-TPKO04u=*_8a@SdXU=TTtx{yhP4k?B@EcLe(g5J67Yvy7Gs8GdvFi$iul6r0-z7`X8A8+Z>kHaPBf@oM*8rfLF zT>Tzf$>M0YIs6IjP-4~Mg?fBCprvNvpHY@?Y}xYVS)H=HTP~|%-@T*Bz7I(M*i?6d zYp_1s`iW&YnOudBPo4C80M9n&OW@Hwt4-&F!b2%UVvpJS1O*wuLhVynax1uc*9~_9 z*0C})^^ju7*Rd5I0{PG;Ox(|Fb0W$x)j+(3~sh z(%l=Ho0O;D5(34Kqd_X~KGFe^IC*gt(bHAs?#%4WPS`F0rCd(%sPEj=vWJtrLi|pb z-x{xIEGg3J0EQZ$y?^2>h+$;v1&~97`nm^ZA4ciV^?2Z`TWA%AZ4Y>qz4{9jNObX- zE6xx}`MQ-AzVB^z+pv9!+F;t$P#cNqB7Wefc=JGTZ~4~L%$1tccqMt-D{TfW>Jy(x zxE6?xmPLC`_^{$mZ8$lLZvl3F=-@7Yq}x<|HrqnQo|K-X7SPM;JL}!310#4}W=*Z@!CF@Y zn{(AA+C+j>EV@H3W-%{~oCLip%;g|Bt}18Y*a}*W+o6lqlW`ZgAl>?um!o~2vkerJnECX$NH~KV&(6%EK$ItYcNFLP?kl_ z@YGG09MlIyME(}Ex2jbks{PL5x-p&nXy#NU@OpxV$%KMUjFF`RJ5z|&Yt6%L88)JW zhqG=gY)mVbQ`_#8e<%goXcba`0((ANx2@=gnTSLA3+Wz71KO5(7;atH113%+pRU^~ zlrelj>;GrGO}IEuix9)C`4GL?-9@>g?wv#~hkys)#J6X~-_g$nYE@E`c695~b2*T=`6R^z;cgTnF1v*FM%`6Fpke{x>V z_!}2nhvo4;1MrTgd;*kVL0Pa;8F7O;Ji_f77H>Ads~q?xCL%dxapZKrPng`&Nx3ZO zY<3>iKI)rCKnE|_9biC!U@`A+BVvt)5xygXXJ?R%CNKk1^5IFI0~k~Uno91_)iv<{ zw)nLK-2MhHJm4cN{Euaefoe05d+G@AdNs_x-vQn7Q6MTcVG#mUOuW5fF!#)-9w)X#EZ=NU8yl@8($DB$c?1 zaw(;aL#UF!6pCIH6L|EnMzRKlGAnznCWHXfnkgc@kL7B=F&1&Bg0tw0CfSt+O@%+j z1&MisF;^=IX|yM~-}s2OPtN;B>E_iOW7Fs05gDo^3ez|fdQcA{Jf#@lofqibH_b_qc~Z^u2qVy=gF zZEqZbx4;fIO6PblJj^@sU*CT%G$~}5TOtn$IQAeRlHNT#z+coOmq(E@1s?irDsrZ( zdM%l}kybEFX;i7&BBiO-VobC`XpJILh$=~5W#JJ(8Uxh*<1-V3!RwP#!03r?CPNGc zidWQaz5QdE^BXd#5D@;x7Q2LfyTH1aHRhTK+Wvd&J{qesjjl$(cXv{(joSn2azS58 z(Mm|~wLG zctx==S>jJP1kDm{r{=6bwLze1QgILnZSJon$M=ghlZ%seTCOl?Fj#ow9rNrQ?%`s& z`MSpE&xz&=94&br>5cn~^06~FJ}<2TG+BF#%Q8YYiE5Ctkl0GX(-Xf8)#8eQlbfiN zTXAjX0&oxM58)Vne*}k+cPKhT9M_}#J!NTgtZ4n!=cDw=ZWw=c$@X4_J?lGS4o8_~ z7(dPUMBfN50FsQ&`SpHkXx2%T%3iyyHCm)3YWgQ1;1?mglcjEqMb}d+1&37h+#^{m z1!4oZGQB(3X*2*0Z^fR(BZYx5k50UJSW!UNO$}z3IfeW)IaP`B_C;uHEZzQ>8K-a( z8s~s4+p74d%-tPN>Ms;^omh|qG3%X@+GYXLClt{Kq8My#_g<2uwfs+tvEA>KG#=0kcjAkskoV`Og+7k(`wbnk4u!i(8AkSP^IcjH{K?C~xU+ zLmJUqhjj{?PR&{x5MUN1Q%U-8A55e5N#e5%D%L@!)pdTj-jib$&ZqsZ2qA%>q=gJ^ znu^we#!mwL#RB)IWL0(uP{H8($D3PuFsm|+K#fUP(UE%TfvRO!zR%y3+!_C;>3hZe zRVWcRytqaaMgL`)|}MzvoFD^i{<+JY|%6P!Q+Xvw!b&lU$G+22r-cignOE^49X9IX^zLi0bQ zwh=*;_J?%;o|Y5p`W_02k3;a6=*Ft8bv%!oqz)58hCjM3!YJ0d&VK33;<4Z53ResL zx;;FPk$++5BkNnFUR|J?9h;t;9Z)I41N8-o^JiX9lZYuaG_;`^g`Sh-wsXnBbnAR+ zB64v!qtJqqZGr;_!5$=VKcxF(=p99PzD^eyOBnnHfh3kxNQdv9^`O*8-qh%L0Hw4- z3g)38?BXvHA`Cqx-!KF8=(C>96{ENIu^;6^?H1{SK_Q1G`8pCpDC})LB~^ZKpgd!X z%4{{C?9L0bcV2{OO(T8+Q2dq}ODwP0SiK{mTb<)I<@y`G{k!IU9R1Xr$pR-%&`4c) zAmjH?5v(Qu7a77?y^$Z4c8IqPzQ#9{1WU1R0wgFJF5kn~7|&Jbfh5ciKJ-#o;uslB ztWzOk3-dVzz3%dP68!qTs{H zx)?k)yV>mU`aYn9i;Z_^P>A5FKSlL?){g=TD8w@UY-rb_$_HTho!FM2rg(oz(uL~z zi5}+Xs!sfJ8o_=4Rjr6oAL&d^zMbFxSU?>PlY4jmV6m6pFfs=`WoH`6t9iZT$Q&a< z@oK7>YN~H*ya7Rk;>=-q!Dgbx92tyySm-u3SNYb)P`!Uc-1P{rdO`#X(^`2wlI8Gl z(g!F(A>xK#D62$>jCUvn5soAm`*+Ojv__E>mZ=tr_*gnkaT zdwOKPfx%?2X*eOM`|w{RTr55JJ2pObpm%kdUH8N(ha3-xaDY~X>H`)e zVJE43b!&yqjsij&`h#TPIp_LSpS+F?A%!W#m%UsiM^hs)OZA4do26Ez(`_j3Y8n@7 zx1jm&@TLybI{XCA6&bo!=-Nd!roS&&?t-XY0)5gs-^26KlR4)qL+&TNX#X_}`%E^~ z&yxpN2){Le{{*!Ar==svAh~@LU3$7zTu!5MeS=mKbn)dS4oV1l!VDp|Rh84#MF^>6 ztp6xCb70wq&r`n!$-O(}*V{kew4dJZ=i!0Q1&|tyS+-rej2ys)s?-R88aPM=#%|ci z9C|Yn3Di|S@&ISjVOpClbQwU{K3#HD6^W3JQYOrd7$-(kOvG)L-X40D-CZIOZ^2%g zYbIN;>-rnVHk-$7q(=C(k+?_1iG^&>LJB%2AQxl*O|L2+$)Hi-c`yd%h{;JsyX4K& zm&=j`&7RVXe|F&pz`*%>913YxQ%EEjOWV`tc*YkLlijVOEmfU>7>DO8Z}(i+alsae zj+txB!9^Oz{2YEbVF%I);Uhy*mdoj7`j~bJ@dVMN(4}rKJSpe9^Kj-mh;kUG0@C-H z^EPZhYorOc>ZLjjoTtE!?^U6XA$lWkT0}~fbkVR)R^^Xqcr8_m5jhJo0S=fW_^=lh zYnCtAWHHE^u|l{odmX7!raO}$(9+pu(hW@tCoO_0Bp3)aqc#9%rCo6{5G({#B)iHt z<3^4jDs3V6(@2yn5m&X3Hxf-!Fp*&e#m*azgn&{7Xqca?50!BSmvJI(>=wufps1va!ObhqPEF34%@`b1vyZAXM#bQ;{OBDQV~-LnRE>vkX0*-6-DmC=5GO&t_CmOG z)izWEw(%)N{Wqr2T?wbxEB8HBWmJCa$G7^z0lXNv`{^(Dz>Fb|VP}ynq_A4~ zi)iGZ*w?0_KlpL7(zhkX5{M#qJxvTNT%_xhG1252$e8^y<|R}CuCQ~W@NIJpLkDuk z=$v9-4VE6=?f$jgcaG1LXH_(RlMl^Y^GD|D&o=wu>Ctok0xo39O$zCHi%!@CA%L1! zTP(~nQYAN!Xn^3$9lcN;R)e&q7{R^8&2oU(ejVN9$r*AZsLUT$KiJ_DKGM41jHXl8 z-q8QhOc>_hT&Grrbab6VB`!!wMqG=+DpQaB4J;xuUx6{n#SUG6#DC6J7T_kNssmL9 zBqEr2#XhnSg}r&V91^6^T=2@b8TAe|HWrhN1j2WTf`t#4fDdvWOALixH>h`ei)K6c%MHvVlNwK?OQ^>LQRa4wva&dkFsY+|U;n zbE#(@z#cj`r@-w%1RTcLLZg5))=HSgnW%BFgFz;mojhfo9EGvogu5V}W|%td1lRB| zHuO!TC)b>ReP50z=%D?Zw>D)eN5YSP7Kl4$H9*nF^dL;EV9vDmA8RXZW~{F_T7BrQ z^+a4d=Kc=x;hP1eac`Mu4}{L)410CFT<(If~#q_>i3MK*@VaVyM3B1c?X6^ zp{WJu1-vY8o{Ch3&Wx>!tnqzEoZGgqZ}15KsoktDyb&+FF?(S0;=1eznAA{lnJ3@R ztM6+%Y12@XrJ}*$9~%bu7>MiLD!xOXZtX!Bek6d}Td7VnAbN$@~ZT>3<0Bks09czJWhi3Puj7q~Y7-ubncnwl}Ql zJ+(C7mV!<&ll0aL1>zIs8$a4G2o81~P96^EXbanb!^%IMHDt-3t)*Gm^?Qb5RKTkQ zl0um|j?|o`skxAla(ASPARnlCkIh-uYjKO{fU`1NA=b5Q9@E*UES)-D~oFDSnt zs+2j#O%?aQ6}rb$g9PF^R3HPYsg@2p8ax0_XKdDJYX!VNHrrIV;fntf2&H6jnIWJd zj4=l^`wJD;m;{V%R)oJzck!`O$U_sxgcN8i_5QkNB)x$VUmfETqTHUT7+etl<0=9eEQn#vOsg<0ad6_BA!J)Z zwzng{37lwfUA1*@(t=Lvg3gotB?@gc9Aj%#gG;0l_Y1?1{Ew$GEJi=AzHFg^UN(P` zfbgl?A21!fc)@~Do+~4z$yQS^J*ymK^P_(8Pv7>kb*Es5$akd6I;@v3laeR-eb28a zJ+&I<$jg5k7Z|0K1S%te)J(?ztKzGlKTA)H^D`0J;+$O9(NaT1`!8+O@?uo0N~7Xb zuT&QRcjOjLl&`o7fBIe?E{)~k7t>jzet2o5CItvyX)>J+!n2QOwr$A~Y`Lgk^ zj4@#!!BOwKQPluv4F&?_J8?JKtqhT3sHq4MS~%AKIHqhCychi=tSKrR z8{G1wi0_u-x1DFMW`OGy&YM$1Clt-e`%-S^(=y{R;LLON5HC1j1kgcMxAch78$Hi| z+cuIvpe#3(DDvfSyzc!h46nP2vi3>eA2pwMgCJL?^qX#b%4>N(GMuxO2(F+ukDIGB zu)&P}s#uoH2WVw6?Gb!C`HHbM*Vs6F3oDRA8U`7j1T5H_p~Jx}xE)KZWt3#%KTDT$IoIr=+aXlMNiYxoCbo z111l)?Xwzx1#Rk6H7zG}Xk=48vk!te<*}tHF3E+Xs;DfEd^V*`2KD{Epol>oKID1m z|B92KDZSFMdhS0?@c4p9V)X_Z6A`%0@(N{loXarAK{JgR0|V|eEvl$$#FcogI{wBz z?2wTZH94!QEHB?Hcf&-ARZm3p<(iU73mzBoxmIb8xqt$QI-xqOuzGC@Q5Zra%QN)Q zYoF2dHb%_XnN_lMLfYs@1&Q1WHcFA!XvoXp{)*@7Zf-@%h^=@2#~S7?%Sw2C$rQlV ztow=B1WXdv@QN4S6je%En=4?p+g~y7(j7*>RjBGY4K{R2v zv_|hQt=s9P@Z?iOuDa%g!z(vkpNF4c$TzpBhGUpadpk(zX0Cdsa;l=2W^$TFn#DOdx!sHSid6C`%G1asXIFLb zO)Zm(c~w%}a({N>FQryUA;a$c;dlhR(UaidaJLqZ$PNix*{@=-)WE)XRMI)HsA%txoY)|jU8Uk}o57##ZW(w~1p}{qT4+aG4cZ2=34Pl)D9O_Uka=%DY!o*`GJ&o+yeWwn-lrjBCANK(X z3Varu-{l(T<8ZA?QGOm5qpfmTe3nf>r4xi1P{NjUt#QTvRuVTX&)L7)5^-@Duh5CR{ETh8~L zBG!BT%@KM%%7YMAfF*)_X<}wEn^)U?ak9Iq%}sr!hDmiLkxyQ!DoH5rnerqF|4RD% zdreSLQCQ@a*yP>LN{!stkg)BJv$j)E&4rdAIwN}txLI`m%_2?)``ojA-+lg*k9{Ai z_SZ;zP(BzE{7zMoqq=(`?l&U5kkXFXfU8_eOFPnfz;4Gkr|YBi{EQgdyGy%Iq_yuC zU60H1DROsmbA!AeUwXnu0x$0V-u?RSFYa&Tn`5;0=`zUM8}_k2_XGEij^tXrdwNfQd?GS`_i@|r4l!?Ek+go+bF;O3hS)POyAMg3SEsK{MsESj+48glrE&b zFl=mklUyePku6g|-hyw<_~-{)+DY4+vzhjw+{#h3a={fA;)z{VFT;b{h}!!@(rLQX z@9j>Z3!$q-5C3iaap%?04GZG+Jvv#OK}bXX4G)P*c^|@@?3r2-_1fhfTV?k+W}7=K zlevRsm5CCD#2(TNGW^lkjB!89O5VN7up0HM5Bmfafey|*>b@F#R)e!ofE4Bfi%zs| zZt!@kmYhac3O0FDEqDzwa{D1WN1!M}?PxDrsMg#{>1wY?9WF+2h0ZWx{f81mA0D37 zpzVt~SJ=**9NFi;8P#UBZ^8;XAx|XA1;&HjM6k1d-@J9ya zjm(c)#a7>HE|kaMR8DaMAX%>jw;>#b#V5&UY)By$ zY`4)2@zd4xN>pCNaP22)Uo>OcwR5-26z_aajDz|^O=WCV_MaonjL&du`hk0mjBCy` zPACC0-b@28+?Y@Fl67c8eA#P33K$=LammK{ig%i?9m2)w;Zn?aX<4CuzvLl@@2mML zHv{mvayKpaE+!jl{rJ^Yh`!u9W^nLW2>H|{wq0zToYDC?eO&85>e$ZY06D3R-)T98o)7g@V?LSrh=O!#gj%+ zCLX}J;ye#!1MlhDtY42;;~O+d?+02SAvfDZ`plg>(l<9p?31H|9}QS9aXwAkwHWS-OR5{Ml_sk+h%$DYN<`vJMrBYe#7%}VaaW+}nL>Y^d z`H7EzGM7`^IvUAYU(T8Q(~|6h9X*-7iCVgX)ypz*Ja*>t6j#P>w8J%bNh-sgpp(Q_ z$q=(<@$_Kobe7t(QOWoMxn=zu_QAeU%1ZnWa#8;^3i4lGHj;ceUMwmvE(B{P;n-Ck zuTcmH+@xZ~lrUtGV5NmT6;qWZe2EEgkVt1|4+Aw_e=GeYdP~d>^j(lPv$F6r(G#14 zc_+Lg5hwuqFS-{kiyaG67#M=AbQ>liH88y;&?bgP>D(}gvMTk4ow$ekt9 zW-U=Z$)#XW%#nU6QLS||`ygz#VGNtW%=fPm!+coOV~LGrV`4S?`~^ophu7T4L%nKa zdCZ)C8sX-m26wc1f48Qm<048nv7LY$+hfb zG@a`=wN0%rlnM;rQmrH9Rrj?D&9ewUQoZ<;wK^HyxZnlL^YJmSwo9Pb2v}tH*R`|L z%SnV=&pB!rTYfMgV(r(T{_c0DZxHXfGz%oNqKJmL25&n3Rw5bCz&IPek zc2}$1PJ2S^?`4hYPSWwX)=LhGWOfUM$XkMJDQ%2iUjMbhXbw$i;sJ8Bqw7_@>}UB; z<thz|uVI$32*OARf+M^BaMgCl7(i~!izYgr>e&NaOihcX z;yPuws+uPgw|@B?7>EuP)!*@Q{0v3xL40@fklT>MhwFK+#su)yVd}Q=9rxNZcTagk zSi-6=(6G+>0tPD(D1^bV{VeV-r}=;+KG7hRf#Z+Y{O9LzF?1IV<=2k0W-_>LK(qGr zj#uX6*&P#iJbCDg#a`L!ozFsQ7_pVi9g1kAm)1K`gxt><-0e+<5;q&aq%Mn#f^xkO zdsnQQy@a)ja`QN&%q3;as6gQEs1osZ?zW)%;Drzr5HNv_y3OS7Bk~lU!^G5t;z+>t z`>tGEES|fr{k!y$0nsDkA*wkc%{j;XWrd*J@(JWW zZgjqne*+X!Ot@em&neGM+$-;iH1lz0ZGQDK8lc5I|JC*s6J!htO{s7U-g`if&MIBy zn7M>!g=X3ltK!iKVi3+W%@ zyy#p)0;bOgFA1vC?Or&C!o06ucW#`S^2Um-t!Ja@Bm+!B+_M>_~ohs^^`Zkjkk26 zT$%&NQre5a78VS?tGH2g+KqPh@~%@cNzbfSO(pw9;!8-vO$mQt!($ssj5B&RoQ$RC zS}@SF^Sl06uZOpwEBU1y{4)->j5`*-adqq@$%Yo!SxdS(q_XfA0x<)QzX_;NU>45% zW_;DsnI5-p(%FC_nP=8;e@2v_n=#9*efku&b#J)Y``>_FXpgNZW}pGIP$3B{gxw24 zsG-0PSg1;AOZqjCNo)D1x~uN(?3puhJ-DpD_YDEeev@Z$d{sN2>6lNB%eR8~X`)S& zj!k7@vQ;vG8(a{EyxOJ7R|F~FK8aTNFGCVzv>XBAU{DQqMG`m5X(1&qxG0ID7fVoE zybrMmGh{tjol!MJvY!5eP5qznbQdW>@a$WRpHr4*o@idTz={?b)%^g`CXU@$W z771@gvzGavCknQ3xlhx-=k2{0uX}3azT}rKX&;u$r8?M45)s{jgQ4O@9M-7zX@8u#ClrB8@yLX99PSM!qqR1LC&iO&Z|; z-~+>%x?UCkldyegP@aI|b=Ifz#lxN`!sBWDj((A@1v_t_Ds=WZh*F^r+J)nBVBxce zfYH8yTXhPsp!uMZY1h@?TxbRQMrOHxEsSm>knA{|!FMJt5sCe<#NG8?UD^TFQ}XWO zrQKC?deD&sU;&C=kcph>Q@T)s*<`c#9V*$6k#gR}rX_)GH;`A1n#^NdiK`VzAO~0@ zp*m0?URo6v?xt3PeQ{C$z&$x~)Bzb%hAU^$A1dx&wi3}asZ~ZP`&F`E?=juSXYp;M zl`Wd(cxo6&=f88@w&_o&cbr~*l1e3~%{5XNqxp{bB>CIFmXi$r#oXS6gA`KpsKq>B zkP5bROTF6Eu5W#)gt~;ch(9S0#a3<|X`Ulowd!4v=1rAz%Ge)2CBn8z8Z4tUOyV8X zGgLS)Up8J(TSb5bcTfn9d` zXK@ZYd6C;U@BsY=`y%#59~6G^p*p*lXavg`+nRSB)j*j_bS8}!T!-qG!M&uhj321) z9;tKs$}G0umu30U~^kC)VHdBRksPe&M6?mYiJ5tYq=z1j*gF${$o zpwN2+DM+1;5V7dzA5&nWKRkjwNki~DGgfAACB8t0b%zQ$Yia3)=Fom)r*aB3LSMsW zP4<&r2k!2?A2HB_O?JX13tqh7g9l9QoPPJsh2j1#xBmo)FOdQc+osxAJQ^3`F8hw< z5-noavLxjav(kT@a*B=H#cuAOA%_Xb?ojdFHxjD{ZuzoL@mzEDKqrlaLT z#M0VrY)q>2#^O;=>ELtBn?b}Hs(R_J1&~Bk3bftOi7t+r)*6I;mwZ>rx1a$r2sX); z83b;mJl398^k9>i+ZnqM zwt|^xA#$Wy{GuL#H1)zx(^yhns zTKO{=a}o&T&?QN&Sz)m{zZyO03s?Nj@?E)-vvMKJCf)nkPWrS28{uV9`@KZB=gdQt^F7xXw>eMR^8DQLgmjHl0!x0}i{L2k6MD>`#qLUsAGwd^yRKrpJJ9 zs>QSyM6E1fiI(Kn_UYU|r?mLb>G7X*O*rr*0k%u%U?QKEx<~S%mqH3r>KL}#b2dyvrv9Gemik#wW9WhMeB1+*Le-POO2N#XOb^|caLzPzC%|D+Ev5Fx0( z)u>j7-hck?ulL49wFk4)dU6Kw8fl-RhlOA`GGik1?`g|G`5|E%T9Sndwo>h+&W26~ zPI0w2;Q??b>nby?n6@~#o2Ul&xeaAyBk|4Zn0jU#hC{9kGz4qUO(xAbMHdI>xg!>q zkSWa(138N=rAp2@Qg0wWWssQr1~KL}P3eXNAu6qEg?73SX`YjkAgB$U?zG_8An^DN zKl6c_oT9W}tYZ}va7*5Pz)so66UsNy9Y?2wPt}Y}i40sJl+xaPKi_UL_D15<^4)~h zU#m<=&NXWqd+04ZHLM*kZcg{2cro1PgbQmFgDtgkwvl+I9ka&F0=G27)1_Fjkn&6$XM+W4SNL8KXZGkEx7_yvPg)-5kRWRY4e**%2 zvjcn?0EnelJhstoAz@k0V+C2)HDUobtMtj-nT+RcrWM&d7($W=f0wK{jlz3a0dK%}2xsPAK}fP-NcC z7EtwIeJ@)P2*)n50Aa zFK9Y~oymjCI7I6K&?63xA2g^BAwmcQ)3o-x2@#;7zX`5To?7NayF1CM`sXW?z6fr# zL9Fe`X=0mNss;T>P;U0nepe(bVKK|Ia=dtg+RClqWgWAe9l4IFuEGO>gdMzze%BPO zuN^kaa@z7IAFfw^RsSO3q!9&?*vM)3n0`{JkIQpvXnY~WWxaMRS|6+T{;87t4Ucio z8fh4)&afc9F6V@yt!i}UE~mXeM^xsHQNinQ`wvqWk(7xMs)F_I1YYqtrOx%Uy|-6Q zrMHU#LLXEBFB?O+)v@RRrDS-j$c`Y?QkjQD47dYb$4W?BNXkDHcM zBdhzso1bka{^jX#ZA=ma6yQiR=@XT@<$f9Yp&M{%<-jpGOu|a?>25!TXhN&8-vdow z|HE>pr0QzEsn(pehnO+m;w+epnk~W{j?brUb zSLy+&jNlPqq_1cdSrmD1=RYMmnaJ*g#~&Wf^tvwDfF_3k+8%Ds+}}jk-koZsv9z<< z%F`?4QA*)mvPvHZ&UN)8u~b|G$|uy|Kub9FUo}`HK^-tq!n^6j^nSB5Co@UaX-rSgsYxg3RwVtNCOX03-ffqP?u0t<(r->Di!e=v6T z!G#ZNPLsz?(KibfU>Y}#Fr=d3i(`uBQhNfEGB^-I7ODIl&9%mt*lSrU7Hm-QuJ&4q zd8{I$tb2X)6#sj5`baLhbXseTwnAUwtEuvLg09D=6Kkbw^ex*Gh-NV9@bRglMF=4& zuD#)_yc&4b->T(OOWz#dft5^gg;KI$@lcXfuv3}^CXOY}0jg%CqS8pVP z{gXyH`Ca$Xy_AnRlPR4c5pgbNHx5#88??0Ng;%3&NL?&gKA>{5>p^#sPvM)Ki9&Hjuq z*BA6Eu4=Wb8P3MB?rE$Ay|4xCl8?~Aj9QeNaDrKg_D~sdHxQ8Z9{-;1UlEdb-MMeB z5Dq;+0eZPLs=0s4;;<1st2-Gqm0t#?4hisr6#jo0ko>@p>W-Mwgv;wp7lPcpBxQvb z7Cg(fIibxqePX^~l+`&VZS5v$IwUGacybhT`Z6Vrb^ zX8PTa&tzeUh%BH#bcx9SW>EUbU*7iSPx<}ppeJYeol{t+cNacC^#D)52u^SV%lIrb zzGLa&J-M$kjrF%fsM;?Y!oe2#{}f=t2K|#ibyIbE>DmFn4iqv_R`2lrzXdb{_#jv; z3I}LgN;va3215VLGv8cJGY;%vFWM(K=$Z1fxG$B11rfAe9pCyv``-8-E9Ud-P4wxg z>$frT@G2F8PFDG3r7{g}nvOU6XwI0Ufm1p}(dBl^z4Z5(S+92tR_Vj+&3f1Qf!}<^ zmE`R4^6LPc?upmD1_4RVqsQ6Mk$Awls3Dagy~M1^>=ER?rcQ0^>BanA~4iYv9(hSA@P}izPiK?|SsRSkd{`Ed=RZ&-l zCy8l{I{#Rm+`8gLJ$u7o(5D}`F11X8@x0?9hrjG5GgHvI2L<_|d#>lKUC2mV9w=Qn zb{F_e=ky*zh4&;gXic8#Ba;7jo8ou?;CkJxxoLYxmy|A9NmTBWe-EpQZ^{`h5%s!e z2MP%TiRRJ{morz^0avB(IXB3_{$*3jwHRj2IOa2Bu@4h^(qr~$3@9c3G#^vyX*khn zzu~iXd7u>X7z}o%P^!D#1frV1z!xwGg(Ls}a9_fRgbn^My1v2V8QlDhXrTh1yVv@x zOx!E8I-lhjF5@?U_h_)uG2ZZ@ECBiUEn%fncta+7uQg@B%RC0ztuIjWLNl3Ivzohh zh;-9wRw2lhhjhe<=qa2t_F5k`ptP9TBZ4K1*!*c}vJx++ ziQg>{ymMLHjK;MgT^g55M@=|Pt@Haj*ocEpx$?)=X!6>?#VzUAT)p-`vJ>x|n&y%4 zTT+}UDyyp^l#6U?cUNCJ3hAh>_e`@~Km zzck-khiII!7p^k4%ltM7qyoKBA?@uJtNGpZ%IrhW{glR`!J5Ot;=cIf@6#q9Y?_C} z!Pr?`vZ?$N0@2;hB<`FeM4(|Zv@lT#JqzaT{VPi_U!`x6w>Mz~{8v1LK_S?~ek6h* z4G8{Q@reo+D4Q0E=VD6@`=fjVW#rXRw|8i z0r3u6GPlMCqxX|N)hXGcw2-u6a#8jwy<*aXC8J6GA=v-Uo)_)YT+u?0IAd-HFf4@lDh9>{oMASv|ALIPlJX+=C1q&-|m#<3M zDmAI>I2mZrp*MMyA&9%mR-~xVJZjJ*S>?ZbHTA{5iejwme%>E+hm-T~46r?=dr!ax zw-52ZZklMaeRVy6rA{WFC+Zn%<5?iVY#FfnVn(T0`N3#liX=c70n^VDawsVbGsy5Q zEEI_p1WKHru@Gb2>pHQZkNlUC@pC7`>> zlr%lI>~o*E9;PU?Y3Xr2T;W~CVYd>RApLLA-@87Pu?Tw;&a&KSp*Cq-S@U(&BfZQD(XGb{V7xJ zcDy@|WsI7#$<+{Nauhc-F^#u`aSrI)Bz2^>u;NfkVV!_eDutcOobd1FHj8srn9rXx z?l8RY@+FU5U`l&;c~C0(JFlUJwdtd4D-cG&(r{+dHdCuhu3lNQC24)z&(j-+c;|yQ3`P5Uk^Big| z-?$F}!M%J^7>PQ4-?7{zUFDV|R{CwncgCu$u`XQiRq#iNvMxbQW?$HwOlgvdYW|VG z%So5i7KUMpvM7|Y`$dapOl=&I;w9~4XVXH90EzX5 z)-&V1F+AKQU_k?T5LqN;QJ#C}=V}!jtps-K>+}X8L;mkj7^H|HyC--AG_iSos>|!H zHu651)l|h|#|Ogx6npUkJlT7atyJx|xO%qluQ(xgKK$^Rg$2x&p5{rBU}GEH*-Obz z9GOtoA$&b|`H+B8IyhV%Owm2El!%jDlLfm6Q5=qysSJ~04K#XWI>Vf_D?`pT#%+pya~kuF7QXp!y) z>FyBe?(T-61nH9Q?(Qy;?(XjH?(_J5-#P27HNU_g^29y++I3AmEf6z)MTuZe2;6Ag zc{3lNFdi^rcy)QH&U29Uy?=GyjDEYFri}YHw%!r}XzI7y>D&4Q4no_lrc!59@jH+Y zdMMZAf=g`Znz#ueZ%+mc+-j3&_V*>BcBznD^V=dTIoQ53c-#ev(F&c;;2ux!{@jFe z!fa~`u67i7oMW`CEnqq!7Oa`1wwaEPhMPHOw%u;r#ck$Is| znq(`yW+|T>oM;2L=<|q9(o{4Ni~YeB%IH8@^a*~)Oug5vS;d^4f^w3J#arKO3tccV7>(vdEA zwF?jbhAyzkGAxLr7KO91&b+66v(~f63=X=F!(G-E5&H~tz4N2O`xzU%T$&?Ak#aRd zs6OxhX6NEBHU`IG?HJcp$i@)=wBmlQ@99&wKJ_kuyAzkx`D$|k{s5@yl4P9k9z>1Xr!J9Enq>*h1ATy z$qPVG=bP(*NRDf{H;HTq3u=WNb#GA0saxAKSfY0EEWXd5BCT(u9oPMg9H?hk^Q;A9 z03F7m#=pE2UoY>77QSmUi!JB~0zqfNjbwC+>pG|;d3PT_x+C^5x{DOplVXZ+cA*(Y zEMff2v>}r#=seGA#XDqNO~XeA)(z4dPS055@g-ebN&$cJ{QM-vrYuS#+@e7WjhPid zRSnf5`iaohw84y=gSY=|%L~mBp4&|(5%?KOzY2Q~wA+;70CCg3T$`{0ap%YNZ- zPr*DrTI3z^j0U*_d_{hbJ55^UlwYbE%+iT>yZ5eD@rpBx^rRm1=DzeU>O$8h4?(YD zDvjxeL4(GVa#)Jra-;i%QQidP2{Uvlz}>sNKZyt&-H{|CnH=b$FB}~QeD%Btt7~Y& zv~4#oQ#snke~p+`7A{)*h!2}20>1e_=PEJzS#Xy&&SW=V&j?`cYp7FFywiDyiXT0J zSGlr2FY0%ydO?(Ta+8a}Y{&K>JrWHOnlLk0%Gb84$Czzq5)`kR!^!j?7)>y#(K$^S zjfz^1l`J`9Em$n9G#oEayS1S&Q?FZiZI9#@CPcLbLYuGPhFBS)rvg3AGD@Ucbp4 zmO~+`9TeYv%{I-Vd$qE~6^U7x0DqZkmptUqxDXwN(tLKu;@Rk|{W$bmiITE<>3x#f zk(K9O2575fhMft4jp?pdvE|}o)k>QNf0saD)cAc`k*6lPEERVHtlDrWJ-p2tOmP7t z66`)1MohJJErk+|s$g(KcGm8N*1VE{4$C$;gk7QVgS8gVzkg*JeD8UW4v&8<)#TPq z|4t4bV$Sg9(Z^fV$q6e~lJS@MRPCO!gR$F(l`<6_%H#{NA2xu#P~ZHR7Dpc9uBFhj z@BBwsHWTo&gUB4d_yX(Fuba7|9}nDD(zM^Skwm~ZSC0G5|8lYa6J;q)9*oTT!;)4(nsOU>vPKGO<>O;zkR5GcsuYF`Ng z=QGwTqe(y@!lUXg993)A*}h_A-xT)F1%;HFhT#T2lY+$h&Ej=CfT;{Jr__bDAQT#QK4v<^1t zEEs(#K_Z>^DFb!wbcQ%bP?*dx%+6QU)-i!PkiB=sMSy?44H=2!b)gIqayixJ`ZupL zO3L?(dc)oTSWqNlH)A!=d~(y!l%bW*GWX%c0FN7z3bi|Q)G^TbEP0P@u|goY_7zeS zCn|(CxYOZ&$MtK-Ta8W&74!#*H2QJDauk8irtE?E%w5YI(u^vAM0X~lw#96J5UM`% zA!{FZD-=H9L2zR1rtSiKBM|-w7x@Mgc-Lx&N@v3pF;f)FRhvAeK4QjZLaK8P<PoS_Y-rf$NigUEp^R2$xq#v&qW6#)MaoF^hl7-(fod@vLOD2+f)=eEecr% z*fdUUy_aruwfx_&KN9uxM)TAsjolN>Lmn#)vwE+W>}{f-rdOlA4je^R6YQAZL!;zg zt7+1y-CbzsN$ws0iHy9}Y9fjl$xdmqNy~j$zG*cxfVpT|F^fLsOS*h&$EDuw8%e=~ zU+HkY0%dVbb{csL7)R8;F8-at7Eq*4S#I*3g<*guol{vUA`xwLcM^$O3&(fKW}z2S zc(OXYQQmx2x{M>7{G<~isfy0IJRHNR5+^t7#IuRJ(TS0~#ydN4b=RuF!}dh_Eu;2NJq~c^nZ5gf07eSryw#sIAx=X;TMAY6L<;xh(nCTZ;ag?AtLn|2 zXis4>XpPi)^C%Iuc@ZeC4-u-Art^N>|LKW{nL@Z_j`AP71`|K)QvM(^`cv91@bD{l z>7u1JRP>XH{v6 zuU5o>asa4L5WDk2rA|BX2I2d8|KVr^iOPzpN;rCgK9+{t3pDSWQQtnD6*UE7%A((e z(~Bw@>886$``7agTy)Q^M}uK@dXXdHcArxy)aFX3pP%nA{1sXr8fp@3Fg)%z9ih(J zUw(Uj_yRb`<={Z~92d)koCEYCq{Fv}YLJZ}u7r+n+?dTzC=B&$Nolq8d@&+92X?Ir z#8@>P+_9qq2in}k38UCecUbtww!7!aj_Ro8x;9?TSUMa-?74kY;1D`r@E3c)o~w_v&HCMdH=xX0A1?%0o%B8c9s1{_I?dqN)M}4_ zyc#vo$UgnZ=2gVZu)p&1>ww}NX#4>ANiH9cBQ1m|e=j~U%P9CjPG@+*NkMo4itR}i)>TBLgs=S~C z9Q)hlVBQ+@O>)lfgqg_zcqZwB&v-z^2tPDT9keXR~+w z;WhiUM5dGxo9040#cwV8tP}?mHl|@z{D1FZJKA0AZZW+BimKOfnSX(Eg0`2%ILTIO zX>@KY>D~Bhb;+G|g))12+trax6@6o6f9+T3{J+VRj{NpQJ7MS@ZJ3O=Re!R`yelY> z)i`**(H4B_I`=b~6c!u}d8nd5j$$v-d3x>`u^F>*@_KS#RGA%YUFo4F3}&|GbfbiH zMUoeUp=h<}hjDf?<7%g+F-%`G?KDT;uFBe|@jyl_U3k^74|eg-HYNNvJRflAb$H42 zt9ipSSf&TU-R7+hhfjXT=WJ!xO+k{IN?N> zmt^pzzKtSiE{>2c9`;X~Lg6P*aC42~G;88Ym(}2>4VG5ad{vEy>1zA*xQ{S~9KJJo zK&bsK5}gdw=3UP%m+^?puKm;1RgGFf-7PT^hxH%3PdD|H{}c=0Otsi7?{qxNd&%pP znNC*ThkPWiExDe&%?5S`R@kGEar~Opi^kY_qiZvauEQmsqwW~vyOp?S`V=V+EQS3k zC|1b$5-3qHs<;bCRZ~$$n;Sb@t7L2nKj=GRv@x-Ex-zHi5iCr&9}Eh9uT&TJ<{f#n zd-dAA1KHkNKAzN0qH3oSV9s|@eGNCBCGi`mtm7bYOo%!gklUNWY00M%)HCcaKf{C- z;l?GPHm+`2tP)>!Z7KiM%q5D@h8aKvi%Fi>{;e&Gt*#v$kl7>faUuK$_<(#?+=?13 zs8!NmUFKp%R$%MXD!zyjSvc+6KJoTcg*jima6UCBg?sn6e(PTKtd&~x6LV@#3CX8- zRL@yL%4Xi=TrR*FhF`%_Vzqav>auHc43~wJy*Oh+s{Wh~)hERBHjr4rI`+b0@4Do! zvw)C5pjZL{6C|5C`%+O)JP=5LCVl+{Wr|G|j$cFZqu|xaV48830n=a+mee!mqh?@Z zWA%4?FTbI#oYbb)n}Udi{)Pxdgav3Q{vd`4;{QP&^FU&hed^?2fUe?o;baO_%T-SK6#eK-l@!syVvzKae z*dCmt5yL1)>!gE=8HlpZYfEvDH1B^-^oQDHai4x}{yVd{2`H^E+?P?1BNn&D`411@ zb}(lam+barLuhD9U_q%J>98PMw5!{& zMU)vUS51tn z!HDV|Y3m1kol}G$+nRdK{F$)3a}D&5sDQ!8=Oag%1?e*2kN{)AZ?;(DbrxsN^S1vu z;c280%3?oq5(HJ=F8<`%B1HW3?e>rYFwU4ql*Dp5En0y7Pm@*HdD; zFHbyFI}yeYd%cx7U@%qX()>o7KL-@t2jL+peBTF;&OUsui`tqup&Z^YqEo!nA16A} zmZMDI5v;DkgD_XSi=0A8qM*?>KMlu8l&0z&nytUif9N;cxgXx{dP@%vREgEj7Q1;IPD?DEB1L{@hB5 zEiu`6r`d;#nY4PId`1+R!Ub047%Y39BAeTw(n)6Q@xg&?Tgo?=VvqF6xcE&4sd?mP z#|yt_(9=KbZ`YP@n=Wpty0KAW-MDu*@^;jkGT@zU1Kz>8;ah;28jynA%6Tkr7mv36 zxgd+%6f4`Mfku>P@f~rC9t{fI;7vgr-Yqq(Hl|2!pDaYZ^vC_yrlzaP6+g-1p+U?@*4qbhPM2zZvDF8Bds0%z+|>!ks2wg8bi`T zEdvIXP?iSZQ{Jn1hS)DMr{$9Wi0;P86o5VdukgrKn z165HEv#qCX$1p-m*Y_iD_`md~$jrI%Kt4mpXwXm#%h3j@JRlIUGm0E)!~->XkIz;o z5O@znA$FftW|Unq1NlI!(8ruUxKv~;B&8|lDEtZ;u@}#v7^`~@3HatJeTP()8wl_^ zyXZi?qpsL&CXc73kIz_^R2_TQ;h_Tf#5{n0;otuq13uDTLxv;z)y7fQoJhMIVtcWt zOS#kYbjPa2$_ax;p1kqYkv7O#7TCVMuE?!B9QH4nmY>s(u__r@Xv*&fcZ_}i@99N! znsCIlR8qedDkvh8T>4dWpLU8;M{<>Hjv5N&o-I^v4P0841CdGkEd@`}G|}Du&+kC5 z6udU0bfeN-Y~jP>)E47u;#EgTW8=KX_dpatL6%5*o4b#CShDv{<5Z^lu!rt8@^UMf z_CU|!Q6x^l<^)zauJ}M)ZB}qC=JKg4(--iGZu!63xQXaePngCmWz$KqPbCU z({K#&!r?SzSp&mvl;FvP27hzkIs5CGhe#Bx+_~3sqY?RSkXkD1$F9ESl)79EY-oA3O`-*gVvIE-tvVV0#VIGVvpe5J|B6Yd@qI~!0;Q~_yKuD)uc#$PD|PNL05Pv}i^tc<_=D4wFuhK-UC7Fy_ccjj9G_i(B zv6ZTZSIIleZ z0>mt)v;NpNlEb-pDfQ8ewh8ssTCbPX~Fl3cUn}9izoXDX`0d>^<_WLv_QJ`x-{-0KHkvQVOFr z18Dt;k4_K!wVR}?DV0toT#_314o~VGD3j$Y({x(bDIEh1b%*F|?ka@lVE!S@Bq2PR zi}G(T$yBB?ub26nDryJvMU3-ao>mE+2+@AY_bHPne`Sj8%q3r8b3Z7MZ9)0v&QRa! z3tLk;co~E6AZk=yc6ov2k$S^G94E$%fVhqH6y(z;QUnL>&16Z{10**F>Sp4P35Y&9 z?6(CKN|(}{T~)a{2HecfmW5A=e6Wzko6&~>{h^m=(8k8RbDWk(6oTx4k%LVrDy!?^ z|2@15y_5VlF+WyRH+A&W*P9Rl-Zl7#4kS&n>Mvvn|om zZk(WXODpw;GsRx}v#QWm(dcqscu>;o?FZfsIhZ~e1iZq#Q@>va>BNM{XMdFjUu7SA@C_|nC_12Sv;>~7V7ZgUmVo26 zmMn>+#r~!i%6?%duS5R~<7EBANW10$jK=^yVjrru!#)r(dh#~g1PBSM${M-j8H~#V z5Uu%sJrw*@JjRc!U4Prqu-(mO?!D!5Z8?!p6XL~C{bWmGSk8Fu_tukYb#=(&@@bU~ z`#RXw`J{G=8`$vO_xy`~h^2`CGR<&g^t9B-{u@9jw{W30isGR{F7Ue|rm7b`pf0b9 zmzQrezO=1X%`3lk9T>)-k$_&Gn;#}`4*Cv$$9R${Mv`r#sx*|s+llLkMof-RmTr2n zen+P4gdJ-g9BRpLFY{^@$oO^Z`{gPXc#-ywI}|9u}4fTZ4gmZTzp68G_%%J!v`s@q?BWfq=V^nvyw zYsaqxe>(?-V^%5YBf4<25dZqGe)h}Nm9qWbi!}B-?^Q_fB=z(~x!=Uf%>@bs>I-I8 zu@`*NQg@@ow|dayWukpd>VbbCb&BkG473|^A*6c;3UkfPYnJh-wefH~tG*x88dEBA z>Ky}aOW2+*;YKHVDH8rWP@{s<e@(UOHO_Wb1aYT6x>htSk9Qsj?C^yf% z<0yjFnX7?>D)y&mE~|M7 zgMO+z<;wWTfFf{J9fsE zSj-hOn&bRV@j!utYK0Q*;iAKB2>YmAq$i^(Cc+dD#b@h&mvN37D65w&uw|VeFK#%f zhW_{LrC97Q#`=k_W76FwysHYyCy}Tz?W7sG01F+jUV0q%4lt`{HPBr2C&dO9RH)3B z0SN7wcu6a&F4Zi28tOKwNeyJaYegm8@`-spNC=)oin$U621K-CS3-6vfOtEWr#wl%K;qCE0A|8<{@AfNhvzLu#z>!NL~9tqX3nC@__=@#4MYZ zv*8Y{itm;LyeTLos2es6a+8_k2al~>k)!8WH-aUH=5A{`w&MY~s}N;;s75r9x_o zogcKBLxVB9k>JOFj+=E=(1emF{`JFBSBym;%h`kLx+55*EAImzi3qF&+u&H;HMJ(3 znuJ}4&SI~vEJR9`q{+4<1x+ zvcl+f^k);>lR++hwW0@!1zVIzeArNmrP#mEd4YKW=~sT=1z4#Ds;@(;jZyrVWn$`W ztJ?uES;zgo)~ckD4UiGy12g$wcWz{b6%lm4so7fh4LN)T&y0~^ogWMbp0K+vG3|uI zk(*p4P#J<{j6Jn7B3Zd84F4e8NXpy*-$TP@Ny-|`M;Uy8(AJ{jW%P+8vh3u)3ImoU zRq#MJkK+2n$nOHa!FjE+Q-u$1wFauWX=5s!fwFVC*bT$BxVOfI2XT)d3xLx4p#9~p zoVAl;Ap=~wh_1DZigjql4NVOx@GpQmMGI4Ki)(>{o_&K$KBt`&<_HJNARi<0Oh4cGQ*u@pnLrBZSB1UhVYJdZuNPJ7Awee{8+~d2 zVK$ytR4aaNt~F1=9-&0_fp-)4A;TypB<02^bo8~#^EwArV|O_1P*TeIY^LSSUQL2< zGAO*#q(;o$6}hx(#$evUL{8sW2N*FQ_Fuhu3E9o8E1TjZw!xS0uuG5szw3q%LZiEW zb-0((K$JV9Z1Me=|Kj^D_NsHeC+l5gg#&5~gfz}P7}I8G1481+3wZsmHMTM4FcPGy z5iL;CBuL9hgLp_@f!k%W@=>41-PuoP?l$Kh*_0J6$;$~Oa__ue4lC#w8 zP*0HP1QRSgl0*N|`LS5MOphF)3C0UX|FxJox5a@ZKm$g$!uoP4J3L?R&a0Vh798ST zm=<$0h~NFq-QDg)l9n1Vj=Unn;#VLR?nxHG z$;0F(FQKWjE*#UiBCnTZbKDxm!3^CuB*?+_#h0Y(yvC0_-xBS7iN0$sEh79AZR3q` zrARUW2{94w#sAL%AWK*e@OYFQ35r|OFdnEV6q-sQtL-N-%s9dIpa9q49>Nu?#7e-E zku`$@wDHP%I?jUKaX4d=r*?6`pLPW#GhPrFpmF?7-Tl20emr^zL;JEJr9`MQLpet2 zY`-atY0OKMHM?Cb@T~_lFF{wxsC;udyyk+QyZ zG`N-Gai>E?dvNs=a3`XaR?)@{wRgnLH+XimIOPbFz1VL~pT@wY)T*a)qx$|H$o^OE z@zdJOs)EzP@o>a$@l)GiFMFfrLN@C`pOY7zE|mx}<+Xzsr=IXR;*c2b+qT`e(uz8m zYIf>64A$!Afcp8!5U`p^chZp$xU0q!exgVdwM9cet3AWv-4iA2dT5~(7#1zv>g9wKYbr6 zF^mPREQ^y1{AIv9uTJfL-pGFV8JJKlSeT%FJ)30hHi_86C-`h^{nY{M4CvatpIcHW z;I9wAV&RjP@9M@t_Cy_baXC3goDwUriwWhH#d_g-=-`&tO-n^KFGt*`At#52p0_#g z^|a~8jTD2{B0`{Dwt&uri|c$v>sa_*eMP~`_IF|$GEaG*q3&PnfroUeo7OIRS2|$s z!9^2_+?w5|fVU*?z}VGS>Vf|FnU_R{wHS*#(3&z`+N=6=|6V}vYgBqQ?T)OUq=;k# zz~2KO+zKs%?R5?kB2#z%->^Ei#f6z;_`F~?S6$@eq|Luqq&=9<_9eyoo$Vdo8LVqS zNiPnFh_o&-PwC+EKPY~KwJ8hIhfFM__3SMo_Sl*Z$F*+}-hkngw8$0B#&w}1_?1yh zioZ)ifzVS)U=U$dPe1qvVwNE~e#pDQ4j>U98WS#=c@F|;`7t{Dq*S$bUGvz`8~~)e zFZf}T7w6s*>JVa19tM}r@TD>CaV>O4N~~Oa5%Z%qx!J4z5zdy04f}+~n2hWw&D%{z zi3HBhI|AzQK1QZ#9=b{L`LTnn<`3$_ww1MKMHv9L|C_%cm}FwKUa9p#!jSf0xBt*M zefd`Vy8D551NHU=Aj8K{g5AC_x!Wl3M!Hxlv$99cH~?P=#-1y^76~M&sU;XAo=3mJ zvuobNMh^xObn!NM{ERI}0OMjEFSR+`K7)Qp1}Olf#_Zf<=Knk^;C(X1-GXQI4vh5E zuV;lUrtL#qk0Q5FSE%x3@dSn9-EgfheD7*w8jkLjjyec%9S6PR_LGT0W#>3z69NeD zKg88BZNb)wX2dVWuLAt0M4*?}OW!UAtX#nffQBdPmfDxy>m{<1*f}r#cXEDIQ+<{^ z$znG1CTL8GH;7LbNXvCQ34{QdYmkp$P|LxH8`3vgy1~7rJ1nnOFBs^b8fJMNr|pm1 zxZZT?S4*n~67Rnax2bTb$J5T;Ol&dDkhrFnbXbi}rI3HQQw2!4x^9w^isKm5Skz}N zW1?CkKN31R@5`Dh^cMTp8=Rs#R;NMUh>g~DdAc-SA5nV^bA^I+WGVR^Q|;?BKC?P9 z^9aeA_w+tL{{h?6f<7K8?fQ~yeU&G?!p4s#godw-Yj3SE%tCPlTOLBGa!?&7W^ky48R|Xc&jDugwQ2 z+4YZ~w>JF(kZzyPQw)MBNr6NMcp?5|&n7q4(%s>-3+=d_&o2^bpirbADGJTWv{2R$oBt2W>TofD~u4Y+8T>MgD5<=;r~uj*xpHL^gFFQAXO0a zl5_9j-7*E1Zs>O~e4>?c$4KeT6hJi?;754>j&#S0N+mBYyetDZHw3kVGd}h^3P`tR ze=7i1hLDS5yf12i9}2_*?d5$^OM29RE3(k>w6(eYJxj1Xcu&Oo`w4wZ#i}?R49K-5 zSa~=yB@xY@9vACeRi~Bn>?%VRpJ(k8i#xpx%dls7SYu_tyFLCc*L$$oI0Ydc?R`YgnyzuN^g4TLdd9+Y8Cqd9VPe%9kW1& zvAO#d8iWST;l_D%bh0-CeyOyr7$6bqML}h`yt!Ss#|F-zn*og$~&cdb^F^0 zAd)ESpY(6`a=IhCTt>KDI+GW%O+9wzh?Ad+9@EQqsA^psZ#Oor`Vj_X5QGp>f5|3* zM_!7LzLuJ#{p6oI(#JfJR^q-V0d90`=1G}q^I7o}h^oCf8+N32DxW@3CRpr%0444a z*sXY8i-N>o_%Z*(HihLS5uFxIMwbtg*ZG2eX|8pAA>l*TnHAN9+ngHaLGWvq|Nb5* zfT&PqF%TEkR#GbCW}1Gv_+ZDbAW28I%Y0DVkdeXkb+`s{$nB=se?YxZv=9gQ7d|3t z__7>+9U-ST*~6L(_D=;2Ds8XB!dPMslq5(3Hs$HhhkI{Ia{~!up*OZwkV@DNAV#E} zZq@dBG#&CkB}Pyn0?iHRhCcuXpSV4Z|3xUW&=PKc(Wa*uq8e6f<(OST8lamz# z7-UepP=AMK(<6myv2o}RjaYc+7dR(_G%$b$4HBLUU213P$?h1!(*3M5KApT|33vFIFj?V&*7+ad%xaFYf~B>(x``Qwd!8w-Y{ zU^hwTBUUl%A(c#wQrak>!nr}f9Q}f^YMss3t~tSkL&h)NsG^zM@W2hZTDs!0a{PQn zkTP}mDP5myv_5=@Ai8r+>9^tj%MsK&U8(2PGS1+GwkR)pmHzs@)#Y@^R8&veCc$%% zjc}nBVU3+O60Q;HrgitoV>J%Bw+0S&4V&fHlmK3&cp^h4K5SO&hxLBB3QcYm1;Z3S zUas!$Gsm0Xi7QD5H&jM7vJf53nma5f$sOiCl-CwrM&tn8fh)g|(~Oq?M88rf^kSws zssW#NQv0^cJzsR%GbyF_0A@sj<45z+3j)I~@rNJ0?Z?nO7O&6aq-S}DYk-gT7ZR`n z)B%>_7AO;<>32lHdFQp`btyqo0J5JR>A$$*7AKwS!Y~Lmq3dYER zK)Au3L}-0WbI}z)7gQw($7k3d{OHgPWA&K37et}X3C|T z4VJdTD$z2Cu*fKQ@@~I!4JNK6et?UUapQ-CmORvnIr2|D0WW~u2X~9AiXy_gjJ>$K@hC2!T^#J@=X*pxm>o(h# z$a@K2E=<+pA0TeF{?zXR7mQ1*bL)o2-d^tgJ8F!aP=nnv;i`>Qmy7ZuBhSxkCy4={ z#HCHW*#|gi-&O1jc|@wh>qo%YO6r#V#aSBjAGqQX|M!qu*m)kAF#0tN+DxiU$eo6G z8)+Ob(oU4r_mr=soU5a)m3glQpIt_5;xk*Is;pXii+rY-hcU!x%H{tSkzfM&{n}QJ zR`!G2TTxJ`0LuXom5itERixOlsK9r<9qhO-j2E9P%D}&xm8$I(NRMc9yA9{=uBh5%d?Y}%d9e{g>5EVt%S-IZ|A+fw z2PUOUCu#$b{RU4?H~Xqt zKzY5_6Sy?OpGokknp&}_prqqdX1N`Tl$M&GdP50g6T#g1M11a*s1_%oQ?39KK=BDm zwV-ydG+;L}kTx>Zop>`a4z zVBZ``pJ%FLa%|J!7M6=Qo8_WM#yJ5l{blHL#n%^S&!+H#97w3b9ah1}HTc@nw3Tmd zbx~}(76E-!qvKJHAaj$u7KHu1YHK~iXH zUyNfdRMUA=xwsN|W+e8#fF_bvw#pS4hVCO5ghmGf>GL!vK)M19E$4(Ih+xq``iay{ z?UE@*C$0osKC>5Q3zv0|29$Gze(!FJlm|Of(><^7ChwT4-OeOOM+V5IpW>M7?X4MV zo+?3L1fQ(Cxlzhml#YRpA39~M=Yx7txD3Im` zCJaO%VJlzG%3Kwi1ckdr2aN?91lYs&*Gq|$aWnW$f6}bF!yTsGzef_VFbF_(xpO_e z*PA@jk(@cqdpmhCzPt`@e?4jFz)P@Y;iI2leFazt67E(4s)iqB(Zf`Xn{0d(EW))! zGVa2W7L&PRXP;br{?gEmXqQ(MDKz9JE0)wq#We&5W09bpl#d)~q+QUJ{+3>#bdiOI z&ipZ>6Hj5?7liczvG+ayHd`7NbE_(xPM`(LuT9~ZH^;_rf33*?=_@Hu&F#_dET8zx zn~LBrQX_6<*|{|P+UpNz9N=jEu_2|*=iEr&S>G#In5!(i|T`4!DH@Hkr`>{`O z2QVLg5CWnKAF7)#u$5sz4Evv02iImo2sLyR;J|Po=0YGub zSAD-G7XS4+PO7NRT`fi}3X~9oa3%Tp{nD;XK|tT;gJKpIib{Qat@69mG!ly#BhX<^yrOJErXQnWDr3K3~n%#Q^wsc zFCCY363r>^VKO*LfW8#l_yv?NckYN>sXhIvtNkgxTn5DH{ox~@`ZlCsm-j8)zeoTs zc*M^$ubNoY?Y$Hj9}!N*OXn2)#$lg-B-*!f7nIn%(aK6iDSEN%YwKo6LcCHITHv4Y z&KP2{PVWBtk!XJ8xSmTDR)F~lTEFQg8Ktp~yf__01>2R+y7kaFoSogHtvji$sBiRD&Wlc<+{4Uhpz(j-qCQgy;vv7BZ8NGMl}Z?w#% zW#%CG@fU(oHv;}Bg(1EDJt2Q38c271C7yj43N$`0uIs#QN8V`b2HE8Ux15lFaFhI8 zR+FhRnhHRST<6tsU5Gu51 z+UrGWP^;{Z%9iaOS*Y3uQizSz?IC=fum%FCaOyK2g||u5Sp~>PZ&U2W4IXxA%|Rcg zmy4H#lMZf^`V(2PK)ex*dahcoW za~^$`hJMkTKkRGmb42fN?|5#mdy)Hmlsz6omKFg1wVEwCbFDVGaJuxFO=36gu}$SM zSQKbylZ;YKTH{sSzaOY9+HLUmlK1^ByQn}Zx^7X9zyH0*AB98*CBvWp+_S^Q?eej~ z8Xwngzh%S>>u9>|)}XVJhaun#8qB+dkHX9#{<3?40#0ko%-FVa^HpKAklkJkAf=m9 zBwVvyMKi;4QFQi=H3x!&OTRhnz1& z*&fMSWd%Si`81*7J6H5*M<#@{Q;0 zOjKY8>)n z-h|i}c5IS>Wz(8fs)ovRmY3h+<5UFwM7_#Him1OhMh5@O)hO_wIgYS72T(tK37;G7Q&|BS4ui)5E|<2Ohex4JsN>jB%B#?C%uhP%Gp5X2 zo$%S}0_y*$lmKG!Y+4?rmk&s$$cy@6<2uDJB7UrqwyHS&gl>7(8v0#2IrtfN`X6@K z8-7iS1n+`5A9;ZN82)gYs-2qC?aDD&*6bvSe5a9{CaQ4WjW3tZ?B8bt$8VwZ%uqj- z>Y2R{XjCb}t=ZXeQg52f%<5vHkJw`P4oaE5q$-;mRD!WO$`D;P?I(Sav`?XuQz?*k z!rvTodSKmsaB}gY{q8(k&#CD)<=&kp{E|O%fVIF<%cttBZZHGuBCBpuUGmkc`pKj- z%|Yn_leee8?c3niDs>^!BQFJ&b`hnvt-DyH(r<=$YpGrn&(^?D$voK8fU2@F`Z3J@ z;$-GJN6aJ5&MkkANQJEfVlt*;S5uHNUwmvb)st;J5D;4f)b}NB6EybIGp!C39I@k; z|1LMF+#BB~VGv^UjUo>MH zOxC=e4}UeTi|MRrtFJVkUU}lqjj?$>?UXpU9miwc_3@=~xO1ZSS#6{i{{U77NZ2pb zEQtPX`{RI)z+5r+W|y;p3gXXAyI{%!VDk?!K<-vMSFY6RivZaa8FUm3`eWCls*;-} zhQA;X9A?-DP_z7#fj`qs0{gS;On|5r4zNPL2h!UMO{B^q5OS>>Yl<>mkQwl5`TrgS zK6@jB0$OS4v?Jcu8E90cRgY;4!=nbUw0HKm0Wg+B?cuHB91y63z`V6&jkUU(Sp3ZP z^A&C`tyQ44GYBrTyPo~46u-5$S?i_0&@&Pad|uwLTy!P z2Nvb8bEr1u1bq?lMufCOx9bQAkEm*xXe+!h5*2OP)~_K%K(BGK@(ZEZIU_RuuPx-n zEb*1r51>E09YyAgnXw%sn`I_fIyPBijh_<{lx(880}OU(R>A!~#mR4CLL`Z)q;RzS z6>Y_H>Ev*IR_b$o4B=L*|4iYS(r1BKv6iqj|JiQMgn1$c@5>K#?^FliNx) z;|SFVt_BKxBMt0#spA{qWtJK#>9*S(xO;QA+WEz~rCtn;$B|HPeXuX^N=IH{l%UK$ z`F$~dZtsIDXZ`8Sz?OAoaJN-b>hNJJ%5nTAD#fy%Z(mlhI-gj`E(_}o)fw^Cu?sIAmF5Xi8(c!l%`D8KR{YiVyTx%XGtNmDx|yjGns z1F0>(hoM$WMjlT%AQD|~k)%^D$?jb#mqMtKcEbh7!Jf=F8}uUx{2%E=CM_g;O*fu@#AU>3dA8>d)G*x zh|Su+CQ{Mowdn96AQOP7VEoN21>hp5(>bqoyof(-D}sDN+y1~nW%bxo2DfqA4rl*p zUyffqMDtOCS!hEB@D74!S5xvCm7*C-P{d!F&&Fw`i`O;_N8yW1m|sjYvL*enN$^$T zD6Iee97y@U4|viyy9;cTathhAe!2F1W#n0{@mugGUBql*`#W0j(#ypLM*>>YobhS8QJHZe~YdDMWFx#ddlQz32n-qIYZas(9a;5d`PY1Iz4;NvZ%5te}aY?c?dzLQLVkYrO z6;BjUW+&3S^@0-i0!h>)%cMES3-O*lh?EYeQr&^#3|UiozV?sWg6lXcC*y+n(_>o@ zzx9;=H<`}&24<+(mNsUFSuR;jJH-Jv5*jTRbuNN+%@+zD_zHoEkA4PnSSr5Qk;&ZIBMmbrLf|6Tc)hli*Uhah1(^PQiqI(=?n3^ zBRN;G!HYLlEb%p1A`mFf*Kx2;tN|2oZ=5Ee@4D_;`mYEbCsXv$0zg0jMS>oY19E@| z6P?cmsBZ8?Gpt3H$5z8)vkwuo9b=!ChXZA1rTM$p7Pry7Qq#6EZt8X8_fg4&wjuEjIjrI zTy%HUu3Br&`OMEYiid2G0aK2@t=@S(pD!1y=30(kB)*hP@ZIge&u$IB53j2dZZGd9N(dXk~FPQvmKe$_XKwa&<;FnR611mhR6|i?+QMhu`R0y1{dNgA#0j>qR z86B`{A{vtoKA9=X_2}u#Khb`*R4Ixr2He8w>tu|;CLz=CzLR%(M_wb^KDu|Efz?ab z(2(#1(0k;(B}|QE14s6yswHdEIp{`}c=&cC5zi>Fm*zL$bBX~2k;F=HG+w6;o0wEQ z9tc11Yv`CCGAK~aDPIjZQ7SK&@=RA>iwaa}ZC>{FZs)foU1#<0FLPt`lHOiEd);KR zJG@_l#mh1p$Qm!N*Gj;I%5y^vZ(cS%5jDE6SN;wWZGW!!_ZfJ{(A_c`Yj$IhLH=<< zLihJod=Uj`RcA8o?diR1Y22%_eJXH=Z&wZaAeP%l-O&pg(BFm15)C~`5WkMAb=o!Z z9x?P0w>CjFHeo4`lJC`-cFLW;`V!0mdv#XcD%Vyz4O8+C)^2w#Hd~`Je*E!2k1>^j z;xk&5Ra_P3lO$5lGKzuXd8IP8Dnbl9vX|WTUce?8>9=M+=rQVr(lnrQQ1=fXP{)Hv zB<6ymylITNp;tqXCb^DB9F1M>0ElVD(6Hx@Znp_c*KRu`{sRxKiLKx#AM%X-2^lqB*wfDgbljs=8xT=K@a9+ZC<)*2R*oCgn6bws+&fZ>DfXC z6R;Oln99g7@1>X(;)Fxf(u?#5r{CiIMuqO|=EbG>;;E}cFpNXtHSiQkW1gd>|9)Jx zWdwn8M}EY^p@vHAIZ4XJ59NY7abh-r!OX45dn%*5!>Ow7!s^;Uq%bQ?)+A;S)HFUq z6dEP%O5(qpSW~*D0^aRjRgiF$%O_sn;r8;rDy=vT{DLav+H%%YBD&lCg3=z{nwN=siD-I z5KNImg$xzYuziLP5-t(cpP^+v|U7=t$4>N}X`6D{@ zw0ty##AXyJn?Qq(zS7*}xEF5Y@9)3Ud0>W^U!skG)lCoaZk?pPF7ySYkM(+2snii( z^EP;F885j!BxN`+cI$ayP+;!>ksJzs9wi4{@iBh<@>5I=y(UMBEZ1+I*6 zx|j_NH(kUAhUuwYVuQ_WfM@bPc~V0PB&591ih496hL7WprkZQG-wYQ#mCbTN%H22| zc^)lVTnu&zxU>zhf}{R}Yc*-cUF9wh*XNtzQuoRtZZc8yq=&D@xu~!Kt`xY>=NZfQ zgzdoo8n7bjq)<}om_*4qP0A2xNdNC@{n~bQpygx?8;Dn6P&`@kVgEHzoFZu9(9Yo( z{6zwZ7;SYn3Xmg5Z@_TAyAW4|g8cR25e!|fopvJb>)%_93T4hO%seeUby#BWRvur% z1>csHq~`eAl~oJ3&I|N2LfPweJ?19eUv zik8{1enuXW2?#vPN1;bSeIC~3+R*e0IY+s7v%m-pMvzmsSbLBZ!O0(@mdK-SZK%a7VQF>l9Ji1O8{hw6Iai6V6TUig-lSosB16+ojr!KTnCko zNb)AH@FUQJmmZx5ux5D^a7ElWx~U?`TORpb9P>?Lr`|3-tKb;|(%|`?eS5EBs|cg7 zV^Q+>Hx{g0U6|h4mQNT1^tVf5#BsuvpkL;&Su_Y=14u^}SVONr#i!i`KYaef;G_EuQB{&=mOCbK1K$MduW&B)i_2 z1qH+m&8!TI;!TyMgf2Y-*iLOmCWw2D|-L zeL8q4qZ#WD+oyits=swGAl6nBf%WuFqm{v|aD}AZu5eh;M&=kFv}o8P<`=+wfXb~7 znS#Rt&hye6620|;yaZZpA+jO+z^67kq`nT=e0WkC7-cCO6*lh}PujNn z3=L`(vRuIqy^rHdR~s3rK05wJA_K3RI%>jt=)h8HZvXL`r<7F2**zChRKn8(=K&4k z4QbKD^vlhQ)#_Rbo~L0a93<*He31>N8Hj1Z@k? zDe1GT!(9x|msg#|z(}orz6z4_*7`nugh(i-QItr6#)Lcl&f)~XeuMD3`P*&#M2)-V z+vxdDg7N&%OT$5wbI}StO)f%5qFPxIZ!W!Zc4(I{4R5cBZ$Qm1=AsyEDDT!GfKElm}If`FQiT zwGr#)cpaN^y01+VH=jBRNjw^mQwR%}m&VFg*i5VZZR5Fh;$434-HrW?5uQ-%F)Lvu zX}Z;J$zbwkHNL6_In_y;n{!7rM0c8Sc>Y)At$aZH%<=n__tawaCo}@J$N}FMdIS@y z&hOIc%&?d0tw4B`9D;+s)BM_W8`Q4@)~$fdHY4TrRXLfmGB&?I9qIfwh0-H*QMY#l z=i6@eNjp&MiQq?FJm=w;l>B4PlWm72y$-f@h29oEhc6Iv4vuURjAZya%uLK16{-}(n-ltr7!^@bbrapU_${sBe;JA&4T9Q?;@s^TUxhzZ6zrSb;P_l?6r9CC~o?atbL=qHy`ZMS;&qWh#%aWlnS@$Izl*EaXE zUz6p{qFpXC_6Ycw`YJkjY{@uBZwb7c@*i}Ownp$Ims~Vf}fF`Z=PNRKls7^0L4r-!p zANoubeBLf%Gf^SrL)_!Q4tWNInftIVx)|s<%kszwyeabe70n`f!<@K1`mFjgyhpqA zzauVm1sNo$^zVzcPzDqTu|94%o~!YrIStKZ5jB9(uH8JWO(Spnz3p841sP~5ny(*U zA2m2O{#%|ZOtRTbK(Y1ZHSlrUDP^3X#nn^yI6{Z0n6p*{jM27;Jh_c;ritaqaP z-5>7d`(0nC;q-Gh@AiQUr1%{%m#Lwn+z1x}yyGt*AXN6*F)flxP

%;8s-FNcQ_ z#SO0DcC^YWO_h96eJElYnI7@>0nf^$RbyO3SQi|Qbr_+FQ?TORP@U5WCzb_(q65sk z@O#DUzlnv8ckGls0?_1{c%254`h2~QO|ckmR1xFD9WE-3-3U?a!ZUiB!!=pdZp#W0 z(S^Ga4yzC8zQZ+#PuP4}*uw?WPPkL75tQ zUTvHAs=wBDcakS?>B{S{+@ST1vD}!-g%skQOV~O@mV3Y92k_6+F;5C=7pVARt3Arf z#KotT%JFKY&Xua+(G~-<-B5Zv!f?m1PNP4a(}UZ6&TBp$eoiafckz0&`kpkuVyChg zTCPXe{`R4M0;@zaecxDn1@B;T#u~)#y zg}$GxLX82vv0a6o5aPl!i;fXq01unIn3_Bo|DCjQ007gbB|_3BQb}^wTX@33VgKJ2 zUYD}ME2|q=KN!J28cKvLN(&-a@tp8atpjNl{kYz&H)q`v*bTh@PullmU3y)m;BVd7 z5S52tyf)Bm-f@DO)<;0X^9)69(?dz|DWiA>*57Riu|PBwXeNodsEW0yin?_woX#4x z7@$b7>CfCXUe z$5J0P(f+lT`*RcgZDENy4Whe{XDoKaz4(y_7Kt)v>@drcEs-64bk%m&gjOhsRM9j~(NRLUf8hm#YRYljT#0|3|@M(;;0Zp<416 zTp|l}^e|2!PKdiiftLINJa-sUO%$-?KjLpqhCQ2fr9u_B>S=@4DKfo(Th)G(*PNxo zk)UZwEz$g0W?8KG74>7&L{X4($>w}oFGNX(VVDlJSs}stK3n>Y9YcoQw#5y%Xd(Ps0Y8` zaQZPR*StWvA`=hrI;iGtQe5@8{6KlJl0OVQ@AS4HP$P$G;eY!cIOz$7?=hyl#yE|6 zcTuIz>O#_%W4)W&0~s6sj05eFlW!1MqfP->a?;^umVV_4Dvy`$b=t_F@U+mS7Ic@3 zNQa9|{u?Soc?C-~fND%Qdf{|;+kqUHflN~M$(~jtu28lGV#K|9YK^zChq1LgXzH50 z?78s+4mCih*IN&-iX`R(XyO3nnI-Ro7f-MU-=u=m=UF>D0ae}4PIY+hJd2M_zu}*o z8^e~N8)%y0>+M=!YIF$Ox_U(L4>mCl&pD|kz#%9PHwPtkeanv6El;Y#W^aO~4vl5% ze3jpz@(GQt(53U7%T*ulXkB7SwS)s*)Q^#!B{NYT zvhhXLu^bvwS=r4c;iWPKFP!H9CH7(Z!sNnd*3p211LRLS5KBZKM??>#Gz3x5svqDV zAAIc|;+va{6JU*(c|ycG{;}TVvNGB)%R2^yS-9a+wUK=F{iT(;D=E)VI!<3^bDQYh z=y)}wKK&Leu&?AeavYVRr_1d*6m-Cwyfq?#2L+-prc z-Obegxc$(tLh~7gw~eBu6m1~9`^Ql5KcI%Lso7SOjUkz6(8^cp@Z7dn8)xvMF$0d% zu5YQP8Xk_pRCoOa?CbS%I6r>XK-LgPGFl(xoZ36JcQ6Ec{Xn-vs7FgbrD#n?M$ z{pX_5(j-Kxfn}BUZ+7=Dl(5nG?fl+eooL$RXMJZpqD4j#NmhEGVOA?KeO+r> zIbl^faom@wF;7@6uliZfYVgcgwn>wzOjQ~(pHK82L@^jWUT1cZi~vTP{FhX(QBgek z-K&ljFcUaQUN*(I-?I~6>*_{hizU=@N^7U5M9>B6v9ko&51c&ew&BocbzQV>Ok~8_{&g(=wg<{oaxBYNreTPc zsv$fAs?RS+N23m`anavDoBa%|%$FY%4+|`s znhN&Mo;!=D@9GE;5em&xE)<&qz2p~xx2kz8bYMPwc4}f9mMl0Sy4=y~;9}=05i=Ij z-2BRKQy(^)cre@qxXsnpUU6vVjgk~A)QE2A+jNVjhiVCvB`BxOa|vC_6ctK-&d}q= zkI8q#vfP=ZA{5ZzPPx_zu5jrgcHImx__v815 zVkQA>w;T?y7<{UWlOqPyd_GMV;4b4BTr3hp^bM92SpZvtH|Xl;9Pxc4&zXbDkwgxb zcku8>Br*CxPFYoAO0-rzx1|>zQNRc4W^i@ZZ7c}pS^KIVVs`KykF3~KX`X}mQbMPQ zT0kGR{p;sTfQi$hfL(AC&Pwr}D9+)d%TGaZ3ns2{|IM6F-hO;@Jb*H=xbMwKl>ajd zqWkf@QGwk)Q!>VD_X;L$*~kzniOus5#sg-i9amfN<9(HBBM1%d32)rXLM{c&jq7?j z%lbdht{t^3S2;lP?@6W-n2s7Qr1aNp^T#P5O-}3?Sl9^{16bjY4i^;%u zZP}(9Y5+$(znug%fXW?>4U^BQ z&;yTOdccHhoV6t^;FJLcYy51u-7^<(T*0w`Fz}T#PQsc^f64)dd|ZmI3A9#P4fuH! z1~ft4aIT%F25^N&?`vU3iYLzmSO8t@)qx_JLF z)h9C!;EICVF*(tePv2=R6RhQ0gny`gE#BL&ILp}hcriIq)E1>^-oZLWHyB)2yF0rcYWBxh+bn}BDE+?4ObdfEcSE^DvP5L9aM?Dj)!?|w=4i_QGN z6(VjVJUr)Jm^bNMJ(DQ2Jgs||=@;wc@qFcXgt~9fmzD_AQG-Q$7N|G}Joj%3WT?r8 z(tdY9Xja#^0f6#u%}J^Ab!OZm6MpCfGW7H?^?0`2iE#tCOwF=GHQY;^y0S9#+Kdf8 zv%)U=%Y7~U2Utz-sdxOvBCl@#a|r-%^c1Lh)gmAzjWwvTCI{AB`Xy3KE4weH0|K^v zxjs%q1Pg*d?c>RfgU6|J&@$Fy3ov5`0aAm~UMP6c)z>~i&nds?f9&J2Q@x`)ngqmX zwN)rs_s`Y_&rt@@6|4dCDVYRjmWpmT;1;#u5Jr526TvkLX;>L5!rkarExs#Tz{8yY zCkDAd5vP-t0@#~t?H<~a#VG5^!!Nzf)c|_}5X5u%Roro;h@b0ltIn;$PB-`p%>A8E zJ8wyvQ~5|YInL8%)_{3WIbTyPeLTm6FI519c#l|!Be@_`cv&sF{|ku>zj?mC0oSdQ zK6s9$T|o7%0`Yy9OCo^OR!QI&7kb7jS&-^_Br(fuF(BK&ah1f8So=-f!Eax93h_uQ zdEXq8Z@0JclQ5FKXIhU)hZTk4mf3SRc(XE-b3UKLW=+zfktf>THG14Mg%5c-Uot^{ z4Fm43{LQlkIr3s?8km?m6SQ>yI6q3|Q9D{>)v^IVh^b@v;W2S?^VkZZ|Iu`&rj(PE zM=w(Lp2|sju%RdVmdGNP?S8x+<(pa_TeW_RKN_=1u17qu{fK#A8$G!X+#xRnzI`Ai zwf15QWD#C0XZ$OWGooI2Kkb%me98o;<6~Ajy@81a9-(8`cWyqO7-CicR3UGg?u4K1 zr$V)4Ix;S`d@dT-BaEd?s&gHcjvfI>$qL-Vue#mAzq6~QER=1_rfqj+S_5**JKm)1 zJu>rNR*v-G5d544xAaz$okM)0t;HVHu?lNz)h^bXr5vOE7&NX7+&Vvr2G5m+d`b z?B}X#cB#Ns70@=ooo#PvOHD3eOE%+y@pm>Jwre#=sZ=f;_8hlY1uFh&;S2&9R>P*w zz4*?PYwU`QHZnzJO*%RrWv!!dSY8SGjV%QNsj~koENVFrI%`&iwzEjSQ7DJ>|Jobb zbDk|^*tXERb1_1%4{O}#sDtgR#&|-?aHv@|dMs?}2rao?ESptq>E0Ypy~nywU=RGW zE4cmZ5#Xf1$k~cuJ%)T zWq6T#ewHxu#svUCwU)HE+m1xQy&VE;ud({bil#FH3u?Vy=&fNb)y=xT zZO!G1G~SbKaDfZlNl9BGn(mOdr|C+gxnHhdfe0Dn*aLNoQ!OoQX9=cJ1|q@Q`nc;@ zW)R?-^c!w>&Eytcbx9CH5ur?LO@v1y+V^}H2&Ro}#S?J&rPXN_E?Io8@Y{I$z)m8X zs8MLYWH%2&$~WV)TLe_jf&_d4IOx(0fa$U(NDdHMPQRRM>3)RuuK*9u%W<%9*pgg{J*!fha| z&mrrH5AyFG75P;p5Q#N;s%^ivi&{sxNFK0nh8g3st-%#;X8Sf#WO~$gvB&+2`>uFz zgQiSnJG>^pr4IRz6mszE*{cKQZIRV~iiNh8-`J;H2%k6EgucOjwE@077cX^v7OXc{ zv2fAAR=Bz<(s(;7x!3;uTzps+BTwLZqX5WOpTqtO999~Kfzk?nRqJY{Cg_VGJRxeBSd%DMw!VM49csS7V zSzsuudYY{9GiMY1oZUp{+AmWf^1A4b!ks>+?o!jIHV`j?k- zYp<2fWmB2YoZG|a9t}$^a)KnBw+bDFP*2$Hn!5EzgMNgfiG8pd95=6%MtH$!G_Mo* z(J`+^S{`}~Lw;W^meMl+ym6)z+}3Huoe>W~x}L_4NB{OTRc{pu?z{c(SD;I9&3jYR zvu$M1fbp8e?YKS$@#RQHyu4FtQS;%`~ zXJf80j}s08q9(uq0nd z8xH?-`?@0`?D3gZnn19izMg|-bM0P1&||uGi=19tqy9{7;~!zS(DSzz!%~}_b5kKd z<%j+b2oxyEc}ee_@pXF!45KC^$?taw5eIm%pvEQO<+L_R_k6Fol(Wqnm+O`&A4EPl zR8H-@AEg(a-oBd6-+11Gi@dgO@N%;KY3Xk1lVGUF#*h91K6zyBQI?F#@xB>wo#ycP%t~?>}HngRcpTGFM<_-wQee#Dg zvp__XcS(}PeBz4&Vht08b#TPS{$^Or&G#)<9Q>`j7hVA-)&hYYY*&|S)vln<*$`{? ztxJ(yuw9G|IcUr=W--la;-P?L{;{Vk!l#MEk^x^0rW-10huC68u`I!qD;|%|l72P{ zsVyaZVs-Hj5shMXP<82nNzRsr`ol80nkv`*&3Q+(cP=)}wF4%>hk31SgCOmMZ5>-w zkv|PJg(W|eJ(IVJ2&&jaLhDCOlWj;}=R6BfC#6gjOYFP^5E^ZSRJgpLGI|(`6Rekf z1UY9I*h-uq&06#k95EbC`_VNyI30(rI(Q>Ie9O1U^yLN8bCiN0WznWj|Ky58)vG!FwY~2MQta( zeI7+8xUqBHiyFStJ>BiX^ZruLf(ygIkaynt23bCbT%wzM>0og?ylE%239!)i#&;dq zS57#kPd@_^-wQCl^-5>UxVc#8e1Kl+Z|tVj45W$4GFM zyn>YVcOz4%IA$%AQP!jsT+=*-*sr!JGtCn-%a2W{K8vr6@hbTQc7 zeHx2j_R`g6+jyc!S|wAbmofh8jd-POU-V4O^4IP!!7?-Q;U%nc7hJqq`2G9%+!-uW zqU*4EPGa=Y?OdR(;mpEHJ%w$ltS+o531Vw<3IdgtpN6jsmgX_k)`w<}JN~It>|5?2 z)q5X2Xrk;fRP{pzbs}b~7KfokPkykNj`@G zoz(-J671uHN6~I?3h*rkVHVUt!yXMO-5Ab<20Onfpxv*hN5?;C{HfXcbdV)y^|cJ6 zN}Z@*wmJX}@qghtql?#Sfj>;nO2Y@^>SvL?+L{?4X?4EbMJ(72J>-=n& zsySE-#W|6FQRoQ`d@b=CKs3CZdN5(Y(p2{qH!{ir;MGsYPmPFyp5iM}iS^8;+(1Oy zdaEy)-OY#tCATxLi3OFWrk|)#LoK~afBcgkps$m0$ln{mZRZ1l6m`TMw>y9XWv@iX z#a!~9HSWL7LIJwvEN{c@`@Q5<07YsI&jub5JK+Df3vo%_4pNql~P+sl^y@7 zIXGp!a;ydx!c)s43nAX(_K-P{fZ@St`rNA6r0DdZxz}*Kw}i|M0^$FPw7_MABi!6C zo^)}qYh`uojohTrdvkKQ9o>Aj?-Y{bT`j^m%<)wK(vV*46R>UPtkiUtoLbuZz^*yv zH>sl|ETJ*U=h$cpLgQZc&4n9}*pfF%hq&W_e-ZdKaB8fnzHRkyzYAKu8NuI6%?ixZ zhdW(Am<~I`*N5+fPHjD*W)SZnFRg_TSnNvZ3ID8Q2wc1}M2)$D1ySj;m;>-hkR4g5 zL6vVJv+?`ea$k^w$eJLKK$*MDM90f+DxSfY%ELHUfv(oT%=zZ(vithmILyIG&pi0g z<$o`)&rfA}yMquQfXa{wYT1pd#i4t`Cqq%k|i7r1_I#6Tb2#{ zTcn;>Z4e0Uo1F51x#LHeC?tELk0(vGUEeu#%&6V#@`LY}FL_5T9*Ir84&4xbfkc4R zgY6xsAgce|_qFTXx#JZH@)OcEacM%P-!xoU$W$IQOez7pzIrEx^zI-*-G~aRq#) zl)+FUE_LpnMm9x`1`(~&o_IN#>5@fQa>vwhz0%h#IVIMmLl3yoCZS%PU<)Wvv`m*7 z=7{J+!k!VP|HS5#B)=p-YXvp~rW?&SAhv@RL^`D*5-0a6nh^DE9Up;7aYg5eCT2Cc zu>eoa?`^)xVe;)-GC1Plgex%xjc}Z{oNcdCSB}NgYcUAZU~M%cT(N}R7vp*nOlm{& z*81EK1|b!`zp=O2%b%&w4m>07n!j|S>?_|e=o^qK;H$b*rIMyMOJAwywB7+`6m)=Y zej}swrePe+S+xGOyT@w#LCUuES!tpte&F3~Eqla-I`qoXRz+owF5Z)Pn+-qRTO=rM zgxhW%R=z@aRRpEy))NIpUcY}k2t>=Wo1$-CF9yQ3Aj4XNgiSrg4Sbn0AfB(M8VJyk zB;424ggD1!%f;V8bKN+m-Fj3hq!`Y$ECUJK;hzR$rcIl!9{%NNEKfb5KNaNBp`c>A zI!W*f1`6BAae0NTV_atcP&vXc_^NYS*q<`|uc2nQ0Qft=U3R%2)k@a8n(1PQ4lK26|gP!{=%ST>~cDJ753?-=ERRBVSKfX#47^Z+_i_;WZT5#SLx_(n_Ye zL^VGzYddd9F!wSc|Wm}U`~8>y~*+q%pqotSK|?N&Ye^1AVW z^Dh);2FccJ{ywXd`@z!VDpPV1NAn!j{9JNp+XPYN96@kIlF(1MmEbO2bY@(?yU*F4*d9Yo__5;M5y#`!t9R zS+wWu{P56WtYepq7F7|))Oo#HRq4;FGhL9~H^4dX*|qMcV|9-3vqY2h>yQ-nar!!7 z6@MD6`9iOcKRj0c^!Uuq(#HAP{dnT@PF2lwvqb1&6UEQc;5qh0Cy7SQqQ~R7e>c)# z_p$A|YlUt58=&iuXuVmwVc{gDus7_B%ju@{+=PTsnCBKGqH1T^^1sz5G^{37jh?vgZsSPwlvE6Zlf0NBJa z*@V40b3(G)H140iC%}GL2%FfsBY#_9b=SOq9(Q~XlCI(UJhP~Y?u@1J41*Y^9P?b0 zby-rTapL2&)Cbh4(4rg&`CSOuSykq=*diJTQ4wEYooO=0cXDI|!E}a|Vkn$=Cj8&I zB0|3a9AuWOsL1N`CYrx{MHyp-R(V7X#2k8={pZ>AuH%>aw>^fU<6(@=& zlYMmDRsac$`Z$UD)PxqeKWCJjpE`BtRwBj$Ry%A7A0$v1;g-|2#HO22g-plsPjmzT zXQa)a@p}3EJP?iUbG*u<#=JY4guA+Ih3@89&j}{n+`OI5ExMOR=qpaBFF6sbsxDU7 zP{}X$;JZQO>>mAxSMN(if%4#d;e-G?a{Jqj-8ULLRN#oM>Ul$psobcOrn{UR#B`bF zSWHvpGP1ao3KQ0dPA)CFnXU%c$l>Jjf%b6ynNx{a*i37N5rBKG5D|%sq0}c0x#~NT zXlP5)%!iLT8D45HdUHkV>o>`*^8A{fR+}Ev9sX%?1NaA_nGJm%>Sn{e+GHl98{H1k z3u8G}!EC=UHCzXzezRkOO{ai6Z<_x*L)e3zfkb+3SKQ~M4a|++ zz543Y7`yZ_%hJ>xf=Wi(-?qB9!;Zl(hT@Y`8?=QaR_F^&QoZ^yuJ?-^hAEF`c~i$~ zWPHv|rMa&XY!R<-g;ne@fi~VFig^ID#il05E$L{VQ)fK3!B{hqUdg+uXISNs)Ec|l z5kG5w6X4e;r;stv+W4`#`-RSPqT2o!_f9Q-+mCLICYm=hb!ghQsG}W(jOR8UZdqve z<~kw;>U^xxfP;Ahj*@5lM*}of@4-rio3fxu>7Gw#^XHS_q)R5h$L2Mm^g2Ta5>B5n z+5N?liQQ{YzI!bQ%xI&u+01u!UOVm@iL!k-N50$RO5Ej2q?U48L-ExfJ#g&1HI~hW z5#`pl?w%q}b|og1wlKdu;bxN^y@<6TZ#s)o&eqS zon}TL2{X%VVsmXVoOHl)cC7Bm6eNT5wv&azk`5+=2!1~R{0~@ku13=nZ{DXjYp~=) z@qn8?jwD8|rY~D5P}|~VgK;a|U8g+F6lWe^2nF@3k?W!T)FE&iUv6PEc~974qO9pjPx0q&>fi0}bg!HcmJ{%C!CJfT(X`h7ds-{)QWq)+ND6hF8652B zXi`veZ7Mc?4*Ia#k!d@x`tmo`yOe6ce|zXwB^4{5V3hy^@F5<}AnEzCs3KBX&JK${ zPapI0+wX;vOHvjNJs9?CX1#wB1Q=XZ#N!jziqM;*>eN zCJtBH^#(9rq-*PwCqq@jQA*;9dxKJF@>TYJEN44uEC15?O>F>FPO6ieO@v3Ho4hkB zY^DYCWq;8(+I2VC&TKhULKj&gCs&Tcc;KJZ9TuAX#a(ZFajX}Gm`=Z)Haw2uA>*o% z*Ia)`^xua4Xx70$=ld8ayn+e~2ZP{S`6CLA@sS$t8%>x0=Hc7J8%Ty~b^JQ-Rpd-SvKj8qdv*l1e0y566m5 zF%ze7Iw9ey;>@--k7>$K90|t_UG95W%X8Dn@Oezo0d-T0cC7~)Y5K_O*~!`H$td5t z_xf`%>Uy%5d_;=tUM?q)j|_^FaWJhMp8eh864g9;e^kP(@==H=c>%-MsJC)@_wl}O zmdk2*x_1@?Qlt5-x`QP0GohAQd%>K)##N|V8K_Lp-@XKA9}=-JpKo8rJ&RfNh8;&M zdq-o^0s?IeQ0HZ_9Y4N7I9kk84fgz#-I{Wx6KqmfbyXfNH=!AHhfio9_Ib@tM2O1{e;9wfo-4vb&k;th0D@~?TD*$QW}gE}+0 zL|BcpUfZdOlNqs4QgOdF5IB_EvQS47AD%6SvgGJ^5`Lhu`|VXT1bz^^ts}d-=XiZm zxk1)N*-seg0KZB1gi`BH=W|o@Z+P@F6s=1~Mgbv@7HeYsKMh?hpnGX%(esGQ>tco+xy zINXlZ_T|*Wht?CsNOogR5>2C3PyOz+M=TWA@|h5ps&$(7%kbS-ioh*~u3I@81kS zEmmsz^wob={AFr!nt)rbaO+73>LC-WLlru zSFG4H*P3Q>S=BX8#`6pI3Yuo6RWFUkE(z?PN5x!nNv}AK97BPOvA!@bt@Be3gjd{a zQz2Z8uKbmzaltn>{l-S0?7Ztcxjh|A+Hj4Ke>#+S?YwY%MKDo>GJ7EXq{aS~(22b@`XcOB1Lz0KSXD8S<_IGc2Xm`f)wY(!1 z3M4Pc9zMo-UhHr$SCyKYY{QX*DbV=tdKJH7!Jb1D`ZVWxI;3`$o!w?#63RxZyPB(% zu6?$WIq}$)rK_!*(Ge~%Kdp&%FBNSQx?a{7iYQEl(4&XoUAucfP+S2G!h!`16-)|A zGj*OtT+?-{go+J$4};-HRx&`2E!-`26Zh`v*w(M@%8P1mQ|17VKU z$1`7pd=W^4-!?BSU|#8dTjc@;3lv{>fl4(ixQoO3w1KH3xv^ctDtlKx?`w5}pJ@V6 z`qjcIwP{bkIeJoR{-lEgMMhs(WE9px>76#It5ZKdCG%`&^Es*Y*?+3Zt#6gn)u=e= zRcp_nlsMq*q1Pb9)8&%U$N+Kl5$IVaCp(aXj_ggfMLEoftnfr(THrWD? zi*&kWLRm0&!WwjTl$SPWUa^T7McG+K6oo}C(&=H5#AtH^IyCvpq(x-GJ*?fj0rM-hh-1uMt)&j-VQ%M+Lv)$rY2Kit zqH)tVB)7VAQKqOH!$5wGwEAABBcnC;pU_@Bw=F+(Ud=-bT>@h2Zw%k{`YRTPWAlZG z8r>7B3)OY{3hcc#Y{zR=J>j^h2~5yiPkD^@l=m@9yiNB@M(m;S6q}G&KcnCUUC|Mf zSY}fEdt=YMZAjnyflhS(vUU5!6#kLBjib}Q2z(IGMJyfedyeS_jZsj1zKXNYJLO)p zy0uCGRA3(qOZ4QQN5XRS5#FJ~%tvjuKR#Cn!@P^A=7R7!vSQ=&k9@eP0l^H&W2Z`Pfe@>*DoeeZ~L@h-J-0So;@Uo;^z_^n9>B z8u?pIH+8mmiD+k;fgyK3?pjCNLjuNg+tc@`Z7MPn3Fu~5ZGQvobS$P^BrjbB=zP2m zzaxl9D9W`*rSLc5MgGVXKi+SUw5{EY;SIR+ON_GGl`sU1ygE+Rs*R^}xbzhcB4BNi z|8{hac5)#)-K5T(eqJ7#auSe@IE>(kidMlU-cHKhGgC|9Sl>C#rc@4BsM@<5AVn#_ z_x;)PRIjeYlzml~I4pa4{oG?EbszU@?slG2B##^Cp~< zJYakUgL(%Dp5>Ie_I8)FTyMb_k^_9=NdoGIKW!QtR05B>FrMHMBCsD8{eQMkpBs?^ z_d<9PaUBRFW+g!cjTqPX7vB&6;ujC)4vhX^UWxzfa;6w1AkCWGMOs z&4vCYDKdUN_5Iw0)iU*O^D{YuDYvw&$|s+xD-Av4AB?omR9_b&1b^_1Yaz+8g0O7uq|6 zDp?L7{|SpS`wni#FT+C~jS)lyhkCr}h0{_L)?zti$^Ky0*w>(7kGTtLE2^_)T5W5VW=CFR+$ za3F4F4~t@_?66@%EI3;Kze z>!40|m{o0|j6tzs9I-*6mFAjs@9X{xwk$wY(C?kRXLm&|I=OrN8O8nNxs>7J**8(U zd9~#-bzEx^Y-_B(-sIM)V(DD=}jjGle000C5HvDoVHqhOH z%Vg21Gzy7KLJ%0j3Bq8+^hT4xgetX$8i_KmqF!%o+}*-);={kr(5d99!-EEBLp&EY z`k&(a3gghq-vWalYFu~iV7jzwL(~Msf*qkip2O~Giy0*Hcd1vuOHBpOw^!06<7%JQ*I}@^lCQI*AMbxKZ0^lK(yP)`7x|pOS2end8xD zeXB9j5m+Pvn=De9>P>jFGNTDMaLG<_g1J}f{%mtR0+9iLk{nkBbH?s3dq;ydMw}-) zJlei+lL@OJmt55j!;k5Tt_hs z01(9sd@*n_0N_mRE%bq2@g`(7*VRNY3Z}xut<2)Z{8hgR>PksYpyTx znkJ(140!X(*_+w8QMSf!?tlo%>sLK3TX9NkDE_l(g;i%=soNCIpO@tHY~K@ioFIP6 zKenf|tuTTK$3D&4|5xIRv}eOceRA*I(3@)^e$Tm?A*=mi+ps)-Yg<|vyjEgkYP0%)vp1w+HqpW=$)T$muPz=xF}7`t)S8)z8O1d^ zgY8W=Cen97QsjVcj^zPy+wS1u4|IZue*iPrfhM%qZd5QN|L!EQ5;;uBi&d|8KGSVUP zwczCdfa#ZCX!vHhAau6tm>&z8U7irTX0w^@GUAV-f5|ZE8NY>05?zNG8vJb9M=b6^JV$pX zcW_kE={tF!t)1EAB-4a9mQ8%&hl5%}cUL}+Jl4A_r_d-Q0D#_zzV*lPR~98LOfsV* zF)YY^|NATUT}->3TV7r#S84TKavm6lgdC=;kQ3(PJR!zECctf=HwPI;HbjnJckSTN z%WFBRwaQ1%{q<4Y^!Yv!wv`~(XAL~sxmav0Mp|aQN0^$RhL_$Y1US!BOHt{0RS@O zXR{O+AOO|q^POpp%kNr!!42^q7D*Vu9&t~0v_hL%rn&FQj2!BmgA)5In!^d&lROrQ z(T3*csmeeL&s7bk&ry~D06J$`4F?>oylB8pj#PdC+p|F`eu4Xh$xaD0gwl|}RcdUd zf8fRJmPA2;sulnsH)?N)3vY-Um)|sm9LRAF=D37#U4ywU0c5(U_U>< zaXm~BKyNe|Q4GZ}3?~|{4?zHiAOwaH1fq~gRPw+QH@65gJwvwU-nu7g3=d+E$P?WH zhl@O-1g;`Fi%+Ff2FRRY!m+VOHrDBSBbS8%LpR(!k|C>kD`pa6WuH(P4J*&?6YDi! zj+%iI_#4+w0s!8>d3Ly?dq|74O1En(R3^iF36qYM z-}I#(Z0>*yUU#51PS`ohD_pX30A~b`?93tw{MjRJO7=aVQy2i?ucCDU?2!O~dVTT! zvUl7W;WOP{VUqZ@`hqH5PMYla5OE)r$WRof$@9BBtmTyPQT7%9fa!tSUZJ|8;Tt_> z?7}ny!IPa5KFj&D!KL1v?zqBd)@X;QmI<5026@wGCW+p;;(M3KSDFzR)nlgnvhw?~ zMo&%>g!pqDL%6P?T-Q*pYXHZY3X=vw%R&II(Pba1cw?5^dridsrueV>vcnG4wxY~3 zW5xNJZ!5HE001{e#6#|%_6BiJ6b40by)qSL8H%#|vXW9wearX;OOPfnnc^G`0Ptoy zCf8>V(56yIR9qo@unsXj6z4b0!F|wFky+N>08dBWYl|lU0E{RmQ|YvNqtS$-I6)8u z1OS4-Fbt6pm_kBm6f%uMqEpF8$8uvBj<1*+$6;D3$OS=wP9-;a#{Z}AX3WHg&;BK% zF`o+?J=Z(jtiN^t$Kle<-eK)c_%rWzky8BQsQGM*YfP-uEI+dsf#4&vRs``yI6?fF zcCAXI#0X+{UfKtV%|T;-X5al|;sP$EZ3mv=Z9W)!xYK|fCHNFq1R`Ms%BQ$ac6qk* zyej#sYXCsIOJAGf@?0>d(b0U0%k$fco-0t_?09>92$ljRu-(Nsi_~?KUBX9-{QLZV z2taHqJisK;4VbZ|gNm6W9}ssMLfMh<0RUiL@`eVc9?A9pDB@`Vz`|>j>ORie@ZLqj^*(f=R>KsM&L2wrU zfIzT6+bM$Q7RGZA=ehZ_9S5jijmlJaxZ-WJMPRxCQ>RGxw?9&DtlV3=PLDP2byRB8 zbCu`Ac{6&PxB~!~BwD;MFkTqgU>r)57bn+eU#Ly5H&~<$Q>dy2&d~sXrvs+*$jnUz zr#kP)eTBMm$p?$S|MANEkU2xtxn0RPjxT&+#-JSa6h>W76dNUU1^*>bNJyJNQX7E4 zu;r}%KaN-j_pcJ?OmPpiIn7Xiz}CKyw!BhPyyX0jtx1nM(99%J*O-hc^^LmYCrk5O znVgUBoL?0hH{UP3Az1+oL5l(-zrA-A0N~1M4p6%wn_{U+*r`K;d8p?MoZ#es%`eJ4&|8H&b=qg4P<+^RGROYx$0~6N^5Tq zBk){hb*{2{f7u-X0E0vc zjW|{HX%lO27&f?Mi#(LE1;H=xy{N1IOZ%ew^3@X;tJ{aksCEiKH z1pXgn>?zUI_N$gqE3|LU`Jz0p8pm*iWM+q*#byt}o$!eFL-}(2%W&GAsGb#0z&tE!RsaB46 z_Z#ivweIra0ItK{=}Va8Rx|6Guy_CfmqJ?>)JzT{9i0C=eb0gFRc|Okag!cX|5^0B z(o_ckkQyogfIJux9*l?>{;XW()nz{4X35W|%8nawO{U_U7L(8Sc(1|4KEh#fuJUTF zzHmSjcbp(TPCq=uJt|h<)hEJ&UuGU}VC@aakXNj_wt2c+~T| zAM-Mw()A38Js|E>dn7B37ldwXqK&Q7v*fBun?6Ty+iD(UDU07q|3yUQ{V!~_KdXyP zuv}$L_it5;8gEOAZ%c{+00;!f2)rh_giUvi;8FT}VsCF|{9`_w4_CY`F%-Kqq7jG; z0AP_sV;tB1TmE*_VMXfeHToPb+0~CdT1fSzBYXkXvu}ud6JQ8R5C$d)18+<7Kg;~5 zMlb8=$SR$*<)1+uw{3~*HW!}RReBlgD&(S<#vKg*c-c?odDShyBnV>Px5pk?Kda$S zHlGOq$Vkr3NY14(ssGmfK4_*Nj36{7gWZb_;);f7B`Zh1HaAi3i9O&Xb1@afCB=@2{xIkLrveL zUQrqia=q?}u;DQx*A_!)hu0lw5;Eo?pn3oRFv4_8@=pV62LLo>NNs|M>Ye1YYJ}*~ zm3Ul)3iyxl1S3ory7tGvIz?2ZeaH_JV0wtKV}v-h@K zuGbgtE4|(R`xBM-uhizf5Hk5;ui?GCoTxX*-Va~fM%%F?H2EI0Np>Ktjx<3C$2(hD z0st84(5!8sL3It0uK)l#LT$*I+60uqe#rZq07RWZwju5N*F#n&2*Nrg?$!1tA^06h z@f}I=w^=72^+|j_Xj1=-YE`3R7Rdnsz#%(}sD4-Ke!Eil8v>CiFq4X~$S_@n)?KRo znMZMTp!%lEkBxPFI$AKVy)3L9h&x8$@7&*&tE$|Zu#Qc(T5@~1AYe=4^UvS;tx#=# z5muvX%jwB5>8XI}lU-uI&H4A9tfQPA*>)?AwT3SAup0I8jW&061i7wYc@vAx1LzP0*Bv*}fFYLhfg7}r;3RJAmxGp0aO^NGSDrmA?j1GgpM_T)Y3yY_Bl}w?mm13sl)WPcBOSqCzX_(ds4$;+v=b2p<(Rb-DTU z6IF$6{dV?#d+flECtH3)V>EALQRxHNp|(A$b;_P7Hh??${alC8=g^?Wd*aIb(&}tk zZLLma#IdFRu@C!34TziHl6$j1n4UN1-dYhj+>zes{x{P*I9BB5!ff_2SQQ!O~y92O+k>yLx#2d1}6v+ohhO-{kg(+rXqqtri2NchB*#wSyCR^1puHz z#VBrE?EQr^Er1NSk4|Y-RZcYj6}~?ns`%)Jc#kJD+KU+#z#f?@J3i1~!!`sxO;(;J zEB`X{_#~IGc^<>!gx)=L-E9R|%C*wYk4cf1K7488vq2Ld^Bo2EKXok)+NjYtMif2M zWi$Zb&Ges*xCsE@%XC}gI~M@(zl>jXSleCkGC-!|Tsd_6?5?Y=dM8d`Cd_0+r#?0&dR*uqZ~d*3X#fDphwpCr zU)%SAOlwx{U~>Dr50+J^(W-i)*dU(c5Um`7-GLKCkxG&(sY;bp-V;~mDeBuua26=V z1L8qs2JNAejQ(&ZCLFt3Q`}PAy(MdJK)jQC`~&$H0ssSsqBv&4aSX=^0B8t_O`*0P z*rDqWKV$ZC2n1y=eQ6MMMJ~k|0ARp0k9d9J(835u5O|F)pG$F~z;qNhYEe0Z#B0Gz z=nFkQI8yo9vC1!3`~OZyI6{i&K(7jhIsa@uW;$AtdbA?di|H`mbJ$#uSo^v!SL@`P z3$Ivmqyb02$v$5RSJG)3r-Spp!M%zt8)-;j@6k`7-JSSGw(HHI%@LRP{YnOHMS-=dq6jaa{Ug zC$G`xG?3vu<%I&(6&lQn5iD?^`ZQ!#!U&TVm1ZhV25~0nP`L`NR~W0*s2Bi%5{A2y zJ;mx9bKO5wkB4ND50;1u~mR8K+ zY7a)=*k8q!(my}=2LPZ`>+fI5F?)XAbzf4ICaq4FR;xP*$v_}zZODlA5lI8$p>`Cc^ibk6Tb4t> z3e!IX01Y7l}LppUAk|}lNlG;+SlUL)?V&!`aeZoC9 zuK!CRX=b!g3*l{^!=MsNDOJhrUZyjH%^sMd+C%6Mkmxn((wYoeb-J`VO;S~_?|J}< z7kR!NJ1LAmFjP&9IJP7IZvVNTp-^(00P(4AB&cySR%NPBl^xS!3IHGg2%Nx@>vx85 zlRBU&q&aSH>?~Oy%by*}9pBLf-c37rs655;8=@j)XByX=<>13|2;;g%@ZDYLyk4jX zngwLbh@;0U(~ec9g>qdN`y@_xjqFYUVv4l%bhXtRR(j0zar%+VwRs;!&+i@ek|xjc zv7*>lgC7F`OuziXgVi#gp=jiSBOM|w(P6aV>YwNQrF!6v^Njz(=`JJZxQ+cfcgGD$ z#tliv&jtHOIz%qYXD(!xs4pjEHaf>7Ew4&=FjCX!sYA92fsw9SzDs8#} z*C;vF;m>h+C34(k_rL-4y#JPDi1nI& zax-IHd?N%dL!HnDEb;!53ODjUHd!>@X$=4%Uv>T8ijQ#u1AtJQqymb22V|Eu-Swrr z(!=ANp6ICjH^OH*)4AIUuj(x`EgLXXsYYC?5np=Xl;Oz~jCKr~=@uEz>%l}m36{)R#2C_@bXVz#4d^zc=bGSZ@ZV}$#9k# zl`;IFM?I(PE;|JPfFbx%&nfLsv1%X8EH)J$XfpG!@tr%}Wh4MVMCE-L{?sSgTW?4* zPy)MLfA6X|ZGroQmEJQgab3<**jWTgNM-#o;&C5Vf43dD(!*Wp;Y~fTPM=?_zMiEx zd8+DjjY%?0xTuqJVTcsPpBu;-f287_t98F8IXz<|ala|ayD7=D`5CelWnzQUfy!y! zBhCB6s8M}i)%DEP6ZU>{jOa>!tfg_i0W4lCe;5pHP8#Ll${$?BU269-qXhr0)JsFK zb}}nf%d%v(Ir7>}S#74Q#x@q~!r;6RK4!j8B+~z4&N|1|yxV<#4+sSLb49Z~LstdG z5A{jgK!we?O$M+>%yfO_T+Oe}^gwq;Sf^AVq)MC9$pJKk{B+=ig`UHI%02sU`8~pV zCRe7B?kc{%tN3~#$9au^(j=F#o(RySAy#K@78}$XbI)xlxH88h+L>mZEv#Cn$dq@> z?pv={t-ikHmC$KRd`9%_SO*$Seod9WDX!5Wxk6W$EWQr_Sl~Y1huJ)1Hl<{02vJp< zGzN3BA6;Tg@!`W&R{#K1n6f@-Ny}tRWSI1J=o4?H|C}bz2LRv%zOVdjm9GA+(8s&< zn9r8mleohW^hNBV{?FRm00NK`EzpS;nBcIyRDJ8Z_)im|?=mGS9pNtU{OWk+hjsdV zM_Pc@#2qJyjd{nqdFxq<^0AJsMkObjc}A;2^#FieWo4PRzP+8kN3rUIM-pemyfpE{ zBa+P&8W{j!)SG4tpE#xYtKopD%;m=wTg@h2YGujLHNQE|-h*db*@$CRTKlWYL<`-( z5QfmSbT=7t74uEj;tpL!1=ggY*TJI<0Lxv zuvtB%HbVfy^uQgwjYedHatlu2vHYMF-m_ZXRg)h?vAXKz)bENkmCe~zVT)c^6OMkL z|M$7t+W-JxrrYZwD?AuZ?bhw^Yr!kl-uXoRz>y|doOZk_d8X^=&WI3>=Gs*Ya)s~c zo)aCi78P2V)SwRMxm(^JAOLx@61-XQ*^0BJ>N^@#j1w5#v4lSYk*B-9bz8E_7UF)f zF1;h!b<0tzZ5vta*ulEFfw+H>eIQR&6~^^+r3-qqF+vjqEI&B=R$=%^GkfkW9p&8u z22XatJb69d1KCg_g+n{<|8*QI%g&Y8V} zd#GeSl`+o6H{Q`JUgY7$7C=M2a1ddH$nT$|=Uz+MdqZry_J69ZY{`{P-^MMDcks0* zakt*$-cPWn#s56`O)cRMHUIg0A0RYdn8pfcA6jO!2GfB?jonJ0D@Uk3oVGI(qK$35f`Yt3>F z3gJ#xqhcz;hPz6y_>L0n6->ddyU-m**%e000kP{oL#^ zqt3k6jpaVck;aYX`z`Ps>CfsGWqf(^M=k%H%3R*IeIUp`$_oq@WXkNHNx_>f;8ExU zr3MHdxp;R42=_c3^=c$ zK?#|$^52S2R{CzVZ?QZIUeg?DT@d{#&WYQKkGA0AUCf5*@^U*?&f0)+o$C?x8h+2e z)WF&S099J~d-o6hU3&BFh&d6~M24_P4*u-XmQhxQEyTV1=5_#pwp~U5KE?cmYQRis z@{*pbbR&*dXeAX|$8(pMAwP76J87?E^1flJZApnu7C^}ko^@b!PfbH>w&zwn4 z@f@;6EQL*C3>So6m!voRInil&=f~fdRoJU49H^`Xo^k!5_0#1Qzvf+N^JR{rdU^71 zOMON@A2gBL>l;euNApKL$NXM+x|>C}-!Wl#pl77Vjrq#TUU*uZAbu@4$tKh1x+nI~ zB@(7ZfkA{!sr@bPBb~el5^*20xc6_2aPodFYW(1kJ&_u;|CVOj>n(dee0031w{!R4 zIHA%S*i0%sWZE|eBd*(5_CJ-WzP;j`$|T-X`i24Tu9^@GL7&DfTzuu%GL7wmVAVRs z=7P)51x>QcQiPbBvF>h`viP}xM_PuWb`AuB{}}#uN59tSB^T=MRO;#l z6wWxuVJ`$eN=K}AAYAJ=uht+H8|1TGMz`M|XoFN~sl94rneRwSKiH@-;^;eR2QhQ{ zia0@RFG{{rm-|WdLOX6x*-qS7`c6a%d|S~uoBae}2#yy7wEvO{lMT43ebtm`>U!;& zf6O~J#xYDtVfRGg;~utXNr2g^v)P+4U}#1UxXO$eSj2tE;@)2o%6ED-YQh+2pF#6P z+w<=lx}9_>#=&hvcDXq@qAna0Uja|k2T;L1;g>rcb-3WD~C;|P8b&W$b=|&5zpq* zYIJ!rW2L!q20d8uff|)qp7y*Gut>D`qUNr;wz)fn>@B&q#y`m})E<|4zpu{&NSg-&#B!nWMk~BmK<57mDlR+BW1xR z)A}S0R(t%Of2l~-89Oaeiyuq=?Ww@=tNoLD&05jnf@Zbfhr*f^h=`boxF}uiSkf;V@TjFlQu^PRs*IGi484s3UU+p)=hI4lzl`^d> z7r*z&cL0F!k%9iv7O~O+K?YMLRVEy>Z&;HQbf{2-rdNpdoTq~=EL8JWm;{0C@C2v1gf2LNbv#$9Lb?m2gF=7^A|=8kmacWwGfksel~(y@*!o4)a6 zMy>Gu=}h&;YF#T=7BwoB8|`T&87ApT<1wOz({}KAr7EBnSg{j$FU=+BXf{oz-dLuBMHo&JUv_l=ckWgrn6uS#P$- z$?AKy5qIARkM`1#X_p!Y#})4^w6GjvAlPy5)R)`6%yBNhU_b%G{}aSrX3!R^q$Mg@ ziAq|ek`yQlTisQOLg?zTRw)kg0w-HdVZ(!jJ5)~Nic0Go>M^HUGilMKTDW7%%QuP zFIUe_Jbpd9qF&x=sFWz*-F$NEn~N=9LUc&NocP<{Udp8Rh)hHifzB(h&nvIr^zSt< zXa3aq;8`O>T^($+f#C%4*^aX~Ze|3~8`0kmUq605`|TBzge^1_id!Nh5;i9>8|WSJ^Hwkgw|6h4odBoq0~Hc_Iz~z+^N50BTFcO+U%&l|q+h zgVWiaR}XGHHUGJ3v(`>@aOI!dom`$*?HB3!>^I9TzdF|M>7W)h+TG$VpfX|xTIwaV z|5=?a9Yl=!N{ymQtEki{%GB}(vRqA@T8jf?Tyar$nX@6(H_OKPOv&K7wrbYgLzJ0_xsSUUiK+RpM_S|j`I z@b#8^2zEzBz5MB~_dWH{s3&G6wE5{u-Cr8i#(51ROfqAY%ve>VzI|VQYMJ-9RK!O2 z!g0>Q-68JPI(g>@s7(4xwYeii{$214TZwz0$k7CHocoEM$pAvNPEnz?1Cb-c$O^wv zef~HG9Q```q;2Q!EWVyDulO={QO~)}^fqxfyYlXn9r=5*!pFfx06^}YA^^a;r1x4) zhoS46J}(V?@weNbcm_8z&W!7M2Ay&DmxuR!b2M>A%>64lu@l1I{Oeg7(+Wdi|EGh= zH6?a$mx*ox15RtgG;oM}iAuUP?{=j|(eO`$8o|Ivl8fK#(Gvo>gC`rYS!}jG>5_=X z{32oYSiAb3`MQ~RFR83ov?T60PTb8aj}3H3;CADA$M3g9sX2WsmqsN!@mcO7o_$F? zmE1Q16a)c&Ig}h1>=EVf+S*9rPJ$>XVd7I<34jv>jsu(^FcV=waU({c76v*=4CS{Z z|BP{5Zrkm}2)dP2M1yv*+kUD#!-%89g+4Yf=X!|o522S~FLV1t9MJFyO%lBGjza>N8M5RsMl)#%DDG({OI1fRXT~XBmeH8 znF+!L&Tm9dOmwt!IQ|LY%0keN(_sCP!U#+ojPj;+}@7IZQ1XMe3DD&Co zy)wAWR#GRQ?KpSf^8IjMmoJ~0-9{*;lLV7DGD~;1Fz36AcnM*iGZI7FP+q$e_YI53 zCxqG9i*THHXkSlroU`ugCxbc8~N z5eh^i!3YAu5P%>EdOK}LgCou6gy*fOGLt4%R=lt5sva|Sbd18JRhTp!gmL9i*RG{C zrH#ATWjU1wZCgX;xxcSv-pK#>&@1i%mX4DBT&n~lh%=RW_AS$q&Kg(>?v2Yf01Oyv zgDZm8WP0q#z8s0T*ND3lo#n~mm#Jl7fWw{1eK~U6Y_Bl8@6JdK+DXTLHR2cm00O{+ z#g7oUL6jd+(XxEP~&Tkn8+6mL!wBg|`$8PO9)5zT`>g5#|<^No~9~N$4 zg5eG?yl7&K?IU5QvFT(I^1&0+C&dMteQFk|i@-_-!etbxAAE$%~J<^uvaf#0x)#eJq* zlpBNJ=a2Jy{v{n|v`e*oopmx-S@T}xT>DNgy-wU=GsK+=lczXGn?0WLfG`DftP8zL z6bAXTT;5IJ)yXk3qozEqQdX-VQ%Mvm#hkeXH|k9oiYdgZhHp#;G;v0ZxKdhKSgTVv z$Me;c)W1CW+EgOo_;@fmAO$@Vzarj&o#Qm*HXL2NBb4`yM zF^oa(kqIeYnad%7*eISxkVVXPu9+CqQwoO z=1srW%hjtt-}C(o^O~&Y9a-GTB!tJJuV0i@FISzp-O4DCl3TI-!<~QqZ)rEVd+&ov zCQTl0sZd~zF26>f@4<)=Qavo_s170Aamn>NnIwK7+jfNw2tW>0md)zg?wzuzqZO$H zAchNlpsoz+HhV}8W&9lwNR^cHt~m$VzeNU*m1Wz#%(>nX19Vg}STA{Wv>@kT zo*5xFj38DWKR|_%pQc)xRfHe_isL36~Hp5s;HOq+4O`EujSK+x8&1*pS@R9)k@J{tus9L?LR-fI6o%9 z4RmaAZ*szU>5-%hDFrCjY5*R@=Es-j4_0P#Uw-Oj)%O4pFhpAH^|>3P*=evy zeLGWrj!kw*aCn4{a9VJ8kq0CEVXu!#P`4bqL^O`g#C=q!`sGI}Q-KA3GN4ljs!o|4 z+<$y)htLVmcTaV+0aINgyqFGs{w%-cU$A>%+Z{>Cs%x8nO9jsumrTkq!n>GjKIzyBrW=H;>y06@^D@2oBJ%L&sS z4i4}97`uCf_YP)wglvc!=gI1gO;QggZ||h#$I7z4NW0KrdN;Se!tY5c?@20u$+|{{ zk!Ydo7#H6pXTLCkGi2|swac=kOUnX={V!%R3AQCx&xm4WH8Mv5i$SH3kSo9Wf))qBEFY{_)>!Z!Pw8;&;T*1e`{9d`CWeY?R;ml(rtRH?m6VWNJq~ z3k*8o1bVUdkA`^;C(s<_l_uhzqr7~$;?oBV{?1C@jZJ4E5NVWXSvOfb0Kl2f&5&2v zLJlBgoKuJDy=k)YGK~}f5HGZZxZ8q$5`xkvKnd*clAC-AQ%GewP+2Szjf#*cFo^<_ z`k~+dxo#782taH6lluHYDzvhH%kT9>$@!|<$FKddZRBd9J-B;s6L+)5^_~+o_hhzp zT%p3`AdZ_4%W1SIR7kPU&MX8$BWA@8pAxzGoxOX$Ix=hZ1Uie>Icx9Fp{d8qa}@Sg z^oQ|{rAQ1UzpdCQ-pxsTwPKA zuI-6CL4cAP>7XR;<=PBA*1YlSMDuH!_%75ohpvhZrLq?8>=1xk8s=?AG~eTFb*2p` zKI}ET6Cd{@754xDA{yJ9)l*hd7K!$sCGI2$DOS~gS$5(-^1K8f=3n}8a6e<2M)LH{ zKmQ!HhTiS$1iek%adS~JJ;!2Ojyo(8eXakL8Ln}*)mnqMOl3h$lP+Z2s-%#f{A`K9 znRn#(bC0|<)4oKoH}Q9&omZS98gsfw@W6fFY_PbG_wqfz#A|cfozHJH2dBS(^@0(z zz3Gb;7CEnvarPMy#NC6*+YmLb4~2#(FtR2%aiLG-XQ}7^DZX#XC?wHq4whsbEXjZ& zC`#Zu%_De*XNW7qM)5KNfUUV*M8-SNn7@u**!_jgn%Rl3Y&_hf^{F$OK*vrIO%`_m zK$wrS`85)Xfx(DsU0yI}Yy@vI38umTX`8cE1nYrC&u*v^j;tl|KCTQaEs{7hOq3Sz?2IMMh zKFc`ve$>2yM%;VX;?8`qWEWD|KMs4+i)p(Wv`(X+{`fd1w+l1d!!OP_{Og&{k1_V+ z3^)Z!vEB17EgRqo>TP4&6a-ls7TrYLQ5>&SDZ6tUYNJIX_-JRJ?fqL6l0%_A6FO>T zU|fIb6?`h=^MqNC_(i{S=VXrDQkyhR5DmUGpQfIR7P?ON2(f{|U#coBP>MS_Ae8U) z+n9%47TmkCk2%tO6C56HzoetT=bDII2gx?Gp5FzJA04(HX@)hB>$&p1Nvl?(J{WFIk&eHdRuUDyeE<@DF)~&+!hkFuu0)q)XF1 zg1=0hZLhdk2m+g5UxdKjN@r7ABlC3PcOekck*f@+nFTWGl!P#^Yw4||>*Inw+(o=W zIaT|z%nyJ;oH0!%b{0v{b2qR)WXfG>v4yr<7=qu4d?>EdoJtMy?EruT%ZR&e!x5j# z1pjR;_Zzjh^tRZb8sfWy1_U6KCLI6+in!xuiF=P-4u)U=z*LvmXuePXX*nHg>YrVz zR;T{AG}FFit_X2UcY?q zgn(|5QP#FK!#G#Jens2^xuQ2?CXI3S>Hlr*%@*vL_}G@*Ti>K#vMp(@5yy^}WgRWc za%XZE`bI7Ei8Sl$(vi8H1j8T3O@G8Us)rsB0??v&|8y2`lA`@4#RW$ByIC^&R@BRX zK5!KPkY7>%VUX&T3JuModtW}UvWLNq^wr<>%Z42}r<@o?nX{_b}}xA&%aF9Gnag--(j$S{>j60k^urvC{*6sd2sNJ17# zKqqk_(6f`^7{{QUqn~^y^+1-Q!*ovLoPsxm&FFFy|72x)!!%)`p9}y%kJ)0Y5>Wo@ z7Iy%^T#uNY#n%f|wGDrgVI+v-;zZ-H$uy|1^P;FsdfVcjn?Qj{Gu@*GeIp_OqLZj@ z41R*p$CqsfdA;5y?q(AYQQ)4s4V=I|nId0Sj~g}=64m8@Zb_03juHgecOmU&R@o2U#-C-_0+m5P$XT92+(S`WtkZ@{Z(CbG6_Gxv^SqtZsSC z{<3!-bUB1c;ZwqGGwmf!Ey?X>a!cvj*LsOR|6xcqGreryuI*@8^Dd zW4A%qI5s`9e%2EoKGMnY2CP52%KVghRcF^5b7gRz2uc{}Z)3F3HGnG`Soa*j6}dCH z9f_3p4oEP(B4GIQ;iK7P>OgGwK(6S})W_eydwO3{T6fC92;xL}&WZAzXrb$>p!jJX z!3YFz&%4upBy?qPwvKzW7hH)bB*b8Bv>jB56~7!x-hA{%bfBBr?05hGjKFVYwcWre ztCg+#boVQZ$Ink{rBm6FGE95o4gk1%zv$%6oHoU-_;}ZQtENsI7C4~CjZFDDl(3Yo z;smBLiB+b?RpRcFS0D5F&V?S-6E~LN;G5uJyA({BMw0$O6@Ivb<;2~VnZ=1dMBD)Y zV6c^)$KWyW^E4ih0 zlj4KS@qXNd;W&;@hzs;^;`KA)PM9$^_nf$d5jTZ!EOnj4FY&`x}lt2ut;4J6fIwQimFBxR!+u^#28n6#4hJTRK~lRio>cZD^^_2*IF;KUS#q zul;mHrfMAD>SgNB{yh8Tx`$vGA_$-}m}pcI3_*2L)qxB5O(>R{SJ_Ev`DOJVJw3C3 z5qGn$GUOiH`hfrxCkU|c;IE(h|mRbFXMpiP4x$VZVRhQZ&Z<=dUu?yuc(kdJi|K z%Ghwx39bQsLfrj14*!dtJbECwvs;LVyuy9i!Y8lnuhrQ>+o4*k{5-9#zS|gQpN*pz z^je-s#9Z>!D1XbZsC#V_gp)>>nZ?Xw(yCL<`T?= zd560Ha`U4GW{;Y%AJ%On@Kz?1;NgBgBmrcv0NkX=l}|g zIMLZo47L-U<-*{&GB|Ebt}BD<%H&umsMo&0?%c2woi)PAd#sCZlCz&3UGr-->IDaP zZ=E?m%F(&k+H{1I7mG|)n+&~nMJ|Q5E_}>m0mC}-xEQ#I5V#zg^7zwN_oqs#>|XdB zuduHYXZL2MnKeuN_Ua>@h($^i8neWG>zj+$e7>iFzc%`J5|&DcKoIE2L;?Xw#ADJa z%ivge+3CLw_W1TAB8~3%#GZ38hF&tF(>ddAv3LHZr5u+G{yb*))U< zhR`pOrKn1kc1!jMBdv*Sv2abw07DuXiq;Ssae zObm$e?(%Z|%Hpoa(DzeL_sOM=I99Han`QPaGS!pC^JMWom^^Pb--j*qVGFu+Bygm& zVuWt@B$bvk7$3GU#=&j4$YZ$3qvu>Zq&n@RhxU9oX~t*|@7}3fGK`FK@jF_U)eF~x zA?Q)Rn3p4x20 z!Cl0Q@N;PpnYo-=xc;YqyF8IbA$_oV`h?g3dp%Sq9J;(tZga6X-q|9AAOMErwyNWs zDVa&)hj99@*Kd=2I}AZ_)>z!-))RL>wg?QNzhXzxweFlQqOq5FCk~q0_~DiLn-AaE zcH|ZS;O{eLT#n0XWdMNBo}0b!wXG+Ac&h39q$hvuTZhF&e8; zW7}?Q+qN3pwv&HsH8vXCwr%r0@67#{WF~XZ`C;$9*0Z7yqb8bOTGUQS0RT%guV4fM+dAMVUqHE3@G|DPxYZTJd$79 zvm2`N$#Lsdr>xzW;+@bmjx0}zOjsroOQ~j(RoL)WD0p!S`NjwnsiF6{n8Wm1JM9k6 z+^OllbIU1gDU5hgkqB+$(K-Xwl^Cp!4fDks2;b7 zuX=*PlxVi#+vbMS+O2Ij3a>+gR*zpr3R`a(T=Zr_JwYapnK%Fvp2p?&QabExEjl6~ z6m2&O>Hx&Sg-|vWDFf<8ko*Nz>OuiV>lI?D^gah@64ighU)=dKQ zp`{(uXFSNJYFHVLN2%U$-_hzkT0Fa36&1|0S$529cX}^}q~w#7%bfar%*B*&Fwjaf zoMb(98T=@&RxUOp^DqIH4Wd34+Cg}dAN9}4H74x@KPcJe1hmmT1GahLp( zamo0c0yr+5Edaf+hGMi#amaO6z)OsQ*AYxtJ-^z%h#4WUCFHuhebP?+Qk4A7a6Y>I z>KG)btpKw{nRRt;YG*S<*PAbY|0`mb1FUC?k{vh9bL^WgmuJU8ZjDZ@TuAXvwGTSh zNh?dItn;JQ%pT$GX;hMwi<)D9jiN;LWM%7QB_vBiXfh_TA4a62b|vpv(Lka>&Oyn3 z#8&xIj&XdT_Hry2lbLXK+XXT5yU8vdTkvD5&K3?xAYAfwKiM15&TfTg?=r^)dL*Zy zxV1~kpTT?AM~4IRD70TOO21XpbN?Iq@WB@NKmDPMTs)eMty;y03Cn*i?u|L^3>?^f z>Z*<<-5fKYYenvO456(Kg5FxA!XGgl)91w5Le703k5&qo50`h#J%TGr+er)6!nwg< zvN>_Y#Vfb7EtQ`fM;GBm%U1Nx?jtZ2KcCqi!?C(BNXC#-H`neKW=OiTy{+Dy3;?w% z<|apqqrubzdo%x-{tOrhI1SA1(g_LvaFTAG+S^rqv{>(94b_V_h#1V8QCGVS77J=l^DS|D*rjc0ChSy-TSw2(Sym zs;H8`w5h&Cf6LwObPG{<0++ke@9DqsHB%HD1^Tm2$F>9lXt7VW$J>CETWLw6TsFyJ zEOEiMKlGOKZ1ETduChDsXXWvqxS&VBwE zi9?wRiO#=ITU3qh6N+r#$Xjsxy?*sxw|QvDh$pB1rX$`hi%lR>5U02DY-cHW5Q#)F zL4aXuP-mP*mG6O6nZoHO6*ykXsk~X0cNM%na{XUq z;9oo^c5B-gv-eTEjC6(tMKsqMRJUXaGu4j>!N1BUD`5pS#h)uER(5`{;{3zUo=?LF zDWOgF5S6UCJQ?290JZ#Y%V8CfG8YCpu{7d0kN|Rjv=Qaixlb?DBI5bQ9^VM)96n`t%7caG-m=gAAq4L=S-h#+_|LdUDn%O zSW^<|2fg5a`td$*-^^Hg@8#N3GCYZ{cFwl~wIx&_%IrdRU7Yi!<4xav@qyaTyfszy zSF{CJ1AM@CQaPm8D;A1VL>wQA|HP7n|GqG~nsUXXWW&+7AVLlXa+is9VmMhWmO<@k z#%3Xl#=sx~+No;aA~A1<*|JEQC!msM)+c{^9p}O7s?BAp$)TBgVett;xN^xA2EfcC zE-qqsftJ?t&8M{=lb~cFxH|_~n41hN%@Vud3Yd5>;`bnr(~-}hf}~+apyZh0{Vp@U0W!=h*`FEa z{zrd~;_}4K$vu)=q_~#pjS^@O=sp{_jWa5j1IW5|y=+$DmvR!os%c8oJ6#R;)AVtV zuz(C608o`kOk(O0vRZrg?xcDP*{;Zi^y6x82ftWgPvImM5*|q3QLpZ>Rom$lCd2L| z`lAS>=u{lMMFQNpj+KDA$u3~mK*Q_AD&))2xZ=O*D6-NiFqnVbYO605CTihc%b?u> zRN>gn4k4jM|L6quEsb2itI9+>ZuXKwAI~^OO@}v@46M#Eh@ealC2Tjrm1E__pVG0? zEipQnZZOlGhkig_^&uB2?aKZOAM^?CsYD?dfte4cxGYLg<+e5!Au@E%9zhEEZwk#+ z3ZV^H)4VgnfDBahsHp~4){D}xa$`;#IfysX@}ISdq)l#zl9*C`EO(;pjU#H%8wW** zdvwHk3KJ!~AW}4}ngv2mjF%p}fnR%IO+_swP9xCYxa-|74wTy%rL08ty;~QqM$~3# zvG2I`nPWihbuv>Y(b23dZ+>)?knP>>M!>639$_ac1pRpGOu_XN`)87Tjvc`8*L_R= zq`s0$NgH3}XJ}$s!SVP4!+7&fHA|_1+(^|W&(aw2T!{G-h~#p?BYown)i_f7<1hNb z+i11spDJf}izyVhF0`keRMS;kywe=u-xo>W!M?4vn`h8Ma5SU3?UL%Y9)bhRJ>9YH z%L#btf;>Y{p)%gImVG<3QGj^Nrccfjk&Ma$*yq(g@!_JPoF8+}e{jsu*4B7gaLnsU zl8+Wli*vZ^R8d}78=z~OY!c~z=d5kylWQDop#taDPQ??X{5-0@M$Vj-y8c<#ms zNW<;w_xDc}gj(kM@pU=1dyb6a)S9?}e=s;+_SO3yP@j6{U)TpM zCwYHJ%FH~G9KHSxcBNTCr8S7OL$xCbQKGlAawt*!4P_KtlI3Z)(7=_RAxQSU1s-fI zr)%#^i?OI6mv66HZ+7bwoY=Pop|*)1%`aG`a)5 z@2mj~6fC>T1Lb{@D#3PJe2m)roMY6^ZQ`~6H7g2^JaB<} zCdwVz27X>vvtfgQG$sOXqH!01e~QDHmX(iJ`8jXu}B`rXz zW$_{=p30EPR(b~^fp3Dtl)=E&h~QvXLAZNCGfZ1?cG6`3qc$6|^Ar)NZ5Ok%908I@ zmG9x%2cVr@l@O}%5B{m5)097Ix~p5-RQ+H9!#R^jk2a)wvJXK-v%l3kn!&o%%wnAO zO1d{(w3-DdS?VP6vJB^Q*-xjGEas3Me+7QPK`;`9A%ZFsYL?DEiQ@~(8Yrzd%^1$% zN$6m9;fNf+XF_5NM=~^oO==g2Xlvvc>T>5ywpuG{h?nYyf0%2{i<%4%x8nP>*ax13k`a287B#DV>ppqpD{JKIU zt)6|hiexRHFScT-SwljH#8*_ia2Adzt;nDnp;(U@(IoXD1VNy9{WJ(-V=RM&QX14` z;k?LFYvSaE0tt|2##$Kz<)~zVh19GaY(iGRn<{m!2<<1=+5Br9rOu%IW@<9Ouc!D} zNA1YN%UA;Y2Wod;vcZNuv>-r*1=&NrVW74yQ0Y|ti6&y8@@5NMs2hIz##sqPh(+a{ zBleIi=!P8fLUS1k0tJ|NNMO||5c!JFu!^#eUjR0t7UpN~&%@35BtRF;D6VlaxIN_> zn{&lD-jyv=J*y)_E5z8*P`uJ>{B)88iI&fk{Q?3-PYxHlxk1ziwD=~~J)JG9G$jDB z^(PDHW$wQ6;+jhY{zK)Jb9%T3)AeA;W^QC(e+|TE`$SMzERmG+jebCaZIA4Vf8WT* z*ER~W&GVw*ju{rE8kxQ0zOcgACP04rBk#rj{l?%sUsUF!&~w_BlkGXx@0my20IH~- zDV4+AigC=@wAfcMAWi$C_4lIhoi(Ovx3;SFH-{r7Y~W2>vXrVM9o6@j+sBK;XamQ40xJXlh?+d`!{NwR8u z^;|0UCFcC@a7{NU>nEiKE{AQ>uO90-iD=on_Wi-h-Ls2@S;_g`gC(Cg+8YPG6c=>t zfKrG&=91r1;J~G_wQ-}Yo|Q-FHbkG!pZb2)8!4>)6s*2k)J!S*v>9_P$2nZwpc3Ku zZQL;PJKa~3XOlrx0&Zja?daAmJs&QILzfwzHHH7G)yaVA6NQu1S(v^-EyQ+oiHCj%TnIdOK z_bN0E#fqq=H~1(S)TD8Jwr9OtHKCypU9-B3a2>vEpA!Hsk42?*WV&lnx)_;-s=tAlY3O zDjap(!NKGj8wL_Oh=5rF;gl)5P>A|$f8C?ga-ngeo2(jsUp-kY;=ackTsp)!dDrI0 z6E7TV*$(cpzYkr=k1?|EX<6(R_rckYZiMq`5pg(ckv+I2NNM|)bCQP{qsHxTH^2Z- zgH&^i?YOD0f`7lEk?%J`2GShT6?OZE?7pypHg|s!OzSu%flPi}d@-^s9t8s)(lz?V z2wk)B(cAvR`6cQTGiw=n#|lsVQo!;wJ{e|}hbrNc|U!jeWk$(KKHd7#6qDrZ3 z^l4+MKLiP%^iaC3!`+7Xy*W~g8)H392`cD%3W)-8vLl#&y!Q0oWydH%`~4p4bQI`e zwuW^&#W#qzHN1w8d6K!BT-0~=@kQraJZS;@L5)a^7JkyT(_$k&q#Hu#G0$AXJdb9I zO9PD+AkF-~V^k1a{Yb^xnx7OA_nX0bVV8iy{#!^MM>QihD|rFJNKOM}(L7;q z)9YN-oKO2nD-)lh>6t%Xs^MgGc8F5(zVZXtj|c);pz0kIpbk;pGtCoh3>(^AMvQ~O zYJ%hZ1rBmv#ph71Na*xS|C^rm<)Vxg`c*OVr=F4zV+hB42f5!eo2*r#y>r;r$rH3@ zk!Pm8)wBmt)UKRl-R`XbFVo7xR>~g=K1`mO@&+NB#VMvDHsWz=;_*nLo|r_p6q!gX z&V?&}vzbV3>I*I{4b1)z<%iCk>S<6DMt_);>9|8AAsu|wzI*dZ&tIO5!he*}pk&C# zu6SKjU)E!Ij);?a53Wep=cRg?t*_6+Eia1Ae(|ccjmW=*_~)oc6>z#OuG3wg6iVxX zU9wpSPs<5`;zixq%r`gx?QEH8bIN-Wl7wygF3_uC>QvKZY@c=$TY3>KxmFNI>>*U& z-GK`qL58gI{5n=h5^Nff36L|1a=vYwRSB~Mq;n-V%m%~*(}*1TO#?qEy>sK z9+RqZBS&93JOmSrrU8GQhM|XDERE=bl$&d`E4&xIV|AEmBlLd+%-IzdkC#RXr8}w_ z*LD(>Va%{ctrVP)2pJC@>!muLMr%#+Ry^rHs&t42euDHJ_{EUr;A!I)$-qFR_Zn0$ zkw9+HF1Uc==ps0%wBbbgwPVsq8m0eRo+k@}Io4`Rz)uZ&P&egQzRgArSWWQM`C60| zT;k=$ye}8#eh;jd_)Vh|Yr382IKiH|3q?PJ*JB#P?YE(mK+LPJmLtcYTq$S$yEjz) zV_jWpq(@gx#<@y2M!?$;VVGi{JsIZNDF|5V&Q7?Z54GApGmmnfm3vrzgl`I#TrF}` zsG5JDlk9Gf|JrcMKCnqYYj|9ku=ys^<^GDKrYF9Z!1%!8`lGPJ_bJIc{K_jgY--o+ zC+`u17kZcuCW2M*bcF-OiugX%8qyRjf{@jKD4dcQ8vN=(fTDFW6M~ z2sQo)cNPTPa`#h7hG>y$GjsK_4>>}bS2s`a7j4k`iAi6rzn-iJYE@@ zO;~{hh7CTSa2wPsrsNpu0FC>mjvpsPO#gRj1Zzjq43RC^d=UTh&i1@e=}c8Cn?IG? z8ifST`fKN1@#i*?*H$s;mX{V7+N)J%xUxG;uz_neU(UXK1zioE%}TU*Z^i*uo}i=G z@d^Gh7R5Em7R}UV8uvN+n=$W|#e-!&wZw&lx&gS3N}NYPPN1UM8VpT>{4TqnWjnc7 zHH;AS9|Y7ZI%=TDMRXOn82^cYi3W=w7|6ego?H-+R->=}VIl(?27&y9G6jmh50m`m&i2pnck%Rx78D7bhXaeTJvk7YoHovn(%rE+3|((4;e_!<^$Cw z;TE@6VZyzSj3Go_1<}DD_s7f`w5kMkgScVLRKA@)!zXvMv|WPx#|t#E^>G%q*^#%z zXKVuL9DI7Us@JuMaKYAO_{_TBCo_^~7H-TV3_Fgv?@Qsf$Zk|Z9=slX%xYgJ!BCw# zdY_ZoiMfMo2{OCW$@jTPx(^O0V$ZE2uWg7(H_k3VX|BJ_WA=JI#r!W|z2JSL&pV5o zs~GGB!=}h0|HE^He>BWcvZ_mzJ75+^!y@|pxRD0r=Qn}HKkmB`P`9z<1OmO+evKXg zJvRYOgN5d)sRtK~$NM>V28c{?o}2!M2{xxEob25bE#C{AkECfFF2_PoA11Sks;~jQ zQ|6yxMpM7BaD-F~yrqG0{Q}oZn-+Idj8`A{11dOZdN4*7`4y_7RfRGUMyN!=2fSCC z{4II#X4)AVB#;-=`1t8N&S})gn3=hqJbmJ=_4Q-|2ze`w1WPKI0PI*LQaam~Q(93K zjlz$V$O7<2s`+8!t9OqBXkFISV#(18VoVd39@47kPGbk&|TW$s(w{}-g>rdj0BO<8B%klW)(hXBB)zeY4N|M%)9FNk_!ywq zO|vmLB>xfImoNV+?5m$xhPDnan{w2kt0u1-iPO!ZpXTiio)n^7M7(gjhhWYMRWVVO zS{WVuQxnw$2OWfl0l@!#;#w^!A%yV+T{8)mp@=*o-Ks=iG}XGeq)Coj%Y zF)WkCK|`3jpChIv!N9ZMXb|Qfps&CFQzz)6v_3jBusS@SsB-dy;AC=}AI;dzGwxe- zk?NTszd&*R?OqfKp~%ElL{laRL^S}k(F4r!P#roHra&RI56SG!+c?a}nbZP{8f0 z3gP7q9mfC)osSWP`_C2;rx<#Z5~^nW)btq7qslr1oI{&W4J}aa;?oy;4M_ zSvCOn^C9njH` zlDp+(vzQTXKmz{imByhG|8`il=UBjdfQdyqnhINA?0#<|iGm7W0~e8dfc+{sdV*HP z2}FlDy3E|8b^9iAm{mq%IH@OVzVt49@0Rr}MY6gw$SqCj=k1-j1GJuxtPSk{N!P)G z1OhmJRX6Pa;qT4FC(~ENQl#mo3pwiv1j`8E_+zieJgn1<0zLx)gmg|>fc%!qmuVfRkndv)PpRR@NDC08?GJF+3c5epZy*$JU=93$f zZ|^Uha^7vJWBC|Kk!J^%cobcm?m+ico%qxJO9j*;o+;<1xEhguGsVZVDz*!N*w}V? zttj1BeKmhA)$?~K^Pn6BIcAapHdLVHTg5iV8@S=q^1ewi#;(hsa(h<6?E`ed3Hic) zuzIICden4o7y-=ResAm`?LKxKF)?6_yCo zM*L1Wb&&!JrexD45NOa=oQY zB$$8m$TLeY{f2Sg$Hw&fD~i5_M=~w$b{Q>donauX2USe~wwZmCkCR z)@rr0TY>IgGwdNTZYbx%h~LN_0{(yWVqyf|^a2^UvGl z%6*FjiuWzL+W-cxEgof~oAtU#vtJF`(K5Ngj1$(;soSi@1^W}d%~*T%Q`;fDEVAB4 zw|ZW@FEV?l6RX^}kZL}k+9?gsZy&21mR%w>I||smB?6kiKJfgpQDVBmruXvkpc-%j zh8gDH`QVPDIr-!PII0yJRC8FPS!R|O4EPvIcL)lO+M}YC-Fa*6Os6n#QUg6O;EYo5 z!XQ^WBaLYKTPv6o16XvrJ7hO!G@Pkk>dG8)udGv^S@M^^eE4^EhLP^g8``%fY^+vr zW;#JM74oWUI};Qk9_$;1WDFV82{>gdQs>;cmR;X>`a^wlRL$?lN*-FyHzd1fYKqSr zU+(u`!ILGX$lXwsGD|8)l$tcdH4e6OsHoeut>P;#m<7?=3RG8MQAK?Km(DrAQ_6Vh zih}b8z#qV8xUvL+k{4AqSN{WI2*M}5I_?;yi8VfZe2Dj9K7)u{jV5)esTfKoFH%y_BVlGy5}}t-cI}N?1&eUn=@F7xe{+*B$bw-Yr-vSC&NGBpIXT zG1uTqiPVRT=T3VRH8Aa^^^$NJJ6-kqm#@_A;fk2OD!RX33Uk#2fjQ8%<>tQk3JC&b z_a><>kHU}tr?4yJVJF;JS^W=1UpK+!o1?D#M_+UEiaiqldABt~o|P%Z<8fk)8)6;_ zI=-oq4_8(XfZ%Q49~EB>AJP(C?;iOZcE@|jZE4ffLQr0+?w|TSTdgYbDVOt1|79a4 zj638AIl(#=7SjMH(swD%q&)JpaBNl2nmPoznw3E zA^}nrusFq$SgOB3oPcSaYR96ELnXlTeh3>qW%w{KkXb8a9{R%*aIFe zB{Ksf4(E>jkRM^0?6s` zch+@mkQ9$N4pVCLxi#at$EFI-G9C&pYmEm+iP}Lr)cvho_ABt^l51240 zkpE(!?CpIrthx~7gDhX24Cj{J9-_W#ejoH7eKgT%vvL3^eW*jb$vy>oaOtZ~7?5Dc z4&98o#&{?EfyU9Y3MFb>v*R7MT zEhzw@P0xSv-*|yVNvM_=TXEgFB}a~M=Z5A&ZQ3kMFn#o50sXTD@qDS7&&lI0nS#%& z5R*==I>p!d>U>3#yZxpY`Cdf6Z!BKI7z-PD0a%KFh$MX*=Xx~ypJ6+YEe`<<^4}bT z(37bs%pHn#zM@4CX~&XH&JH5}Gxv z@z;^z>X22{4`k+y>6mw~AEcrQ$Y6v2PB+8aTWpyss_TnSIckae0uS=z>-6w_wg692yk;dc&OFvf7YP2i1 zh4lJ_OakeE=6z9oyy4XAkb=@c?&_gclAaK9H1)dZ&*nw?kYVRTxPl#?zz1!Lrx(#f z*l(ub!VIB6N9k`xCL3AxF%1QvaA?8)=l)*_5R!THS$j0=X;reOzhq8sAv~e47ZeR+ ze|zqrp@(n!%Jy+PkJi1C-5B~k>q$=Y#^XN7zi%~@VQ}SWxnV&yymR@x-d6V?wRKC| z>Ad1(@h{G}%z=D)K0@-b6 zfpR^JduF130kU5h&T0VlW%@#%W%KM6^F0&{TIBJSxAT$qqyKDlh`xC6K3aBM@g zNK>uJ0}Ds~q>i|Ej;zOI{Doij*6wY3ti%sEhS`mY;~9_QL`EAbe`xz4-{WPwqGtOF zZ35N;2o(7i-*bZ#j<+}?qgy$_sh0>DGR@czwNT&ObjGc_h76J)Ih@#?6ndl{BPT6! zp$|)f0yEqtji2N{o6|S~h+ZHggmGHQa&BE0y z*6HzJG{hhYQ?te6WHq8a=(RjDR_GcvUyhG&Bc*}!|4;o$EZvMQ`NzSrwR=+7syR&@ z>tPmEk`(k9_3S7*@tn?Fy5xkkY0LVm6-xjRL{+AA(0M3UJ1ah?WeAcC@|F`r7Ej|1p*wjO$CBQS$o#1FrlUa-8dC%J_E?y35JJ2bRO4G%zCZcD4QJC`$- zq)vnm$CLaSnvuJw&E*M)<&Zan>3T%oSb8%TRp9EbOCHWOz}mszK@UB432m6ClBaV)g(&j_83GFF4AsX6YuiH+2@sSM>c$SkMMZ=5h*YYp8J2l0T4_kQ1cVU zkF_@(kVqcY;3wface-vcHJ(3Z;ZB9HWyB*M9f3fOMZ3{%c9oGC$zc8|U56k)#{L6O}YH)Xa)p>0XE;~TNfmVQ_c<>q&HG}W#h($9e5IIL_+36#5_ z5&DpJF~wENrw%+a^`ChKIR5SuAsDQz8ee_gcH7+u2n{UH>@;!~WH{g1086*;|)T(XLb#z@=A)>bBajzkd!Yy`D2TilmlrT5WRW2Si_ahFI zuvOLRhYbMrn97W>Q7VvRH#w*Kh1U|-;*&#Kz31QhfOI#i`m8^QINI6%uqBg+_Uvf7eK(y8fh6y>I)o#mFF5l}}gKBtj zjYa;T&?Dd}!v;Rvtu8i%0sC0--z+a>)8d+{Hr4lLf$ zP!bS87uZKb`n(+6x6Wx`h&z(6QV2hmP8g_0;jlGt_Bo%m6x80xg%mR#y!Vhub!|MKvs zsMlK#0l9~FUk4h1ey#2~&Dk11O!?~YO$nrh8|@bs=yxCxA`_GuPzWxXuJJy>a) zV&;3hG&;jHFeUIxa8f@S^7?x*eq*J9kMd+0ej8kabd1mh0rup!8^cE=P_+7r9P{QI z@pr3|`h$4yG`dak?Z| z{cIPDqn4+vT8jR3W_j9>VJ6#{KuR6wa#5vQt&BcW1m;ByE0#mJsAFrZ&se_8o!c8Z`rz}+ z3DgfyMg$f!NQQ|^{g*i2y#y%2p(YE6e&USC2*{mg0cUa2YtrI(RHNJ{0f>N-Hs}kg z-zULV7Sh?gH7Em!+OmN0IQ-t*yX=JsuXARWvM{_cw<|kyWwrZ#feeiUzT(IlkK$49 z_cu`3fn`9gZNZCBMEZXh!F&0|gV1W>$+$=?Ty_9Su3L6<#rts+NC-S35fTe>M>_6} zmdU4*ZfXH%`ke$3iuk}7t5VqXL@IHd)RJmJI<@{jXWav=SsqLthw!JcPi%J40A#u1 zo#N83V)@^dXFY%zjcI4xWz!#K`C z=h3YHVne5pXVm#kA48~YG72Sa=OJP70w5;1Kgr-;8Y5=e>9Z|fi-j!W(F}qWQF<_A zobRr;?c3drjz+(`9u>VfLfW*nqx_>&`2hwhCRlwx8Me54U(G;%JlvvJqt1bsgF)jk z{cV|rMMIuG%c4&i9dcmys9K)v82Gu7Y33`PVT5w@Ur;Ewt&l!>B&tXNw^xIHC_N5e zntiK?XAF@%%&B!p!bzf*vx{!}E@m|2n%py6_WnvJul-*w{VU|BNs^pc-La%!EH`;M zx%|8pB*`~UZdHl23BOqME`ey&%omCH9}!YG(p6r$vKymirK#WkABt^JHNUo^NEeLO zU#4Zl>v{Zo2B$PT%w*Q8d$i z{oo(L#R>YaP*YQxvd(*AWs17O0RKwpXz2C>%6p38|6q!HKp>T}to5lOV8U~X*-1k* z89w=n)a6Jo76l2q2X~_YwNO;!U7c>-O4-rL_3Jm0Ue0}h?`f}d-JlG?2w5=!ha<=@ z1#;dN?y_t5_)S+=<~&M7gt) z%`Ou$vcC7pBg)50?JQ%BBx{SD9i{#`=q%+(`+zLQ;m#<5F4ch34y!ukGsPiz&f&t& zH-DFTbf`F7s9APuYwI3J2nyNJ>{O_n23SpQ=)16)P60n*u0I!*m{geE;O~(;Z;v^? zUp4)gze1u{w(#{VSKmD`g3Bp4fp1~JiFt(q_+G0p8MdQM64jk8{~aOaq{Zy@uW;M& z7VMuQYS7O_Z;N)Ks8~8nMhlkBP_uX>s}gP#!`(Rk^>p&A7dgC5ICendspZnT|Yio~^O z3(JfP^L_>Q4pV_-tZ2UJ_)pe?Qa~1CImzQ+X$=D5# zw47qcO*Hz;fUlre$3Mj$$ZldYC40ILj!;gx>FG}VhU1!#87y)y!FyfW;L3ty`Rtn@ zUa|H`_Av5G6a(J5Qg44Uv|jbx;f7txo^<4rd{9m zuS%D)l1{3@K}jK=lnb#UTsFmtooj@uWvesy0{(rm=A_LqL;Q+XDfun=vQ7=Mb8J~X zev5JXKfsySUV8Vis{g?tL{Q7Lpbns;iwqa968r!FMs;*u6r)ZaZ6-SD_@?}w&Nb6p z8#@K8%s7fZFdXox0a-2a?!5K=2?^MTY);)9o^_P-Kq49WuFu=Mb_C~%VLjBR74`r$ zeTf`4fijtbSIdQTcIAq3``!2kqe7Pf-;aS!;Pon*V2=fcoP=xZi4rjHBZlO2uQ{g{Es6hzXf*SUQF4J#ll%Ed2(9J zdv-3o+u5f1^LF<_XLM237qB=V@S6s2 znNzLTlnnq9-=`}=%MM&DWAh_0_Jw=Myd?;+DOg%SoqcQlSq z&-YXH>7uO8ROu6i-pxLn$@BSYzC1uIaJmK##JfI$gvN|tAP$x_$WisTsKJ7ID;Yi>^T z?Qq%yln>cyKQ4UYh}8S_2U}a>w{?@r!;rbYf#kv63hNWry$4%fhY{LV#6OMWemN_W zBv#D-3Z(p*Mf8YKNJum8#cb;}C(|@_5xPr-_48kxN)5B_&#!8CN71pX1)3P=)zN&2 zX44&&g>r9%+z*HvwzRwSq#pHDZ)_JiOBvIkB0J?Mn`e+948(6_KY$YmvT<5tN$_mA zi?LnYH$U1Wy4*ZR+>pu#*B%;pX1BSHlNe5V{*UrTaHXh`(3U$}Z8N>2GH$G}Y0hKI z<9)H3nUYrH%?_8q0X5C7lz|#U4taa8d(!KDDgBZE1iqMp@6FS?Ve3>Q+@B!ZhJ9n4 zs#9-yl-kWWNY2xW7haH_F9H4J>h(s?4BfJmEIE9qMY_nUHCO)|FstqEehrHo132*i zuY8OyIV*%;TKeW%OYms7i%3j5yWN0RArs;&#q5SzXgqdyu1*6l z2tc4QUqxgckn(>DYv$VA2(HgNHuAJKwH(pq33J!897zsz7p{YYyj(Z9Li-dhbGVOq zW;0z5Mh=0)J~t{YTvz#U^rbFMiIjK2JQ#aU+vcV%@Bnq@{gwF^R$j| zkj)gUS5ON~Jp9os=8rJ@)o75!Iu5=(6!%Ud`E%WFYEx z)GTB+;Q_f<0Sd8GvdiyR(Sow;&_{oz6(8JoI*m*;H0O@E6w2QkT#q2zAme%2pAm@0#m3qu z<(*b-8#Noy7-+b{uDF3gHNq{DCvo_xW%zWWe2W_^qxm@_dpD2}cQ6;ytiJDe^`v8Y;&eNmcCCgf z_n&KqPjXNXA6;LcWF5lO;z*4zUZ;lc()*9ti0hZ#la=hPaKC@g`y=V!heSUdf3=c? z`gj^loQoid>&EKtPK0Ry?QLz7CBDCRJfWRvj3rL2HzXJPYl7Uwzj;kPu0He7k|#o5 zh+@V7xFzt+phwYbEA~Cg=kuL^ag9HV_ZE2dyt5JwFVHGDMbDz1Xz+=XKXgvvK&C`@!J3`1h=6N_GzARjGgCVq9%3UX+Wg z1pnd`l~ywQ@!c6F>~fZ|R@@sna6t?s|GE{cl8zgv#G=v;F_!rX8{=E{CfKT=XBp$Z zzbU+J8mI3rNiN9JZ#ogIv%<{h$-+eM6a0Fg*1Iki@f0j?&u3V-NHkjTQerY&J>vt` z)fKhmS?eIq+3wiSwY0;Z^J^mu{z_!F+`dj44ZsCybH6g5J^#v<&;8QYD5=D6LjCKw z#R9fBMcdH1Ft)KD-+$)_Gv?%Y$qJinO?KUqyx53DSBon?NPS=G2LQ`_vx-!_qi)7) zUzwHJiqW5?jFk>MIblx{&HqSwehxheol-S(b&d)f)FouH3DLq7#IaQNEgOttR}+dH zo~NpMAK-4!K>xOZ{caXOK4~8rB;cFm!4k>Ud3&^er<$G5aMCrx*I2PX2#A%y?X1)QVhd*yiM!0&7vC@6W4p$m!_UB$Iz5cszKy&!w zU?4_79uRN>^IHj9f4*~K1kDP@@!tPiPWjDr&cgcw{{W!f=+RpjvlzBY_!Pnyv#SoV zK9BpIq0f&x~50b-1+48%}~i|FsBNQ7xuR-kT?*R4^MpkV_l( znf$62azK#98fFNUifmk}iUC|S3cFpy>}}j7Z>?M`C~g3~HAhxyH}Ehz+I-p+3^XsP zLjUonv==u=mW)1|$NHs#18QP6J8>YPcPD2yHzvrR$Gb>Uyb-I(+2~VRMhw zvfmiXz04yef@SSaKhT8rErV{t)X@T7n;>%rn01U&%kE(=MiD3vuv|WF>Y7Tv_Chw+ z=G`JY#MPz)06OFO4FdGkj}a=x9Ghe^g22_DG?F(BxX`5S0cq0dP{A~?m2&@Kv%cpa zIBDcc_Kqz2S!jSr0P@?=cnbd!*$ng#i(y^L<$9p(XR|lPS#>n<5R>6R@;HDAI)xt$ zWSFfD;9Y)M%-UnF-C+UtA5f3~x33`F+8@#ZSxHwOV&j9 zD|23L zBab>7Bvk+d4V=E3*?ts>M*qa|EZRB_1wtg=#Q^PJA2MknQ?T-n)bZmfs1qOvJ2ClW zgOXTI<8FS!27vhi0c?k3sQzHz5iI|lOkTz?Z6Nk)T623)x3@eV6z$=h5DLyqsL13} zAR=XP@F0WqMd~~`G3b3f8ECslMTc#D|Hsia1~yWbz}E%w#4{o_o)^_nbp7ibxSIg!t!rYGTbqIq1Q`c&>siX02t#;;Ijx_bP4AG^F%T z+`RI(UybcrDG{9^ealql_0W;i@z9c3j6136gc_xqDc;tT+evMRm(VDEJXtlZ>ev=8 zZ?wo&q``GsbK!2_bMy52Ml#2MwmLHd z1VCP+2B=k}u1ZQ;9Fw#%K6GZRI55$N3Wq)kEL?C3LY{E0+Z|wxVivI+a;%hqs+X+^ z-}RJnjmSL0o)uMXRiyr;?{Y_p0VhNS&+8>&jC^3jz=pRZ@cXqvT(fkjQ$we|$Fz6a zdkYVn0TKd)x``Gf`cN+aUb$X5NSiP;Noq5izFe7{qJv0+JP8pSkM?`Ce72AD8KF6D zKNE1tCSmrX)9HcspOehkv+ov%_Wc=`kiNEU+UoM}edGuTO{!9;6oWvB7@cg2M$yr6 zC@CZ!2fA!P^b8ae?h+xa#j;CJ11b4|sQ^^2;*!4r^EEj6Brs9Jc}ZnWj7hRUHiE^YX{wY76JB&7$bcSP4)bW*6pn<~we+J}Lv$TAE&cy? zTRt+pz-UUKbWG$-R74@MR~~g9bbrSug#mP1H_@w|>T|QStw0zA?EI(&U6+IJV9i!7 zQFWcks2F8z+1pry6et333W=aQy>%bINxsB~N6B$-XEL0hJn_SJ^!tS9x2vi&x0( zvYFjU?~4rxB5!REUyGE+@g1SZw0rQ~wqYnQyD&^;zk#b0nlq1<@WDG6LdBIGUH5!1 zqRVGV(_0%~4kwMk{E455p54ThUxddOGv?M}rOpspeN(bxf6)x3!aDl=y5FCC%9I|i5odKHQ+bq3k+-H%szgK*r7!lt<7u;e#y-0kEWFR~4Vq6Rgm`X%t^>!p^ z0VWX2HM@&Vxclez3F7>s=4*2#)KT2$H?z%ZtR-wvL`eo0)uW)}R?@w(8j|4&?oOc} zZI=4bN<_QdfdNjYb)zw#2M&3jsG`98al|Gaa~~HZ%ZTajyERPvXBzIs5S$4+_O)eP zy0)ZC{Bg4nGDHO-KCeISgls09h|JKkOw65O%a|3?-D zXS>o%2t|K2YxmcyID^=3k(k)9ziOpGOy6yKRy6Lk?)EFEo3mwHDH{$ej<|+PJAE~) z1W_K#mxSk^ZQgJTJ z&7FRLotn%<7K2+`8rlBLg}c<^UP&l^nelQX(l%mk?njDrI*jjlAEW#b-^_$}d0bI3 zU}wWN&9$d5;qe?10C;hFnE>99d776(nD+fDw|}9d=YeTD1IMF?lnU%F`aJ)l4e$3f zZw0CMtbmIoS{^0|I@}|WM6Ta0+(q9guJD%XuAXLrwDKvr|E-7>^vuKC?*gSppRSyM z5D8Cj5o)XDo|L&|I;`afEWjV0u7mR|j0398b`c{GfJ{#_#|lh^%zVkH60sAf(OnWZ zTz}8!U2958|Gpf_;DE>X-TdmmfVC=LZCt$T^YdeNyS^JNrUKW?&Zp<8^Hq%`JuipC zK1@D!gWj10G!CGrc7j#-BYK43ABsl)YKov^%n3)hBaR=p!cPCWgPE2|B69p~@(4VY z^;os*sQ$WLWhBgj7Vzs0BO z)AkYGtAbKLw=%K>f{~~M>;FiBkV8fG!c#~B2-r@ly4Z+=y`A1a7SG~y;*TcopifWe z@uT${D}Xcxawfsp;vK}EZEyO0*j8DE+xy#T@U%5dl0JHjA zX|Ys=PJ`bXzXTAo%y`d)fI+5QW1^_X`akRu_S7>4QUfa|D6t*>&DnS*U zymDLfL~}utF2jC=kSH=#z|HN_ybEPRTC3Qwo5--6imEuDmmWHB(}2Yj3FsiDgUbWhnlF{DY9UNx=9=hCcZ zR{MQF#m)C>$5<~#G%NRUc7pcCCXa9}c*xFGky{-4ZyU-Y)bPaQWW~anJ=?)ePzJ%E z)(%gHw#@BIA3o&#<2ET!y)C|=&DGV_uGKWNE%&WskyXVs7fz3#%sigu*f~t|Wjf&F@`IZOZ7FOp*9{p8z^}^53-^~F z7b?|Q!T?tmUXA6oA*FgWu5UhZo9}gwZAWSwz_Nv=M>CYG9N|TA%&a>q3By?TMX8_o zPvsxyv;bvO(oZKIyRPI~J|q$bB88#UbufU}ql{YHkB^6|K_c>N)11$r-$=vp1=MXa zh;X~Jm_*q9y(o}a8j;Kmm)9$IDG$dXlNtAWUU}^_Trd#N$GwySqO6~E4Q7=nFS3S% zI#irZ)0ZPndyZHaiA#nioybTe+}Y0|ETgv7uZAcAZBWQ~W2q* zfah7!YVS@2{0XnV5Sz;xsh3NL>Q&fyWITN zFxtho=k-8c3Qo^YVDm8EgL$=Q*={vlrADV1660h+dwOE*^|ErTXV>X;mou|tAj|$i zexk62_ufivx!ku`MFD3OUi~}CqN2d6pr4t1{{1iZV(r65vhk+wlxepuV+-~*w^aKl z^X*i_fJp^j2dmz@1K8l54ry|-Sa2TT`}hg z2Z)qmxkQRpNQ*NOom$^0CZk_e*uD8&sa?jb%%>_askMB$);HZ7TOBu3&h%Mz2deqv ztM)%YA5;+Yts{G1%eZHkFaKm{T-#^s-lm&LaA|s}q)p}+(+36Q2I#p^eU~C4lhp0? zTk19@BlYJC+K$(xO^^EXX{W9yCaotvw!dLP%M|C9Inne7>0ik{HWNL5y|Gr*?U{(Q zFDP9(G0`YCfeZ(UZy&SFXBdq3#vNc7?T9;r{sa&Ns^BSPZ5ox+GzAnd1S?K1g#kj* zp8ERXvfdmZyA?1US=A^R_Fh%}Gct$s-_9Ur#VqLz>tn@(qM#Eb$y(KMbbXLZ+;_G> z3%zK*IU2mSuR0{cL?D6}q>hQ%tnpf`t}FM&^cq2dQEu7YQ{CG~K22v6QRml3bhrLB_((z{eXwIX zqli2#xm)NKlv04Zm$#Gg<@pgYvicl_AxpS=QD;7?>c52W4grq>(~RF|n_}-==SeiG zZvY)+xUgjf_UF z;d@S`!pu)%&y+?{@2jrqY;v9ncIZ(v1x)~iNwDY64XU4FJ4dz<0D^>DF4yT!dzQBy z|6w<7Y(Q>_7#80w6J_4W<~%Oo&$aAF1%^dJ$*c7$=V^={{*)H|$-E=y`?;1^{H~r{ zKI0yfBm{fLJA1|~Wmj@g6ISbdnJ`(P*B?(UQ$NCnpZtiGQskcvuDn3jsIt2*?Aov< z5iV056e#ZH405Rw%syW%V0K!6-}<$D&6>}Y}awmQd04pN|K$X zIdnQDR06Y-H0^4V`Ioi1jBrJB&j0~pKYBHR!P`FWTh-*zirZx4lb34zYbP^xaeHea zYygmCnR4pq2aA9{ntD?1`eIwUe=7Z81s7`icXqNy{|l}vXgR)gBzv!M)BSsKuK^mK z0pREAj5IkM1#LPn1B6-GD!j3fL=`#ivk)svnV#ou$Y&9{Bk1?4VLR33ZL`u^{+?bs z2HHCQ2>tbtc&{oZ?ZpJ|*04Q;%|h@u-roDvb=_`KA1r?v8JCQ^z`7mz&a`X2SD$=Y zB=)iXuKRiF{5sB%N%pbIx6E3fQ5!u^TdfRjxg}Gui>uDe`mnq-&6*3 z?&C`~am>AxvE{L2>pxXH9v~+*VAriCqch*0Q?2uARVE0*jUtC_bVfg<%w(U;tnFKD zaJoc-D%;^sS%E0H4xvhkw}E`r!-Eq5P+}S?q~rzo ziAV+WcIM2u`f;Vu1relHHa$2aLqAOBdHy{F23G5QbGLo4`;6!B;ysb=7}5Wf!^}~b zV+`mgC~4&^X?>g9XNSW+v^B#$vE`WA92<%(yENtYT0~zqF%<9kqW`i`j}R;5Q3<9) zJVaXr0HQNJZE~fs7)I*aCdOWcN>K&L2lTY2(;7c80sJKB(^&^x+_idJg*7->5nVh+ zU#EpH1@^NvAUUK!74}E)+tbXF%=Vwms7+imwlngsuRH^2W*U%(^MNNUA9%H9o5H?BL&|Gvkr|uhYuyK;yP+`>BzA8ztXT%em0P@j7}zPKIYL zj7?07;viR(4>k7tJV2+U-BmEibrDhHegHc=Hc%vJj+!Ki%f3R($h|(gNiatc}zrz?Nfhk=j)+3-#b> zF*EOgH|K(rk+LUEZf;cAP(s_oUfbh#x55AdZcLx<+@RZKE4r8>@kmI81i2Kgm`!Vh zemRVI^7aiJHd3%d*cV2tZSC#oT)mA`CpDC}AEwAxqCcQvIz6|dJR`$7$@wr4S z+IKR+sKwmxB%o>JVE#DYI8^9)xD0s);Yx+ReG?r-#>Tbam{IQ_pjra@cjLqN{u@~! z-=f&D-%2;!fB}#zF>#d?QjWy@OWc#D#IGeejG7(Q)UR5_O=Vq+Gx65CFpdeNXfUej zofLYr#<;m?J2l4thc2`@}x=hz^USzQGLM-S$ z1c~%-9l|(c^h#K~S775g^cR~*h8!H}eeP*PD)RI?yL7}Q9=PtGr*398Xb~GiAWUdo zCllURotx-j?@c$`-v$dh4rMOn^gA00=c;A1Y^38Pa1O(T&EmIWI-QPmG$g(sX6)9Q zfkvXy3pLw|BDI52)ymUN&05{AYf5yL)O+YoRBiKzt{jh{gttBJA?ZSDvruqoLd*SF zH1!{Qo+Uh8ciJ5Z*DT>~4*nfW1-~KB*IT~r(0Xo#RZE|2Q~IkD8~Sq#HDXh7vWA{M zebxyMs@*)>Ly7G?(k&Qv=5~@kOS>T9f(>YUqN;)f2=Q^XSHssxk;Tg~RPsjGk*I0Q z*Xu6Hki%-5&H-btAAcH@M$z=(ayZs|t~+Uv^Wc#L>2Y%ukaH9qZsyM8zJ4-^da!G{ zSVh_I8o*UZcu-}gzZJ{$Y-iICnCu4_kO=CL9MyAtj0|`kjxRU3tL1d}+!EPOuR-_m zrpM8vNaeoM#Up&OTRkGAWYn?i5yZ!=32mERzMT^$392{gp9~-|dgGDeqhoGWAJGvp z;de@=VeM6|VvL}LVZVGRh1r*&><4S8(>>q8GoLC1uh`A*S{tl`9@*=)_M} z{$4eRzm=B282SNL!8K{T^%(D{43`z2#}byoZpbP&fz(d~Oa=6>C0bpAsmOpeid#Wj zI)}dz?Yfg+hS}~){FML$;0FYe>zsSQ2|ZpuJ99gb(HRECHB`8?KBmCtcW8hi`>z~w zz;7QnP_Tx*QWs2*jQS4r#`!qpa4zKL2(O_)2-Id&F~|{+_{d9%<;7mIov&*573NhN zLIS5G$r|0>%+ypO$ii<;8N5jQ;(9Ij=;TMAA)?YmWn&Y<^XYA^aBj;0yhNAy4FysR*)N%W68|>oeBtJT< zcr$)cP>=fygO276>2#pHABdbCH5FuCMDf02sFRwX2RZ*+Yi}P(Z5Idl(W)W1n6&_U+tRv4{u})-vSbbY}9FXEHi;y%S~)6L|+)Q zW=!gbjAClu?>XGXXL}>L+a3e4;sbHNnGR5Mflk$4tb$SLhu$P)WDotr7)lf`i`24B zd|%gThd{uz#QFy1$L@0AF6yCSBcqh#p{EXq?H`*~SiTBUvj~y6%v`;}0k>nQvBZ0>R7T;nb_aTr}`H{b%os7k9gl{|o|%D25ynyhMgZ#mj&N z%oHV9Pds*NPbk)p0sDl{NsIy(4tOXo$WwCVWV%jIN58nyB>@3lh_$TvXVLEDB3gVc zUCyhsHk-hJ<2J7ii^yU1^)bjRfS(8NwX)%c>384RW`6oOp&>oV1UadylENUT)1FDi zaq!>~DG7#N7h1#JeeNkrmjubin23q*Ukgb8DCNy|oMNjw3>P4@JBP0>uX{F<%;Ay_fWcR%d<@pDeP^UQNP0 z#Xq8T-GalANU8qE;fJw(<@;5=L2Xoi!`HzLPnhgz2A5B+bCq{ucbP>oCcSD`?5b6q zO{(x?iT1%XW^#sZC(PO54y(Y}4#u}gngv;5BR0;cEDMHQd}&|oB?zEqO+tj@d}a68 zjk~zG`1GNt#@$On)wC_91`XghxQC9mg!g%_p@N1Z*W2w8H*_3kIth=7eQ?x*_x)0R*gTeyZ4OQlwS*h5 z2cOeWWH>BRveQmCK7QHk%@Z}Qq6idDM(v`didFKXMz(?XMpsY-UVsevH9`3i*^1K5 zCGH$&AkWkmqwBhS!};NFW!tCG4PLNIBHQuahg8QD?$H)4h-Yek&&{PtZTsn zWr^bc92G~FTQ+w@Py%-DCS4J-NyUZ_zaPi7jf6DsRZv7b7K8ihrU%7{}!0I`nO zyFox!RG+@D*3GGAmpGo3I(XPWD_zlrPGHg(z*Yt5ZS~n<;9*1~zVyZ}REEJ=JCW^+ z9<6?3GVvECdrw)92V#Rf)x!l8c;Xt|cfX|1`FWxqsgX!HaxiAIun_^b1@EZZ+hn5) z(CpM(*;A%!l04_bja#P-i=q7I!yP#Ue`3N%Y^@JAJHM)5doZTO0Dv#vyS<$GaR30x zK*Ov1qz4Cx2bI2q$jH%3N>bWd(=^pjUw_ul1>cB!j?*+Qjg=u#(%Z@Cf6lXl|G}7g?Z<;|F5hFw47ct_5uow$QZ+N#A%I-ZP&@%EIrb~ zkh~}7b_z-aeb;Z0y0E^nT@7uv;y?m!oLGRS)6o;@T$6IU>^I9{DV(Su z|1|uK#9GhfdA$vCoL#oV2;(r(?@73$Q#UD07op0jUQFCGFZK{_%O(}A)xxJHSoGik z`eE3X;3~^fQ*1ed1vdacvm^x5blQtS$lcH%75US}4P%Lv7qY-APQ^sjA84DbuD9_; z0N%gd-Q#02Vo40DLhRb6gsV4dcOeTuKjH1=T=nK4R)tiXB9=8}HOytnLWJG1Wj{eP z4ziX!dfj3=Zkn>9;IRj533e5Sq(K4nlM?X8jQ5kLs4lZTeHaZBd4u4D^7GSgjT?l= zG{^asbU**}9i5|HZnHp}%)kEavr-9-lB0{8qkC~_-0Wi;8(7rswL^PM0}-{>?KN@2 z&vJ?{80R)JCnSm9{myA}d6BoUl{{W)cAqU`R%XBJe_!*VP2*AY`Gd5nBZgac+;)|; z*KkJEW3EN}ixWjtSv5qI(A73`Mbc8QgTife`Ir#%>+rgyZ1qsjyV^f=R}-)18Uf!O z-Wm8W0!P=!6ep4QaCyz^ za!hSM5cp~a_yMb-18g}VW^pX^yQ?&Y6alX4560Uv*j?J_A-yWhYN1!(Flv4PI7HYW zfCfY)vKrP?IL{KyX#>LI3iD0?vY1F0FQ?UI2bC zZzsCoSC4{IDc7_l)FowtqWe`8JSn`6`DJS4J3j&Dhz@MSIvh-Yupm}-Ms=X!vc}-g zmn1R8R(F_->7M6^WH*83PqIzXcpKtG^YegVF-ZJ+c%H`;119Ikx#!RM=QEC-ugN8e zZ6CfeCUbO&bh7}v_RO)#GS0i@d9Zi!{%R91kK25Fx=8%JdebAs zV7M!A&FZSu=+zWTjPE+V z$bKfMhSQ~L1M}kM_vJ#^cr+_UCc~7}8P)CHr7IhL4>^iGpI!FB;YRbKm01~|Z}|4B z)-1pe*p&8f9Zp~#v#^d7d23f%#zOs9?+P#l)Iq<@TM+yW4(y1*%J~Vtj;E)2Z4^6bU@P3+Yc3%ELuB3Z57&$p zbRdB42Yx*deOaZWYmE*>0Fve>T;KrauFNfk7n80X3qrb`T@!bT&ZEi1kFrwP^0ql? zk2w~uwH0UIGa&R$>Oj(CaS3+w|T{QR``Xf zPHx0@yFA4b|g{=KcGK8PolgS&YMc90^(|;*O7VCt8T| z(MGmT?GnRFH};)`PV0=aTDx!URy$N5}s73+++Fif2)TUqW2O@^ZzK$Ia|B~m;jhPEi$d^2oex6n| z=Etv*!a_X%pvXy6dcB;=2!7*qEO~|h1+<7_fa#s4x^DSWn?XuUm_-HjioWAdq2bk_ zD|4QXV7)x0`MoKwy>P$IOt}n`gL5?;XJbXYRC0|$kBs`tU%B6{;Y@Mw*~V(Oh#46H(iA$0(By#!hx?xp!F zMjT=+UvRvE$MoaA*(b+jJk&yhgL?J2WD0}!M2>+2Ry0pO?=F>vcz!)%Yfm1I&>b-vKBp?AT zyUbP^DO=5XEA_TiB%KUfnxAO@u>@8G9MJUUMIHx(YleoU1Krtyj1c&lSut^*z1Ak# z)2hIofyLa@z_+k`2y|jFsqG(ZrojoE2Q52wMIqY?I>t6aJI8-@2|ijh62Uzt+Q0WD zQc68EuzX9H^F@2HbI)7nOo>2>DxI1Pcd8NHIXhBE==hfjY1f^LG{Uv0@lpcH2l;fh z8Aw9^XU6|^E-SnoA7*9a9vN;%Yn39IarNE&J`P!J zHpM0uAc}*say0c*3z@;M0~aKWYj>)zxL8#q@~`FzHDkH$)?-?lQ&#)Zp*LTcibApZ zp6~c(e2u|3Wi&q%BT{ul1-N=6ORV=4gDV0yXT=ZHtvZUbdDoVT7vkgSQ#qz=%@Rx? z6mjAxkI5$q43%fx*|SjfN`>jqM+aJ|Xpf(fj2I}CYkDAY(SM_c!-iYIhI7Hax#12? z1ld|lH8L+ZwXptiWf=4wxl&MCPE1uq&XAv}?_@BO{dN7g-`&C89XpI6+BN?8*zARt z4Gl=;SREeS!VK6s0%_>>?{I&2E{~S}^0;^paNgFj(9+g8{XZs-U_0Fxm6Qk#7ABC@ zh2nE3+*s1|b*jBT*`;-O$Za?J-i)EMe)gGT99Q%8w!iqZOot9R%WOXkZDROqQt6WReU)Z z_FeRR7A^W+vkW|Fu-NwtDTVy?=AHI~NzlnXX{OOjRb$5i5)=tFevsApRAc z$|?l4gY^FoD$}HIZQ>fRa94xw$S!!;!a`RP2-VlbjqWm_G%owSgfm8q7fKNz&S2ug z6h$FiI=a@J)W=6^QgTA~(^PijUxKqiXYox>mp40oVr}I+w0#OlG2TPANO)_%9VM_q!*x}k#U5M5Evkd_Yg2fUHGL%Ir&N`8t^Tu$ zXA8swxuS>jc|Y_~LirB)H9uqS&gI7>>h|%>Sf>=k-|!cdt|VDbUb7*ixSe>_`I}S&tCDY zy-eWp-6~C}B3eHDX<)nbc_B>}XD(2*%9Kj$@wO@P3QZk;GFZ^mfnB0+4|}z>Lp9v6 z+}cGo;j5Bbv#1q>epKW6w6n4z(Y3x>J66_x^O_Gi9WRF9XzxN_-@HIgS)s@6x&!2~ zG+|fN&wy$>T)@t5!vPlpN&qB>^*Zy{v(fa5%tz(MSVs&>&kMKsev}vi;AhCL?+r%i zpuD=Wi@I`i5{KguNe)B5j^^QbyAei>SVP83J^g1*NKU6)!q?@SJ%q=mLzXTb2ZjPl z`j{k1E~js^p*kF3C84|N@*aHWHy=%&z?&e_Uw$P9X5Y;|U1q*R9Qhe#C1Ue@Luet#R)W%w)~<1f94PEfsZn zFo2ue_h%vHonlbF{K(^dfZV1#msw;>N+6|7NG^9RujlvXtksyUXOc3@1^eyG4I7iP zM}FzR$Hc#%V30o}SebIywN5y+uspcZ*HRhyhNi&#Znoy9(ZXAp*B_AZl!BefP-XE? z?O!Fd-(f5@GSND!Kbj4~JF;%S*N4k6TTzMt&%5YL2o8+Xq~wiw49j^QIM|S>sXx-R z%G0YP@=unP8C#WX8jMb^pz)f%R{P~%LVOZ4KH2F!E1PuangvEHZA2j!=u+VAzC17I z3`mft)&f@XTG`gmM=HU@a;CC5cOnJ_=(dfyy^?#Ni2ZSy@^|KA?#HsiZqkAEF zKe_cD+e(^Gz!KhG9e8e9Osho~OoVz*{Z5*buV;92@RWH2X;%eeiFyL>#F2yfh6)k7 zb$J%#rdb2i`?cu|Ti3Dg3?+92yQD_SglsyuH3{iajbX#2Di}sd#^K4HpS)N+OPhTP zFfvPvlM|DhG;Af7z}1o8y=+8Uyni48;O$xv?ONrxqUo*WCW=&L*7A?&=1ykMG5i!$ zl-0n8Etxyh=|QZ3Yy|l$$}PT<;Mlp`Hgy`6b8g6D@sIv?JhsJ>AMF|)u87ridF#mGD?IEA?g1fR^S&i;gMn{61UEOCEpB{wPK&+ z|NBOBBZFy{nPgldsA4qguTK+5J%4rKekfP;H0Yw)TQ1s$k@tI5oAB%5MBAbcT}XM) zV26(lD6n$IVALL+#UqpPJP{j=;BSCWRnpXjXHzK6v{1_Kb}|6!U4(De6ANX5`h znt{26{}Z|0rOISqE}<-yv#-Z1*X2lk^|kq|LyiCyK#FYs^-mxo<;Q2I-BAFCm;n?m z?Gh2BsQb>9p%L>)zokQMMtMtbKHA0l(gIsn2fmWV_*NU$fzhe-AxqS-Ek)AhYX6km zb_$9KB_~}beJ%>{2tbMK*@)qhm?TwYU<8R0e#>>s{l#<3)@q9Z&4#mmgJ9FZ0 zYrk7pllykVces22Mlth=vG^W0>m5VaWqYzzI@!Z zgX@Qb8VNF8DjL0gr3<-_at;7ci!u?e)uetB#BBo-mD5A zX)2_s%|nJRIZ|pw{=Lmn*K5?43z|H{5qDMpii?oA8TJ`F@BV?>gFjDIOW)B+nLvcB7BC3XCYrx0J_l=@3I>@PToPvEl?8x+NuY z@fdWljP$u{D<{XsYW3KyYo2u0hkoy_5n?VT9_B957E@bq3aP@NHhfR9GgQa-UC@^4Y>l&I!}+pMYXbYDY8&yaY%r`1ifoYMOyT{NQTTf=A^ayY!+|Z$ zKYe*bIAEjW{AL(b2JL+w9829|*!}Tzw_)J}_Gx_}q}#L}qq=~gKv5V*Sk=+vyfS`qSfdF8Ft(}c~(fn%nL zH9P2CYUqhd0O+I-S0N|CMmD#^5v6O2;luzukGATr`Sj}xcC8^Q4QDU9mBJ&%B!kk{HnT1syo z(Z?+;ZCvrT-`{{|;7uCQ`rGOqu>e3w0{peX0LDn`hL%i!C@yrLP4Jl4$HI%@sGuk1dM|@ek?8MVelN2RaYBM`+!F|g^ue$3qkqeE4+;~@gacK7zb4_yM~- zl+RSJm2|(vT*C2rVxL+=3%;g&L&M&Mm8QGze;?OZBzN&FW}+>oim#tAyC~yNK`fRX z)(b}Q@xWHdwyUB72gO9OIU3Q;1*twc4>ccBjH@Di?KF3}tDpdRC=vicQyo88@8)Lz z$4=hg6k5@%Ew+l+k@lwJFYXVG`)xTqQVA0Ik)UMSDg9Uw03x`>^&-W-eadci?MxkK#am5m(Fj8_`(JkMEx5bUT zey>a3MLA{A{zor&&-t;|1Q`m>==O=oHEfL^KL>@Q>YAMwl4z4_q@6VJZ>i5wBudDo z*S}dWu3u7@0tcfi_e7T-A5gimdHR+NikAJZ`cEX=db<|ciFTVF64y0OT}>xk4bQye zbr#kX>9~5%-m=(%qmjUTg)rbSW-sc*EYAWsN4j2RRSB7^7j9uR1HyW!0Ai!Nc2HMh zu(O5Rt>x<>Uhl=bQJga?^?48DSfyu$4#uGc(&>yVKKINLuT7>l6dNkQj{XxKE^>@u zZY&fDC;*&4+~9V8%##@o>@R;FqB%2YlwdA!wgDQNvy@sGv1p{9hG`tKNcl5N%cfy9 z-ngKyq+j9Z+f;|xFEn8y#z$C9`x?bJ#)QX)Scra~MJR zeC+z!Kf*Ld%1(c>0gu7g9#2J0-B8LZ#AFN1gQ>bAy&JHqLh9L5w~&20u9)e_DxLOK z;((*tM!(*qnf8$|;{o&qXWp0X#{UMGrNHF4c0GCZ&F?~N!P1B|We~+p_Uf37tW6H@ z`~e35Ivq5reRbUT%`NDu_*p0e+eLrm)MaGZvzdYXy`^}AyAzwOSkdk)-nOHbR>V26 zZ8N(BPeOGlHU4NmEMWU^k@Bfq=nRL4wB=Agna11aq3YdLBATYi`%$J$o=1sn@2e0? z9xq->w!6R>+v34NPnfHcGCfs!tEqSs-P524JU8{(I z3w&Nt*$Tyq3RRx&3Kvvk1EWC3LG6bJJL!yj^Cz=n)L%1ppT(J7HNMMrOvLg~sOVvX z1yI7MVUfir`lXzhRA@p41}DmJQ2|SYd86ti)hJ*c0?Mux4|mOpk8w>kO(es-Qv=@7 zMLp@gzvNDd>Ab?*TF7-Yy6qBDdnm6YS+zbXO)Klx1<(CIKRdS*8(o`Dfir9p2ta3P zB=vDwE)SKT@N$G+#F|Y6i{pm>ne21(>cef|z_;x{ETtPT1fj2qp$ z(qaz`P^}jQ+z?)3wFfTh`qhOg;@Id-;l=Byqot+teZSv#sQ!ifqwwLq#73nn#cqz@ zdLH}M{uZwe>h1dC<0TsQF}%^JzY-ajZMki-*}3!ZG4|k91ThA|dOeo#LM^xVJMu)R z%LdX@vtu2LI1b-Ra1Fbup3a#i8ks}v+->gEz$LyzuNnz9pdO*S@dU?(S0!cIp z{W~R%b+b<+YAixM-2a^$<2ff7ZaA0scIVV*zBP&wlW$Ic0}_S{J51gml`0@e#?U1p zRfoE=`XI%OrRbQ|M2F&oyqVTAY|)ZY^B#6&a%x|Ynu*GdMuo1>;62<71_Y6dr)0{* zF_CW8!`755ybpMA-?`dMZMs!<&{MjL(l715A)^-hlb{$^25poOS}bio@~*Rv5e%uQ z1$4(Mc#|EUsoyPh{5@;CVR|cVFsW#(t7?u>F&5D=7L$_~ZeR0{dLkk$e}LMbZ#z3@ zwznr6PL}=x>|Et7AY%oJUh1)p&ZR1Bk9?jjXJFt_{S;DwY1MMUXr(66jt}$3{*T&@ z@#TvYA4xb?%1emxW~<-=e%x<3-*=mRF|=$gQAu6b_e)@6Y*S6Fino2Yx2oZJd(bSA z;^6*)r9u&ELqbx)1p7xger9CS*7l3xU~gBA`$mRMVG*e1wVhr6pygmIMm=h8q8(_+ z1vK7b%-XvQJaOKrapO-AkpY4_sytvYJ49HKk@I9|a&{w#5gfU<#rq^k49fXs^PWP` zXBrpP>mjz?Z-}tB4bxCgFfN#R*R8f6VQsS(mCe^cKJXipzDAD6t>@8x+!Vug4hKy< zh_5)aO%J`ui_}%JUr()xVw^?E1OOsPJS(xQk$$ z-Rw481RUt{-}mLe2M2!p6gLWL+lF0X%5NDYPEo<=IEM)PlfgOw=jyok)f$yo#n8=mfF0ZIm18ihfGUq<$&+N;dR`g~K zW7zPzk+W8btAfx#bXgwdwi$UbL;d|7h2?9V-u~6{ohWBXy+~!biq@n^1beIg&?+#s zO^df$qT95$qkPDI6(#tC0mq;0$e2bI;?K7_&s974py%y#J(Kc}E8vo>gZ%r|j>5gR zv8c%(;r!|A&56<~jYA&&wh}u&uj>{(CWvH?R1R$%7ND4nulVtQ9GzouU0)xCZ)_Wl zoiw&>+jbh;cH;((Z8mlqqfuj{v2DEP|IX}>nas`P+`aett+k#t_X{(%R+Wm<6=h9v zx?;|VSkoP{fn)T z{UiHkh>!6gRW>iE$`(snl3Rzstycj4AC&tGg+^&%TKBglES~a>iQjjBFT!t!U##D( z+#5M~Time?q;CI6v%~Xz3wnQZ7W6;2pMbd#M~nzlq1)67aH0SYs)HVtpCU`7Nwd9x zT*siNe^dMvI9*)$(~)WD=gUo*hGD}&S9U)7<7;)h*^v_u@O`g;9xBSXQEgGK|FnO4 zvO83(6iT8w33wIa3M?IuNfDJ^U&;-ME;@6{3jt+HQLz2-7iz^@-%@%}5FpQYQj>?t zyWM(;o70C*yD>RNc+d8!O(b_j=h<$5iJJD2OC|-86g3>F?zpP+Js9Yk72MbhKP(O; z5bW_gRx8ni3>r>j=KIDgd7=6Y$l*`x$pXcQ@7ky>()~aF4Q21zR#?eEo~22U$J^&v zSeAbcHuQDv##pl?II&fYH!g3ToHR;5)8^6iozz^j^}6vBlDz?1s7|3F$90J79tpVn zq%Bp!E%-0aD_F^*%?EC!H1wxBe&>s`VI;latylr1YP@Uv~7Lyy0GHm1U}O-Wj;jvqJd578R}GoQ^AX(ZoQb zI1at^&M25eUn9+|VN;&=s9GER5L|cMV21=}S#|2u`MjjcYGMFyNB=!F-v}k7FR8BbiU%-OtyZrWRez&dXk&E(u!4#XR za~wF_=qWX)TMT&pY;p-0Gg|5GD)*^g#e@)hoN!!c>cum_321)$uBj(IlC0h>zD^y? z2Qsc17!?-KQ&_N+W8vOrg9#UY@cb7r7lk(aRCiYPe%7K6BL)t_bfSyjU$;?gOcNJS<#D-`b-pb}*SZUZA|vY#PNT%T11+U~k^oR(MXjuf#8bubHWRjezGZ z=aWAPE9T_Vw!y(LF^*O()Dux@l+X9_i&$j&2noT-3GV4}#?h=ilJ#UP9#xLtS?A9{ z1EkJ3ZlKRntKR-O<2p3w_3V*0f&|;hkh%7T2oS#2VW{c@3!FYT?_ zM^-kHWz|4|8cCrHj;6%%aTjh6=BD~kk^WBR(!|AX(@ribXo$ZJRygDY{1#tnQ7tzy zo;y@X1o+82s?FC^U3(JE@z1U+dN zgKHrx^>=G|bcYxz3Zs#Luv~8N#lPZlZZ1ZI<0>o++0y&h;jhN)N7p;{0Gr8m>|-^L ziPS_J(nd9WLO&rsb8nr6^m(gNANWtk5kD@!6tAu@J^x0Q6)2yG+*_qQIx!EbrFuf&AiSZ)+3G18pIPvq)Wm85|<$hCbS{~_0 zlL}E!tu!UIpt{^>zb2YqdOR(eFHwY27nikK9+%V7hy4BQ%h&rrfk)MDrv(c&@K;tK z?W^v}bF(ooD_Po-$s%Eu@=22F97^}QqO)Jj`!6gVipwv+_K!iTCY_O+l5C6`g$OQ^ zCMW>v8=3KH3%4BuXS1`*TqJ`xE0O7+%) zhvqdFo1gnYDISrTUCHH%_1Qm@oeR^L5xbjx>e3(C-RL}Y%QnlXQv9_>JBoT9?MH5@ z`9RHmSQvOzg4p=oF{<*Qj%BPDx`Ug+(?sP+4X{~*Ah>%zHfTbxb!{oIqb11_QL97R zY`Z;7g*i;s5qE;7*S$>wJ=vVGjL3Ac{2js#l%t~ger+9ZI^uJP@&9AGtm{#F;i_r4 z+FE}td+QM)-)|oVCVQOe;dxS*c6kZ3J%Uwwecjd7o8!8~p-G$V5@gaesAy4{CJAk8 zcy&K{o@P?HYNQl5qOqe3fXUqtP0rD+#U)soBJXe#$L;((L8m&aTjcD(l~f>y*k?BD zXENbvv^84exJPx^bUvGLqz19h5c$0N%$sGmxTQ6+yV%fn$)-n!;iTPE!cx=_ZDcrC zt}3vpXen0;d3QanYO<;>Kvn^hS-`JBRaksv;*eI&ibg2`q%64kobjR7#6GAYK|liI z!wZMje?^Sq3lW=$Mx>jcMC84BRNVWfNfDM|Guv5e|1&Z4wza;SsKqm&v*SKF_tFj-alkug z`}wU>$9D_$wwAH*zPF-U+_3{3j2k=#x0=g`#&vLR90u6zM4cwY)dnY*c4Y#JZJXXFBey!`BJ{^O}<(dNEgR^UUA&caP#Dh_T=vyd= zUOETI`FPum=wpv7ImYlFJf9r=nW6N*l;2ZTcly z+m$~48*g|xpeuq5b8(U-!L-6wN4v^!6eRY(@laO?Rb>Oi4&ChVGT$mgoxfsF@vq3D zQVyXDl`0rQZ6ZG_5uN9|e7HwQu~K%9>GU+!kSGeOlOqALo8KDEt4}yLW+_{`*sI%I z&$>9`u17|lK|wcEEwWgWsV$TZt_y5W9@{f?5_fl3yZw);<5WG-478ap@4G9}b2Zks z5wcvryyL#nBGNbD%F2F~k^Rc!&a%E7#pxIIuMMrXba(@P)R5hZL?P1a>hf^uVsNvK zfQzQj#nfj3E?yyLH{w(sRZ+64@Q+(Vsb^0nN)EN8%VL`hm!$0dtAKq2y0QzcfPJqyJ=D zcrA>s`+FU~&&>hqLK-qTMg?2q4sOf}68xJHi{<8`E7Dm@&K>ZIYBaJx+8$FY*2Ml- z9vteK$kRTGh>lN#V(&}GTSt9YkD4zPqVrGIKa=Wt(4Z(;2IbPq?A?>e-mM;Ar}lAV zlxVss0$jw~<}Y8iopv?n;|}5A>vA~88(SgGGsF6QdGJax=~9FTi)L^3r*BVA_m?6> zNz{jOPO6F9Vh)!8SE-_A2VwB7rd(~UzSrY$$ynoP%$~kA_ge@b*Rp6ZClOs;fx}H) z>_#<3Nr%hPb0EiNOQGcA`q~oF)W>%b<&jH6ecifxc^&V8a63mP!$3aQd#XM#`tQ0TKS%W_EzJgeov+0sjYJY|G8U7Gbe z)o`~oa(ef86>!?4!cx3(F`+s1@nJNU6`ls~5mX~B35hwC<$yEl24~(eBghE&LuN{n zd-PaOvV<;MglO{I3TBAwx~{`-F#W8%MN*^X|9n1bs@oc7nL)>iBHz`+Q zw&+Wa5{Di@h!?z}MdE!-xCu|Gq)Qj-@(=in$ga9s+W?jNuolHaPrUIiL>NWSt#FvU zMUUu}ii|vdlF9%#u)UhI{LJ=lvwLav!KWCqoQ1f->!~j2RJ%z_{YA+&z)kVixU?y&{cksORB9lerk?-&sFw^DO3lhePhoan2 z--~j7SrZXlOE&lN9ChFzV|-Cg9x^6gV+oE2vid(5E>Ejjwx{;T2qf_Yj-1n_^Jm(! z5m3zL1cf~?;g8R)dHsUkVTF7vioaL{@u5d&09if2?{3R36R_t%V0hQ`;s5Uka?al< zXXAfAp6+(Zmj={aimx!JpxRIFDov*eaa!~G4d3$;SXD}fdV6En(ep{j$8haBDTxHj z(EojGZK9+|-?6HvIH_t^V}=2P{hnNGu%1QsO6Z8p9Wg?Jl`f%p0Y`xwPEIDq0w=)A zGIR^GQ!l`NfFOQjZ2(xL`2&*vLQDpc+z0a^8tZJjA)=efdDK(#^??F3y#s&zh750R zK5VuluT$pRuKmSUC^Bjh`-CZPG^=EXd95jxC+9$OTwsF}L6lA@#3<)6!;)!x@x^pk zWC&Hb_dcrwJO7mbZ{MMX#hW%cP!1{8k22$)b|S9Kq}btTA+`0ka+T3k$eX6h=l|i5 zmf69iL~`Q3y*awG1*g#S!BFrk9tqTEG7E(5MFd-b@z#FInF`I2&|4u~fYBe^V#9&K zaWGGv%bB&Yv%QCQG&t|F3(3~VOKn7-i)BN_1m4Nt-bUsbtb^A|%gi*GN))Q4dyBzh zDOGf5xE*Xc`d@J63q8bb`ePAr*1HSjWgyUbUT#zUpEoQIX{VqF_?LG&@BgvWL$Of~ z#x9KVxw90$-@M)gUiKF?wmRTmo*BYy4}SNWrdf1CCwp6{o4yaO*4tyhrz5H>n5t%U!p-0aBdcUBiXi@jYDu1g(A zlxC%P+8^rmPf6z0Fkog#!k?nM|CkBU*=EgAmB>i)onRF_iQJ5QS7(FcANy6eN-)Qn zIA;cQ)jTm_hi*dE?vGZn5WVwsM5&Bh8Sr=Zjcp6-enn-mQcPVGlkda*C^X}Ac^a=K zW~c0~qs=m11On<#T5iLNJaNimPIe$(A5y;n85LpMGS z71s}WmfMRBC8{RYe``;tU4kh{l`&ghfV6HJfQcc6XR^oscVGMJ*-MG#$txy+u- z%;2@5xn)vkL{yHW=yiK8;CTPIS;aVvC=W{@Ky>+04-8z}i*w ziBV>pm^zer%l#-$aLbxf*6!=ky}Gdd%|{opU1!B6Jc7i@aD-N*9b7|@_?yW@Lr^Tzu;b%EFgqicm0+ubZ>_Ut9K$9V`H zW~pyJ5Pp~9Z=SgaC})AppN+pGBGfBD*ORB;N2AUneByJ7Ebg>DJ(XPTo5t1?1?_$; zm5i_sY+GZ7l&S(57Ht(~i0!{#Hq^u$9B~ zT~~SUGYHO+Q(XQyfWnW~-#cjL0m@cuYU=bzfBT;~;n-jH@-5^4$+_^n04B+57W+tc zE&8jyW)Yz^2V9I#F`BQLKHu1NHzO0o$)KOtDz#i`>$JNOfPf9itX#0il>`i(#EGVh zXsR#Sx=5hzd?Ln;qtnie(ul18F`~R3GUB0ly;lWy?okRQEo$jcA@Jv>+(VzN06G}| z(E)ok6~slBwGJ&8WI~=4(C_H@v%Ojd5;-xpyi}?8a_ErR^_xF%t z@B$Ybdq?yG!8R>1x-Iy9-3)anceQ$8W*ZP<{L$w>xB~V3D=UIKeLng9=dhata3jhx zYAx{RsX zIhHEmrx|y8YXc5M?{O=HHgk99Q#P{5vBlLbD&lfe2xNhD+x->w3eB#4bT7U}PL&6e zkJmV0jf}VKVL0TtJ2L*Op0lLxPb!2CGFCKgo0}9kvLte2(~A+|a{cuS3TWqnpOS*P z1lVSngJ7WV?rA2<-#xYkOTyeCq0xKVmV><^gA;duiI5dHvcuuhgAZfhWp$)2C;D=~ zVnd3d2C2w;kyb(>S#;?_r95lT(2G?VUUxfWz4$t`p*Z_ql$snOpk4$n2CZ*Wt9p#Vru9diTi~TY!94 z*IF{JaC?JN)(zrs8qPf~)&^ZYqM2EPdPrF| zf`9vB$JW+#9%HSVo55#e9Bu3TMd?I`QRxXVP{KU^X=t6@JCTSV$x)Kgd-jy!t zz|J#>5iL5u;0g=L5Gu(!GY3!wj#)Z8FC#%wTm12W*-@J;2vStKFV(5d6j`gkUDt0a z{!Cgt1wZWmzHpT;07|R>IObJN8;-UbGH`esuM|Pr+GX19QVZ)CT-u){@6kP60C8Q7 zKo&629wTof8?T<-=E{sDLm#iy#I|Rw%Z25UDH@=aT?EL013jGLdPzT9Fd_6}dcF?z zrI{Lw7t=9;#xeHcDN{ipgw-VwsGwMsgi(ZajIx>>SfF4EvkibM0ZMUp0I)X2Y4qbH z_pXb+kCkI2 zRp$zx67DV;pijoGSDoyGJ)kJc!uS1S|ipZ6fN{BYM=umeN5H zkLDfwuFIvg`1$-(k8k|)fhVxrHvT*s!!SLw?>4xN9Q$jwQ@-z^!A=E(#zbT5)&i%g9~$oR~Oh%DV6W ze-sg8qMxEHvWyKjhq7+5I{Bxm_OCEm^xk3A%<|1&2=b9+W^IKHdbY9v(sR z8Y2Ch+|#9vx9nv+o2Yd5igwb9;uLzMI03r#uy`d}u%&qZPt;=oOYvnWC@d``=foR0 zQ(=Q_(W#EN-)-BK0Nm(z0iNb8Qf+Bry*9i}(EFmV2mhf%Tu_Pp*i2df^oExL5du>UilJ`M)-sk6BTNMDlQO-o)qW%6{Zi^|*Oo zg}%a-mfq3M`9(uk4{sqLhFVKhvi4>NI9U8~YDl7$W>De1l+?)K-=|H|zF{n>*V&Jd z9qwGgPq=F(-m$8iH@ic1(%LqiEmP~b)thIhL0ET6VeY!V zwx$kaRnhkaq&z>G>3R6_u7ltPcN3LNm{gxK-BXqH65Pqa6|G#)b<y^tZLIt}sBVbED<(VG9P^T2?Vvg!|^f=wIj8PIud73$zG26vlCW81BG~^^t0hZi3EzqO@8v)PNO8DCscFY=)1&L(;X_JY$y>(9QQSE0a}c>51qE0=x!8sl&WySL5>5XM z_TfB7*;USX7i?r;b^ja-*l5kROKeM2Q(Ipx%KsAAklZWt?vfn zD=5y(qf7R+=DFyCWJMeHI(sjSmb;ZTPZXlXS88=s7xK+zG%85jnN{ zzr0ONCL&4ElHY_g1Ys^wKoSh z-*&H$;pX;!*lg1uFrd9wu(F;dc&Y$Oobi7ld69MY=jh1YT zv`xQ1JOIQ+A^Ojs=eG!U0eo+6Yo*ulRkp^?fy=&D*7@&=!g^vWH_dMC1ss6A|NVYi z4ipqwb$k;pww}G8bOz-9jCy1qUD!OG*@r8$o;ldbZqHJsLBguGGOD)GRVibcB?Ib{ z5(_k@*A!g<@s3zyos%>pjx(b?^0fX6@PaN<@YyAAsHe2ExF;#mUuxV;4AmcPy@^fK zEPBs0Ww=~8>%_kkhZBWlPP}nGv4C+QE zVN)C^$+Rv!>_2{AImQJ-z@8VzZ=U?lMBw?xB!IdZj)xv)Z|9^4?_l#()pX6BMQm5* zS&!inxt$iLLqCj6Czu~9R`3l|=?4OYGfL=&A$y$F4ev?gPWs(MG!l=C5y_qJ!F_G{ zmuO*VRu0tFc@xxX8mn%v+*NmTdD+BWfeya{v082=CIlm)NojUL->eGxhH>79+Q8hm zj(}hDjbshKi0z%jZ7W+fsX8==V>VpI>j*n+V*d4Ypc(0@td-|O6eL0tMoeO{7rpJq z_^^pBaIWh`MiDbr&$5}QV=sJMFW`wG2q0&Tuov>ZPKc>kGrY_zeXjUqK!9d&=ldP0 z1Nrua4P~!?ePPQrj0qxb6VMnQo~#Bgw@-^zS@8^u3{FdG;B9l)keJ}4Qs74#CIRX; z&iT@8D>0-7M2Nic-5=%i_3!MI6A<^?5&Lpn$q?asQyHIw zY;Ukr{eEzhDBQUa8yaWvE$Z5PbpNaD{o$qF*F|S7>a$H&cG4Mudi0JL zDq5AdLElLl^mGWH;7EC~ICNrjOdX(~Rt%?ZP@u6L03^oK=Oe+RrMoA_tlwH||50c9 z0HcN3`MJ!(NB8vw)n6{pt5Te@JE;$}kYT;cU-`~SxLsZZ#xjhI`#xSGtqIZk zv$uA}bZfu)(^3Chk7N)ZVkpk#kGR-Cj6C1-l~veBg8+|4V zqvWg>gL?wK=oZKGg-Esl+Uoe*F4i8q&qx03ElhB{I?#a375;YfqWL|vbs?6=si(4-@ZlpxVvT*F(z0+y6w5BybgF8VG{--N6QW}-Ow`TK2>_Id%HiOPzj+3kVi ztsXOdzTNPVW;9!p^bMonr-9!G@kp+Br`~tsb3yhQMZDp+OQ}4LU(W`InXgJI{hOA7 z?S4!tE&47jyIoE@B9BJtY~}{x;`tG$3GO96xudU*-?jW$ zKd&rbiJJ?c#?Y^mPdHH1b^cV$sXkU6GzQ9cd?~FxLIRNl*)-0%W+tB;GpeW9iD`Xi zc)fai(;cw^)?=JCL_-H0abcP3dUkkIQf>3X#;)QWK#+z`B((@AqmbopYRKAgKTdJ~ zw}oCVlgB@xZB;>PL5eRUQ=1_|4Vk5~M4l8@ebVgK56iZyHL1$>-z}O1cp7Jj=S62avkD5A~YVpG%ld-pyoa1gfMa8=80}KU-KqTsgE4G}Mpw z0g8YrFtsojx1-x!eJ{6RmsM_|>5$eJ#(IjO&lD>wkEjYMZMOc^N>MNddhvCa;@`DQ z_PA@vapcKXlO6fAG>K%&> z3BFyQ@zB8n5XI1PFwk<$OvUpAhCJ7$wRpnPCO*3-l1iPJ&}F6!;(R`+-q-4ez1uvD zr`#rs!3Ibe8<-gzlp{qmSjK!$yd1y8{COMPndLEYY_tf_jO)rn;rGHw?cSeY`4Mlz z$sB~h<83J}hY4;W=g~yT2M&@XkOw&AQrMjmj5$H7XEjSBcn&RF0sNN<@*bt{4MULeI$_Jzh^8ni9Y=zrNr_mS)L3E`aVp2_0zR|`#iX5 z#6Os`D3<(lS3s`C0Y!hqZ7%oO%5DY+oCFRRE4x6{S%c?Q9_|zu>oP$cRXkZYmnMOF zylP+2gR9G6!e4X3Uv;@Y@4I`b30f>M6oibn|atne3W60V%_lG+{9|)WB;zEz&ax#F}}PbNdD|n1m^9MXCe9*{@1H!=|&> z&QLuNt1p`B<_{=a2EC77Y$B3`mEzzcs0`>a9Jk?-Wfkg%B$$^kk7HYUR;`bButVt5 zJn`O^CaLgDa;XeLWGX0em^ZjO?x+vncXz7qbe#FprrI9rJOwpkI2mhL#*#)~&G z9+sR^=am?U@iR3=>wY3(Zp|@*1QZfR)m!ePO~Y@1mmFmJ z>*o^SbhowQ&a}hZ7U9}L_iWD4TZ;V`%_H-e7c}HzEe-D64&{#kUjYtQo$ZeuO@fB%yL@b+EV|rH^?zIho z0@O3Jhv@*NOH`U6f)qA_l9?ief=rqrj6yUz110(i9Zid2FA7Rjy84`|Kphj~d%0pT z*q=UCWUm^Qr9`JrdEhFO&x||2vF054;dS$NzjzR8nzVO0Fs(O%iM6s087*7muie+GJTV>6aiUGW5P%b>t%J4{_f zHu7E`8=qMib_$9OPbi|5P2HEOB@36rAt-t{{Rz#1xvE1I?>zw107U6jSF z&Po@j7og!+Ol73yYG`UPxt6rPHIjBe>4(1AC&7lj>FAJP8nt6J`pDFGU8`N-s&4hQ zdy(s&ONui4T}!%|IG;~lQgLlb?<5ZWLonOKal76Bp}}6g=Ci*Q8oSzfc<%&VghT}n za>@Dyi0O0qDGIQb$e8IQ-72nsaH{rV21r-{rp9|x^QptiJ)jSByiSzbNTWtjquJJL z0KpUwstt{-Dq}g8X0bQ;LX&!w*DbavU&5UN?w(wa(r2%A zGcoErY0(z!QoG{tFlYE9-Sxt!;OSig=C4zmm00_t#Op;(AJw09=jYe4KlbyGeveM| zSN+{Jnsh+TxxLdkX-fiTZqR*@}-3nN(3 zgtDs&p;yBPFM*6#Is1&35gF6UKf8eS9zexvaApNguB%Kjar9?dSFQkdT%L31{EY5po0eNFm z=i_>IPL+_h;$+g&kQLefis{^jl&W#N8o}c8dS*Y6Bd(mDhQANroDGk^m7ahrDnM6t zc{=kGQ95c0q`6w9tuPztPY~fFZkuavF2%c6OG~cWslse4lI#-Zd{04-Wz0oLh#z0M zz0H}_8~$|lSvg590|PD9Nv5ZBfIzl(yyC8!8l1L}Z3E0tmnC;?UN8v$&)L|T7@vcI zDp}abcJ6(nz3CN#NT5U`-756F9(#!@apBzV_5c*OiW6w4q-MZc?nBMq&av4VJlXjr z(~pmxr*G0_><8#MTJcuaZm;oq<6E3E4Mod8%ZZfHJElWKja<#a+CyN7&NeZ1(f);d zsu2t0%+N1;oPueUSK>VVb|NNFnYd3%!enAGxH(2VoGu=k0tgy}GYpAMv%`3sxB29n zZYw&BI6Gp(I$8g~H%Fm7e-*ju@qt4uTT2AhcUbhr)!fH;In(+vg{^?s*Ur__6JR1|zYd{$HXrHG@ zHlA%HK{l5069(%Q{HXXh*ca8`#MAHO2`NaRQJe8{Z1viD!$X)zP$(=q?7og)Nob|6ayJlo& zOS?A6sW(M)8Zh3qjzOtKw%275%yT?ct^B>A!wLdPu>n){A~JV@ES#i7oISIuJ#t`z z00N!yGcbNWY~MJdgp|F8`w;;%XyQywLuG?By=FkR0)ZM%SRnZ7{7P<3Jj+-9)lLx{ z*pR#eK{Rl9?a+VU&iwX#*6mWS+SKa5HX4Y_%-%${UR&P*rgb(#1L1_V*td18go{LG zTqZHIKr=O9F+q@9?0KsH+Lc@^nWvDWn>5&(F-%`MjSXvU@V;j_{$hE@Yz177X4Vdl zEd$;av-?e1E)n)Xo{*}WzMGBqm3ghHT|-Va;GWS9r1txT1vQ-*(#0Wp_X!(~&Msx7 z;k#Y9?6$`tzcEI964z920VmQVAl$Pq+r!OA(Ii*JM1%*oxTi6?RF| z4vH=C5N$GlutmOHovy7i3k{PH`vgG;s-+!79rK>3j%9tVtu)ruU3&sG{88B zAmH`?hn_q|*Qr71*~%@_*u=3?`c$`v1lo46F-L2)4SoNU;*FA~9qDHwWU!`S zOK=A8pYvdd=I|&Ou$w(Ljw&mMV{Rh4)+^oZrZ`~U&z5=o=U!s@9{*S?6ug`-X?a}a z7SL`7oYcDM?rFJ(-W~1z&Rx{X8&@;Mj-j-=>|N_};synY4i+en)`oI~%4Q3$oBe(Q zo19INg&&q{2FNl!0&aBz#L&^=+}cMd1jby>QS_m*XFnM=zH-%6#NlDYN&?^|BVJy? zqGCJUD!sbo%@XX3cbCG@@E`BNKh|BIJ&E^B7O;S0td`%uj^BxCoNkG0&K=+Q_P~Py zWc+Vux`7)Jw0$TsGLBH$9m&TfRksVL-Nr>`X^UB^pfUANaCQ8_HuF!|o+kSX(*UNm z0ubyj+pY%%*)kqZP(QYlp=nX9zU?|&t9*Qzm_-R>so$I0l7WKA(Zg|YB5-iPL9o`} z0d^HCTPz8JoPvrz(A2>IfB$}ZXbMYaQr{yv3`S)Mp)hH1kLUw6DC9$$Ly#{GPtEQ_4ms|Bg4Fm1ImD@ zjWvb4&X#{6YJS*FR%iO#h)dow(gbA*UDrktLbm z$IML{VuP#bA+DAehcxli3fKh2KL0T00tF?c{PY7{jBUhe9RQgWoXE^pnD6@itjv*( z&Ta)3GDMOT@KSf@{K;lO(#_$zWRts*vs?J25~y+f>^bwdgv%n&M|JK{FDyz0L))4= zcHEob@Zo8a|4RYxae;eTv^3C}Mq6WA1E9WJ?^FD9_zt0>9H?>T7Bbv^b%z6WBJxLF zWq5gp*=bq@h;c-qMEo2!yAAE6GXRz*w(9v=>vYp7QVu)RGR-reN>@}#s~)P7{7|6dX~UxWg3z_wU7>*QM#L)YL9UIxhot z5NPK24!FXf(60=UI@$!uqXIw^FCs=oS&zQp_ewF4f1ewTmjG2shonedZMp4P4Yuj5 zf4IQ{4RE~zSf=3aq2I=k(~8r~orcy!%2L0gPXR=CS19Th-t!i6zLlh$8y=prn}m6I zEa};6N`9o4l!)1kJn1-TWi*O*&8G|Ng9$1YqXj!>={ro<%OOs&xTfsd=BlLGr!N<3 zrJ2uf$u}ga8kKP`fj1eIo1*d^BVQswAXJ8Af1Qa}&w0MhH>t)-MD$NJhRs8nVaRlVH2lj$2d&|GlMQ>PFCddW>HPiWj@cz|&4O6E@Y4hc4 z@m?B+M&Pv@uvlD>?+Do0d#W&mmK1*V zV4+m$ag*`Jcomi14gVnyoy$Bo<{p>O+wUGr2vD*Nb9i5Mb#JDwv~TSr}+f}Gkd<-soAtzgTT#h>S$H5zYu;kQYfcTEy)axEyi?^7yLcS6ltT;O7EY{ z;`N(HfF{pdA}?z?)tF zs({v$8L@$GBS0&s13R+Z?-}?xy^#L}sGzes=mE-rGPq@#KKh8<8WBRZHtFJD>HoD` zvfWoZY;!^qQ}mgq3(?)^m8}K_^NoobPwSE5QI8}`b~zJ zEI+t>nmionUoifs~dB>ShY<}6Os>0V|c*Y4AbpSN{(4v>1 zZFhY|Qyd*hcKG(oiD-ErxuvpGRHUE0Hw6Gmgq^VruWh0=_@$K#7pGG}ST*WBc`9V=6j{kl+T~bq1uS)W^8d zxRs1GFrf02MjTm+g76!+I-u-J7W0P<@)Uq#T@e*QN|zfp{VATDjAV-r|7;4imX66# zD?_u6_W*$Ac!?aRYU~2zh=f*GHLEsyf~V6v8c4b|{5G#2S!_5o04nFv<`ujpU*|Jk zR>1R}h^%`g8go$#Z&Az3bOsHukb$~tAYs?8Z zY$D_E#DsqiOjr%3whv<2Y_cnyvlY>U86dp|?A$Fvc0pXf$X0$0#Tl&zO!S?!Al9QB zLi08M&=MC<0(XzJ<@BZl3vVts@-)&0a{8S&;pA1W$fZJ)-x##+8K>0$t)zYYlV5k1 zb~AcPO@bYCbKL^!52YFn4ZlXES&PEWrkOIY{WaQnF!opIJm3|E&ZIYf;6!L@bY=tp%`CI$(P8N_EMTO!O8{fV`xZPeyzK+79*#_^V(ia??%$(w(zHaH$@^Qh8j zdJf6hz*MmYapMX@9IlI@vBcNcvv{T z??6<0eRJZMz`WtrBn2We63DvRu5d<15uzIDYX-Z(cwBF8*9TMS{ss1zmfCGb_=K84 z0wO8Y`|bB3qs#OIO>ht{G~H7QB>MFMj*{&1O-FWeQiTDUhaF}`GL?|8UE}e#Q{=x* z%`ryW#3(I+o=(r@BLM8XdYbY{HS8iz7luTN21`snDg94p_NcXV`km!$zeJr@eBdtg z#9*hOw>vJw^s;GuWLjS;rSq1_uxx3b!`*=Y^XYz2P&C;lYx^tKZN|?I^Q%BdU?Vwp zK!%%!b!1&JZ^0T%`(Em%;YwXZ>-q<~wGfEW6G>R770s%uL1b`lKwi*5y40qsk~UT# zl>`Ek!zuvcnT06fI>uq+5N^^Fc4vGeP#StVtOD5ED$?&7W^^KuxDCa^>y1& zWx`=^^sNut*B#r#;xAVIpS8N=o(w_QXz?pZvS;{5($H*OFrE}D|M+Q!@{T8Fj~y>> zxJ`elCKBm%P$$#Fp9U8e8_9D}5EBZ6HNjnU8xMgfQLeXGF=~Y3ea;LEA0kDtJMJFo z`FuL9TXJ|2OYrxR?U?~9sEic?d!pX0sX5b&gKOEIHE_*=$`Q{wJ4`2y)Wb2ixgTH` zgaub_g(2LiaEO7oH_^gmhDRqAaUPuTkU%#R{pla$BSxSf*V4oyp9h~8I(!v_e>|i5 zR<8-sG(+2s=j*YLtx80ch_8+gS1%?Prx{I!t*L$_)xG&qDg!_*(AEt@r1%4gZ^>>7PbK?i_;B68KtFccI4nhlf$U*i<4LmllrV0qKsfok8m2gWFZYidM5C4`|wy3Oi z0O_%7xksX8XNO@BKD~QnwtqyfB#Im-VI=#ha8dy$7fQ`=4%$!XS=s#P^~lBcluanV za}etFY!rsuzyEPkIh#IxC+>+(`#`xjPoFwR0B!twierxGP#Kysyyne)VV|Ph(D@}? z*pGw6sm3uVZ5MUv<>fR*daKKi%uY`MQ6yb8g=o**Ux=ps^%cb#E}Z8%M`#$%Z2eIF z%M1)PkDM#j&oH~)(TO&G%QpHWE{e*;|&dn-qk4MT^LY}r>w-MgYAO%h;oJ?0|txe*szI}P4Gv=`+#D9E)|5}uZQ zy^56mD-oer_%J(p(mt$Q1~{tFFim$0y8fbp2WJ=);uaq|vmZXp#b^U)7O_q>CS?H` zB6g%XH2^Rg9D1fwjtmLI`g3OV07Hgb2Nx|)(^c!}5uuLv`TM)USC1O_q;dCIQo7U} z6+!;)H*Q9O-d`{sv!`u@1=@v(`kHHd{861X4JzpivD(#M{tKh~5TJ`5#WXd`u)J=; zBBW}9(=o#IaMLl*$cvm+mbz5l&xQ=a=xRi#!>BO8g1c?Th8yH)Byi8p+*CNrp>6Nr zzfmy=#I8oQ&vs@p0JvMz%lF1?{T0#QwO7jC^crA+6BE=sL*c!M#0tVypEbiMiIqXH0LmF8c(zNvuF%uE$ z(UZgb^PnqUGhQG>GT+bbYXlxI5}VV@(UnhGo>yl3v=_$X1k`Mq%VzzL1HaC{@(}mm z1RsbD>A$JI>W05^>azY1nn7j0Lju*AW~@P`I}=CV>^xT0t0)-aH%{|>8IA|DZg9nX zF)aBhia8Sh^|SyoUK zjiQ(;ib5d`7&0Beh2{0f|BIA$c7Thy2A{6=(XM43*+Alb@HWrP~p4h2`~K zV};w>{Ba#CTXSt_hR`K2Jj9LF(WeL>W9ex{|mz>^Vws3YZ+WFmN6sqr% zTo=t5XrM2Bel<5`{IGe#|5Li#PsA)p%wN1`sk*2@0K_)8N&ZahE^B)@v@&Bs`0?d$ zPb)<23>;~^iN`*#nW3YnssxN6Hy7tVumanPJ@=j)3&R z#V#w>v$B#^SWx5Vug>qp6NvVmdEN;(|GI86UUoVsg%oW7fUC8ktURDXk@))~_hm6a z0^Kd=jrEC1Ez-zqtz&Ux(psuQAhj|F3Ps{n83~doB>b2_N2!-6biEicsi&k#bGF(b zPisd@gH8vnj2X!}GUWv#6Z7|;dbV}R=#K~uP_VeaMvot7W4A5zd7bQ(rJMZ+yXhPB zKzj~EhbL84D#WQn%`KJlCm~EJI+}I2Kg`YQs@>kn-1QAkj-RU6Q-J{hfNuhaye%zG zu2%5slB+A{-??#l%1l**hG7`|d%gp)(!tK~x1VN`h<$pCiK;{RYv0^o|9TShzM%CW z28|js!e!;6ARP)G^xH>hgY@i<`hE88`)du#;~%DI#P`g;FDeIk#e7jPOA?hFTS-&;;-^|9MY<9`{f~SkE#%UM0 z$H(RG*mm>oqs72?GJJsj&Q;^&3y|5H>mv~e z`M%rfT|!!0?e`0z*+tT04GkESpS}pmEUePhYkd-x-pczI3dLA02&=`Vmk7nu*KkvZ zxk*g`4k^+>ceFA!rbtm9u(!~c1Ka@scVDNVQOGTeMt)qLybv3EKO@uc zLZ3a$mm(AEZ*02O*S}|4vN!Uz!ZHI*&4ZK!?wTLyx!i4`&*hhyVC(Sfh%wz^q^L8% zA(4NM4hgw>UZI#~N_FMN=Z{Z>OjfCfzK+Pu&TAVt>}?DV?3_s=;rf2xHqg`gZRgC& z>c;H6Dn4ICrxKkUjEEl_rLEsOd!Y1et_)dqF#YM%@)Y@VWuTtTR@aH`u}%rM{%S$= z?c#VjYJk=h{XnKopq`Ddt`!0Gf7DxaFod-ZBNtf@zFhG3QvO@1qVIDo{n3a|K}5Ai zz*gfbQzHFG_bI*UkHB_UzYB*%FR~fD%q~bHTBS5B`8Us1TN3_GZ!El2_##-}(~6{- zJStKeS6Rv0_2VrrS8;?HMTZ~}OHQABedhF=TlY4Q$;$d^Ud3kLe$}SeHf^~3*Na9V z6=6CO0qgB#7Mmv1Deh)#Br7A*?N>>+UP(_yOTc4(SvQGF)})i^?(4S9=M8M0943j{ z_WYgnI3zq4J#U0`l4P;U1Tt#5b^Ij@qOA9i-+%b+IwJ`65w%<^R1*;_!sq zmXE=HRQk|NBJrP)$u~1ne++xsKI{^WME)E!vS-==15n(kI7X_+QiOK3uU|fvvoC=F zV1xgluY3b~rES(U#u5*oqjAv+OFqlbIh*wUb9XN#YnDi$lNZ~xYkWN|cWs^gabaHr zJskr*9nf!|kQotZzj)7D)inH3S<>5@+_Z)=;fD>A7dX5s z`)WaScvZI4*gj(-%}>|bk7@1Cv{5gq&?jRQ41R@O@FJVR4@wd*7rf1Cm$Q?GCC;|+ z{{)^9f?+wk3bJf~uGK#8SqvPh7h6v5hHMcHOPp%vv%q?wW_vghh1=(`VspZ=Y<9`t zId^~YSg9@G{`>xiY&IVN@Fq0F#FTDh+kpuHLvYxe%+!<;dk4c2qg)9DESD>UAy_C> zmcdh1$KG@DS<5(r0L!NiTslSB8GX@2KUu(Ck51mTdc0ItPkeguujgJ$y$Xv){km>) z`;4L8w}i~nywbLS#qyd)Qv;f2JE&L!y@|_}dTRD)Z@P?NfT7;D7azsRs?*)hc(9lC zjIU40DuBhH*Ulay^^}jJQrc%vqB1IK+56W`QYKuXPuX-wmp~J7XY??aZ@wCDENBpNkq86>OTwYr zw!By(-ksw3YX$F$xt#^6%t;JyhNX|L{ zc2V`$f8G^K6Rboc5kIdPui2PX0KoYNG421GRaC9l&av)pb|fy4-AWLV{kf~#BqT7DCBFhr9N*8Q9zw?W6-cDv8 z*KlS`(K$U~+Vg_kGfD3)sI*OfgL>@NktKzS=Mof}LFk3$P;zzU&k>=r&N?ude~+7_ zSu(vkeljfX3opNYQEwEMWD5l+5@NOv3{qIKwvKb=a%A(+_xapGpU)lG4;K5atJUy0 zd8~RSfn-1=kuWOk#w>br!&A>_sEMVQzA>_U6hjgk*D1ELlv{ryJM>X$lHh|go`l9Z zQ;pqdrfzgIPr7*zxK8;Jaqz9y&EPQk=U8u%AAQDBxl6Si= z`zr3x`GRNK0`5V^k~7pwxj$Vq&A?Ws$t!) z|20ViqZl;m$CYD)d{ofa6pIz_DkNr?g(q}~!GD)h*hz+^`*!uI^c*)E=MN*|<;@K{ zR*uu7Q*J&_XywOaG3bdyT~^H;%;gKOJ(Za{$H7v6L5MtojzON*$^dr&Ky`i7nteAu zo9MT6N`R8I85n}Q#`tC@6{W`&ge)9{{!mG5Xu6%78C6=+$K5MW@p+;Z+ozb>c58QK zq@~SB%N}(e!vI`NO;TcA(F^YOS{`@B!#lF*pt&1m4vT@uIs95J) zD3OE~=Z6;OAB>OG#S=rU>=(QE*w7Rx%Dt~D-xu?GwTFL@sRGreOZjhEBHlz(PZJ{D zimYd=V_-_8_prw_rM5y0Lro$w@nG#viQ=y{IxZbdh?ez^?-K2Iz!{RIL5 zGy*AxTbz1^M2f4fp;jNcoD=%4@>>)FN5YseaPB7LkuZ>;kz^XyQ5$IfZN;W~K^g(A zPedD$G3E@sn;~&9P~uk}qVMo%#Kxy(scEdz8bOl~6626)0vb!j5X?!s79?F~s)-(+ z(g#1cpFE~ol9_jk<4d?LnrS#B+Js0qBk9^u^qq8!9I3|UBu39S%!*|6t@Hft$)_?J ziyU>j>&cZqIpJ_P~Aq1If! zaL>O_I~|NkE2^wx%Mqzm)#B2N)AB019v?QqPT}?i28~)jFKFfTf$4b_EDoPa!aG^D z=mE494U5A703ZqU>$(fYIhBtuM{Pd1z}nda0C3~)m&tE)yawBcEEwcJ(iQcAw@{c> z5%DMqhT(+p%$ci3&f73XPIrBABj)7pJ6Jr%)JETPu>Gi+{_R%+H~xO%H^Rl-PTu%l zQB=EU)tTTa-jfy&MR%Lfe?B=OSBcC@<~lvCzb1yDFCN`3Z;}$mL_lM91&x^DsE)vb zmUKg@IQ#@#hZ`A+lRmNp{J8S6fu{1hWpY}{v(PkCWBSkEPq8v*_QTVDlV$jJE5KSl zce&GN^8ic$!vQ^|rityp_YQK_hi# zb49*(8Q1G?CZVRR6O7&yFt(eh9RPr8=i;%_=>X9R*!4WI$d;G-TO*jBNN|8Lme5v=6ueZ4@)Fg1f{a@_4(_vH^@rNB#0RWe-t&NW_c=bFrJ}w`IK{IN1 zbTVGNEXc>VWkKHx<`e>y%z~=Dr=9@-rVMl6v~ZZVBNPkE>sRl)ULy@^>oX_^H&3-O zRe8G2E~+l6Y>-7*Z{+a5Idrd}yfem1FFC99X?;#<=+dF&Gpif#P0g#J$dtjx|M+%ZHvM zMP={3vIZkVcyz>!0XD8C8>b#@uIJLhCmVj7H)Mimi>K<~lasseS~?ofUORH=1TUnt z#mtfKuV*I}WhWIqzy5CHf%&#>Y9>F2VE9^k$}ZVNlnx8}9;c&x7y2xwTuQbJH$8(t zM~7I`)bwf;Dv|d}JzMDNsSI!j03=kF%K`2X3?DrHB6zUFmM_QlaoNXy>%KiJ%n3HL z>Y5Mo`-o?8m1SE73>j`_E$8x1EEhMXQagS{><(YSA{Xy3-2GZtwi9ljD{YcTL4J^* z8B|$&jz9TvQRcq5Pz(~~!Z7gFH=SYA)9Hb6s5bDx zz`L1{M+qU;`|8~ys41cPXH)X%lBTByga9mxrhJ`coL3EkG)MY!BmyhvWzcahK_;h> z2o+FlWOXhQAiQ+VJ4vj}czs+b5qmJq{Fzom4eac6G_U{oXZj0MBHf(CFeA|o2s&!) z1>v*?*_%xu5lu54O2eqOfLUQPal`u~Trr=B?$#2q?e|DaEj@DRDGYE|ny0gjEEjAo$DuHy2Oxcegh-pi^)-v{(W)Ht`F~>!Onj z@4QZyrN{CpBF)N#v1o!{_aE&^RC?EhsX8S5felmC&Q4lh(|G9e8(Fi?_sd2P^0Zc_ zo~gs#|F{^c>fK+*<%GrOjv45*Xu<$18Sov6Y{SR%){n&zumFI6f4*IkTh$E5@1GAJ zH-BJz82$C13tjx$n!R(`zj+^GGb9p7$QNN`XAH1(G@i3|^yz)~002CWVE>or>^#g2 z&2#|(&9^AXDEnpYx#K%-5u^$Kl^51D|B;_wwtmuq1sliBUONh*97~lg6qGkL<|tPN zL8U3PFsR~kkVwc~81tLnJbYi( zBFpPQ*X!di_I-5+1>re%9@@U6NCE)>M35w*rYxbRjEvF1s=JP#EP@)D1YZ~7#oSZX z_a=rUFaTZG!_9UwJ3{h-!bC)4M;bZp^`6?Ndanh^V2#}rRjCjQN9?-;t|rOSiQoO+X%T6*};ryDkp`_TCi000aIB|pv3>-by; z3;p%;f@DQEYS3Q1%i3}Lao1!+NF-v})WF4){AC6D;IN9jby+oQ_sOSfwCd=!@R-!1 z4fBK5@btG@1Dp5f<<5HEC=_zA4 zk>4JsFWWYmq@y5?GkCIhGjIn0h{ck`h-{vRfW{=Z=L@adKL;l*+gDOl&XvDfI*CLK zo!$Sy*3HZ}xMjV1GBNI#s4xhI(MTi;fyAJYCm&sU$Jlh zNr>&da$xBGHhipyfjT5nkwlVRU;CmU?@ZGBS{_%)tJHAAjIy%%Hz7`8G5O(2_BICg zHd@cRm6lodks{slDi#(iFG8TUu1T|ZOvxz2$kp=^i6ONs$D&Xy0smau`*Ug1Lx5ft z=Z*XC%%f?a%fjwzSay9|ywDg6yG}~4jtnUuy99=_K3s)DAdZcgq-r*?p0o-syOhIf z{Vx@ZA7yH%?VGmBVgdjRiIjC7gO8>}b+b;EF!O!&ZWIEiPYg6ChZvHAkU*vr6OUpb z5oib&0{~!H0>csp&P@kv2f;!Q=GV!!e*ggZlA5rx72bL~%qipBIxxgWA@E(1cT&x7 zVu%X>Xb_}_mVP$K=!g!sEo`qn?Xa1pqmpGcRssNc65*4w)F)-BOKb;iav4?3>5y-G znz@%6s2u>%DB`brd#ORh4PaVNHTU#nn04|PO5oPTi7-IVswX?=_2}fB%G$+4eGF-u z=kXihHLy3{HoWF!SFZSCxTm)zolex#*Lm|gz4`c!YwrjI%>F;-85`3F4zk;}_4Qn(@J^M8vkY{byg)u{yvSGz$6i>hZqL>c=|lIr%IpTM9%V5wJh689&fn zg%5^8!p|J(dEsHKdM$xr5S3IAl~iDFuJ_g4AeE$e5SmWxq-R3M;xR&g3+bOk!9TtF zcGpS>sx1CthirN7HOFeuRx_V~S)uh){$5xbu6&IE%?N*n$jz^(f zm_3xQ?o?v@f#`@%cmKj`z?Z%OSQJVY&@XCawWNcAVFiM4y7{PZj7~^GQi!0(ra;7Fbwhvt8dlR#rtALVpwT`tFFO7V{>nP>G54@ zwNY+?>qtk z&>pxGP}of_(nWjt5)oc5Q-y&eogDPp^w7U=6vo{sj0-Zf-|ID1Y6c}d3Nz8vqsMyY z**9^&-hTrCxc)Y2-ayZlBm5}@rI2A+edE^`A6Br~wg$TM2YC&3vg$Oj=Tz3%80boM z9B;Ywu)Kl2Wnz$kvEp&ew1_g6B_?e>*te(1->Apy&|xADH*!_ty{q z`Sj%36=*b))xZS+Fc_p>9|&q1INOgsj7u->>^wsvW{&b&HDeF~r@*0Ztf!+eGix_Z zB$oVo?xlLb{r;QO7wA7d7LxI7R}f%U2*0OSJt!a#joNC)!|Bt7b_@w4}qn z;#@~}l+wO~6Ui|ReEvqCL9!TS5DX{RwD2L_nTCFbrf!CvmsE0_xME?acvJay zD=+nSUg|(2%dI}cTo?uo!ZzUUp(}GS(nFca@`-;KWZNR2g0T!V zIwZB27-~Wx2?&6SuKb!M$OHf|@NT~PyIar;FNThHLm}|(dL5dGZo^}C)CG8yE|cJc z0P>bMCJ@$3l2k~44O?!={Sojh!ur()G| zW4g}Cl{12N9*@W>jL0hdVx<4t(H%5`r~ZDPjK}%em_UX z_{yvR_YEO~NjR*sz`ZMK2LL?0pRjJzxMtMe;^o4jclkSw0-;JL**}JZe0|2nG zHR#<@;8kq)-c!%IlG^Rf^|me@tz>>BECy|5qMKV%qt&LWm!dT_xBQng9a72@aG3q; zCUs?%DDT+&<5K9=C-GfRg$#E7`m^EkWhG@9g@j);(eLopF!fqxs!wyaF?6ud4|KEa zCTf3txx*ePt5)UR`EQRd3cVc%L2&S7pU^vT&I7Eq)FnLh4L$S?zwjQg@%f{;3Uvq) zQ|+C5;49l3`Q~^#0=k(Fb?d;OaW;xKxXpE_<~r2oRSHKW3NJ2rn4A4LH(MZ4pTw-SQ73x4sqUennW2<0s; zh7WP1%B7+emDI&0%1lil?m}x32o&^_g|h*--th_pl{SQiO?reD`eofRUY+ zPr7(wEuR}vUNH61x$`4u*YMi*Lgn1?LgxD>kpKX2G3$K}tM+*CG#U;s8@RW5Eh$(l zGDeD2odgy7cL0D1Q8T&=V?69xTz*7W z;mKDq5m^OH3dzAp&)HPp%hK4@)Ubie+kD|+d_f1f1u`D%Y@#2XTdWLl2LRwPXd@aW zr?M6RaPn2`$`Sr3B(kWc!BUToKmY^+H1P#5Q*&RY=Kgr&nbb~xB`Pr@tMI|spUW3m zSKy^{bu)Ex?o2Pi<1s()owfb@8@jq=i3CESkaOk*_SO)R?|K{_NBmKK2ND(YUwpP*cm$583F(r+5FcLnGc_*bce`JAoLmtG7wcegQafaJLx=1Z z`(whIH`XG{ie}uqbSY#OlhAp;I=r;y)Kb^_uit)BP^rtU}tqDIi!Blf&3{cUy2c1lc5!J>#W zX9s;Q3%gS=coYKJ3e%g!0sw#j>hLjYPYna+&xkMyv|b@3TT zY#N9-G%^N_z7U(T@!Xx&!~0AN_eB9p*)&WnaJn-AkTb^Ym^KaM`AZSLhlz+)#5_MbUCup2q! zaZ%pKuD|S|nOPJH)_*#vtLE|5^}@xQ&s5cEd1qvx)B1S>yO$9MfYPdlwSQe{?F2t8 z+->RPJ}lbXcHhKdG2bm1GHb(8X(vu29*dbY$Zz(@;7(fN6lGTovHYS_>EYvxbzd$U zxh*}Rz5b(pM)~EwDLMPkJ=IHl4~v!Cr`b630N~BbJQ2UqtmiLs0tUOi|B!x14|FLN zy|H&>w_RL16&p($7u~r0q^JM@h*<1QPv1rUK@7s%8Xg;yDcc7OHKkH_$9Km@rhT9F zc3{I`Zt6Q=)xDdoMR6t+>c7KA+c20t{X^4f#1VtNM-29U`6_?MKX>yAtGlrgp2-Ij zl1U`8p4)h9rBH_%_jiy3MwBv{0*C9S%=-72PhMA*k@e-XTU=(3it{uzqa{NA?xfgt z!F^kNB)T|H^-pen?VOuu*M~%E2TTm+=_j87K$Tb+e0;Y(lhfbIezd)-8I=wn6QWD= zjEEFm8{^WI{AS_07soWazP(!j0p<2YtwQf~R#IL=&4H*1R2)Hfm^$z#t_5+|ErSut zq@_*7-I~U_mY>$**C`P;T+T}c01u7{fOeK1gF>g(R)m`BpWN1Ey~Tn%=LGG!!SH2y ze3|;kRVoz%c_9sFQzW>hvoC@*Z4?^SP2D3FO-iZxvr4RIB0Z&gM@n@|8Bd|$1{G)J z%3j!Fxj-&Su2bg}yjd1~Ow_r&JVAB6R86;3+Vl<&DXXC(zNSF41wCmy96_~B9*N<{ zwgLdnE>y6k>M=}vS)Fe|VVMxSdD#=N*umb;gT0*-^GiPa_qVtbIelnAw_7`zuxazggzh~3_}z0dJodZKhV%>UTH$;xU%X`VnZh!4IS7e}TQnhj z;sD=nAI6;*8JiB=ZqZ8C!P02ejL7yYce@083+{pm;X7Ix;Ix33quKg-gRD%uFcHSH z=59H?R83gt?9EOtdRNDc#bQ2PH>xw--<1N{dxbZYmx>*4b@YP%k!-^ghQie{bu(+h_c; zSr zGd}NN%$JB`o7C!Jxh%e-MDJ#E>TBf)^0K`6WqI+|xaj=@$Mv<;7Q^wSl1IgPgRC8U zG^B3_2j0ZqE6VQV%G2+3xwbgAqUiTmkJksNd(hTM#ILGLkP zMpcNks!ngCuWV?eyK%yc1$PPrSG+hYdzt=)LZMW0`FllE>LlucCCc(71MdU?Hw%Uf zWoki)J!7&xb4u&2Juc7EWWlG}X{|_~R;Yi|4c^0dyt!8=RTm5W8T?74X*WIiSGy0| zlM!u8YHwK4l*a9Ds{du>>*CZzp!>lvn1g1oT0e#ya$GP$Cp zRvjz;as5e)$lY|PjjKO53X zsl7G82-Gvq=%=u$`4GeL4=VeP%hxotF zDrvF1=I1$Z;rQ?lr-WJngGFPMvrlJ z`y;k%rffs)ogCS3CYIi@Ps{!XCl+(N;cAxf!=A2%Z{;Tv8lVv`^+JDEJd)ka=r!(I|xrBhmVs&Irqpf^e7)n+*m*3b^ zo0*>~l*p#nHvmA6D30d5xLla@mFJ*QmOfoLT{8Kp=Slk?#8vTy0Kj9?hWWaT5B8)H z34h#pa{5J*>i$c}E19+X^k8r2A0`YSwc!;$#K)OUB{`UIRSc@{4{A!lrBMzooJeV2 zhScxJJ(@dv)v;@j)2U$0U2=k}WbP+cXc27N6^P2TJDTur^`;FXy3 zcVFpFYIr*EM)&pVAL2~JzngIrg@P}q_6=~e+IcEEr?~oUHif~U{aq}E_x9)?IYxZJg%9=VfU_^v_R}ZZ7_;&u_ zl8XBD{EC(-3KVM1?Ea(sdcp^SvhBJ++veIZ3>JO&Y@AFg_X*Q8RdOuhNBw;FQvBw{ zhq`@uZk=#sx1uw?jfjl0vFo|B^r#^3tNXX6x_i&^@-?CKV1w&mv#xcPHKWnL>mB({ zc1^+Io!KA0wImviTDf@O^acAm-vfb4A%q0jeUPK=kVaD|9k{14>3XV)Nkn{*pUs5P z0iLccr~cZP)H~Q3<2vfYjm2S5C}_*gh-bq1X2r0#bm@^J$flTwR&>T-8>hFihP;xK z)|u5}%G5Q2p**X#L46cDRy+m#`jZ*20pN92`G|{$_YN2nY-;hIFOs$t;Q(+sS4#?M zc)}p7mNYl1x|tE`3>W|QS^JHG^aF3y9>irLev5a#xjb(!4*>SRQRnqn`M%3!2cp#8 z4g@UsUg2aK-qw;j)Pg#Qh&2KLrBa?y`J+IVUo5=i&R%NIn8YRdmy4bPK&3cV!>w^> znxE17)(@+i#$+s-+?IM?h18mzDml9h;Xf_=+|Ou(HEkpSD0Pkvho&|~8i-B^ttZhb zkW22BrRzi{%1Jf>08r7$Ppm1#qA?r2M|9ifoFW}MG zA?6+T!7Zw(Kk@X{x!9BjaicMV${-UP#EoVwItox_b$oMM#)h#`1HByAp14`jpk}-` zUZoSTn4c!;Z%dCxp+X(?Bv7bCyfwF3z^qg@8-M+sVp+M4p#n0Z|_b622;2~Z;Jqnan^N-(ndEtIiW7C6;%^(j9aT(di<8AsG zwSx#>y9i&q)SR-o)WSEp<;4|srBw|Ak)$27NIVw9W>UCJiiI)L#*FQ1YvSo(*1c|~ z*B+;CK6pnWl~c)t8N&l75Aws~x)YWtm2f{U2uxtpotJG2OeDkPngrK`>CDW z#e!LV$RDUUwSD1=ua{Ma;(KpT%h5x9OUmo$RHCT~!^)g(Z)0R@&21}*(AFMNDDd~T zS+Qt9$Dt7lWo5z1*Qq6-knz@*91j=skN`VhFRM;Y{q;Y40HtO#tsbRlbU#bGY1dDE z|NQ<0Cy%v3ed%5Ae^en7Mi=K<(il}@kxJm9{{jPeQL2{HJS#15*xx3zsh2d)yL~=> z>f#TjnQ4tnd0OH=!p4=@Dl4xlLe*f9RR{Xg?_=+3ehxNK|3FH4H-R?sd)>4~qd7bQ0;WG!wV0Jv3>iYS$<-21yQ z+VdJ0E2MLt{MVo7GS@M@^}AE;f?OD;4m6{7#=~EeZ(S);8zK0zt+oeEY_Y=r%qNGk zwUe}KJO=gWxwdmiLW%VD>&z?hX&GfzKGwYXQ9+@ORwfKu)K7brN_d%D{4%$A-^1AT zW1=Pmdxkhz9bY>6vwzR2%wYiFae5vAJV?z+Ev}f`FQ9uWmlhg#OAfP>_V67L_l5@X zg2nyEO$gGG7%p}1fq9?J`S;MVg{?pN-@)kr4n%L=d?h)laPj8@ddT7+yRho;)!17v z(p7d{G%}%2fWyELmq0fwG`h!0g`1tJo1LjH4;F|e;zp@lfhZJ+5&(@xVKEp29!nwO zy2q_sKq^;kJAD8A{UkgNJ7uu{tdYUp6aOGe<=qz<`!7D%Od7Cgq`_fsBYL~{P^hC9 zTqb4b*Ao_RK3!a)=I%qo-KGwCAI=7|LceP(_lCu{m%UiGXU>srH}FK<)Gr6;XO!io zl}!0!(0k3lqEO%T>hnkJvud#jkHNA?Bnukdg~RnVG3#w*%^|&~5aPW_N4R9N5t&jc z>cIBLp2eQ#;XTdWTknDG|M`-%Q8sVG7z`GT!Jw}mR+p(P`FY~78R1=K-iR{eRe_nU z5slfMvpvdw1&v8IwdSt+W4fso=hNOl)Yk~Pri@u%kLWi#psi2!33KiYamQfLpUvz& zVz4)SAhcB~YGcV6+}~sDaK8?>K)_?aT-XKc9!zu6$>mVpoXz~ata=66n;3O=*7x@x zCuL-p6A4%{3D4nBx$N#F#W#jVs^lMX1ets5T#I+Z&8>&nI$z68Kc1HKw4~s~uur<$ zOZ7}T=EdscmQ zTCH{tc9KKO%ea7FSKX+kvrbH|Ii-U*P=+X)Xehd`nccqB7(LNKZmJAX(DB5dLOLGI za~f(^Jh`&Uw@)wAj@4*VM4J?&;p{ZEswU)6U!!%Z|C6hC6baOQzAb4(i5Tvys$X<< zEVlGuO2C|Mz~ZM5aC!Xf$g3 z^bwKn>S{3)26fN8vD5xOsZywWTl3261*?x;6G>&aUuW!?Int8D?CO;-Xq4z?99R^R zNZNhPp_Xg9xm(!TwVb0T5^)r&{;**D#Nf*p;%jS##YHu!o=M(5OUhgR+j&H(WYNjt zK6d>A9D+QoJDe5mIiOHLBNKYA!D>Yff6b1|nFW>OqP%C13^wXki7j6wx%?>k%$-CP zSH|P8y}WFOgu8|N*kLgrVEE>7>HEH&^7Fo1j}vl+M!0=Fd%*kI@Abkz0ATatLvz-S zG&X1DrI-Hs)ycfH(j`An@Ca(Jn$yO`Y~7wYs{apfy#@fjy`A6lNt^27J=H@GGs|kI zd{@N1S|VfR>QHa$FIxNm2=Xd#Gl*@)i&fXX~?pE+Iq zMl}@;SUlFmk_`Z83>r}&6~(oEM)(1MOe#OT_1duM;i`8vaCPjUy(Jor3JY?WJ1yMS z`a{ZlxEv~%O%+RIs(iVFt&yXhiMNM^sc}!a+ywdAu3Iq-i^Z@QWNS+{i`kuie;hU? zl>N5iqHr^7l>=j2zE2V6)+#^s{D!&}53d~`I;ktUTjWq`{O7)*K^-YuuH>czz{-H| zp|;LhI(Cy-GJ`@hAlWEa8y^!f916}{hoQ2_ zShLprn2vV<05eLIhRW0N_TJpDbhjyzm&y>niny!vHqCf~NIg_GNV5d8d;n;xB33gS zK*Vr#D7cnEVp_FRy<3`=!>@Fro8Zuxlsc_h?VZv$N+ta4H(KwG>ZBr-FJ!5xUXu$y zo*N@qDmHqL=yJN2ul17lVCwPAXz`1X+E7v{nYJ6lTk0$Ceby5QKum(eMOII>V01a^`UL`c4*Q zSN!_R4&2F*&{qu3jFS3(gWFOdkdCAWc10y^5z8EYTg+?h6 zWkanna%^A+CsTo-n_t)%ELtW73u^v*k{ciy>v^y!9upL&Kk=rT)t8>8&J zmJJXXbdsm5d7z(7c(5av(}j`Y*o#+(p1k~OXrF#A>PS_tK-OQljX|U4Mg-b&Te>;L z<`&r*v6*Dz>eDxBgrYg&0TE7mu6!Dmc=pi3_j!3>vFHJP-QfQR=o%D0Eh(sJ6nFl! z=d)7XIVQ{e!k`1DC_kT>I?>5_vJ%+aS#p z$xE8}D>~G4yQUPi)n25CQrbk^wV}QOku;@6a4mc%5vB64wEJ`%X-Ckc^@*2s-#VKg zzcXY?TXyX8pB>R3rxhkGcJ6CL?83ZLd1FI^OncXOvn}-JP<4qr2G>@mW9`YC&oc8n z-0AK+FLvK~(bl_H6PlHsR0~9_k6l0e<+P43cqOD3mp^=yQ`sQ2;Arz2(<#VEUM#?8OB5{lgnzT z6w0MbpPvdhvELQ?NjtNL56Uvi#0>y&qd1jAr1axC{Ov13Z-tA!7}RL zsq^S^!hy|~byt(L;k)wr&|lTLMlVYMIJ)inkH;2ab*2zEtsi^pVq8gC9hrnT=dtW; zxK8#aW~MEZh#N27$*rnw|ELs*GNGVYsf5KxF3k$_Up=HZ0AMlbFbC_^r>`gEmz-KS z1&cw)Lb+>GD) z3?XAb{No^|yr6(zr)C}~^jQ0r)r3Ns^kGSk=4GINVoZ z!Pb6}8eGp$xA|{#i-i|*QruX^^WB5n`c!R`-=Y=0S!%gnn)#+?chgmorgJ<{xzMS`?I!KI{-)&+986B<26xpnWi`u zi*A{2KVOiLFR0lSGR3la&!aMN{pYTcHqh=JvzXoCdLE(ZG=PW24rc(iSR2xi_2h??xBxj){9a z*0v}V{C^4*piqF4A~FEzkYt}IxPC1EsyWGoj_cq7me!D~1Z8YZ@*0=9f$Xl;U$W@k zmp~|$%BUcxX+s0JObYy;1{Q}gu~3gGohdrxS#i()b8qOhURVBmtjqpg{cITA_6XU@ zzivOf^%?-2+fKJ{T69qF^2(ChcmBm6lx03D&q4t#cI~s!rT47p|B6L*JQDp_A8mH| zbY8;x_{#v`Kr?EGwM!K8&9Bw{mghT%FL#e@8V!*}&rW1DR7UZfS9=byrfSD-FNRB` zNw0&srxR+E7dyG7=ZVn3$UofFluO+2h zuo$KFd?uO5W6~UqIcMUM`?=U*G3Z_nR-3LqcvV<-c-}-y_WNk|^zeM_o^MXsd0Ni+ zdX!^FW|#Xmp1r*9zHcAbjYpU0+Ckns_58Ob2Ph2kFBewWx?5D0)N;*O?`?oG)+w6~ z#u!zJR{f29PeO*Pk9YcHZU(HQ_URnqM*K*Sf_;rT{ zjceVa^*!TM)@#lG{VeRc#Foc%CI5|XN$#g^L2tj)Yx!x84DOG?gHQlJg$xqPr6we8 zvSaY&{ThjUgqiKez?P*KXcVd)kv*c6)=Sd>z=#yUCHkqBG!3T$O|K>04yH*}Tk{&u z5iwj3&a$lfqbi?uL@9q&^-E5}DGt%MSa4gZR5U6oG)fzt-O2L#msS6BNq%OOekH=Y zY@)Ybjk`plz3^x_wMa~%)HbZeqA1O?D&oJ=?r#kkAJR&LZc1X9lHOChw`Y~w$Ze#h zHyMlDo_hDsH}?mdyRY^bq|&>Kb!unH?K%z-^;I7Je*KAxwd1jv9WzIov*_jZg3>y* zl*N?M9le7@F5hxR+qkA$AUb7zWl&sEv+V(b1_C7l#eSF+4~6-inOO0Q+F9$! zHUSa(B3&|;MXFFUUd{`JJ`Z0x?%g?#!wb+^UrHL$RlorA4)q<1!P%(C-cni-1j?eqeX0oCvhal;^A2V8Kl>|Fl>RQe=2P zYIxm~nujD=1Oi>g_jf}@?qh$@it770M9YFF-vn4S=%Q_s50+phiL@=fXi|rNSePYO zNK~nE(o$@i^<)<2*Gs*MJ6G5-KK3MZR%=0TJ(HjN4SX;XxuLteJNdcWQ$T;b6wxaG zR#&BCRY^SGvxF$~N1o79l07dZLLfF=V<;ii?psxxl%>;niP(ux9O8r7itDM*XWV1( z9^2^Jg`V6ufk6vDSzLc()@oa8?Ie1vu0H8^48p2Cef27fM^X8gCB-J3B7;Kes9~)= zjq0pcKF2$F#U{kPnUlxmJ{M3{G{&ZC#xK7}+QG&q4GW&l32uD5v;3#+D(c(T-w4=Y zzpY)Bnhj{YDP;O=u+|3;GmHP~&PZ0i!bAtCz8X_CYthF_71YAMFv7l6K!P^ZXj@&* z;b0;R!}?sYj3VV(d6!4^roJvkJcmIWJu)?_W_mSE7y!K&k#k+Lhd?LNJm&z#WHXDY z^g9F(a8+6gajp{2iv0~D7Ps-Wnj1dix$pW%K+x~Q)58#g(e27ed2JBZe1Fi=%rPEo z(G^d2RUuWgQ+^e9mpw}P`2)MdgIK?N)jk_d+vVJ~4iG3-5Rl0|wvtg|rW!6j4)^S1 zqeaqX?DJDo_eoFlYq$h_OluT~fTgeKkOlwf;+MZ-;RxVA7(VQe*5_UMHSzchu--U6GUj9qFUbNXJ2n7o*UV z2UtTsa9oZ@Wp9AvvJhomB2pBx^@nT{8+Z1S_l2CB?flFa;Dx^e$6EwSeUljV;<> z|1P&?G~t+7bg(qK?>BMuQl<>Oy*z22XPTubnLMlGBV~m{&joZD-6FYty*#y|{PA-n zV|I~y%$EoOvP+ZxmKkfDLsJEDjZER*Y^X#$1!mZRJ|LK|L{HK=D zkh4$=zF)@tG%-LWEdTs?%D%SRat?oyny542ilO_WLaA>2a)YBeAMY?X&v%w3)<4oUu{ z8_Vgmae8DIhPA{IS2O3VAFHQN8FR%G#dui9D}UZDEV{TGNq&Nd9e7aye`!J+UP3?> z+DwWtc96}Mmykq?+00+-HcHk=x?e99iIlfte|d&>GXswUs`tpelePE-lp;{b!hVdZ zH!Xdv-NXPjTq=M7;9-&X-FRRu-~mK<8Xsobe}>N9a^d5=y{z~eK?!2Mb}h{S?5_K_pLV9O%uj5HdJNMCY<^w8%`gBv709OQSPg}6e#t}J$!TArw}Miiz?qr)6M%&>Y- zh69*2M1?-_1_+gtM$K4xKns}PMI&^5|6~jekVHM&S!_g*+vVI8s9?kiDSZGGP_KX6 z_MS#BF~Es@?gN>HFGd#VfICN~?5&+^l$SzYRnYFkQtHC4SlFBzMPq5J%LpV=9BY!e zUXuKffbt@@rJx}DKpi*RkEgU!>A{Wb6K7Y}9-}!;@>Jmpgp81dEgu|8{T+%F69REX zbtzp%oi@XRi&+R)7wjb2*9FFg1;%W9dP*<$&*#U}8aBXbb*YHllK%|1n-a8*b{u?1 z`%o66)UoAv#nQd4&ZI1}X^c?;E(|pv^HjyF`OzqPx1y7dFinMEMzhJ+l)JAgHT0=i zIDi42EPn>(M_@toE-xIvxG;5tKP!hL8rN2$PBeKaba$iuM>Qr>Sd%Voi!k%|9G~LD zr!T*$jj9SSX+N^Uhyp7L{mW2+->qTmI|AfZnx;V)%wnuU;v?u z`Ik|u7-%td1qR64zK;4dk!~`f{+>bUYv2uD*U;5hp~MgzQ_@B`_dAu!-_O%pCj$b% z%4AN)8A1xG*2bf=lw$72NuE>JT2|g*AKx8$HMG7wKgq!%g*bn#*ZB;dWTW-Z`s$Q( z(O`^ApkJ$0*^+Il41D$4_`Y;92n0$pQFCIic14UX-Om3rb$N2^`1M6^{Cb^2G zS+a5Ig4*uluKI}OMZ4W5o=<|{kyf7gcv}!fopZKlgoZ9-D zkUC(3;K{w-Y_HVO8T%$l87bvdGD`j}HiRxO|!`|xgDq=nyJ3^$| z?{&1qJ*l_ln;|a;HVRu8S*Y8;TxNAV-CaDOs=ndxA$j*I+$*0jX6%Zb5V?u zAgIlf$vZHAU0<7y2T~rV{c~3f=B?4RkeP5yXiSD|m=Wobm2PQz;?#$gU<>ZKJJrh^2QK&sKrTZEZZiF3pj5W>`3V zoGXcIO&BTo=p-`vSdw2lFcj2rdu+G1@~gFxg{P?W=$^f!`C$FE;WOy%@uufoAjYiB zaX^TtNLH2hiPPpaVVAl5WS3cuVmFCR7l@~b{KQT+lzG9^mB&&eW~j#TXXKk0nJ~kI zKw1j>LiZ~rQKT0Zf1LQ@jfi|rg|B9!5B0@(MfnU4h(zA!v9;B{v}x2vz=QkS4Z1%r zABDeG6W^Z)cx=#QxybRKALX5{3i}lD_)xu87(a>eW|fBWATISBD;7Qw&h~D$e)3sA zTMX(8Qw^DkZn|3-Ng4|q1+15I>S#*7`qt|gxpE?O4n!7$Oae%rr_sRCaSk9&y$y&o z*4A{J|0v#FXK;~|q*p0>m$S1^;lFmH5y@sv zdcol(fhC^2zqE|uQJAyC^`B1WWy-bX2?Up# zk53B&`u_7qVB7P)+!ww>rdyn1^VVbn90D;>@;YlJ3V>XJmUB#w}j9Gtb^ zj;#k@pCsp@vvAvR5~wlg`~22-O84kWzdsl+2`ktEg>0v{DUU~A8VhsgzY0se>l1ju zmurEP!HSxr%Tr2=+H5ibthyA%dy~@L@qlQMETWAd-lZCav;Ag(ehoR&?s^Mvi{gJ9 zV#Sx3u^;Z$`{_0F#Qh*fLQm2O?v>y|5`C8kE$eFxM7+~Uf66dDZ^4S8vl;iX;W4mZ zBM!d>(|VYB`e+R#dho?}+4ojs02FKg86F4)PqioHiITVKzXb%sn@w$59e{e6EiV&b&* zBS2_%y6*Y4)A+(FPwJeoNoe{erT6cE_r9)T6>pS3QJ3XWK*hjo-S)lh>wt~hW3N^4 zr%ZI^JlmswgiO}GaB)@EFC1Hw-;x^nlQvkZ4x^)d)22GBvj=l+odsW{ho7#0A4%qG zR+nNgh$v19y=|wcBmOPsw_+!`Kk9a&5{wP+rAOOUvhAP~=l(l93Jx$Q|+CN(_=NTNfJ zcrxcD^HG;dM@6&Rm9(^s|JG99jzqtK*qdHVk9+~c12s=0|MI$y9%3I$n)MLL^Npc; z-JPDu{dP)}g}$lTaPe zx0;&zN#i0-&mVvZY(x0KI-Ku%o}r5L@Bl_=X(qg%Vb1x)*9-@NI_!DXx2#*zIGgq! zFOnv$v%&P93Pd;hH>Sz7rkdGDzM~_)51jtNkAZS$sjUp?mR_bPzzH=ss{ z%ilCP0=BI(_lrhosbsQxgy6Z6ooFH9x8R&s-*7uGLu_LY5K2?eDi1Yaa%3{2{MNSd zBk)8fr_(?C_5?R}!vDA@5cW!|OR-w-%Uk0j1V@oG6zDsC5DnS34C6vP= zsPkKT6@ZVCeJ~Tn3nHU*e~}^ItO?+Y3hcjowEUDe%o8m}p^W$s{|qu1xx;^5i`GuC z&ZIsqBT7|53-mMdR}_Bi67OCuTmih$<}am9U4A z+i7qw2x%La4r!;Oira8(1&N918VqO>-kYxIP~(U>ncE2mixox+XvZl{od7Z|I`6Cp z8QO$0vfIK93dE@1yw9kL6S^`yC?Ih1=%?cHB3KFgte?6DBq5Ke-lHqu8RIYRlKjCJOprAz1l!|$!=<02G4 zWT*lykMP|h{=V0&viJMjjIFUL5mgA8JTVui&3zTOTbecZd~G13XIHc?X0Xx{yT$i1 z0_m)fnTVGX<4d3K5MU*F`lH!cLGk_W^b8P)GA=x3!`M2)_d_E0HQGn=l-{MJmQ*b3&0~0yF5IKJbU7OivAsRO1wU+$%C#+iL z0Bbk|kOP0rL2|fimKDhPfsu(hbpgW@u$1b|)7gp!I6r6&@Q*WTs;39ckcMUcZR7Cz ztuW)S(5cX~`IOGz)GNMSel>~P-fEOQQyLEg;KZDRj{h#Vbr9ctMnWIyUsu#w3wi9x z$DX)m#n~uN)|{-*%FXz$9&}}LZi||&wWRwBS{9j~X}ubd2WqLVZFCs`tfraWx~z(aYEN?5sur6O$G>+C5J4AU>}7w^>&8i=2fnjB z+LwbMtIERKnYhFs0{?w1@J6|-cj3^{lh(#sbkuvwfvB5ohXe5|Li489^0Xsq-hXyo z2!X7*yj;Re^jQ=v9sih5Q7LihW*lp2z%ds!8%V8cL2!Tlw%K;fx#YzF5x)`|@zn4_ zS8lBtI{ldo_;ktYFWo)eH<^el=zQuw^rX$z97((si!s(Dh^k3E5rD{Ic=GJiWtx9vt?e`vo5cNle(}JiaaO&e7fyGYv8{Lslm1O(rzrC=2zH*o5zJ^8ii?4Z# zPoSRO-lKmb`_?yYLUDvyD?C+=%3oPC56mzf#GnhT>Xwn zanoqI?$o(F2)s|g>drD;BTp13hVC1)Ft0EZ1^ZiTY(0WcS5ozCCR#N3IuWgt3;`8-qxdM8{%->S0=9OJo!Yli#`5{PxQ{`4go;1_Q^ zqHZL;@n#xR%fvqy;X_~#T@WeoH~p?ue9U-zS*B*OPfTm3iADC;9#8q z$*agR*BAqw>o3{!C7pv|H+(9|a{t{kW`{Vz{Iqdb`gY!w1e*qB0to|YVo`wrD-vJL zM{zn_rFtUa3A3TKtHIf-L07tPFQ9&hZg}~wc3%5xo z+b<)-wbrI3kJ&eWcV=`Tw&Z<)J-@>7Y%tB}js!Dzdn4_=qehdVgVMki7A(DgY6;`d z?ZKAy%lpHmw%^jnV@YGwSViR`-NPR4r@p1A zP};^MO@E*5b%KbLq5v9U4cPVf8`A!Q(w)Z|m}g1cy)yRPu9S|N zx~0LSz&Mt1{o7r;^zcuBvf}x@7>tBsm1f=GeK!oeF2Dc3hkD0jVqnIOu`{NnL&&%9 znXktflf-C5X>G|m8n9PBP0hjVuvH^Xk! zt*ljLXMCPU;R-Fc{MTdkwhIPUzh^_TBrU(k2M@a85gv}LLYTASs82v{X|ex6b<##0 zDckDgyy&X_cG%n+GoEf!qjrO8>0z!A7fy&Nr$=`Z*$mj|{hM^&pg!u2Wor@{oSs%Ygg=a9c4d1lK#KLZygEJZQp2hj- zQfyv23idO5HuRsUk@gE?!;M)GJNkDRAkW~bk|Io@kj3q+V*3?|x}N3DnY#-K(Dj7; zEs*|vWpSQL3G@)o~6ZY(P}pwKcMt^~F>$Mrwi6#M_to->S%c zfM9*RqK36LL!_N>)QjF82ghYne7}gY&1h=lb#794Lbdz5a3qKM%o9J4OYo}G!BJ5k z4VNW6dP5>~GGksqHd57WO=u?;RZxA@hIA{!gp+wWG#TT%SJ752{rZjv! z^Axb|?ae~d(mNlt@LCj5n!pJ0qda3v#l*A2@66lPNB`Q^9llv@{h-ZZOp!;;F4E(@ z?q766FqWdJEmii4K%4RuNnJ^J8TIPfE+E%OMsA}eOQYx9c3bm3Ue0O=$7+{0CF1To zIn92~@Hi7<@)s_4!}{E`UAZA}pGhyUr!@SmvKT{fpPtQ<(t6|$kf~)P@Rdmtil25q zH@zhs{&yXcD@E`*<~7Lm}Pnw&Bi~g%((h15}W;eP@+`#w%ZD~ z78jCse^!8YfI< zppmQ=C@}AL4=E%7h-{a^eQAi0erq)C-UOuYLX79!gNx zx$sAi#&qKI0RD3>fH$20Dlk{g`=y@|3u#R6=DQ0`u){JWt6LTJYDUajmbiBllRnB} zjBV8YvB7D3cSajfzDnMJaScUwr+hU)AK=i@N}%#bDtczNPC+UnY~onxUB)4$A7NcQ zU6SN;{d3H3h_#H@H5^mLOxUwjxZKg)CJr=TZMVTL-G6lXBFxH`<-N(U!mQDvAK!7> zJr7sb7i0b+vtg=Snc8RR@O4AJ?$S3kbz|)7^%~ktO_t-x1^gaG_r$LCAUlR-cu$BW z=P0#Fbe50)L0{sCAeYT?^2*?>UDFIg3kIa>`wY{=%Vi*4RZo0itJZ-R<5<}q!D8mL znAh}n7F2#FiyfJwQe8Zk3`RKJ*zUxZz2>SU2BKw;IpImhA>CE}zB*1@u&0JeXndxF zMhZ!wG)t(IjI<&BY}@oMp8!XCzQ`1`fPfHZist5g?8!+vw3~*iQX@_u!TjDT=}8Je z5=XKmX7)nihV!rPy>dnB)5ksBwB}xC10se9fyq`Yv1|FmXtyNtdbZuX z+(LDyD;_E!+K1NacSbNJj0S6VVQP9|bxypGB`7M;>ZF(%vX7aD-0XjvE<1$)q@vP@ zoIC*Ko7l&-`xoh5Ong*n^iMH&i=)d>f6BaSZcS%<-K4#W42o?M(CtaNCj@VwSB_OBfp)SM`a2s6ASgk!aGo9GT|zOsuFPFxmPBH`pB3vP#MLL$#8%Lb1f-%M zWNyf)3_dV?Lj&5Gy?}U4UFkn&Fb+(bpHd3**^vpbbByb6_Y3a78te1@TR4YESglT< zj(H>GZ!Qkb(T^Wqqq7*w#%4B(Q?NC??wpSkV|E}QetJ#gypMAkG!UNr8|kCrU&Ct- zCriSX`k3OjCn6=Ern`U4Yri>zQtzfqXG>+%ST2hanVqJ?G%$4~XIeM?8`fTL7;4o3 zeV_WC1J`d0K`XOdbQNKYLX?*Si{)XkR4Z>$e#o_BLosO>0Tr4gSp7vh}ssN>d5kR=7lEdD^$toTI7aWXi^XAPLbbD2K-*9Bc0Ki(ZO+h>p$Z9J32i&(iPWGkfx=QLkbN?=(zp0 zhV%8g4QA;Fj zC!Sv>za72HzjX7g@=?>!a+G~Nif0}T$UI(@IfM1O%kj}xhTP&+6Rc0&af$FtB&!}j zMhw*WxvHBzA1vJB`WkKc?(3sWybizQ_r4K?TEuG@g0AG3P?B2eM+>2-f{t4eXfwS! zz5}_rtt>1xo|RqPtK$qc#psCW%8=n=EzdL{-@w6vC=bZtF9~=6v;%XFHSVs~{4n-~ zdHzq!u_1p$Pp3&CpxJA8xP0x)Kg7kKS{iEawwwGQorb)IryCODsdSV(d`#X8cn513 zt$|kw6oVXIABRY^=juSU>r( zoJZ&=&0t-zYZ?@-;U1%i zz*|L7s6kIPl5sY&_x9`PZ$lQejZOjU1aL(dyml;a4RT^^JtM-Lm+adJ0zW+sF0vc@ zU;|^UFIJT%S~1?OR&KW32kc>-0(j8q33R9&r*&J}X3l_3_s7|lJryn13aTcp#4o)O zPl0$GH5U!~HP%)5j`r)t(C;<$_zRM&@EJ47dTVKD&eJ_? z_ot`LL%J6ZtvV#Vm*OmC>+ek~!8rEbXEW-0O6$a7s!^0rlyNu=*iv0#$7qSS-~mjs zYowT%ITodMgku@y7~mZBmB@Kb&PsxN8KW;p4f7UO6V z|FK8BJWG6RJ+4~EPmQBAQ5stcNk7Ipr~k~CB-r%}(lF$*zR`_q=Lg$g8st>;7)wPk zEpUj&ZIGIU-X>3We2~xbu0%&?niwGxM_edBmmTTTA;QnnR`0!+yIxN1q27RVgF<6c zSF&SdK6U8j2hG}7LW7fhp8eVTI6Emv`ok2$1L+_tQKQ5AbF+8KNERp-Dp00$hX)?F zHu^B_eZG9{<*D`6)qUyUH9*-n`EJu-jOSV4t%xK$Zd`V3_6o6V8wOPd56dn%YxJ>F z6P~6mE&Ub`o@a4_`huRbXafQj2s_? zW9dcFwPhAVrANn@%5c0ZpAgAYpr(r)892xmj%Q9Vk)d?OT_S1cU74@u$vs_h?W03S z-GX903%Vag6OMxns^OjqCJKditpH#~X}ssDs-u4+Z=BYW zSWK$BejUP+-}M#SuD%H)QEc$*unNXoa@*H{6zkquNa`qjX#M$Sy)kXrR4;~RS=&Jk z7sG8n9rnZvijyy46W{BTqDA+s^r}IUUt?B;^W;}X{?~IniiAi|WL8$G(DdwENAle5 zQ?}%h)SwxWqT)`p!tbC9#?^<|0(`F7@QPoTT|ibBd)zupfEBL}DH5;X-F=ktTh4oi zx}+K{HjJpao9V_$*Ur?B0B zkkvhzZpy(jL&a1@&M2dst4g6#KG*T;s&$d|O_8C?>2wJa!MJJp#(0#(L}k1h|GgI_ zw!bDsmuz_*L2}VA=qz}_Mg2>KBdcnIH5sZr3RX zin4S@{@an~E&Hm&L=2CY4Z*#W7(i}ic3iJXYEFAODqiF$1OVAd!(kfOHMwXnhe#Et zM{DHC1RoyuveV6@ZRb>i+9?bn^=W*p3(U}gMyLxJwCT`COYP4Q4vXs9)-gYE`Q8U3 zyg^!Lf=n`#as1bd<0U#6)$jMEy)^QqS_8xYcgUwzEa6LL9`>PSr}(Cw_c+QFj_WKp zrEN8S!a4)e&j;TFoY)t}QaWm7Jk%)K(~R2UVt?OnS94O|&(sEV96J1}saQF{C^Mj# zk8|KsA5=F?3n+l<|C99dkml8^8j9#-!k(k0`oY^Nk}JgT*M;?1^;bu%+@Kcj#mFRx z!J6H0xn)@4nn|2p2{IGJEDO{WNy`?i9-_KZl(izxbzKkU0YzywAU)3li-*+j8BG4x zXisMocRFZtmK#6Yy})aN1}lauD199q!{XF{V1<7Q7m7wBEa+wzMler4U{3oG`)M^JP`BauHgaKr7S zdj<)%#ME&WiTqN>A7%z3Rh1j$biFjjlc1L^JblwmJnqoxDK<`Tn^5|p0fR$ST~0^y zD{e#zSb!3GC24DQ9>JlnGW?J1ZwQa0iE~PaB~NKYAlR}v;Z{;+3?Sjg&0Gb}17@iWR(hpv7r8LjT zPJ<~4$$C7Y0d|XUc%tAk2P3OGRv<*LCN_O(TpMBn6r3xJRkAFHyv3x$`&Un&f1lt& zVoB?&D^_kyGJM#^+dKp_Uk6#-Vl1}hT#1g>{5A3#~G;NmYZ}i>ctH9tpi<8c0@(}guVJ->2^_(RY`v4`#1M6ihED!f`A-ZTu5f3`+ zW{3E}h+RJLM}m?o-CUD@@1ZJ&H>Z*YT4Kf;C0!D7Q3VTSPa-VXig5!h~}o&Jxbf)MD|3Y5)rF$Y5Uw=TtIq;=C-QbAxXe%shYm*=zk> zlR&R+>bR%D???#n%iD=Q0V&Qz&BiI%zjOMiIoW!bgXa2rm;|Xvo?}uYx5z!nhTr(H zbofcRR#(xaP~W6*g|tFtmABZ@qlZ0T@2}feD|K@h_CzEIx+fJR4gV>M*;*L9X1B=G zv&7TWqDB?t6HoBY#(boQlQwwD0Mhw(jYF-f5i~#C01mwe1&mv7+}L+sJ_Ss3S-Q35 z*i$7U0-HD%aRa&U2L8HC$pA2zESFzyj>t&69y|$OA~;FJ*M+Y%og7gCMl0h!()wxW z|NJnUv{F+M#E>p);@$ow4#T5GU94}D zS+@9_eVlToTrJJDAU?5*_VyGnPWF~$1NW*GT>B0qju;c&7y@R~^||_@FfNjj0}4?I zBT3OtIDD`5OWLbhW6Ez9kV*w>mvKfye+?7H0z&9TuLkHRT0v`z0ZC3g2THEfTJs# zF)_0VgltUy&ljn{RH(-P-TcqxZO8w801hv_?SGyB|F$M%=l}0+|M~T;neczz@6S8= Zi^vO==GR%m9yb8;k&{xEtQI#3`Y*B1KxzO0 literal 0 HcmV?d00001 diff --git "a/\346\235\216\347\204\225\350\213\2612.png" "b/\346\235\216\347\204\225\350\213\2612.png" new file mode 100644 index 0000000000000000000000000000000000000000..b1ec616fce17c69d8058e8628b5ed81943c85c8f GIT binary patch literal 188029 zcmV*VKw7_vP)-?~veTJE;IV#+9SFif5W-rqtL*zJ15 zH#+?%Y<4e&Y<(5X(mE6s{acT-BllL8PSsf%(m@f##+tu;Xof)%)T-u#1 z2{>JzGbOUak&-(<_MH4#`jI3_z{7d@AkY={-$rKzA6NKu;sZE|0A41g>_&!~;sk35stZ=Yb?g7B%vPE`UXK|Kr@Bjobim_k_yMuB$8&lM@ zDSwTP`>{}|oz_~Z3cc;N$x$F-x9jM)oWvymDRw;wL^HM<<v-Xc3 zxWVJIQoBVr<6fsT*Xhhb5JD>b20=Jw6+>C9ZYaV902bLrEP4lkuBex6~0X+i3dj*EKlLz347YX=- z>$_wu-n59W0)ou|ld|)z7ZV1}jP6w%XrDd*TR&wS7q5{f9W?dBoujj3`iu|lSg%9u z?YG}gR2o%Bod5#?~`?S<@z4jFcZO%2GC@`Iqv!i*q+{3*EhOG?HangBr zw5z)KuZ$E;ld{|2R)3u+TTmNg#H=b!;xvXU$xoK0RW2d%+{So<667pn!|CO zVN7gxUpHd3{i4-&jHXpq+aZ&AqtUd+>CCX(FJqXLB-__+Sy8Mh%Tw{iTns}`?!0p7 zuX7QJL2Pavg9lB~2wJm(7@B!?>}SDIN=1;=m&YkG=|8-5v>FAAP5QHC`G4NMw&vEQ zbaknfat85*ZdF(-<#^@Np8;IapnyaKK@dQ`%RJIs8OOoM^*QG{%Oem#5CnPs%H|Yl z=(wC)yZYy~G$*5mFm=J4k&7Eb_TX7_2r^=UR z6k{(ioi8w*zpFnyGUT&=m|bO-^gH_fZoewG-rABkH$gnIi((Fm@*6gA&_+3@tCgy} zt^NuC4EDPY+F)^(xMcU*Ep@h=0lYzJ6>rB%o}n2>rR97Oe*}q19JHReXI1;3XV(Kl z4C5%!{d8|zvz8h+l^QpR*+QBgTX zCS6I>M!o)Hp>UCs_o&ydSgdYx=}(^9oZo-_n?--D*uJn$m+0JEMSp&^@5$H4)@$?8 zGpn_ghUz~pM%&$M`HLrhxqRz_xc1>*hp{{Fw%hAQhi!LW#_qff0>ws0B)pwEP(ap! z^ONOw+Dk(t`0^Du_ubaH)-wE&dv0C!=~9ahMUZFX`U3!hAX^G9pRTxDuYV!VcC#nD z{x>zU{xp+Xv11BkNKpdFcM4jBjq9crLNmKRJ{1rga9>Mgk8P z3Ffkh2O8HM&TON33xP-TIKvTyxZgjAA$T}1^@eUQ02rMWdPkX<4Dtn5TbF#qi8@+Y zBS50F7vU(2KsY$c!cjKTdcJjME57$QAo`|udyer$Prnx<1@$F#0_6ixxw=1k1g$GE z9n8|L!w@#bSed#HqOo1SShi5g?m(cz1Nr@F#+j}A%}SNs)vgKQk4lm+{*SQh0ij~U z2CK8E-bJnTthV$li75bpW-J=(8IAQ!wq`krDR7S>f{m(RfU5peZ8@Q~oRF})MM@X* z$@u&FAmwGcj2p$h`X>N@NX&h5PQP_O9cx}!CiCwY<|mh}LlBlq^Q=lUKZrd@r~g1I z`I5^S>vZO5=t`Y_8NUInI-S`RUCAOlHE?&OwYqot{HJg%#Lb?Ap#Y!=_M~?%Sv9K` z>NCsdt__P1>^v|@;wSXwiFW5@c-fO_YG>~4$)F_-%K*IW@e?qmkX}P4=15y(WZq1b_mQ`f%y3tp!)+#P*#V+qY3z^?X8mM_(}@ zFm}PYtvs9rfW3vcw&Yz)Qx#XkDoyLn*27$Ozx#GxO;@O2G?@Pa0Gs`?(Y%Gv9VZjL zfnoj+;4-$@PM20b#xQ08z%Zp)@T`zG<9>syf*k|8y#T<$L;}LkLrdhoorn336Cu3L z9b}LDbCMbXe*8$u`<1pk|JoaLY7P{?6)hOh%YQ*_J&XbRw)$%;Re>QK0O;WNk=Az8 zkK6r1>5FD(5f=}-XFuS?O6H1K@igPOT)sF|FjmR!S86_j090e@e}P>O0y$|zo^EBs z>q1rs8MmLEDlgLiTF0txoMHK^p&32}|ay&zu?2cf6YD}E%2Kc*N>00X@)_O zMqt$|9WTwQ{yZc&;fktoN@Ryx!iB9|Jr@9DlO4F6!931T0*`LR`J~pp@50pTA2gab zn=SjLqQye~4Bx|qC|YeW{mNnYXAw#F$=kw76_%-Hx-b<0D5^}QeN%5-Efu}V;|#xl zOD;~>KV7@aOlgM%yvo#ad@r@!x~AP8E9e`>Pi;(zxobFiqWt?**|a3_u$HjJD&(P-6J2zDW~PCM#EaHU+1b%~n~C)`bmR#_7)`qTH_wNB(W~R|;+qKTZ!eUSH(R z(*9g%+!-r*CV)54^Rr~!EN=e34V0v(snxqG^>(`Yiy)FczmXo5!7Gx2KuR zn;ecz018DVC@La|c(Y|YpZ9bFPhboH*sLB>$(Qx9ttfzD94NwZH%Acwc>k$YD24z) za`%{5$9+}}qL0iQRQpsl=VsCQ1L^Pl_ACHgJaprikG6mC*L;DP=i%wr-M;L3>d$Z6 zeL;#F+iF`$@ZJFnzP^3vmBgX3LghPY+wx4RPO|W$rMK-gb-XO2i##$x6kw;F01z(> z7#)%V0KaCRju!>^v4zi{|9y40Cu4-lCc`QNFfpS2prE)fx{fDMOiXeRfW__V2xVxM za~);1U$ELQsCDlXcodI2lFu1M5^Y+zFie)6T7w&TlV*&S+SiTdtqSSq1Rmw18BMMG z2y`D|sEotz%ViJXviqT^xD~bPa@9PV)-@3E^2$_Caag_Ok`DY7t0oO4ftNc>F(iIa$dKcQZ%&`tiy+!CjLl|0MbkPI;S+ci zNhBFfYXCqfSSS*{T%)_&(@3(N8v{urR!J1$;O@3!mpjrYTNk+C^YYPKIk$=?%&ih5 z4s1AcVB?wU#zk4>08ov)96oE$x|5UU4{6+3;`sCKH4jfspxCt7l*UYVU)?@fY}Tf0 zi}FmWF7n97qk2T}<+;YnCr__gmNG6u6aWAwXO+kP)`BY(LjypLu`)wf@>F!Mjd>U5 z#`cx5_)UXV1YlXm;Q%lqBoP2Ej9KVT7GVQmQ0vIS;mp$Nztrl#B=9IccO0KPfxyF? zF%O*1{0hxN4-KsL3x#C^q@pDv{?lI7RutjiThA(^`ER57Zvc$V>d0dc<#L9!9PqS; zZ>{zVjT?uL7nb!C3!W1TUO-wLGNH2PZp?kIv2Tx*etAQ?XGq{{)!L`gS;@lq0qjJb zqqNeNQ)OM`b^ri_qaxdQ8UTvS*Z#QoZ%KfYnXH86@S6Mv>+`3(eSXSH8wDHJg%z(>+n~CH{{GRwDPj8Ioj+0(kYU z#Fxt#7a4aUfO^JM0Qm9uIXI4?wG_KUd#@Xf)-jKydU_*P$MSc#oj7s}07{BA_lCq` zvwGL?imtj&5OK9I^-@{IC@yD|RPuET_baE}iK57&37=P)&~hs)iZ#G66Xp#9fI(Bb z4VqGOkoom1>vyj^v3$z{A3NWiovyQ68~Zj)AkH&rmt8pgZJ#l28{`@*NfeJ3`1Ml8 zuFN>{{`H+PLZyv%s%*yBuWa7c{{=q5&M{V!D1NLg!{D^qD5nb+O-{R=b_R3BmsEL! z1KTvm2<(+mltF%3oM+&8*(wRJI%*E~}Yg+)g39_66q4)mNefJpkaQ zZZ81va9IeigNX3Q(Pl0oqr*E+NLdji%JZc+4la2#YSaC&)!)+X^u4i+72QrUrPdpy zSeTqk1j#t5LHrR)Zl3`DpbMoh$T^*>G1W>{6d1P3*qzGE$8A()Tg96!OqOrhd`GjY zgWpI0DRy~OC9l$qNn_csvFw*{heyk6EK+9sO^P;ZEe8y?a{_i(Rs#*s7s^t9XtLM1 zu>=ceMoM34xdz-4%FwLL(f!d-TlMjFlJv4&QxvUH8D(-oZJR2KO$->CeB#J0fsiwF zR0;st?H4uL*O6NDs`}7Mr~lAsTm=XY05nyJp>mt;j86ZdSoBsk1OtHCvcv93cW2sk ze-3KUnxm3Js*&>Vl?Q%$XLIL4t&>gYm)n;c`znwp+%R}*uPs09%DX){CuU4UV#7Ay zbbi$2v|U!`?Jm0Jpq(9LVPB?BD>iF~9{Q}8GKNpE0pOOdWNb+LIkA1EEFOlSZFjsG zDNsBa-4g&#mEY+g3v03w*jHFZ_%wLJKdbGm)pk~;drQEbB;?QZMS0cezqHyf`Zxfq z?Mz`=e}&{T9%qCnWJP&Q10(G{T+FaLGBoH-w%gt&`<>QLU;oopDQIWYO;t)sOXT~YBX7==(-9h?D zOFT$vhB7P|+)B zeO;5FB1Sx`UTi0Z@{-`1DT zI=z+wSe!g!L{QtWZy&m%&YyXDjg79Ydcjq7{%c9Yt1Z1Kf|gnIS%z{uP5pT1cv!LY z?RH~pyZyGJw#u(%18#itrFA;vDxGmPk26Fpc%D@^YPgQ=!hTJw|Ga5CJFPEMJuTwT zl8N7fM#NGS5zwIXrgvuA9Up7-%h{~1Lf$kUXB6TsRh!PR(q_Nbl)*AO<7%_@h@bRZ z7MapQ=4H?T!qnK1hwSo7YV&RY;F1Z^@}Fw^x#+DYT$5J7 z>Kq`PovVI5LAeQON-9UK^<0MP^(yU|+b>qOjKutm_M3Or@8{`OMu=Yu5KQ`K)1fn7 zwN(aaJEbw$@5(r-&G>=Ja{b$j{OJwR4nHlH z?Et`L59F|iYISd5SddWgyjv*^!vcZ=Gi|mr4#!P`NCa>iP3zgLo;V&U7QbgUZ=N-FNNU=}g48+<`R1EWg}nh|!!jUAibk0AOHn^qJCp zlf(Yh;lDQzdsNP@QPbmu%E5t2vtoMtb3_1uqv*hZ#5dcHF1PAO9R5TqTk zmyeQ)UKa_TX$k9p%b7)>92;c-02IN71T0R|Y;7+cFK5+pAHduN`G|-BkvOpBuir-p z96wHCOMd0&JEJ(bNJs>W$Y3!UA|}HmWEi)Wq1zXvu~Ir8ECKbcDL3-U4qVREnJfhr zI#=DNQjKBpTk0F`?4JHPFJYG~&U(Lohj)0WfePYp>W3H-mwE-$micE#q* zBQQmbVvWYK*KAMs7tA8@Kme#T{RIFB;31MXxI~=QnU$w`JzV;ckGifhkR&dZ3EHPd)H4ou@71W6mdU)yX1{~CVI^7(JK{ITRwg@`xm%{8-!cOBEM4FFi|j$8TV2m*f{zt%1?ut%HlYdIxG zi@j??sKxGV3|9Z=+2xtajlUuY5iS3o!~)6<>rD2va^tT`{tSQNY@Ov800fBU^2lTW zkZ^`n7&p?4HC*}uig-C@HrUgzl|4n#Mg@0BwCqjtUY2GDtt~U|r~!5RjZ4MjA|c68)|P%#^{ERWQG{iuG?&U=ZImJAlWOY~0Jy7Niy@p?i5EFL^Hxbf zkk|#849%1jYghg~M_4}Vg-MrV=Teo?Dkf*@R(^m_u21ptw7sm*rIYCTkHJw%f2 z*sQ)JnZjlbplOX-yTES02mlDeMNytwvoO$q07-TLptZX9_`E0iyvGd2?^Wt&1O2bK zBJ~jj8Tn+NdOtdLR{ycH`nw%ZyPk1dbHDTnJ1FPpS5LbAO2Og%&~H3}Rv9eiY~Fz2 z=zaN_0Fa@rn6&rzUk6SK;N8cw0Q`aMsujp)zgn)E<1hcMp4^8Z57s!V1V+pDlFCwl z`FgJ#hdW@dG4pnkO$p()UzhVF0MLx{Y~?y0F0ExVp&Yb@Vw|-sz$Lqi-m%l>GnH#o zWz&+yqne$A$>1pQ!K9hk!t+0xak^Vz`eO5yV)GT3vL3?g(nax%gbZ_U(xiMjDMa|V zqMo^lVVJic8>|%bPo(Fl^ycoVzVs;&Mr&zz9W-N6%W4o(fl0jVEzVM^ zZf|Z$%t}i2|AJwdeR;hBU_j_zE*@xf+0D5-fnq=O9T&i@6Yw@YHpK<20B~2Q8n@@SANr1K zC%<1K#C=|$UTWn$fN*8D9yVJKaM^?Fj1vfWAjxVwU#^ny< zeQ9=T5I{nC9pgmwaNXg@FBMm7nh=S4d!JU!)t4HU&}7p{?3y>@4sMkIM3Y5 z+j;Khyirv?8eeQVp*EOTFPMa(NMWUJ-q)KwVCw%oyF5^_?yDl*=P1H8+RhuSXROY9 zv0jp;d@?0p^A?AQkCuObZ$Dw2lvcr?Qf~a+=FGiWI!??P7$|zSA-HNRr|+tlMN60X z^T*daH>DYCvEes&`>$9)CaEpQYhMf$J{B&1-t!|gOb5{z5va&cXsokP+9P8XYx*Aps z@+v?3VCRi%1+G7@UCCRsab8`UaJj|0({4{Ai1+~IX{>tVBHKbJGa_ghYu|9D+nW8J!@*=eJVsj{ib;!&;?hPlQX>)({{ zmFFsd86Et7jmgV&acjYA_qG5|7_VcqJzVtv1Wx$mXpJF6qIh(pO!mP6hmY4kO$m?+ zzj=0C?}aN5T+STTwawM+;-Q`5`oH>pzjjdxp~{0-?(}OHwduq)4vPQ)62|~Q$YuX$ z+2w(FtP}vC8MDf?jlg8C6i9O3LsjB-9UJE7&PdWMZ52U?K*dha!8W`OSp)KlfuCrVuKapW$O=!cBeI*oO$=Dt5Xntz%_rBVC$#o@Jz6AG{ zR5`hQSVWXxNwJ0`alNj}OyzXaCl22_akyqVi^SYcU8CA}is;oZ!QI@jznT8Y>k0E6 zjMGj#0@!{I+ByHq()W{JGgFo?GFN@vb}5FS@IcbqTNlrl6*Rm)J+}R#4t*NCYd~;R zs$cMh^1|8|4;5w&*!I(+_I;+treH{`#i!L^;pnby#&u6N+w4E=IlEw7@7j$voxJwm zhC=`lrV!&8+UP#eL?ZA=x#U9@+4g?0p2ry~7k`YQ(w4(NNhBy`KYGn_>~Q83ly+~) zm`S1ypF74UOr>pG3l|4)5(h;7OrqSwrB#tgQG)JA%f7bJ#zfJO&a&xjOlYI3_Erui zW@CI5!7r))?4x|vbur&`@t&&6P8N@9iM`Qlasvq~+{erYjgj34oCxE0V|nz!F;m{H zntVdp;N?;~&)y7{i_)@7WFlUKQfjd~`Xonb3}!!xfW$Gg%>e*Ey)+R3?i5!}dhgf& zGP^uVsQl!BgKQ$wPLh;-s}I(^j{b>VXRN zKi5m0FJ^a1^7|fZ8E>0G=S!cfZ3G4YJ`quBK9r@6DKhQ>fC%AKmJiii1A`wkaz^`j=Etst-R+LgSk7jrM3%c|Yxi&amGCApIx;y&rTN zGJMC+4!TY#h{0}KdT#%kTNht$-+NeCT&qAUT1&S>5d?T_GNZ750f#GD#Q=aH@an{V zL9*6K{UsGG3GqM4VfAixDNw+h9OSo8DO+1Fe5zT>G#RMa7OXtfx|IVOkpo5rDmMF= zf(l2;(ZTQaP&`edb+SqDaA_aqJR4=aqW=4j+<7+IWTmQdbV$ii07S+LzpmY-a})!B z$*C&2r>!Q5N3bzLvj=Z&%yF3${hy;Lq&D#iq$12t! z2ofNCPRtnu03_z$5L0c=LYlGRs8}hO(WD=8P^x_0k9AC!+`-Ap)vb=HzBo&F_W!1P z;F|V+RYx#7+f55q7R(=gQ~jBZQgd+s7|ASOl_8?an#kj`;@bpGdbE3Rm<#|qq(&sA zgaSZuk>>fCt21sDH&Bt$SK{XZz$3vUUX7nOK6p3)EQp(D=FnChUZ7f$SGX#O1%8oQ#$2(O43Ba+Wea-Z8STd$sXZ0qPCAE20O$4)yBKcH%D3sZOHGHZ_jKi}6>r!nt?k~Q6k`|Rff1r9 zx%v$NASB}~&Ju!bj%d4j<)Pz;Z!URveBVKB0N~E;l65~FJ9p~Nf;m4g`*doDR5t~M zc9k3g04GBMfP@sCQeCi8HWo?-a|0-bDz%n}Z~|9l|Gp^x*#`<%mt8n~wX(jfFd-`G zv6WMz^x4#0IsV_pE&ealt}hyZ2L!|k_2Qk zBOcwrYOgjCKkPZ%vrUA{)O_k@uFh-)fF}laf``=Fq?G;04hfX4WXF_QGZpM; ze@^_Nd-mZ_UPl0k;CD^e?#ee^K2@#pZe-E-v#LAmmHL2)~Ky*F$zS34_v#deMvtMcBFOMF0!~G>%GS zys<{x`7*<5E}0}|_pNSib>`Wr5}@E_>DXw+N)fw{k3XZf94|NRsHLc}FqC6<y-FgBQ zAqY}tK2~Nv#wCK~?9@R1PzA?VA$#+NbEPG^H5=w}?^P|0i4Rz|V#?Kvx!-=a_nk$5 ze)8?(u?hA4az_OY0su2*$uwjYnu|vS4A@+_JDeA?r{qWoH!xWgud(X_ILZfVtNiQk z^>rEb)Bny&?7XB?ziR#L?ehm+sqg_nK(Zo*(ioAvja1o18ImaV0{|RBSN0h*a_29l z=0;aXmQMA~g@d15IW{IDaeP!#M@10Y#A8=Cu-ZE*@}2bu)*rhvy>EK}`0dDL07!`p z>>L{c52>{YMP;qt=eUrMRrY)(JB|TLYcB!-4kilbwgZ4LUMChNuu+DKstr}f2_m4A zY)T7%QRncYez7n??aT%h*4xKQmoq?@TCSH`u3scqcaY795f1c>78a+*o7&`kBk(0+ zq)CT`582g3b|C^*2c7i<%~yQXe|0J>@|`)S5T zGbXiZhmWx8pi~)^i)&w@8C!wwr$XJ@_5m9OjfaOiXsyF%x53&fwcG2#{E@fSU&%PB zA%Zahya5=(F*w-qI}6(y$W zZv0iSb8*7+MV8V?UTE{Cx5;Ve;biMBnX{$&i_h+@E49Glj{Ro0sbfv#;CMBx8tk^T z%96Col1*9H0U%N+UEO~|gitDH^H%qtFm?YQdb`cz%y;~8C+&|rX>vAiaA?eskeD6; z;W+A(sl&Yycvz?SueO~`3RT*j)P>9f1c7=^Ob_WnCKe_L`uO0HT~*lHaJ!OW$oiAoxSKt$@^DTzojZ>MeutyTXXVy z$mgW3)iJ(}E(w&)#_n(Ju>Ux_#GHX9`*lCTV+#Is604sW2tx(+?7*)4-UvcQ$X56W zbGIsAspqLw_0#OmEZkG7&M@)wwc}Qg<;F)zUkw({tlg$z+^UG}{-`KiI3<`rf?bQx zC=dvO;RvtPbVSMR8z*@d09Y9G3i>@$^L?rLNC&@QUb2R0fVHm|>4X*I3Syt+Q~DxYAb`UR)@1*a;5 z+sOh*3~K_c0>F%copxQg_5AnSBzz74jP07#Hsbz<_dcZiK^giZ0Kmr;oureiFUnYT z&RQ;1{yrq|H4ho=?6eU>NYAMawcf0n{-C(^tJ>t7NwY8vGNZ{ zAG~dAP!J&vwwnzu)`+1zA|^_@Si-s=&iQthDSKR(kymWrNbiOa6q8a9~ zr+WiHOuYAPxqI)pfFMcct>U=EK#HNRXwn1N$_c?E5J0-f+GiTGPgS0u96AO7OiuH6 zS?i2W^U}omEVMbIw#i|C_SiO)({3`@XC2u*IlApTT?VnS7Ns=EGiV<@u(5VU)nLA8 zRlo5G5;qgCu^jyoLg}uNGq`w7bY(kvz^?-*J$d*qtDpA_6P{`6;`7HWKRs}wD!OSz1bQl6TUp54?Lv*Z=|&sW#|u~2sR{e5rI~vmcFe! zaGiA-b5+m`>Ffbi$wVjSTRD7#@Zqod5rPG>w-aj$4y zh1FAZZ<*!B*8F*~!ol7A=CSLhn=w-@wQBli()5fI%(s~%J4h#Xlh3eH1_I?^bwjou zvdc5soOxDfuGNuaab%e7H_VRP7{U)0zbfaAuQ2}6@@ZdT+MB0cS<6z$w4^r_A&mC= zuo@|SH9$BGM+G;_=bIdNiVVM#m>-Xfb=w0)GYA59C-vd>BkxQYq%xX+KXvu7p6w+( zPP0eF=d-)_ZbCGFL{!x~!Vx@Gno|3#$HHnN`*}F`<+v8r{P-g6RPBU<8}D9ASC{?R zZ+uX56Yv%ob<_6$QDHIFND2O7-}V_JVY%mCW3i_ql3g29UDRF?xOMpBGY@Ub)~lO3 zutbUSk?7=JU7R(v3xPej`HBAHM7#0tXO5PALo?I>{{_L^ z6acVMhNI;xZ|e>KfPhd$^1G*Lw%yx*wfjq!UsP}GB%Kl?>|M_$tmL$ju)@{0Y`vqn z`J0_JqXIH~Zq8)t_vM?;_EIj06!dL^`sGb?YIe>bgQG0RbUt1JQgHcfVEN$RD(VJcI6@f21kXlvSoMG%Npia zY7!v`X?A4Usfy~X{Q$tmL)dsok^UE}vk(AO=0hs;5hZ_ggk&KLQ`W^)dd`|HUp_V} zr$Tf1X7)Q1;N2~U#9WT60@D8&6`Axu-@a7u;th4#s9nFT=|3Sw-sCb_xdzSD{ToV5 z`gdS2<` zpLYv5EPsiBqUj&^oE!7*&s)x<+np3Vqz8`}rar8ms#slYxjrmtX&dn{nsHv!?pT-e z)NS1X6u~=6Cp{Liwy*N}uJR{p-=enV?JxOw)t!mwYMs2gC_yyppMNMTr8`jk*13xB zeYZ(^Rlh90ST)^sA|RA`#tWPBU#cTYo2~?Ll46B@AF|7LlJcq&p76+aiT*o6C2#wT zsa~MS>MTevn@uwo5j(Y0;C2OXSj)MJAshfk-5>+7ohr}OepOqtEi-PtP&A}azZPoA zxEP978cceNEh$(T#H$U$>pyfG-Y8*uU5>3KZYaZ$%<9AOkP;3Y+8zRT)qBd zMMKV2{(u55V?}asDUPt9*5ocVU-PV)Nysn-r;c-@*ITOTs``&`es3iwkpbH3^iud! zK(s<~gT{2YSYh9C>z(R9^^Q^&#!C_pZ+MLQkX;@~&KqB1L0B+F zo3qp(YOQCJ{JyJxv{CI7_M~Ney88qG^nI@?H$|IZ<)6<_YstWLc58uACnQ)xl1*U$ zelDbPv+3{b^hV_~r(@31&ENGIHz>rXygFw~^Jg91Y`EvCJ0vvr!)`;REY5uzJc=N5 z+H~m^5HbJ6_Pe@94?YMKTitJhD^RBiu*xv->)}g3>^VERce`hXcXOqWS^LtYueP0B zf9wjwfX-~)aO~>I8#(hvbRV7?4-e@uli3*aP13woWaT*t%ZLjxCIR&T1X z-jTAxI?Epo;id=)H?I}2X& zyy>@*jBg_zTl>nM!bQH|1Pc?!iH6D9F#uq7>OAMNAyFRbEuU($!$nS%e_v+J1b|KX z3jiQZv+bgKBL@?1DR?beJgUF{3lG`lGf;)51f8u;rr!`gSy)IL|2=hNg`!RvDipGN zHEykO+$f*RBcj_X*Rt`TR$N?cJXi-8)s_=BX9)|hI!G%sZc~{LyW5>ve6kG(k6;)Y zxtI2@V?>aE&6?7!-JI21zMnbvTvkDppKQ&s3oRTNfnrY`-c)8b{(sq~oHYIX@on2i zJRT?Zl7Zy!tn|fa_u4560OV}mJ6#5j2>U0nCQ<6QYvhbCubuia{k)TLvv%I=I=H>U zCsTF}tQJ&gKlu;%ko~-1vVg;ahxA|& z0_Za_TdMy|l}&fW`1e&l=gaN!!U0k;Ts{bQarB zM=$n@3pd(q`6}(Zn-6_EW6aXA{aZLNE>0{=>GkUAJ^zn(Dl6q&pLzA2&W&y|G{by+ z`PdIP&biEPk3=WG-m$-!#s0@e$inbf+xHnAp1Anz-YXS#1lggXv6G{HO<#`#fW_|E ze>u}=wZH%PP%+=VqTMMbc+--{c3-$18>D!MsSh$WqYk+rJ9c`+kInlz8)fjEb^u4& zQdU$0qmY;VT11BQ@S9)Tl;=IUfe-t;4~K<_TfFfQ+FOle582g1N($K5Y@L#g2j7p? z#KEh?qhiBv!NM6h%D+|dk}Dx1im+td0ZRT@DZ8hKYSZxnigBIV+%2o*vsfYyd)tD? z*PXl^CYQ9_1N4!o0|194#&q?bfD}W~QC$)r;?_Sy z2IJ2xR#%enV*SwSKepMgNJZ}uL|m)1`4jwjqj1!F3SXs&uN3hIw27M2ze<^YesK44y^+suX&xdJL6&zP_P@dBi{*vS z9p7GRHYCgZ7o_y;7ZmmHjt2pl7Mn6MJmI_av+FW0Pl;(4A#6f=*N1LL4=9-|J5}1n z9Ckmk@D&!>z7d;=QEyyB)B0lDAfaHMSg;Uj!5-&uWEw4-jix^+svH0TKpIx7bt7Zi zycB$BSc%0#X=%obOSwNMsi_*9z&lPb7E0SZ9ZpOJO%D6I;q@X|0C@BpCJwr zMq++;svH1{^y?*@?wta6@W>{Muw^=<)!}?^+u>DDjW<|rS8|Jow2ghZ%K-qzFkfFg z{q?m|ZRG(UbRE(^*jGSRS5lJ+(Nia71HH-C-*|OX2xKaDMO7jwdN3h5a z-f+U(NnwKoKwe9Y0)UJa-2h!$YSpw-dfKBmsRyuOfI(Wrx%5B6uKy(xu{%|mTtz8p zgY7zkG+E0$otgLSFWWE_<&p#dtUGb}=&kIBunGW0CjE;ic8Ey!`oUAXC_UwzX8>+i zl*h?xcEUYbclKxBy|1w9BC_e``iHRk-~y}be{$(pJnp#08s!#Nc_#{Zk2i*?0N|vG zipvJ#c&LCkjnADzQDs*91)KeX)q0Ae-NwtK08puZA;|xP7o70sfaBMoz?sQe;bl^y z?1uZbx#g+&THt_ltn8agcZi4~1RrlgGQ9r?yIM{TCuMUu`44~_hnzd$9;||s)}@s` z+E%&7cZF4JwzdxsY!@2v^PGu~efQ_@r>@_9^EJAUoKz``?0{i@ zeC{Ix-lGV@Mi35yuUzK2KIGiNI4W||RYAaZs^UuNlsMV@3f^#EZXfW$DvD-kh8gnl8jZ;kt(48`mn!uk zbD`bg)Elf^4$0-X(T~j*`x`5E+`d~H6{Z+JETwNZ@4D}%U6)s`J0=zLqQVsKE*!<< z*6%heuj0vtzi`;3NWgh|YL6j(?z<+c&{!!?IS1U<;x;+G;zW4Ei=JIu5kPr_mw32; zz0&GKc6p#MKgkmVJAJ<8xXs~Yllb+Vl3qy>b4Paj=+DE8CiZ{(xBW$`D%M%;4wKa` z=5a6#1%TW#&H0RigivL4pzMCUH56ef`J;>UzgAzNXw%J#7nPQyQIf?3=Ealc(tFPX zz>FXM`hMoPCx85FcuL%%8(DgbtxJ@bI-57|ls>m~0|2mD#L5q*#zxeUV7MIe%@>D{ zc;eg3>G_w_^S^m-N=l*^)r}-Dnr151#?*FU4KWn}a13P_Fk9?qi`|8($Iso_bM(eb zPYv*s3;x}0kVpJ~@{D^3s}DNKrC)N{jSB45MqmKS3q&?u{dH0$7%KPR2Bo%nNl51B zuCj{WQQ`$BSPgN4@thBVM<~2j_O|@nl~y0J%Ps9Vdvn{_s&oAaf9b+iJ6vEHst`Z> z?Up-5mC*t6cODyTu{$^<0RTVjKC3pEUz^k)L7+sfSBeEFdcO>pG-FX)PPuab)}u1x zR+afkn0RiWU^?2k;QQUdvp9xc$S$0{db8ExOv^7}6ZnbSIbLCvMOJOjo!W-FFqL6| z0jAoFD-v)}6rpJb0E$YrE?B*gmM7q|;-lQi&8W9pp-5de8qK!l-yP8E&1p9Z-(E1X zb4qv%nR(Z6@<`d2oupGzq~ja&RM=PiQJ(1n2N&~kg@_1<74~%%iawN^eW9c%dDS;& zhaCWtSA7EjiE_pLTdn1lh8JGnIG}g@6O+3U_(PYa{}F0hGH!;kGmIU8LJ*Ey?WERc zpLAb}DlaY@fMI?L>GzGr`KY|%L_@z;05EvNiG~h171j*Tg+F~sq36?K;XSLSoi^bJ zyBR^i9_S&v+|tM{iAo8-Tx%TOIU&DXv+-Eks}uXVu;Z1Vb}pLOuVYLw0Q6e8GSXiv z*P(Sgfvqvk%{8oHZHmXc*KB6)o)>zNbj7`Sr8z7icV%Sh$ z?xb~D>W>O^Yl4N32MDI%4U!u(3}lt70ib(K7=dGcLjLXI3IITTIKZriRf(u7fw0Zy zm^gP;kJPB){gT=y1OY&|j*+J>WF^G~_URe}0JrXzE?l;WrkPG{!=9VbH#*!4>MUIL zcXnPyEiJqzwa~byzqdOmoxuVCdZYD~_c#Bv{Lz>QzZOjX-2EjVJ7~-C^6#>Yr-lYD z=Hm)?wgKEi=`55^ZOa3IHsYbK>;1zcv*#_S*SM)h;EGDayPxhvd^(*^N zbL~dqS07Ay2&?~7u&PooP$6Dk6Nbu2vVEoIMVsxcLiPiTOl?eCMG(TrARM*s9h%nA zw5FtdghKiamov>2#aJc_Xi^e@gU*qgN;PZd;_% z+Z@h&>w)PQ8$7vpyK(RSvg_TaIzIo!rlpVXy_m6P-+2y+H?oAh$fngNrZw-#a!hSL zVzA$+UVtH@S&@>36m3;oj@g`UL>xO+o~>DttNm8N8{*HOAZDjlCj>?iSTSul0O-ut zxofw6_1Gxf=ls2F7Ew>jWU&a1&b;&B^_>T=OGI2(S5h&rtU~|T{Iyl;HO&CP#cO%9 z7ybV0motL=#ct-I#-!1iB_i(204PD%zOx7Nc`O0HDxXPSk$U>`Yh0hV{PYX}>_2|1 zOG>y%*w{%hv#aPGl`YQ~amwgaRf~E>=4*fC%pDi{vAjX%6BMb#A0<1kzO}8^{`g#{ zu1%V03c29jMWZF+Iw>jg3)PR#TMYnF;ff_M4v&d!1$Tjmu=;?KT>2GFsSuQpV}TxZ z%2EX3qNvbfJz_F%0f5qq33AETJnk5`u*xu0K}mZb$54F)tJb~4Vx?lJynzII*W-2{ zhc*-r zxVb>Ty1s3|cCFUWk+HJ(mHaUPfT7$3`DbaRk1~y%w$O~F%(%78xRt~da_-`mlP%qt%$2l~)-R zRykPdg0Hvt00qi|`6rC^|*I`@ug+^XFvDB;NuBa3v@p^s7B9^Nlf0xZ>5lxQUi_bj#1LZch&EC z{!u$sp|@QUvQp{=;ZQV#HRTML#H(Qy*|_7<_5;@j^oVnvBJ;Q;=1uFZR(1hk$AN3p z#?@G`5@P%{dh^wrg>SCd@x;WgU#~st8dyCeu-0G!0G-~l^pow&UmxGSqZ>GokRcMX z{vmOR<%SDW0ie>BeW2u%Fkb4gprtIdK5FC|&r$b8A1N97Smc_<9_Pm^7jIOQB`K8S z{$6i&R^1XOmG7JSMAKIyQ`-oy(V76@)#r!S!_@4&ipa2Lp53~K)!&X@-hVao$pNYJ zNA_@Csn8kE-zhwKGiUdu+x^={fBw|JP*L)Kn^1(Ol&{C|Km>4?BNB=VgZ$56s1$0s zCI$FyZ)oGCs4|AJ;drQ5lQM#~+7Xo6p6fYXfZLNot<4KgDA@6}c6L>%<+?9}X%(v` zpYS_T`YFvg8h%x1y6{)-jNZzZYu5>X$gb99*VAA8WwkqeZ0SoghVfLxCrJ4C9o5_J zAB~Jp^822J2R6LLMwJ%merl{w8FxU0_$3}$BkMRQYWLNQVeR6U?>x42Z2vNy@myAc z(Q2F4J*BZubOwt^z#(f{w$EP9p(uL)@mnr9u-crf)}QqJ>=adF0M{DK+xDd?WHsKr zA^}IIw;0W~LA?@^OST~`H%IqQaL-)t&b7{7~B(m zMg=eP(CM2!`%d1nF-|7;Q?T)D;X|v>267lG#9E6M+L}G1i5s#@BxM= zC;Y#qdbo%nTog5Wq+5e3~Ux28YFE*I!9P6ymLypOj4y9n#}fdS8`<%-Xp_nGNwH; zy#4WWcOM(y1pr)_>XsZ1>YXok6_skwr{ykrc4+?|-jiTl)od-XRQYvd2+>9Ucn9f3 ztP$@J1VO5gzr7yNUMVZtos}tIvD*7ri90T9aFYl@K&!L-xbDP(qqjstPTGwEhJmmU z+59CNYWtYEV6N~KFfGt%@0E!9#pj`D7i|oiEJF&>Nt}KalG$j3U zt^P|MXShhX&_k~ON?WFf!SirA&z+~AXR9Uxs2{sd1@Bb(Q#ML}L+fR#94UFf-h0>ZyZoj+ukXB`3n>`p4LOalN)iD37#rvTu)oo8zNHW@g0OV}r_~WfTQ>)y0Zrv@JFueV9PxK`S%(d%s zIV@LPX-+}qiSt=gM|Y||h>Zx5oxPGferO7ZU1bFR{HH?(qt)T4b0j=|SbH{$c=yX) zwH3a4MqmJNIBBik3;j1`;Q^+{nTa^{lw^i9HMnuPb(tk*kJ3;^emc2G6G*~)d!e?DY63x^(KLNmxpFIWuy+?ln03!w^bDCZhp$1kz+;sTDoq`~l=(}gew~q|ERahoq zll6R&!xWO^H*;K;4HnuWcPG2!HaKqI2QZ=;#@Y}n>aSp5LE4;M7y$Q|8kGYuOc4@r z#r3(`2#lgarF^~KxJo3Lk6}sxusd!PmsKTv7xHJjQ)hv>2g4{T1ptfnpxLq;08mua zFd&Da4FI&sveRVQEfFme3Ff;UUWGNYsk#?<3o?uaqebvL;#8)d=BfaU-vN#6B!_LH9!z#N}rS` z2iG|P`EJ*leHSy_OQnp>>(~N?(+l*g998*~kx0p_A)=>zd8iQ4(;On~cIB%SZ2|y4 z-blBY3IJ2S`6H)7ZN2Bui~zy_^TVNYyIz^mSm&3n<*PKNV`uN62tqT=gkc?Ce7b+_ z-OFONA3S**0Dj+c{!UK$p_8|!kL%(>++Y7bmz7tsY1idf=ML_f8g=e!?%ty}0H9(1 zhvEH`5@Q2`l;Ubgu1DpS1`eC3_7nC>HrlkK@J%OU1AsVT{{j9B2$T%~9i@|0w%k({ zKb@*r9l`J1%WtlPY);ZaHjZ}-3Tfx(zjA2R5hM${?=H6_(VUpEnqg%YSE>wVmBIY= zu2b($8(g9`T*)a8Q%L+o{4hUB$EY9{fdjyWy9EG1(GRZ9N7DujWB-5AR((*f8`_G) z2|Pw`TqO}L1puqFTP&#E<%7?vbUk0dW4RC)0MuI3;*Ykh ze1EFRRK;lZ-mul+9KbB6V6)4OX-?cg7Vfmc7+T&Xs__Uw>qz1fp#jdAQM zd|P8LKmh5kc&d}Ej@xs8UMWLenO<2wd}CF{D=tBt zdVJOch(R^5`qq?z*K$iPXB8d4ku!D0`tI@Jhtg^`0zVP|)0rdNh6lLx*MBk{bCYeS zbR~v)@Zh2zFjzG;$p~B}rm?!H%irX3MzP3tF1-@~go4?Psp%A5mCBC9>w>74h*+#K zPHJs=PTK0>PPYkzRJJV7VoeaY(SkW$6mw97xU8!0Cd$QSg9G0c5P_}oI&NyWT~ht* z(==o3`-_&24f{^U^1kUjWLJ~e<=%AH#671Wtn$e=EUbQ1Vvz8$GSiMg!PF*Us*5;8 zc#8jehM|zg&jowON1VBn&u5cHs~ts=aE0W%LucQeFu1Yy%fCCI)|vo-&tszqLIXn( zHH*|`%S90+F(#mYkGRqbeL=AX!%z;3NKFavk`kU@q%JPg0l>o9gOcNeD2je=Mqf6I z7(J-%_5;`4>_0Sf=5qF#%h`M`tJ-etG7qRUCIEQt!!1)rcY1C{Uk@T*Ci8n`5q-@W$t6yv1887J(Yrr8PrcG`TfWW}_IADdJXiUD{mDJ4!Szw^wC@W4~e z3rmRzOo<45ykE!Lh2`^CZM%54;FlLC%Y{6eVe}^Jje@dIw;uoCv7xT$Y(#C+{5FptupL# zt0x0Kir@-&(x_**9R$!ouBVvVRQXH-Wu2?2@iP>Yp~Hh$v|@QOrYY0d$=I%{*AEDI z;~~3RmtCzw7{b9&E`dt;WP*UzPRi-YC)>DVKBrUQj+Xoo;?37)<-xOe$|_L=5p&rx zJ}*Wo50N$M511Gma5+6cP$?QYAZg8pQvkqb)$GzP^)xC>@#d#Hatf-PtuP#=8D`K%tHs(D~G4^{r zCr*_AaJ1}eCvB$~hwER%yDDut#pd)NZWGQ>5P*>}aq$0y>MJWYhjZ!g`;=nA@);ve z-O5dg2m}C-LsFRk*e-2$Uc8lCrom8@MYPnYEf;^t=lUcb<`y@Nn-s0`xDhl-TSZx9 ziqCqdt!~LuA4gl!r1mEBW(J%*?l=MO35{-9g{sO1A{8$~5N>04IULylKoV{02D3Jw zDm>zZj1}$H`LoRGi9d37jMoG`Dbnd&Tydi8QzvZ=ftAgj$c43?MT)BKBzu7yphs1R3IUPYln?l zDT9@&qbKliX%M$v2)BIzC-L{3S=DlwFNGZb|5E*TfMaO4xUh9cE=~F5cK}$q`*fY% znWFV(Ym~pcN)aAI#N3H^926C{`tu+Nn?<(s41P`OEy!<|kBuG9oPyHsP1mg}YK_f8 zGv=Da4zy9FS>&YhoV7B2BM6Jfc?3ZSA^%B(akY~w1^^rjX0bdS@>y-C0YJ!awQ~s1 z>X(w^zNA#S$Doc-UN>KUI#xJ1h}*&7DDmec0kraIgq`*&9fyEW#*0QINhbK1sP7@W zn#8ULmad=9WUHWFdNRK zP3)44d(3*z=d!95Qvle!=jz34`ER~3oFs9V%Ti>hJUKpa)WEiF1xU#tWcFLw~j3h$FO=Z?M{G17$6b6FskRK)7Ju}LU%9&LXPt3!ESeO`d@z-7THcN{+Pg{ zJi@A_3A!qJ-^(G@)~z+VkMzbGlO4?%4W@MfP&tTkVe9PO6Y3+wyr6TW8FS!?TB~lAYuR+9|E)vMOPGUxgALE^lfEAC>K{ zhzQ0}FK&%?%H+eZE2c$m^c|ueva3n#YDLo8EqO*&vLwitya6=BEV{JiSZQXzfVih) zdc+9bXm7hO z!hbt?WpdZH!#`Q;Dj4T!@cOEq>X8v0R&O{p@AW?x%&v0yPmT{7)H~tCxw{!zWmU?b z#ooDn#Ez34;++3_k{E{Sr3x$Q!D?L)X77+`+SnN?`M zT4=rs05Vqi^oSo3K!*k`IbE^FMj1QFrtom-0|9`H3lwVp+sd%I?cB}dH>zYG3`I3Y zvxLu8hhh+?Rm%NZizKEn3l;Lvwi#ZZY<_}cw` ztppxh3o?h)hE)V%aXG{J+{qkvuiV0*dN*pc@7nBF5QNJxW*7g>mc3@nUIZanWEZ*Q z6C4kBwKN!4qo_b3{jOm&UTMYHh8LN}k9%EIY0aQLz7e;S;VL`?#ThwN%~Of9wO=bZk1bZFZd(cLhlQO&QyYM63t zwS?sM@{b-In9xq*DXwEn{?(lY*8yOA{W6y*)G#4` zmXKeQ(~`~Vf?<9XRZbG|eBNVx?jw!a$#sUW^v0hAyvHS?rE2Z#MsrP&B8mva!Uffs z>ZFQImhFDBb#6~p{S{jYJfhyk>HwR@ED&W@PsT|OE)lp3`YtwmGEar`d)+5KXX^J~ zR{aV97D{ul`0XOm#U9ERu|~@H*eUNg!NQtm!+6N9Rv+Z+m$zl=%U7fy++TF-)6S0s zbH$DPGywn_yLo&5we9)WeD9xTn63F~$II^Q9{8MytP1S@W5v!rzZ@qyWZ|7szKF{( zOy=d>yo?eQLo+Vr6x}W52-wf|ekVJ(Gc!2~Q4i=UUd3Gs`N2vTvl6tub2U36&U7+Vg48@0RW5jXo+pA z&7Nknr`;ZhWAeVl{Vs%z)-(VOk0OBYA zx%TZE?c08`pX=-Kz8!=!j2(b(sLqyI(mfi5+-Ei@Hec~@SB!Ar{a9uON9oD3I$7>+ z>2|7YSwn)}=i)MVrdNII!|FqJxl~)qS!pwJFtUZ=dAkbIPnTEO)vjrZ#vlISo34{P z%fsDBbV?p$#X+(Hpk#TiQPIx?mAR8wdOzBuc%C0 zU77WtGy?lbI!Ezu*|U_K*x^BMaWV1z(pDRT)mqm{0uKq2h=d#zL0+3bv<3??G$}p^ z0D5$e?%FXjJFjA3?}Wkq5*z8z6N2GxZ_t~q3#b&<(@CyK-sE|drXOrz&WGb8N z?htz0X_8_;{QB=av1{9N< zExWm#F%r?6wZ9ec9%Zw7sI_k*2vHkTZT1Ty;fo~UW@ccRKY>TP1e6By0S84zY_hX} zKhy0{J?C>r5LE9d7S@f7G&;&Wq_-6i%Er{y_#21ta)$7_iz3FZ0f+|{ET9|&7rF_9Nchb%7PKKZ%HpKO)o5q^pl1wBnyZ2 zx>;1FHCz2eUR<}VHpi)pS<}XLR?39{@Y|P9e){9VEqkv{9h1uEv6jC+-c`Y-8ZCkY z#K8e#0B|@TthoGYI##yQ$=Hg_*Z<6Yeq8ACmSiz(hPLXgrAX}m>qW2qe7JO+=LQ?M zUf6Z;`Y+!+>Gs&(Evz!{P9M@36!&fusWV#}<^*=D1vaMD33*R&*gadwLBw1BZkpCx ztj8?YW3ENbBHOT8Jvi)sQr41&X%h-cdpMlgP5FI{O?KdMM(}x)T;PNttU$$PtL-cU z4iph!m;^=TIHtt05Txmu+3Qhg;7xBPat5Nkoe!qQ#AUYo|@9 z$1=S+hT}Pg<6<&2oZmB2(ARYYm}ffe;g)FOp!;DO$}$`-G+l7}mC0GLE&sVef$!GN z`$IDh&q*8Zsb5VnW;|q9HM?*W{jvLWIg8K5JuL?YVDP>#3(Z;p=%NUJEUHUC|2Xu) zNI)}g?!eAN+TjFd)R`wozqqw8+Yl7#a8JwmVEfS$ ztzqBw%)CnNlRy4-PfA9IwT<)eOk4M*DdmEvrc`;Ql~w9@9=skErg(IGX8;T@;Ic6$!~qUefXf{+BI-+ zcZv~`5bQpNsYs>UfA!9&)P#n4_G!ku+)Ch)eC{Jc-ZWPVy_Ui%G$~snWwT$i*{|sg z-ysN#!|Eg8P2zEeS8q=;(VLapB`(KWA3L<#FIept)cTJ^f;kewO9;YZk?lN(_xukK ziSnjK{*kHQcU8UKL$YQQ^X~t7sWQ)nsQ_@UBKKTHZck;@s_u`r{28Yl zTiwDQx{vGt02ZV5>jl5|7}e2*sZIxV^W5E%obspNeIz_Fc-xPMe*buTHLU*m{4|6yTB z?9ac??LJ&{+#nX!&-G2YgBDk4Y>oV6w(mKbzURn|?7Yfa(s`qDVE`xbOyyc3;g5TC zLm?1WvUp_eS*&vu3kbj3mHTLhYK>{^9zHG3*3SZzTcDc1WP|JTt^?N_g;lHF`P#bO zUpzg!_M5;^6abE;XD?p2N62NBXbjn*L8HbZv z_3?DEuoxuVC1c60_$UMyLM?&jY=+iq&GxUe6|7dL*+OYK;U5n z5l!L=9@F!-P+LV?`VOr78OC01p+yivz?;tJPShH{)fzr;Qkp}XBfX?za-d?f*D|I5 zFfk0g`uwj$N2UxI+O+uVF#|r1j`dIJ6h3ZJ7hwa**Tw%>;gD#-z}vcAmsP)*oXrfF zOOlMgw;wR##dbZf^m<-R4Gk`f z=oTNg=aQRBOn%aDPG#n`308`^jfRk0><$j;UB#qm8by3LOlc9PFjOv=eAMvN6G2Fc z@Fgz0cd6E3=rk~(#Xs;#Qptd1Mk3N$L?l*fB|RK>7F@#t9L;H&CC z(li@U}k0C4^C7WpEulp`&lY?$T-j9=Ip9={8hTb~v zaRP6?+Ndrn&9>xfy*uq}OkqeT=bV2!^8^85tTS z=pkW+wA{dkAqdp~o)e{hi`w^TC0z~yfOi*-4h^n4&iLuK6TfXbR~u7nVAVlUXEX9o z-ps{Nbl;VX@8*t|3wbgDclV{+FOTixLbxw?oCE;5fM;_!DVnAkhQKfY*nKr4t6cT` z;O=wRZh3A{_sLz`-YhEb8XejY7bk!7hst33ZQhg!g&POdP3NzFxc%tPmuGA`fBnb9 z=g+)7?{aQYh)firXzV`B@X~tEWB;|FaS8P`&zHQ2`(_kakMaBRhX|DH>C@g#|j9R zEO~K#|G`NMmyUK7U#u>A91*Q#vAky)#Zh)A`IGVD5vR(&%r&0${aM<}YR=5MDxN7Y zo%hkS*veuv&__!@Y$u(1|FqSI?D9%?^%Z~ST&jKL^Bac-1jIL6)nHnn0JWl%%eQ}= zD6Y`G^ZlORKYF5e@wKK>zDaea^3EXtBvD_M5OjKhw$3Je>6B3Sz|awlaSu_n%IgS+iq)_sn>M z#a5`&WfWCp7FBeK4Z%>iJFTTx%&GFi7aJOXuFlJ)sr=J~A zUuU|vwuM420Q4W6v~Jb0!~4^PBF?-8Ljk~Mtula1WlgaE@NvH(LGR}nPn;v21kic^QV=f?jEwM9xY4TP1TL4ek*0fU%8he z1@dG`P?N%ATx6x|jTrUO@}4DHbDuJjJ`@|!z~ z%<34SKLG44zIL|q&Wy-D;e7e{(9}|kHj?j0GfcIi4+R7O1O(ebQ%|1#VODg%K7I-R z%4~7cHVdVY%D3$ zHMDC~!771a%eNfmv8ybic@>&%=Wa~z)1J>J7mTT@7WC)IGyot8+@;+POp1;VR0K;! zo6e`dyX9bNWUxy-{QJW7S4Q-n(Ys@f4p-OqTQ86{Tp{^v`UnI;c3ipj@s49Pg6g9q zzdv+tT&FgTU@A0Q_!97@_z1}Y?nIqorQLDc_s$*8Y@0ppAMgie7})shsb2jOf_ksGw&J>QMBEklPqILlPLEeS@j4D6NK=(Tvz|;TjSO& z5%G{+F8V$D{Q1h6*o4$u4_O`CLhaz@ZV7nbfm#2sKa3yg(QE_|e)jvffH;^N_V<@%J&e`XF$}v@h za%F$#pYJY@B~Yxj=7Gtn%FrLC7$?Qpos8W{+bG8Fpskj=7L?8TuQ2!WwXrc_B)@yK zpl2wrqubP7%mY(k)V+ZeL*99HbWngeHcDAss+CH38m;;A^?a+4yO6`e zu_}(UaNw~>wb9~mQircs6@Ap0EC9g5F#w=w1^}K~^*4ebJQfk`pa`NiSt|6VQf(by;=5(4NI&V>yZP~f zt?cyVd#yJB5b~a=)GltCkn6bZ3#>Y+QXFf(ODBTB&p#Yl^WEX#P?=Q52Y})tO=Y?M z!r81BUKu`oY}16|pb%-s&EnwDDug!NOY`lgYz~C5G10K#4=<~JyHL5>Yo1P{vwU0r zb3=nZ2;iphaCu+<*ZkP=g8LIK?sc2+K6x;Ht9S|hTkP_j9p>L+*KJ+d^6UHEew8W@ z+d5$GqKjJ&mE1mGnfvke{euGI=f?Mm75aH!yd-;SL?8p zqX_a*%9K{bQ~)4R-sy@plsDH-2525GixTvR=JyKbwe#$1>SIl$e}(dk)L*SS{Kb2d zzg=@=``)zCL)*=Lb^RCbO^OVaKl0QMAHOlaO?==zI{^Ry@Yv*!&psj(a6=Sg*T1L$ z*%SRc+MHB~OdKi~hswol0lgHrzd><#OOmevKR*B0v?K@-yS%# z@b_I6hAIYSmQ+OfNmIhAR=&Sj&^IA+^k?fXWETR!)x47TwjTcB@VR5R>SSa1_Q07R z4xjsa|LN>@r+}qY>F0FhlzodO(*+8r9OtW9JE7Quj zNu5`$e0;^q$7js$3jhqw^d6Yl)UKAkH{sPc$GrDx)oGbpRVCsChBUj-1d<}1#wYxI zX=cH!rHu4I&I4gW5?R5sK6a~oZO{1}2ZJW1u@1AoVtB3c*iC<2YXElRGCogAd^mQD&j$XL4>-df4F&qUH?qy_TVFV9nu`ry45&#gu zso}GPfP2l{c)(W(NS3!3+Q_0^fTrlcMRLk6-#= z`;pYh;J3yPL=Z?0@h{fsAMe=#?w!KstF$Fr!y9A!*B)ZK(164szvtI&-}Um0cA)`l zXHP^B*mVB-mWwx*{JAfqq#{}=TQmES8--V##BBf09VF zJ8m{%_Ir%6VZd2hIm2Q*0RVQ#jpB+4BK}ONXlav1RhziH`hnPdev`XW28fjb;_8$u zh51#ANN9NTBXRHO_ZuC)x>7r7>+Zr=$A*0?A;bSIY1H8KK3dLwD`?eP?D~HH+3)wC zWq|1z8N6)Mp+c1|KFIG%PEnf><=(5A2q1HQ*qj{ZpIxeE82Ebk>Gdy8{TJC~r5tn5 ztS>NWT!8Ue=SLP_+G=prk1|9Nz=r@wbwIXMt_&sus z=jvUQv!Y@Iy`ls?Wvp;-jMbl4{eIVQlA>)k+C(vq`@P1$&fKx5My(B zoIH?WVBYYWnvN^?ocZh2wJm4U#XJs|MYInOY!jsXe&*O`f7u2AQXU5Y*d%`RR@THW z$?SVY>UUqwNR15c(;&5U&$#eYnR)xJWhw-`-%nqy5`Qr4PH829VG`LLVvg)HBY>fgSOaw@T%oB z;(+6%=$1Hnwide_6g8!1yWWWr&#&J0*^H4}&ZU=XjdCFu01jTeyZiEO7J&`#5T6nr zfFQ{Ge;-~ry4UH9+~FPK|6z7j!_~8AH(b{g1Au^Febr^MhgA3|f_%_n%r$jUxwT5Y z-dS+Ht0H1TSWOhBA6xKKk4ODELKa%J|C}n%lCk*FLIqxTm+ZCY)9TN?mC^5Y7~|PA zj-!~EY}%P=*<;@!sGYZxa@V+i_H z$2o1qUc`dl-Q2re)r{L5bFj%?UfpZLhX&RvfSP_zy8AD9$_Ah7MyO@?8{ zc4~9vX4doTwomPrvU=7dSmV)|4AY#%8F>vvr8kCqQu7AYPMG;X?4PA0+TOe2TTteTL%&0&2Uu`V&dxggM+=rXKe`AtN z)C5m^ox|eC777W@+sPB!Ny4sZayR6i85fe;Q5F#=ta>OHrtU1dQfO933zQC;Y9kJQ z{PfC&i6gtnTHi&MjR{jEV@Z^oAQ~)eZt^cVEAo-B&wtB)%2GGMh=LW}ibFLzEuUp< zy(biU$>`){sBJ}Oy~1jvC{w)}$A0ijYD}<%&*hMWOu+4%9LZy|1RR!>&k2+Yl@ftV zV3hDVwQKNFG*hlO1xbW7QxzoEIVxn~@4M_yYRTw+SMrMApESg!$kwAUxp>FICu(0A z(=l|4=1Z53;}mr#@3dIj8xja6x-X??lorN$q}QlWX# zX1^>GzlR|AMYMEFH`5D0d3Rg84&gPJnqE{~qyd0F1DjbU#YPz}RQ}Ywd-F|aZtHf( zi-!Nhu6E0XfPaf!B#v!5 zbNz0q3IH@l%fV}RFJ%{9%PWcYmkmgc)|f174_^cTt=Tf6TT<89&^3oHV$I68&{THS zqf(3h*|QsNYD)lMTxiOYc0>8NPqmFlg|uCMeZSFJB~oV@DveH?hkISBt(9_KQsrM( z<@0c|A*|M;J%u;6>Dvm-s)7DV zm()4)&aVmM$;XFuel(&-lOBX&tOor@Ceu0$^Cwx|1%j8bx(2^qe$TXg^>HzAqIl>f z)y7)p0ah>NGp)G5S7#s4*p0roziTLN_HR|eYNg)1a`(=us>`Eu{6c>}xlhz;9u`Br>@;_+Tp2ij-uB#y-f$hTg+aWW$}LLpHIc;iyrbdL#ZHCRRcntBUKv_TM(VZ3`t zp$K0hT+pcbSGSC!NtaQJ=?E9Ek7gQ>5pGdo;i`xv2*17 zS8HHw=ax$Vz~PWobBjz}sQjrVX$sDie-qB{!N&g4G?1RFqSjKsst%i<7};5^GZ&U? z7k|5R&iL-JVTv1BrB=HmAzbX|?g34?4TW z?5tU~LxK|L#P#x~)7U<^UX`O@L(WAj<#@ltm}b<^*>No0Z1u8ZfR7nWYpN_G2wNz6o1)bg^CqV=*JeGT^grE_R6LE^lleW%CG>jpl?Ft ziHzKl?Q0Hfy2XTED=0a8H-AEEQoRuvEVgR}rTHqY(Q2DJpi5kU0syY&74J^VIF*qX zk5R%L8Z?bqz2!i;@zHO{HkJWxrZ~EOQ-Nk;XsC=kWzK%sC zc@ZQ50ATu)J^K$y27m**(>__YT^S&DI%ypDq=Kj_s%FfoW49xs{Fc7|NOe~I^t6J5 zd(torefN{eE8g4g=Pz2gbaY^lq$wNjjhou-ZtN5M?tz??GZia+SOcas^@c8rIq**r z%{a0RM}1SjiG% zBDER03H$iRR>NwFG+0P9di{iK=$K-#mKp_1H*W7 zv(r8>AgMZ_A4QO0Zk4rQVrZ9%p9N?XJ{I#P0HCM>nl@E`MbmnQ zF=AL%U`dHeUtFnE>CC_Fzx4LZA!e(6<)#`}>NMS-lkiN;)}~H|OhZwTS=CS3){AO{;?u(VuFE}4Gc*e&8arurGPKEQ6%kwj zkdn>M&4gFmj;hsA0C;*(XC9lZmeHgD!7@>sQ03s1SSLjnYxJRVF#t$;oOACyTh)fo z{pFcSuFoPayEdk}XionwbNah^uL2IMM{HORsDqs;VSy=OfnLntR7o=)7{i(qydmH{ z?ip4Qz~z#Ux$MD>Ei{#83HTi8?4(MH%f~2X-#1p(+(ko2rUV8{JKoFX+p}LnO2-I= zw@6clW|l6jIw}^4x$mx+!r@j~^()KupDf!30CQg)(yn9p_$gh#`(oeoGgp7P>dD|x znNK69tw&1Vua5q%CVx)yz`(arz%%rF)V3V2{oK%Q=_G#=YjK@gUl*r-zty+I@qFA5 z00QK~?_Qf|u{ox`zV49$DIrQRMKQncz4+HhGXmsIi1clBcIA|-N2ezEiTFPsxx_F` zn-HZ!$XhmLaF9&s62!zj4gm1jq=?H(%PqN6Quz*& zjZGH&YhUh|I;`Wo$vvwp!8N2njwGB{6TvSgxrYY4Uj64&QGFZU@_EO{n#W;>J)NS; zgu>TqV2RZeLAVTK=5nXhhFh(6fz5hUBwohlP6dDfnJ_>m+;jHU*xpGW{(3MYzg#Tf zytnQEmqm6?2pyanH#jv80J4i!hcDlW4wARKyhZ!d{*E1yveZKWJi zQb3^C(@}$aDiUA6wr)gV>dZ*@`|1@<)`BamclCL@h5LznSF8SQqZ`-u&`{qh9Nlm7 zYEW%t{LO(?F1w$AH`QSJqme#?6p~Ll>_&AIgXs^O<9d^RkzvfGl}{=p%LTk?jkT$5 zxpkRsIh-mSDl2VtRU;@ectpF6zn;c0^vw?^D*Z*(w=8<@S5<{!(OY9(>Tl=n(cgWs z&!D&b@yn@K-WctZL9*i8hK0|htjJ-(AGs-o#p$oybTTuqyh*Uy>g zF5z?5K06Trj=x)VYPE5}w113Uw{@knVtdweDQb>nj395c^XcgQx~7J=ID(Z~^!^;7 zJC&N0vs*K5?AmSTntID0doG>7p7+L_A@Pj_-jFE%&+Myq`z4EI3jk)b9<6J%;{Z4v zj++(b)uH^f!;uaETFpX-{hCPpJ^*TWQr~Soz44vL`?QOi@xdR9rVrS4`sVA852`IO zOnUQ|Ki+;UCRp+Fp7T=%bYPRse6*jl528QtBp%D-ju!H!BM7%~i;z*RYo2Q> zRiRl((HgPfS)WW#G;?Hs`r&=oiwZU6Wx9J}rWTHNge-VNr49(c>K1Gpd>i0LaXG&R-BZ5CA(W-4Lg5OididNa~dhM;$ za{V8GRjoaLPvIgTbGz_xxl4g&7}$H}R=e1sKM!7g^{c8!Hd*a_UK2E%{|>vVb~nGs ze|U?ytSWGQ@M8;9Hsk0+E9b`bnG)HFgWX4$z*ASVGjq$Eabs3tT zaY*<#$YR;1)x5wkb_8K5{Pubi{Vk;>iLQtYlj#?NOyP1Tmun2gmAcdEIjeV`^Op)% z?>yHzA(Y1LfsG#D>B5=2Qy%xe zUsqT&j+cH?@1l~EI4o#+-8fVvS@OuyQtxtx*Q(kr70YPr4egf8s$YH2mnJ5wjw)&i}PMegAhE$A<;A zxqrXAcI&wo>}mA+-Iw;9yftrf&yl^8kbk`7j6uJ`<(o+mZ2)MCc{7UnV^}bbhcyiJ zwAoG~2wx=rkj3hUqEZAQPF>IWZtE!k7|=16O%hszCAU<4ExUNj@$0ikcbg5}TsL-l z`m=YR9vbf7qRcAmbC3C$G>T^EOha)8Nz^~aMlY~xvh1a46@~@kSRjguP=t*joW=r3 z9(-+;z$5wT(YWv7j$ zmh=MCxx4zq)&>#iUMv>us(c+HJ{tfin#M8o`@c_Bv6MxKcYr%gJf{+ZY^HUx{(HgI`9?211+k|zQ{RP7SMbQ!=H@8&HW0RwM zw!R#*zqAQy4$G`nQ`bz{i!JJZ8CG#jS)_Ur{#VFmznWbb@c(h-8vSw<<%{^Ud}%!9 zk<>Adq8_Y)2r*0vS6N*Q()zHD+<)V>%i9NfqMRn%PoE{2eif_^u(+q}pJO-~bO zcB<{Pk!C0woD^+y&{jKbv{42Nr8YTLdPlL&USM#PHv37HoI1YQVgAxnt6yxYO7Wj% zmyg7>MhO!uHFjR^zW{geBQP`Fqic)2=m9zk%1aUuv&8&es^p;6CvI`hQh<+U*t z0BD*is?Y&IrOwzcI_TRiCxaCt6hX6!RIwon0MHsOYQ4Etq`>*Hqn6+L+eSN*L}4s< zR(%`gNY~|clt!~qB32Lx0EOntbZy>sZSLNZOCEaedGJ*Pkhw9#r-iw3mvPWW0_C>| zR#{|w9%q!vvI8E{zfCIb+XNogxU=!UWHVrFdy5upYI&<7fOb_p(^l#!T~v&4kXM{g zvYS>gpu&3lXz9mVdjWlaGK-=J9>}ee(5D$Ty8kk}d}dKA)DQnL^F+DTAR;-ddpuUV zkX(v1cuW6hHs)Mhedkn}#n-^Z7@^sKfj{u=Avmh07k1_ zXt!Sh0JZvQE^oS6{BiAOTTfhX8x>HZ(q|Q^=8Wzp6Y*BSOoy7Xo=anm%0B*kROsaqAS!dh4`OBQSk#ZAc}G9 zFIrk^sc~{-;X=dfdldZV8IBcR{=Vn^b_no@6VejP%t*JwN@WLnh zyUr|(Ix~w+60DY3l^LCOsVjgL0B|A>Llq2TuPzgUqR9M5s_JvMjjD=}oHeQ@nJb2( zOP?6jS}cm-H6is11I*#FYreNHwy0G$y^JMffEJRWd?Lt3>Fl(zll+BB>kTfhARBkn z@y=ob4;S(t*BMtogtdPk#%Q(8af8F^@gNL_W*i5K-z+elueDRh4Ger+NCf&K6DNwt zoUQn-v9FUQ6NzROCQwXfI`SFJ&|UR9cO94HY>?Rk2xH zZZTBYj2fFsYquC3HVfrI5a^}!o(F3C(d&7|t$Aqo#Hh{!Zj-%OoD{w6$9?-w-E#f8 z|IBR`iN8K;FaR80f9lGS8*grS0YMRi#`x89YZv`I4=1pBU6#&VHc1{NT{iX0rR(P- z2om1LZMcL}t669^{{?_?I3sxcr${ojwYQY2s-yQ~zq)HEQQMoAI4RFuA!7-3ww&`7 zE6OctCPxW^VC9ypN=|zRZAuVNX+Eq1fLQpF!Tcvp8}5lD0vroK5I+2S$>6BFYQ>f2HC)!BH z-PCS#tAY7*k~_#AYn5?|$O4XkgMe6v@QCE-MT>s%#v)*zyEia}+M2|6@veWZ_`(R5}S{{NT-@NeiovXP& zUHRBAwBDhqR->M6w_oP*pW^f9V9gCv^h}w#OmTgu!aVIxU*n^*;yyUT%@3HU;o$8R;>vo zCPRk?f3zw0spg#{B7pW(zKAq;&Oc;V>ym}C7FtSU_~8w|3gt-`CI1V~2dg%puGE@Z zt2YA2-kLkiL&l}XX!*~F>R~DXX!K@-*@oDiS!sEl2Dd%-*V#|@zy563r62EEoY*zy z@2~bO+q`hYCp+eS`dCo3{|}4SZ&%efOfn3mR!wKI`b(rgps3{jv5`#@3zj;v&Tvn6DWUh@XE#}xv#5HB$&jaV9Di2;yhfKd)GXMR*-hOs? z?@p~&A?{FF+VWd}f1moS@8`1ZWV6EUgDzBjHZbTbm$o`G^fxa;u;;HC20r@Zuu{U0 z4N>$=`lo|F8zY+|tr>UKGoNCp^4_$#V=!&)bBbuepr+yk0%%vixostrnmJK@V3*By zoFGza=UMe68e+l@vc~~{qDpMGW1L0`Qqr`xvSKt}@GO_x{PMjmWLLVnd8vc#+(5z@wGf3r9powlvmJMH`*Vdap56R@#}OUn-iwxG8S?-j zlp7ey3z>9nITvFO_U{D%PTF~}?9{=sQ!^tbjtJ;i-Cpa^SJ>3wc6i61U4vBI*mWzy9NRqw~=2w3+P~hUVWc9{2o^L67zt z#(!dC{?q_-M0V zYbrxAR6-I7b)Fork)7504|trRDC)fuSxQ{cTR-kux9dXvJt$bd{{6?@zbA^`xa!!R zKhO6b)^_HCAt;6d!20hFU%!wu_VFHF`o_Dx>zUDCmX~N(?_DU7@xNWR{mzY|rxp%P zPK{Xo>E6=^Z?x+gHF;KF|KJ*f%(m=X145$s1PK5I2Hm7Re>~T=>$Lb3hG9l*`(=D| zn~5>WVwRg^1xwEy*qU`SRT=z2_rb9ePaYyBXT`3|OOP_8m$8_0O{jG5(!W>e%#f6iXIG+K&E zC-U1{cq>7yY%lZa#O}I269Hse=x6{y5rjYq*Jl9OR(ucu`YPNU>$YLM#lHLG z%`3MHTMJWTLKRDA4{0)5ROpv}y_2RJ4IQ!C9VCaCx@h$0b5}3hvamK5ilG zC`7ftTD|*RUYTa$cRSvCV(_SLRc0tBMIX47dEioJm{KC)*Cb%fE>Y{v*6TSX+uxh% zf?EUuyMxLv*LF<|Yep4itNmiLEWmZ1jl`pBTa{J1w-u7leKOHZ={+E|j^leqUit5P z8jUYTF?8xP{mvY|`S;ork?{fjN2LJ3sA=7P{rcdw3pwkLEfz_6no5I2UdJ$qVW`Dq zlgRi0F!AZ$PYhW8;ld5;k1xJ@Hp{5DbnFpR8&d&b;ql!F0z<=MW5x0dWrf8?{gTuB zcjjb#({EI^PW|5bBcEPAIW#PmOVru89W=Eq>m~qPC@UPk?U$vU`^`w~;PxrB_WWIi zFB=_YeB7^>|H4q7PYx+3&fXD=xbH6+Jm=-#w*UIj$)E$a9RX)vw$LiipUUOVn`4`V}t{{`8~_V#LZj4KC+9Z)vmfmT<)Y= zn99_it2Wy)lI&6)!*Fjy!~lS%RZ`i{2*PC;Q%P|Q04V)0U|0}M>q|@G@0nzpStzC@ z>|y{IfG@j^zpJl!tNqY*cP|8SMUetoxy1kg{Q_dT`$Z&e{^My(Y7%MXRKS%Q#s#?=Q8(_ZlD-yHQE07c-s?iPb|7q^6JnJ z$38narB5PH#H}s-(X_TO^!oQ5j$2OW9UPBo-cz$#US3Lmi6%6l6%KSSsPCMv zyybiQo4NuQtom_M{5UDDiv-G@8g--z+Umi}cmFtinZW8VLYLF?sr1~L%WF!vTkMXM zs6YVNb@tYf)Ho8y0HC^N=Npd=>JU?N3j4x0TTfiinb_z5*t_cRD6X!5X4ZX^-MAAE zAwUT3?(P()6p9oIEmA>>l$I84p|}+(Qrz7MmV^j#_szP?%zS@r2$4;)NjAXyzTbIx zc(S8+?%cV*bIv{IcbZd3XpvOu$mbvk0AhWev`X*NpwmCA>seLH%aFEO)ozuk0uV~ zrV>PlnJ#A}dN*(1$<^zAUIqX}iSkpVB_tFD474U=Q-Px!o4e}S?IMi|0KN(D?8~ zhM4%=ZR^L$6&e7L$}~cIc21rY#|iUL*?suoXQSE%`Z;~}<-Vc)n$Q2dM|DPq`F|3E zAP7<(Q{O7GSH&G}#`EEjnIj*qHWAqAoChMk>{!;FzRnR}1q`orH3xcN%{W0p8BI9d zn%j@JYXF~Zt=&~lpDQ(V==7dAE;sv24Ejj9{Cfs-B$XOrGG)o63&~_JJNv&VlrT&F zBxc2*74Ai&cWy|Od%e5Mh+{Jz9)B*%I?!c8WO0@!%kD(_>l^*PG<(&Gw91EtX#lV( z?yfzJ6>8_w&pjALkinjzwI)|Q6GveLo~p{yV!HCnrM1eUfEkW7L3t-I01yqMbXvRT zhElDw38qphf%u6@YfCdZ`I1|FIQ=0B1LdpKY@!~k8$lU?z+{gS2OeDzj^RB z_EFNTjS~aHeZo2ispOhVyKjg02z@u4SOlQ~AWB3-sMOXd$_0cB1VMlv$7KfnV{?p) zL_9?xJY80G)rOLmQ!;t^;m-!Po-@AM`tushDu>Fc?7C$Y=j-a9F7+N(2eb_u(AI)O zGUCfEI8Jm7^(Z)=u$514d{C6yNPN)#hk9b(a`N4}d- z?-uI}&j_M!Lm2@wi&3?b6iTH8=?(9fX^W)`+#PR_YOHgfnj@0P)iKHW!@GqYz4ml; zuNG#5UchIv88s!Djhfzh*rX13FU2gGvZws^?`G^T%#oN(*#1q|c>=ayi0fbLF9AS) zwip0*{d`F&*TzJqv$=G=&aiIbQ6`(V`G+$(>7s8Y?%H~CZkf$$o{#M4%*ElI0ASsV zdjR0U;k9$|ESsvv283~`w2iMGnt#r3(H;QGa{H(x(#{@3Ep#}hxRU#=fac%9ah^S` zlw0Kbq5G*(87v;t-kBd5;d^1{jT!65KfU0|3mhx_Q?v ziA*h)sJz_mTetLn@HDw)GmlPf{THt|*}H4-ycs<#_FE^1&|Hm(O=fg*2+h$HS8+U2 zr}*^oXS*2*)4KSh16#Z&+Y<_}I*T*C>h(smBT$(0%I!D{QpYG0L= zw{GLpQg>O>4z&ovFvBW|Jo}e#*{7znU^yppCdpf0JF)YR`2ejqNF2TC;FdS8*1lrD=)c?gXf9#*Gw`sMv~{k znKtQX1c4vF=-bS{&K~JgH>0mUN~rZPiCn{f2iR;rYy8ro zWixj3t|864zK?nv{q?}nUk`l$9%-$0+A9EHGNqbK)hbvfQx1mZ)D>29i)8C|T`#Xk zRa#pGfP9ex$B82sp9}0*WBXOs_>+}+0I)3Pki~Luddvs_3tsPLk?Bi=M^5tYo}n%* z&`KTYd_T73u2!0~v9in#!e9VsV;^7xSOoxuM)%`^>!gYbBZ?q^!mH%mMLSB1SiQ|I zGU52)n=iA9rN7S}Tpl>h^3&m)^l}W*=>-zAUx-XX0l;X&yq)TA)N6J3>+ENscOsz{ zs&Lb&;pJf!!-|R|vs@fbA=Ru!5d=(J@wa&mW6bh{0C4J7w0W1S1Ml2#GiqqVqACE7Hx)aZ_ zV-1|y(N)-@Qab(;zp29qY)cXCChM!}_-< z5i1=ky1@y85YV`PXWqgHoJFQRElCg?Y)$df zV9S}>j`ZM>UVGD&cMZ6Tj4)VaA&=@Vr1>+*c8%9v7DXzVLlA0{DcigPBN2awVFe~r zW=Y8~zFlcGQzmmXg0SSWWdOin4zqY2f$$^%lsSRz?f0UneVG%ufzt5qiV^32_s%PuGAxZb9vxd|C?K!~Xr{W?s@i=}|h&Sg2L*eEV2qGW2xyCsm*P5G70S zV7TOID`WvMNc4$brJZv&??&Zs7KmYPy#+M8-cB9K<^P?U|L4iri-lQp3{X|R>z?!@2t%`kR3%8O?)nP2~MhQp#y9@4g5bMIQO zaH}vH0K|HQx$3G#c_m2&03VjqOy9mo+AaPjdcQkExGZFp#e?JJ*|T2!VJ^wQq!g%c?ShOJ(z%Ax?Ije6eEn;T!Hko=RtM zRr*zP4;ysGq}bfU+iw2!*OY)}?*Ht$uhSSt&*+j8pQlyp zNhGxYm^NklBaKeU&lYRddH~q_>(x$uLql7=A7OMR^}wcUdcA3$b#=uXE+m9f2_(oA z()guAM=u(rl4)Mvhzal2Z26ISuWrS*8yL>wF-_%)vtGO&V=!WePd@!_LI0EIUv}#l zc>PZN7n8fNm{b~#a_hlcDuwj*tX?=ytlx4aqJ?+A9`E@&+?fuiJFYyR_vC3wLVID; zP7a{}Fx0K1rS&%L>6`}>yn3|Y`&}z|!J#l)3#y%@>}gG^8j*(&JY=zGZtnIi!@X$q z`mey@IH6Hv_Uzj80qg|_06->Pq|s!v*k7>OUltYw5rm$@`PP;dq8iLwZ?U_qku}lR zo7y=aOnJVw-3SC=f9LTfdUcjcsxs>7Buars0RRI%LWX#TrYpq@p8b2VcP(WkjJPRE z8b9BE^0P>*vRRUp>BqA#;skCYFfu}VTJjnIFaievGD;!{!bD(6%5)S#S0`-S&}@k- z!`h4sox!wh>qV{3HhivQ`nH@{cjgC)T(f-JC6jd#$O-B7gjED#bGVB+u(*-tmhzaI zFOvVX^D2rU69+|v_&RI#Mn-MRu6K)Lt-R4|X`0!&<<1a(fH||Wxns{^{(1iK)_)(m zJMev71(g;$Oc?$+K7%0O--oeF$8{glp=l-a;vHO3%*N}B#GDt9^L)nwxmqVxX&c^L zgE84)d|StnL1ob`S2wGa$@*>`VmF!WUR|viG6}^ABG|_X0NRFn;W$A6csTK=4zjGQ zG1;`WyQWgQ;#5d`7s=Y$~0xG%b0J`p){;AWu{7XbQ=Ztdbxq5Md~>#S058;`Mk z`o7>6o&ca$>HuKV_ovg|7T_385X6Gj!{H+dn_sF_iE_oWTPGEEBmT32p2Qwyg!Z6&|+o43F%FCA)6w6PXeLmx}PIn$AuKE2EjYhfqC@Cb+H7vya zm+jX=0$n`aDs+WCm6N3|N>pU0s|vhXPC_b=OJVkMZbf~Us%XSbo03j12^wohWiO1{ zA=WGUyR^BQ|J;M=(8_8z&dC$cbULF@$l17gf`@0RVmr{DYJ0hv_2`>#9V z5>?mk!F~FLk*hGF%Ve4{!?z*`czHXNh?E|l_TwgW=-4@+dhb~h08pvz2ttqJ3IL!` zTM$I;UkdS#?N3|5Vml>uka_z}!T1+>|Yd8t9HUcY<(_~fC1pqKVY88r*Itg2ib{}9~Qr*^a zg&V_pclvRRzGEI|MD9*sadpi{an@aj8VAvhw)6BAG&^ z^AxH<4f^{hSVjrz{|A(KfAX6f`Xa9rE0)S`>Wo-tUo zX{WBnNq9{vbGGa!ZvF*U{ zviTW7(a;Wo?>>HF=ETmvJ`Q9uY4qp2s1$PF9!;l=ZO`X10ia#0CR^8y3l4Chy$gN3 zb|;>Amn5Ju>0V1yvou9ygmj?ow|d-oyC^DB{Psq{%O680m0_ybptzd%^VSbdCtCR|CKImH837}NDuqk|h!)PY88Z)g8kRVOe(7!>lAWJ-X^n26K5RvrIOOWv-D zKkmzR@#nbub6ov7ZcSLuWuywW@Nl5}JC8TpqXRucs_aFUHSbmSvk6CVqWhFuuW4}w z6eIAeYpdm}ln_9O^im^k^kTjbqTH5ph=NkyDpCPpW!&ZsVN0o~wJwU&H>1lKcN-|3 z!+lrG>Q@itX2;1#QE%&()${Om+Q2SN;ggiSBH4lsXGkdW*UE7rzRmzZBB9G?_L=(K z-xu!2u9`cbQ@Di+w{H={lJ710Dz*% ztWBo@z=)Nq%;pf{5KqTjuaX-$nX9yQhE*b(equ4w1Lpuico7$~;xA$|Xe-lUlCXN7b{_q?N_AZOoBD6y8|BheZ2eL8A z^iB?;ouD)#kxrtHaPKt2y|P*+pmHaA_o}oph+8e2&&Caxva?F6=>Da%aCB7G{4Wod zz6G@*FHZ^pcW)<@h?JYRmy+(%=oJ3|=jV}WFP^6>6R~KqAeVjZqPM%o?ggz|i0FGNA*FAva=ErfRp%nPEg#ZF4a4v;i zwzhh`@FAbdDW9TRtP>k?Ba_5vRgQY;EB`5OjQY?EM8;-qv2HoDR%zSJYyJE|BvPHz z3-7*2IeNLy8HP8WCVqmjs?zBHzWCzI&1gSQhw%eii6qJ!g;KrIq&JxK2F$~mpIspN zZtKP4zfN^?;#WF%h+Es??(MC)iyk-P?@Yd8y-aJ;6F}6p;A^%@MgTMyxH>V|Bm}Xi zF}YNFafu25Ciu22kExbn)f|$86OdITEuTtQC{f;gm8>(Ecr1E&fIEial~PWPMiT&d zI`H=|84CbKQdR$DdjP=v6996GWkY{FQ15r3)4wp8a_V#njna%kt0|qI#TX!0?XmR5 znu^4;9PBo7SmSLzm`p}&{la57MlAbn+=g#X+&&)_)}~3H;jK#5qSG&?FYb4G-vd#h z+}@EhaZb-lv`XS)#e%UrTXpnbx^XO-Li#A*!<@}iL^)yy4*`zhM!iufQD-OS9a!;C z|LNWPPVM%|PQ){3b?0yymFBXn%#s;Xb_2kuF>S_8Xb%9%Nd-<$JRaXN4~w^t@OfmK zo0}b*P5*lSkpY8Rbm&U{Ez`J%-`FevUhKPft!Nm_B*ex620g=v8@AGw0D$ zY3%^OV0Z}tG+LM1tyJS1x$L|0)FpcT^+DvLaPiK>%43y2!m8KptuP`&&h-#2|B_ zmxhKWD$@XfLt*Vm`}=dBF%7w0a%S=JtrtzUAXMrU-sI=`gDG|Yc(V(oYj$0)#~ok9 zXUi1Y>Kv*cOK_Yxa^X2n5YdUb(TTYL;O@k4>gN*d>l_x~+P`zika@d|Ml32Zw<@fX ztmgGCQxJ1CB`?G&1Q4BXEv@P8+*$$vd@Ad&h`H{}(vhDaEn<);vx46P`S$ond1^U} zOr09odT(MR6(vm$h^Q7;A8egVM$yv`-u!;*exHbd6_a|K!S&yVu{p&u9*aI_Xot~V zn`abA2q2ocypOQen_<yX z|N6MlnfKl1@eCI2>Z#{3k?Hp@$CzPNE>V+6X!k+QPw#sG00zBj>6ATYH*(q9DxE>~ z3vrc8)i=++DvNcpM&{kUKtj<%bt%2bw3}xDK&;i28c!I86NHs6skp~UTj%bhG2WY2 zLO1)}QNQf_{)8x3?BFhFi~(RGu+?!pO;z$eigl82gQf;?eM*v&>r8j~iiEr~`-{kzU^@gWc=_BiPMgX{fFEKf(006SH#6~0b^STQz zu6Dr{y$%S%KvAC2@JgdOuG3xz00yJ>Vro=sD+kB-6RSpjOs{{RkY_JAC@vYx=WisD zYYJ^mRn=0R1|#qkWqyh>|3cm~0B~X0_jGD8+M}}_mHqMOVuCQYkc6Ni+zQcQDwBFc z;w}Kd&w0J#-P(bSMP{Oa;(!}4qZ-rlC>(ogO(bgt zBE{Dm&uVmrhPS_0yTH|7_OFMXsxz3DZ@E~%HsCmM>0x|5Vxt;WxNLgc=H6PJv1PD( zSb$rIuXCjZ;GXRQbGK2bjUgTW=f#x9>EzTS08N4&$$y-^G z#$?FX$hXHm!U)`(V?XE7zpqPj{dqzzl|IZn)H1A^xgExIYrg&Lqs!0UPVODy?=A#@ zd(mlZ25nfUP;X~@jovtK`&qGE{q5LpBfFGlsms+m07x&8>^T3VYja-`sdR!~y8E&n zhwqz>_~vLZSMmQ5MMCch7MrO_!{{wW3ZhOe!D(X0)NO!=yL z1<%RL;=GuWg3|96Gcn0lJ*I0Dr}hKGgW8r(YL|B1>Nm9;08C#q_U=DVdQRxn7#|@S zA*~Lblcg!}VYz8AU6D>qLCAAouRqsm%R8420svFIhmuiJwz^rfQQ&MMiz z=iZ55 ztZjS0?|v-J1^j&Kp3DqUc)0g>D~8tmIBfQ87HgVH^`~66j3A6C>VT5!W)zxCnF_^P z0AR7EsnrMGS*Tr0O2*jR@1js!ROb`R(bO&Cra&wCJM+#yImMvr&FS&X{D27NsiiNxLc5Rq0e+@Ca1-j-yP`en*(R{ySit8*Re6;{K(=g zPqv*IQ{Tg?T4$KQ{amGRe1agTWYW*aZkJlY*~K0XyqMJdnACiQMqeaV0>FmjcM${` z(YYA_o%bI!f`uXy#zxhz1J|> z_Xs&3wc1P+tkW9IY=w;^VM1pv)k5+H2|*m0?Ec;XR$?ju;28e!?DL0b-xuZHwd8NV z7T(Rfg#@?tZ@fo95p+@1MqjoE0HmvPS2g|8>}91i|4j zw(p!;b&4B0;CHoJ4*-k5weVG!lqk7ehS`cW$Mls2IspKW#{>Yib>uq;LSwV%Yqb|m z#v~jUm57E29WGmKe@GYo&C@a6VL0MTNSIO)+|uA7+TM)4bC1kNTiBkY>B6SQb2Xi>wF zx!S@UO~Hm{OXwt;*=IP$W8hHN-Y=!GDXPpYbzX@WRB~Oj z>2O@3R3EFGWkdGlvZh*dB!%q9pmo&hAJ^o5(Lc{E?&BobO{cc58>|w9M-zuJGrJBL z(*^*3*!tPx&vs4fw!z8GjzT5lIDuoB(SYf6MvYQ8c2>8Eb9=sfWW0)Lg4KW%rG^M* zx{zMCFvXURuIbaht?L+d@D!}Ou%vt?Cjuwj{G9>7)z=1r${I{wqR)0`1XryjiXh19 z&^cO6|HaGISrszysA{{a11w^u=%qOVi-PoT9-jXTAHKAXjC$W;dgE)bmM4SJr%DY^q zfA7EX_i&g$s#E<8ZVjd%=hcOdQpqS4mVH`G5}~yMx{|lMM(f~CqMO4 zRsu#4#X8lrdnX2YhNQ?vMOqaAlrO&YzI_5N695z%-Ks-30Kn6cZ_lY5vZ2-+QgTZG z;NsJSvE5rN9oN15-srUaseL1irfP}P9C+-XKOfNC*R`%L5Sj81b5@`ABH*p4HK?+j z!TNd4unGVeR+wKroX?qS$Nk27hcHS)hkW+l>FVk0xc&6J-5V|^$K@6m$V|rfeI<0_ zO_=?@KWPkVr2t@p0HG7F{BmZ6z2?~#$6plXy>ByK2mQr_<0U$cGt(+_*|mw2Ym>&x z^C{A$9nbn+izysvUc=qL6VNIb3tJukS5bWH2Vy+7_8|n?`rr(f$uArJm$)&hBFx(hUYnsh9;HEbNp;mWGbw= zXIOJjgTZv=QZxXxYwu5|Q_RkTuHAx#Le7)NDJ3OJzW^ry5SOSh49`d}27rJ-m#Uab z5PF4tHHz{b9B-NRKOS!_ne4}6eP%MHktsn`N*IE05CmnhrjjWEWhSiA7*8U5I5^&f z3Z<#uDH-q3mqzdAPSODMp30kfAGf%ZD(xuaTUz@?XMAG+rIJvaR6jT36`TZ#y*# zI5$k_{1GQIBd&Wbz5GaY%z$gldxJ0J{W`^GQ(1w-?cvJ+fQC{>xc5p@W|q$ce<_J? zZQt~t>}vop$!m}Y)5%0&C3>llW_hA7DwLNcs#~0sx>=g^rGQ-hYYw^%cH5N>fWp z6^^2ODy;*Qs~?9T9450eVTBGeWT@*vWjEJaQPZ*57?h7-htm#LQ?#=nfq))^{9z@P{c+{C$ac$48ho7V|n%b-D} z(Kl`43;@LvRflFiAAT^@F#bdAoX7}Ts8M|87hV&rmW`vBw1V=L;NJJ(yP>8xVoch5 zWDWLo4DoU*?|7UwxV<^3Sgz9YSoE+au5Ln}J%@St#>?w3lFY}rJMe17Fs1rLoqB=C zoSA9FBI#gDwAeI*uv^ywN6f8i(+=;^X-^QWvS*D9PDOh zgxK@f9ULb(Tt@dERcMAtE-dy;8}=uP@|;}~tU2Cp@x9{MZ-Pd46oz~{fU4CQf8KZV z#?!Zd0d%vKWS|w0d7Rfx(2yR9bh(hE7n?()1gJQOU|Y3PK9vdQ9~0 zCaAmD$IF(GY<1hxc3z;{}0?crBa0*ntGf6XzAzn&6sZf?n3H2Dv9qt>sfXfgGQO&zs;G4v1~fEcSOLbuFY$7 zE}2AKqrx(kDJ4# z(ik;{@>a5F%S)WND6%leiOC-56Ziod+*UABV#q7hrsirAGSsi7hFa1nqhwbtz$%%! zx#g0wpDuLaaQB|(Kfds_YAvut{zJ{BSU;|$<(7Q6?NU~LgZN{GeAc4L-FvhNut}5NW)wBX zlWsbECp^f#9_3xji&CxIu>aQWNUON>G&;k+v(N6mNL{~Ru$R?k$y0Mn2m*Xu1tO`+ zY{Fi8oG_?keH4NeW&Wn5bFs3__uqm%>!B$AV7sr`>|M4rn?jor)D{7xn~U$l zr{_jBX?`O&`AW{)C&ih2yNqcmaI*lb-p=;V{`{(jtDjjqF+07ubtiumwH(

\n", + "亲爱的用戶:\n", + "

\n", + "

\n", + " LongBridge App V4.19.0 版本现已全新升级上线,欢迎更新体验! \n", + "

\n", + "

\n", + "参与新版本讨论,可获得周边礼品>>\n", + "

\n", + "\n", + "\n", + " \n", + "

\n", + "新升级概览\n", + "

\n", + "

\n", + " - 估值分析提供更长范围的历史\n", + "

\n", + "

\n", + " - 关联证券页面,可关联出更多标的\n", + "

\n", + "

\n", + "
\n", + "精选功能\n", + "

\n", + "\n", + "\n", + "查看更多>>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 此致\n", + "

\n", + " \n", + " Longbridge 长桥\n", + "

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 长桥官方客服电话:400-071-2688\n", + "

\n", + " \n", + " 官方客服时间:9:00 - 18:00 (GMT+8)\n", + "

\n", + " \n", + " 客服邮箱:\n", + " service@longbridgeapp.com\n", + "

\n", + " \n", + "
\n", + " 本电子邮件为系统邮件,请勿回复。
\n", + " 本邮件的内容(含附件)均为普通信息,不包含也不应被理解为投资建议或者鼓动购买所提及证券或金融工具的提议。此邮件内容并未参考您任何持有的投资标的、财务状况和投资需求。因此,对任何由此邮件直接或间接造成的损失,长桥均不作任何保证,也不承担任何责任。投资有⻛险,⼊市须谨慎。 \n", + "

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "...\n", + "*cmd* 'QUIT'\n" + ] + }, + { + "data": { + "text/plain": [ + "b'+OK core mail'" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import poplib\n", + "from email.parser import Parser\n", + "from email.header import decode_header\n", + "from email.utils import parseaddr\n", + "\n", + "# 输入邮件地址, 口令和POP3服务器地址:\n", + "email = 'hoolich@163.com'\n", + "password = 'FYIRMDFDJGHFIOIA'\n", + "pop3_server = 'pop3.163.com'\n", + "\n", + "def guess_charset(msg):\n", + " charset = msg.get_charset()\n", + " if charset is None:\n", + " content_type = msg.get('Content-Type', '').lower()\n", + " pos = content_type.find('charset=')\n", + " if pos >= 0:\n", + " charset = content_type[pos + 8:].strip()\n", + " return charset\n", + "\n", + "def decode_str(s):\n", + " value, charset = decode_header(s)[0]\n", + " if charset:\n", + " value = value.decode(charset)\n", + " return value\n", + "\n", + "def print_info(msg, indent=0):\n", + " if indent == 0:\n", + " for header in ['From', 'To', 'Subject']:\n", + " value = msg.get(header, '')\n", + " if value:\n", + " if header=='Subject':\n", + " value = decode_str(value)\n", + " else:\n", + " hdr, addr = parseaddr(value)\n", + " name = decode_str(hdr)\n", + " value = u'%s <%s>' % (name, addr)\n", + " print('%s%s: %s' % (' ' * indent, header, value))\n", + " if (msg.is_multipart()):\n", + " parts = msg.get_payload()\n", + " for n, part in enumerate(parts):\n", + " print('%spart %s' % (' ' * indent, n))\n", + " print('%s--------------------' % (' ' * indent))\n", + " print_info(part, indent + 1)\n", + " else:\n", + " content_type = msg.get_content_type()\n", + " if content_type=='text/plain' or content_type=='text/html':\n", + " content = msg.get_payload(decode=True)\n", + " charset = guess_charset(msg)\n", + " if charset:\n", + " content = content.decode(charset)\n", + " print('%sText: %s' % (' ' * indent, content + '...'))\n", + " else:\n", + " print('%sAttachment: %s' % (' ' * indent, content_type))\n", + "\n", + "# 连接到POP3服务器:\n", + "server = poplib.POP3(pop3_server)\n", + "# 可以打开或关闭调试信息:\n", + "server.set_debuglevel(1)\n", + "# 可选:打印POP3服务器的欢迎文字:\n", + "print(server.getwelcome().decode('utf-8'))\n", + "# 身份认证:\n", + "server.user(email)\n", + "server.pass_(password)\n", + "# stat()返回邮件数量和占用空间:\n", + "print('Messages: %s. Size: %s' % server.stat())\n", + "# list()返回所有邮件的编号:\n", + "resp, mails, octets = server.list()\n", + "# 可以查看返回的列表类似[b'1 82923', b'2 2184', ...]\n", + "print(mails)\n", + "# 获取最新一封邮件, 注意索引号从1开始:\n", + "index = len(mails)\n", + "resp, lines, octets = server.retr(index)\n", + "# lines存储了邮件的原始文本的每一行,\n", + "# 可以获得整个邮件的原始文本:\n", + "msg_content = b'\\r\\n'.join(lines).decode('utf-8')\n", + "# 稍后解析出邮件:\n", + "msg = Parser().parsestr(msg_content)\n", + "print_info(msg)\n", + "# 可以根据邮件索引号直接从服务器删除邮件:\n", + "# server.dele(index)\n", + "# 关闭连接:\n", + "server.quit()" + ] } ], "metadata": { diff --git a/Part.5.B.combine-csv.ipynb b/Part.5.B.combine-csv.ipynb new file mode 100644 index 000000000..a4837f92e --- /dev/null +++ b/Part.5.B.combine-csv.ipynb @@ -0,0 +1,111 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 合并excel" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1.0, '张三', 300.0, 30.0, 100.0]\n", + "[2.0, '李四', 200.0, 20.0, 100.0]\n", + "[1.0, '王五', 200.0, 20.0, 100.0]\n", + "[2.0, '陈器', 200.0, 20.0, 100.0]\n", + "[1.0, '陈王', 200.0, 20.0, 100.0]\n", + "[2.0, '陈器', 200.0, 20.0, 100.0]\n" + ] + } + ], + "source": [ + "\n", + "import xlrd\n", + "import xlwt\n", + "from pathlib import Path, PurePath\n", + "\n", + "# 指定要合并excel的路径\n", + "src_path = '/Users/chenqiang/Desktop/cq'\n", + "# 目标文件地址\n", + "dst_file='/Users/chenqiang/Desktop/dst.xls'\n", + "# 取得该目录下所有的xlsx格式文件\n", + "p = Path(src_path)\n", + "# 把匹配文件放入到files的数组中\n", + "files = [x for x in p.iterdir() if PurePath(x).match('*.xls')]\n", + "# 准备一个列表存放读取结果\n", + "new_content = []\n", + "# 对每一个文件进行重复处理\n", + "for file in files: \n", + " # 用文件名作为每个文件编号的标识 \n", + " number = file.stem \n", + " # 打开文件\n", + " data = xlrd.open_workbook(file)\n", + " # 将第一个表写入到table中 \n", + " table = data.sheets()[0]\n", + " # 取得每个excel的总行数\n", + " employee_number = table.nrows\n", + " for line in range(1,employee_number): \n", + " content = table.row_values(rowx=line, start_colx=0, end_colx=None)\n", + " new_content.append(content)\n", + " print(content)\n", + "# 准备写入文件的表头\n", + "table_header = ['员工编号', '姓名', '工资','出勤','奖金']\n", + "workbook = xlwt.Workbook(encoding='utf-8')\n", + "xlsheet = workbook.add_sheet(\"统计结果\")\n", + "# 写入表头\n", + "row = 0\n", + "col = 0\n", + "for cell_header in table_header: \n", + " xlsheet.write(row, col, cell_header) \n", + " col += 1\n", + "# 向下移动一行\n", + "row += 1\n", + "# 取出每一行内容\n", + "for line in new_content: \n", + " col = 0 \n", + " # 取出每个单元格内容 \n", + " for cell in line: \n", + " # 写入内容 \n", + " xlsheet.write(row, col, cell) \n", + " # 向右移动一个单元格 \n", + " col += 1 \n", + " # 向下移动一行 \n", + " row += 1\n", + "# 保存最终结果\n", + "workbook.save(dst_file)" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, + "kernelspec": { + "display_name": "Python 3.9.7 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Part.5.combine-doc.ipynb b/Part.5.combine-doc.ipynb new file mode 100644 index 000000000..f2748eac5 --- /dev/null +++ b/Part.5.combine-doc.ipynb @@ -0,0 +1,113 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'docx'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/var/folders/0n/6mryfm8x06gfzddk4dympfg80000gn/T/ipykernel_10167/192274820.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mxlrd\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mdocx\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDocument\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mpathlib\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mPurePath\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdatetime\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'docx'" + ] + } + ], + "source": [ + "import xlrd\n", + "from docx import Document\n", + "from pathlib import Path, PurePath\n", + "import datetime\n", + "\n", + "today=datetime.date.today().strftime('%Y-%m-%d')\n", + "\n", + "# 客户信息文件\n", + "customer = '/Users/edz/Desktop/效率专栏/文章2/邀请函样例文件/客户信息.xlsx'\n", + "\n", + "# 邀请函模版\n", + "invitation = '/Users/edz/Desktop/效率专栏/文章2/邀请函样例文件/邀请函模版.docx'\n", + "\n", + "# 邀请函路径\n", + "invitation_path = '/Users/edz/Desktop/效率专栏/文章2/邀请函样例文件/'\n", + "\n", + "# 替换内容\n", + "replace_content = {\n", + " '<姓名>' : 'no_name',\n", + " '<性别>' : 'm_f',\n", + " '<今天日期>' : today\n", + "}\n", + "\n", + "def generat_invitation():\n", + " '''\n", + " 生成邀请函文件\n", + " '''\n", + " doc = Document(invitation)\n", + " # 取出每一段\n", + " for para in doc.paragraphs:\n", + " for key, value in replace_content.items():\n", + " if key in para.text:\n", + " # 逐个关键字进行替换\n", + " para.text = para.text.replace(key, value)\n", + "\n", + " file_name = PurePath(invitation_path).with_name(replace_content['<姓名>']).with_suffix('.docx')\n", + "\n", + " doc.save(file_name)\n", + "\n", + "\n", + "def get_customer(customer_file: Path):\n", + " '''\n", + " 获取邀请函信息\n", + " '''\n", + " # 从第一个sheet中取出客户信息\n", + " data = xlrd.open_workbook(customer_file)\n", + " table = data.sheets()[0]\n", + "\n", + " # 取得客户数量\n", + " customer_number = table.nrows\n", + "\n", + " for line in range(1, customer_number):\n", + " content = table.row_values(rowx=line, start_colx=0, end_colx=None)\n", + " replace_content['<姓名>'] = content[0]\n", + " replace_content['<性别>'] = content[1]\n", + " # print(replace_content)\n", + " # {'<姓名>': '韩梅梅', '<性别>': '女士', '<今天日期>': '2021-01-01'}\n", + " # {'<姓名>': '李雷', '<性别>': '先生', '<今天日期>': '2021-01-01'}\n", + " generat_invitation()\n", + "\n", + "\n", + "if __name__ == '__main__':\n", + " get_customer(customer)\n", + "\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, + "kernelspec": { + "display_name": "Python 3.9.7 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Part.5.split-csv.ipynb b/Part.5.split-csv.ipynb new file mode 100644 index 000000000..3b3e36ff8 --- /dev/null +++ b/Part.5.split-csv.ipynb @@ -0,0 +1,93 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 拆分excel" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import xlrd\n", + "import xlwt\n", + "from pathlib import Path, PurePath\n", + "\n", + "# 工资单文件\n", + "src_file = '/Users/chenqiang/Desktop/cq-dst/dst.xls'\n", + "# 拆分文件保存路径\n", + "dst_path = '/Users/chenqiang/Desktop/cq-dst'\n", + "\n", + "\n", + "data = xlrd.open_workbook(src_file)\n", + "table = data.sheets()[0]\n", + "# 取得表头\n", + "salary_header = table.row_values(rowx=0, start_colx=0, end_colx=None) \n", + "\n", + "# 定义写入文件的函数\n", + "def write_to_file(filename, cnt):\n", + " ''' \n", + " filename : 写入的文件名\n", + " cnt : 写入的内容\n", + " '''\n", + " workbook = xlwt.Workbook(encoding='utf-8')\n", + " xlsheet = workbook.add_sheet(\"本月工资\")\n", + "\n", + " row = 0\n", + " for line in cnt:\n", + " col = 0\n", + " for cell in line:\n", + " xlsheet.write(row, col, cell)\n", + " col += 1\n", + " row += 1\n", + "\n", + " workbook.save(PurePath(src_file).with_name(filename).with_suffix('.xls'))\n", + "\n", + "\n", + "\n", + "# 取得员工数量\n", + "employee_number = table.nrows\n", + "# 取得每一行,并用第二个单元格作为新的文件名\n", + "for line in range(1,employee_number):\n", + " content = table.row_values(rowx=line, start_colx=0, end_colx=None)\n", + " # 将表头和员工数量重新组成一个新的文件 \n", + " new_content = []\n", + " # 增加表头到要写入的内容中\n", + " new_content.append(salary_header)\n", + " # 增加员工工资到要写入的内容中\n", + " new_content.append(content)\n", + " # 调用自定义函数write_to_file()写入新的文件\n", + " write_to_file(filename = content[1], cnt = new_content)" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + }, + "kernelspec": { + "display_name": "Python 3.9.7 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Part5.B.downloadcsv.ipynb b/Part5.B.downloadcsv.ipynb index e4efc4397..eab8c85c2 100644 --- a/Part5.B.downloadcsv.ipynb +++ b/Part5.B.downloadcsv.ipynb @@ -73,566 +73,36 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 1, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "\n", - "\n", - "\n", - " 开放式基金排行 _ 天天基金网\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "
\n", - "
\n", - " \n", - "

基金排行

\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

基 金

\n", - " \n", - "
\n", - "
\n", - "
    \n", - "
  • 基 金
  • \n", - "
  • 基金经理
  • \n", - "
  • 基金公司
  • \n", - "
\n", - "
\n", - "
\n", - "
\n", - "\n", - " \n", - " \n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - "
\n", - "\n", - "
\n", - " 基金代码\n", - " 基金公司\n", - " 收藏本页\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - " \n", - "
\n", - " \n", - "
\n", - " \n", - "
\n", - " \n", - "
\n", - " \n", - " \n", - " \n", - "
\n", - " \n", - "
\n", - "
\n", - "
\n", - "\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - "
\n", - " \n", - " \n", - " \n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "\n", - " 展开更多筛选 \n", - " 数据来源:东方财富Choice数据\n", - " \n", - " \n", - " \n", - "
\n", - "
\n", - " \n", - " \n", - "
\n", - "
\n", - "
\n", - " 按基金公司筛选:\n", - " \n", - " \n", - " \n", - "\n", - "
\n", - " 页面放大\n", - "
\n", - "
\n", - "
    \n", - "
\n", - "\n", - "
\n", - "\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - "
选择筛选条件,页面直接显示自定义的筛选结果
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
    \n", - "
  • 近1周涨幅排名:不限前10名前20名前50名前100名
  • \n", - "
  • 近1月涨幅排名:不限前10名前20名前50名前100名
  • \n", - "
  • 近3月涨幅排名:不限前10名前20名前50名前100名
  • \n", - "
  • 近6月涨幅排名:不限前10名前20名前50名前100名
  • \n", - "
  • 近1年涨幅排名:不限前10名前20名前50名前100名
  • \n", - "
  • 近2年涨幅排名:不限前10名前20名前50名前100名
  • \n", - "
  • 近3年涨幅排名:不限前10名前20名前50名前100名
  • \n", - "
  • 今年涨幅排名:不限前10名前20名前50名前100名
  • \n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
    \n", - "
  • 全部(0)
  • \n", - "
  • 股票型(0)
  • \n", - "
  • 混合型(0)
  • \n", - "
  • 债券型(0)
  • \n", - "
  • 指数型(0)
  • \n", - "
  • QDII(0)
  • \n", - "
  • ETF(0)
  • \n", - "
  • LOF(0)
  • \n", - "
  • FOF(0)
  • \n", - "
\n", - "
\n", - "
\n", - " QDII基金分类筛选:\n", - "

\n", - " 全部\n", - " 全球股票\n", - " 亚太股票\n", - " 大中华区股票\n", - " 新兴市场股票\n", - " 金砖国家股票\n", - " 成熟市场股票\n", - " 美国股票\n", - " 全球指数\n", - " QDII-ETF联接
\n", - " 股债混合\n", - " 债券\n", - " 商品\n", - "

\n", - "
\n", - "
\n", - " 分类:\n", - "

\n", - " 全部\n", - " 长期纯债\n", - " 短期纯债\n", - " 混合债基\n", - " 定期开放债券\n", - " 可转债\n", - " 定开债开放日一览\n", - "

\n", - "
\n", - "
\n", - " 杠杆比例\n", - "

\n", - " 全部\n", - " 0-100%\n", - " 100%-150%\n", - " 150%-200%\n", - " 200%以上\n", - "

\n", - "
\n", - "
\n", - " 跟踪标的:\n", - "

\n", - " 全部\n", - " 沪深指数\n", - " 行业主题\n", - " 大盘指数\n", - " 中小盘指数\n", - " 股票指数\n", - " 债券指数\n", - "

\n", - "
\n", - "
\n", - " 跟踪方式:\n", - "

\n", - " 全部\n", - " 被动指数型\n", - " 增强指数型\n", - "

\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - " \n", - "  到 \n", - " \n", - " \n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "

\n", - " \n", - " 2021-10-032022-10-03\n", - " \n", - "

\n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
比较序号基金
\n", - " 代码
基金简称日期单位净值累计净值日增长率近1周近1月近3月近6月近1年近2年近3年今年来\n", - " 成立来\n", - " \n", - "
\n", - " 自定义\n", - " \n", - "
\n", - "
手续费\n", - "
\n", - " \n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - " \n", - "
\n", - " \n", - "\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - "
\n", - "
\n", - "
\n", - "郑重声明:天天基金网发布此信息目的在于传播更多信息,与本网站立场无关。天天基金网不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的准确性、真实性、完整性、有效性、及时性、原创性等。相关信息并未经过本网站证实,不对您构成任何投资决策建议,据此操作,风险自担。数据来源:东方财富Choice数据。\n", - "
\n", - "
\n", - "
\n", - "
\n", - " \n", - "
\n", - "

将天天基金网设为上网首页吗?      将天天基金网添加到收藏夹吗?

\n", - "

关于我们|资质证明|研究中心|联系我们|安全指引|免责条款|隐私条款|风险提示函|意见建议|在线客服|诚聘英才

\n", - "

天天基金客服热线:95021 / 4001818188|客服邮箱:vip@1234567.com.cn|人工服务时间:工作日 7:30-21:30 双休日 9:00-21:30
郑重声明:天天基金系证监会批准的基金销售机构[000000303]。天天基金网所载文章、数据仅供参考,使用前请核实,风险自负。
中国证监会上海监管局网址:www.csrc.gov.cn/pub/shanghai
CopyRight  上海天天基金销售有限公司  2011-现在  沪ICP证:沪B2-20130026  网站备案号:沪ICP备11042629号-1

\n", - "

\n", - " \n", - " \n", - " \n", - " \n", - "

\n", - "\n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - "\n", - "[]\n" + "ename": "URLError", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mConnectionRefusedError\u001b[0m Traceback (most recent call last)", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/urllib/request.py:1346\u001b[0m, in \u001b[0;36mAbstractHTTPHandler.do_open\u001b[0;34m(self, http_class, req, **http_conn_args)\u001b[0m\n\u001b[1;32m 1345\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m-> 1346\u001b[0m h\u001b[39m.\u001b[39;49mrequest(req\u001b[39m.\u001b[39;49mget_method(), req\u001b[39m.\u001b[39;49mselector, req\u001b[39m.\u001b[39;49mdata, headers,\n\u001b[1;32m 1347\u001b[0m encode_chunked\u001b[39m=\u001b[39;49mreq\u001b[39m.\u001b[39;49mhas_header(\u001b[39m'\u001b[39;49m\u001b[39mTransfer-encoding\u001b[39;49m\u001b[39m'\u001b[39;49m))\n\u001b[1;32m 1348\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mOSError\u001b[39;00m \u001b[39mas\u001b[39;00m err: \u001b[39m# timeout error\u001b[39;00m\n", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/http/client.py:1285\u001b[0m, in \u001b[0;36mHTTPConnection.request\u001b[0;34m(self, method, url, body, headers, encode_chunked)\u001b[0m\n\u001b[1;32m 1284\u001b[0m \u001b[39m\"\"\"Send a complete request to the server.\"\"\"\u001b[39;00m\n\u001b[0;32m-> 1285\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_send_request(method, url, body, headers, encode_chunked)\n", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/http/client.py:1331\u001b[0m, in \u001b[0;36mHTTPConnection._send_request\u001b[0;34m(self, method, url, body, headers, encode_chunked)\u001b[0m\n\u001b[1;32m 1330\u001b[0m body \u001b[39m=\u001b[39m _encode(body, \u001b[39m'\u001b[39m\u001b[39mbody\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[0;32m-> 1331\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mendheaders(body, encode_chunked\u001b[39m=\u001b[39;49mencode_chunked)\n", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/http/client.py:1280\u001b[0m, in \u001b[0;36mHTTPConnection.endheaders\u001b[0;34m(self, message_body, encode_chunked)\u001b[0m\n\u001b[1;32m 1279\u001b[0m \u001b[39mraise\u001b[39;00m CannotSendHeader()\n\u001b[0;32m-> 1280\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_send_output(message_body, encode_chunked\u001b[39m=\u001b[39;49mencode_chunked)\n", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/http/client.py:1040\u001b[0m, in \u001b[0;36mHTTPConnection._send_output\u001b[0;34m(self, message_body, encode_chunked)\u001b[0m\n\u001b[1;32m 1039\u001b[0m \u001b[39mdel\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_buffer[:]\n\u001b[0;32m-> 1040\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49msend(msg)\n\u001b[1;32m 1042\u001b[0m \u001b[39mif\u001b[39;00m message_body \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 1043\u001b[0m \n\u001b[1;32m 1044\u001b[0m \u001b[39m# create a consistent interface to message_body\u001b[39;00m\n", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/http/client.py:980\u001b[0m, in \u001b[0;36mHTTPConnection.send\u001b[0;34m(self, data)\u001b[0m\n\u001b[1;32m 979\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mauto_open:\n\u001b[0;32m--> 980\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mconnect()\n\u001b[1;32m 981\u001b[0m \u001b[39melse\u001b[39;00m:\n", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/http/client.py:946\u001b[0m, in \u001b[0;36mHTTPConnection.connect\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 945\u001b[0m \u001b[39m\"\"\"Connect to the host and port specified in __init__.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 946\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39msock \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_create_connection(\n\u001b[1;32m 947\u001b[0m (\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mhost,\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mport), \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mtimeout, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49msource_address)\n\u001b[1;32m 948\u001b[0m \u001b[39m# Might fail in OSs that don't implement TCP_NODELAY\u001b[39;00m\n", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/socket.py:844\u001b[0m, in \u001b[0;36mcreate_connection\u001b[0;34m(address, timeout, source_address)\u001b[0m\n\u001b[1;32m 843\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 844\u001b[0m \u001b[39mraise\u001b[39;00m err\n\u001b[1;32m 845\u001b[0m \u001b[39mfinally\u001b[39;00m:\n\u001b[1;32m 846\u001b[0m \u001b[39m# Break explicitly a reference cycle\u001b[39;00m\n", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/socket.py:832\u001b[0m, in \u001b[0;36mcreate_connection\u001b[0;34m(address, timeout, source_address)\u001b[0m\n\u001b[1;32m 831\u001b[0m sock\u001b[39m.\u001b[39mbind(source_address)\n\u001b[0;32m--> 832\u001b[0m sock\u001b[39m.\u001b[39;49mconnect(sa)\n\u001b[1;32m 833\u001b[0m \u001b[39m# Break explicitly a reference cycle\u001b[39;00m\n", + "\u001b[0;31mConnectionRefusedError\u001b[0m: [Errno 61] Connection refused", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mURLError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m/Users/chenqiang/Documents/the-craft-of-selfteaching/Part5.B.downloadcsv.ipynb Cell 5'\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m headers \u001b[39m=\u001b[39m {\u001b[39m'\u001b[39m\u001b[39mUser-Agent\u001b[39m\u001b[39m'\u001b[39m:\u001b[39m'\u001b[39m\u001b[39mMozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Mobile Safari/537.36\u001b[39m\u001b[39m'\u001b[39m}\n\u001b[1;32m 7\u001b[0m req \u001b[39m=\u001b[39m urllib\u001b[39m.\u001b[39mrequest\u001b[39m.\u001b[39mRequest(url\u001b[39m=\u001b[39murl,headers\u001b[39m=\u001b[39mheaders)\n\u001b[0;32m----> 8\u001b[0m res \u001b[39m=\u001b[39m urllib\u001b[39m.\u001b[39;49mrequest\u001b[39m.\u001b[39;49murlopen(req)\n\u001b[1;32m 9\u001b[0m \u001b[39m# res=urllib.request.urlopen(req)#先由 urllib 模块的 request 方法打开 URL 得到网页 HTML 对象。\u001b[39;00m\n\u001b[1;32m 10\u001b[0m \u001b[39m# print(res)#打印返回结果\u001b[39;00m\n\u001b[1;32m 11\u001b[0m \u001b[39m#提取响应内容\u001b[39;00m\n\u001b[1;32m 12\u001b[0m html \u001b[39m=\u001b[39m res\u001b[39m.\u001b[39mread()\u001b[39m.\u001b[39mdecode(\u001b[39m'\u001b[39m\u001b[39mutf-8\u001b[39m\u001b[39m'\u001b[39m)\n", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/urllib/request.py:214\u001b[0m, in \u001b[0;36murlopen\u001b[0;34m(url, data, timeout, cafile, capath, cadefault, context)\u001b[0m\n\u001b[1;32m 212\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 213\u001b[0m opener \u001b[39m=\u001b[39m _opener\n\u001b[0;32m--> 214\u001b[0m \u001b[39mreturn\u001b[39;00m opener\u001b[39m.\u001b[39;49mopen(url, data, timeout)\n", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/urllib/request.py:517\u001b[0m, in \u001b[0;36mOpenerDirector.open\u001b[0;34m(self, fullurl, data, timeout)\u001b[0m\n\u001b[1;32m 514\u001b[0m req \u001b[39m=\u001b[39m meth(req)\n\u001b[1;32m 516\u001b[0m sys\u001b[39m.\u001b[39maudit(\u001b[39m'\u001b[39m\u001b[39murllib.Request\u001b[39m\u001b[39m'\u001b[39m, req\u001b[39m.\u001b[39mfull_url, req\u001b[39m.\u001b[39mdata, req\u001b[39m.\u001b[39mheaders, req\u001b[39m.\u001b[39mget_method())\n\u001b[0;32m--> 517\u001b[0m response \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_open(req, data)\n\u001b[1;32m 519\u001b[0m \u001b[39m# post-process response\u001b[39;00m\n\u001b[1;32m 520\u001b[0m meth_name \u001b[39m=\u001b[39m protocol\u001b[39m+\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m_response\u001b[39m\u001b[39m\"\u001b[39m\n", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/urllib/request.py:534\u001b[0m, in \u001b[0;36mOpenerDirector._open\u001b[0;34m(self, req, data)\u001b[0m\n\u001b[1;32m 531\u001b[0m \u001b[39mreturn\u001b[39;00m result\n\u001b[1;32m 533\u001b[0m protocol \u001b[39m=\u001b[39m req\u001b[39m.\u001b[39mtype\n\u001b[0;32m--> 534\u001b[0m result \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_call_chain(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mhandle_open, protocol, protocol \u001b[39m+\u001b[39;49m\n\u001b[1;32m 535\u001b[0m \u001b[39m'\u001b[39;49m\u001b[39m_open\u001b[39;49m\u001b[39m'\u001b[39;49m, req)\n\u001b[1;32m 536\u001b[0m \u001b[39mif\u001b[39;00m result:\n\u001b[1;32m 537\u001b[0m \u001b[39mreturn\u001b[39;00m result\n", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/urllib/request.py:494\u001b[0m, in \u001b[0;36mOpenerDirector._call_chain\u001b[0;34m(self, chain, kind, meth_name, *args)\u001b[0m\n\u001b[1;32m 492\u001b[0m \u001b[39mfor\u001b[39;00m handler \u001b[39min\u001b[39;00m handlers:\n\u001b[1;32m 493\u001b[0m func \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(handler, meth_name)\n\u001b[0;32m--> 494\u001b[0m result \u001b[39m=\u001b[39m func(\u001b[39m*\u001b[39;49margs)\n\u001b[1;32m 495\u001b[0m \u001b[39mif\u001b[39;00m result \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 496\u001b[0m \u001b[39mreturn\u001b[39;00m result\n", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/urllib/request.py:1375\u001b[0m, in \u001b[0;36mHTTPHandler.http_open\u001b[0;34m(self, req)\u001b[0m\n\u001b[1;32m 1374\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mhttp_open\u001b[39m(\u001b[39mself\u001b[39m, req):\n\u001b[0;32m-> 1375\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mdo_open(http\u001b[39m.\u001b[39;49mclient\u001b[39m.\u001b[39;49mHTTPConnection, req)\n", + "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/urllib/request.py:1349\u001b[0m, in \u001b[0;36mAbstractHTTPHandler.do_open\u001b[0;34m(self, http_class, req, **http_conn_args)\u001b[0m\n\u001b[1;32m 1346\u001b[0m h\u001b[39m.\u001b[39mrequest(req\u001b[39m.\u001b[39mget_method(), req\u001b[39m.\u001b[39mselector, req\u001b[39m.\u001b[39mdata, headers,\n\u001b[1;32m 1347\u001b[0m encode_chunked\u001b[39m=\u001b[39mreq\u001b[39m.\u001b[39mhas_header(\u001b[39m'\u001b[39m\u001b[39mTransfer-encoding\u001b[39m\u001b[39m'\u001b[39m))\n\u001b[1;32m 1348\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mOSError\u001b[39;00m \u001b[39mas\u001b[39;00m err: \u001b[39m# timeout error\u001b[39;00m\n\u001b[0;32m-> 1349\u001b[0m \u001b[39mraise\u001b[39;00m URLError(err)\n\u001b[1;32m 1350\u001b[0m r \u001b[39m=\u001b[39m h\u001b[39m.\u001b[39mgetresponse()\n\u001b[1;32m 1351\u001b[0m \u001b[39mexcept\u001b[39;00m:\n", + "\u001b[0;31mURLError\u001b[0m: " ] } ], @@ -1461,10 +931,10 @@ ], "metadata": { "interpreter": { - "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" + "hash": "034c70736e9d25f3f57bc70ec9a2164e1c27bdcdecfc656ea6098a86262350a2" }, "kernelspec": { - "display_name": "Python 3.9.7 ('base')", + "display_name": "Python 3.9.12 ('myenv')", "language": "python", "name": "python3" }, @@ -1478,7 +948,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.12" }, "orig_nbformat": 4 }, diff --git a/awesome-python3-webapp/LICENSE b/awesome-python3-webapp/LICENSE new file mode 100644 index 000000000..e69de29bb diff --git a/awesome-python3-webapp/app.py b/awesome-python3-webapp/app.py new file mode 100644 index 000000000..f5dfb0ec2 --- /dev/null +++ b/awesome-python3-webapp/app.py @@ -0,0 +1,21 @@ +import logging; logging.basicConfig(level=logging.INFO) + +import asyncio, os, json, time +from datetime import datetime + +from aiohttp import web + +def index(request): + return web.Response(body=b'

Awesome

') + +@asyncio.coroutine +def init(loop): + app = web.Application(loop=loop) + app.router.add_route('GET', '/', index) + srv = yield from loop.create_server(app.make_handler(), '127.0.0.1', 9000) + logging.info('server started at http://127.0.0.1:9000...') + return srv + +loop = asyncio.get_event_loop() +loop.run_until_complete(init(loop)) +loop.run_forever() \ No newline at end of file From d033033760dfe2011e724a7eac81f936f34f6cce Mon Sep 17 00:00:00 2001 From: hoolich <469165171@qq.com> Date: Tue, 25 Apr 2023 11:37:13 +0800 Subject: [PATCH 11/12] 20230425 --- Part5.B.downloadcsv.ipynb | 698 ++++++++++++++++++++++++++++++++++++-- 1 file changed, 669 insertions(+), 29 deletions(-) diff --git a/Part5.B.downloadcsv.ipynb b/Part5.B.downloadcsv.ipynb index eab8c85c2..ada8b4447 100644 --- a/Part5.B.downloadcsv.ipynb +++ b/Part5.B.downloadcsv.ipynb @@ -77,32 +77,574 @@ "metadata": {}, "outputs": [ { - "ename": "URLError", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mConnectionRefusedError\u001b[0m Traceback (most recent call last)", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/urllib/request.py:1346\u001b[0m, in \u001b[0;36mAbstractHTTPHandler.do_open\u001b[0;34m(self, http_class, req, **http_conn_args)\u001b[0m\n\u001b[1;32m 1345\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m-> 1346\u001b[0m h\u001b[39m.\u001b[39;49mrequest(req\u001b[39m.\u001b[39;49mget_method(), req\u001b[39m.\u001b[39;49mselector, req\u001b[39m.\u001b[39;49mdata, headers,\n\u001b[1;32m 1347\u001b[0m encode_chunked\u001b[39m=\u001b[39;49mreq\u001b[39m.\u001b[39;49mhas_header(\u001b[39m'\u001b[39;49m\u001b[39mTransfer-encoding\u001b[39;49m\u001b[39m'\u001b[39;49m))\n\u001b[1;32m 1348\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mOSError\u001b[39;00m \u001b[39mas\u001b[39;00m err: \u001b[39m# timeout error\u001b[39;00m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/http/client.py:1285\u001b[0m, in \u001b[0;36mHTTPConnection.request\u001b[0;34m(self, method, url, body, headers, encode_chunked)\u001b[0m\n\u001b[1;32m 1284\u001b[0m \u001b[39m\"\"\"Send a complete request to the server.\"\"\"\u001b[39;00m\n\u001b[0;32m-> 1285\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_send_request(method, url, body, headers, encode_chunked)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/http/client.py:1331\u001b[0m, in \u001b[0;36mHTTPConnection._send_request\u001b[0;34m(self, method, url, body, headers, encode_chunked)\u001b[0m\n\u001b[1;32m 1330\u001b[0m body \u001b[39m=\u001b[39m _encode(body, \u001b[39m'\u001b[39m\u001b[39mbody\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[0;32m-> 1331\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mendheaders(body, encode_chunked\u001b[39m=\u001b[39;49mencode_chunked)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/http/client.py:1280\u001b[0m, in \u001b[0;36mHTTPConnection.endheaders\u001b[0;34m(self, message_body, encode_chunked)\u001b[0m\n\u001b[1;32m 1279\u001b[0m \u001b[39mraise\u001b[39;00m CannotSendHeader()\n\u001b[0;32m-> 1280\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_send_output(message_body, encode_chunked\u001b[39m=\u001b[39;49mencode_chunked)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/http/client.py:1040\u001b[0m, in \u001b[0;36mHTTPConnection._send_output\u001b[0;34m(self, message_body, encode_chunked)\u001b[0m\n\u001b[1;32m 1039\u001b[0m \u001b[39mdel\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_buffer[:]\n\u001b[0;32m-> 1040\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49msend(msg)\n\u001b[1;32m 1042\u001b[0m \u001b[39mif\u001b[39;00m message_body \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 1043\u001b[0m \n\u001b[1;32m 1044\u001b[0m \u001b[39m# create a consistent interface to message_body\u001b[39;00m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/http/client.py:980\u001b[0m, in \u001b[0;36mHTTPConnection.send\u001b[0;34m(self, data)\u001b[0m\n\u001b[1;32m 979\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mauto_open:\n\u001b[0;32m--> 980\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mconnect()\n\u001b[1;32m 981\u001b[0m \u001b[39melse\u001b[39;00m:\n", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/http/client.py:946\u001b[0m, in \u001b[0;36mHTTPConnection.connect\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 945\u001b[0m \u001b[39m\"\"\"Connect to the host and port specified in __init__.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 946\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39msock \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_create_connection(\n\u001b[1;32m 947\u001b[0m (\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mhost,\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mport), \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mtimeout, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49msource_address)\n\u001b[1;32m 948\u001b[0m \u001b[39m# Might fail in OSs that don't implement TCP_NODELAY\u001b[39;00m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/socket.py:844\u001b[0m, in \u001b[0;36mcreate_connection\u001b[0;34m(address, timeout, source_address)\u001b[0m\n\u001b[1;32m 843\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 844\u001b[0m \u001b[39mraise\u001b[39;00m err\n\u001b[1;32m 845\u001b[0m \u001b[39mfinally\u001b[39;00m:\n\u001b[1;32m 846\u001b[0m \u001b[39m# Break explicitly a reference cycle\u001b[39;00m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/socket.py:832\u001b[0m, in \u001b[0;36mcreate_connection\u001b[0;34m(address, timeout, source_address)\u001b[0m\n\u001b[1;32m 831\u001b[0m sock\u001b[39m.\u001b[39mbind(source_address)\n\u001b[0;32m--> 832\u001b[0m sock\u001b[39m.\u001b[39;49mconnect(sa)\n\u001b[1;32m 833\u001b[0m \u001b[39m# Break explicitly a reference cycle\u001b[39;00m\n", - "\u001b[0;31mConnectionRefusedError\u001b[0m: [Errno 61] Connection refused", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mURLError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m/Users/chenqiang/Documents/the-craft-of-selfteaching/Part5.B.downloadcsv.ipynb Cell 5'\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m headers \u001b[39m=\u001b[39m {\u001b[39m'\u001b[39m\u001b[39mUser-Agent\u001b[39m\u001b[39m'\u001b[39m:\u001b[39m'\u001b[39m\u001b[39mMozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Mobile Safari/537.36\u001b[39m\u001b[39m'\u001b[39m}\n\u001b[1;32m 7\u001b[0m req \u001b[39m=\u001b[39m urllib\u001b[39m.\u001b[39mrequest\u001b[39m.\u001b[39mRequest(url\u001b[39m=\u001b[39murl,headers\u001b[39m=\u001b[39mheaders)\n\u001b[0;32m----> 8\u001b[0m res \u001b[39m=\u001b[39m urllib\u001b[39m.\u001b[39;49mrequest\u001b[39m.\u001b[39;49murlopen(req)\n\u001b[1;32m 9\u001b[0m \u001b[39m# res=urllib.request.urlopen(req)#先由 urllib 模块的 request 方法打开 URL 得到网页 HTML 对象。\u001b[39;00m\n\u001b[1;32m 10\u001b[0m \u001b[39m# print(res)#打印返回结果\u001b[39;00m\n\u001b[1;32m 11\u001b[0m \u001b[39m#提取响应内容\u001b[39;00m\n\u001b[1;32m 12\u001b[0m html \u001b[39m=\u001b[39m res\u001b[39m.\u001b[39mread()\u001b[39m.\u001b[39mdecode(\u001b[39m'\u001b[39m\u001b[39mutf-8\u001b[39m\u001b[39m'\u001b[39m)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/urllib/request.py:214\u001b[0m, in \u001b[0;36murlopen\u001b[0;34m(url, data, timeout, cafile, capath, cadefault, context)\u001b[0m\n\u001b[1;32m 212\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 213\u001b[0m opener \u001b[39m=\u001b[39m _opener\n\u001b[0;32m--> 214\u001b[0m \u001b[39mreturn\u001b[39;00m opener\u001b[39m.\u001b[39;49mopen(url, data, timeout)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/urllib/request.py:517\u001b[0m, in \u001b[0;36mOpenerDirector.open\u001b[0;34m(self, fullurl, data, timeout)\u001b[0m\n\u001b[1;32m 514\u001b[0m req \u001b[39m=\u001b[39m meth(req)\n\u001b[1;32m 516\u001b[0m sys\u001b[39m.\u001b[39maudit(\u001b[39m'\u001b[39m\u001b[39murllib.Request\u001b[39m\u001b[39m'\u001b[39m, req\u001b[39m.\u001b[39mfull_url, req\u001b[39m.\u001b[39mdata, req\u001b[39m.\u001b[39mheaders, req\u001b[39m.\u001b[39mget_method())\n\u001b[0;32m--> 517\u001b[0m response \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_open(req, data)\n\u001b[1;32m 519\u001b[0m \u001b[39m# post-process response\u001b[39;00m\n\u001b[1;32m 520\u001b[0m meth_name \u001b[39m=\u001b[39m protocol\u001b[39m+\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m_response\u001b[39m\u001b[39m\"\u001b[39m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/urllib/request.py:534\u001b[0m, in \u001b[0;36mOpenerDirector._open\u001b[0;34m(self, req, data)\u001b[0m\n\u001b[1;32m 531\u001b[0m \u001b[39mreturn\u001b[39;00m result\n\u001b[1;32m 533\u001b[0m protocol \u001b[39m=\u001b[39m req\u001b[39m.\u001b[39mtype\n\u001b[0;32m--> 534\u001b[0m result \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_call_chain(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mhandle_open, protocol, protocol \u001b[39m+\u001b[39;49m\n\u001b[1;32m 535\u001b[0m \u001b[39m'\u001b[39;49m\u001b[39m_open\u001b[39;49m\u001b[39m'\u001b[39;49m, req)\n\u001b[1;32m 536\u001b[0m \u001b[39mif\u001b[39;00m result:\n\u001b[1;32m 537\u001b[0m \u001b[39mreturn\u001b[39;00m result\n", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/urllib/request.py:494\u001b[0m, in \u001b[0;36mOpenerDirector._call_chain\u001b[0;34m(self, chain, kind, meth_name, *args)\u001b[0m\n\u001b[1;32m 492\u001b[0m \u001b[39mfor\u001b[39;00m handler \u001b[39min\u001b[39;00m handlers:\n\u001b[1;32m 493\u001b[0m func \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(handler, meth_name)\n\u001b[0;32m--> 494\u001b[0m result \u001b[39m=\u001b[39m func(\u001b[39m*\u001b[39;49margs)\n\u001b[1;32m 495\u001b[0m \u001b[39mif\u001b[39;00m result \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 496\u001b[0m \u001b[39mreturn\u001b[39;00m result\n", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/urllib/request.py:1375\u001b[0m, in \u001b[0;36mHTTPHandler.http_open\u001b[0;34m(self, req)\u001b[0m\n\u001b[1;32m 1374\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mhttp_open\u001b[39m(\u001b[39mself\u001b[39m, req):\n\u001b[0;32m-> 1375\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mdo_open(http\u001b[39m.\u001b[39;49mclient\u001b[39m.\u001b[39;49mHTTPConnection, req)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/myenv/lib/python3.9/urllib/request.py:1349\u001b[0m, in \u001b[0;36mAbstractHTTPHandler.do_open\u001b[0;34m(self, http_class, req, **http_conn_args)\u001b[0m\n\u001b[1;32m 1346\u001b[0m h\u001b[39m.\u001b[39mrequest(req\u001b[39m.\u001b[39mget_method(), req\u001b[39m.\u001b[39mselector, req\u001b[39m.\u001b[39mdata, headers,\n\u001b[1;32m 1347\u001b[0m encode_chunked\u001b[39m=\u001b[39mreq\u001b[39m.\u001b[39mhas_header(\u001b[39m'\u001b[39m\u001b[39mTransfer-encoding\u001b[39m\u001b[39m'\u001b[39m))\n\u001b[1;32m 1348\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mOSError\u001b[39;00m \u001b[39mas\u001b[39;00m err: \u001b[39m# timeout error\u001b[39;00m\n\u001b[0;32m-> 1349\u001b[0m \u001b[39mraise\u001b[39;00m URLError(err)\n\u001b[1;32m 1350\u001b[0m r \u001b[39m=\u001b[39m h\u001b[39m.\u001b[39mgetresponse()\n\u001b[1;32m 1351\u001b[0m \u001b[39mexcept\u001b[39;00m:\n", - "\u001b[0;31mURLError\u001b[0m: " + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "\n", + "\n", + "\n", + " 开放式基金排行 _ 天天基金网\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "
\n", + "
\n", + " \n", + "

基金排行

\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

基 金

\n", + " \n", + "
\n", + "
\n", + "
    \n", + "
  • 基 金
  • \n", + "
  • 基金经理
  • \n", + "
  • 基金公司
  • \n", + "
\n", + "
\n", + "
\n", + "
\n", + "\n", + " \n", + " \n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "\n", + "
\n", + " 基金代码\n", + " 基金公司\n", + " 收藏本页\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + " \n", + "
\n", + " \n", + "
\n", + " \n", + "
\n", + " \n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "\n", + " 展开更多筛选 \n", + " 数据来源:东方财富Choice数据\n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + " \n", + " \n", + "
\n", + "
\n", + "
\n", + " 按基金公司筛选:\n", + " \n", + " \n", + " \n", + "\n", + "
\n", + " 页面放大\n", + "
\n", + "
\n", + "
    \n", + "
\n", + "\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
选择筛选条件,页面直接显示自定义的筛选结果
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
    \n", + "
  • 近1周涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
  • 近1月涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
  • 近3月涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
  • 近6月涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
  • 近1年涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
  • 近2年涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
  • 近3年涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
  • 今年涨幅排名:不限前10名前20名前50名前100名
  • \n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
    \n", + "
  • 全部(0)
  • \n", + "
  • 股票型(0)
  • \n", + "
  • 混合型(0)
  • \n", + "
  • 债券型(0)
  • \n", + "
  • 指数型(0)
  • \n", + "
  • QDII(0)
  • \n", + "
  • ETF(0)
  • \n", + "
  • LOF(0)
  • \n", + "
  • FOF(0)
  • \n", + "
\n", + "
\n", + "
\n", + " QDII基金分类筛选:\n", + "

\n", + " 全部\n", + " 全球股票\n", + " 亚太股票\n", + " 大中华区股票\n", + " 新兴市场股票\n", + " 金砖国家股票\n", + " 成熟市场股票\n", + " 美国股票\n", + " 全球指数\n", + " QDII-ETF联接
\n", + " 股债混合\n", + " 债券\n", + " 商品\n", + "

\n", + "
\n", + "
\n", + " 分类:\n", + "

\n", + " 全部\n", + " 长期纯债\n", + " 短期纯债\n", + " 混合债基\n", + " 定期开放债券\n", + " 可转债\n", + " 定开债开放日一览\n", + "

\n", + "
\n", + "
\n", + " 杠杆比例\n", + "

\n", + " 全部\n", + " 0-100%\n", + " 100%-150%\n", + " 150%-200%\n", + " 200%以上\n", + "

\n", + "
\n", + "
\n", + " 跟踪标的:\n", + "

\n", + " 全部\n", + " 沪深指数\n", + " 行业主题\n", + " 大盘指数\n", + " 中小盘指数\n", + " 股票指数\n", + " 债券指数\n", + "

\n", + "
\n", + "
\n", + " 跟踪方式:\n", + "

\n", + " 全部\n", + " 被动指数型\n", + " 增强指数型\n", + "

\n", + "
\n", + " \n", + "
\n", + "
\n", + "\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + " \n", + "  到 \n", + " \n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

\n", + " \n", + " 2022-04-242023-04-24\n", + " \n", + "

\n", + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
比较序号基金
\n", + " 代码
基金简称日期单位净值累计净值日增长率近1周近1月近3月近6月近1年近2年近3年今年来\n", + " 成立来\n", + " \n", + "
\n", + " 自定义\n", + " \n", + "
\n", + "
手续费\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + " \n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "郑重声明:天天基金网发布此信息目的在于传播更多信息,与本网站立场无关。天天基金网不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的准确性、真实性、完整性、有效性、及时性、原创性等。相关信息并未经过本网站证实,不对您构成任何投资决策建议,据此操作,风险自担。数据来源:东方财富Choice数据。\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "

将天天基金网设为上网首页吗?      将天天基金网添加到收藏夹吗?

\n", + "

关于我们|资质证明|研究中心|联系我们|安全指引|免责条款|隐私条款|风险提示函|意见建议|在线客服|诚聘英才

\n", + "

天天基金客服热线:95021 / 4001818188|客服邮箱:vip@1234567.com.cn|人工服务时间:工作日 7:30-21:30 双休日 9:00-21:30
郑重声明:天天基金系证监会批准的基金销售机构[000000303]。天天基金网所载文章、数据仅供参考,使用前请核实,风险自负。
中国证监会上海监管局网址:www.csrc.gov.cn/pub/shanghai
CopyRight  上海天天基金销售有限公司  2011-现在  沪ICP证:沪B2-20130026  网站备案号:沪ICP备11042629号-1

\n", + "

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

\n", + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "[]\n" ] } ], @@ -927,14 +1469,112 @@ "# 保存到文件\n", "wc.to_file(\"李焕英2.png\")" ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "俄罗斯方块 8.1\n", + "饥渴游戏 5.6\n", + "杀死福顺 6.7\n", + "下一个素熙 8.2\n", + "雷霆沙赞!众神之怒 5.6\n", + "疾速追杀4 8.0\n", + "蚁人与黄蜂女:量子狂潮 6.0\n", + "网络谜踪2 8.0\n", + "鲸 8.0\n", + "第三次世界大战 7.9\n" + ] + } + ], + "source": [ + "import requests\n", + "from bs4 import BeautifulSoup\n", + "\n", + "url = 'https://movie.douban.com/chart'\n", + "headers = {\n", + " 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.104 Safari/537.36',\n", + " 'Cookie': 'bid=M4XudwoRjwk; douban-fav-remind=1; viewed=\"35862895\"; gr_user_id=21f9bda2-4808-4273-96c3-dc221917ecd9; ll=\"118172\"; __utmz=30149280.1678846289.3.3.utmcsr=baidu|utmccn=(organic)|utmcmd=organic; apiKey=; __utmc=30149280; __utma=30149280.194980502.1676723652.1682087186.1682142104.5; __utmt=1; __utmb=30149280.6.9.1682142158817'\n", + "}\n", + "response = requests.get(url, headers=headers)\n", + "soup = BeautifulSoup(response.content, 'html.parser')\n", + "\n", + "items = soup.select('.item')\n", + "for item in items:\n", + " title_elem = item.select_one('.pl2 > a').contents[0]\n", + " score_elem = item.select_one('.rating_nums')\n", + " if title_elem and score_elem:\n", + " title = title_elem.string.strip().replace('/', '').replace('\\n','').rstrip()\n", + " score = score_elem.string.strip()\n", + " print(f'{title} {score}')\n", + " else:\n", + " print('title or score not found:', item)\n", + "\n", + "\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Request failed: HTTPConnectionPool(host='fund.eastmoney.com', port=80): Read timed out. (read timeout=10)\n", + "Request failed: HTTPConnectionPool(host='fund.eastmoney.com', port=80): Read timed out. (read timeout=10)\n", + "Request failed: HTTPConnectionPool(host='fund.eastmoney.com', port=80): Read timed out. (read timeout=10)\n" + ] + } + ], + "source": [ + "import requests # 导入 requests 库\n", + "from bs4 import BeautifulSoup # 导入 BeautifulSoup 库\n", + "\n", + "# 定义 URL 模板和 User-Agent\n", + "url_template = 'http://fund.eastmoney.com/data/fundranking.html#tgp;c0;r;s1nzf;pn{page};ddesc;qsd20220422;qed20230422;qdii;zq;gg;gzbd;gzfs;bbzt;sfbb'\n", + "headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36'}\n", + "\n", + "page = 1 # 初始化页码为 1\n", + "while True:\n", + " url = url_template.format(page=page) # 构造新的 URL\n", + " try:\n", + " response = requests.get(url, headers=headers, timeout=10) # 发送 HTTP 请求,并设置超时时间为 10 秒\n", + " soup = BeautifulSoup(response.content, 'lxml') # 使用 lxml 解析器解析响应内容\n", + " except Exception as e: # 如果请求失败,则输出错误信息并继续下一次循环\n", + " print(f'Request failed: {e}')\n", + " continue\n", + "\n", + " table = soup.select_one('#dbtable') # 选中基金排行列表\n", + " if table is not None: # 判断基金排行列表是否存在\n", + " rows = table.select('tbody tr') # 选中所有基金排行行\n", + " for row in rows: # 遍历每一行基金排行\n", + " cols = row.select('td') # 选中每一行基金排行中展示的基金信息\n", + " code = cols[0].string # 提取基金代码\n", + " name = cols[1].select_one('a').string # 提取基金名称\n", + " net_value = cols[2].string # 提取净值\n", + " change_percent = cols[3].string # 提取涨跌幅\n", + " print(f'{code} {name} {net_value} {change_percent}') # 输出基金信息\n", + " else: # 如果基金排行列表不存在,则退出循环\n", + " break\n", + "\n", + " page += 1 # 将页码加 1,准备爬取下一页数据\n" + ] } ], "metadata": { "interpreter": { - "hash": "034c70736e9d25f3f57bc70ec9a2164e1c27bdcdecfc656ea6098a86262350a2" + "hash": "21ee8af2579a8192c5b3880b850b5f93eed7daf2eb79d75b82c39de695db0d6e" }, "kernelspec": { - "display_name": "Python 3.9.12 ('myenv')", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -948,7 +1588,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.9.7" }, "orig_nbformat": 4 }, From 57beb80cb49c7951446d72d3e425acacbcd9dc41 Mon Sep 17 00:00:00 2001 From: chenqiang3 Date: Sat, 7 Dec 2024 15:54:26 +0800 Subject: [PATCH 12/12] 20241207 --- .vscode/settings.json | 6 ++++++ Part.1.E.1.entrance.ipynb | 4 ++-- Part.1.E.2.values-and-their-operators.ipynb | 2 +- Part.1.E.4.functions.ipynb | 2 +- Part.1.E.5.strings.ipynb | 2 +- Part.2.C.why-start-from-writing-functions.ipynb | 2 +- Part.2.D.4-recursion.ipynb | 2 +- Part.3.B.4.regex.ipynb | 2 +- Part.3.C.breaking-good-and-bad.ipynb | 2 +- Part.3.D.indispensable-illusion.ipynb | 2 +- Part4.A.2data_summury_and_group.ipynb | 2 +- Part5.A.fund-choice.ipynb | 2 +- Part5.B.downloadcsv.ipynb | 2 +- 13 files changed, 19 insertions(+), 13 deletions(-) create mode 100644 .vscode/settings.json diff --git a/.vscode/settings.json b/.vscode/settings.json new file mode 100644 index 000000000..ac056b1cf --- /dev/null +++ b/.vscode/settings.json @@ -0,0 +1,6 @@ +{ + "editor.detectIndentation": false, + "editor.tabSize": 4, + "editor.formatOnPaste": true, + "editor.formatOnSave": true +} \ No newline at end of file diff --git a/Part.1.E.1.entrance.ipynb b/Part.1.E.1.entrance.ipynb index 88035be6a..214a4a84b 100644 --- a/Part.1.E.1.entrance.ipynb +++ b/Part.1.E.1.entrance.ipynb @@ -280,14 +280,14 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "534 is even.\n" + "375 is odd.\n" ] } ], diff --git a/Part.1.E.2.values-and-their-operators.ipynb b/Part.1.E.2.values-and-their-operators.ipynb index 02abe9e2d..d1c61bf6e 100644 --- a/Part.1.E.2.values-and-their-operators.ipynb +++ b/Part.1.E.2.values-and-their-operators.ipynb @@ -1138,7 +1138,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.10.0" } }, "nbformat": 4, diff --git a/Part.1.E.4.functions.ipynb b/Part.1.E.4.functions.ipynb index ef68f620a..a896c41df 100644 --- a/Part.1.E.4.functions.ipynb +++ b/Part.1.E.4.functions.ipynb @@ -708,7 +708,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.16" }, "toc-autonumbering": true }, diff --git a/Part.1.E.5.strings.ipynb b/Part.1.E.5.strings.ipynb index ff4c79fe3..534eef55a 100644 --- a/Part.1.E.5.strings.ipynb +++ b/Part.1.E.5.strings.ipynb @@ -2643,7 +2643,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.16" }, "toc-autonumbering": true }, diff --git a/Part.2.C.why-start-from-writing-functions.ipynb b/Part.2.C.why-start-from-writing-functions.ipynb index f71b04a0a..5f52f6ef3 100644 --- a/Part.2.C.why-start-from-writing-functions.ipynb +++ b/Part.2.C.why-start-from-writing-functions.ipynb @@ -127,7 +127,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/Part.2.D.4-recursion.ipynb b/Part.2.D.4-recursion.ipynb index 6d4663254..dc63528e0 100644 --- a/Part.2.D.4-recursion.ipynb +++ b/Part.2.D.4-recursion.ipynb @@ -741,7 +741,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/Part.3.B.4.regex.ipynb b/Part.3.B.4.regex.ipynb index bed2243ec..399c7da98 100644 --- a/Part.3.B.4.regex.ipynb +++ b/Part.3.B.4.regex.ipynb @@ -1694,7 +1694,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/Part.3.C.breaking-good-and-bad.ipynb b/Part.3.C.breaking-good-and-bad.ipynb index df2dd11b2..f21af82c0 100644 --- a/Part.3.C.breaking-good-and-bad.ipynb +++ b/Part.3.C.breaking-good-and-bad.ipynb @@ -286,7 +286,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/Part.3.D.indispensable-illusion.ipynb b/Part.3.D.indispensable-illusion.ipynb index 6671bb2a8..09cd344d5 100644 --- a/Part.3.D.indispensable-illusion.ipynb +++ b/Part.3.D.indispensable-illusion.ipynb @@ -336,7 +336,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/Part4.A.2data_summury_and_group.ipynb b/Part4.A.2data_summury_and_group.ipynb index 53abb4b25..56e7940cc 100644 --- a/Part4.A.2data_summury_and_group.ipynb +++ b/Part4.A.2data_summury_and_group.ipynb @@ -203,7 +203,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.16" }, "orig_nbformat": 4 }, diff --git a/Part5.A.fund-choice.ipynb b/Part5.A.fund-choice.ipynb index 6be0726c4..712817744 100644 --- a/Part5.A.fund-choice.ipynb +++ b/Part5.A.fund-choice.ipynb @@ -84,7 +84,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.16" }, "orig_nbformat": 4 }, diff --git a/Part5.B.downloadcsv.ipynb b/Part5.B.downloadcsv.ipynb index ada8b4447..489ff5d7f 100644 --- a/Part5.B.downloadcsv.ipynb +++ b/Part5.B.downloadcsv.ipynb @@ -1588,7 +1588,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.16" }, "orig_nbformat": 4 },

f;>h zQDTVC&v1SCP>eocc?{YWq=VpxXYg*OPeUO*2^64!C;C%YqWrs=I*d-jvr307Uw%XzA5x={1YiDgfka5^w@T5gSJ^)@rT(edy7NV^1I6 zPh7iUj8Is4IqLSUcmUwrvFz+v=Hn3*q0uNUT6$$>hycJ|z#cWGEdWG5OKaQiqm7O7 z5@R*2`g7dc32F}@V36$nc@?t5ofs|qyZ=@7$h~RTM0yKpDi`x2V`LetLnr#OT|QQ~ z5CojM5w+u=hn0MobrKQ@9nrJ-tWh1x7iMXobZ_l{?#>&VKd)MASh@4cUq6hkd8Myr z6=cb#^L5QTO3N*o_T$m@Ukz#(=55XKOI^FKa($4Ws)h>Ngs*g`?=H}8IBP+iXa0$LI!&_MG+)TA%0MpJ}sb4Z})()O2LI<5W@j@LCujZkYZ zsZrJ;hibM5oHo!z{H z>>NI13ms@)y`5)w6pp)Dv^zn5&yt<3E74~;(wj8oE_ZJy{CoO&nW1TowR-y0a{x$9 zDO&v1-}{fuDxW0t&#|ZGpx=N1=lpzWj_LIm%K+ z!GK{RZB0uxo!z|sc-2x5rmJ2hDWCLknodJmHg6}B%pdBu#D(sEyU0S|x71M3Kv?bA zIiOW*AMQI^RFe@~IR8j`x@g$&R%0i$=W-dZUS_JwZ40g51kDvIq)L*UF z8@u-mNlPti*~)wMkN>8n76E{_kAt{GwQqOnH~i>9;@I)+E?l)jVFJLvU=^Aj;Z;5B(lIHP+{Q)7`+46@n@}f~mm`;+hX=b`X*j<3ou=e3_~lGPVx)~mZ28uUM}M9y zw6icF8;lr@N*>d*g&l`+<9X8Sq}(!RfTtth(XMW(3P&>U)_|#W62+RV8wB9dka_Q> zDe6$KT4Hx<8oqz5za*2WkMFL~CIm%JJ@_s@Dl09qpk3FX1KV%Dc$j?m${X9lYKd&Q z!B_`M5jw4nqx~P{w@^tW0C-%ONh6U9HA+vmU7+_J|vtFzIkLgT$>AYFR*gQ zm4j<0TEEDemRs`m#)iWMStKhM{`&csgw^93S?2Z zRNA8OhLZGZOtSO2zYu@}zzgxYDCyPezg3(7949cdGsl$?IMI6}38{nq(Zz9Mocxv! zt6)`YFuAQd#9%OO+IZ#GjW}-~hv_rBb?Ep$*p(~mZsWUg^8^Gze%o-Vuuwi=P>ZS4yDVDp zcW#aV_dp20ON8Hq{;k3ST&+S=z46-Px7Q!PeUp-3DQU;ek=Lb_ z-}wIFj`p=AlDa$bcdrM0rE`Rno89as0|t(^S&)lP|GY%D-1_55 zBqtZ)v8r4%J>2{Npb6JLTPby8)lKt7QI4ZvPk!+bg3vbbad2ENSM8On_R^>=*oPDu>53JW(fd1ev~|AdQC;&ZWTrq>ZEp5 z4xL1yqGS?cdwMyQNt>>+%GL?v`#cjT*$l%p#cvgLtLG@v%jdt^u|51tAGTGA)P-VY zYL+M>)U(#)jl3e+zO&D+J$YNdoKyjiHK23IupVJnQYPUzar$QTzOzr|D$CzXUa|c6 z)mLY3#fKkd4flv!M9Z-}q6M6Rg^&th_B@rM1kR?hBM z>$Cju$K?W%!iHn=?437Dr}wh5=YN?yxK0=UEA@)RpacLGnLf&+<0y}gAFTdT?HbD6 zD{pR`f9>HTba3K1xbSl`OL)UrU#}j1e9t`qU@)m2dIa05H3nmHp?I?OOR6MP;37Om zCb?VicNJv=0FO#P)pyd@k1y1Uomlas5wMM%D>d0l=BzR|!`2n5LnMxlD8SPJ&FP`F_PvZ=YJ!)i3Au z%1AF($hF;jR*vTXY;va)N1rTQ+~3X34gg}`wBM`i!1++zowo% z{_NV77-nsup>9m!n)u^{jRspoRj7iO*9u;K+%_nTnx!%O542sxsxA2;CMj>>#(%Xs zV}Q3~4OUlnq4dbb7gru7V0AC`K_Qdcg?SI|8rrdikM#xJvI?ZDcV10MFSKIbGab3~ z;(1)wFAIk_3v2Pm`g#cWuby!9%F9Y|Ol?BFz8Klz&hzBsS6|1c)y-FY^-+Sahp^_d zaeMxK@+u+6wr}}SRQl4!89$loqN@e30ie56*w=wW?Wvp(IeKe{)wHC7*jJgcuQJQF z1cthI>t9OWgCK~limsTj{KArP)<@xzN$xHV|4_)4!&nG_woabyoIE#o96~2ko)_n2 zD5Ow#|1^uy-=6n_M83wR9Zu-<&vp9eAp4$531ZTFG3mYNvrL`_%w79Fx3~*IVEn}QHHeypc{B^N9Mi~PP^V1q zQnQ_EmSC<&52xn0i=yHGrOXD^Nnc7*x;oYpIkoZ79j(r2wz~el{Bp+d%CW>R;<8U% zd;KIPy{;8LC}dKbP_Lft0=k6z)-`A5;p?bqF#_$}FC`;^?j)#?~56Od_F^ z2e+vj9*m+$uXcgG+6Bg@i(-#>y7dqCmuF&6I53WAU37o(1qtVf5jrHszj<1 z+S%TS+?#d-0azR~e7Jl24?lEkfmMUfH0zuGQ|9$5%9G~jh>Zp;`gwZqp)HLD%(m^o zu%d#JaVE@KC5uAwcM<+$(V4tGz9=Ym0qAxxH9XL_{`_b!SG_aa#v$? zy}_7hFeb{Bf1oIrPHjV{wP(=UQK@0p6tk-&PfA|WNYoH+fVsZa15sqLUgSU%v=fBW z&^iZ9nF~ah{d^_4C^Hl`_5c}BzkN}1(1;DIR4h@0SlUQh((QJ8J) z16vDfAytS^D@e^2mHj+>J7)6W))X=c02C_S^{0vFZojE(jZ!B8r(KwL`{q7vLOq%E z`cR9WzZ?6@{#!UvXWxTNpskY;9IKOjk;3M%ny-~S6DR%Ld`kVe^&1yf34&O;bpnDS3?}v3 z*;fy)$2Du^?HlBhnvn1AE#&f;7f(bU-E}vhsrygwxZ~?AOQX9500_dQQ(MufEojs*8l^dz>`}vs zM%+X}$pCOR?`pOtZ*S|;G~akd(!Js*Bi#p55K1MC1b`i>hk7`64C49$fELrOjQ?$# z_t;>r|2tcs`0UwSA*7ybFML(&VQZRAuGKoUi71UZEV46-P{g`e9VT^QwnxiVg)-m@ zDr%J;eC<(%AgmIZ`oz`OO*{mbA0#|{oo0P#kI;_YGRUoEpnJ<;cON%FLmutIy||zE z-K@WjE>^Di^UBU2#x%T>T^zVyPwF;vWc%}XV^7_PDiqfeouJkl7H>Se@23d@UWN3z zeP^HL6iORuB-lJ_2mmhSKVKa>;bUQHEwGxETI}iT001TvcJq9cMx(!fJ@)?fSOBmW za+*bW-@g_M090ColFW>z^a9Z+>+MuFbA*H4Mg(Dgus#ynZ6Ls?R3HBU_aX?5R{v0| zFD2I|p>|Yi7?m7Aq4-nD{uGKo34Q;~pUS=XO#G@jzp2`!0RRrU^kXoy&)ZRXBE9(M zx7$}VU1U$?m!0*vbtV{MkSec*R7b${UuCfR_D2!a=9eweEAA9W*LqkG*S(8l=!bdISH(ZG zC~hHk)6*3f3N_C{?PsctxuN#65QIbkel=@!JEt`Tnx{N!6FYj)^P<(gJq{y)R{2=q z?#t9l8~^;rDq?yjof_!v806y=+{CG=uS-L!ww0Hc3E96KxYfXmL?z~4d;GRvN86wR zn@Rg@V8pn7;dh>=9KZG|A+4}xQ2+M#^E-bSQ?^8%l`lDZxe*uIsrBU%!U>{KC$*R! zGr%Rnohkf?A978Ic<9gDnW;s=VIF?Lt{r=Yd^W2)fHp2UlA_GW*A@c6<@{Th@^2REM87BPTGwo8 zxo!jpnqXzqMdqJlpU!5JnL13rC3#PTUD&rlb1Jo=xAW{~{9cbm$5WKg2q1VA$KmeZ z*V^)f84JuuA_!tnt#fb|0w@Kgm$y(&_=BJ*ug9cSF%vQt$revko$xsIEMauNICgFPKgTqzHU z+VycUwH8=?8ADpJj z0)Q3q8+$o*p5QrrSK5&~#g7NN_Ui4_#YC8_$<{E}5oD1qb0;~|{YHBHC^HuBOqotb zs4fhDt6rJaM_Lpb$}A777-59}m%57%GhE1hR_kFc?R+Eb13pZXB>DsbFgi(iDQ7UB z7Jwp@r$s;XaNEVEc;JLVV=AVgtVG#iI!WNg?k8llcv!GVk4b5y%8Nb^UZvLL@Sss< zjA-8?(9O+}XUF{z&aFR=KPZ;iCJijBK$?;*^7piTdS&xKx8{LvdByS**Ir+G5ND3| zs?xD(zaP5u?bM!6qBA06vl_3*XjHP7OFh{bV&z$S+&JRVdK+8MC|N+`M%eq!^zB>k z_~Dvhb=$Eo#l?z}VuiR^@%&+u(TL@wi<07U&m4X%bmIQ>$0Qn^k`SG}^OwuttQ~26 z+_`y@6wB9G9}2``3~;d9R5dvj0E{NA@Az#_4%{iD+x6>S$|Ha4Vd5`4t_$s0KQ0^? z5>Qi~s9IxKz3Ea^d`{Bc$MV!iF6X~cnzXg~29Vi)13y@k3e-=Gml-vPkQoXJeG3jiPp*`5}3 zr)1V(?@Lb$zcb*#uaC!(N;d1m*ER7uX!XXuXP%7f-)daH@DK1%Ifc>- z_v37M!54AajRC7>adYG?p4@%bs1E1u#-6$nRa9l!^~|jpM|;loCvO|I(^>|(lS%dT z&}6C`rM8a&Hx+0l7xSJcDsuO=`Ko>nq?%yW(S_&e!h2^V;a&SS6F729iWCVk*>?79 zbGfUK7M?;U-mQz#eTP{)b}_85STbL$w~9QPgxU%CYuU^Z)jj};WHe#91yWxxhjJbd zM5i<67RW*ZT<$+hX&3HODVwdJNbcgq0{|A2`rTLk22a`X>P`09tI=Of>})>Zb!>LC zU^fc6vYp3eO{S1Mi^MZ=;=_@rlSyuT&Rh;_LM0}t98KP`pn2XbkAL&7fF82cId7Gz zXL2tqj7obd|76a^YXx_;n2rGAXx6{ee8!s3n&vZ>N8vmXzjR|b_jB(4K=jOy{Sk@- zTVw40*TCw*vynnOmb)`Q(A$ae0qex!1aUg2_O-_DPGP}Zj}O+WAiGHk(gWtdqf08d ze=uBU#MK0W88CT}-4pfaV>o&kW;kj16GAE+QZbq3SH^N}a6z8cy+Y{Gz6 zPJ%{EUfg^38D>*wX^~jj*e`<3q)i+cF}`2;?dQoSuD-66V!QL?qsDH)h@Q>sug7Ra zjoP*pW&Sg9QvKqdtc^Bm-#vt9#{vMM6SqsB&`RiAM!Hn1sI}Khq>C_IYTa8OCE%|l zp+Za8jGOJ_vh|VjkyB+$L>larBOVYIpVKZp7Qn-tX@3W+oN(=AcNk`)$wAHc)HP)(b&TdMfvvJWgON71gSh1 zOANBsb}hVF?`OjvPMw?agG0EbuDtQj<|vHHA3_!cbN$KXxC47Rbxv1hJt=wV#d06% zJ}`*mm!{5gq<`eq2n$0Kt?EVB z|A*`iQaSA~Oz#xt;itgJXXwu*|-mbRifGv@!Z$C@2?KPzejSa7+)au!En#I**5((|oKB!Oopy;H$ z<5ylie4SR0)S&vAs-42?Sv$Y5>(Ml&`*}DeGM8rNhqUUAtUx`5qUBr^LV61kEn1?pTyo<{blsF% z6NX=Ym~iD$Lg#Sb$%EU3`q`30^uoPZo5%IgX|^omGx?8yTIk`I9WbtT=bGpsgHw7UBx zvSrp}rjkjncHAW#)@Xp5oZ6k*_;qSiTGq7l@ZSL7`-KC%+)5GX-jn1XH(mgM?Q6$Y zI&s$0qv=^CR0?_PPh-wpiL&D{JGb?tQOQqVr62g`sjru?SLa}@&basZqmctzayblv z9jls&lItuyELCihDmDSw_=`diri0za8eHE1Ktah{lJ_Jj)3jJ=T#o}yu=ed1^j*K1 zaR?^}J!Xg$M|BjoCL!o|!Sg97F<6UV-g1LUz3h#beP*gF} z3Mc-9t<{erw~L}ORJHJUa4F2GO?unvjz%2Yl=Sb_f)^x&)X$~Wbe}!~n&tFU1dw>i zUOQUwoxE89U`Gos)<$J1ulsNZ6M&P^QZ+r0Kk-i97v7x8)v*jl)9bhOneqq%9=u9> z@G31l*kkhG)^)9kR-IhBA8+&5SMLznGRZ2Dr52Q!Fq}dr70cBDF2Xx;X$4Y+MsK(m zpEkO^9>t&Enx~x8>X6&JFO%JJI=v+I>w%NGO6JV4L`P9Pp!= zcQ5C^&nC)L7k{F#is2<<*-Dk>-`ZV6sDRIz%VkfmUnMn*)@oJp_i>cTwbRCRKv5*v z-+A8mCwLsjrj?_VYW>@kg10FJgL;Q4RNCFYepWN>wRv)|<1S{P%km6)eDG-$2; z_1m1+Z*zitoMw;i*g$Yi$}G+o$!-1y1HBv@cm*#Z-%H4kShhXb%~7S-$LADfm&o4c ziN5I7raDYD%dr+CBxj?mxooy`c@}wR9MB8 z>Jwu58XT9^2B<hQwowD#^!cSO>!)!J(f?=mvU-NoS)gD8W z+>rQ3v@Cvm_}UuIO;n_Mvpk&X4rYj@pcEd3LqW;TbVvAv1hL>W{C}}dF6Teb)7Fv> z-h}Nk#I3EZ?szWusTottM1$$KCZD@i6tyI1l$Et;tdwVOGHr65#Ehbazy8}I&~5gZ zPAvlKS^DDc^OQ!=DUtAC+XRsrF|1vH=l3Ien17Dm^mnc9)8kiP+x&@qJ%rs``;X|^ z+@AL#lAX+jd%yIrTNQ98dg)qcbH2|Aj}G)33)!4wwk)~j<+Onh$VwtjC@3IV{=&AuMqeiY?92@WXLN5!(0IH9h;or(%v z98Ocn*3xUVv2R%wYiTHzO<~n=R)MZKU7fukpp-{GRh{L*aB-js4z=0Z81={+0IHSV zL}LLfPT-Bi!%(XnIu|LHslOcGnL)ESc?&;^kR0 zo^P4p-F=F8FA8d#0TvmXX~XV{PRg6T=AU+9-m^z{4DzXSk=G|N={6r2z1juZ5PlE< z41e$JVNh!tY-zbA&*N;9tID8LB0@adhk3Ve?qhwWbeqVD><1#9e3*NC7e*b*o-;^P z0O;w|d}ZkPhI|^fhgE|yNg`jP(cP}i$ZN-A&tx(BfsH)lRyu)8RVOcpc|V-UFO+}x zRliGz=K{d}r^x^i(4_w68i(~6oz_VtnXfavsL#+xXima|)?;dQvaRJB28nLOjYKs% z>A$&`TidtjAcz2fJZ)jFCcn2+7XUD0Dn?)gL3}8(otmUll{BK!A{2I}&ZnY`&wV#m z0&)YcJDBlZGhWxGyiO9sdnf-}#nXIk>LAxSPV@%7tjs*g-qTM^82&6KbN$zY{cM+{ zcrNd$NMDOvvY$(<=KLnMy5s)z8yc+IdX6RnJDhRri74TRrsJA4*mqYfQKsjLZ9WX1 zy~%v`CbN5M|5>9uS|2SeSLsr+ZJg=BVbN!e?r6gcUX4zAk(O)a!6&arHSl(>4!oXi z1KNgpH4k{7qj)bXW5vDOOFDEO1JIy-^<5$X3J_L_?Fzd9^&9Iu4x#ZTxXCf z&`ML41pqMl+3$ng+6;1S<7=I>goL0Jl(ZmlXam(vTf(Zzlr2?mRjU7i>T@9wgvnu! z>>Tu{hfu8!wq%AHchuS6X=Y=w5e(y8?f6UA`Mj6(<@6qItM;Lg>;I|LAB zBL4F7QW7IGC>90IN>OGU$vT~(&IW+y{15<0S7$#IMZS*nEHV!P6ojZB-QkB$Vg(@hU#ZhdQ zp%EcHo0SH54*BI!azV)-*PhJl*P-f>TAlI6)5QASg+d{9ZRIz#TeFC!o>gCOH!mM| zF8ANW_(A@Gd^)`e-~Lcc)XbI<#cH)ZgF!|seBH?s@u|0Qj@hiH4vwu|-Rs(t7+IT>D<3ViYqO5k{ z;l$~i(KntZ&K%icM31nV73-L!d|Ta@L8J6&`H3-8x4gjb^?vTyKku}1s*vqv-% z*@?v(8QgU0g)_MdMX=D}`%Yb*+3)q#oi8KlWb)oY!<#ue)#JfqWtB%rq9XU_gp<2c zuTJvmKFqCsb&C;X1nuMy((s-~8t7Xyno^~TEh^2q>MT?;$(h9*&S8$FQUYyeY7p@K zFXxo1Qm0dVay|g~`#6@x?kZH;oO~$&G!1Zln^J%i1d1RVz8fyEW3AeBiOa5Risj@> z#8S1uj^$Cs`7^wKiyj^8*K$mz+#yx`P7wN9K#}a}?sWSDYa8{GpA!ZMsP13*?Y7~O z)ybiZuk*FghqwcIC^#Xo7hX;p)y~<03jlB4=3yA_>1J;+<@C^&sg<@Amnf$!JV+v; zUE2jn<(i1*UfnwcaM%qGp(61)^I41mBIzQX{&@|@Iq-k|kHFLqER`z3k&p^wl|)7X zfWV1W|16|2sQ}QIH5mXl-TJX<`%->?^A-dFlM$<^%szM}y$%5R+Eiz{50lI_;JS^8 zlj$gnL$L>dbXBx3yQMwV`C7rgAa1*%?qA(0IvOv3RG>|Jr`6Iv!5+g2d~?!S;y)p1 zT5eP?iQe~j`z1nJ-6C0%vx+|$rUF2EuK24BXF7-bF8r*kn-jmPU7MU)ZE7QjNgL3) z>F}OmCQ>p4HS3OP2;xg&izMoDZkpN(PrxrpkYt_kH z9Rj_4ohoyHWadk($5alBK50PTEJf>=l#&2$2UDv&LKVScKkM2Fm&8Cyd&7GXtRI2q~fsn>knY1Fk++xggo>siz z_3qESyUp^oz(+w4M$D86P^u+pG)Hxsvvz_b<}4L1Z>=@yDs_fcf-tBwXXL6q2IE_c zXv(DbVKav?Xx*yv?b%SuFcrh_4S!sZP0YJ`H-7fSE@OtY^7D4MaO2IAwg0kNw07Y> zHW4 zt-0FddH#O_!1k0cooL=%im4e#FN_P2F9UW4hQWof;fTGr{T7xCF2zGEN0 zPK%7qnm)Yk#DT5LQ^RNGOLUgfXK7UO_4{6P$R{{gHM02fJeI?l8Hx!}A70+(v zdY(7#Gv9+bM3joXvkC=Du(#!ljR}Oc0;CrVlMi49R-~Ogur@p@aFAMVa zN538%5VX0^08(8hViZAtZ#e@1^tdrqS&*#Ei@`6|V49Nuy|W2h}*)o994s*fwx$1uEd7#<0=XEOS- z82uTvt_VW?kRyKM&YQ7`d3HSJ7oTw_>l}jsNxg5oL>} z6;x)0cFDSbMPk+FRij&mdH_KCR!tVp?D6Z48-E>nfD^=|kruN0-byy}Y0VrM?a3&s z90rtVO!+)&Fls@WKsc<=n2Z5Z`38mhXnAir3AGdOR{uYOTGZdvrV6eYYBecXC3zL{ z)}=*q2CH^c@ATN+H}x%b<7ebq2uN-b=(cip|LXEdgsi@4lAleul1icj z09vElg8&S})dXQgK8ON$`+0J$$FP~SMU%S^=v21_NHU6=IkBnl7BzeM_+Cy)YU<#q zF&e2Pa}EM=F*$Kzn-1<=u0pS0c>T(-z~Hsrdy(pE+|W=;Q=Vs2p677)_5hHh5j_$m zJSdKfm6xu(Mv9Z?zS_CH)odQ6axRljca6>(L!mS`kRBljjY4S-0CMarz3#4UV3i;Y zYVBpE`lwd_q>{gvLTnWq#vnpCGUhab5 zSC0C8@e!j5J9j<060G7lapC5hqh}(!cMO~|x*d!8esB-!6?XjGi=2Gv)0gSxVO3`; zrjs23pjh+7p5E$d!OU>SUsx0mxjr#daoma7<0e%_DJYHV~8YA3Y&h0C5URs5#b zUID-ngzhN#i$rpO|CcIKpiQmh1g2LLdHe4l6|m&y(MKFRR;}0X<2<$OZ}ZyfEZ*cfI;9d7 z5rV*s;q9jnZ&!VsGhxDHA&%Rq@4k8rS7*z2IkE=O$ri{TFkC|+3G`SY00E7h^p>0@ z$|ngaObP%-*xP|{_*|!*Df6yHVObp2r?|N)No&V`+A=y zem{2U{va#!PG>#wirTv^{0kPj zves@iydp4($&>+r=-+X_qt;E=gF|->E)5Zxluy&bX7L$XybBU`zNHmBNE*^xjlz z8xxjkGR8Al697Oi`^H+uv09&!e639RXX!yCHyX7$jT+9NwWCs-BOi*OzXs_L;oBj? zx7NeP3~4oHNUQQ&++FP4U25Uo=-(r>e~-{g8&M!9O19x(VvwC_B>Pm^fdIQN#Jbl> zl0N~USo7G3tDfXfSDUhV)ZjMG+iU7{k{g@(@c}jV!P~q4Jn1u~Yfu|M+g{mR8&zg3 zlpBk96sNkJXp|cAUrH{%kyXyTR7r|N+prjJ-W}K(poq>w{mgg(-~h~ zzZ~`X9CP56O@xAy2fDWI=hEtO{)@e7H#Q}mT^c;<{TC0Q)ttnPsYb&q0FqXH?A;!# zzWZtclEa$Bpm!&sc4V>_im*P-uM{V69cE;bKSWq28Rc|vJ#Z_#k0YZ)j`D&DR|^^K z5I{S)?gxNq(T^CeYw5T?LGnBKQ|+$uBFYu79Qm74qPqCkjXqPl&Hil?$KGbq$Z_)9 zW^mn+GR;=k6i_W^h2J~%to+aC*J9FQDrBvhYU5-_5fYbTIjD__(kUq2i0jD+^YvWJoFa!J#Nd2nTG@cku7yzIMvg*tJwP9*i zT@9=4%^GC7$WX@_6q4P`{6WR)i;k?us??iZD6P%|j3UUg8NG*e3vI~tyLtJHYuap4 zyN&>G>TTR#uU_OS6nd=m!xS)>Po{lg{(G>0P@Yl|?(7=w;_7EFK;B{5#pJgrT2n@e z5y$eBN^c&&P7Na==n%KIy_{R@PrG@mD7u$Z3jjb+Hi!Ei08pqcwc4{ZdUvz63J5}_ zb#D-?QpjEnC(^UIs7-pcNhhRnla=|8ijywnz7*0qd)m$-A?V)JJ1-?^m2GZ=+L_K< z*L*yO($It%GRo9rVgw;OGCL7JS_N#}7?UHPX8mRBSf%RjzDo&X{_OVqu!zcq|(IAH*QZ22w+X1|(`%vT=c z(pvK9tpLD-J0r1Vi4l{yaVIy%BJ0!YYr;1iQvrZWqpj)I%l!A~;Ly>*p=OiNh+!ri zC!;9!of-O7oAy;tpVzwWyw#VCW$sLV36t^i3*B3usHJoFsXRDK_5w>wlEo!NMs)dbG)@+@t^fwiS&wbkG5=X zHHC&!+B*bvcWz2SNM;}1lqOw2_v--w7xP{{5hbr_K89?&@HrhO;!vB!maKDNv`?1q z;?aT%)pu~hG zBwDQz#}s<~*bD!>D$48X;p4z$X-vkA&mYYUi-;E&3mL3y87aNIe96_DyzGh<5_Q^3 zCQ}NRw@RZvtXBRBfS@QBK{!m-L>6a$&9C4;3|2`93IOee??Ie zx=6jLAk6sy@-DpsK}eyFJ98BWz4`NPj;VTs$>O5*$X?AS4Ql;~4*&#UNt@2sGgAER z1SwK+6TZDmI(vGvRze2TnZ-$$NlLWpPHtY0bF&V|M={BiE*{=BUl7Bx4f-c0V+x7n zCUCflqC6&hnnC|er@L&>KSogji}Tfgo3&c%3wpk%viX(!a+GJgbXD<*j$e&=wB=y? zxxH?$IoI{uVfQ!64C;o%sy)3W0I(_Ee*DtK!q!fk&3|}uMwJ{UREqG z$|_-U87v;Nfwo}7Wz)>R^qOk<6yqKx&hPO3hO6JZ2h@*ak4RKJvTcKdxSd+q^)0`} zpfj!>yTxEBDD>CQchTQPhNs8o0KnA)_t-q<=j+BbcE@&W;~x>~$>)5CDg_4I^!=Md zQiBTqUn*(dB-9MFWkImtVwZEt=e;I_@C` z#fw4lvS)Ou$u~o{;P51)Ja7Jj#%Oj_Vy?khIsPCb#B!BhbFJ@HJUBFEAQL~123%+ZuQ zDR~S3Gh)wUc8l=q7U5^M%o5THW0Lb?lJnzI@|7CB&2M+%UR+Fa{j0p_Anx32?ms*3VHk%4;crA?3ldR)P73&i2=6~zY8`{i% z8d{f#N+WLKQW%%>USH0Sa%b8Dz-vjy&NiR7vab-NzA1c4&)Yv$cae0(l^3Gl`7}R! zTA+XyB%lZLsZG$vq*`R#u|E5L#IA3S{HM%BYMDkZQqWly<^}V7t;K7ykW?mV7{50K zrI8UTf{+kEkh(KMlMph4#1YcG+?m0oYTgUqx~j-pmF~#8v!5*=%HlHNzeWDdeSEdx zW!3F0GX0096`U`cvvR186c#(d1?JGEe?~i>gU@%&{xH+-dC*Ho1>vgG8F_%h{>vcRD{lj#rEnziB z^)Oy~B-n18H@i2A)O6+NqTjTb_>E+LuKH1D=QUiawIRnMy~3a40tnLEx!HoC0RYhE z+IOy1>c1~~eW-?uNDZkNVHE4$igj;OO6PHk9WBt2(aeR})`i&y0o$*`4V&99Keeda znD!n)ZWLO>x}AV8T6`-iSIODVi8p9g@4i#Jv3NEB4+KG&90pQljZlxN0YHbTG?<)8 zvb^}}&uQz=Y5VC+8M~Jszq0>s^u73Bt}M5Ped*Je=i;P4k}p=>?!$6g7dF+MDTMzQ z>jXuR0B^?tZ^x-a+bY$%$k?nW(HYNTGbM6O!!K?yntuB0T1u8^{`fBSrcn3*qSEM- zvMN*ym^q?-Sb%G#!;15y3aJ_Z+YG&WKaACy6w_?$(=B>jVoGzs$jSOrmWH4u5Klf*^!4Aw1 zF$vfbRw*b`qEC8UxH^iwGsJGZKW{kM5|3-X=2?j@!Th&GpL{uIYJ11!-kd(x+#+6< zJJcg0TAFpUF!rs&0*%?KH}4Z6zK=O!8CLbFRqSkIi7u{07ndMC?#=1d*?Fz)JDN)V z>dzTAxm4`K#PXO50Ma7)k)KYV-gK$owC*Dp4s`Oa*85~Im=5f|H)D1Wf*{Bw6hV>f z%n~;bdkn*MTI2j#2X^lNoJ>X$OA~?2SQyCd*xhkjb(mTQH5SvSD07h_jjTO|l0_E8c5q`k@heb$~;Cl~&wBSE}8>xbCGCZckrYY(U9%Yw(yNmTfM zsh4nA^j_@(d$kKB2uRE&+>sgXT%HKN4@vE;=b42Ur4dSxtpXP%{C*_ql(?fin zCl78@^)P2o!QtmW&F}x~o(Df#rTOE;7v0w8rWGRyVprdi>;;*kA3xgx00L)Ta4VmX zHol>4{d_~+D}^5-2%<6=etL2j08BW>q)^Bx+RVX8s?$nzS}u(?CA6j1WW17|oTHR~ zG*~s^+9yS8-HLRA`MOuG?cud zVWIB3EvNm8^d*^}j*tu74XmvTHE%eo<;@jRJM!Cdd- z**5{83Cpz^--@s8GovgpkG@stn zn)I=G^Xgi`=F=1eDNW;=wq?=EZ@du1i-=T5H`l`f(%WE-nl z9rR##?dGz<`uKGtuA!i{J6->M7~9m_nMNfusN}s@o=@x7nn|PZ+4X#9M!oUDnP)W| zfSIrhJ8yI!*D3Kb3|>_PGt#F5@~%xuk(uKpRYQ;a#p`?t^GeaYc=t`&u{whwlx=j zZPw0TtI|=dOReVGv*)ZE%@@|6mtRsOw`e>(zZLiVR@~uVFCBaHGnHn`m>8{EzhdGJ zQNHxb;fLS;F*U41J>QpQy@QN0+BkeeC)vk{cbDI;H0IvUTQJb`kj2$d#L{}I9#iN+ zVNFw#WT%_ke@-Lut2>}pl0s|d{Sv+97)TVMw02lzJ*Fl|kG(3{?!)O5;joZSs)=NH z&y{C`+BJQVl)YwJzu1g|Tdz}`?AU!H0t+OH#eZE~GN#+oJy$%P_yj?yw1&0Q`uVxl zq}4`ViK-!@m_#OxSTLaTh_=D)Dh~(`FTroyC+T#CkpnjU{>LOyu_8V;*UQJ@q-f_7H+j1%L61kesW;pU$ zNjajWyDul_iqty8qETJdIzzEkHK|vtLa7SOP;E{C0RR9=L_t(RV9%n_01!TVGr2a_ zg7be|t6}f5BlEhAu}ns>a``E(#*ms)M59v{etD=wq;zuTwQB9-%;8X2WCW$6 zlw3_Q6{TFrf8M!QZtr(e7yJ~j- zdKXu)C9I~GuE%wY@QVoXtnRSa58mda6gs%tdH6epcM1An%`+R0RmIWGzB)`zi_6h# zjVvyM$)VTP%G|Z$w6RKAj;Gh&d^7a-m4{|Ky44}|wiY*w9j%s4A?SoFb? z5UZjSKMba7O(k+eX4UPU>~7X4`4niL=W8M>1D@=(SeMw%Wdno!-i52y8GM}WQ53lw zok}K?4qShcQ7GAaC9-F@{}%%V^M`eM5S#AnDzsxW%BBs;6b$(iru#N+Xp0wG%_)pY9_a_d^`%sD;p-HN9+n)5AQp6QOx^Un3LJ*;Mq?3WLg07cYw1UFQ4cQkV+^hxKx5`M+SJR}GxG zvj5)M9XBrTzq@G1jP7IFfBY6ANat|h&f&g!#q!fPqtD%WV`VMa+mXpKrS{jahq4$S zIdVHCO9TL95;|{uO{`Dp@p;Stn$~4-xLToIGh@&F3$LudMe_~;eaF}HWr^}ETdSe% z{Hi}ix_as^+xAj=eBQ$Tzpg$q$G^F!ZD5s8wNU-Tg;^SbZNjxWOj6E7L#m8Ca%1Fx zYB4bo1eL_Gl6|5~a@Cf3^+N5ZTInd&~0HY7LT;l>g+yi|Y2ySU;Xyy{`;GkaivX z)6qi4XMtX5^k)rRw<{df(Fqzb+kCKOsh-i$@m`~+Q zcO1MX;lNzKkpSRKv;X|X&s)P6NeuF--UDtHJ=bFT{x0ovHO0}g6a#K_q}!#aEY||t z`{ZS@Qr*ed3jrVia;5TzshLGe)lXONj*kdi*u5izQaZLzXT83d^QP=Xv0l|m;I+EN z;3BPJ?VBr$n)dQx3)j85sxs*hb(#vFj3g`b7Dw%o8`b5E)Dd=64*YisffGvxZZPO7 z1Cm;y1%RiQUuPzihN@=0%>w{~&iKoWT@LQ{p&bJ2?*kAi_MLs2Cz8({+d0&)p}tBt zN8Wm5}r0+J81L86n`=EZ;+;t8;O{Jdqp#M)zsy?!>R* zup!gCn!TVgkCS7b)GY}$;YE7AVYN8Vvb7r0rrHX%?fQnb=o}dR(8d87Qjzl8;hTTh z`*}nUtEvUp0;^22gCirXSo?lf;!%Bq`K6J{+3I^j`up49L}d$_iZ;qDAkxO(FIZ;7 z3trBiY?JG#O+~l!77X?NrxM=#xd|0&-EXJv70XnoAH1Pc$*uzKp39MHtpNb6v{q02 za-OJ$2*%#UE}~EKT6O;>zK%QgO*e0u_jM`D?)Kf&0H9sR(h#TJpZ~e>){3~tiKUpd z`SO^>gG1WerU=X!kDiAzuT1ss@5yum0B@E{7~fBe>AaXOk4j=b^Xj`J^~8T2MX`zAtry~%VXK6!4Jwq>w7+_S|f zukZ|2$&lMSq6U9YMoVp3Ck9tYXNz?s7*Qm zaG>$N3K-hevDts6Rf?cUzsX&?j%r7)=oB68IaeW3wI3M%^`FxLU|QIc@E%QPt{d;- z(@;jh$I+}g!BSGKa4o{-02(NOE6mT(+5=#AAu zW33_=tF$Ve#a+RzYFY)DwR%+K&DgHPB7`pdI{AU0UW-{bb8mHf^;*N~sk^@4^Le|z zwO7xq-RsradEHCVmO|}IoWMNUU0VsiD$6QKS6po=m|YH5E2~S56oTZ*?&id3S)`4k zk$7apTJJGV7`2#%{B9Q6X3WtDLgG?9aKcmpRtW$A0hhIB(dcn&|K2cjpjfVE(Wz~M zJnlrL0)REvYHC#G%_H}#{h|t_lYHk-TRU$2vSAH;1f#*El4~42gy(l$r_w2(eK*`A z(5>M;gA)XcOqUx~gIzoEDeS+qt~=29d@5&cvsnO;uPq7TdQ(tJiC!i)$U6wb2!asl zWuB~Bq7u9Xr7_rSI?at=N@vKTQn++_d1oB}sEv9dolQnbDwF<~*z2oW3<7|j&OvR2 z-do?^SrFW#yK~_D$P;hng%g^z=2AWowXa1vnf+i#>Sdh3Q3M(8-eIP1ek>GkeziUbiEYSM0cgy^GUH z%Msc3S=db4)FExh^=ozZcFfT$uWC-n$rs7LTzm4bAI7-V9a*s|p~wko?-LirGWCUf zaRnm9_T@E&7p<7x&zgJ5N|c8;UjFKraT6C0n7DXAo!V(K*0V@oVOEJ{jAzrmgKEks z^A2|P4z5qi+2bqGwLZ(Q^9~(&wwfnkHxyQxWQQ&;>nwO;O(hb2qCNfn3bu*RS3xYN zM*0-nIW7Z0xKvN;Pl*xlek0jmX`>grM;Dj%jW=cB1mPm!VmP7D=w@y@#bMIc9lhn} zDr^bG{$)R1-=*0cZ~s%-3jN6rHsHF# z2z7ghL1&D-8CUCJT9qy@z1Rk@TAidTuQ|}0mtQ*7 zVU<^yITW`>`VOs+Fe-(7T$?06UD-8?kXs7pHtKwVBFM$H(*a;Wo5~S%otyb|Zsr33 z2bYvO)%Slh#1Vyxk&jwQH!ZZO1YhOjJ6BAP54-5fs5p7|%LVd)t`% zb!4146%}W82P74V%zwZ04wMQBK@WDC3IKnnMgEoiz=6&wTR{E0^YoB&t2#RR0w5Q2 zWB*Eea3(A2&$i=(c^{_$PKjRe!<$11iflHS@wso`VQ%eF1cm<@;l3joczE_jC0KoS zH5veh&*?MkmkCIHQ&TeX#LKo^_>dLOsTA_mA#I0tYqtCJlk@jttE2KS5-aDdJN4HO zW1NL`_|Wu53kt!>8&S(=^fu$Vr?XvFfpq7|N8MWclN*LZZ=R+AK+NOh1p|L;+dFj1 z(m|0on61;6AggXtNz>}746r`9br!k{6s$56vcTxR+*I|h(EgVfZtZ4Rq6IDJ6h{u z0$003D^F&`<+%Gh`-S^7?GWhTE~x9hQlm4OT!vPq!*PNDAXCT)f)E6OAfFspc&|X; z)}C%X0(}8s<)vGJP7b46h5~?q$!H?95DI^*;O$V4=1)ZFW*34;r*vX)0f0wkWU9m} zqb}Uub5=l?LaqFxJWhfl`};SCBzk3kmx$SZ0~o0EGIvWEDvBisfhTycylQ zMMEATIp%%kxX7Dv&u_#&G`7M^5E-GH*5uqx3f%k*i^j0*9hRdZLInXT&U4O5X(rmdogal-gkdc1P4k@#Wu zGvJe#y~~e@^Q~I;AGvVgwt4&h*;rb?$<@!fRj;r%{adu`*^FjgD1TstFO$O<_4OcU zZ^tJWUbN`mbnLf7K0!ANW}$2Ia!nfBCW9)`v|E=6b;YlE_PxymwqYOZUyL zdcfte=K0BGj#dih}j030~?Y*3e`j0O-A z&0RkxKfO37wJ0m8AmvTAQl=@xRC+ba4UQ88P8bcQlEQj+dwxc-MZ+;D-21)CWi+Ye z+6Hnt0e~o9`uaiQd!HGC^qtUt>hhtrI(ut@)e>Doq4p(C7*T{mMraJOkWF#3r}|e{ z>pMevl}_UGX%)=j@-z_uAfN}ct+oXdW&e1xyHiPABc{qxKX_fTgF|uc>hg=3Xrh6V zBtN4z6;;~UQaFc#TGeYtT=k@Atyq^B#2*vHAKj>xSu088mDd+`T(|OIwjJxcqhECz z-e&8Zy$Z21KeaGFweaF!H)srMMBf%Y#&>Kts1=o7Q{#i$lxl*l`?dJ(^PQf-?ykO0 zbT+*PRMuf?8i~;uX;d~59cFwb&i3UvjPwf6)ktxIXnAoR8AXSCw(RX194_!&)nX6{ zK{c46`GqxPgyh2(XfXrh!e5Jp%9y z#SLd>MEOKj6Rs8O6U!e~EpL&fXMZ8u{6e(3l0keecV;iQZG38zhCHDWS68Z;0{}vL zs2_K*l~;IFxXPUH`l@7Gs^WYb$0g2;Rv+LalorW1PTyJAv$~9G7uqp!&A2Ubk4j&M zUTb)K?)l?$&pGz&zEiplo8QmLtJ*9DHlLN3T9_J@@yE0EcTYTC(r4}33rm}XSzgI5 z(PtmdSmeuYJ=A^aN1Ux#G^!KFvW7$_Q93%7+OO_RyX(EbD!=#d&ZX%_cl$2-i0wxa z^h085FQ=BhoNdo3u`FhPJQ02M~>!<7}gVpu}!%OlclYbZy7*Wqj;NtzbQ#U?| zn(fJ1q6NSFTeBlNyHL7t=3hY1-gi zkr8$;e`y)Ans9BZ;$p7);Q-Hr<+D%)wnHvb)Z<)x7rTu&f80KQ|CPPB%WqdoRHrvzI=lU9pUGXPtR7=A#A$c*MgVa0 za|VD(KaQI8W3>VL7-2l0_lq9aBq;8;(~WYX`!-^40FDzFsTx1QizRd5|Hb-gktysT z4E{9RmJyfp;NR!vw?y=AwsOptACJv%+OE#!MBZi;{d(|rJ({7%Oa*GCH`mTq&y`gm z{c6K$rCL|J-!7wQ$)*dNza3sPyP;I69o#i^)~F7`YMjO>iUj#Mnd`o(wT6S|BNtBW zX4{wL*2Hn%hOvd&;?p~B4Vm86t%+kjE|Qa4RFW?hIP>V`GGa5|=2<-0-Pf_CKn4Jq z3EQ*k-}1ZC;&N6^-Wk%m$@CwFHEmPNT%^+&-o8xt4sx|~`K3aW%Vt8)NW=2#*ulHd!EV6Sa=bx&(WvzsW z6_6DZKP>#QzsFvvS5-2VF)u-Stm^jL`3tT7z$^e;n&PsVVc(6_v61GNQ@>w)aXq^J z@0Cjade;{Y9)d$FPgaIQ6Lxj~oxA@$p1yY6uzCIKJ&f)Y?Jw4qhF~1dSWIdh-#7ud zi7=X(M%oC5_jH>1zlMSY0Ve!CBcn!dq>@Qw(tlx)u*qQh{mZ=sL3AG0I_h46N~Q*Y z{!_c1`0diS{eGUXWXR}+1FVl!k}0&ywp=h;=Y%8x@>KG-lHzzt(W~P8m&LgRK^*Nn zu9c&kSf_bioQEQ)#$=$Nq@A(Pz6tNr+12}HaqhHRr_T+Xd`u=Ez>nt7FD5lMr9$vT~|tZpV!47hb1eV=Kkk zQ}E^5(c=29p;D;i@5lW?SjVco^_ycgACT}O{hOhiIu2;@#ZMz^VDZ(ebl;8L4gefJ z3&St~2x;AT$8JMz#=kTEFA#Lq81OppvQU(ZUpE90yozkEu z)s_UM)*2T6@^4{@Ww(>Jo8aJ@&&Ky}RS7|FM<#DOcE2VxBG;Y|8q(ywi_vJr{yO#8 zhA+!(HI|9MnQz(s@HVeHVuvzR4)1DX`u@jPqL+`}R>J{h6RA?B)+lvmJYF?<=fsxZ zEgZP9AhX1l)+zw-sNR+=w)a^F*{VAxLg&SN@8DG$^PU&~YW~}a5#GgRJ-tS9B?`*y z1yMa4wDrt&TP3{9eywFzUtSTD|mH@rc;{4 zm-9D$_-Pj>uvArKbAI3dDOg2OWMFvEjW;QtLVk$5)3L9{pM4&O6U2YnWB$GV+@*bY zW^I@-VqWF<+i^(5locZnu0AaPD z4!wPqsgx1~lxWpXO!kt;S43KMzDnW9VE6Ly0{|0_uXuK2OXop)3_Fq-)z`~kkD2&X zdaW17F#Nl17b_W~l^Z}IE%>Z!=kO-0|GHLQ4>*4Hm9vmDwr_a7yR@lq1^&1jPZB2% zjPUbxX!y%|{UCAmwB6^^Hd(~c8z-LO7>=MwTx42WT&|ms!`??LYPj0$wWCc2%+cMR z!KRtRj+Tzx@}>&;@Sv$(=Kegk>}TSujIRg%X7Petd-j0IoohCctJ{^ETBMR|Yz(Vp zltD%rCcJ{bqJm+nxC#JeF*{mJd^>M}5!a9qN^`*%A$Ffx16N$CXAjp+CPF9CC2BE= z0aN0HfdCu<6h$Z`lukw2bdnvL;zqA8{h(y1>tCP3GZ?{&c>-E0B_;q4VV&3y>(H8fnzsX)RX45Y>ejt&p8~^QKdnewu1qaQMr9xM`p9ChJ;Sw}gj zn^wGj*8Z~U2(eF7bJB_iOe|dv^9gpF@#C<6w%s_o>8jbaTPrQFdzF`-l~hpmuu2)L z(rV&P$Q1InYfGFwYVyoiH`m!Ya`!%3$>h)**hOTE24bZQ)DV8DBT;QCGS@3LFRbb? z$*tV4l*U|FX4}>di|a%s2mlI0_Pv6o46-oHeufvjd;L~VtCOciYpb$8*-$z-t#D^` zvh6h$V&!)O){Am0vue2cyKKDmql3F3EjqJ4<_-y6a&Yd9&_(hR%UBq5KVi?(qqBdv zs@_1X{C1`~`eRMO`C8l5rV#7j6l-4=YhMBY0K%vGyRbU>a>p>p4j=4U2m*_f?xdnT zI!VAJJFzJ4OiN^+iwAY~cM*>7*!;+Y*JIl^CzDXKgA~L68w}Q0x8rV~c+z)D*OuKv zDt1ogr|Ubpi*IwUt@96v@+2!ye8sFLuC-9CT(kSS^$p-sX><}fMz< z0f5SANR^8(4VlU!Qy64QSGOi%LgzKl?;Pnf#+PRwWN%e$&V_ri|K5I6hnBGE8y5{b zcID;HlaI{R#c_i8@z2Y9R*b8+i5cYM^z6<1N#jX$#_P8^;lcIHjn=C5MLFVsw%<^{ zDi_EA+qbVW0Kl(V-EJo08kQAofTUNQ$_hw4xdG5)-B`C0<8M;hQ1VSE&CbB8|lX@b+%+Et`UH9 zsh&)-quh{jCw~zMp>}uO=+5d~*EfU_`UeHy=`pz;lRqf?MWKHr(i9U3vabLS{%NfN*7YwJogTgz0kDKrYpXL-poTn%L2T?P(!px!?#w zN|GKbpVH>T85-eO*-SO6jUwWMK{f zEN#`*fMFwin*uYh4Vm7xPB+R(u&{RSve&$%8V(I>wWZTpYI)MfqG zrAAdYM!Sw~|LuV}G+UHA?mo7|zgsUSMy6WUa!lCYYtJk@Jg?U43~*iWSmYQby^59Q zQy~=8ax%CP*VVXJ4?s}RY9|Ye2e8O|n{>ED7hB;oK$+d#c2iLs$4R0HNr#o_v?ayb z(n7gSxFcIReD~fNh0@9vTm4Xaz0e}<*(nyNW7GLdE9n^%ylO$MjQXxg&) zsL@~&LZ3kAnz8N>yBZTC~nq zpIMIjLB8f`nEmIW_EYM21sx{6m;Y^b;k%!v$cp7l`>jil$*MGcOj*C02|=_b698l@WqQoiLg@Nt!op-(wSh=K@4J~VY7n`!kk8uj{g~el-8p|Z766{d zWgR;IeA=+Kb%s@M3(E>SPd@4z;aArjt(?>%00?Q_q^vfan~%fc7i;dHe|3DzwY&_G zRHR%!W_yp3t*`$5*o>(`;ojfyu37I~Pf-)&6iy&|9MQk z?an;T_3vlEf3M(#2}Q^Ngq2YjIYrWXfSCj1Jv+^&&I8MmP`wZSQtDTe6pg!f+@8*y z5ZJKI3bIb6##(eI-gugLJ2JW9k53_!me1(z?P|aM*aMs(_MUy(v4u~7 zciku#oCF*mn=Y?dn|1v} zC#6uW)LuOJz`VUf|K^J}ea5JJP093l3nAQ98TQREUrA^Ts=KcZs*x6Em7Lgmt&;Kj z^X&Z#Hcsd>zP-(0RfkD3l{W!^Pi;~@Y!U&qz2o-?f(mFs<}cx&v|i2Zrv&lG)_lRo zg{#t)*DUU0Q{4E}I+qS50Dn@nwpbfeI-VFUySS{6l^m=Jt7=o>Co*xQyw3Px@CHf6 zOzIZhLzf(w1r`PTVy4y{zpr(uELPuP`vGFO&jfQNI8hD;>@?g ztw$r1`!)}l+qb<`t>rQ4D@OJ#GtT~_B~2CiQe1f`N)35k9X}7|^)TZ4gXv$4_WW6D z$d8hq?;xCn1Ln%8$qQ%CWl||*i=|zxm^}a|h{cbt(B9E*kWrL^k^rE!lgE)hV>`Hb zl@9=J?d1N$vm4EYE-uUpnQ0oGVe^rDHtePG{ad*Rxhr>G)f-G358d9ga(rE{5a8|j zBCawe^4_yg2Xqdpl_JqBw@yXAevkwN!FS-?IsF_E1T$d;nI)q`mRih3K@jBI?UTC? zkEqAa%H^a+OgdIDuAWYU@FYEP&v*w)V(lUOlMMA|Hs~S#z#?o?K3mm`)1R7 z?;(VQkkEVYy>~@LL_tKwf+8vkSP(>dmEL;|y(U0H2&9Mfy1nm|_rr$NO|l6A^!hNB2rsW~v3Z1)uS8ZTBva6O9wbLR)L$MsP$hS5ZG{gjBNk1uqrd8rz?-W zumYQK9oVzl7Hi{EWP8GFrZ@PUw6`sKfJ1Gj1&YSDU^pI>uT4`N1^^Dtu9M@^*F%N> zGP3WdW1E-ksmb}!zF*sSS5I{de6{soy~5mCT&7-QdGDFQX2AbnDwg0#LPA=KAt=l4@C-%EG0Yjy;HpND0?@!m5DqkD(j zT2Y6tB)`@!CPqUUOu9jD@(gfdu;^~S4q>r=UO~>@!7eC~Rc@@eS|ffBE3OIvPOh%Ar3my)3Nal>SEX(kcQudscYk?VUK$NzzS8 z(#L`W=$M`?E^w_du8|mG!gMnyrzx-bzrMmc<8>@EgD2v&m^$grQ_e+;z z2s6TNu@}D?8?iO>FI#M_elxaj>=$eI-bx%E6_SvZU#ir6G^h&zp!N8i-xT}OxuS%Y z{jl7S6E8gs061mZpSw6*G$=sO)teV>%k=c+cf4M@t(*O8>hM{*B_V2Dxvq?+TV0Qq7zab$T0P|7mmA9SX?X zCCf9Fr+9Ry82ithIMMLWmggz?-;Q0K`yzte-raW6l9Byq^gv%Db9$!{(H3Dfu!FB( z1F(9%YB3h_y;a_43->Bs8=9 zbnL2Bqg^p+0FzGpdjACk;Oyr!wFVOa(CbYb63Ev!k|q)_(n+7G^5aSpZPX(#PV7Jd-M&I;gD z?HAEICg6`f*UsEbdCi)}(C%Tb4x+Eto-UVb{s|M_!^x(hE$5ThlE?RN=k3}=7zdlj z%z0L{c=Ydm$H!K|YURJU%+dmB_R|8dplUapPpIq6CBv?rc-R71t;*P`5+L*u6@<8$akS647H->NG}NIrf?67bRUKY_t$0aQ5D);^vaE{i@D&VsSn;RAm~*XY zNq46ebrzrp{ zCrMIk_FVgAQ4@5A(o*FY6W6Nb+U%zV6iL;oc@@()Y~2?Je?Bz7=D}gJy8ZF#zUFon zH{tcUAOhQY)>$Nt22JMEMZwyYQRS@=#g{- zMG^U$8@Efp@96MF)s9HM=6cO~IF%|7CW*BDpjrJ^8lT4%eS#vi{%#ws1p7BAYPsgu zcQ#%28So96m_F}N;-yQ$-r|E0WHY<&ebr=-+&dMo{UiJ-mEC_P} zxT~c*CVQ@EU5?3CmmJl}=PGN{en<+xm_NBCCa?BRs(eSVxalf&6ouCSm6pJ&+24CE zG0oFX+}6_>01n(vN_t)#>}qe(f^4mkbm2&f^|E|zd6uR~ZfqUHi-lF&>tcqhm{E)P z1p&05(}Jqc<2-)ek~s?iY?+>&?WU(HubB0Pp>tU7RWwYJ;}!2+Wp|n$N45>{dlFi9^ljmIk+X` zyF;I_e;lmhls;2&GEZ~0OrKl_O{?Dord5@M*)&@}!O%3t5dg?koAA`i>1BGLdfBc4@tVA)dljMWIZq)Y`e(vKq}Tt1#x_lo0^(w8=Nh_H?$J_)i|~wzdn~*)FD`mU$AMNY|&x zHdcM@>9R#qJ651rd+U19yxJ%H*iSg2rQM-waud>8WUUs%sDxjg_%YI$*%YMb7^9k zG2cWPoY;Xk%Xa+oY!HSpdOExtD(c&8a}7a8_73kA6R>{&jbm|->lpNMl}^NeRgSKx zVE5fWOg(%lans@3iq{D0b?ux+gNN7bxwd`TD6iKxq&Zn-E^amrm71s3c;{IG zqR|1OQMu}?@nyeSOzsrWt>r~*BblA0I%|gK4CM(8Uee9!hkKk@g4!-TX69DG; z?gD`K{SUtUEeLt6#WQ17N8_~aW@XizW_n&*9 zH{!4VrSNrYjOjWpr}XrVltEn@Q}^Bc97nv}hcon%Ue_aTC;IxV6bx&uv+Dbap!e+V7EP=KesAUsmd+GrCUp2!Nw#( zqVbQVTPw9)?Y-mACus4~dOE3Nd;0~=o+W~zFEb)snq#xtza)JGN5GC5{7+B#X$)2k zwN%K9#Ty6;kCBZ2*WHNB@Kj~04v6ryG>fFQDEPsN)1}4Xy8vKL^{x^+%4@+%=JxB@ zJIog+NDo`lPm>3lP2hQ3j~Q{|qd|3RDCvk-8~f_Tb6g$q)~=k(8#2$d;O8D3`!_oW zX!W=`r3&r*6^Ax|JJHA0_SIdN&tbkduJhP_5rg0V>z`(=0>JwHH+psOXEjPRJ!Wp7 z6WgvW+xc#2j4!;11g_LpGfLj>_8p3$f1LZIDt2k(H%AU{xJ)%CBKpa_y0GdK>RN}V zDL1XiV%a!r$d6i45CrV(`4k0@60#%e0l(#OWMZPuj^CWjol-N7k%HcVzJ== zi&PluhP=m>Y%vhpZuV3ET{n`eK3h{q^x#>D0j{V`!SBTB^fFhh!%f{XSnVC=3jj0> zoz=6wr=5*iBVRpru!G3Li_?NIq87+x&z@4F>R?{8i$t}T`2PbZhTe$(vg67hpTBZV z(e@4bt3-UZt%%!5WOA8I{rBnknZp}f==dT|_u*0H#TMux-FzKvokZnD@|v+rK~Y|P z6*2QxjJH;O&zDxzJ9&0W!H0u>4r%Wb7V8@p>&F$auO79K$`#z++ati~HH_q{A5In) z$jqwkcV8Yh8u9eB;@{R!4+?Q<8dd>7%=EQo1(oYlYT2vJQVbDRXNPaj=D$T!mi-T1h*g;ePjP)YLaWBGR!Ce8QZ)0t?c)wMeHZ~)(RkaJ}+(l4n;L=4^xuLjfC zq(%z`C2p1P)xV)i<}DtNJoSaDFOHnp`ZeHGrssO1yoN%GIdWb~1+K$+!g#r2>HTYP zDg`)OcI&B3R={d&_{wJc^gmzxKxt|QqfofW+mR*yXHJgzl-!uft6%?hw;j8??bzLa z!U*g0s|_ zv-Qq5aYy3g4&AHbX~IoJ>Vurr2RVoTx`bkAP^4FJu7wH*qu%ZPdPeD^#e+~3Q7Uv3 zNB%x;a>tlXmV=ENvp$8jiFt9d*`!<&R#3Q&cK0iGsWPa<9deByP$)JO9D@HEGAojS33jL_y`Nt0zpS3h#4hthkcI zV!aFiE|(-y6m_;JzDQ>|UQuDR97Fg(cIsaQs%5$dI=uQuJoy$pz%_Gk0Kl2kh5mBX zB6VPuh1tC7+fO4#wc{e7llT!r zl)LGh!xrOyYs!eXdm^uQ0$jb6(y@!bOsctb?s2bvVa*ZwoYYP8%EQnJcgh>9ooL*JJ60PY;ZMC zc((J}gDyc{Ln4EG9j)TH(HTu&>^)be)ckzx>gfm1ewf(b%iae5la~{cqJH0fb%E~AmF*e$^Hk~1@VY`r!8|ubo$qgA+!m5E#TrK+4 z5=miQDbYPB(LJD{Y&ULKFMeM~PWwhU-cST_w-^1>rsMHv&rk%>;dokk`6rz_?@D}x zB8VQxCm%Yvs$YK(k%*+IsfP~{BnbdFbDuvhDZx;5!h!t&kXl~8J2BB!AnfGcG%;I~ zM57pjA_&Y)SgXYid^#Hdo+xq&inL`4+K9XW;Cfl|2-l7)pB=hYo^q`$xx%2LA=t7f zf0yYM1-c3Wojb_64uv#=Sqg=vAq*PrU&G6vr#??m)mejHmOQ{&%EL8H@L=)m<~n99 zxG`#^lL_c8PpUH#3b`@ep4~Kec|+($N3kw;p)n?vgPvqt#S8nJMSi2zBV?Sn0{^AboAe_^w7D#Z&`jj^rk((p1pZG@w4?a zJ%gNIX=ffKXveT5lNebz_KO*1Tm2-KDXD=158***waFevpoCW)F z&Z2PmtUlvn8iG}`|1Jo&w2>_4TWJR7F}gYtC%4Z;IKnM!qurMg6bZ2&++*#f#7 zpYG{zK#9w`!X)a?qZ0S}2=(YH->3yOm_lm5q;8H-m?OiHO`4Pdv3p;kgNwR*msVAi+8lzEVFl>47U`lwn9>>i{Y?YU$DQi_v znrs+61d!*N(h|M=cKK5TV7y1ACKM!a+Z6qw56@{^_JyC@&Jr_tqi!r`qO=bl{F$mO znCabToO?IxM~0*b08rxPMY?n+w%@HiqaTdLLqKyqHm_)g(5S1n;oTBD0d+O3jr>);RrJbJ{U(H3>?(tF!hxn5VQQH!lka>Y$eXbHu7nb|NM>JqagXWI>qSrvOMVEFLqEqv7}Ad9rOY8Qp2PUbHO77mmebD|`ZjHK>H z>7P9v7uIaBA#KPkzr#vXF`w>WJw5#!6bB*C46F6Ij&G+uFO*g)Jsteq|9or2f8h5@ zWy_H}13Cx4I!?#t%8?D1)01+oX=%_If10~({gov&I_(X1nAX6GkgGNoS}=wPIZ2u7 zhkM|pE?KtyiELNR6jcOJf8mI5$y?0Y>3Ytbn8EHlZ80o>%Cf6>0D4t$=(Q!g-PoK_@?dUBQhuYhFip0<5^6p;N?z)jU(WqHQJ(6Yq7(NpKTsgL7 z28GP1MgS={C~cVn07zBkf0?wy90)qhB}Pc+CM$AyH1?^&`#*%wXl{ULqWs*8S)tJr zng)Cic!e>)k&`t3-}()bXKQqMUX)fd_kJqGL0sw_E^Ge~{ zOib*~>+dBPE@b$&>{|Jn%T=EPM3Y59XTrCV!45dx?iuWMV$ zoI07WRl=d!^>JB~rZ|#NzNR5sf3w8ce^wJy0U#kg-$BHqVc3O-X(Ky@z4gn1uO{~i zbhEeNb1W_E)^fQyup=DU5oRRLR-H>I|II)&maD+89oR|K-t{y)f$RL_X<6Bv1jAgwso|YOwnj;%=o@j@vN_7WRSq^u{`IeX9p&DbXVj0-8q+c z=fwH*U3xjT9p&12d(1*Nj$Mz-iz$j?ptJzK>xRrT7m6QRBx`L%G`KuVo$&f!_+0Jd z);bjcEkV-0m+s=u8<4F$YFX_iWa)}M>54rLoR|>t90{v=iE$J~WGN57nC(vPya85N zrItPXIjWNYATy+Ryf9dcbWa@E0ZyE-ROQ7H?!N%QAJ2N)v3$+W1C^=RhUrN|nZw+E zR^w#?x>Fs0TAg4M7Z2MxpAG(O#-`+ioF@;Shj;K6h?^z@LNQdQG3YdgXiHmJMuVx~ zd3kZZl+9su=@%B&wdq*>P5~aB0xTHx&kD*eKCaxNp3o`W%246|#i8*N9C$ncaN_d?Eauhh>`w0P6T+-rvUMuUMKG8g zrk*g$jH*745r03w!p0bXM7}4aa{-`_L&S#6Gb&s=%C!?6#XPwVMiLh@_~y!&TpH`6 zfDsIocB=5+Xt&PRk5Y>A3P};K|7|Zf5?n#*k@ADWd~F3sk4 z+2H^|9~LG!lKWAu8A8bSWY2cugxIqJj^r*x5p0BeE%Kn!BE|h{&xTB_wIS*o>`Z6S zOh(+!NyrscyZ(xDE7mPPF>F$7eOyFQv~kb{fI;Is+`RDQ{NaSJ{+JTms|lXb&6n>B z*v#S4A$4Mrem!-)N@YEA?@6e;v1NEWyG0|bHRh0+P1Zs)SC-IAb4>ZiHesu-65V9?Yq zbAKF%Ac%ikkLjNe-MI9y#UIxEiA8C0H?6)T7nBHC%(*>cVtw2J;JZ_C90nt+OvIz zR3}T$~vY}TF6-?a)>IW&8J(a2Q!!P;0G>cEb?Q~E=;>O4;BSeV$2*Ug?4?!bBg#LSub8+ize^$QhBeozR5Yo+s?`nPEoMCgTIU2 zsk=`{cWF}(R+V)SF+wuO%3g^XzBy1ARwc~9NV^Xl8eS-^7X+YLmmH}7e|-c1uAWX*$+gQj&pfc{szGl8 zfb`_bJ@4PYI&$;ElLxmloZM_8JNXTp+DT$BFx#>S0&g!KG!;fS4{|R zSIf8V*iG? zk^hrck>7V;?bOzr*>Gi>lUJYUjrfD7d6NgVU$x`%*YEVd@h~gQ&$$XyNs1y!>hirb z04SGftmnep{^N(N&q zAPDTZ{jht07XU0eaOUr~#$hOGG3T+t@oI0kfJbvlR~}WH3YeG(LzqmA|FGgu8>Vlp z{bv$Zi1l1W3ZbLPZ|m_BcC zmJ1~Oaf{wOvFbC`4I09rp$rr-1VIqMUJ-Q|2_!|41ZBc0Bk{r^PqvgdkpePDb>eZw z9|l4S05;5!aNCb;SrPU88QfThACu|pp31h=`B%RBLX)tXBHNg+xr6{3VlyX5JiGD6 zEX-EdfYE7Dl*ViTaOSk((rnEuR2?U9w))lx_g~|RS4BxCr7JHB7*6pOyQ3tN06-zt zd^2~ac{_^5X6Q7ApFY`FoF_ed;C^Ih|8Lh%^A2>vO~l{pF5SKI48_pUNKcBQI`s+Z zJ1WY_)yB?Q1OWb_t^`3MD3bA{GAq67z&2e6wgG_k%TFBGeC^=Y>t6njI;{Z!PVc*S z@5(a(;P99n9&_`mGfUS^tr@{Ivq$^cy`ll&SwY#D)w|3G*UlPl{_x$Q%Xt-Y0BGax zn3P++(=?+;)R~8=X+`A|e%G17-9RuAQ z8!Ni7_4{M{*HmuD1V(x-UOU~&bmCK1}B@8TsWFwoyZEria>0Z&_D_4BsIhM=DnHtrQ2Y3);#`<`xY|@gQh2&5 zZlwEfM{*aKVU@w6i*0$Oh4KMoqdoi_mcF~aI8Q1Nai-4iJ8*2YnN`(4%ysFX)3*P5 ze(zs#N%ykY9LA2gPkA+VTf<{2)yf;^Dhty_#QK&ME9@MFJRutZdJc*B_{TAG2LF9&~H~3FpjqE%bKe%hClbwZ^&d1Hx!`TJ^+6K6opW4^&^e>UB z9z82CL)5i|%sU?qGjFNR91(NrZrZo+4gBz@!@llz4Z$i&kZTt2J-hoR0MO{PvGe*) z{Ad71v+UJt*Dc7!+rA*HR>{#0eZ#s8ZFl3;qcb~ipcsnLP#O)RD9U8Sl~PSXR;gOi zV9l6D>g}vJd(GcL^5x*3ryr-b_jIKwi1u%A`C(EwPh3B zd(ZT)j;PAf6rU@;XTuQq@?FD(-v9R3iBzpdI1>=ewZ&&B(W*H#I-kLOVd^Qm9N4g; zbN_8A58e%n?&IOdq0s@L`@xOVg4@jqjsyT5ZVKD=`+|0z-VTk%YA?D7APkfZ(7aqa z6RFBmUr1N%RT;Bw*=>Dz9PHC_&;`6p&A(>#L45vP((u-5Z`>=1p z^YZIwALBSl;7#}jv}(iqBYuzV6-*LT6)1{rdAXUTdacoDz;9npxpnc$@m;sJTv)`i zj(+{dvz)K@UEnb3%f|KX8}5HOxh{)ppEiD9?mI_OK$6r?$F3e+I2rzvS0hFf{>!eo zpFSE^|6gn-U8Sv+YGJlk5kO?hy3kdVwy7aB(W>-6%-I|tmtwX=-}`>7tB*q?ePgib zUv7E(r@33Ro>T&P&(YBz{5%0ckWK@_1!C^4GmowvOOTaWTf&mVYmh=9(%pI9o=SfE z_?!X&Sby~{07$r;8=uZ;5LR=Fq~B~lxAlt&Mdixji#H$oVFp1`9*$y}N;l)Xzqc%z zpwQ?IMtthGyS{sSP`ID7gAM&{tH+06Y%=68-65o#f#vaCe8bIY~iW7>QBI<(dmDdQa=Wr*aJKqc=kl!4Ous=Mm=_r?pNid`(^vevCTYni+D|J7A zvM)5sYu?h~B1wbcdmnu_>h{GH1Vs|>W_BG=8M5#^qvWSW`!EazfYKM#=krFbQOdRF z4%Ny*7uxUuKq=Q2FC#{qu=bWMqWSh zV8>4Yee4(&XgNlTlnGyot-a{ezz zR9ZuJVa1#k`;8`oq^P+o50MmkaQTdj_fruBd4JWRP;aN~!U~FlKabqp_Qe}3U2<&c z3=~C7IFa(a<~)_3Oo?(Q5h< zZr?}?Y2#K=uD*Wd*|gc+TH($q9c6k#nG%5>gmR{|>>L~#-9!>=dkk~r@NkkmnwgTT zRxFF{bN+eymmPX`cJ=@OjmZcAHw&NJbGU(GJM$y7=kQD3bqU1`iFDN~qa z9+&pA)Z6}|$*#QKMnWNC`df_4lN-|tHP_nOe$1mcLG0W}1vC_)voHzNX25<@Si+>y zT*YW>u{CF>7U!fD_Zbnnd+nuTJ8$ZBCRZ=pnrK&2AXCb<0N~&v_6l$WfMdIEMRfEv zZ-{#MI()rus=bp400@E{9J&MmqPhmWyJQFed@^;z^EkMO0YFx!x_jj*0C@U4 zhIg>mf3y1J_3y^_ty#0(qI3=N+;cM#0D6SJ$#94N5m~h(?(ZL_((Cz1Ns_V^^XN1T z05~j0O_P)$DK|%P&uD*@*1%;mNQ&}tv+Wt}fA;260jI7}c>8S9s`)!G8aC(K(SxUV zX%z&fa-?_Rcc~9qS(x z80O=QBFKtem*$V{dOJC%f6SYS6cBPNA4%uXYOaaVUD_D&)=#6H??2{JNy4VA6N>^T z&bs#_3J3t0NWz{e_TyI@B|5_J^RvG{^dHmNuFYSW#~#VjStuib@6MrB&z@6HQ$Ig@ zkM%D1Q+koaUZ{fnfk}DK~@9VCo4xPo)shnTIlxw>(Lh9^9_8 zvj<60s~_9|09!V9$*l`Bg4@OAWdXqMXOHaJ+;h*Bvv(S)K%P3;E&=IuRsEj@c)kJuAQ&n88O>v4Qmr@BRHaw=r5BB6PC`tJ0V zhk1n`_3AXIYjmsJh*yB487#XG3ZLBlM@nlf%9DQm$CRqH)K#AyxOnsd04(1$)5X(* z=5FsKiocd>V=r)WmsFjzely=-X8Ynyxo({dnGlA z*<9x0bu*?%f2r3R8*1a`=h%BpW5nG$lPRsFd|uDWobRswUP<}I`7*`8umHLo>Yxb+Qe6qR2j!f3=5w#HT@%(c1OfM}!9V^7S!8 zV=Xu1%HNFy0RTJ4kB)G00s!9?znK4ZaO#9WJKM&4SdcIMYx`StI?ZUr1p*GMmH5Lb z!?|jORJ)VZpTWd`A@t_eVA10^hekh=nPMPtoFwH&eK!}ctxpnsMUo}$djP7KY}?PnuT-m^7Thk-#@<(GW1`6CO8JG{i~*kh|3>ZpPIlh=dyfY=*l}wpQbh_C zNl|~_Pb^bumY=yoQk2GE{GeyYVx_u7sR95aL4L6Jgoi}5Zo)8|7gX}y16qHd{@mes zl|l;u{YSUANP$#U7y7RsPIey@ZqC4|bm4q?AkHQ z+;DEb4qtDZ(|GCi)#q>6@wu})M>z`lGOg}VLb8vYWa0kP-2=QiwJ8&501*EyZ{xAs zdLy1+DmOcU0bs^=e?QGB+4TANw*D?V&fEt8g<3bfTUd0k`;OE1o11X?ZxoUuKTZ0p zP*sQ6bD}A-WWkq4SA1aJNs9ZtJeR10RR9&Mo(xJ$}WP`*UlFtWq>w2LAFGz zZfoakB=L?;9%KDOdmh@{-NkE9YT~@`SO$h=DWvus-bWFgzQ2D306IH+blAJji6>y9 z*prHq6lv*Co%=TzQ?Hafy;S^kS@_6Wu2+&clpBAeG>rtZyF<`ekLcGhdDsj(K~jUm z0%vxrj0fI)GoHhse{=HknsGzopBJDAGOTTogv$W{6akIFNW(Ay_-))^05F$3H2-DO zX&bKJkMwYkbZ?!Mw*2g}zt>#`02Z4u;oY8%w7hlk$f_<9tY`FV^V;s+JJ_W@tO~^3!85vzncIiOX=3mHyAgfc zf46qey~N=WA@Mo+r7F$GeY;px1Ze=!&foQ~#bb*rRHtsGOc@YmG7(oFW`ue>xjTvh zK(4M%D!6z*E#X;SUa9=`1O{Ke`ZO)QBqZ25Jj`8SNta1}l7IB%Lw`TVKz}EHKL=K; zR)&8+ig+tJic^n93Plk+dqKPQ-W&e7 z`1bp~di4u?`5UJUSAeWVq=#~+B3QHIupX5a%?^!PlX&}?tn5N=h69Ipv*`I?ufWf4 zp1Y8nVaMh!jp+pdW>^IPoT9oqd-nJACrEPe@f~Th@@8F5Wzv6}bWCd06zk+42M-7k zI01mvsQK{z?j(6$B~FxOurbCE*S4>E>ayu{0N5L!6qlA|cK+OdUSReKXO~O2-+54> z*4pv8L)ruafIXjQ&##Ui(wp!@51*WUl9o|c0RW#IKKr^$cE))4I>=tomoIyNC!Ik90KX6y062drz6w^21``1Iyr>r) z-7PSpqb~q#S#=fwZeL2ddOGRLHIsE3!{y@-=?t1V7x2)Q>l5Fz4B;}hZo|d9RbSVg zyZv6jTHJ~zq7qjBY555MN?3gf0-2kSvf}Qi_h|3;Z@u>*mzroA*&{f%f1Bvup-d}+ z>3%qKRi@GYJZ1okM*HIE1q6W$3ubDKCIFz^M2Q1(G(~USU-5bHlo&}!ofB@nm$3fMeQz6atcN>-Kvfy`r57&OY5CKY8%!E@ zJ}pCKFs!+GXMa-ij|2L4@v=Z?(W_r*=k9?`7CE=pIMD8@4c+!AZ+>%6lBuYOc65z# zbi)u-hnqx9mXOJMuT6{&H_=h-L1}@Rl(>$tXfzC|H1!3|i~%mv$qghPEObs)7LULF zXFuoADPEmcK0V{jw;SXdjsS9|FzKQ6`MILUuK`v`iUfdu!G3*$eM6lc^d@}gore>n z!+ZX+dHbD*Wh%|vUD}&5l^`jsMkbNQU>x+v_Gz*0cFq_xc~_37kocjAmUs<`r*G^rxb4}4_uu`(0!LNDN1P=8Jb#A*c&~446^PmjxP8O@9fZ6HFUtXFsfA@KogvD{^;JAd z949CWs-ku7+|B%D&G~`-+Dx0$>0b#g&M#G~VD*l;4q+Y~R2*% zBt6c1u}Dz@0o&8V7624Vom{T!;~W|*P~aXa@aEGw zKcwtD)M0dD z`k9m|A9Cr8R9QI_!`o6X$bS!8yFO?=A=OCiYsCkhNO=1B-)GIA$98Npr%wj}AW3Td`8yA?3MO=J8|-Rt z%jZV>xV80kGMWe@P87_sM#w+*k zWOBHS7w!bSAYVFYXuIh%yVmD7;IbKZVqTf7g%0^LnflLtHx^E7_EPiBls`QJon5@` z+xH1Ir@?Ie>Y&6)H1gfL<>ywsy$KLx{k1Pq46UlR^!e!DCVo69G{*O3#uGu1Zo^wx zp55&4J(HZ~Wh;(wcLsoc_mdLyibI_3>o=wWfPl*y-mR|laAM!ciG3phK+I?VwRkK5 zod2zo-E_xSlU~D=dYJg!@S^UIi?ev?=flkLI6tjEeJ>&V!?}G1^$&mWsFH?TB;0SdUirUxlTN?)7?EV!q_}%SmG2ZpC zk0>$7f(4$z0#A3YgPA{_0xGWbK_fAZBSV8d#G+45Rhs^TgDPLt509TVf9UJ)D`vB0 zI-MC-0bt*xadl2|h>rhr^=o{(3U&PNY(0^yaWh)7{cn?g7feh%;6_@ zktEg0$sGV5mlyxkssFL8lt*Pn%VPWVIJD_tdh)w%IzWw!Q4}?=ZOjOtkaC?Sa?e_% znJzyHs7zI9yVGCSJot0UnL5o*ygh@Xw3)*E}w<7fgP?_p_wjo_9@t2Br2 zCg01*vud*jMK;VCDdfDWfR`)Ro@up)6Q>?sx%TYWpC@{I+u7OijYj-6tbx%nK8}vU z3uhm9?-|S&uwC6HM-SZ}Gp>WQLM;$-XfL>j^g2^Udhvy;OU!RfW_rn-S(~0b&ciUv z5ilN3HZ6u#0626pv0ta4P+uqOf0A-P^WoK}2Ceb_g~!{LAN3A(1AyY^Wn~4j;PyU& zQPpl3ilWL2W&J02rZH%LuR8VUS|xdJ@}2Z2cQaNTSx~d_>y%=Js#K+Mw-GWhn%ToN zIx=+1<^#(|^tBAD|4cc1p^_a9MUaIb^g~g^XvA;aPQQ640|0*h_3XpM+|shjX!V8j z`-w%B86XD^-OtOH0>I|&*RylVKVLMMMr%ocm5|QsXd7zQam<(s0LME2P`~A5&wlj} zPW0$A(W6i6jtN!|FT3{+Uh(bGWnUapDRpB9{{jF!9&5|qcUx$x8t+qv>R=@VbH@bV zw79oJyaGcd4(@!BpGY$K+yR0jd2~jYt)mT#^K<6`U0giP%@`ghb?5YMn;4jOH7#_ z8~NwNVIS^4b@K5uih@5T3=MI10Dy$tf^xOyy>1=CTpVAlFQCxrBix)xioyw!+p2K` zw=O}zxm z@bs_~zoO@;)f(=_X9Ivx$lmhSY0!CsBM#%L^=$6!pWV3)`1Z zreRjCt9q?r-QvB2W^|kM@t{@jZ*vcD`fA6!0I+4*kwa@Q)PYH9iPESy1x9%##HEaz zKVag*K>!ecDOs;I^q<_>)>-tX@aXNGM+7X^H^X|5S^u~0McwQ7dc=6yivKmRs#NK( z-%6{VF`wlr|6d6Xb6d4`%EGxj zSFN4$QYWJHr1J9`R)7E%Z)}14w@PM(RBp^)9677bzsCAkdq=L0e#`tJZd7He!!KP2 zwcv7Y9GlZU7dWv+Z~Tem$rOARb4pA^dTIH<&;WZruR^U&%r9CppvR!FfXp)K*Moar zNz1;Sm3t;RwRfNo0BpV)-zUg-ZugiE_n!iQZ-(?X;5bf@{`L}$!3Y36X6rbCaTBra zmve`kWJlwDXLRme4ZBZ1ceSsI42=(OH#USR~y!6OM~!*uRDz08;j00a7m&3t>y z{)6|%zT$<2BB?#QZ%v%iY4q3*Bt;2@oSf{ko!hRvxQIXhYIxNuXJ*1#xOi~oGs-Fd z^0WPou;VmNb8n4g=9h0fc6av3SZf+zKmK6x`dQn5IQC(`A31!Mv_$dAu+?U3wO-4F zy{pdvz_E>S8Hvx^br1e_&--Z)bH1Ow>GMsqqk4tD!Iyeo&yIb9eQ|>Hkcd`|8EAI1 zy|?R_5hoV*?fmb6)$n}f!U-kRB^B0rD!`vo~i;ZgM3I9uy@;Gneh~JfR?RzsfckUW6Zc0ZCYl(GEs(zsG z>=%YA7ZYtnX#XbungXqS{EckT0_;>0&YdM!P9>C1sV zPA8{6%qzV3;VcQ4^XZXuksdB(YE4$TG`X;3)#!m;{XB7kTz=+CzD)7+r~%1^rQxnl zD=%DU(6F8XJ^;`w$XBM-0f3O*3Qo?%JDF>j9pj5QpZ_wkQ=bs?##L#d{Pe!N_pUyx zC{dazmH?n3qQR7h&!^7si(+VajL(AaN3Z+tcxqB!YEskQS{D!7-ww>JgQ;ezgQ->G z;~@EHP^|@vBq<6g1Q0;rH9S*|#&F=!Jpkz5HLy>w>exdsPrH~7K7VeAqbL|R=2ao< zq5XF+Urb4TR#;N3SiEHD{=IjcoyFzlDgYQixnoVjY$s>YprH{AMy0(Wk?@9&h~#h> zJGNe*I-|?0fK>q4e*9jKXg?oU+a_D~86W!~E+ye|%I_CH`)kR5X^Eny-cYk;m!Xk5 zwc)QX_OCp?aJa_@u>-=*&O)79uc**09QgAW+vkYwT9dvbB|dw@(!+MnVq0gCtGB(I zpMz(Bv%tneF|X6S*s88i+D_ipIw8IV@kcD6(cFC zeRKqQ;K+RdXxG+b@xp<08WtAfn)o;`@p0bVw|kBm*&YB69gSBib?$DG1VPft#ONMvr67bJl`U#3MlRp5!$Q^qS1Xwg0f*=MQ5BT{vK7#=W@L$*^ zeKu|b07DJ-D4Zng4|h*{q=7tY75zc3c;G4XnY z-Uj|vvijLs4Q}XtaYg-qp$I}pFdB-nF?z7j<>TN1?p(>M>xqw@&GE#i`{N(a=@Jb9 z3>t=^$h6pYZQY6<7Zj%!mwnKqd)d)Lu^A$|ix{r&7E zY&v~!d{T(BLq~7-dpY?4AmMRdvR5}RJju%}{d(=xI`m2Q&Z6lb_4D+1T=DT<^AWKv zUu0=z(d&!|f>dSN^d86!2#XZ^;wq~yGL@AYxP0_?Ts1A5MOpZ|@-J-M7-&^DrT2=l1L7&p#|XR?DyOyh1M1*xB<33~Ku- zVAX^Z%l9qzIZ+id;>EJv0lffnVC-XB(J{h)Jr`7|&!9ULP#oTkdZjS$`@>!G>%Jf>JgR2eWJo^@sCU5(|p`>?EVwhKvjksiQBG6xIIc zbqox167v1*B>jT?hK2>T%6vL?HnF5s864=m?5h!Gwn-l^`=sQ20NAzn_L!0FWpeGl zL-$;q#jAc8Cls&&z|p>XTE|^`)&f|iC?ihfW2ha9zQPg$I-`k!VKy9gu)Y0n!v>nO z8)qIkaxE)|AW0gAcJuc7qE|P54Ugac#N_WTUvcE|!kio}vT!W?Y%l<{iEyXU(5MbR zh51rz{Jj*Og3#N&z|?)Da#^LB%It{=zX#M7{%yj>7#M=uvG@Q$QIyoE5ivLbATwy$ zG`fi-bc9iZ8?Ke6>Imb;n3=D%Gt19h5p&rRE=R;+<;xWF_nqW28Cs+1?|X>`oai0o z+r!^GE-j0OqI3*f)VGVbtxbDRSF;6n{Jp6=?>;=0oci0?!ST-vw%>jL03lBHFWIF| zeL|p5NJIbaJ}CU}KQF7~+K_f06W;BKT3Ra~-_L$$Nv$LqE}zwHV0gEI;q|?jCL@mH zB#sjVL81sEw1m_D1R+VvVtu;wjFNo^?s<6Fu3RyWUC(xRb{4-kr{`~fT)1^Rzi_jeYZMS&Lqo;@pZ8+pc#R91+&i zz~csCwLq>+Dkuhk^skOk@LHEtZ4zTXf!>JKbOj%OXa-+d}>&+`l}f^ zLqc0Z8mv|uw(hza8R5D7>ygz|d@trIpU(n-6{}A>JBfe%cC?L{3jhWqex(M7vX6I5 z79fHwFDUK=00_dsP+JVM$549=v%@e440FOT2O8!~!<wG z{RhqVEFfG`{VS>Y3jh#WAj$`uy`R-U~h|99CNAfKh*`IvApFzj^_6a?IAsNSsGv^+kIrrGfNwi}57&q5u@GU5{ zdTTN4Y2n`8x88oQ*M@bMzFT@^#p;PK%y&pjExLCnW5J?x}4vBVqsgztwe+I~MLN)^^Jw+5D ztidQ}48rL60x)n=yBjoH0ckGHG6fU~KmZ_^a0S9{I+c*3OaK&uw9X1FH)%Va`wm{P zH}}5ylMRzwsFnZtEVdB9tjV!7cV(rFq&jCEdbEzm^o^RqNud=Vv?ln zZ24Wg1YEz7Mp2ZLlW5KANfJr(Li|d~8!H7`TA~Di@-o%Kgq*}j&wu%2Dxc4~ayca_ zF_$37D(`FZ<2+Y4$%BL(^D?;l_ohP^UF?Oe0;?vR*mWv?$y?3K!7DA0I=D-=e0zk$ zXLqdaqYmldo10ox{JiYpm8YAQ9(wP`@r|FV=g9UVTmBc5|D;HYqNpeLvYy<_Ij{J}Tz=x^VOKwJw`aGYuAKsCG&H|JcHwdghs}8J!<|{#rS-$_uUvoD zw^vA2WK%O>73BgT&{TCfiqf0#3=^KAtL3ioWHUQ)*aKLsZVfGJ%Pz)U&C01`=V**3 z6F~rgneuncuDw-`DW##hJ}@1_xD0yL_%FM7<@k)rE#G3IG?XzO04URAK!upijyl_@ z6rKr`4gi2^aZwCLyRunb8T62s**wD#luu`&fB=H1O?ox1 zuP~@7p!Vk6-3xcw7-OV+)Lj2w%{pg={L?B-1pu5VQYe2@s@Cy1V}*hbY0WJ2F4b$b zxXF>rH`kzD_2^o67oSKw7m}hzp4mCnEBKosy_$R12IE76F%bY{${#hl6Sm^j4934~ zU;On+z4tpYwV-ASrc$ZfzU$^&GrI)`Ipa7%qhU91rGK&XFaV4m88!Ev%BM4K(x0Ve z%Cd6RoKF73heZ7G=cRYw?$IQsn(9^AO3o-GDavB_)#Zy%e)|6SXI1gQFC%!ab%V~MD7{X9 zRj0oyQvilaSgbA_Rv$L27m7AJ48)l&-ruFNI+fY?O93_e_LeWgh8E~#sfywoWohGY ztXtcDsvFlTPn}kGR;RyW(a2V5cB{1q_}u9t!AB@+_0vI+3Fr412>jg8S*1Glg}n4N zNw*fZ?TRAEqw>NOSxE;6w-B4=)uLCaw^n^Nnw}Jv4ixg=5eYs&~plXU%9*;Hez1}a>Wz6glHh&EYbgsEH0RWRp>(w(D05<<+)mFW+UL==7t-qU; z6B};942X{L88A3v`mAmMaQ1ZKzQ1pm6f3G|C`4lJo`dts%9PpJWxubR&ScUSd@^Xn z==PT`B&R+rDk_vKY&E1nC*%jM30egCo3x zT?S0;0szYo&R_NZ_QikAs=`!RsnS2fGj?EG0QhA6OaL$%Oq;(s96KO9uu)4XG{(0k ztO7u3f$ZR)mu7xG^o>k23$Us&8h?qqY5qJRGW@FnJ>qi<-u?4fpo86z(7@gSJ`Gu) z33&xePF$!ScK~-AQG9MesY+dwNxTs;W2#1LxNte8pirhzXqikpkIUroSkY15y}AdX zDEiI!$Eu#|Pv4Dg#dI1JVG%8Y)f%QuVVQI;ib~k5ZcSNfV{Qpp3U`e>ah;A1TvAOt{j#AxaVXt#B36D!v5-<<%aR3XS%t zMtc+i8j~5#VfSOR`p{|C`W|qya@is&(##}aX1uax^1XO=o$dT*`F4G(C|sX@d46DD zdzPR{2enM`ZKDm0O7#Y{cE3olNWhy0(6lCJ!(>knjNJV6{=JgCF3w&Q1q=+E*QO%? z{QU5$D_7WDOeIN~Mt8i<=L>UA2F zz3|ie`&GOBl`0(oFq_HIVKP~8|Li`MU=db%Jl6aL{mq~I4-D@=FdP6V3d~Vp7>3g6 zn4O)VCYPa?w|zrlO7*SP7LQ@Dw_~5!fLF6euHMbf2LK6&<0cZGNJ-@~=^_?O$YRYu zc1mNc+$vtuvs?Xwajjvk);p*_N8mY_cr##*K*|A?07AD0C+fM_NT5idv`C{{k2Q2J z8iFt>%24k_xZZF}Z@2~UHG>|)<&5BRhSRVnc$d051dtSoA}E3&8#>G|AN(wIFrQxi zM1q9Q%fd%qDS6h@F}Nu!aEr+b!<{7MQuz|K=5L931(VSjda zJ><~nQiIl4SRHg-uGj8OPfV4UEs5$$L#*05QEC3JKY9RQ!n2CYMhbYd#lp}3pP8)+ zLn@EqfwkzS43>Z`IisiwR_jY+)xX(4jKfzM;p>Ca{I*0okq?)#+vG-ZebN>dBT@Ki!N z9<|wl@;^rTAGhv2E0wER44S|aaVv`O2}{6G)3Iq(Jdr7uGZ|4l&PXn2SVJ*lRkc(R zKRl0S5>rW1E?5213^T~|q^NWVpF2e?{Gy>8t!M|gx33)D`ZWH^h&f85 z;hC&Vs@HxWQ)!Xdvw5XD^{2Pb0Dzy+cA|e-bq+G z(Ap>rlZhZHirFyhw^UY*1VT%dgQPOe?tOOvfF!9cJFaJDmwxfd5G$3tmsIKzgeew& zA>hq!vL%~NpA=C`DUs{+%Pz(pOL{uHU*L7A#!(rzRBm>n^&gC~><1>Tsfk1xjQ0)3`%=Z%9QI&7cQT6^`|4f{x$+m1 zR5aIES7~-=_2+HHKeJiAEj)J`JxFX%Qsmj(RA;VW`?G|D{ij6ORr*x+^_%oVLfm-2 za5uitM_`p2s?}e@o7%%R;h9CHLxueJM1n;KLWh5$h?yY*hHtjwz?FijIH~2)-8(w{ z&ZAdOQGzl8fCDE+rhoE8`UgoF)8#t}%3#NCuQFyAsxQ@qRk^C#g6SFU|H+JA^|Nbg z%H=E15N{yf>bGUDnjA#>Ff6>n@mtIWG{B@MI6t6P5X7a3!R#t~dO3v@ze?{YMu3k@d zbFrB{y{k1RM39yYCP5x??FSNA0*?-)1Ip4Vcf<_5*6y z_~~$heCPK=#Zr}2rCoFEhPRXC)ZM4=435P~!bKw7@Zso(83n%{xqj!@d1IIF_;Kby zK8Iy6;Y>QMp6%GYJEAC~MtfMJJxr&0^EhKsto3QuDaxeMY;DxZl*(rr;jZS~j z*5-ExJrw?JqBcE$t~{2lI&9C5b>a0&uK4Y0!K}{Ce+n6X08pm8OH%m5vgK~P0b*u| z!k7*KMVhz@{UZS2&};1kNtIdv;B#3YPwUyQV-tz>a)ox|ma7N?^XK)of8qHgN$TR| z6!YiirpQ+)Gyvf5VK;9=xAvj#Z*WKv1RN!Tykc3+gKm!Em^PlB+ImF>xwXvCygBpA z-SUjD+l+Ey*L^GXglSjKjcAEasL<773dynjgjG*Zb+YrH?bE}D-@FI|TPM+k`ThR> z^=#FV4t+w0&+7i>oxptqeXC%#N-zWob$00J<Y$G{?yady^kJ0Ev=-S_7ICEM}$v|Xv3t@KJ3!*a%R?wxa*k}m8x+@dBx9H zZ~i=}x>`=YYQGC_6jCF*REHNNmdp#W`<~CJTr!H)Cq=9%CT4f}d8CBhv8}_px-S@` zJ!Z3qGF&2+KTt#t08m68A)ATW>~EaXfrglSSu*91|4bxMX?E)kx9ubw8T4A- zW-gtv?O6gzQr-farO|yZ=V$l`B>^Hk0QltA>1?I!huHphY^w-~^oF~7!`TZ+=Jr4l3;_H@(`{H`7jj3`wHM`@*l@2Uv->pZcaYw`ScehN552=|7-z&}$~Cw(JL%@bijg z5+OGt$hCcldxtQO`kvu3gK|gK^#~i!PPYC`tO-{~xk0rh^NOA@O}z2P_ie{^va6LH zjsX0bcJWWRD5P_oITlpmOjU`I#LpK!zF3_6u3zt&KFtHgDIX8)G$1_bcDh!r_iyVF z)jjA9j%_uN^bYV@cfIm0wdeD?_;_^l^@{a!ugUsb70_$LVfPL4U3s~>-u0oxCo^NJ z<2Cd+zUtDAs~OngdqP)4hj}SEQ>;&9|+mk9TKJkFU;Ms;alD(AV0V zNv&93s5*=y44M8u0Ek)b0YGJZnycIyV!OQRwr=GQjCDOmQU-d%c_0Y07iQauRIeg6 z+W|<*^psF6!bE>GelIHzURCJ~ThHGQaI$z9=H--8SV2+LIUu6HyR}pm3e~SIu)^ia6*~PTJDWdfw3mHll*Tj+;c)2A2w0A;N|SHO zRP3Uod;!DXh86C@?OO*s^>}Hy?q0d>-c#ux_MDEMf-#Pqt~Grsg__HmiaiuiT2qmU z)R;)kndkjQ%pe-dDb&PKfafR=`-!GfKmtIy{(+%FMgmSl*&>F&k&wSw&#Pt5m`+2w zHEpjyO3eLr&H0G79?QNSX=B3$0B2{>TQj>c=(KG+D;K@k4nEByR04n|?c>)eZ;$S{ zXhtvhM)`s5m;ztE>Tt^{ zR92X@=VCss3Vo=OHL2&eWnHWE-`cf=)ZIJ8#XH31l@6LtZD8}7c4}5Hh5q)oG!z}x zHe_@}XqdBO9c_vr$vJzE`PxawwhJ@h_`97u2v{su4fAxxg=_0?+_UF#0Rg=UFIK9n zQp7$!a^}Zj{dxzyY&n#>@tMUhsviXUJGnTEyLApYar)7cZw`O^#qbtTK-68|Ul~0O zK~aa2o;)or%a+P;l5`OYB3ztDga-RaZ2W8`w1zXC85s8Cz`h}l_P^h_BjIuucCAZA z7Gn23m+pNle=vvc?kX6M0wbY#hJaCRAqiP+ZP>BqLYf@92LLDyk9Byy19w2Z`)8s2 zB?z+*A)g0i1*JbrYSyFNcN)2`w+3{0kWrABSs0&|ck*sZ9UX|vV)Ty+FuRK%WE6HSf4{>5RpZ-FKxu6f!H_05k;sG_w1&i~Dhk^x%t@wzsxG zuhI0_VnVGoVlc)Rmh`p}f6wELd6~O25VC~QIXI~kG6QYd?cI0-dGuQEpucFgBd7cA zqIZilmx?r(Ql!862qy>I%&&rBxv|o{K>=B!y-}jQ!Do2KI~P2Q=I_-6RGkRj=Np_VSs2h9TOy${saIbW~~Lf zNlaC#^k>c`AtWL*0Mn$ zT|tmKJziiU74p&tHS=x>O8206mRVPLT($@Riqt16bT@T)fgUdmw$-}uEd>xUqG^(& zg!~=K^n_IXf-s`182Rfp(u(3xY-Yi4qo>6rE0H(t*~#TKbt{6n~?g!@Xkx8 z^pyy>4LAw@e_E?mi=kBhC5no9oKa>k4oOjEy6QZ!0<|JbDHSnUWjf8^Q`^S)ghkrB z1d8ohSYt|_T>0xuy-k$5T>61tf7M33qW%W3m14*4(8YQC)q;sq{UfRVQJQR%r(jf= zWHDO9>my+JMmhX=qi_}gP!y3N-;N>dKyjt6CO4$iUTyjAykRu7u6s7A;wOzMKTCPQ zK*#{#M$vmJV~&xOcX!z?W`+QOkm>Kl?d~U<@=W@d7k`93rz1(>Z6u5Cl`PIu9B|-t zYRI0hFMK|$kt(XLF5=V2K6<6o<+G#}07$qfsJ%^iluZ~7sh$Rt?#$<6Y+I(-mE%0w zV}y|2?9klZxkvAmKj>~BJJ6|z1IyZIDR+*fNGGR&k{LC$8gJ{#f`>1r6XnL0U{-s! zC*N9E|6r;9rN|UjaxIO9Sz}7JObW6}cdt4_;N;OwR~}tY{bJK>7caY}VHHCV3_4n7Si~qgD>mvS?`r$*n`s%93Sn5;OQX#-?3J!L@NJ`!|IKq!i2JX0LW8UI$h4^rG0t#{EChPhI$6CcyMLQ)BDTf zFJTC>veV!Z-VIipF`3e|x-&1|E4B8J!T88tvV~6fZ`m2Rbay||%oOSGW(6Wgc@O{z zx2=`qFJVQpX^uL)*!(p^zST!KiH`CCK&F3O)r>{6@8tAX9eWo5G8DV@xD)`Q?3X=P z9Z#38z0N`5L-D_ocV7vVLi?4LE z>oCbWYz`1O->t}W;n+k=d}^A`X9^yfKTq}UGRdIO12M z!PIj^)VO(ltziRhu54Rz5`V!xnUh*Hf8feb*G-G+5!?i#< z6MD35>*HJ`Rn~`91Zkl*!)EoevswG9xekg-2O3Q&FL@G@RGIJ`CL>(TjwQP zjp=smXg=MmSX*68hLOCxL_Q z9yY7{>rq`^UiA?P7BU&(0MOpvHF?5E@um5PvK~+HZ|lUVwWtN#IBf4Vwh16KrKzwqlvFWPp7p^93y4P5wRTcg7CDof~ z!(IAK@)&OA4jLOnmOq8CXDhU=g5i3Mltq777X>k|1qF8}qC{M_y z*CsYNx9?7RQgzt?94Ah0zaDoae$LX7ea3cZ*;t+3Q;Xp>?r=O+udWM8kbiu>-(|}Ck)sY}ayQ6PSuGBI0hEkRK<(ZXk-_2aJ{$gQ~8~}m?oo7w!5*guX zvE}@^eVm;{8@61nStEkYX3U@4r&ssj|Hsynt6PiW`3iHX_q8No8$z4~qPRr^TF z=q-9jW6VMjRAb6vVz!7iDHaGF6aPU}j3re+U^aVN&^;7ESd6CTSc~>nUl*pnl%S}X z#~Cf)y+xzd%EXAWca5@dVQD{^;=Aff39V*tnaZULTpX{p;1xgsWzp=bj8OzoF3qJL zI{H@C+w>HS=FvR?pj>wk08oSx?eHs~?p3afw_$~&mZI^+%-}B0fAJY!6i`e|;>zob z0BXak3|2^$Z7I>+s%p%qdlqT0mFeRFz#I&0!)n8!H6sKjIX*i-yF9Xszn!D-_N5fR z5ElSQxRG9zSJA#}fP;(JY#~(@KS41BL4eC=;U;3i#Pt*3>lxFdh1nhPvP!Rb5Bpd< zrcEn8;(O9Z`P$0N`1Us86Fr7CiGpgAflp^?3FCqXyW~b~FUOFNg9e+Kw6ByreX6K@ zq-m<62hyB9Ik$$nMn*{*8PdXn1s>1Zg5p(ycUV|Dr9>M}LopTBZ8CH=d> zeFlfNBu?6d6W4F1?b&}fJ+s7C!XGiTUBBL;f&NXr7-L4ZZxiaaV)f~)oHDa5_5IRO z5#jF5TOwXgCbs+1$G5=)UML~)y{DfhO%;%J8QNm*Ivz2?rG<^nSt4A zAd5|ND^ML2u_CP=5*{YrgjbBB4A&55SNKn?6AZPnwfUXJ?Ap3nTYAH7t^UHR=&%XT zAW6A3m4hvK4mh22l$Gn9w{Q{-OrTAN0cMYChk>;RyRWMLc0LI7~(Rj)Py;+X;B znXNb!DGzhE|9;^}{L(sDyLZEt6G_X=U+-Rh_S2$$d=baNMVymXY%t)TOxu{BRp#tr zdus39sLuYh=EqKEsGpbW%gv_hNZ0XsJYBrwi)oD{k+?;!x`#Oa!4jw9ESa1y*NE|~@36mFV z>-SZdg&JRbpWnV%lpH8@?quix*4>Q`Ea7+IV{3xzz$u-MZN6HRTW;qpW-x0ZSAJ%x z1y_d+*UitNWg|BG3+qgI1jKfHJ7 z0aoQw^~%HZojq+oo3O4hyX^GtTdv;r6iJ~dLJ}m76H2M(#_2?}69dPI_$yD#i{whF z#>Tz{?9~(ik||r8E#Fx4C><5CXpR7Yld5vx_Ar5N7?^a^ZhcB$_jmasAQotw~vWbWh?dpfSxE%uJ}1iu{+Fmu_LG3 zn|*?H7H&Wgcu^`20AhLsZ9cnjYR{h*{W#{p=4*wy6)U#Qp4|OM1VuhyJ%QGue1zNO z3FZ&sq97j4+I_(+O|Cb$iG}V=(UoF-835QYM4tuCWnoMJI9hNHr-;E$z06ycb z*skt=@Br5j>Ky4hBx2z&lNqcQDzz=MahrzKxDRI41+8Vj)Kke(s9nEMs?~j7qc+^1 zH|{F+`mY99+eK$5kvVh5dQlj2IW$`eh(hgs4_f=Q~}%dXbTGqF*3 z0^gB0sP^;Xba%hif)F8u5sNVHP^JfsB-{KauUa(PqXy%nRziI~ixEqw`(vmC#cb&` zUnZk%%T05H6)1kU-r~Rn0E!}tHCKu?S1h|*D^?~~tgLfTix=K4p5NB)D-Zt2H!{v- zQ>hJR5!vu4ib}YVZvL8ZBR#5%|D?ISHvN3&ozDl;8O?jka0*=;ukiw9h+9|q6m7iQ@bVe%97A(!_gH++T1lhqR|uI6rtv%~ z`?f;=u}Z)cR`%iu-OuTE?H_Whj%K@tRc z`|?w1nbKgu*Z*+R#*V*a_LltYa)KZ~T-H3D;Bv_=sZm~SY}s`nC<1FV?7%=6{(gQG z04|o?Fp{SC{ifB2Mhd8PnL9POj)BrY4SLU$TM0{h^G;|99RMgys=qRK-`PXUN_sW`AOL*=eLv{d z(a&D;s#hDi@p+`=o%r%U+DhIk(A@Uo_c@dQ?f}<6Uq7-EILYC&V)}+62-3c1aMvLb zb9z;;g8^+le8b#!tvVCf&U4w@TX;f_P{O-)?y;MX{lpLZ{TrqVhO$Su;AbZuKl7A` z!<;KOIaXe}F}iJtr$h|@W1`UMg=`i86v&n5Q!{d9@~`_h!_lPDY;CewP1A2X=3*z= z^fHENeMyzAPm^zQAFaQ`3 z{CU4oQ4`+jk$5-j(d~@1V&1i&b|6OHtlkk88v^Tp8q9sa*VB?W%HfE@#5KKtIHTD z&5dJW<Gj9;Oy8aZ(ExhlZL`x4YhQcKE*_;?b&UNq`Fv_AY^!=2u*3seIwSYyh6q1 zGS_{1C^*vdi^=QV{T&IMtP0DH>=vk$R@(6higfH37SSc(&V}Ucr-lDt>?tEyDp>0( z7QVap*o_61S?wylfutz-Uy@aEH>X8Me0l2PmGrDL?@sr$5e*9q>bGv2^{`41Wpd@J zm+S_U(ca#6D~7(5rb|*Lg3{Aau9;&&ZOTrSZ=@(9S9P>NeJ;r6J#XQpe+d18$wU}& zg3E4p5#`M*&wRAJE&&;XN!z>ON^yZ~@z3J`z>KMvjy){OtMK%9#7($=nCtwp>*jnm zC?eLkxmP?_e68Fd?Pwc$>&5n}J=1n`^iQo(Y$PV#B2%`tDGjb-yD~OdPZ+b+WdM+=E}ea6!`?0*a4^Qd@s)27RtNmK zy;&zZnv^o9bM)l)ZS8n<-9dX3lIqkvZ!Ia-CQuZ~rb&DR1LVf+NZYyDstZn>D1tIz z2=g@$W%kp;o+F~t5_5k(_`w%b*5_xH4wx8g?_$|3yLl$*Nqn}nL}BOrkFwi{7S}c* zRo|feB~Z_`80={Gez%yk(sCnC0Dx4h-G29B-yq*k-X8EjAUYGyXEHY5j*oP6{-{T% z_YWLr&}bw@_4N0){v=Yx*ChE;)NWkPNL%qQ2=ela6nQ0ooE9&%WOC_}D^^MMN$nke ze&fS_Eg|#!&F57b!_OZL>)5v0Y~l62spf1{4!3$$d2}c9>Y1cp_r3SWH%AL|E4uUx zdwf6p^I2P5JZ%S#jUG9@vz6B>)RpYXJ@&TGL=TQ@6|4dP4S6Y7VzIvLm()#8Ec?%b z=GNpX+?RXuxwbMlW|ZpyD=`%SXed?(Q;B-|u@}#7UO->VcAB~}Shs_%uLG;D*<+D+ z>EA02KDpE{>r!9V4_T@yTPKYSakA{Ud0JfhD!NWmCLclnhZP(2gxr-AOOS@R!cXm3 zA-$YeqR1PdAyibTdkl}fclpVU(}}Wj6`hVn_YA&%>QU7@S;Me{@$>rh92s?d+x0u= zA2+=;>#s`XpJA9Yk28|X8TpEMg(&?wLa~@;7Y8kh2&ITJLN*5zt$`YKa_;8j{doSG z&SV-K8o2Gw0}qMFhQpcGA)=-;qh+Eu+PZSKznyc(iKAW%HW9^W^;&z-kkAuo1s~`6-h{|91Vfn#bS!VyL^1{m~sayA5b#tr|-a z>oa$~=Q}l4(k@Mv-C8{?&=r6CUb+mUNx?NVQv~V zxPe}-v8$%4}V8< zxgv_9gc2SAFxhmzh*O+badO9vE`!=Oep;jHacRYLiqf0#Y`x*8O!2*d{}!J&tGU&` zn*a|}BBA&QC?iG6kd`G{pdw0l887dNvd1H=J_tPm0NQ)FE*sqY-F?S-Ohz|9ubI0J z4-D~dl@1q|4g0seV<>`bnlOCxorK|=cJG=pMyAu9PD#}mjop2lUhXN%AeDdC;!7h4 zT_Rr1_+p%pp>Df~-)>AO*&5rirOGzuYU#|L^nP1+#7lEY0JNO*ib?d^>1ONzY z@AdF@#>3kgI*kEdFh=S$hA#a=t8`@qMV#C!UF(A<#0;L$48yy3A?DTIK;Se43lcil(-lY)Ngy?f!2!UnvNQk~?iw}9z5P4)wp=Vuu4%Jos7g3A z1`WY51R*HOMB-Y)s5I$RCVf}?0Q9x<-)T%nrO7b)!ru48I>tD<$K_}Ko%X1Uv*-J5 zI-bsXb}%!!mg0*W85nI-kI^C~tCeB3AvuzmLdRb1px~rdYRCw)nR=z@b3fsby1D2~CaYW^s$Wfb3yl~Q z71>L+vY0XdJ41c>UfRlSmueYX8bdRuG4kWqS&g?5h->Y0EnPdc#U1wNx3(osnu_(M zUk1;w14R^2YcjUUj0yml>N#qNbMI7DmfWa_vT4&$yz$DXr!Evd27tjX?UuF~slg2& z#P9g*(ca}WmIv2XKxaF#MXnqh6G=?GxzovHMq(~-4|Do-;ZuXUIQzd%E zo$?GvwrE~JKR%tctK)m$JU*Ntt)AH9Zv1Ys5AXZ;?e6df3X&U1LTS_!B&owqN~2zf zn<$`$dxwxDHPR<+jBlH4rF6>0ePevvbaVFd6WMZUj8|f$&Y2Nm>JLxpcUj z_uiRvcvIHi0Z!cqI`yni3h{B!pu6Q6c1-?~&|wH5JR0lI_A{0~K6Jk5@e@UUIj|3tSrWx5%kx)+85>&4v!MZN8m4WX2G7=ADJYE#hO~T?7X;klCJ-Vgm=peDZWms)w3f57s z%?^;7{ONzkCkEKt@t6z>z<}eWD)rOivQ4+*%|%#$i@Q~aZV5p+2IC`x@sUFHJA$xS z%nmGOHx9dBa~FaszE{nWhwbeui8lVzv z=dVuh(5`>5zn4V3X z5fz>6{5#qCYYF3HS#GMTC{I&SqF0m~R5GJRWzri+(*WnT$eZSApBfMuY438QFy~Be z>Yd`;4vy{!z=4d%Tsq@&e#Vu8tiAmvj`R*unG6kDtMy?uS0+!)FV>k%H?p2rBO(AD z!vH|YW@?O;M(WAr)RW1nD1unT=09)THQ@N-K3!{gsCYG8oqC=As!o4Zruddl^X0Jn zaoGKsj7V#2rhic}#pa4s{v`!XFB1l1LQ&}u9%qzT_yvYFJKGPz+!025%2>(pLTa}I zSx!hNqnybocLt#L^=#WBLa~rCzK9qi@(JTzOtcn3_;sHQfQwKtB0MZJZr72IKPcSC;hczUA(NY0(ijoW>H~mFi7;!|fJa zPQagIBmA<(5#6nJ*Qkhri7$s@iIQ~rHnS4UqkHO!aulJn zX^u9`aA#g`A;Yhk3Mjt#m*Y}}7XFiZlC8;Gm9|mL5PcT(o;#;*pxj8;{%NYL1li*) z+4~>KQ{MNR&ac6n*vZZUse7!gUu=!kRg$78pb!86q<*2Q1ZlROz_-V~)6o7X2V-=w z_3dEm`;Qv5-;-|MEP7t7Rd0EEe_uvou~wxqnWkUb|4F;_$YlYcC zV*7g~d0{q=mSNRI5cLt!O)SclDYjjHkX%$!by=|dFWu?7)Ju{~!tRe^p z0IOe%!-QujR2d4@S`4$}vWIgyBU?9n{of*5{dv9NhSkj}wf3M^cSb1qNWgo$dGzj> z6K3-_r8`cjR{~K)nVH-v9jVz!YPO=Bu_*8TDsZJtj|tgZK-LWdA+>u@&ba!p%3;tK z_3i=yeFA;^1h(dz<79vK^*o4j>3bIa@YYLGVez=Fdl&ZX>?ILDEh&>~b$cHqO=#Cx zu&BwDDpM?PwuXc-CE}H>8=%x;apZO%z`bJre6wh_7OyOy!lK!^^M__CDvLK0ltE!k z4G_->5YK6`io9a$rKi~?{~>7YrI?hN6jw{{9L_)M!FBy4aE_2(>Aj$U!byUp2m(lg zB*wcBO;M)n2>kj{LmW3{~o{{*4&$2Un`;ybl=zeMySi`lG*Ed*f?qp|woC84zy9h}tuP3n%I{Et!2RLYb@NT&g%ws-=l z>wAB-){?n=>1z-Kd07&*HqMR_ZqE5~rBtgUNa~O4cUBJ{&B>x?NJCy7?%(Lzst)z3^YRf}AbB zx;1;h`E#DOaNdKjNs7cN!d%U?wqJoRVcO_)dH~4R7H!WtIM;XD>*=IQrdc}fR}@7G zvr6q;Y)nR+z==^G3~=>xTt4Lww*aTY%#vB(jSK7K|8c+XBYK2<@Z0p4ykcHPNyg*6 z9wVZxY5b_Xa85{vUar0pOGPInOSf*tLLga*2ah4s`NE(uL1xts7TxpJjkxr)u| z%I8k!u=~7m2iL0>wdSD7l-9D}noMcMWg~gq@ixM5nzy^wP&zE7BbCc2{RIk7wT!8# z2<5&9P&;M~p~HUy007^dy__dgggDw8aU!*}%->#eB_sPme&M{XmQ^3Qa)r^PegjBH}R*9G)4B&eQ@O=XK-rhWSJz;n&ezA$f0pM17!h60` zU(co{U(8)~ehGmS1BElzTw7}6D2l(3gwZenD9kFsO$3uozke>NG_Ra1V2fW)xv3~t z>{xl~(e>072R^W-y~3a?)~Yw9+~1T^xj}X~Gr6Oq$LdGd?v+$VZ261q%+@LZ#1&-r zar3JStF~Ou%>{EBy2cm%dwfyP+ysC~Hy2l1p^(91VYC`%6IGy5*t2;|tg%RA1my!! zWWCC3-hZWGPCV{J8s^sO&zK(LIY^+Z`UtkT?|K0%6w9_q2CXiwBy!;&>8O(vq%AKv5i!q0v`VZsRjkSVpl?7Fgi z-r!d~W2y)R8`PLdyv~P4#E0j>!kBu(@Zx<$+&Rtx0-pfBPaxmhz6S3S0B~s>Kb}{L zG93UIDC4yS3Z2>Pp(4%PW7K1AZk#9Mq5-v11E}Jo*%WeWEX5PBFY{1Kt~0RU!u6i7K`yiFOdQVrQm2oq(GM|pE<2Q*>- zS*z8MQp1Hir(^r;nK?K?W>-ifT%9_5d)lzsV#|TgUQ$4HCqTcKE-gzPanH+>nw~{)3TJ zbamMY00z8zGoH_|YNst#wm#VA!^Ybz-*~>DRMG0sPN~*^{`*N&jZLx3_tLWRE4*D_ zZQ&3jX{w=>T2wVEyJVu8hE)tfqr`10jIuCcV1U5KkLSt88dFm`*+!XRb+}94*Y=tW znBHyBtR86(vOn&-JT)Qfc-f|^e^ptlxQXD4IW2t+smq7%Z~fs!MTtTv;eEenuCu4z zYq+n*U{z1xH;S_fiVPInH}Y1|QIv^cW=viE_-e6M73<(>R@XiGHZKF}|H;dXO0!#U zjJKC;sgt=x>5r4jB`@sNL{k1fW@`=tVjzrIgb@q81(fM2rQ1X5jzaB(2TZ&XVbrTm zUni*?Vf-%-J5}2yjsOe^4R9BWCht5juWQV;%p8@$z-QLY1gnrQ!mW0hFzA7HlFcp1 zOeHDeTG@UP!y!-mbZge)LR~tKCidf3?>0S@o_FVl1PWr4s3j#<0|MlfMqZkSR2^Sy74EjIzt}?ues|nA_b&tCe7lOOHyO-k7LMd9Ir9fMX z)^I7MxI=;B?hXM$65{U3b-yd$j~n88lK}0f-ScX`2@xi+-8}0BkPv$GxArHhN2Ck*Wf= z2x%5cQ!ET0->6x2N&!$bjUq^_BJXl~tbYj$)j$$BidE?HLXiLX66t#)CR0pSZXY}A zT_xg}2(onXPMSz4%?M#OI0F#;3rc^v46IU$?=b7*CAojiW2DS1@xfXxl0U`_VdFRr zFuiRH0O;uLk)>3XfmNkyn?`%8hS%qFM_Nl(Sr$%pJ$D}iWe#?lha-$A<(?N;&`?f{@P z#uptRW(C!xg}J)BRnvOMr{=BOf3qPz+?5A0R~}SA1a|S>>p35FW;1JT2^dX;R&OFH z%34%Scx|B2XJ6}emHmnUva4modg+R)+`LW6Ovnkp9yx8rmV8Rc0TK18*=C7~!~PW~8sn*(fCTL7R9cY(?+H*6~aLQ3^JPzanmEps)giHBVP+#l1jZSb!zK>N7iT;qh`qbkPCU>>81lWNU69 zmBXshL@e2St|6Eo3KW{PrMVA_M5{MWS#p5QVpR9tX@Vq81f@5c)LNrPXP~IURdzco z!FSVpwFq{5`@Qj@^tv_Et`R?|=BI>9Q$r;#SOb&srp9E(g(olndm%}XPTuxoygxVT zP3;G_7&xPQNPE9EQ@2Ili~Zr)e6E1QQd9-?l=8FWMcbeLIJ|k6z_o)_%$@nC$Fu2SaUW!|hUVh>B3|$AFeyb)bnv zO1lpL5LRbQya5mjs~yX|+yjy^@;~C_JImj~k=M;fJh=qcJ}L22=jxp+lqy&EfY0!#?0`*&?j)uc zG{je1x#O}zt*`9Y+OqbSRcNHDFMm6=f7QoMw)LE@b2M#-zpyciU^-HBJ@?Fb_t_3? z7aC}qrT{=mC=R7=>ux{Ti|4N}$sS6tcefjiqowqN-3j-vXP2_kqvToRy<5-r@6w>d z#Ldsi&Ckr#&)E8~Y)avmJBmYSf4ll!g;!9@G~2(gs=m|Ush#_cZ~vBue<@hKkoJ0i z{4+CChJhqr6lAh6eEaMB+h5<$(W#SFQUGXf>)OiB?Qve}i-OENz52I^TY(aLGx`dc z>`jq(KK5z8Ftl^v(KP_DyYrYTgMsV1wkqUL6A9|C*Mo`65K-ak)T zW>7s|jiMB4%^{KCGujl6V6F)NGnCm5Fx$$q9Vqn%01{z!!z7!`9}DGwjxa(<`D~!| zlK?2QV+3UG!67e z9^b18`IflPCU~y+;Zy_94@Lj#i0mR(LTh#tKEtz;mt{iVJXezPFhv`c##pKTr4_p@X~whYv?G_EHN*!y zdn@uzcw&S037x^TZr{z-^9I)MWgkedb+YYi$94jM{VAKwE7>N>n5Ioc5ae$DWlx@O zfG{js8>c6AzJd?~r7r`kA9=N!;9YOENoX2gC+FM^Pt43!_^s8B)J*`~Jm<-xnSjJhk(v&w8MhRFNq)><7394R9}< z$4{ladVc?OU)O-2TMqz$RnM>e@%lk4JGTQ}KPo!D*@@qZ{KNA@J0+?L*1ottu2It} zEa1}CYMmws7PE<1^c9Nm>g|Qqp*;w~!B8uB?*%n4h$3vv<_uK%>S!X4)}KX~?J@Dj zlKli>b-}Fmkg{n&DJa$Vm}J+R6N=S*1g%xfq$SpB9m{&xMo3F17Xwm*y1!DzQo|eO z$jSu6Y;7dJaoFAJ<$1J(5&`63%8vwPBxz!I(l_Og2@-VxfG|mS^LDy6M#QkeN(>MN z%5P%3>|u5(r4~b2E$x5C(c*p;Bily5aq^cmVaq5S>FTr2{5~{IWNUB6$o??ze4MkO zz0;p>@>~G`j3#2mj>`=}o}W{o`fcBhx6qkxK8=q`%ntN&Xt-N25GDXHQIRIRkeksiafF91JXd(`E`-p|%Uq3oqs5IrIO!RHxA+R!##S`V6dna|IXQ@!%!=s;8P)g2J#+fap+70h9YK;^{QN6B>5mUy_K6wwMW)nn2Z4Pnj9wH0@bM_ zlx8b}dts6d<+Tlj(G-*HA*Ew!!yVdi3t@Ex0H90ISYl4Kf*%W>B{kFUeOF;)x#!|9{rqVN{v}X)@o4-4T@j@kY`AwOJ%&7Eciw>We9=LI<4-zmGk)LvdHc#3e5k zp0_MKZ&{gk>dCzO*`IZHJzcbC&p(gTbL0*2tyb)~q}CeVPQTdu&*PPI2Gs90#Zc`&zl^b+- zvXdORg4TBK0H8J*p5VuzLT8dDiXO%#0}9N4!eu3)uzJO(Q4V3$ZXnh6SF=6h@cX~J_wU+A!So2)hdkD z9ss3@b>!_Jczx;5^zk`#AbT;$5F;G2e6f0?g)Waj&I;rDS9 z3@-X9TXW-C-V*b+J-2-m+wV)BC}9QH=wT>bk@H!l(eFR|q#?f4-`8F~j7WKF9pmQH z_*|*V&Z^$vt({HJKv7dM!x{hvJAW)@6uQk`$RCCXo8Qa7Z1(Nr2o3;TjMoqkb>%_K zPk&s}8LD5l-t^Q{vOR2gL6T4;Tz@sl-WvkSCMh^pkPfnbU$j&K=sS3S*&CNUAeY{N+`PbuT z>+e3GX!`j0(T!~CGx40s2o?($a5=qe0d=|~m~bhARTZ^}Fxz6HpGo-~T7L;)_ohwH zi+eS@Pi^2w^B;xPs-l*Rrq{UzQ>s{3X0zJaSgpgc+Hs3(w5Rf#4%*wKBaFo~7?x(w%Q@IS6#x{%J zSW8rbVsBKzIvOYxVfssEG!joLL!-}UxI6KBWNI!~<>Etm&FxneE$D{7&Zx<(UF)Hm zr(A#F=G*KT6h&XS8~yQsmi2W(SB}@OvEP2)Xj!T@K})C!+Qa~+fzk&Go0$0y_oZw! zJ02S7iO$`L`f=NZnmgxHGNns5pZoQTAt+K;4=sWspZ+lXi(#b_lRjF|r)9UG{46Z!K@z)+Oy^?O_hB}S)S_4;pH`oq}$P~Iy_vmIk~ zE{ZNj*u4?F771_^{U5bfp;A~S$?V+xag{9(BM4U_S|sF8seN^NTA|tq06N31%$zP_ z!91a0rezBy2!b+e7S3(WZW?0qwKcn`c}Z1ajETr!Q=or}AuJbuKOgaA9>b-=6PwyC z=gC}CRL6~ES*9cgDsbd=^^?rt;>D{8K5n)chLR*zpWldv<$qk%>ECwH+?5A0HH1}) zqW7PDl9nT%F`{jSnXh?sC_lpX*+YqSIa zvh=BIUVmBd&vN5Q{POJ=YrEk6;AQghD=$X$2&;Pof?Iia=-=e_nZn4p7F`3!%;^OH zH%>nN^QTjmU9*qN=QTfAqtbmhe#_=dUt2qfs)E&)wr(wL-2fn0ryh2Bm)xKOfMJ(+ zb#nCnJh(%sm1C`%NYXThAn^Yrv)i>Ex$kh8lcQ9t3w5;rYvfR~wOX>;Pli&tad3aR zPCxp`vC=H8^fbcB58*#b}Ct0~iLGa+OAR%3AVkLzlJj z6pjR-3-nKu6o<34H*DC=!fcl~@p>}Qs`P9OVFg-!9%%Ksp3FCp1tg`TfkY7&8?)iy z_T^OyM_b`HQ+ux3dAS}*fd9Vw;%QXc+wU8(DS6rXN(UQZbs8uA&4x2K9>)Q|tN6^F zKa4BGN0DpDj8{i}?(;nxE9`8&9fq%q`%Xt{__z=NNSc%|Z2&+`D9>abY{akU^v&c< z>9Wn|D9Vy3vOoX6-@ii;hg}cxG1Ha|esVoZr!m+$OTJkDv6*pt(3DPR_T0`*ms!~h znXHD5!r|~)xf#-GVAU+yTGgEUCs71B(PLtGLB`q_*RN;B-^xnZ&~9iimzoBQ=t*MG z#htxe{N{yrY9MHh%*k~Vi^@~Mm61fLjHDqRBfgg*A4A02?qEq{$FJE0v z%NX$2J`RJCuhBMfDvkgQaj=ic%l{`TMxoQ6e;s>Z>_}f*Yj}r3>i_`Acwp3O>|v;I z37Ovy000qSRy(0~!8H_3>nv!jjpX+VRXC~Q`x*ubvzX2JyirJXY*2FLT7t}|ZS!!< z8OIzdGGU3lg6S0&s6kPYm1rrSH^$-*s8DVwv&U$P&dTjC63h?_zd#Un19cpgF)=~0 zkAd=C1pUHnm*Hsb7+l$y4Z8-6h5*p7Ltv1%!*6@9*UM69u2i+@@a=as+U`A18rr>@ z;)cKNy>a6WL1SWi!JgBPrVlSg8fwRKvSXDB50o%%mIW1;YT#nLC4n0OfR78Od3{yC zk6<(r-)=agH(Ho?E?4SqJc;Ymz8;X?)=4tu+d*5G9{+mtM1i=l`!SgKx7()JIEo~; z!ngc!D~45qq7Ej6?~Z*u*dutVe`_{|H@0>PwQ`(%^RUWf*zx*dNmwOm8USu)C2V+g z#~jW|)4;_U05I{!AvIyh)GGdpeMAAhFtl?+Jj2q<*HUEivy(oG$jMUTHAA&duNY;L+psj214= zdV;u@oJ!Jk|3JT6Ny*VUxu5=hTEgKd_4*|}y0rIje@jTJKS${=0w5@7IKpg-Ssz6h zP2T)wB$eNw+=&RIn&=Wr{W|~vD#j$cY89*m02F26!YZFPsxlifPg0&J`{Km|p)=>pjoI(-F&%($Gs*5Z|QsqCgV+^!^1hg7IGYjqcF ztk$!b%^IQ?37B4CwoBelkM(e}TKCnkTTc_#9k`iMx2WJ>_ukOxjPQ=+(W{iIVfD&` zn4_1%OYS*z;n|qJ%>-N)ydSdh(Cvh@I#FcY2~VsSSOtK7AGdGZ&ez4e)ChW;goRbX zYOYRwJ3BE|Ef1DBoa-}3>;k>%L zXLW{Kdc&jYjv^JxbvoTOTkEYB)V+D%gu%cj4rkr&|x9wMH z^obey-Yzy34GQ}Et>?A+3M}cfw;C2!Ns>a*8pY@Sviq84OR6QMzH)_gQ}gF`T;ki@ zJE*N+<4%D-O+68dqIrhePO*2lb@H}%^0xO3c5B(U314hUK2lj&{ny17U5QIDBiV$* z$E8{=0L(dk_H|x-9lgYHYF$a$zfXH+@13|WObLr^m(NMSr z001$0`58*(w-+wYYTN4bQ)jQmC;rf@TUT!{0O-=ltGkak0L11OtiN;L&(>!DnBieg zj&J9^QQ9Nr!0Js0qBW%QyV@e1g>T8Cg;gGRa23CD*qv%U$EkO5Se+|08HN052IEtM z@fl512!bOB7ez%FYJ+1AIPS${1hQGJFsvHV9GPN;QoX(89yY6kwPYm&ub-MBaz#z+ z-WyF3SvfteB&+z`;qdPlJ1fCYv-=P2miEh@Yc(edz7w7hpPKj18~-XUt3p^keBs&i zn2OgOVpHwGH@U zV%I9Tkgh(At*nK$8^|1Hg&2u5af!XC2pUO(#Hu7_A_y`+LztIUQ~=;I z7`sLey_J+a{rIVM1N*s%gfFtP0bpow;LzYg-~DH&&OA&_|GaIRHtr4XaHjzTEGCc1 z?BwOiW#Thhw?qKG@7eWvW_A~EF949~bk8y}lcn-3m5PPqyGIRc>*4k`H5$6~Ivj#~ zquj~Gh)d?wZp5m8L-0ljtJZjC!P+X9)7M&DRk0TgwZUEU?LoImWaONaR=4cr_|}MS4)3b#zT-VovkE1|xC$ zMubSfo;9jNWw!p#lMm|UUKLgy*tPWVm3_Ba9Hw(4hqi-Se7tl-c5>d=y?+Yr7%+5B zU+=~h7(!&};P6R5j;`XSB3q$dB3w4N9%yf13(Z~SA^XYVFV$#Uy;R$at6}IJG7xT zIr6lglubtkU!uGzwX{}iy0(fS3=XTaKrofV>R9c;7-~mA?O@etiXg~Lyf(Cp<>sRo zIr$^aamZ@T0Ul?dwPdYIvrDf0weZCvJdt3wQ1A(Y)Z=mqEmQntiT_P=*l2uZXT1Z* zJ>cIj7>17S-Lz*L|0SEwJ&8)K`e17@?|o=0gWQa}1`H~=^|a+vbdm=zzbzq0T4z)yS5SUVmsooGaq zt`g|qvQgFdZ8M!xjlWoQ{?iCvGMSKF0={&P|*rZvJK@7Lva66 zUR=}~ll+NEwgLcVa}jrlujkc-qXovH?36@4bE;nfgAwNtH%l zSw`<)^<=67K-ZQ&6~JnVOxE^83Q03MjcDWK?LgD?sm&L^AMp!Glrm5Cnqn6Pi^Jp! zt7kIlKE7}!(W&*D=KKZbTDc_@8asDei=XR1!Yo*lr@la|jn2&@Daw{#tdnlO|1j9W zzL&3$)@WLI_JW@1J}A)t{})wh1H$Tzaz<1IX{_!wQ_Sp8?gUD+t?)c0tS2KfAuBp5r(Uk#v6**;PT&e_&LAk#bxgZ`%Z~%V z!*k&WSDpN5aWTofL0cT&C9xORF_{2Bly(w0dD&b1Xf?7{>GybqP~}*& zSUA4=#;vyQZcQ8=i!e1yrP@Ah5RRh5LW0`5yDd0#e)NGOHxiTnKVcO?#i*d(Xv|RF z3@FY*K~Vn88e*zh_`ESz;vcNUKS)I1iG>S={ONq|2sWz&1NXAH#t|TvoLH+|nv$Z` zoz?2jRSteeseB1Z=G6OlRB3h*MBR-WN~TzmFP&4qj{2_Xr>%}`8h`1?<^( zcaA8ro~kQReBR2jMx(f-P28kwFaT&(rL-Iu-?9#By~dEAA*~;4HBX~yyKy_0$rP}d z_5%KvAp`CBy!YqZ6BOkj;EUL70H7$E&twW&tSi$dnSV`_EAAwxv~+cu*`|=t7)6i` zgZeGKd`)XKwQ_ZZ|4%^#NcHuhNB{u32I@R2MEUb5Z2v`rfX88eGqq>8R(>o0yj;FMs99!? zs%s7&Mblf4lnOy=5#-h?)Wgn--=S%7bVXXW?C^zW@74QB$|#U4b>b2ZRgKPgQ(4-P|1|wK}CF&Z*@ZX_n0Hjm4>!6%(MA3GS^-I0DYl&--55b2GG4;M~pA06--z zE^UcosFQbD+hE!7pTn=d>NK*=)D>gx+-&Lus{$5_2GAId8l$njhkFsG?hk)q&E`v6xqs}+h$EV!3czJw&J&(lWREH~3ckvB6EzirWVa$xg+S2u4J;(l=Tgl$Lf9=Q}=J`uAfg!o2+WLBR3L6TG% zSZ(a*{87KMZ)wB9TSUE95vUh=5tq@aS#d1S#e1*oUPK5%VD3kq`*p0fekrsT@Wni} zTmt|i8-cY`@n}`ai>-V+*NOqppfjQ`DXx+&Fyi{^=*<77rV>aA0LM(yND6Mu{9LMu{cNM`;;nqhokX=DG?`-6>b>>;-qe~SC1JJXoN+rdNv78g^a{ifgrsQ=VO-m; zulc90fB%uFkRk}u$KAr(^6~O*4%}{hX5kF3Cvw8`7BsWlz{Dz5baX^kzV4niyCs)V zSDzDy#hCk1=U(jse%N{;DWjm~C$7JG&)r(Q^4!f!^CqDv%4abxYd}O?=6jO!Q?_BT znI&QM>chI4s$v0W@w8s;n_9?5GH6z>!)s2l`Rp%t&McY9D$AA^Z97&{W;HcB{j=8J z(lsl!lbM*)lTm4wjzMSK`Rzf%NR(XPtsSgZmU?WC64Drr2cN$@^!z1?AY_Raqa|1_ zbSBfc7p^=_&s^QF*Z)@`n}0d3{(GB_W3{UQBj8W8fJB0#)djLIYIzb_Ap3$ObHu_0 zb$LLkVoCX>(7FqU(?d@ZSsImDnU)y}$vR@?d2??4Bh~A&w1ti`6IHg142mF*JPS*6 z=jrYyDfS4MK5t&EQEqtoJnzev4u6>UL>By{HpcT9o+?uuN$E*iYa$gG%1c2HHMU(* zbYfj3z|+1{^F}pvW4Rg<tZ3WCr{WwrpQc`$AFp)r zaYQOXv_q>;nnR)hVCSgVYB+^aAPnlx5 z1;uRuK(73mqzbIXKUo%OtI?g->FX_Il!1FOnPE(ZKbzHt#cWPc)Y6BStymlYxb!Ac zX;;+Kj!vEc@LHB<4ie1OYUbYh$NX!qwyuFTMpEj)>+U0&m8971E*ygbel4xL1FvV% z0e+G>F|ze?!^<$+)ps(6wsSrjFW;^wvYXib!ouEa-KS@%nT=f>F%(f7j0hm7pGTWW z>SAQ4*$P8^oEA^(>F#7z_a;?Hx0IPs z91rLoSZTg#g;Wwnk``NBtFciNPiDD_br^;cZ?wtAorBmsR=vS$l2o?o-owS+JC~dh zoQ0))Zq1yXI1Jp(&|75MUYrCXth+nv|ip4k2_Q>oL`1O z5l7KIJw^h6RIfXoR9L-rMcdv&X5l1qIx&i*X)88oVbj7$&S!aI(qCO4L!8>7Tg?MkovsY}`S_3L$B|iByEyuFlb3wc)hm;?51!k#^mE zdhK;$$vsh7xgWP_@_DzmGz~_AXyxe|k&*LR*EUC=L$FLT!;q$8Ec)O92Sd_i?`OVX=0@2KnHbrh;97SFD zqN44p%sbhG3t4}2ah`}Fv1K{fu^pT_?v891b37Cc6abhgB^$Q`03XRrHfBqK2>=v^ zSNXbojcr#*^-sg|z7R44P=s|gwG&C}q6$_afIi8Yr8XsE2)l*DHZiL~LN~^@X*#i8 z1=aL6Uw;th=GfBHwS$j`T&Eke{ScSQY-DHM%)NF1U!c(3d+}bU`9&w@__)~`jKtIE zTGxALGVmocdUbE@SC8#UiBA9PyTczZ9Z`g-SxLDnX<@WcU>je{E~``P(_;%g-U2H= zPsFJZ&x`$GRl2e(fYm&WX7KIxLJMIF2>uEiNxPL3hodz=hW_o`oUSEH!1vuJJDSuccHrC88t?$IA zY`^(v_q}H%MaeX}-IGUHV5&ZgO0Rnzm(u#B6c!d;S_SNm^qV2FQ7A7LUyct!*+~nl#Fver1f6GR_CUovNytUcw zOp#Q{Oj)jgQ#)9-^@-L=-}c0Nt?om^G)|2nybgWeKDF|$&{<= z{jw&L<#BF0{Y}eioc$*SLD*v9!UEaC53izn>r?qVi`lv+0aG*(`O>*HTrjR2Cv5C( z4^^8!8!OMhn^jDz?93MefK;!2l2Ztf6wq42ShQW+W_a`b8u9!9AjtY#wJGUV`hXCd z9~h|cW_rIy;u#2nKg^mGWc`g5yEyzA$~4t6J&~g$vfTuuGSsK@w70!QQ-sWb zDx!rOPG}n1db_o6OJqD@oD)`2{l9&!eZjTeletJK)n$I zB)mxedCJy|_^dUTzAK5T0C4}z(>K!&(z>sORr8)*EvC5`@>%cfnX#5QoAf+431RZxL3bjHamfs`Kd$clCz5A3&l= z1iaBo)m9S`|KU~Cz-HZ36IfL!H(E^pTR7TrH+!2y4BWHYBY%E&i;dv}y#f!#z5oDw zE?>gpU?|$c-qj4DLMCgRUtx9LKck-H>ok>X17$&1zz|LIo`=6#Xx9_j0KmnaO_T}% z2ue-SCICoQ9>5T`h!xC01q@W+Di|IuU4x^%Jl!1tTB?64H@s})wEvxavICEvUwl<| zt+BP2YoJr@DrvWC;w9j+RP|JLv>_xVO9}vwUe%&-1&Sa)%<5ZTm`a$)gDd|&xax13 zh96FTS%wo|qtHIS_`Cf0cP%{v0LhVQU-eqP z^VP5N(u5&=39r_$`awQOoduJKzR4|^{NY7ZI}7nR)$>xBOtA{puXVW%lM!TZa{$At zpZBk&Cp^qf+tp)4yrRGit89#Mcf_X{f?x=0UT~#oTB?4q&1-kA7hWQG zO<{;c5bRm*e6z`stlY0BvH(DBN=#7fXlnPn`7ot1CQo-S)b=NtKHNx31x!^-hixqE z-S9e%YZW%GRao7x!{@TToYeihO=sU@ozI|D>*G>tQJ!}G$6ZQhyVgY#U#6^?v^nu* z3IHtF@kxtbjmsQxan}vQ8>OV*v~HH&<>{4|xv7OUc{+_~!xeJ4LXNeQq##oU00o({ z@avI6D}FI*GO${&t$vUXQZK^g^kFfZ8;nohOzQzGR%;xy2Vj19IRJnl3=FkmvD)BR zHMQ$$Ao69O)3oITH*8irJL|ttwEDbKmC>*>>dA?IA9;(c^%ef3afG_qqQx%5D0{vrqZnt>Z761sdT_s_KJ_V2}1vyAD}OvvY~+IhLQVL@*}M)qv-sst%S)e_?4xNt&UxjCgd^5V{8A_1W5 zn06m8t)Sf2t|f=1*>V8DaO|6XvtQnd-nwwl#oae1EE_p&Za);OQR-TJc+%aIg&yEO zle-p`S#=9^iFuL$0B-)yfvtUy{(7e96szir2&;bUXcnp? zl=5FaU$9xN9c+)YS#AH-PeBmLdD72JL>!0RMZlZDX0>^ncQ+Ux%at1}K3&M4Y$g7& z=Gn2X{Nl8~U~79Hv32iLfBl^h=`FUNAJ$>s?K3GV8IEF;0*YB}KM8JC)!QpKrgVhH zNEw-E#ZC)1!ALj3$f6NInqt|+16Q^;gVotpP(*w~IPiK{qeeX%D_~c{LcC(frB6q; zmk7DJmD4&GDKXFW|9%{H#9%$Ley^-OG;L zKK`)ep1?M~3;y_|{E-jNJUzMbLSYa5<>N+8JUxP3kNtioKVACA*ZZH}h+KMfL3v7t z^76;m`^}7oZvM_Q))cdfj+o#7>7^GA9(G^unu%g)W_)p8gSE4jC9pdGpYyj8ljVAS znf-0u-L?)L$YqvoYo9;&06-Cg(xK-Ohn|{+qk9Ev0abPy5iuk(W4=AxsR{*`B2p+aRV$m# zj5A!&+WusRq0u2=nzGg|@5MKNc>aNDRmfiqh%xfQ43p1$$wX;j+IAI6F5K%4g# zB*4>t-%sP$9k_Yw`pYujy(R%JTfQAxUpLxv{O-M%NjwhojowD2=E#S34xK)vO?gnH zX^2XwQKsCtQ+qgA3+mXmi@R@7B}xw1x>_$ix}Xf}Jpe>Ki2Z5YdNUl3Uow2q%w7P1 zGx6@@Iv!em5&#}wc)sn6y|Xt|6Wj66)=S~nUI73{z*%~10jETKuSbyUp|q_<|0cXh zF4}hVw6g?OZTY%CIfN(*u$RV+SSXwjK&vA^$q}FF#I^IjvRJJHmfayyeGB=l_#BP z#?%t#V|Y&fI2N;omH4}cC{A8d3S?gpM2ZC`A_&Vy@*9sk#Nu0DOHW{7_*cyeLzI2R zHUQAvuFyqhAW0hFNPNVc#_hgo-lgy9UHfCgJ3D)A>O6?YC}oD~$x<^317!*s;&fd~ z6|f4l0l-L_qELn}lRJc_v?l!}ip)ka2LK?A&q>oO7XLE<1ZTD-3|Dbx8=O^DD0N1z zV*UObGe%U?W3~FS3Ani>iiKI~aH_@n7l+OGdUE$(ZT!F4a7L!oTI6zr-w)pC(%eVD zEi`g|KX}u{Ui|r}j+{5(q%)XeQgR>uHQ($#j7`n^Xvy9eaT!=eUenYpX-xu^2XzVQ z+@c=4}>-`TdD6%CjatzVLkcnBNUr1B1o*eBVoGQ}v>e;^2x&1}tKcjd6VG8jJZ z@Kq>Pe^iz?WiUR@${on%^pS`bGjOklxVuWdTcbT`$8l@1UC*iRY4I<}_~SEwUc$6?i!A<&BKQ<&UqeY}>mOR*{<0 zrm7f6@kDh@GfAbsbiH~#X^bF=C=73;Q+!X6SrnO#pd7Z~O8~%_O?XzjNTM*y9L2o} z!y^Q(hO+ML?WnW2Yn_!h@bf?3ey?j1;NszIWf`m@2pql=o?W0C)2lFplgnnFxc*{L zrx1VlQa0A7tB<@&^kd+%3}@ zg?W@x8YueU>XUoEKT45QU~Aub+ou;Tg__0Qqc}30Fp&jWvdUmJ@ny=QzAH=ylh{tU z;_NqNZd6h<3hkEpyGq*7e$Bltfz_67E?g!oOOxL>TlS86_;@#H|BH;u zV6hmDybHU_%ZRk^zW;mf>>gb@m8wVm&)Mh4PCSuF3g53>p)=@B)2DVSb67o!$rP>D z>{e@bzv=6ICNo$p`q4zh(6o*q-ZovCi83Bf-!RlU;T9;C;g}1T(~HaL z#bUO8Ym~x;FO5j7mUTp{JFnAU5%4C7g$pdGMpu;)Z;F&EmRN8iiy3BT{TGHgSbXc- znaT5Sp9KI_38vpi*=fTYg@{?4xnb?KCS#N|_xp!ela$h5!f!8V(xJbn|KYfo01zcD zI}2+FRcTn2;0T_eu8MkvBV0llA8QK6vG{WUL1{8eulkuSSn$UF%hO6fp{QJ-bqH!j zQwjvLLl7pDJL-cotPowS1!2C0G>VrW#vlk%5>w5i``bx{l?;-zqzisO36%`_#Ps}X zfqe1wo?Ldlh4)WgIWG1|qFaD-w{aax?oWwMU-#*bS9f1Kc{@y4Hlp*Wwn#ZWz|O@Q zK@oGE85W0WUrDj?sQa;t2d!4iG|hU1F4+EwjZ3Mu()75j%X@A^K;UwbWg6nGQ+1&6Ay`PSwu;V&-r`DjgAAGMm&h$_)Vc+ z%wXatt*?RG&7@Rs*JzK4 zMc)W`W9p@#9z`i~3#QVvv9>4jxI=6tztu5%Zu_f8=0uuyj_v^9z!hX`RhQG^n;cwU z{@@KS?zM4nYvbVF)x|raAbVzL>oNzZiBe&AHY_^>X^2%t=}8?MtN1&TL@a^`5L9GP zZvgEiAi05Ivt(JU^j+-Ri_uRXnc=@FiYJ7@FMe$%>_zle*E!~32P-xoAq(u&-MMD zgOzfU{CeT5gTI_RxBC_VoZ5D6>oV~%XP{PT&qKh4-#krTK^Mjk~eHQEyz?Fj_oa@pOv z+yQJ>Tcp7fuQj?;dc*yiA5T)!0@*^fX0Nq)4U-vKx0{oB(isGiTw7gEBK*qY0Hu=h zaX`}~rPPMQTh^*O0IY1=YtzdINlK~GXdoz(20#&nfnt0H(@SJE#5<^sqdNkyv-|K0 zuO>H@%EYr{IZBQBG|;bA5n{u!hF1|`w z74X0LUs z_iKnJ%_|s1lEr>7g>q$aU)LUHF3!b7U-eq!#|!)Zz2nBU z*XnWxHjtHT0A9naq;frV&Q5IL7UX3QUl+X7SV|bKp}7ACSOox@28yCH^Ob3D5_Jql!r#3x#=e=q zYx4lNBUi$oM5m7H-Tcg*$kVr8J@{*$OsPG1>Dgx^I+TNFV|IR3^Y$kr+KB}X;yN-J zOt+3b$cWEw(lvO*f&pa=L>g$MlA>rRhPLismYi9htGvALmRhEsv39&~vzkUigmnpG zahL|35oh8)O+34Q)S=ImZaAa*45GILs|TOI^s}|8-)pvL?)mM~<0nr)^YXM^yl9|G zr2~NZUmjZVoFo8{pD7#n<$&XxE)AaE4FJyUywQJhXY)q$?iKJne79rjs+qeQg}M%y*g=-3 zdU-$IXdvVTs*2`N&VOrWBbDmyI{g(Js|_q>t%<+Y+M`O<)>@syVm7z6-iBjN_4^pN za%0-t`pAsh(RVg)X*q$1v(98ZpVp{zk~(kki{q=CjB?>h;#4`)AN=)u^RWyR4-{3< z0JC9Qa*qSsS!t33K&0}8ickvhN_`bV`-c^J)DhH*#T#$l#u$x74&firw8UtFBP%CP z{Qkh!6L)`}Gbk-bZf_-+(7)vy^$P)j=%k#xFOt5Q*u%VY=IWz)GId&xoX2KP8c-?) zx$1>gKM%Vh-9j7aK^QDXnYC2_cqPwdp*Rin&bWIRf(-X)7AkQjC@NW<|5};ztROW= z>@?D&f`SKPJK>1={cGC>7MFD}b&F1=mpF)Pf~Id3R`WEPQ<1N~>Rivh0t`d{`eVvJ zXP*c7JKnkzyL;c=`Ez;!fL3F;{~$gxGJV~z(i4ovEM{Y zvt>DscAJJFRegQGrk;BvRxjwYdc(EF05H4j@{x0T-#+zZ%))*EaPM4r(MC|K3iv-I zHiAwAn_f70Uy-lwKBA>>V>bYp_|<@lCIa?OM zD%EA}aC4A6ib~ZPOaQR;>q;|XQ?q1M;P)33yS?T7j@b_m z&Ghf&!jpIlY~@C6mR4cI;_Xd*7$SDg(kjGEPL8ggeWH9Zk1wuu*}>{ZV@gBg7D|5vp(sDAc$6LJaptC031E>I5$`6=j%`!SHNT< zPn>+(uTL>qGn?HYk)&G9dxw^TeC$6tyV0~sDqlhn zsaE12YlOt6xZHwCHRt(4QL&BHdM>+1!zp8{nvBE{^l?Gr0GB5FlkO=^dS|ZWT6WZ< z{KWBI?e65oM#$59I0jwGe)Vg!F%@1SOINDWsx!v}MNnH-p-=L5-sMiVJy7Jo*#X{( zY&ddTrPc3RGS<$jkeQ)Ph)2gJjrL!7+CI#ynZN6Uh-4mzx#jDT>kr?${4fRp#w^~$ zV&DLvGnmHpX*RG!vGXada>}QE9fE=zIaZ=ml6B--s=_`vmhy~^F_EY?pc$Cd#s67Up$z zuT$UOlc101St3%-Yrw5fr-PXA4 z-RuMYh`Tw+waLT$#8x&HELkOMN>xwu;CTUnHOm%7P>QDV4B2<{uXV8P0UxB!qSc!& z+>dS@>^^&BS-;?fel4EIrgK<~T&XG{qu|fQV^~c5+etk}^=NY8espwFPDY+WuF?V^ zy;}K~nh+|1RTdNfbX0o)&>KuBiZDypZ~u1f=?6~}r;KiQ=~mRxK1~cpV(g$6Z*)iU z@||cmC#xV|rc(|8yV1`!S#nJCZc5JFfO43wYJMVYi9Or`4J^OtFIg+i|{BK|D{r8eB+ zRmpwNUhI2T4HY;=)3Z;W`D@hB_8#u_(sYT0*ErNQE^J*QxG;PxA{^4KCUF#PX6?B=;MIBa032aBvRyKCsQ_?3 z>qJZI4lMLPxDfD`h0A6P?NaedXRx>9<&A|zc;k8(FFiJLu_+&>R1;Vo+O4s*hz9^q zBT^TwKH13KmRll~B_~fw(e#N6;RQ0yx<9W`G_BPcr;ct101O7kVKYDZ=0IqG^XBDa z^aj(HD^8r*IqN}qVth(ocAk=^p)$X6vbtbSV7I3QDegS0??U_L=v7nh?&)anGu*w| zU-9?CtXy`h3l4Xh#>L-#fvk#0rjt;xpkuoWF>!NFpCe1uuXhv_Q$BWWsjAdD%a}t*WS#4%&eUDC8jx*PIt!M?lM{(BTNHH zvNrBU?)f5Et-xiMoUfK^)pD)baxF4pOKw!Q9{`f0GY}N{`j2S<5cxQ9z=RH;^r73mugJ0NyM~L_t&!B|nrfd1mDd05-;4@fSG` zcWbdG>YN+bx|6+s`HST0v(zQHATR{?6$HL9TN{~SRYfSTo^APgc zdILezFnLtl#FTt4hxs5pdFzUC5wA0(a*cH*6~f(kR=-DG^%L2@lw}|Q0V0PhS<&5{ z0#F3;71~X>vum_xi&$lj8_&v$#e28!tty4Lx1UcRKc6$vg?uP{7IR==@!$z{wEwm{$fPE!>Wl$D3NhUmdidQrLx&J z*1G}T0hOZ{&(D?XQN;oInKA@H5EP+E%3M~d%tjUa%~uG&8ExKZ+ba|h7(1tT^DY5A zAqN0X?Yuepn}PN9EE3UoBEifm(bQ-#y)>EP^X1=)1k*?|o1#=)c2_3DA3<1p!vmT& z$yJ-2?EaAmU8==qOO0uUmFRmucUTpWpPN6yV5~lt6#-l*oFx`4s5#Y?O0yRL^oF~c zIbFnp`9i_Wnx7l3$Qd3PT0(-|PbJ!STyjMFbChy0H zQ@#R+aB0fIXNP`kHnz+~UMWjGmyaNTi5A*4UVOj1`Gwl&e7q5PZP}@`gv5k*(aQuDLr!LsZ6f5mhgLa3^03)f7yPe zdwc%@-9rI^t^048FS2U$MOR13`RlKaoO!za!0jb-`n7KASu0qT|S-O1pqut zP(cDfaFEOC`*pEmC3}{|2nQAUZ}10z9PuX%^zxKbE4$0Ik`P_`pX*4 z0UmGMdpMAOKKmtxqX00w>++%i;F22^?q7fP+YJl$pWAg40O&Ww;v`9aF>GDO0ZkW; z-efWoHV&fK;VF&V`Fi-(PfZ>iuZGw~Z@6zH;+PCy0FuLOqc=V=nxfduW+*Dk${TK` z@+Ya>oc!@dBGJv^UcJ}PVYAv;iGQjBuxVPClRv&P&f${6VEEWb*4K*T*F+@g4fl#P z44HD3Mt9O$@=FbKe)0|K0)u+y<2?XyJtw+o|DD{}&h`O2T2D?;<(yGwjq_|1EOvQP zkhC-5R{4uOmpv-^Z%eCU&rPtX35H-KO#%Q(le>~PF7*4Md=~Wwd54l!QN}8l&HSie zad`=nq5+^&8{bZ?eEb_Z7!1VGv(JY12^&6R`;jwG3uKy)hO{zcDoIk`tUi^KuM`V8 zViC7X8(;RDh{&v5#pb=YdUg!>`{HvCSL=wFjEZ3ukiIU#0MO4Rq~v~2eqrk748M*u z{5rl5udaGntvbjEN6`=m`w)i;rlcfIqTDER2TE8B=R-lOg`iJTD)-J88+#4g(8UZcr3mb!7J1&-c3fIRF5Y#hA8a$m45K z^#!Zd3Wwb(D}5ZB)qgeeq!Di+K~klL*nsWtn`MDZIzlS@!QOvvwtIoZ-C?MLs0e zyf0E=^`6nao0hDvr_~w&AiqF8{pv?2aR9t48W?q+XM~C=1O&Q%504R!9 zsB}*vQd}IwYK>vjo|}IhyyNty7`VwqM8;;_dKmZ1;$h80-TwoxuF_7NqD`I~{^_r= ztK}xS>J6*sABmg4jrihJ#)&cqM=4*$tK&?R@p$@SrAhHx8D*l3_Y3Z9Nmzd=`~1c1 zv&Yj9s|eNqTfejt|6CGN0YJc?%H z%=>w)O0Kg4lFcJ+2tL4aB*i3v(pHli(X0C$A zVFvg(0Km{bO{R}&4*)I>5+0Wc0FL$|mD=zsCNnN6*GkOW`}?GAE6173&kgMzwrp-c z979_)c3-n-C;*J;*Yv-Esa094?p%*1l4f`FZ{Nku=+vvdfX}lyArr;DQfB z;$I{g3Ass;>Fek11q8`Wmr8RgElz-9NcStpGT&T8`8?mEGQCigaUTIuE7^>MvWfWZ1tic-~Ig0<=fFT4J*GI?B{Lo?p%s3 zBwwa}@-ijF&&foP08nAI*OGGideo_N;Xi&mSR&@V=O3u5CmHTCX0GoSR!nP>CeLP_ z1^^wY1po)OliVc#=H-F}bz$^8hF}1&&~Fg{xNu#41^zA^w=7*I3uS8v%|NH2P8??& zmhFe}@XjSz)XW^oSra+F=@MZg&+Wc-Zr4pkzAFAjrS-Hs3~Fvyy13H%a|?ezv*7#P zGwfZgKlx$U{9ndm82bE9>|1+Mic;E2ezp<+h#*WG@sASWT#fD@0FVgh*;#F3;*Es7 z@qjQy{Hcz%$KM*Jnux@#+yPZ!DuOUYf;r9(x43nv$g5OUTP2iMs&{7QbTb$qH^gJ! z%fF@}iYMjHw!MW6aoMQ{LA%?RP0M*Cy}dQzXFd6$98Hz5`k-(e-F=?8dgm3RsX=Vk z@=oB9J)4v=RdW=49&1FurvBaz-P-xvSn;KDO=N7=+$mi@8q&(yLA+pk_fD;R`CQi3 zyTu)zdQ%`PDXjni{yKVp)1G1mY`vjkI+O>G6Ic9lHX$z79q#;w60RVUNZ>mfxxk>(O?3#ssi#&N=7=j~!m>KeD8t&)cG0~=U zT{;tG-pRkIBehw&%vjayZv($a0QoQ~-l24{>sP}g2_tdqZ@V}5{S89tS_W*4Q%1{HlI|cTx&2z0sxZ{lrR4dfI@)9=MJYRB|)YO_~Qv8)kgG# z)^IaDyOXos`TDJvTA}C-cXJD-Qk1+hNab+{NrYeFxJO;?VlY0dAy}G-q^#T_BEc-N zaA7^xvQ-nR^I65~MAl5(-i{R~FSW7md@JvArmj@NZnW~{n%Cb>@tW(*ar-b}E0mXU z#Tj3xu1DN@n$W$KZ=1%RA-+xmE~~!ol2h6V+$6xo+qD$0yU|2^F{8)N+b_?X((UTq z*AX!p$F@wDh`2v(I3F6|Tp-h=W=LNrWG|c7zhnrKR%ZkN1VJ7>Pi8W3qls{Jk^q3& z=6?1nt!+6fe5p*c^0#wlJidA>+SyTzVQBFmikLTW9Az+YCIe$KaRvipGI1sYXEHG+ z6MxGjixtDFEz9<|*fkP{q>Ej5KViV3)V*Scc)Z7?2L*SnnKlzVrrycF$-{X;qEHb- zY*su0;AF;e06-9!`9y|W_F`_J_0`gxSN0Le!*P>sjsZU;s<%(1Y=-F<9{zx z*Kqewf2-wMzPK=A)1Wgp>l*Zaw%@uE%0LXW#V}iQ4l4j~*qyCKOW#6!RGR%#`J&3W z2|4WU64BQ+Oh~O-6spa&Ih<6e*6R#6Y^}D`Hn+7h`6u(RmedrPq~qLYlv!0RVX$H& zT_>%J{jtoFYMvqI=hsX6Iu7k--@oobOm}zBt>KY>9KXNo^h3+et=wxucbK%U9y^j$ zp_M7Mr8P+H(aX<|UVe@s;9@WFb+`3&w)S$d_I9;(wHKqPg@{td30%fh1pp5h>x;Ld zPG5TY@zB-)z+~Vkij3^vEXda>IxagQC2#8JcE`_$f4%DOBb%q$*%Yn-c5Kk9o z*$fVw$>lJ)Tqd8#5(wBL0Y@z6+F0=&>_r}KHhf;(3!a5v6?9&A#X7 zJ`2Q5iPTU)&;$wOKbe2Gv})7dra0mN0R%@GgPn(+%Q_vUi2ONbWr8}+iQ{}K^Mul* zFj58^mK^}xFSy&qt~-2?wT+`VTEX2$7FIbnmpW&0nA4Y6%F`{+S7j#Up%@zb zB6Z-Tj{m=3fi}q$KPuG~J7(Fe))LV-EM|*(xfemCXmz!obd1KAnK?bIC9C+{5p`_9 z3;C0K`PYm79qc^TM^IHxus7eYy=}MKc~{Cl2yHr@dH9+9;V_r+jrjg`QV_8k12a;G zb1Mhd`t43BS<=dT8l+{*(z1*B@tF+V*WEVA+cBt-Lztg)5m9i>@LN-~ZEr2;)T{zp z!F7LL6N@+!5mzMOWah}f`}s7N!_?|ce_seUn#hi=eA+elzWXGhceG^DiF ziQ;df3<5<#A)>~5Qs2tD4Fbr?jAH~%x^Ue5g@GE{C-e%c6PSe_a>F0XGeQWVb1hG(O&oyN2ODV2u*U7F|7rQ>y zo;Aezqa;myx;DA|PwCp^b+JE&iktUw9O}Yx|1h8dATw7{3x&xj$4)){{+mGozLuu~;+3md)QOBE!NOva$!KLH0!W1s@H9{c z%J_54N&raJrgpXKp(QopvL_4u79CAH*utunJJ0j)jAQ1QrVsKq?Ig=iTz+&8TDhK% z;n>FO-yu~lSFHc)(6tj!0ASJPiSm3^Xxl~NFg`Lw#FAn8+EnoJH(|%oF@#FF~#%q zHLn+&BO=SoOZk(R@+V>9mJ>Zc!`@Mla7K>Y`AweXyOpeb%WI#dX3J8uWhbt@;IJ62 zLp^%6^=}vE#i*!~Xh}aafkL{=^ZwtcUXnTm@!pvFx`Ken3g4Xv=eUn zakQBW0>jYF%g31E-$YO>CXSb$c6RQ&qg1`^__dro<@|3BZ~OgYHy5k=gw*m67D=_4@vTCCy z)HKi>jLXOQD?-+a7-IM!ZxdE6bpn^f)bds-f+9FtYAB|~WxM*6nuzEBIv)}6|ywcTH!O8u0M{u{y0v+ zWA|?BKdeWXhf^sCkt>TkQg9C>p8zX%ahwg4fmc{r^zx0Uck+_8I^!=JFRfcOx;|mmf$iAOanSa} zO$1%&2e^@U)kqnKIFBd^tB<7*+u3vg03E4y<`g@4v-FuX(2r#gU#p^p3{j*q;%448 zFMgx1{1<id z{L^mEUUsv78i6ygN$2|UYqdc(b|H2SwjAEA zv?M3KptooBMM9^J@38TYYb5y&H1FpTsqu-qjlAsY4ORhwpiKafqt60>G;QiXnJ1@s z&M?yunwdP~)v?dzPtC9@H_1BMc6p>4+&dwpT5 zT6;vTJ@Q`RmrSujrdaX**-UkU)dv?|ET6d5GtfEmVZ2Y6du3z}M>kx^PRaji;?}Qs zOy|Af;NG+L?3H7W6#43HOHZH}`uJKT0I<2N9k&*jpT;d{TY>D0_g0xPnj(wLQy!-u zpErulYS+-k6%?w?6jg6TW)vmQ$sgxre-%Tmt3L9TB7Ar9COxTRW1JrL1H0Mxv)HC= zYtuzVD9&UaEp(Y6=vcRDt*qa1uv@S80lnG>JdQ}Q7V{SU{?D!z9}xtZoFRQz?J1C} z8{)E$U!^{Nl^WvXIDJ^V7Qt>sPGA&8y0`MJ!Bhin_ig*WeK!V*0zkG#z3$1qe};{3 z?dWnPIi7`K9Gt;rFbDettbKS}z-0MZ+0>*}LkBbs4R+b`=Zz=f$pA3tlkTq0Ry5Ew zMbk7;G)i5x(M0IWpf&L9NlNRC+T3MfDTl zBvLLMF}4pW%qj%=r+ zX@>xS26}b$k9Y~~@@V=Y01)6p_#kf?R>5fTx%rv06_d9SMgjnKEICG)h;Ad>v>VW* zOdL~IQr?-JHv!=Bl~;4Ruh{XZFs)_c*8^nvs+afTwq5&XM%NWRN3|X^r&lEdlKAhv zc^0z;pEruf9fTtMw{Sa>Dp0EbtmkWzIcoJjk#J6>2himCtP_{APq8p|PlrL>?D}%? zx;|_#hr#B{0zhBKVecGM3zZC-CMnurBDX9V#bGgk#R&0rdRL9fmunjC;t_FKvsWE! z7v^RChRLW!keftUeF+2vfgFvx$N)`{OPA=h_B_7YXv9#IjpKTP;4_(zvoadnIVLG& zG17cbQH?w|jXdpsSw3><%2PM)#Q6I-1p3#*o7ZRz1u{);o-#FE`tWJu!zYOq#!bd0 z=2&+9N@3NCX@wyeMU$Dj%!Pi7is-~T*mk~Oa7St^;Nm=AfuAeaEk+sL+o8Wb+d)gJ zt(i7$t=k8Q3M&j`=`yb6UI~{!1pwCy!hrvSi)!zgwQ4zH**HlSY@D=bPfotrMD zDLU?X%C>J0H}2>^aB7z}eZ$NPt{WEYGea+eBICX+MVb@Rs*$~m)w%t5N6zX|<*oi} zu!><0j&`TZ?0lG>9$;%5o|(Ds-u>^pcMGwvPjY{SY6DGc>-#xSX5}?=GIXhXleg$e z-C&ooZLPc1V?KIc$6%~k>55ZSIcUwulGih=cC+u<)xJl0x9u3W z@nhV^m)xTzH0BJP2_93+9PG$(4iE-CmOkuc+ci}5e-r}x-bnSXzvi$S!>6=x*zxKMic;`7&?E$#4f{ImArDN zK~42qqd?4E_r<}n^Lkf4Q|SL=FP$Xw0I2fJpo8}9U(l}Ii|lL%KEGaXm!neeu1`2c zg&cNQA%9wBRpjpFUyoHq4saS7C<<$cXo==l?V4M)dw)LYe##)D7K~Nz;AC|{%6>DE`!l-|Mpd#dI3NeH?I@1 zQS)20`|8HUS9v)Gl5FSVX3ynM4k_EUD2i4nweN)Qw_{u1Zk+=zUoRUTm6vbfs!CO< zOEnxYF5Id(#+pi+HBxtNYgcLl}uM3;UVlk5CM4)Y$EZ zL!akmNK;>D#Yd#Ryc3fgm5~sUwxG}ILe)>mS+H?Z+x}(Mrb8PpJ-HS&;j8|4&%bzf zJ0?F%jv~lE$-kBJu<8GEFP9xqyJFa&g+M>^dj=oJi z5CpNZ7g^bh{F-|9fVKdTn^y4s_{|9~QvpCA;jO>=t)oZTItqk|3~1)*lRrb;>2oh#8f&{$rMFm+)svQKGUR#7JiFH2|j z1pt{+`~9Z#I)iE3veECVB?|RB&_PqPWmA?N{CaZtejO{048NI{v^o3{0Qg(mF1d5H z(8ND~0s%;rOGgKUUP_AJ(R&Dnq8Nhw74b}KDmyP3jl`LYFEtv&_1mwzbf^=l7Ddx{ zAH+X=lBm`gY;6Rsnt3)0^Qe{**v-|tqFLR-`15xPtCq&8GH^eU;M00)A!E+o86wXzp^hqykz^6JR%=Rf~-d>N+0hzId|)|~z1hha@S`5W~n1VJjR zkxtR-T7G>miD)sGQz?CqT=hHD9#);~uT(sdsWw6_VO1oURfbMsWzU}Gjd|zJkrchY zf4@A9ruEisEnQsd*lDHm@9G|-z+yJBw>|Q9qO1P3jvv^t?`FHEUadmjCE1fo`)*u2 zCW8EN`^Dre>8B&xm!H8pxq5bTtx6%A5mwB6GAX2jm4$~-lQbFw04)FcOhQuLh{4T8 zLQ7Wbl`7qm6{o^qrWWlv^7rGG%{+hnb}+k2Keo7ZSe8W0^YXCi)+ylM2&)ag_8u3J zPScc6uq*O*JvKVMsrSblobAP{7Y#AjXDC#AfB7dqC9iX9-x=dNyp=ax4Xo-6Hvxe8 z23FN_t+I4hT;#)e0Qh?FFMiFu5?`goJWaB86#F&x95t^`%N`*(6MuRwa^2iLE2nN> zv}1b7muzh>a&)&ovF+O8ZIgGdJe?AgH7aCLgQV zUa%iUk%=F*Z_?P!tcms>^sAk%;ETC^8i%|C_EWvVgyWc0p_xCiE5H8g!&oL&v)VSa z?EU9)dba$BS$!FJjRJ^d2HosCCkJ{2_H^~-V2o{14`zq7hl*0oZrq6}RNM(_@8SDL zPd@40J$TfR7EX@hT6k`Z#MjG?N50N1v;Wc4q|JZcm_M_sC^HVH5Old5=9hDNcW&=r zmzp>Kaai5@!{13!nOiP?VQ(o7m8I%GPLfo5wyY$k0sui$nK_E`B^ny)4OeHa>h#ym z*1!2*zLVMix@5Di zK^w1s_tWHU`_}w3{_BCoP8DB=7F~l#g53M_IahD{<@;yyMI2_uPL&G#FM?tA4BU&s z@MAGTS*%v?%0G!=jsPzz2VE|c5x``IvYE}~{8-1QLs5af&0Y+xcywqrhMSjO^%~S9B{A>R;YVX8b+~lq`IyNabXwzg za}RvGa=5L%2mok`UcKam$w)3-Hu%-^l%K};qhJwxW_>+nuGz@vziuYNgIW@qytw+)L&y#2%6?R zx9|MkuP*~dfA81#dSVin!Eg{*9#g7NZ6S!XI-24(k_`;JQKci4q<;VDpHqh);S4M; zIj_sNIvq%k^! z>79>=`!AB_uRZz8!oe(NHSlpdIZ8(uPb9wLGnhKU*u&M=Luj@6)x9!@MMR~mDq1t9 zX!_>e*qe7_LxNlk`f46LDJB2t$tRV*H=R+ZHS#L2`$khV0QBk_Tz5>Z9jvO2#^$>= zJMo1r9GyG5d31L3Ke#oztzEc z_FBZw!}piX>qk;_sK2v`peBuMqc@lioP0c_cbG)PZP2@8m}8ZuYGH5zj#UuL{owqI z18dI|ql>NJ<3)qM8@Wzdpbozo9ey*q3=$uX`}L0{#{yb-nGIQ^!8BxQXKAkT_kR}P zIM%XT5QBkN$X|$}A|byp{4cj)DgY2fYQAi~RPjBZJ5sKjy4wK7a-h3RleCx$QT|*`fZ6o5dm(LmSP8y?s4`3AloE-GxWU|XnHIEakzFkCQVQ@oghO{!vb@#!0 zRiqxV*$fW1DzqXg3IIk9sh$5XR^8lIn}_;$j!lToX7t~#?~)^48=*A;s|;forul=`C8Ckx&zPf`@U_rxOv zfuA;B$jFvSL_9v1^~Fyov^ryQdclbc&wp6ZziF^rLs`rSkIx%k6|Cy6m{AQyEAY{^ z>K(dt->m&>|0&u-n8?heyb3R6G??--q?4Bpy?pTgpy^!!VCjTyUvBtVDbsLxEE1=< ze0ENn^!J4aRvnpLdC$(*=`WR-UKL99A4>HfY*uRlZ#P#FBA+xx_Wta_3|q6 zYJT6X+YjBl*J163E|4v#V^R&5-BT=FP?ICK{dSR2!sDk=>lJcsNi~1lZx;;))ADuW zZeOi{7#*#pmxv%pKA&9@Woa4+f>NsueEvK0UUY2kv;BLk7cm(d_urg8vRzGxhZ;f* zruT(AjB8Sj(zoMM;u!bFnU3dU$)VdNAr`$$!J_9cMIYY5Bwe z1Wh-{^1DuBczP@5lcj@M9A-gw1OPCY_>3ik+w~5yag;PDrUJmquLhep+7J5~MUg`r zrsEzY#ys!|E9^&8AZ0~v>!+8U-Qp~YsI|2v%4-Y`ES!Mf#!|DQ##-JCw%LY;{f35 zV=uNAO!%_DN>NoVjaqZC!Wb*P;ep=p07Jjy^G5M`6Fv{udkve=9_MV@H@Kv1Mx-_Xy-Z zGlt=KDW}S{qYqAOzFf8|pD3=v?NjC2Ls5A+zKGi{*yYlp2MiWIZeE{_iw>`yvuEI> zPE~Ylm1b|1UK*)FwMC)Y%3*gD@Fs9MJ*%cHu&`UwT7t}^C^diy07Vcc0FEFm6cM1P z=zTDk2{KcrSY9VkM+J5^yHM1^WnHb>5FL^37vwClE*$o)Y@8668 zfVJBvnt$rmd|7R;uT<$73~bMVd%d~`+uI4{3M~M5dD+IqWmyKROShc=YEm~YyWYN? z^}ApKdIPKP7c1*)oZAUn18 zv5ex4fqT|Gl@`Nnh5V@k-oy%>x@9Lv-NnMQN(8SGCQ_bPZ&grEY`$Q8V?2`si&Wpb_2Nc8F+eCuw^-UIi3UO7syHvvG)W}Z);B@gV^ z#DZ&Hyc?Y-Rc~B0{GIS3)vxquQAH^5oQlE5FTwS>k=;sk>lV<(3DWMHe zQ@q>2u zS{7g-$Sk>XwLHOPCbf)z%8~`6B2U)pmj@clBDAkavwcOBuEO!(O%s{Ce8RWzd&VU zZHbZnEIRGCeK-88qu+~9%Pa5atgD7yufbNqjU0m;IoAAmsY08Xr%2C{M zb+8vX*o&Grb}zD0 zl2Y=cW3$3vrapb1B75V6SE==1Ej{Mv+ey?P#1 z-1Zoow{4dy%@`@NR*U*=NE7$vUmf}3x3O+swrmcw@6cwK&pfXe%KgXBl6-v}{Cyp5 zZ3GfAw|!fmsWboT(KX1$S;FJ7_8z=H@3WqkUHRyxa0|}*ar?!8wRLMH;#!Hg!Hpby zw+jFOf}~$d?5|vtC5F4AEyW{x%Pe!&YuTo69euRrNXqwK~Yi&8aOpP*I zt9m$WcCD_DqKLPrt+%Ib|6ZXq4GGD)ckajCxD%64W^M!V5?K7fZ)6oN)51X;QoH2xL{9zOTm_wFo_`E{?^rHNe`Vx)y zR7uBX%};!EDZ*$l{j=kG$(`nZW1l6LgjEI$_iyHTHs$xCJ}C>>l~Dg%l;L4aV!u7|&+4k%*SEn2qbz+h)uw_@pk? z-?*GUR-*69J}iQSCuX)?v{`F3wq3Lt00Ld@cFY`J32tG4#S1=Iezb1e!0w*Pi< z`1rP`4nO>K?AEbUJC2*$2>@gTYNa_mn5Mx}C$NbiuU?N@vS<(hSX=Rj4r=z(nll)V zeKNHR0E7m+oH`R866DhTO<3Fqsr7V^p@CiwfnE+HdW329#``alZ$62?_aaHHt!wn? zo->cyH}xuGN$W{dj#f1{w8Ol+r&qM<^HQ2MJEYx|>qjlSg;J%*FqFq-HuAJ<o`tF@iJ z?vF*If;@{?@1#oYC##Q?iSL&wwGP(8rBixYi+DBYA3Ck>LJ3%9Rp(bI2E50YBXA~; zm!mGDX*xHppyVFk#$_G#&YrgRu2vOYU#8X^u8)4NlPOk}FLY`t2=#Sh1m)z9GZ6{3 zJy&nIpOxE3z@K0xT2d>mrAlw!QlrUoha`*H+}3JS`C4@V(A3L$=Vv1(Z#=s5vk??U z|8Vq5Nq5}Pv28pX*^4CHgBKR$=O~{)PWt+%VL}mi$=Xrdf4?+zY-{t8JU-jXh7SNF zMZ0<07CC`O^<3-fZe7Dho;njgVn~b7U>CEYv*nNL&z`6JwtBQVjI&b*zgu@>SFAac zl`S7XrY(GsI`(ijvs)|QZmoPxCi2pQn4_1%Unk{Qd^L)qSM0d7_owkCqcZ=9dX%V? zE`D@DPZE1$pJ@qWA2)wCW(jjZMy71`R|nl(tbSivT<5^U&3g9qZqp}rx^OvS|IvpS zihee|YyG~Z_?WCy$DVZW6PlWo_s6Cyf9(H6Y{dtfW>v|5P!+bVx_`@@RD+}FckQ}N z2&o`mU`e|!5xLnBc{u=}G8(ppKi(Gp*x%Z=vzuotCzlXghsx;L*sL}T+|xuPRg0!9 zR&y?=FOM_09)nZfb9tST>+fy{03=26*i55|ICD2@K>HvDj?pxolqKD{cnqJz0stdH zp1c{+xv6)*1%FgadQxbr>duvnd8ry!2_wNS!GpSF@60+W%N0?HD%F40PhB&>tKi?a zsI~5nc4u?)KQb7fSb*{>^)9{sj-Ab(x@QDwbr)3XT^66tWCYmT?5hdDqbTzAkm8DO zd;xpL{9bSR31a6cUcIHzhaB9*ef{ofMMrMhUs#m4&)}wg1{bf<9=`NN4I7zXpe6}w z)bN%7P#{&W`R%-b&)&Ipa#3nTmyQ7kjy$9(x@nj@e2{vy1Q=Mq4uSnT1V+SV9laEO z?NKaYQ5sKTdcom~;bZ$2uYk-6ZGSE`dTKzcuOFQ2=;R3i*D~UHj9SC0$wYp;{Ogug%A1}L_8=w?L8;yj)NSI7yBQLx1c{t%ul5bpz z3gh|kgMOs`&~J-QeF>SgMp?}r9AcC8(((g17j-`X1f2mqV~!u37+H*=_f+k&L& zld;iTdJmj>?&Rx&;?@4w1$nOv^312Z3PoFc4+^p=`=|)QcCb66QvazpJS508ijvc` z2|;iK;bN#Qj=M1#0W4-1i`mNJOn`SNX_>ML-YHV(RjalT@q{1t&mP&)(OLjBJcvvY za#<_)T*;BDJ{?-PdU5L3t6R?#p2egGc-V7T40|g90H8Gs98+udmu^^9L#S=PChZ0^ zZAjOOPF2fbrP44U;c@ygnPE8Q!eWM^sHA?IhoT~ToBi2&LoKruO+Hl#*Wv)n6ZMpvSkf73|wSt)y{cGLh-21$&Oq zW^)(@0|5X{TY9za$D^>uj1Vw#y{o?VMNCaS1V92*^I}4Z<8#EiA zKKSj?T{odBLgn-V?IzxkE)xGb#_0EA4|-@PZ)>YA|$IY&-DehUwto2R;d`*rVb!9|$5 zXwH7E*7(Dsqh`-`XcPCJ79ZDY3`{1DGq77%qXrCXUL#n|R4Zp*{O5U2R*0?r*KInv z2}LH7EDBjFH6YchO-~;HK&nzP@yzibI&^R5=(Oe8BZ4ZlelP^t+-qQEm|9Yz6sfAmH#M>Hn&Q>nk<+lHY$PJ?oXK5p+>bR8R8jRelB8%Ff_xp#Axn8u z_4qk|g$21Fl}Ar%^+uJ}P;#TBoVy==`B4l2Oj~(a$YVR%)U-l~Lb<-Iy+XY+${3n9 zC{$Z4IFZZgZ7p8&))oaY)W*hYYj)mH081h#DN2@CFwN2KeC;&=D!*W+$rNj8v#lL$ z4p*IxW-sR3iTNmkMyKZjK+iDWBX?iEZxelhpS>OV@qiXZX{_Hi z?bh7RrKO##BUcCj#}Zzye0KfEmc42`MZj;HFIVf{t1r28KduN?84T>_%^zPr_hS9p z^NW`cE8^h1dLiP$o!Fg+W}1Tus)yC{39*ZAT=Ec0w)P&>%gYA<1|Qq^A~(Bw8;B&A z-@E>B!YBQ_{eHZA{cd_H01WX9YGPk;ij|tsu}~%hEnH~}6uAv`ZL=cs=&6iH--nE8 zZyN{z$(r17Sz@>>(O2NKAYgE?sDcHRTe+{UX1}AI>o*g+|90qRBbOS@EJjn5Mt82P^Nq@V zS95_%vxg+JYjp~OFeIX7LjL5p+*CHJrAYXhLTMqpz0nk{RBsgt=G4;ju~MtQY_Tff zV0(*;xZY_k6lgASM>YoF95I?y?4dTSr{%eX!WG&qg#9AMqOK5&pAPzk0(Fh z{Q5RYQ^&hbb>m6k|63FW{n(R7;%Ch-xzm5ky2kbn2m+ZZ)xy^8`!@2O_|J*i&07cC z+I8OdCmY96K<2e-r!eRrW~BA=@oVSeE@rb!j5Qe8IV8;AWyz*~hX3)Sx#V-CykC%gI(~H3o@Q zRl%W!u$rS$uX%8rfuXwx3~y{#9Cy0C&tN{2S@X0Re{0+Q14ll{NIUX6Vs48nxFWS* zzu3Y?8QmSihPk$7pjdm`007XF#-$MlPj>i5z~DqF3psa^G&whNUX_PcBSqZEeFXp_ z26vWkKO2@10GKGQCylMFeV2xeDMk*O>Ud=l0B|vOJDax=NL-#ktA>St&2nS&XH4_) z2!wb$dN^9$+ENOJqmr_53?1F0sff?{sCV;gPvUBFS*iS6fU+y81exW(&q`5jpW3&5AOWdqi=wXEdXFBGOtxz z09gO{zK$?$eDa`)gJWZR2a2Ziwc4@4p^kjv%6m8W3>@w)u{s$OZN=ucaVZ;yJa2L9NdCJR+@aIeuBSM*lWnrd(0hFYD@V^U2(v zkuTGnU98%5_TTc`#rfa#mss(R9egliT$^fORi@Xk=-i{cPr$yGtiNib@#`BG2l)p6 z+O2ODhq-XAzYG}q>EkWY%Jj$5xL=w~7T|?zzk1S`rI!g9oENer0BFQ_ToE?jnNvZG z{-vyNxlzNz*}pZN>L)Da9b#4z!_7o-F_ZWH4;5y07`*N8duArK*wkDAFcH-|C)Jw6 zdc%YA`z`h{)=`w|?Uj)kRidf**jw+#@ft*d(hX8P3qiON;g|Wc`IendQA(}u0*^bm zMm{~mJ&SLIVRjC-$E&EKT5JU}@V~$Mc;bd5KcBu8o0Z@9$DIJ6)Kxr@J&H|Ry6+N; zfwv8CAJ8hWW3U(gRtgv&PI`7aH39%`WXDCyvmWQCZf-rYnT@N=pk-nhNmKuNLc+Sq z#e}$(U3wZw0sy*sdQUxjl7(Rakg8NPb#VIh{AoQwm`GA*B7W=9=W23dL~eGFtvvuR zQ0%kjtsZ8iExmPBV>D4TT^>`5OoGqHb_(%vTDtkXu?8h{Xc`V(c=q+=T4a%)KL32j z?%R8|O>uG%m)zg8OOQgT+p*`iUjH^K;`#ZMA|gF;=;7__(EyMTmo4lSVlt9Z5$T(M zyO@%g$L26Xo4Wf2I8_C!{?_%gKJmld>u2I)&cw%z3J6)&p=*UT&y^;vkiiWUxgvnj zKtITj(UV3t#&qUbXXpw%c=nz=`z)O_O`G4`s?qAO32dwaZPZ8+yOOSPan>(QCg03` zWuQ!jI6g(lg$w=*OC*>-xL7cgd(|K?`LfT00mm@S8Y4w>$DdV z;ySw*rh7T^1^ZvUSktW+Qh1S+WVy^kT&X*~OA8;HZ}{_n{##W83-bJ(s82_>7x8QA zn|TqDW+KS%emeQ{k0Z-OdXE^?ynCm>HR~_jdl>)4=e_&)s>+9)nqDw|#-D9kc&}PE ztVVXA#?Wu%I-!8`&!Gxd3Sa7uDL@Z&ldGIEu}DvelVm{fSR+Yi4mA;Qr(rDwFQFrc?MhXHU}gJxSO5 zJGYqQS4e8u(Jp9F;P4WUR_Fw7NSu&2#AUCnFPkT7ClQ?eWm=h?HX`2D4KpjZlT>*H z(huS-soxn{TO2x9IDCBzw4d>wain}*&r>1y{CBys!FDAxK3~dSkzScIM zoI91NQe96;ly5)@p0Vn^|0Bij#rDU1|#wJwHFfywyNPH#3tkbKzw5E z)Y-ch%wZ&jMFUcUI4nYL3=q7>lWo3CGnr(~o_?d*hOCv~U> zR%x0ZaCBdyTv}hvik0TCx_@g^ud@8TsoMN~$v0>D^xf8SR*ELqTTnO)STXq>Yzt}0 zq(=3Mu<;BOe4AxnB8OS+XCIor2if9Dne5UEH#pZRQai%-1y4nIX6rGW;3#|3c_ z^5m*H@Cdr0>YJKsTxaGj3r!ny3nm&(QB@qH(_eU-uxd0#s>RZ)~le zn5+%sVC@ao{uaY(wVDJ$X5{3JvMl3>&1z+5y{Co-eMzz67a9kAc2$AOaT)m)>16cF zq)dfI&to%(uh`>aBkB^`sB7a!!R`(ToD)k~F z0A3PFRDSN-`*#NT`uAz%<1P~SJ+x%wv|^Ddnm9}LIOjlZY; z`mcx0{OO3UISjACvOYebf3>UB}7+pDPb>AbqOF~v-JI9~9 z^|t0znwpIO2w7#F0B15DKQ4%SQV{>BpqeGU`}u{{P8cX=qDVENTN!mMOD`Mc*8XBv z_#drii5R?ib=HNfX8_>Fv)$DE6Dua)ND)xE6PThKstB;b_?)8EDDr+qQBssVw_u9i zaIZQ~$YHVY>$g>Ik1CLTQIkv+47IYg{*%pWUE4>tEDff{7GW@sITK`t1?QruxGIMS znVXY0k{~UKd*pI@+gfdHxD?*x9GN+>wT$#>?ze1QPZk3Q02TvJ&XN6f`SD+uAKQ!h zJ)8RVZQ&o_T2)5%nMYAC5;IF^71Wlq_isid{xqStr+s0-OIIh~uR^-7j<~|bnb}(9 zOEi;(;Xz`@9G!}$>0e%5n;X;xL;imkSYJ+`&1EnObXov#76||BKjfDOcl~W_9%iIB zcXV#z;E16}YiHM=@84l!`21Gw2KfePO(p<%K5dqPB!(Y5w5D6HTdB!UGBZ#F3ACv` z13tjhe&y!_7W{Iu>YD0#GWFF5F}>PVA0nEOUDnn2;Bn%kr%64#1Wg*(&cR;v&R_E8 zT~iBt?9Cc^Jxj$X`B_z}9c+E}h%SMbgM0(Jdw4tZh1}XOQJqYGxHkF(0I)E8h)e4X zowTiue`B#{c}j$zB9CV2q%(c`Wa?x~BMwNI{6LYbgvoc~+VXMseE&h_!+w8#nxZLN zmgv_eQ>>VL6GgI6hJ?wVzYKal9W`b-YOD&{uWxLRPQnvtFI-(WQN*V?ZEL`+aeZF_|{fftX72f zgas$!n0=LY>WFH&JS!BDV3tJmO@(~F^(D^}D*$^Bd&&17^(qRlD;WfkBUkUe_H^&H zr&X6Yr7H?8jY`cKyZXQn<9qgK;tK#m2782OlhqMd0HC8oqtQ2Z^>Pk~Q|28^dTPfJ zgiF)!=O(qc_k#adG0(taHm8M?OQ*d%2#RtSiE}g>53!`ZtNYTMSADH)Y`NUd?w(ye zz1@T&03c~f%w~sYXFbWv_@zf5Un^^Ok!01q+w)tstqH6GKryuT_2@JEV5DgxqrQUX5O~payRto-^SSu0AA*1 zFS~QihQsab?$yJ?+m>5RknQ7w!aR_s67OuC>_GC(1IagSSi{p&GCRR#~hzm8b$qIe8;2uz(SSX)XDM&mG>-kNlz{Se-k# zL&=c!3i-l(oouT{)~M79^1F0K(|3C>c5U1UL(yb)!5^{r&DT%U$XnUE-^)$9my^h6 zuo);y13bw4zlPO9*A9Xl89J)`{vSIRhT}GOEY6h>Fj?VKXF-Xz*nNX)-Gv5q35iM0 zIdQcr@{s7Hoam&S08jg>FO`)ouUtzePn``vcj;xB2;qM{tY)Z`Q_lTuqDb?%+0=7D zQPxeUox{eS{U@J2@y(4(OHj1Chxg2;twQZ8jhL9xs22@17h`?u+vj*{p=WYQ@aSe% z-cgEF14Vf9?9C86;O37~qZ&bwRbd~S8I;OMoGNo;Y$3COBS+%JcgWJo7KZ;-1<8np z(B~Nx05Cs%=ceW}N=6PBbO}}5MWg#itvP5S5^Ha5>vHlx zvbWjGWCS-{3-e_Qs;;w(AS`R~N(%uvgwJ}$e0TA?OWYUF<__*)USaj% zTcdzDbH%ZWTsFp7(QJU+s5_MS^j1znf+}BaGK}$R1|Q^I$h`4gUMJ^9B~;}PyKpDE zdRWb=hMUu5B2!8i$ohA~YN}E(=G5UVwF&{4(zyB8Z9100EhoP4z@SmXjvq);$Sx$t zT}q1oIJn8;cAYDPH#eT`ipJy1>@+L62UBie%XtX^9c%+vg-v*)f}s^+YQ90a_~pK7 z-aU6FUe=SQB5?gabW9_D1-wq}E`J383=}`xX-O4%t7x5Tco~e(GIP3GiI;OZy#U_E zdJjb@4aUcM!(E;JdL0cllFZJ^9Uu{XC*)6Rh{mhbyL9@iRrN*O&CdGIy5KrNX6h`Z zC8{N?qUDJ-sulrnba}Q#qbVXMZ?pw5N^DjuTdS?L4f?fAvSq5|oU&11lY6$Pa3Gfy zE50QIO2lLD`=XRy^<&e1CI1yOIiL8q|HQw24KMg$UrjTBw;sK_>(oQb&aHe{QSB!D z{-1Z>`ndPii1c3^vCkTT4SG<|3VD(W}`pk=` z^R-$B9{=ZVecHQJ9R6g*=4|RUV8GG6Bu!H^y({8bic-F#?~q!>5y(x25zMpw`d59V zmN0CKzxY$*@s0S7I}@*z{Ha1rEq1}7I1gt}xc_^9=N2Q}+ErvK)dN!mL1yF@Ou}(@ zF1s6x*_^@fVc=c}QeQPUD1yu~nPQEm2%|C5XnJKLlImChytK`#m&(7@8}8UzZLGgG zo1HlcQpFEd9KhxDwvqf^S)rAhHQrPpo8NFrt0nM*$7Z#xkXxhjQ}|-x!m>SCcOg$Y ztM--2|JUAChevUJ?K|r(*|@tK3B(`}Ah^4`Q)p=^T3RSlq%Fm1@#5}Iumlnk;_mLU zl69N;{@9T0ZZ^p#1loQ-&eNw)n4O)Oow;-0d(L^!dmuV>1(Uw+vy~dZ%`Dbl9~&_S z_&9!%M}u-qLDA=HHvTDPka%Xz3=F=q}0;s6WgrYsjh7V00>0VoIJhM z(8LlM06+=DP5VQ@+>}ApRc@QZ&vK@^DiLKKKgW&c@ud2p70KG2=BXE~!U&SjX-KcD zeNd3|qPPG7z{|*FbDsee94@`CMghZ3{~>V8-!QCzVHcKBW_^=r&dZX*zmnpX`vvO% zcq&C~0004v<;Vn7OnZx5fkM3AeS%i1RSL^1MQkjpy;TAXkc%a+^95D=a_$Ng;(7Mk zA|UM(H9H5cijqdbDF9BX=0ObF6pgmTpiR(dQ#9Hbg`%S%Dhfq|ASwi5AqWEi1_BrW zUg8ArS+WeB+|E^XEvddXLSZvAwz?MTAn43e}u!^(OH)lg<={R93m11 ze9o!!O@=m+YW6^X6!br?ZuD8LfhYX#w_7Wx^_?-I=fCaRhWBxQ8J8E8*d|r*$=j^< zVO1yB7lT1zFgPL+r&5PFbo>PX071a3H#x7~Uby!&}#jh&uSivm7+!V%X}IB9m8ssfIs;18I4PY6%AbAW_Pf#2q1H2tq}h<;KPY9pHz7(7$9}qhN^b zyz5e>JcUyf$Z`e%r1MI-GND#L7>)i!Wm1SjS*1``N&h>qu~hcHfwRug;6V3G3fv7c zd793Ta9DREgQFcP!nc9eGP$BqDoYScBE;ed1Sme+{UMXaH40AXLum#87|=J9h(k5J zYVJCLu+wcLiG+cM%-_*ylg~L4KkVpV+tAn+0F<7 zKqBJIShUt6=jyg@-oT{na)C(q4EHKNf1OOB-p91l&U$%+p5Euj8=E71pI96ktifqj zB1!`s>tgBI?_Ab3${SA=9oyvgb5#B76NP_%=e*9I;@APKT2N`WbVf0c+u`YPXtcMn zX)jX?e>01oW)=)QVZg;x&1w>LBB2sN+KB_p;1;hdnWI6m>1E)Q$}M8c1WGmahBR)8 z7o*K34;n%p4_E;JI8pHQL1jW9%XyM@ZwE?~f1t{(64AK5ehb?9MV}{A^ zBazfXD1vZ*72&^5$#irAb?>pf1{9FD4I&RzOG?$r%2iW02GSKq;IB@XLRjapPqf~ z5#nOu*p=ZOomnE(%$&_0=#R%@zPuox&JYCDv31C7DV6ZbUDrSV_0TAU-K$3TaJ6h} z2SX-h#njMUry_Jmza+A##Def3mo8txlNTAE^Y>=wR%yX%s8LvmVd#_U2k#o*PO+Ym z)tK?JE@GU;Bp0gd#nN*d+j3c|InA=x=K7Z)VZU)WX}?6o=M0 z)-VUB!wF3Z|6mL2_H(Ozxwsh-pVy?SJWdFLsd2+qlf-ZCz zoXRb}R}uHPD)B_X3P-A${&y3Lw)yf(tD9IH@sY49l_l!bB1WT44Vk~U70iSnECdlm zq6hk@{ryvhL0gy^Kd5V1DwV~z;fQ;&n0xRz-{vh6>DxN?SDhvO67Zph27h4C79H++ z{g3;c8s4H^8t9u5o%7p*qb4?n$5VbMbl%Z%)yTJbpY!)tw5p?3BFfl?Xg_AJ3US$m zlE24Tj29{dJULf^C{Pgep8YO})w=^&9c<^Q4y(3whQFyrFEh)YX66n|Ry$BR-`hW` ztfYX$4z{q`(Qi=umu^g8^kCY%)2--O^2?f30KiC#UN37>d9VTiu*!8bTgDGDbW`E$ z%bGNMioUV0AeKu4yFd;r(s`wwf>jL04uY_sA$j>o=ZHT?5*u=yXfD^C;uZI_f^S{I*L+SA>- z&43C7eLr`=!Y!9{GI-yom&)bJ_9Mw{Syc_MwEVMH*R<|Nce3cucy=5BpqD|A3BmMm z{{C`NsXNV6tP~sKjij)4^jin4_A;|{U>exdnL{0%dt2I=>fIZTMI_ywI8)D^7di|A z04Ndo`=rxySZPLNE^`{D!dC<10_oN-HJF90zHuBtkum%sY{G7faQF?_?0n% z(a+cebVdglg0NVOi%g#W<;8At-!Zmbhh&&jQ$Jm+*$W13!D9YSB=pnsfe`Sa1biqA zHwr~J_`>t;D;xh)MkEYqpF^Zn*3_}T>Li^CqLODY>6=siX{%#G*24jSpdB5*_UtBmOz#yR-t`&c8>3x%y}C!}&kUS&P< zkA>g=pIccqCqAR}UwC2nUZuAKs{jBG2eV==rqypW!*lVa3kO>v0XaCIrSGehVoWg6f7Pu=CFqy)-5; z5P&pD`A@5pY9-uS33qnPzWx3S&4>o=!>S|I>|xmEVqxv`niQczswNKH@zWsSgTKIP z^CE*t7}&+(ib!heXKSibKveQfCgZ0r$R?vuG%95tl`>B(dBJV`T`Eib1V5JeiEg7% ze2>l9poBZI+{WYl3>e$+I6vJkteUVj|mf4#f=@ef|1ZU}<- zgn7Ka7PGA9dUFTU89$64G^=liS90U6Zlc+_)zjLqMEqi1wg*v}$iH&M5}8mSktqo6 zGLM!_>KzfAtFtF-OiFRrV0Fxh9%DxIP`O*srxXK#VMHvJiKTK1Njq2KLHBx8ecyy& zmM_SaAuwHg5zJ_ zZ2$m;JiWDifqqLsMQy`E^^7AH>&#;O`teP2RDK~}c!9&)s()WO{gAu+<-C>3ng;HA zk@&IxU%{Zwne-pXq;dKz0TCG4x9m6oz}U+0-e1pb+$_98-5>}804U_jTL&LW1d=}E z0#p%WsYsd=Ul2MzP^nOsW>xf`+PlN!S2i@pW|y{cyS`xRCou#8kKg`Fdtr&C@^>jk zVZEH%*~f%Moie1yx%=;R!D`VrGx~Mmyv-#WG4;7B`P*qWp(fkHCk)plQ|-G2WC z-7yJ3WHO$ti+>=4Wl~tmmNl3YErywnd|vysL|8PyI9!RqL^L6npVP6o+Ljdw>Z-)t zo-8{Y>Z8E8L|AvO_~q-`^bkYW_3jg$sVxoGzj7LJyx?h>s9vJf2t5(dSVxNa4BLL{ zii1i7MnfnTp4#8oOZTcDg)>ZdCd-4-j;zwfu6CJGLFK%r4TURh;oYb@l6#;q8N!C_z}jMB`2 zp8fgSwDn^#dStn7MyJCc=Qo{r5_dEDOYEl;mQheuUElbxy}Y-{9l$C8VD_k9w_c>S zF19JIWLG!vO#V~ z#xy~?0#RZhGytGLP&@nWpM8v7cK4Xlmct%Zml@xXuSAp~hOXbcjw7I3g|Lm>dK7rHVQ>GHay)mWn(sXv+zTA7b0OGi?IWP>3)7S7UN)Qc(t;2DBMlmPOy+(mHNw9T$8tz3q8y?!Wo+ z;?hg>SoIR74)r^6Ge)PwI&MIx^|Vm{HQqAFifs6%HmgC#&*GII4_Kyh?F0&m0gl3v z3tOqT`v6gVB|bkW>Ww&uC_djT|3jIM{~i?sjT=B zHm)Wl%J**{9_~9v6IKCSIf=cq{xN2?{auMAc#b#uB20!eY%#~%|;=O=QZx_T8~mqSJe-X>+vy1KoB`! zc!t~fI}G#mT)R-ovuTvYUC3SwxS}P$&DI&k-ShOv=B%d*KI0xGMVyb^`*MqGfMb4A z(R`0@hc67Dwtj5;r%=N1+2>6qcJ`*M!s;%TH(=1H|GIF*H@k048|L4&q+n;QsG^~w zmiI5eAxYWg9l|P=grB0zVSS%b3d2aJ67w*E7~*Ld2tCBi_k8hdDwb$PGK_7=3uHL~ z05W)GK1^E+66^26mjNuN*3Cn8&r~8=W_D#SKie)NtET^%hezS57^Et9lzd zpD%iw#j8x=lwK)*_iN^Zo(6Vj3*VeCdJ6!+qcG#Gd;aD>twzFI4Osg*F%gCl>(#k4tm2IJLuVTq=Z(6CFGkdj$9xn&Huy%Y&y~88ZFy z;A!?WgXH>38LZ6a)&*Wa{H!cb(~ZEI7+#`~r~gl3Dv3D4-1uqNFjXecXyANLCC{=n zjbYGMeFjWbjb0LQ#77?lZNS*_F>5)Y=uTx#7@PZ(KA4I|n=3=g0lM0aPqgwMgRUgl$KYi&u)_j_h`)-7D;3U<(<2enT=(0 z?fcKR3$vq`kkI%;Jr_k(r~H_DQK*mt0G`*Rj8W>!o$g|K!TKZ|fuX=lyoB?)_WVLmHL{0NCR3AGiCGARy?F5`2L^cxE!h!4vY0ANn0wF=N-4Vk|a31J-GHie?>|Mz5q zMj03|wvkEWKf+y8SeQh9jQV3$Nxgt4cJ#D_I$)! zyC9ayk35J005B=UgGd#}@7Y>h+xv}>YbQ;YxownrZ^O4xP^ZryD*UDEK$nH82r`Jw?oW) ztx1LefOYQU7R4SZ7S2Pj@F@c7HP?5FS0Dwo8DeAjDu1q~$5IMoRR{+alQ_3}0n%O_~ z$V>U$H&w*|fV0_&t9-TFF|O^=uR$W}edFlieq#q(I z7|a*`-6%NOjl9!;k2R(DXy2hx1|M@AJkCe|oe!+PniQ3@H8$F$0VnDk9_>hjL7A>=~QH7@_4LecR& zh(;NZN#iKwnK7!dOB;L_G2RAu2pqVKX&@r`}#&9g@`}8V!Wjxy{Lu_ z{x>WsyF9nJ_A{KQrh)&%!3UT3%rQ5jtIzn!xfTEZyHs4k7E9$sJu>vuhxy-#NQPlV z3s&_^uV!Rd7MIrdAK+q)r#n(jf6cs&L7_1adQXqpu?=~#4S7~1!{&Ud8_jaP`*>HH zMf*+6cJ6(com2HtDga0M}hyn;;cjc#$bp0000GxYX^8}l*Kg4 zB8fCcD845aKT{|x{vS*tSd0UOJc&Y{fku6jzCC-sITtd-+t8GLa_2n~89!&u2z!qv zRa+Q_tIHY;%`|+hx=JnpAbdhE28&WrRJV8aMV0PBSza}_LC_=ArSC``jwz zX$=0C?8=j*&vq`ETyfz+{F=Efax1C1m2&xiATR(UNN#bhk4wi2)n-Pt{=J;ExXpSx zyO}vv-)+2NW=bD1*!ydj5deVDel1*ATe6OkInttomU)-1$G(ip?)n-WKtZhD{>)yD za$dEh%7gCprv9}J*{)n%jzi(}g;fg@Qw4}@nGgWLmy1mZ^ekQ_03d}^`T=^`Kc?J3 zLntbi_@E;BVsW$*fuB{SMc3t(i`b2Fu_M()MHv1(HpS61biroFc6FVw8XjBcau`y=50B(sJ5I_SH+pKQd=Xsu99nH#=sGpASXAa6pO+d(eQEgv7WDf?1@#txP{m&N@7WdZ*5u;E{6pGdvX$TYnA55jpB@>5t zNG#9{AH8oBoEC}iw=WqDL3kpeKZ!VkL>Sz)3Z;M05Cr^u@fiT%z|t{3_U8Xnm|9)m z_?cO_&)(&HH>*GTLoPfa>pzoe$}Q0gRsjH$2lvo|)zT`qKqPG~W2A1ib^MK6Z%U+c zr4sJ0YfjB5KlXQIm%sj|{x#eT6{ClzN0RVlCT|Ypt!O7r-DrS^WA)WE|NPiPIYqB8)gCA)*$%N4LX{An5 zkk$CKuko_Z`sqcD8~^|WK|;B#nBVkw^Ezvco%<4xKn9*b!x5sYir4z}yPTV1LZWE3 z;_1lGv&UlWspOde00fcB-ouCvPhp0Rur0tbjA#H)$Di>-YeGUss)nAZW+=r6dYLCY9%=ln$B{ zppYwnU3GrYqyRG;LmVCh!w8=%GO;u`w(WMt`$CaGGW+}C+JQ~1Z-+&q5QN3!dXk7E z$;6SJs%BBb^+M5If$&263LzMbH4)#BNa#-_^n)PMe-v7-y-CR^sXn}HoWGML_#d>L0!d<4c`wf5a10Ql+r7u!=`xo|hF^QRqelG9HaNo*C!LG%_JJ70>iFx9e+e$CpWO z6r>vvh^GcjcvVsON6OpPzFqgHAqbDddE;>2nyY@PQdzA~)+pf`rLsl|*TXOmhIuf| zg<&oX^I$}TAR+`2cez^*1YseFjDjdA6a|H%p&$kdZGc9x&?qA`+60X@!(c2hXfpuN z|B_cxB9fs$@K=>E3;>w9YA70uR>+kAfYg|LxlHl&YHYwj4*)>_aXpjYx9Skz~h4nxL%!7{e@w^Nb*Q1x+#{t zX)79mMjI1wK?HmVfe_m5B2Ay)WD4c^7m0tanBZ+^2LAW#(LW&>7?WD0f>oJZkyTjp zU%6MMRh@7fCJ*kh?bs9bE$R7H?ZE26W6!&s{%mv2^fa}$j^E*KnK@Ob&POFAm%uQ> zGN7zqH7vltiMp}Y$KQ01Y541TYYUgCINv5k9BW z*<}+pN}gSd6E;c!06qJ=-TV8EnGLIFnA_{Si2wla5J%hx;zQ)UBpe4MWez0o~7heRQwbDO=HuV zM2j*DYvhXmOfHEp>_nHwfk7_&&c9NZhR7&r6E)w)=HGdk+}`S3A}0_!%~S~Q=bo5c z5*^nbWB=acl)Z6$L?bERl{SI#HX5 zAruV3much6v{~*v5CfqRfY?%uY$@7=X)_|@dH9B|J+r4(yLs}ePdzeV1pYniff1hi zv??{g(2<5Eq99akecmMNp#G*Fs+-#&xIYpuQ&UMtFnnI_86@e?|kmu)LlpkkBavBPM0f zw_^x+3;~BF;4oM$8jC?=F=!kXjY6T&C_C=P*5j0 z?F1ZVXm7V`&sxATyNy=ojeNkt-Em9`=I(%T_h=i2uJ0Em^cY+eNfK{rZcy_wb_M$T#6Qh`DmXy_%T#A5ZevF&eX7hqwDL3P?c z#$eGVmIlq*1ylwJ0Fdx1+sa8pKQk+#c+T1p$z%4lgo$Dcem=d3Q^yAYxc9Up(}*|z zdco(4=Byn7bt|zPLFA2szZwO{mCD)=1A~mky5O)LIGh(A>x0F*{fBtG|E#snU1gQk zQb~mFJqrY&JVCJmjvmWS4m9xn_ya1H@XPmk|I88r0m(V#{rnv*jOiA}^v^QyK>z|M z00A`UT2t{Z*w_Ky>afb@iP$`m0bQGdaN+7Z4p-FHLBwL&?){JC3gwH)?9Rff%0h#k z0{rbRTzz-(TC93(Kq8gz-uFmnQ;Cdh4ebkCvfT`uIckp&F~S?`>#brS^mfms#iA;E zvV}+~sg^WgA2!6G)xVk%o~*08n(w zG8CGHL0e!jb{O=h%`6HfGBN@8i4J}zI^&P)kuZW7(aCmZ1_7?t!+N<=NuNjYswriz zZkJvsUwWO~EeAiGf38MS4*=lF`2c_))BmWKvJJ2dC+f#eJBiulor-F9uchQv^z;9J zl}%`E4pxR94rc1H-`tYgAaCsl=jCB><1V_bVEC0=@7Ww70HCab-EYL6ZoIsEk5lT| zx^s?X&3DI-*;8L|Y0H`WCh>PisucjBKv2HTa|!ssPKsk^+^vY}XYAJ~7i2e<5K#Ed z9t&@lztpG4EQ}~)>QBRnGSqm9Mi@|0S1ZX+;oMdtvbMfkDol7#v6YCX&2c!3N0C4N zZlWM)fT_n1$(Jz@nuaBs5*TL-BVP~Ntorm|&SSPra4cvs3W6#`?3M3Ne+Eni0FZIG zocj8l`uYR!VtQNKO!e|IAQId1DevcGH~Y9hzKD2MkpJu8Ax7kny*Ur_wA*M1WU^aX znfG&Z(wDE$KUAoYD{IQxiVxLz7z}#+qA-2F7(OY$FVyA4_B$vv%F@9kXpq;OHSLKM zK0N<6KdsEo->xjLn$H!T`sL2luZQ#*(XlIoMzK082f^Ws58R5H(%;wBs?%ki8O1g8 ze!c8zXSQ}qSQozDp^XXg@U%6ZyXSIIHM^*q{URy<;H@{`PYxRs;_(@VuB_FBIH-q{ zo0UoX-#T#jO)GfT;W&KdI12#4R|vmJ+6n;J=J}nT0-c|C-99a^3j7b)h`t`` zu$os=*BVy)1UVi4ZN~QB9+b9X8uJB`tGC{NqHDWxC!wv6hK74~?U-$bG$9Du?zvQ~ zl+J&@%>dUDpa?MVuqB&?u)NL`KUiQl>U7clxv@WEQP=?;7w`Co6-{fj~Q7~Jo@5=)8odu8X9%^!iqSYcV#-b{tNb&xxM}pD$$=P*jt#X8K6ui6nQTGwwuZ_&Hgu7~99!p%e9;zh8T$P{PUi z6*G5UoHwM`;t@euOg9JO9L!l0`+EQVG``t6{`u@vCWYA7+rAw*#C6AI$XclxgnHPG z4)W+MtjgrN`~M&S`K#dK4C^sR3eI<981|oq)tus5r4mM?{{sxfkFi0)F8j{EYJRf$ zWpz4tb8#{~b!hIz>#-NF#Y&_t-2Q8~%{(TdqU&mE_0q!lhAW}Qixr5{i)kHd?D}lrrh_?;LyTJV zEjkhbUv zFA59)jMrGi)d&TD#6_lQhYYe3030#RpB-eLjBQSy>2*ZdvdTwZKIUA=* z-jj%AK&_s*X`P`^0s!3nZLg*M0sy$U|A}0tSh;gD!+>)4bmW2cS5NP{zi`u-!IL#~ zkzym#qwXb5TQ&6Rp=UcTeU+13^6qKcxJCUJZ5{`G8hI~)xQWx4m{&3X*DL*f9fIBU zibGbj`N;)MsTvqYPCkl@&M4Wlc!Y&vHz(D+?X~0BccL@eg4GQt9>!#r{4itSAb;nN zIVp@F-K8EZQz#JxXgxiFLUg_SVPB(w00WN<`9{BtIgD~c=G4pxTX|Fuy` z_`d!Q5$|%Eyw%dWw)Vtg(Q~GS3?Jk*an8}E=|UpEc`xx3UD%r#9clH@V5bGMLhWq2 z{!rS4RZF7rFW$>!u;NtF-Bzyzk1r61D!n)M%`9zJ zBp!n~H(}zOo7XqLeBozqZbj=D1|Sr)^U`t~XHx*c!c8q0pY|^Q%$^6C@kI~{(psUz zO2pE^7ytk(;me1frM)ZIfB!qCAr%0y^~{n38?KmIv$QZ30O00l8yN11z{taMZ+0y| zU02CnxpT^}nZ3J=4I58A8XMw~S5fb1VR+gs`m&pY$lMA|bx~$Tg zS-UQs{C={XsX;f+6s!KX@oC#9BZo%g%128RSVw2qV<$oqYQWHrHk1*|kBG5`P^necGV6MutF*ZV)r&H3@gbA9$quC5w) z`QnOzz?FePAL(Ij2Z8|6Pn!p*=rt3G44^Y&_7x;d(~K?3*{PO`d8<>Nw5p z+gpeC;}zsMd}c^_VeQD-eNdWn{jrxD00243rRlNx-a(GjzZuf}5s`vlcW}1OvnUnt z(<|?iBC{bBsyMr9?82}i(}L@(xOgH?MLh15p&;l@M$wLWLw8($aqs7O%MadUQne4# z(5SKI8yV!jb?y*7kH6*Y)4S0b>RWIav_#g;u@Fm5_ZN*qP3otk5dv2r-hV5q`JbmA z$CcOfw$2^WwSaKz2(X`nMK9-$)tdYrEfe!A$V8kegKB5W^t3hW@8!@sJYz#L2LMQw zvdg9S94R*4l~|2SD*^wsbxK{~ziWYBwsZ=CCy)RDluEd$lI?7xSFS2H;Zya?lSt(` z`PD5W*2iYc`q6Znj$~g7Hz|Xcmdno`WHNM!>4>bxjAU-2Bh@*&KI%oyv#HiII}rp{ z84XLmUH)pYX^RiU#8NB7wNhB-MzuL#{BTs%cQ_PwiNpB8rh%>f)SIQ>YlUsGC=vjm zT$J*@{(`R4nNG6#<4nQqMtQXgm9u#f-8_zk@u9{`0RSvKb%J%%H5=e4FT#IPyA0yJ zu(bdHCXW0^&pBN<%TzD#hk1EU1_p+@I7AmxQfh=P(I+Jg?|&Cl#N~Jx>0q){3j`}4 z-Zvprtmt$H0|Q@EGe-l1ZXaZsb#)h0Q?xdYadn&G=>-6o>gjboBcp`NoqhAh>2c$_ zT+cIbe6NAy+ib+<;%n{VYpv&@_*_wKB`08@hn1tr@2k!apV`~V+dB4H`q^La*Hv=Y z9GD$AsMCxCnL@dE-}PFqVBsIvR6wh>Lp@JJR?Wej)%1$W6dZxbgh6em?HZ!V;`g>U zJO14yJ=3dKU#Cc93cP+r5snsy`4vswuLk-#6;#$2RBAWFip?rjFVY79JdMw36iW7e zHKq&5N+%Ph_45@-WK0Ut*}|x&lcgz>s?QhyS~)@gv*6LVr4BQ?Yru;oay^ybKdDvK zYy00kkt8aoILOh;klH!=;pKNJha=vN^>bek){D{IrA+{Umzf0{u04^-l?*b$!I(9` z-C<&Yr=ENZ3>q~s(D~-`RMkK8%j)!mRY!Z{$mrZpapwz)>J*BmNJ-xi=Pm0;x0U4f zW%y0Boa#z*uN0R*t$t`qFkkNY4FEu-5DhXJ+KC`=vr#dm1AgDDZ}~fL3jpA3;LiYn zt06nv`L0mG7AUmeXEcOWB8rHr-w>di$pQfs`a`i`3g;FA;O@Pf6{57y@V1~K=)#1F zZGCzpGec_&35#t@nixTlgi6f{DhBi7#EIQ_wJ?JG^dds3IqwHsS?>yOlF0WnGxsz$ zNw2NRuCE(&@xouD#`u{2!`cW`1__NuJv{#wjYhfp*;W+RF4;OEEhfJtr#fh`mw%XB z7mi87V~?$xIQHkiPkcM6$MQc~@6gbw0joyzrio9XRQ`PSSxP~rtF^JelV!M{ldHA% z3Q3FO%A}C=r!0BdnJ)bOnpoOt*Y;_A&eQlDJ$H`HE_s%aJ0h?vw{G2}{vY{3rEg8o7intlFB4*JODtX6kaR8M8`6w zSP;{?N*C-yFUjlUb5dPJS=oulb>h~!S({w_ zaTWoGWzk3gfV_(OeK#Uam{d<&(;iM1`ebK!U3zi#bqWB$fJ*A)Wf$h-5aMow!*+BH zpHY8)-|eWl+%f>bwA~keTR1Y%#rl(;uAr>m(b|Yaz!LFT92SGeVel$dBQy$wMxjs; z1Rz!Hp=&8;r4oT*ScxEVxl$@qNM#DKRL&Pl8b#7Zfuy-umO;^uIubrSl&s3ytjgNo zA4YY0ijzq9K8lLUDLS)wQaihu(y4>JoR*%xrGybWi7=t3=ko9%BCfrO#m>l}x3kUD zv?iv{>#Rb#QmLoI>g!@@#H6S=V)=T*DhdV7pV?LIc{5r-^hIP=BVVk( z<;=ym3_7v>Evjz;01Aui0RU7AVe|UY7)*Ohid=p+5ls>)o8J8fX&no11OPxmD3MYm zQiwY3t$w7r(!$@?ozQfQ6bzijD9h~;Rlkaq-1fg7z?xx0?)A3zc$p{(0Pu}#OF;N+ z;XID4OnnOgV1ITv6K6Hs{&f4heIA1mL??+CMi9PCBmOqn!NG>XXfuA&Y8AQ2zbAvx zZ9$$_#YG2W->Gl$F*Q9kb{q+-@q+cUwe4?b|FWnM03cT?568vc%gJ6D7(B++6@&U` zDg;=jO*c&(!RH<6$CbWZ$I2@G?O~FPs zUvxJ*<8E{Yg^1t1Xhg8PO}nW2nQ%3yyzWY5Qx1YJmaaH*d;6RrL;OBr`@%V+1Llkl z_@`Eca)q*iCu-!2ZOjc?1Bv=SH;oxEE!an&V~*c{KBuaQWZT2WeA|RU9eyRm$!25^ zw>t@$Jdxy7WPCz##otRNu?1oiIt2i*X!hl94aCxF`d<3cj+4(d37#eht((={Bjt+=lw^9zRmQo)ON@7bZ-i=+aQ!89s=q2Ir+b z-kPV6`<^;^C@!{;^SPN9)uj!uZYP}o{o&qk&qqH>={wr*LgMyG%fnG!tpZHSuNV{T z0RR99B5EVt%I1r727y&(X`~Ulj7lqN&T;DSRy-y@ zx0X6;w(@%I`aC+BKT{u^9U78Rpu;$4n`$iYq9O%591-3MI0|r)~+Q8kKc}yd1G; zGzx-x+F9(K(b5wwIY%&_{8ryyLM!4`6X-1{mR?j;H|D+cbUl`TbMK4-OK}9 zagnuOU96cQ-mYHS!se30O~`~tkwcA_`ZC9zD(IMo0DbxufD%FWB)^*G=wnMYSn%qa zr-A8Wx4?^eNf+~y%*nJ$VPj%_#nbZK-9aM^2`vQC7Zn9L+`4b0?-lbotGqSJhle;i z#+H|jzIgtxQDa;T4b>vR+Su%AY|<%Mr4zbG=peVDe){!mT#2OlMBn%Bv$SWMlp?(GsK`obEv?9IF~OrHlTtp*4FyWK%+6XM6Re{H?6>=3Po81H(>K&onMSEsu;ERZ=GXi@1v;H zvZ`H^hiZkCy`9ZjbaDev2mmOqZ18Yss4o0ao+!YE*?peL|c%gjE25EhSJL zR%NgTs8F#c|B~T_hM?n_?@ngLI?@euxOFco@&)oHNAptnj498~SBv;=OylR}d1}8! zd8;TL0ANpJ)k%b6g`B9F^8BG+SP73e;mW0b!-j|3H{GiWexugn)YZ_ibFhl5Qkb-ft zFl>fZ0Kk=3DLP@bxQ3$+kY9}nSum`L1CJo!#KYJCS1TV~icxKmdSDotzUN|nqmYEh z>N7F5Zydh3O)vIVBoT|5+}B6XL$zK9H}55;rk9^MIQP?txacrmqZo}w4bxAa@M6hX916$8u^cJRW&{fsp2d-| zO$lab2wfyBU|<>D0ISWR^^wE%8tXRXUhxerdJZzB@LxLwu_&|*R_^OPdf0=L0DvhD zKBuyqWQ^)1LOYtl>Hbr2sFqwpqfDZL)o;A|jJ9>x3DpON4Igvq!qR(pw}cIt>Eiu@?X6Oxew{f#JX$w|yShNc8RvfrFe`vt? zP_Hgrl9uE`HCwk@LV8gPLvY2|-t&jH?#-)|^_Wcj{nJ;Ja^o$v(%Q81tbKOtMniJZdyHCJk zE-ah!FeQgdz>V+ax%JlbMPUIvk!1Oq+XAT!0MNh}*%`IRiGva3ep0rxsi6u}X+(k% zl`K;#IYMz6o9Aq*;WPB>*#xU49}0Fevny5LI&9KD6C66UKueOB}2XOCY# z8dg7;fq`BbJ~N^R28C~ybdbTqfB87ZegIAyuIX9Ui3JK6-qLeW4yP86!8+3o|45B; zq_g^&HNCFwEV9Tr+|iMv$6dbo)63^ILc!{g-deEgXV!tPtXAC=U1M||TNIw4N#nF( zV>hQ3KQO=sP}r-z}x*fuW>GZtm62ND!$m!puNp!u&=we zbAS@?6(Pd;aDS_XzFdjQ)2>n;7YQ<*a>qh09IL!&yUVM~wR;T;1vR=X3VpKp&6+k6 zVhsBM);oXV_)k*QS7)9MJ24Z>?Y7e~+x91o1sk2CJb~;*6AVz3`(V|q1y804x zNa$eQ&Rp=$92qN0I`Ny{I?dvi5Ro+5=@bq}YGC%9GgxO*>h}qd!iU)|{m>dbEp|2K zLddR`NZltTI}vmcQYK2(b1Nu}h!Dj78EsiouQ2^;Abm%T#>xU4`*Et**q8|8<~4El zlD7I8hvh_Y9)*yo)^`X1OE1C4Xr%_VO^BFJ@A1PSyZT1rMvcD&gBQAqRTIt1DjE6w zA>K&%Y)(&AlstK1{a@Bs2bC1B3g@=+w?6RRlR|qT)zxXPZf&R#Gt?FOXD49Oyx@!a=x?rb2W5crz6TIy_s`14*|hK?G&SikWLTf*`|VC$`rdq1 zhxh^P!1^K5Vj5U0I0Ie;;f~YKGUx|e?%Tc2F}@}iy{gnak6&HmlwiOF{G$#dqpH`d zpN7qX*HK1YTPhcwbv9o^c5{F<61M4g^P-UZr)Hk~rOZKB@KKNn2O}EkBc|^ppXIjV zo)}+>-Ilk#E)3?(bOIc(4cvLk3#X*rn)?+XsiHaEn>$P97`~+Ik(P9*+qV-&I++3s zTs2u&Yvc)4vA=Mm10ap;EO`Q2#O%iya)8K}*A?D~(bA{bv+9xq=coCBjY*q4IhZW# z%$#139^hY7sxKJ;L|&5xKRwL#X!$8EmVx;bki}QqbSMii|5iFuUfPdcT^4a_g^g9pL;QHG{oq;}^$1Rv5k${}z#JO!gW^P;k-lyx#MgYT?zs4S|jgYhlg68w@%O zgNK#lfxybvsOplTQMsaLmG~6xnN47wq$uZkl@$DQC+3M5Nx+4HsPd?$Q;2HG^C+3U zi?M7QT*bFJg?LE(eM*$1!3Q~4sOe?e@T}P=_$m7GQp6U4b z`tv8sY&6Z$a(PXXl@KxXibh#q6WeAnmEMz@`$tC?mfgSfOD5?qZ%~x^yXE9z;LD>! zqk>g;dcwYy(O6z=N2R2~c-nX9ealUM6t*=^vwT(gX`8gUh?AB2XzkX!MP?;0X^o}j z>1#DfX(b+=`{^|G&F;@l0rPKSPLh+>6OIL(2F#~wYXM57iqZXg4IMI=BB-#WKu?cv z1+9eLCBMD4Hv*u09A4kvEK}FK3^>5)OKg^i{|N$~nCLy)XJ?ShYHEAajf&bZR%i!x zUEtw;bmXScBNj(_qoJU1mB+stVKIG)Sb=HOC@7tk(j?8sx4x_)A}A>i623)Q1b0<{ z-5*LQwGyE~Zn>wEw@aau%6O|QvE6DmU3uG3$?BMPyWu^w zQlGsjB-V)1|4ovZykIMC&hAZ{{F~T) zblEblNZ;h^C`J@P!;1(5T{EIHPZ~l8IzWpSsf=s(M+2;Xn5xS-AN<^`0Y3PsUiG z5iUKJ>kqB_t?Jrwbp)zD3vrD+s$N)ec8}iQmE)^Ro{$Z;uZ2*Gaamc-Q#<}@rsE_~ zEgP^^ET)i4g;kM%g&+pCE*k1LZ3m&6kr=^T&<;K%g~x2@jylT zvAJHRx>6Wp20#rAeOjv&5qn}iCHvFXXDdkuFk z>y#U8S4)UMwWvY>sN$GlzeCiS1le#@RPg_TfP&a`sZ*UOjk;P~Q`MfzV)+D_Q5Od@jDBt2?5e(Z@MJJ-)~f%hd@+GNbf!G4 z!X+IE;TTFg`@Hl~Np&Sc2-(VhC@PNIAI3594;db8SlBy3PwfGTXmF=d*M3Y&?@(JI+AdW!a>$UA3xi{VN6FEmmJC6CTDrV$^z-6g`jr7_J~H6a&? zQH>0OT$_bzdDw{#HlHX8nw-CB(3zxUBrrgj(OQMsRXc`gJsWa%ne zn5bAG{01}RsE{DJL{Jf9P@dOzv`FoqvFA{*oZh5{WmJl}HirDDRY!V?kw7u#d|FX* z%G(?kUUzkQCs=C$*D84uHHTAqG#$KCtrlCI&TE5Sq8AIP6PHp@I3L}$At}+r=+YUTrVxNm_b(GBB+rr zw=m6HZ)s2Ei~7CX-PlPnTloVdMgQsx_hmN7-xT7n5AivF?~Vd?8Si&xLV((g*-4e9 z*o;8U;s_jAfMp?<4!nrpUL?9mZ#ai;UJ3^X5^nFL!VMD_ejyiR$$s)c&+=ap;|b*yyUhM}U-`3s&`*$7Ig#Pg9)z_b+dA|GeIeDGx=X zpY_sdzi%IM$0?v`@^~;F{jb_LX96!2D1R7zS$}JEgx5b1-t+G zVRl%-jY}#iwn-oolI^<>Q0`-$W@*;9#=D_CJho3$PEaG3@jHBOQHah;2eFY7k zfvux2f&kzV$cK?8_S*vh|p|xuN`68(h76 zj+jVU@#iI!e({_QJOXzdU9UAN1OUH0+VsbXM7*jWpRX9Hzi9Wx`B+tR1Gkq+2TwG* zyzZ{X3MeK$xif3jN0&!<&b(3XUF_{kqN2V;J;W^&&r(0r+r0WNg5y5NG^}Cq$e_l{ z*>9`mQTCLd(+?Vzzg8pr%EMCTB3+WigVY0e_Kj^AnP5Q4F6>7yLyop?fB^pq(J?!< z@%B{@8Z-#}K5_ML9KNv0VsUj06&-&v`%-Qd=fRi$?tPvpo-ap|Xv29=URiVUI{H3S z;`8O0pHM+pJ#l~>ZEOU))*FK7IM@ntL0S(a5t2PL*!>DVwGkfK)@b58hYy68DactFoKC5WKXFP$gnhiyq>q`B>XyYxqNG>m={HOn=B@1O=<`L z9hFjzNnYZZVN+C~r56j*%8FRHznr>J&sYwF(C-+b4v>NfThyg6{~J~msDd(6egl4y zZ7(E#F`?m*Q=hu10)rwR2`ZNoI5MFdwtTX7<>LD35dZf$3mHHc8dn#KB3@ig-`o|u z58xH?0s~Z0(dPmyrTfjTwNZE`<~RC=f}I}T);D{jWAU>5U~+jDEjg&&2W=E8{~ob;096LBjx%^u66gGptwHhZEhV{W1a0S>b!aG! z%AR0hQVWg&V{;M;NU&~gFP53N>h#MHosin(*Ssh>Zj@<_(<@!}bp=_BwoKB|zC z;!%@eq;j6*fX^kEMo!*_gMv?4(wK%@VYTwHb5Bhyf4+KthX`(*SYX0c(YM9?$=CiZ zqR->*apu+(DXVxNb;++QKh(@Kj^%w*&T|R+m{WZ4+q0l4|yv zRal{34SdfPB2%E$gY?sb(vrE$z$K}M1Y0G5{UQBh`i*64?{B08NP-eU#P*!=W%N$jX%P|eH!IpP^^rLJy( z1!pArXPign7z@_F^dzUrFZt`=i2z{AQ7}#b5lA`u=hRJ7u09aLwYs(Irl)rr_4E4< z2yHH-lyCSenrO6id}Qe2InmMqb$%c&9|Rt^y8NfcmVudi&z1yM z*waWD|1|m-lN}yQB-XDy`oX>)4|ivCeY}c8gd~oNHPcgb80{`*{Mqb+Kg+T&ekb37{A)~P%#9y;ZBY#bdg zBFs>@oYGs-43Lc4gepr(Ebtji#YR%uswMUe^P7gRfvqlm(0w^$w`HIOH8~@DE}}QH zIOqgg0Va>HHFyGRF5kteRt{|j&$k#?*C+L#k&+d~mUilb!}`-X-SO60@|}<|FU*I* z;jxSiMrs%=r@zou?G}J|TlbtH^aLv`rkrjMg;l$JRmSa}FF#S1=;A|~=2y7Mx(l-C zgz^cH;0&BxnpQ_3aYQZ=(ck}`Ss|o;+N<*T>}S3ZJzZTVLp#e@SeP&d!vnGX_Fr?L z(phU8&PE>O3-_D{??Gr9FDz(|UqpFX3*gHS!2av$kwYix6Zn7gyUqR{h!}R!0)I5PAZ0O0idh7LWBk9W1VVb|T(TEm49~otRd#Q?= z`^RExY@=dsOJZgI#5b^i!x+<-(%E6b1YuiBF z1mt&nFg^~qxzW=3nwpJ)H}xkc3!kg~3l)LmUjXir$wg>TQ6c{--#4<}kk@P`%nq-f znOACGqfNGdsIowZkL@pzTgDrDWd})=c&M)4FE&~Y321s}C8%h-{5!P^oGwq#FZ?o# zr96Jxz%+R>soW}HH5?>x23ZjeIx^+^bK_x*D-el3Q%PA4v&>M7=SCrUS_hDU$tbY4 zSw%uwR4k*zLjHmkhFt(QO5MqjuvW<#km&;r>w`jdXe76odIev^pW-=JqCHEURI!8n z8)y?;{$PWxoW7LCtJkJA=bPIF_`-Gnb@zJT7;>Pp;&D_U7t&wNET#x)l44-a5gNuQ zFjfKpkzkKXEzT!U8|mDkw5RX@Hn%fe>JqnZ_h>{~T>EF9eSc=K-(iS7?WpKz%QYJj zuw`bj>|Q2wdJ>lxs5?i0s>-56gn4>E}$(#o$uSzTIRRhy&~CRARU zH7Y#GapItH3T}>(MF4e%8EO?FZmm|hv4M*z;vG_wT!pB)gS)r~duL|)bySo$PIlK> z%{EI97fgfoLA$ZJ#|+S_>bzs)5R|J$9}stE29W~%l=~0k=_V{peqca^PiIoB1|o2@ zZD{xIRQ4l6dE9I)w@aMTHBm9=#nkZkJkXyv3troxp{rD0F4QU7ND!KXw$k<0j~S9B=Y&+%dH7v7=Yf$dDfr9~5VN%!3#(>#xL(j&iVT zOH4UAI5#prb%(N;@q3UF2Mq35iwNtJne;}48pt8lwxU5{`XZC?K_)C?AOQ+ zj~T@^J!_kre@_mjs?Ph(9yQ;+ZMpRa{hoV?-_`NT6{Cl8xE6_O*z@1|=$aE?_shJ~ z*|Ky>!PU$eV0T_Z|8 zA@amO*RGDq;W=yihl6{`n=JlZc;+-yg<)<-6Z$*`rq#{ z_ni9NoNV6mTvyAtXc17JurN)0GMy*5d!dVH^xaB!Q9(=v`esPw7o8TapzUOJD@r^u zbQH>P8p6@jF_OK&#hsXJEmOQ3SN?`jQYU z5j*Q=Z(JfvIb`!Q^{Mp2@4Ao_tDc;zvb5#DLn>1ZH8OWSBdUKZ2^}Uzn2GZc1uEM5 zyqC`;?d27?Gk&qN>+g-g9hNP${1)9Bmb$+|Y^$^sTog&0yZY|mWe1>UAJVJ4j}dIl;S(rpF)cpn@{>D3N2Z@|A_{h}5P_c6In(K#xD$+u#Ek;vYwldb zNu5V5EMdC%+eaGw`O@#nXLW1DF8S#Kj|UaHF6-W#4?G#vYgm9Qby0G}V${vw2yn;t$(Y{ekpVyu6)f<{x*b;nplSgM&jv?(W= zE{>MZ;dLJ=Ld=}@__U&Ll8soA`5TRtr_*hH;|eDs4nUAFR*ciO(((Rr!cocQ{YUki zhOFA;7vOJ8y6tY&P+9F(C=ZrkRmR3PIsin8TP|oGD=%K*af>akdONka;DJwS=4_m*-{cj_K*@)z{O8 z8Qv*58+%X?NmhYy=VT@$gYDi|d?>Au@3G&yC}g=;ETh1tibVb>5J{4w3N4G>tUE3~ z+XRNQctv8|?ty?S(ZqFpC2N%}J)b6L7EDp)C3k~cbd|Lp!UOCz&dlmuw_-f!Od%b@ zp^-m3881bOM^pR(sgMG`LHoFkDYhW6R7;(6Zq=y3L4sh%NKUWF_)f{7YCu;x#I%N$ z@$^K#th}gEqkN6=-nRAR^UTN^48T0uL)B5sU9;yQ?#~d=Lc_T!Y7pWHMbkGD9^5^~ z&zlU{-63;xJ;|P5r218eMksI?g5<&=>C07z|;*`5ZlHBtmP-uF_j97eeSn-8V2T z-hO1nm{N?=l~|IOShC~C>6)0^THT&Cb?q4Hxf)L{63L2QuEzmov4af9@#$g9b3!E2qZ-ZX5bWqIoRo(D2RinA;EVyxlmk zfUDQrNmLfnTeYdJg`_12AbQ{S#xtLTkP!AK$J!~ zJ}vGF=b%P1A`PTpB?{CcTwqzW<)kwM*}lGGT>yiHvCWqDgH_T4uFvy_w0;r#!f~|C zwk@S(6b(7o^NW|e8-h%f*x>?e#dkYQC6+Sf-y(-YGI~f^MHHwTt1pieac=DoJmC`L z@>{MK;uBZ=+AYd@^k^VZfB^V{37JojP?k3osLMHRZFgIo>8n)u{p0p&{FH5%0dt{Q z2k8gz0ygM<YvmwppO4;;lv5+C7 zs=q(Iu@Dkdo@ng$+574?J1R^B(N{Fir+KBF35~+jwo_|kwyv+t8IwK7qw#{jC7rhM-}$}6A{E~|XSRH50*Ha0q~00CwS?rLwUrVdi^p`f%onGa zTYIgjyTz(86$@Sifg;zm6p%rc#ljM#H>5j8yQ=$ba3$sV2nnRfmH>*S9h-dmdCT`O z=U0)FlU(DcE&42dWqX3n2zwCqf=YzpgE{-KUY%k=@~h*EV<}>_Y$ga+&5*a{cAW^O zBy1K2KdJITco28!sC!(>=WzI}HLDd=FGx40D)G@=5xpL5za3$Co~WvtvfJ-WiIDMeyK?HPD8H7D+RSCd=Cxkohn~kkJk!uy72`egW zEIY!nfi>BEg`KY}KYh9da^>EO1G&4OhSnDKPbU{CB@@N=9%F>z)3<#3*!uG?heD(f zMJ$3Z7pkE@=&uOAc62=;Mhw?Xq%2j@G^>MPje89Z)MOT%m)FHQwfE=@uZ<47H~OvP zU3arVq~dCBCG}n?;4fc&M;1*(lWr4=w+jm!_^;PVExtM(LuWaDtN!Wcte6LfSGPBU z%na?cBI;ybb9g^QeMm_RRj#AZ^mwEgYE zXUep;u_K*yJv@20b*AITSbO|oUfSXF3si5W=xF@Vo#kP~HkshU=MP=vg<}F+J-v-h z2pL93D)*Q5N>$dGg8%6`l-B);5XoPv{_$;7F>g3;)frQeW(EMz%>~ehcebEaRqvWDsu{(}RG5*r zHZXKb6x_yn@9Jco?#)rf6#a!jp3GJwr*j+yB842eSaZ&PP*`wPR>?F{HeW|rOj@kQ z2LTxzAUljk{c^vSRY)wzZRO-0Bt0vwZn00tWl?!*H6Z^i7I&9ZaQ+c-{jzZG@=&8qRT)IH?Q1h>w$7t4%lR>5v<6}!a?z!pWZ0J;J z&dz6ZB|Q*FcvshpxVeNLUBm35co2s>Z+^n88mK7lAywECwIh5wrIAA4 zRQbcmWD!OL6D#Os*V5xz3q;Ua>!ZU8oTn^Ukyvp<)qBnT+nXCR=J?53>*1be&VnLY zQ6*Vj8Aq9r%qV~Oa+mV&Bu-JQk>#fFqefj(ek%&C{Djp(JT|}c`asKt)fJ-$-s23ZA2P`mDe;$UAM5P-8>{X@?zH!k?uY&Yc*MwsW_Qpvi!mf`%WOHHF` z>jGs5XOq@$H1?k?@#vzOaX@fQR^+zzUGHc{I)jr*LMXf^7S*?*Q@HY)?|`nb9=#oB z$**}FFB#)uJ;DW|$6xr$>9Yn^LUnXxSOBu6QKyZmgu{2ZvWGzZam&`x>qN8=eGT$| zxvZ?EphE3@PcH8EH{->fC!m(7RWmb)d2(E$I3Suo7u1?AjB8-LJeQN{m?Y)C$U83X ziWUz=-m=-;@{XX<$BQ?x8bi6QP~)L7d!4%Bp!es+TS}(D!!qy|PYeYf>w}`^ORP=D z^f}eAnvlvlj2hvbb$SgL&V{ZPNFi!58U zcdoU)YgD4#o=ExYpRiLiN(ca{ie0z8!5ss6frn;*?``*AoK8n%s1T0s_o6X;Dc2;* z#1R14cT-|R;$8Arf)v5a^3*#uWAWNZF}8!*4}pBkn2c8h+lC&_=HtA#?^)P9pAQ2A z48MDiM#=)doE6$0u}@^Q*$d&zT90~|pLTDposEQm?&oN7J6rUr;-QKY(v7pgP@SKj zI?X2UkSsFu$o%m@`6GT2m+I+k^T1)tTg2>Wj?$N$sVH?L56rJ;A%H{B2O#s~h|9&f3|3TUvl;Xq&DyXZm&5hMptfHI$f2P!N+e@95!Gm1ICCy>`w@ofqojpC16C;zQ31+;jbGgkB$@BRw z47STif`3!%ciVnd?u-T=9&6g`+!mLOBd@ior^N{LCQbr7Wm!KL%FG*?^=mls9V|>y zt-0`L-(*DL`uUQgF48hCL1%cEG=*$7r;SKqP|G^vQ7)l;B_(?i^0f;JV`t^0F@7g! zZnBAhoUk13>&^0fqrD&CJ9ieI{qtQ;XEdwcZ7zW&U(rtuG8jaE`Hzs;@I88Ds(hACGAcvP$Nr? zBXww%Nt8UMRAa6?rrO~#oeOdVKH9#Y^9@Z6Cuy= zd}qXs>CR4$ms7#kkmDb6Cd$Om)&%D*Y;8|@?=rY4Lr4x1paA}zoIlBYDbF5JW!C_F zah4=J4cpFjrptWF(M_B#S;)VAQBj`iTR*9H&`2pO)*Aoaou0`vv}iS*)2psTK4f^q zY;$=_K|xt;d+O^)iSUkTyBlZ47r*M^xe@oEZc~!JB#wY(sq-zh=;;7u zD>bg5F)5~s@7f+`{7m_-jy1!<#}IAQ)Ruh(p!Tu-omIi+WFVMMDdipwA5Try(^SEl?ki(n?Y`JOjNk)hk9+Vib$0#kI?x$Gg;yfZ^#e3#`a zU2I&79wcH|hJ%{W@nWSdJ^K6MrhKr`U#Dz(K(W3YbmT9#P{Y(-HYHkV(5iZ#?}rzS zE&5o!55vuix(x!LMoE<%zxSpM(&r!tG~s}TH>B1KJ$X#X#;XbdDZA&(3*F_Dc;{eO&a!nnHJ7OVy>5CrA_i8zLxVy=%1kZc8ye(cpwS&T>TNbn zmwb*a3_Nt7zNXOzL06JhEHln2`M%_p*hbsLAktA6RY=}Ha`W*aO*S!Y1>I?*;SecM zy2+2m*88y8=E~3_(H%b$&F^S3l6MitTa|tisX|c+i!FDQ=;mT$DD+=Xi?% z5LDKfZ)cT@cBl8`ot|y75?@LNrmA$PPu z&sM0!vRlbcXVwkXr0>m{=R%YhQrf<=7&B2ev8(s7)W9H{uvsDC%Ocox z+0yR3+>c;m(>*Ogd%@F`JQmPk%ecRE)%9X9mA-xnvNjb(hY-E~vSnH#mMI-W{P%U` zAR_K72>|@5lK-N#A)P$AI+gOPN1Wtl4a(c4w~TX23jXRuTLle}owQIx|B0?531dmv z_{Ub&!vMlWp?`C#3F0qqQg&;my!!vv%Kd-HCJKTQ5bg*vSBDWRM;+g}p#*#MMV{KC zubj?}Y)Yrn1ArPM`ip(zd;-(u_1}JyO9bet3T8fJ9WhzWs@1<)V4YsyR9v~6+Rc^L z=g=Rn8(xgno@}7A0RWFz;+3wK62{=yFNOO%5KDpl>-mRdQ}La*^1Vf2%WP{DxMJU7o0WTEPjs_Lrr5|%q9A8^n zre2R8K2#`L^{s)xXZ=*A>|BnNRE25or$>V*^vc^!5M>CKu3jq$lAC&BMGsQH-4k=z zP5ZIAc`DfG;5XmtCH<4M$yfrzj(z-M%SpdB=@Az5_$+U1Flo_FNsrXWWE}qx9;^02 z2#y=NwNsq(e-6F{>v=p+uk?QjmaI*?bmDe6N!=Qfz#9l0`j^ECsgM@rpGZH40|A10 zR6m9%sWgne-ULJR_D;$ZCjO*7{jI~2PS*mHMcy-9Z8h$HwGr8Hk4FT)+BR-7deoGH zf#U0sB^<_2|0haSspIRh2h|E$Tnrc+QK+oG^0=?1{a_+*G~a+*FsbS$M$tBAT|~`{ z5ii?rT;B5?$}1VxeT_ysV;LxB!9AWhD5q3KV+m)A{_92Zki2Q&QA)3bR?mY|FL?jh zA5RA&L0LI{>ubAUU@BOCcD)r46)|M~wxYWth#yg+rRa}+h(l68d@y2qWwnLm;jTo6 z3?1C)L4@(}-rR*hx1jDZ8 zk*25w2RcTmT~n3l%R<&q^m0F((T6c2V8-$-Az3--liuB_LjIu5uW>FDCiV z)S9b(7MVb<%Z!t4BgvvO*V~huCkkOruj(KEfE*uB9cPp8AW1%Np2<7Npi+9gFQa4J z5jytaKKe^j<%`LO-;yGAN99LN86(t`zW@DYwFOeK{Y6<5clD-)r0om0w8?TLRooda z<3w<7vO=CvY`O(}?x0gbe@m~vs=fCT67ygsR{m;hzraKXZV7vcv2i%;0z~q9Ex@dw`om;>ZGWHiy^yZQ1GYIS8ifB5hX zf?H?!pmM{mz9U>=_#(?%Vmm8(JBtS9aw2>!TF(+zq5NEs6MeD4hESdd&sFb*?F?C?o@j{YY zqJJ95Px<(7G?L@hz~Ey4V2^phWO13|+ra(^ui*FR^S{CyT>H|W7k6!g0eym+^Y&EZ z<*ofMZ7$mcK}zXVf@~Aix)a3A#zS zv5{3zR?M~QH|NaOv9Tc~(6h8au%gwxU~4GuC#@%M4y zz)g;VoxNq;gWZpYo6i2ZPxIpkw?}NZ^4pIPe&{we(4zbC12rzC`C|YgQ#&C-DLv~t z($70)r%vfv-2iGoF_^(ryxV|G9Pu_&9t6=h`rasD=XVF?7|xqz zpU5)`BdDz~K`M`%>9u+|f&MdX;@qt)Qf-s!>S0odFH5ItwQd?@7g{gt6}38z!&-kD z<)ozubVKeO*!1PPK90@fF?vZ{E(dn3_0DwluZZgZEx*RGM6HcPT}mIsxp_F*o`>Ov@wz)+wJ~zA4$Wn?(|MC zM=Tc?uJ!c^6Ez_4rdTqqH%q>d#V@FCU@mO1 z>(A9ZVE?SSg@^t6Fn?TZyu9r7_+;nog&Y4{6AhJnV;y?KT6Qo&;GNWSCLEgPAOGO4 z&jsHvsymuLV_OAilbCyK%sHd0^4TBPsuTB>4ks<(q>&k($Z&uvLs#>ZSVviIZRMZz z5+uss`2yV9B>PfN*O$-z;6wNKXKVSr-)c;}J;)PBbT*`5VIKjYN8E5fI*d}XlGbWO zf@-Za02dScj5V4&Q=cNFq3$d~U#3+D)r)b%vX6q88}e`%Gyl{CD% zGylX9^vb~pipMzr6Afb)zhpXjiv4+n66g!$LM;U-2TttAqw&GyLrY$=c%V^(W1xx14(_CB3clsS`CGm)reF z(X$*uDV0slV-sE@^IQ7Nnw#zU=8>| z@6VrqW)&H!%K318+tAd^x_3Ru(`i-Y^VQB}44I{HTD_|$Ht*Z|fB}7fht}VTsGoQ( z1W9Irf*lo-cYG0bi$s#0jx1FK zk>OZQKQ(X_(CGh?Ct^90=+Y*QaJ|8xlfi>#O@y#W%?3~g>B*de%#sMKRL?cr{q@!OS8f(z&=ugm+zBtZoA+CbtH8%4Yz z(%`()8KI!rQPg&X{Pm56*F4Au`CEXOlC~oao0ZSXZ+KWI3NEw&0V(^Xl&$hF{wQHE z$@B7Is%JP`c=H_{xCopxB0u(bur##28E6{cH!4i;aJRQB+s6zSmT22NLc;rTad?S( z1VWJ2^A+1ZwI){gNQfEt+haHDy*$lcSo(il?7cbZ&iJjkfLgscSGOI*pGnU7ks%DJ zA5%$iqL8dtf$~9&|NJ1m(Dw6{%`C+~T{OW@`o~p4{S-o8kB?6D%l=9@=(igKUA&0radeoddD0YN zk6-qovxN+1kD&Za#bY1uTN=h0q(W2V<$vszF!WStPBd@6ZO#ZhVt(i?Ts)bS0=_ng zbXOPawHXS|n!FW(ArmkT$H%{l;*dbdp&*mmbjA^YfUlD(~+LD#qu+e@+FLg_H$9=++lkgZ>;4gr1BgX2h_%NuZQ1^$)?OR7PC$Zx5N^n zrprH4EIp9HGvQ=PgBv0GeM5T>?6K-roHm1tdS}~eGYz(Q={@U;4|m_*h!ETPNs`D>0RndB;LyPod2&{GV>*Y3tb+qkaMaId zw{>D2x{FnZqGlP3pN;B0e3=Q3EIb?Q3wtx6a@&ZAN76;_Dqli=Av==tyjRQRYZy=h zIW^&(9><~KoSUu1FfLo>N3pXMkN^NroG#5hRb6sETv1zdGKuOR)pWce ztdTJ8bl-1c2*Lu#hs7p;eWL$^g1B{Ix*|6JA^U{8tl5GyhI=_R1aj0fb~!K z3L1S%DjyUsVPs)$d-hrsLi=shJLMLmz3KWzhfXl$6#(8|*e{Dh*lD^Z8^k?HzImwzc@5k!ZBU6rYcZ8iq+)3;oncr+;-{e|)qv zbmm1Ys{18cE(`%q2IZd0Pyz~89Yz|+k-dZ)vx-WQVWrlMZ9rN_F9Mkqtp^#TFa-}l zdGVoU0vI!Ja&gK(@5xqztY1BRvd2 zZ!gE56^Pxgf8;s6h%IuV?x0^<>-2LV=0GU(k)`IhDfw$Gb6h^b(eEomVuAR>7tx_{ z@1p2wN{6o7qnO3TJcG$f(LqaTb)%@{Rv4%tY0By|J+mYYjY|`wX#X5}M2s)|AiN9w zmlH8xb=CIaHiW&!iI!voU0qDQm7#MSVd9y-F*67#DQRXZWy;);MQ*Sdo56L_Ub=eP zTry4{M%W80Y(`;}mnheojGCfNJu|SX@=?J3j`%vhM|fJzokWqyBA`L!9xHMBn$ z3=rN&h+YyoM^08;WI?b5D?c|4B#dA*@~mzNB%)ERtj;D#Cf&W_2LMcCxG%%-2-Uk+ zy`26%pa3c-Dl94H2hAr*9z#oX z;)eb9Nx*q~Q$Ikl&2tx`M7bo?DbadjLrQeH5HZ}h9$mlYRe$$tE(WqPMI$*_7I$fr z?!~k^NE5`nVW(zIO7`W>iZv=B`%;(QZ62_?G8=pS;=6yxN82x2QsH7s4|XyZJg-4f2|bX<0n`7pJ^X%2i70Ootp{ds2&EJ%FH){R+d@QnZ>Z;{^`3Pw5`<>2{Z2U1Ch=x##fOTjV>7YJ;z|)A%kWtv zVc;kF=g(tlWItGh5|jP&Kni!oU~xe9{s;jkMyc|d>;p8+fr`OvJxB)~>GGZ5^vX%R zHz0-D!eHpbW=IW-gGEUhugVEipp?R+Sb;)3)5z`y8b`Bl8DbY3!ttb;o>6gA4 zC|=S;VNO3#U(i|#=F3urH0=38dvKsFF#n@BWyD)f>XL6xQ6+E#$!Np*4$2m8VMw@v zp1IP|dydv)#z6lrp0?QEq%9Bj1oL9kbX_1jmCidu$S>>ZO3+8yet;vQJFvDWuvnh> zn~-{y$>H!!5YB5!QjN*|ZjS$4$cts?{D9UOb&2gl@0CeMSQ!K7l;>Vn*|46{6|DP1 zO!&dGIETnwkg|PlYo_e}n>RLFMc^c^=hNNxXuh4P zl45Z9^T|Ebur4znI)q~tfy2{Sgf9D;A8Vpl3`{#7yo2|^8k$SJT;g^db?n*8!}-~i zP?|L^y}@f{(7SV}tpyCwM#Vs^Y3xo<@8m3T2{E|*mvy{}mjw8J)5{|6*I z-u=;W2Nk@IvX2pF1o$r7I1I;_$E2`23G__2Uz+z|Ryqx;V@Ku;yvzwJEr z;P_tv1rz%0gZqU!&8kKS0CJ`Buhh6{53k(L&m8UGn$4*b%jK7bPf4w>R_P$>h@hT2 zn^mikEUe}W003`_OTv$z1^|?BxcWCQ(`jQ|-InzVXpN}=00IWHF|^;|5hJI1dNrpy zp2y}Eme=n*88KtS*@$;Jf8UAw>Bz&j4lb1`mhZUsEG8$vv@R;K0EI%`e4fhYX;aeF zB?E^BxIhpvW6{R<^*X<4I*cHTe!a#MNzQDTx@KyaRz}4ALsJ(7Y3T(mlE|7@qiKaz zKc9IzYl#1)&9k)JI|C|d^W4F=cg$NfD#*ct)xHNFAg}ID04d+g&#goPTxZR_xh3aerQkdXrQL061{|6`LoDjL(CoZbfj@bv8KCI0JPTzV@J>XsN|S98}7-&vMZY3XFP>(Pd0mU7tS;QmuX zq+;3Gt=Fg7t@vT|o=dy$#6CX1Mqg2-FtT|y0=bm&LErRl zY1+v?)95(ja4V0s@po>Oq$oAj2aqP@fPfmqsFK$>_4E~?Ocr2c8SdgR#>>sa%s8>E z;%Z{rhPzMZoxfqnV*dFi4t!$6VY;6Is+CLf(ZefXGDzMYmZ}EWdfMMNV-KEtb@1G) z+~S&!00=Ce+jr!U4%&Q?h`3?l?JZfbSRb93+T^VoGRTX^h8(yW2>=Liw;sOwn5h93 zi$Uj<*5;Ph{y1;Q0DmU{Ks{IBX>TS|D0;bBkLu$w>4!5Rp0>ANr_CP~h{K>usyXV7 zsoOU)hNYIRl=n0F%D0p5W>XS{=rP><$2;Yl-qal*Y__(;{r^mjE8wzshYmqO5E+ZJ zr!%=yNg-@kJTAVUz3qZt{@}A1n(l}6dm(RZl$NA z86Jn3KQ6Gig8e>&Kc>HTYHmeFL6sqc+}FR>wcGN!*{SRE(sI;+or0=^JJabZtZV zVdIQ}zg~WsUQ{g<%P<(UA&um2Ycf6D&&Sam0FY8p`6{X4(vLGu4B8aju`r}B9UZ)M zbTC&S&MdAeso|8@@#;8&`bHs_FXjm)B8g0{RQB`LxL}b$V&iP;;$uBxn`^H=iXxJF#N+n84@nayIS1|N87Vv&S?Iu3HWl{BfQZNixm9t$uEFRxUw6J1%``b3u^LZShSSYP1Yf#9QLV+~$S%$r{iMzKI z`0Q3wQvd2|%)^r}YD!vGjaWhlzBs3rm-Z(6r_0|oZ*lUobMmtT09^h3{_R7LcRpC} z9omweoxWl0^NVkUJW+LV-R^luOl*v{T>H*mGkEa&+PlNw{@vKXA3VF?^1ZXQTF9;b zYq6+N9Q!ayE|teWO^JV+0st5^Gjzc()9|{=CA|&I(>YZxbmMAqqZ7>t0Kk_^M_PHR z)_M2K(qn3io>k@$&=>$fnUJ$7@xiT<)Z@LU;n7V9dL=RSL3)l#IQOfocU8QhZI54J z(Wr>*f-&B1X_Ylo{k)=!N;eJdpIuWo-QP#1R2H*2>S}`jA(JbW1spa2pi02667VNo zzkG7kI4|QSYSs7~moAN+ghOK>0Dg*mzP0Z_zD!y#64^1B({EoJ;pm)EU-$dKp&g!O z>#C7vMl@A!wY-}9IVoXy_SOpp74-nP007bptELV1JAFSkzq~#&xxk1)iOVVt@8$f< z-x05q3JmGw)zkayd84gJJ=7uAm#LfUq(Gz?sDqiymJ%4injY71(VH>Kl;{Qkcv6yg zGA&-G_BvN8ktvlAigJ97%!(U1OT7b_1Y)q6b)!sDA#5z;^E~jzj&y@J6(z&$oOR@8 zcuiD(wnUuIW2+0_LjVl6aSXovmlcIZ!eY;4B%&eI$-(2^RFp(lmi|3tLN8N|`@Z4P z(-JOEg~wmteJE8ZGHPnC&X{7)GRUZ@RXMBx0Fhi?D-fKWGU2nm19%)}WM9u(wqV|v zz(bd#R?X;VYi7XZizD9UL?&toUgs3mP95sEcw&f`qj_a*V*^iUV{Y)|ZPwPWhBG?K z=QXo@J#0huMD$4v_|G@{Dn%0GX9tdjc}IkD$IHJO^)8ckh0df5E1Sl3F^arhi|Jx3zGpP&1-tfYe9C|1a;1bj0J zb}uaXG|KZ zLvKz`Ol`G_c3~Rwq>=}PIluKA_H)b&0KiyB_eIZc3FI;@?k)fz z%(5w|W=Cg+S=zlWFVfn9FOzNx>hEo6np$5y>h`&}l_kYI?)8z=N8CQU*sJFfH79uc z&_QSj;)*4qe;!{P&~t!eOAP$c{Mo5h)f*o_TNK#S!GLu-K0zpx=?vk13L_J7$=T&+ z@5Nb}F$>D-k6wL4CgSl}%#)LTj=e2>E$>A762d>%U)c18+|W^_*N7W^ z4J>nbH3oQ+1xfd1=hw46%#3x0udd9S^2^g#BpjA45(5C%h4-Zr@Ka7*Hlb4fi{pPs z|3N$YYdqE-re^nYbEbQG6EWB#F2~t`bu}{$0Kk(BVjA6-c%;0nqcuvj!6i=mSVzkfZZ8-Ifg7Mc=V z@hH72sUd(GX8yy4;-v-rHxAT3dY*zWlbuRWD44&xfX6aeO> z`(Ms!DsD-stG=9*n#-wIB1nx$U_xpd?v4!B^U{LZkFJk(bPKhx4YRa2b|&vjjONRv z?ktU0NJX_RpGLt(TR>+OW{ihN&tupp&Ky^@~d{ zL8DOf#stAIaw8&T-q=8$I~y`6iCJYE7KEeGsF;+ZzW$D{ln!p1Mm}E)^v#bPkci@|e0JE3)pqm{_hj5&iz#{<@hvG$O&>)R;~r z{CNKv0ANo${`e(11OqmY=X!c4;q^T0gLxJERg1}g;GlFQ47+Rhd0-D*9$o!Fk zf32ImYxzjIO@4S31cwKd}9LpTBoPH595`L#Q^{~67k|^x3A@<({LKWXKNZ`p=ZyjF5aqg zRUaeMsV?5@diA|Ja$2*`DwN9#xD84e=19d343B(;x08^y==KV7rr49kf6 z+m_q=f4OI7$=tW&?wO-6{=0V%f*`2#(oO_2zJ2%fBW=6i$Wfpqe$#7`&)vWYqMfozN@>OZ^a0h1q zz>j^xOevI}X6FC+1yd+X)FZug#tswHBs243bBj_V;|L7KS$7Z^i$)tzi2wj9nZTeD zIehW{tC41gG;hbIpEM}I#nr~x!ia8X&RV(mrcw!$i8xnV6DF1T$#5#-|V$$rK&g`9}NIx`J-g$_0* zQ5vOEYZ_zW)0_2T(Z;}j1za`>iydw6rV|chO3G>kf{|`6s!v}Q6djIePl;fdbQQO?DX>9{oT-L)U|Wb5f4%z2!svs3hwI? z^*qzJmz}4tH2|QYj=y@*>79pXnOQKuJcuv$FGbdym#>YV8c|%ZJ0|Mcw7IH{X>~PT zMkf6)oVqn(I)gy?&;6+XU0D5MU+jy0u`l+;y4_G;ZowD(VqffweX%e01y;Y<7yDvg s?2CP|FR=Q>zStN0Vqffw{r|Q91F&uBJ>4TpQ~&?~07*qoM6N<$f-wo$d;kCd literal 0 HcmV?d00001 From beeb6ac2ff263726f9285284a9582a646f8b2cf4 Mon Sep 17 00:00:00 2001 From: hoolich <469165171@qq.com> Date: Mon, 27 Mar 2023 18:46:55 +0800 Subject: [PATCH 10/12] 20230327 --- Part.2.E.10.email.ipynb | 625 +++++++++++++++++++++++++++++++-- Part.5.B.combine-csv.ipynb | 111 ++++++ Part.5.combine-doc.ipynb | 113 ++++++ Part.5.split-csv.ipynb | 93 +++++ Part5.B.downloadcsv.ipynb | 590 ++----------------------------- awesome-python3-webapp/LICENSE | 0 awesome-python3-webapp/app.py | 21 ++ 7 files changed, 958 insertions(+), 595 deletions(-) create mode 100644 Part.5.B.combine-csv.ipynb create mode 100644 Part.5.combine-doc.ipynb create mode 100644 Part.5.split-csv.ipynb create mode 100644 awesome-python3-webapp/LICENSE create mode 100644 awesome-python3-webapp/app.py diff --git a/Part.2.E.10.email.ipynb b/Part.2.E.10.email.ipynb index c81a8484b..023fb1a8d 100644 --- a/Part.2.E.10.email.ipynb +++ b/Part.2.E.10.email.ipynb @@ -14,16 +14,16 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 2, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -45,7 +45,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -53,49 +53,56 @@ "output_type": "stream", "text": [ "send: 'ehlo chenqiangdeMacBook-Pro.local\\r\\n'\n", - "reply: b'250-newxmesmtplogicsvrsza2-0.qq.com\\r\\n'\n", + "reply: b'250-mail\\r\\n'\n", "reply: b'250-PIPELINING\\r\\n'\n", - "reply: b'250-SIZE 73400320\\r\\n'\n", + "reply: b'250-AUTH LOGIN PLAIN XOAUTH2\\r\\n'\n", + "reply: b'250-AUTH=LOGIN PLAIN XOAUTH2\\r\\n'\n", + "reply: b'250-coremail 1Uxr2xKj7kG0xkI17xGrU7I0s8FY2U3Uj8Cz28x1UUUUU7Ic2I0Y2Urk-CIYUCa0xDrUUUUj\\r\\n'\n", "reply: b'250-STARTTLS\\r\\n'\n", - "reply: b'250-AUTH LOGIN PLAIN XOAUTH XOAUTH2\\r\\n'\n", - "reply: b'250-AUTH=LOGIN\\r\\n'\n", - "reply: b'250-MAILCOMPRESS\\r\\n'\n", + "reply: b'250-ID\\r\\n'\n", "reply: b'250 8BITMIME\\r\\n'\n", - "reply: retcode (250); Msg: b'newxmesmtplogicsvrsza2-0.qq.com\\nPIPELINING\\nSIZE 73400320\\nSTARTTLS\\nAUTH LOGIN PLAIN XOAUTH XOAUTH2\\nAUTH=LOGIN\\nMAILCOMPRESS\\n8BITMIME'\n", - "send: 'AUTH PLAIN ADQ2OTE2NTE3MUBxcS5jb20AQzFoNUU4bjU=\\r\\n'\n", - "reply: b'535 Login Fail. Please enter your authorization code to login. More information in http://service.mail.qq.com/cgi-bin/help?subtype=1&&id=28&&no=1001256\\r\\n'\n", - "reply: retcode (535); Msg: b'Login Fail. Please enter your authorization code to login. More information in http://service.mail.qq.com/cgi-bin/help?subtype=1&&id=28&&no=1001256'\n", - "send: 'AUTH LOGIN NDY5MTY1MTcxQHFxLmNvbQ==\\r\\n'\n", - "reply: b'334 UGFzc3dvcmQ6\\r\\n'\n", - "reply: retcode (334); Msg: b'UGFzc3dvcmQ6'\n", - "send: 'QzFoNUU4bjU=\\r\\n'\n", - "reply: b'535 Login Fail. Please enter your authorization code to login. More information in http://service.mail.qq.com/cgi-bin/help?subtype=1&&id=28&&no=1001256\\r\\n'\n", - "reply: retcode (535); Msg: b'Login Fail. Please enter your authorization code to login. More information in http://service.mail.qq.com/cgi-bin/help?subtype=1&&id=28&&no=1001256'\n" + "reply: retcode (250); Msg: b'mail\\nPIPELINING\\nAUTH LOGIN PLAIN XOAUTH2\\nAUTH=LOGIN PLAIN XOAUTH2\\ncoremail 1Uxr2xKj7kG0xkI17xGrU7I0s8FY2U3Uj8Cz28x1UUUUU7Ic2I0Y2Urk-CIYUCa0xDrUUUUj\\nSTARTTLS\\nID\\n8BITMIME'\n", + "send: 'AUTH PLAIN AGhvb2xpY2hAMTYzLmNvbQBGWUlSTURGREpHSEZJT0lB\\r\\n'\n", + "reply: b'235 Authentication successful\\r\\n'\n", + "reply: retcode (235); Msg: b'Authentication successful'\n", + "send: 'mail FROM:\\r\\n'\n", + "reply: b'250 Mail OK\\r\\n'\n", + "reply: retcode (250); Msg: b'Mail OK'\n", + "send: 'rcpt TO:\\r\\n'\n", + "reply: b'250 Mail OK\\r\\n'\n", + "reply: retcode (250); Msg: b'Mail OK'\n", + "send: 'data\\r\\n'\n", + "reply: b'354 End data with .\\r\\n'\n", + "reply: retcode (354); Msg: b'End data with .'\n", + "data: (354, b'End data with .')\n", + "send: b'Content-Type: text/plain; charset=\"utf-8\"\\r\\nMIME-Version: 1.0\\r\\nContent-Transfer-Encoding: base64\\r\\n\\r\\naGVsbG8sIHNlbmQgYnkgUHl0aG9uLi4u\\r\\n.\\r\\n'\n", + "reply: b'250 Mail OK queued as smtp10,DsCowAA38jCToW9jIKNdMQ--.25745S2 1668260248\\r\\n'\n", + "reply: retcode (250); Msg: b'Mail OK queued as smtp10,DsCowAA38jCToW9jIKNdMQ--.25745S2 1668260248'\n", + "data: (250, b'Mail OK queued as smtp10,DsCowAA38jCToW9jIKNdMQ--.25745S2 1668260248')\n", + "send: 'quit\\r\\n'\n", + "reply: b'221 Bye\\r\\n'\n", + "reply: retcode (221); Msg: b'Bye'\n" ] }, { - "ename": "SMTPAuthenticationError", - "evalue": "(535, b'Login Fail. Please enter your authorization code to login. More information in http://service.mail.qq.com/cgi-bin/help?subtype=1&&id=28&&no=1001256')", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mSMTPAuthenticationError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m/Users/chenqiang/Documents/the-craft-of-selfteaching/Part.2.E.10.email.ipynb Cell 4'\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 10\u001b[0m server \u001b[39m=\u001b[39m smtplib\u001b[39m.\u001b[39mSMTP(smtp_server, \u001b[39m25\u001b[39m) \u001b[39m# SMTP协议默认端口是25\u001b[39;00m\n\u001b[1;32m 11\u001b[0m server\u001b[39m.\u001b[39mset_debuglevel(\u001b[39m1\u001b[39m)\n\u001b[0;32m---> 12\u001b[0m server\u001b[39m.\u001b[39;49mlogin(from_addr, password)\n\u001b[1;32m 13\u001b[0m server\u001b[39m.\u001b[39msendmail(from_addr, [to_addr], msg\u001b[39m.\u001b[39mas_string())\n\u001b[1;32m 14\u001b[0m server\u001b[39m.\u001b[39mquit()\n", - "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/smtplib.py:750\u001b[0m, in \u001b[0;36mSMTP.login\u001b[0;34m(self, user, password, initial_response_ok)\u001b[0m\n\u001b[1;32m 747\u001b[0m last_exception \u001b[39m=\u001b[39m e\n\u001b[1;32m 749\u001b[0m \u001b[39m# We could not login successfully. Return result of last attempt.\u001b[39;00m\n\u001b[0;32m--> 750\u001b[0m \u001b[39mraise\u001b[39;00m last_exception\n", - "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/smtplib.py:739\u001b[0m, in \u001b[0;36mSMTP.login\u001b[0;34m(self, user, password, initial_response_ok)\u001b[0m\n\u001b[1;32m 737\u001b[0m method_name \u001b[39m=\u001b[39m \u001b[39m'\u001b[39m\u001b[39mauth_\u001b[39m\u001b[39m'\u001b[39m \u001b[39m+\u001b[39m authmethod\u001b[39m.\u001b[39mlower()\u001b[39m.\u001b[39mreplace(\u001b[39m'\u001b[39m\u001b[39m-\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39m_\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[1;32m 738\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 739\u001b[0m (code, resp) \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mauth(\n\u001b[1;32m 740\u001b[0m authmethod, \u001b[39mgetattr\u001b[39;49m(\u001b[39mself\u001b[39;49m, method_name),\n\u001b[1;32m 741\u001b[0m initial_response_ok\u001b[39m=\u001b[39;49minitial_response_ok)\n\u001b[1;32m 742\u001b[0m \u001b[39m# 235 == 'Authentication successful'\u001b[39;00m\n\u001b[1;32m 743\u001b[0m \u001b[39m# 503 == 'Error: already authenticated'\u001b[39;00m\n\u001b[1;32m 744\u001b[0m \u001b[39mif\u001b[39;00m code \u001b[39min\u001b[39;00m (\u001b[39m235\u001b[39m, \u001b[39m503\u001b[39m):\n", - "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/smtplib.py:662\u001b[0m, in \u001b[0;36mSMTP.auth\u001b[0;34m(self, mechanism, authobject, initial_response_ok)\u001b[0m\n\u001b[1;32m 660\u001b[0m \u001b[39mif\u001b[39;00m code \u001b[39min\u001b[39;00m (\u001b[39m235\u001b[39m, \u001b[39m503\u001b[39m):\n\u001b[1;32m 661\u001b[0m \u001b[39mreturn\u001b[39;00m (code, resp)\n\u001b[0;32m--> 662\u001b[0m \u001b[39mraise\u001b[39;00m SMTPAuthenticationError(code, resp)\n", - "\u001b[0;31mSMTPAuthenticationError\u001b[0m: (535, b'Login Fail. Please enter your authorization code to login. More information in http://service.mail.qq.com/cgi-bin/help?subtype=1&&id=28&&no=1001256')" - ] + "data": { + "text/plain": [ + "(221, b'Bye')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ "# 输入Email地址和口令:\n", - "from_addr = '469165171@qq.com'#input('From: ')\n", - "password = 'C1h5E8n5'#input('Password: ')\n", + "from_addr = 'hoolich@163.com'#input('From: ')\n", + "password = 'FYIRMDFDJGHFIOIA'#input('Password: ')授权码不是邮箱密码\n", "# 输入收件人地址:\n", - "to_addr = '469165171@qq.com'#input('To: ')\n", + "to_addr = 'hoolich@163.com'#input('To: ')\n", "# 输入SMTP服务器地址:\n", - "smtp_server = 'smtp.qq.com'#input('SMTP server: ')\n", + "smtp_server = 'smtp.163.com'#input('SMTP server: ')\n", "\n", "import smtplib\n", "server = smtplib.SMTP(smtp_server, 25) # SMTP协议默认端口是25\n", @@ -104,6 +111,554 @@ "server.sendmail(from_addr, [to_addr], msg.as_string())\n", "server.quit()" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "仔细观察,发现如下问题:\n", + "\n", + "邮件没有主题;\n", + "收件人的名字没有显示为友好的名字,比如Mr Green ;\n", + "明明收到了邮件,却提示不在收件人中。\n", + "这是因为邮件主题、如何显示发件人、收件人等信息并不是通过SMTP协议发给MTA,而是包含在发给MTA的文本中的,所以,我们必须把From、To和Subject添加到MIMEText中,才是一封完整的邮件:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "send: 'ehlo chenqiangdeMacBook-Pro.local\\r\\n'\n", + "reply: b'250-mail\\r\\n'\n", + "reply: b'250-PIPELINING\\r\\n'\n", + "reply: b'250-AUTH LOGIN PLAIN XOAUTH2\\r\\n'\n", + "reply: b'250-AUTH=LOGIN PLAIN XOAUTH2\\r\\n'\n", + "reply: b'250-coremail 1Uxr2xKj7kG0xkI17xGrU7I0s8FY2U3Uj8Cz28x1UUUUU7Ic2I0Y2UFeB1lBUCa0xDrUUUUj\\r\\n'\n", + "reply: b'250-STARTTLS\\r\\n'\n", + "reply: b'250-ID\\r\\n'\n", + "reply: b'250 8BITMIME\\r\\n'\n", + "reply: retcode (250); Msg: b'mail\\nPIPELINING\\nAUTH LOGIN PLAIN XOAUTH2\\nAUTH=LOGIN PLAIN XOAUTH2\\ncoremail 1Uxr2xKj7kG0xkI17xGrU7I0s8FY2U3Uj8Cz28x1UUUUU7Ic2I0Y2UFeB1lBUCa0xDrUUUUj\\nSTARTTLS\\nID\\n8BITMIME'\n", + "send: 'AUTH PLAIN AGhvb2xpY2hAMTYzLmNvbQBGWUlSTURGREpHSEZJT0lB\\r\\n'\n", + "reply: b'235 Authentication successful\\r\\n'\n", + "reply: retcode (235); Msg: b'Authentication successful'\n", + "send: 'mail FROM:\\r\\n'\n", + "reply: b'250 Mail OK\\r\\n'\n", + "reply: retcode (250); Msg: b'Mail OK'\n", + "send: 'rcpt TO:\\r\\n'\n", + "reply: b'250 Mail OK\\r\\n'\n", + "reply: retcode (250); Msg: b'Mail OK'\n", + "send: 'data\\r\\n'\n", + "reply: b'354 End data with .\\r\\n'\n", + "reply: retcode (354); Msg: b'End data with .'\n", + "data: (354, b'End data with .')\n", + "send: b'Content-Type: text/plain; charset=\"utf-8\"\\r\\nMIME-Version: 1.0\\r\\nContent-Transfer-Encoding: base64\\r\\nFrom: =?utf-8?b?UHl0aG9u54ix5aW96ICF?= \\r\\nTo: =?utf-8?b?566h55CG5ZGY?= \\r\\nSubject: =?utf-8?b?5p2l6IeqU01UUOeahOmXruWAmeKApuKApg==?=\\r\\n\\r\\naGVsbG8sIHNlbmQgYnkgUHl0aG9uLi4u\\r\\n.\\r\\n'\n", + "reply: b'250 Mail OK queued as smtp14,EsCowABXTwCsom9jPemjLw--.37105S2 1668260530\\r\\n'\n", + "reply: retcode (250); Msg: b'Mail OK queued as smtp14,EsCowABXTwCsom9jPemjLw--.37105S2 1668260530'\n", + "data: (250, b'Mail OK queued as smtp14,EsCowABXTwCsom9jPemjLw--.37105S2 1668260530')\n", + "send: 'quit\\r\\n'\n", + "reply: b'221 Bye\\r\\n'\n", + "reply: retcode (221); Msg: b'Bye'\n" + ] + }, + { + "data": { + "text/plain": [ + "(221, b'Bye')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from email import encoders\n", + "from email.header import Header\n", + "from email.mime.text import MIMEText\n", + "from email.utils import parseaddr, formataddr\n", + "\n", + "import smtplib\n", + " \n", + "def _format_addr(s):\n", + " name, addr = parseaddr(s)\n", + " return formataddr((Header(name, 'utf-8').encode(), addr))\n", + "\n", + "# 输入Email地址和口令:\n", + "from_addr = 'hoolich@163.com'#input('From: ')\n", + "password = 'FYIRMDFDJGHFIOIA'#input('Password: ')授权码不是邮箱密码\n", + "# 输入收件人地址:\n", + "to_addr = 'hoolich@163.com'#input('To: ')\n", + "# 输入SMTP服务器地址:\n", + "smtp_server = 'smtp.163.com'#input('SMTP server: ')\n", + "\n", + "msg = MIMEText('hello, send by Python...', 'plain', 'utf-8')#内容\n", + "msg['From'] = _format_addr('Python爱好者 <%s>' % from_addr)#发件人\n", + "msg['To'] = _format_addr('管理员 <%s>' % to_addr)#收件人\n", + "msg['Subject'] = Header('来自SMTP的问候……', 'utf-8').encode()#邮件标题\n", + " \n", + "server = smtplib.SMTP(smtp_server, 25)\n", + "server.set_debuglevel(1)\n", + "server.login(from_addr, password)\n", + "server.sendmail(from_addr, [to_addr], msg.as_string())\n", + "server.quit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 发送附件\n", + "如果Email中要加上附件怎么办?带附件的邮件可以看做包含若干部分的邮件:文本和各个附件本身,所以,可以构造一个MIMEMultipart对象代表邮件本身,然后往里面加上一个MIMEText作为邮件正文,再继续往里面加上表示附件的MIMEBase对象即可:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "send: 'ehlo chenqiangdeMacBook-Pro.local\\r\\n'\n", + "reply: b'250-mail\\r\\n'\n", + "reply: b'250-PIPELINING\\r\\n'\n", + "reply: b'250-AUTH LOGIN PLAIN XOAUTH2\\r\\n'\n", + "reply: b'250-AUTH=LOGIN PLAIN XOAUTH2\\r\\n'\n", + "reply: b'250-coremail 1Uxr2xKj7kG0xkI17xGrU7I0s8FY2U3Uj8Cz28x1UUUUU7Ic2I0Y2UFSlqqpUCa0xDrUUUUj\\r\\n'\n", + "reply: b'250-STARTTLS\\r\\n'\n", + "reply: b'250-ID\\r\\n'\n", + "reply: b'250 8BITMIME\\r\\n'\n", + "reply: retcode (250); Msg: b'mail\\nPIPELINING\\nAUTH LOGIN PLAIN XOAUTH2\\nAUTH=LOGIN PLAIN XOAUTH2\\ncoremail 1Uxr2xKj7kG0xkI17xGrU7I0s8FY2U3Uj8Cz28x1UUUUU7Ic2I0Y2UFSlqqpUCa0xDrUUUUj\\nSTARTTLS\\nID\\n8BITMIME'\n", + "send: 'AUTH PLAIN AGhvb2xpY2hAMTYzLmNvbQBGWUlSTURGREpHSEZJT0lB\\r\\n'\n", + "reply: b'235 Authentication successful\\r\\n'\n", + "reply: retcode (235); Msg: b'Authentication successful'\n", + "send: 'mail FROM:\\r\\n'\n", + "reply: b'250 Mail OK\\r\\n'\n", + "reply: retcode (250); Msg: b'Mail OK'\n", + "send: 'rcpt TO:\\r\\n'\n", + "reply: b'250 Mail OK\\r\\n'\n", + "reply: retcode (250); Msg: b'Mail OK'\n", + "send: 'data\\r\\n'\n", + "reply: b'354 End data with .\\r\\n'\n", + "reply: retcode (354); Msg: b'End data with .'\n", + "data: (354, b'End data with .')\n", + "send: b'Content-Type: multipart/mixed; boundary=\"===============7298002500338024684==\"\\r\\nMIME-Version: 1.0\\r\\nFrom: =?utf-8?b?UHl0aG9u54ix5aW96ICF?= \\r\\nTo: =?utf-8?b?566h55CG5ZGY?= \\r\\nSubject: =?utf-8?b?5p2l6IeqU01UUOeahOmXruWAmeKApuKApg==?=\\r\\n\\r\\n--===============7298002500338024684==\\r\\nContent-Type: text/plain; charset=\"utf-8\"\\r\\nMIME-Version: 1.0\\r\\nContent-Transfer-Encoding: base64\\r\\n\\r\\nc2VuZCB3aXRoIGZpbGUuLi4=\\r\\n\\r\\n--===============7298002500338024684==\\r\\nContent-Type: image/png; filename=\"archimedes-eureka.png\"\\r\\nMIME-Version: 1.0\\r\\nContent-Disposition: attachment; filename=\"archimedes-eureka.png\"\\r\\nContent-ID: <0>\\r\\nX-Attachment-Id: 0\\r\\nContent-Transfer-Encoding: base64\\r\\n\\r\\niVBORw0KGgoAAAANSUhEUgAAAlgAAAGoCAYAAACaHJtYAAAgAElEQVR4XuzdB5R9V1nw/xkVQREb\\r\\nKCJFBFRQepMiEKS3hFDTCAlJSAiQQEhPSIOEhFDTSSOFAKGE3quACEhRVJAiIBYQbNjFcv/rs1e+\\r\\ns87vZsqdCfx91/t615p15957zt7Pfnrb+yzf8IY3nP3nf/7n0r/9278t/fiP//jSNa95zfG/1/Ly\\r\\n8tK1rnWtpRvf+MZL1772tZce//jHL33nO99Zeu1rX7t0oxvdaOlud7vbuO4Hf/AHl775zW8uve99\\r\\n71v6+7//+6XrXve6Sz/1Uz+19EM/9ENLP/ZjP7b0cz/3c0vXuMY1ln7+539+fGfMJzzhCcvPf/7z\\r\\nZ7//+7+/9Jd/+ZdLd7rTncY9X/ziF8e1rvvzP//zpU9+8pNLP/mTPznG+a//+q/x/d/8zd8MOG94\\r\\nwxsuffe73x1z/vu///v4LdjB6ztjXec61xkw/MVf/MXSl7/85TH/r/7qry7993//9xjzH//xH8c4\\r\\nPvtzzw/8wA+MseBmNpuN+f7jP/5j4OGf/umfxv/GBddf//VfDxy4x3j+bzyfu6d1hde//du/Hb/9\\r\\n8A//8JjH3MHsf+O71np/+qd/eoz9D//wDwM+MP3Ij/zIgMNczf/P//zPY4xf+IVfWPqXf/mX8b3v\\r\\n3ON+9/ndetwX3ozvs/Gvf/3rD3hc7w984HAteI0LPt9FY9/967/+65jPdX7HT8YBZ3iBI/fgI/e7\\r\\nJ7y51t/P/MzPjHXBv7nB5X4vY4LR+GDxim5+c8/f/d3fjftucIMbjPX+7M/+7JgTvs1rPDz1i7/4\\r\\ni4N23/jGNwYv3fKWtxxj4xWwWQue/da3vrX0mc98Ztzrmnvd617jPnwEt4cccsgyOC688MKZaw8/\\r\\n/PDxeaPXi170ohkYd95554Wu32i8zf5+9tlnz57ylKf8/zL3q171qtn3cp3nnXfe7Ed/9EeXdt11\\r\\n1wH/pZdeOqNTXvva184e+9jHju/M+Yd/+IeDzp///OeXzj777CFHZDbd8Wd/9meD3v5++Zd/efAu\\r\\nXnYf2qCxa9yPb9xLLvEYHsUn5AWf0CNf+cpXBj//xE/8xNId7nCH8fvHP/7xoXtucpObjDHJJvl7\\r\\nwxveMPgTvxvDPPEzeMD47W9/e/AtXr/VrW41eNm8dILr4cB4v/Zrvzb0JR1MVn791399Rad++tOf\\r\\nHjrWOHgXHHSYuY1FN1gXGXn/+98/ZPKmN73p0PvWice9/8qv/MpS/PKa17xm9tWvfnXghC3Yc889\\r\\nV/joxBNPnMG5OZ785CcvxF+XXXbZ7Oijjx5rsVYwfP3rX1/RL3D+p3/6p0MG/W6N2au/+qu/GjoA\\r\\nrdJHZBps6ADXaOM36/WZbKf/4ZDecL/r4AMPuNc1dILv6Qz0RF9j01XpdLYrO0TfNR49BHfp8/Bt\\r\\nPcaFZ2tCH+OhOzqihz/jgNf/1g0OsIMD3PgKnOwZ+v7SL/3S4Bm4+pM/+ZOx3oc97GFLd7nLXZYu\\r\\nuuiicf8DH/jAIQd49ulPf/qgz8tf/vLZm970pqU3vvGNYx5wwO/uu+8+6GseML7kJS8Z89/xjncc\\r\\nvPy6171u+fLLL5/5/Xd+53eWPvjBDy7d+ta3XrrnPe+59NznPneF9uecc86w9WefffZC/LBZXbbo\\r\\n9S95yUtmr3nNawZ+8ANaont21P/WB+9oTEae85znLO21115bgnv57ne/+wxCb3vb2w7iIDLmxiyU\\r\\nCiYn6JjrPve5zxDst73tbYNQCEChYDJEBixGQ3jXYyLOlnfEJ3CAzqi+5z3vGYxncQiO0ThqmAdM\\r\\nxnK9+yzcC/Pm/FGGkEHYzO0379bgN/dhcMLiN4wKthwP34HdWsGBiY0HqWDIyBorQ5/j5b2xcuLg\\r\\nxNq8/J7TQ8DMbQ1gc5//XZvAmdP8EdqaKFPfuy5BB5MXmOCM8gtf5kAfcFDYYHada3L6WhfamQM8\\r\\nrk85wY3fcmAwIZqgoZcx/WYe96ATZnQdPIA15RI9rMn33Tt9j1ZoD2fTOXLMwifYXJMy9b15fW9M\\r\\nCgsOrP3www8XEGxJKBYV1v/J684///xZBv6zn/3soDF+v8UtbjEUHweBzOEftPM7Q5RSgUNKxu8Z\\r\\nNfwGj67Jab3e9a43DC06feADHxj8xEDDsWBIAOQa8o+PjGkucu8PDf/4j/940IgjQS+Yk8z522WX\\r\\nXYZ+wTPJC57CS8YhK9bBwUVbawEfWMzFEJgDf+Ft9/i9wAUe3Gc8azK3l3G9XA+P5vaew2NO13v5\\r\\nzv3ghx+f8St8wws5AH9rdh8H3HVwQo8xgMY379e+9rXxPZwxhslWhpQh8ztc57jRDXShefxPDtJJ\\r\\nBYLgaF2+c79r4QbeOf9w48+91oOG/vcHnvRHQY/v0De9BtZ0D5pyslyLDvgHjHAODnoEn1g7R8L3\\r\\nf/AHfzDsiOD8iU984op8HnfccbNTTjllZX14uMATjozLcKMrfVpwg+Zog35edOLNb37zoQvcA5fg\\r\\nAA9+Qzefrcd98MI5QBvrtCb4gX9z3f72tx92kdPziU98YvAcelqXudASb/rf/e5BdzoTPvbee+8x\\r\\nL1v3e7/3e4PW9773vQcOzAOXe+yxxwoeXvayl80+97nPjfHAibfBgs/IdsGDtZ577rkzzjPczgd1\\r\\nhx566ExAARb3WSNH6Ygjjlh63OMet41efMQjHjF7y1veMvCNh5/2tKctHXXUUSuBywUXXLD0oQ99\\r\\naNx/v/vdbzjvruMboCl/gLzQI4KAt771reNejtfll18+6AUfApg3velN/2M6eZ999plxIJML9g89\\r\\n4nW4yv7nQKPnnnvuuXTkkUduCe7lI488cjhYIRRiRCAYR4REUBEnhsGoiA7BFCPGvNnNbjaQJ0Ll\\r\\nCRM6SIV0AuvP/ZQZImI4zGVBFmk8DEuYCar/zUMBUAoISMgIRI6W/yHBdRRa2Y8UYpkoAkOIMCwD\\r\\n47oiANcSNAKEOXxvzf6siyCV3UsYCDS4rcPcOYDWkQI1LiEXNZifABbd5FAWlVIE8F9GLGWQM2Gu\\r\\nPGwM7XOOCJhzaHxf5JfDkyMDxrJhYMug5NT4XJbKOtDAuP4ofYYEXGWcMlbwk5OYsxZuyra5H/59\\r\\nzrmm9I3lO/iYOsm+6zd8kXOY0sthsFa/lbEEH/r6nVL80Ic+tCWB2KzTJCJ661vfOgzZ/e9///FO\\r\\nkZIfa8MHjEUy5Br0hNNp9ujZz372rKwk40ypWj8aWyc++aM/+qPBS2jpmuSoSNr9/R9uM8KtK7z5\\r\\nXBaTvJFPL7SIHuiQvOA5fDI/TvJAVskv3qDAGDYw0A1kuGyo39GqDKV3n8swGD8ZJwN4zHq/8IUv\\r\\nrGRRXcPpM7dMhfeCtBwJa8MzjB6+oz+sy5gcRLizNnJoDkaIPOf8WQPaGR9NjeveHC/30hPmpj9c\\r\\n9xu/8Rsja2Xe5Md6vY499tjBjzJsrvXnGnoJ7ozLgHE6LrjgghlDTt7dj3fo22nGRWAbjQusrK+g\\r\\nD+8Ym/NtDBmlsuPku0DR3PRzGTl49FvZK2PCoTXhQ3gDuznBDG/wC96yAe5FT2O6z7XGIJ/4Vhbt\\r\\nrne969JTn/rUbWT0mGOOmZmDXoKbKiHwzNb4/IxnPGObe9gb2TN4de/UWZnK8itf+cpZzpasmuvN\\r\\ngY6/9Vu/NfQfvQFHVTQ4Lvvss8/KfMYgJ/gh2bniiitGIkIFBr/k5ON52W7y5vpPfepTIxmBLhwv\\r\\n9Mih2Xfffcccp5566gx+0BDeBCbewegFZ2QFro3vWu/wQ/Y4oGQFjHjHfNYILxz15z73udtkGl/4\\r\\nwhfOzjjjjOEkg4vj9653vWtlvU972tNmb3/728f4bNnjHve4Ffw/5znPmZ122mlDL8HZfe97X/ps\\r\\nxXl7whOeMPvoRz86smjW/8QnPnHpzDPPXBn7oosuGn4CuA866KDvq65Gt8suu2xkkskM/ULO/cE1\\r\\n/OJdcoJ+BWKuheu99tpr6YILLtgSjMt3u9vdZhDECHhHFALtVVYiDw+hMIYJjzjiiFUnxCQYltAa\\r\\nz4ti8j8lh+ESOIrJIiwSMyIyIfTChIT/Xe9619K73/3ulRJmBgMy/JXxyTj4DsLMCVn3uMc9hsdt\\r\\nTt40gucgUB4PechDVpB38sknD4bCuJUji6xLp4PR/763FkKLscFqjYT0xBNPXMGNUsY73vGOJVEJ\\r\\nxZHjV+mVwMADZeSa0sOVAa1j++23X3rxi1+8/IIXvGAoCTQisNYentAI3KU+MTWFBBfwDsfwUbTr\\r\\nd4oEPEVrjEjrytGhUK3TGNYO7rKE7iPQ8FHGi7GmcAl+DGuNxomJXevz1MijD/7K8SzLl0NYdJGj\\r\\n63NlW+MGAxpwYi6//PJNCcQrXvGK2W677bYSteETvMaAEExOPkNc1A5XcOIadJ2+KiPAIXyEB9cz\\r\\nFHgFvGVWK4cwQoxiwQnlQ3GXXcAbjBtZMSdakzO/wwUDTeG5P3wo65gPTObPCQrX+FWGQSYDzeIR\\r\\ndCbrOTH4gmE215e+9KWhNNGV0kfvcBceBGloyNkUZYMT3d1P7oLROF5TXiqAMDfYGezkBFxwIFJm\\r\\nKJVZcxo5rRw64wv2zjrrrAGD+fGN3+g244vIKfgHP/jBgybHH3/8NvyiZEW+XD8NPukIY5G7dBWc\\r\\nMyayEuDC2wVoi5ZFlVDI63yGAl1zrDjYlf+in0we+tVGAa/aIApWC1bg3Vp8xlN4kh4BbxUCPOUa\\r\\nYx166KFryo9SOJqjA7wpz7oP3vEynJdNRndZDvNzbMnTIgaVPBpDoILv8THdZ60HHnjgssCmABs9\\r\\ns1npXkbVfdahFQVv+4x26F0pkOMOX/CMP+CanMAJ3oRH5Vd8Z34y5zq0Igd0Q0E62SV3aONaa4bL\\r\\ncEV/+gzP5q+twvjoIXjyMidc0oXZQjzl3nS6seCnIJRD5VViwvh40B+cffrTnx70vPjii2ccJo63\\r\\nUpn77373uy896lGPkrka1+BxbUCyjfh8xx13XDr99NNX+IEdOv7448ca8A++P+ecc1acxFe+8pUr\\r\\nWb3HPvaxQx/H1xI6F1544Vg7mj7zmc+Uxd6Urt5G2a7z4bDDDpt97GMfG3KOP9AQ/goW8YIXG5mv\\r\\ng/5+JydsCZ454IADlEa3BOPyda973cHImA5DUKT+eOOQV0kOYPUnULQ5ULxlDOOvFDvmZFgoRcD6\\r\\njIFdk3NiLtF50WV1cE4G5GPWUv8JbUa1LE6IMG+RUuWoom2paAoanBw/zJsHa32cG+siOBiPYFDY\\r\\nKSawp8Bdh+EyEAzuTjvttBKdRmvCTfiUTyhh4xIOysW6OGT17Uz545RTTpm9+tWvHoqr/i6C9Zu/\\r\\n+ZvbeND6Hw4++OCBT0pA5MxBpjAJKXhlFK3PejhjaDzNsjHG1gOHfsPsom/RmFQ4ujDkhAe+fvu3\\r\\nf3ub/oQcUOuiQNEEnFLI+AcsYENn0ZPxzMVI6D2h8Di/cEGhoRFcm5+R8DsFgy8Zev+L6AhDafhK\\r\\nHfgFvesPo8g/9alPLV9yySUziscffj7ssMOGkOy5554zNDz//PNHxhV+4BI+4JtiQQM8jO/xH/7Q\\r\\nuyD65nzVY2f9FC5YjOO9/hXrz3ilRKTN50uX6AkH8xH9oopktesYIM5JPUpXZ6zN3HvaaaeNgI1C\\r\\nQ3v0RtNKxGUv6Y9kLCVHNut59B2jUy8EXfHwhz/8Ko7QerCRQ3OgbYEGHsGHgjbf4fvKKAcffPCy\\r\\ne/AzOuZ01oNay0Hldsa5Eh5HMoOKZzKe9BonlDxXAoUP8kEGjU2Jk1twwAGeoq+s3/ttbnObkQHC\\r\\nd4wF/qpM6N7KiXBk7nor6y8jv3QpOcDfrivAyqGmq62ZXOObBz3oQSNgy1AXlJKzsoHw6B46u7aE\\r\\ngs7KeOYtmHIvPQVn7rVWsgMGDqqxyq7TWwVt1gj35Fo/ke9ljsBhvWDDT2CvL9OcdLW54Kyez7Kd\\r\\nlX+t2/10oLnB5GUsPAtPHKb6o+Ck7+vRqZJR+4bvK7XnAPmt3h7/mwesxqVncpiqzMCnNfseDOwJ\\r\\nXfmkJz1pqYzXtN8QzHRZGX9Ozoc//OGxllNPPXXYG87NS1/60rEeL7x30EEHcXKGXjzggANmHEb8\\r\\nT4bNde655644FuyTbL1eKvjbb7/9ll7wgheM3/325je/edzLxuH5aZCr3/PMM88cmWg6/ZGPfOSW\\r\\nnZaN9NHBBx88MlZ0eA4rW12VpXaYWllyqvq9rHNO8FFHHbVmQmkjWJZPOOGEmYEgJC9TbXe+OVFE\\r\\nx8AxPoQHwTExRsIEpdYwNAWB6RDJIghIpaPq0wSsJuiYHxJqjscEpWrN0aIxWwY1h6HyVmlvglL/\\r\\nDuRheA6eP0Lqs7HBaB6CCs5q8K2HwJurPiP3Y3J/rqWQQzAjWZOf9ZqXgHDw4PbUU09d0wM+44wz\\r\\nBuOKpChUglgjpzWBlyEQSRCUV7/61TOeP3hSXpUI61GqR8P3lEK15hr00alyjt/9zwlBM85Mnzk3\\r\\n6FQfhHFFlZiXAkMPxgGM7tfLh4Z+rznfdzmMIifNlK4X2dRHxhn0oljdBxd4DBwykODmsFKElGov\\r\\n8OAfOMvhcu3555+/5R4sUZ4xzLPTTjttKXLZSPC+378fcsghM4psvqTy/ZwXH5911lkrioyTTJmh\\r\\nYb1AySb5SL7Ib+WlMs/4g3zjD7zHEPlfKQLfpYcYaLRyH71EpsmFwMY1DDoe5jQwAG2iMHZ6xfju\\r\\nqXRJBguqypKCl46jG8yVA+i7ggfflaUrwKvElsNUGRecYCBvZKPgtjIeI54upJvcB75+z3G3HjoM\\r\\nnsFKrxkrByq9y6C7t5YHNIFPsl4LAvhzHttMYizrrbQC92SUzNHz7oUDtPR9PV70rHs42rKknDqy\\r\\nT369ClBqw6DHcmZatzlqIbHexzzmMSuZEuWtAlHzcoYr7eQQCWjhvTaKym3htvaObJfEAZkXFMAb\\r\\nHY83rKUMa3126JtziwfDJ57nLMIz3MGxtQnk2Q149R08zmc32Vjr3X333Vd0jswmp+QjH/nIsCPT\\r\\nMtt6sqyn7bzzzhuyceCBBw58n3vuuYPe9DS7dNlll63M86AHPWhmDr9tt912Q+dOg7PHPvaxM06t\\r\\nbJgGd46uXi4Z5Ne//vVDV8M7Oh922GEr/XV6ymTKZIzhTEbrta997fdNpz7jGc+YvepVrxryXzIk\\r\\np72MVe0D5KoEUr4EnJY1zv+wnkU3Ls3TZJuFQgYkpQzqvxJxARjjM8aVnKQ229VCQVJK1eRdTzCN\\r\\nYYHGrd+mfgkKkQC6B+NW6nBfGTLGHLMTAuMT6Gkpw4IYEgwOFkJiHvcnKJiq0oi5MX/KCNxKcBAt\\r\\nA8FZIFiVdcBmfALCKQGHPzgiOIigBEGZU+Ipaml42Zxpyj/kS7FK7cMjhZOCqg+kUhGcgYciEY3C\\r\\nwz777DOcLfDpPVAGET2LKuCzXXIERN2c4vE9Bqo0W8NzaXURcZFdkRM8ibArl8J5WUfrqIm2nh0G\\r\\nA82NjU/Aak6fwQpX4TVF7xpMj17wb84cafeWvTAv3MqouVY2qUxjGxOs2/xlt771rW9934T46jgp\\r\\nIjnrKmq8OmOtd+/2228/+ihl3W53u9sNnuegUrQMBkWI/+rl4YT4TpaD4ShKR4968fAJowrPlS8q\\r\\n/eDFAw88cPbyl798GHK0Rit/+G66yaIeKzTOOSkgIPv1t5TNKitTQMchAUPlRrT3HfjweooTT4Md\\r\\nj7kGLzP2+JrhwbMibrCR7TLhYMbv7Xp2HfjgraxSPEnHMIAMp4xAjfyV0SvVteNu2iIBT9Zfxjzn\\r\\nA2zwS+ZrtrW+aT+kdcp8+D6nCszWCQ66EJ7pDzjIUamE6X6wgds9Ahq0lflOp8MjZwA8cOh/5TkB\\r\\nuOvhAt+AQVaWsbVu4+iFklExL5qCTaM3Glh3JZk2qORwwUXOrGvqJzUOenAy8PN01yI5EBTVf1av\\r\\n7957773se3SFTzxDX+AT99soUr8wJ6mAWYabficP9KffwIcPwURvwUXBITxYB1zCK3sAhsry8E9n\\r\\ny0TWGgBnZARc9QHV32atHB3jg8Of4B2dVRTAj3bGmPZxHn744TOwmIt9kcWJHmhsPPdri+E8Ke0a\\r\\nFy3ZTTYLfad65f73v/+McwRWuuSiiy4aAT68vO51rxu6GA8Y83nPe97KvS9+8YtHRksWjWNpbP7C\\r\\nIuXh5l8t27+WzmMH7WCsnQgPFuzACRlvQxW6kKW+dx2ezEb6vvIq/lM+3erux+UnP/nJo6dA+lmq\\r\\nFxMRAgxlEs6FyRFUxsG1CIJRKusQZMBhLkJgMRwcY2C2ojMMUY3buJgyrxfi3DMtM7Ydf+plGpsB\\r\\n50UXHRIADARpmIhDoqRlZwSmB187+MraGNP15sAcnEiRh4hX2Y+SQSQMTKG4jpfeNmaIh6dHPOIR\\r\\nQ2lbP4EsfWs9SlQMGEPmxQmjNGsYN5ey2mrlQtczWOZrl6NxrB3e0UJmiEGk5HOwUqR+x9AckVLg\\r\\nFExZwyJbtIUz60tpMBicTdeCkZCC3ZrRF244nDKa7USLRuCmNPACwUNPChp98FDZJv+XpYRnr3qN\\r\\njOm+SsyUM6WBLu3cAQ/8wy9ecE27swjSHnvsMYQ6BUQpUHTWiwdrGuZM1CsIz/Dlu5w5TqiSKZwX\\r\\nCVlbx1nUi2FMa6spG84p72kpFc6MZRyKvhIB3qTA4MP36GbtjH+71Tjf1ok2tuK7DoyUBZ4qKGIg\\r\\njW8dcFJPBtqRi3oA0bCdbhl58LTTrMbPSikptoKB+hZySsCDp7zKplQ6Mb77Kg8yFK7FMxmngh60\\r\\nwAfwhu/8cSTwrt/QsOxu7+gGZ/MbG44//viZ3jl4Sv7hZxqNPvWpTx3NuLaVn3HGGSsGgl40vt7H\\r\\njZzg3XfffejQCy+8cMNrNxpr+vtzn/vcYTDxUZm4shsMCh6Z731b7eiNyuBoedZZZ31PYdxoPfpg\\r\\ntGaQI/qeHLUBIANYCwmalzkrE++z3zmu+Aif0x2cZLqAzag/0/dtJqpcS6Y4K+ijn5dc0JuMftl8\\r\\nPM95NiY5ee9737uys7rsVu0KYHZNThH+z0CXncTLeBsMBay+w/85nGU7c7gLWCozJju1Pvi+vrAc\\r\\nZvYPX9A5dABdwa561SyfznvAAx4wjlzgWOkL5jTRI/TKzjvvvI2jpo+anvI7uHbYYYeVNhQ2UCYL\\r\\n3smcjJbWkunmgoc//OGj1GhOPY7TjNxG/DL/u6zeem0OeFumjqOYMxlt4LqyfDxCnnxf4Icm+KoE\\r\\nUBtd6Bo4z6m94oortiQ3y/e73/1mOSApNMxQdIPxTLrffvutTHDssceOpsFS5YArw4KwAPObxRSF\\r\\nUOgMJ0NSXb4SQal3zMRwYUxzehEwTINRKgPUuM64QQBnioNoHPeZF0zu8b1reOilASGdc+VVvwKh\\r\\n0V8jDV10xLGSNrW1s91yGFoEBT+yRKt55E95ylNGhgrDE3jr5cRJvXpNd6bMM9TjHve4keFwL9gp\\r\\nBNtEKZh3vvOdK2l4aygDdOc733koCAaZkwxWOONkiTQ4YOCFn0p3lWPRmoPT+T3oA/+cOTDAf30J\\r\\naFNpYrqryfdoiX+CKceiPrkauo0NPq/WUO8Dpi6j5//KIsZiZPEpBeu3nHq0rb+h3W9+9z+H3trw\\r\\nQ02u5gUrfHpZZ5mWsnE+t3vOtfWq5WwUKBSl5oiChSExn3Vy8MgDGlpX2Q1jtuMRHdDb2NYJvwUd\\r\\nlYcrz5bpcE3OqjVwesMdXOLtZKEssutKjYONk+iF3nga7GDFRxxjv+OJels4Ke2GrFkfb6NH0WDl\\r\\nIutIkRUNTlsC3AfX4ChrGS/AA5rhkUr+1kaGrD8ny/qmzhl+VPaAY2tphyD+ty54FghVygJjWVvr\\r\\n9Ds5oifgnyxZj1JIZwWtZhwYK0anhmtGn+wVUIDXHycJjPTg9HiC1ca0i1Dw0lEDMo94TnkUfQS4\\r\\neErQgQ/oPJ8ZNTAzeOhO7v3PcZDlFjjAC74kT3r+ZHjQ2vcZf/wkUOTgwQMjjCbTloiNDOXpp58+\\r\\nO/3001cqGPBuDfVJolH9Sb7ze43ncOlaa2vXJvlNlsEJXrxSo3f8hRczpsbrPCzXWpf3nDC0IEtl\\r\\nM/FcQV2l4VoPyuJVri1QyYCbvw0neMnawF5AUGsKngUXnJcFtVbzelkzmI1HNmQcfW63KxsikJQQ\\r\\nwL+cHLAYP92GZuwPmOFJ5swOwDYr6c9yj57G5z//+ds4Dk960pNmfi/geepTnzqu0UrkDCy0kUiw\\r\\nK3C6EUL2kgNb2daOwnnnfyOe2ezv7PNxxx035BW9Kp/DZ1lsvJA9qIWkbHqf4yX4dH3tCd8TB2u3\\r\\n3XabETbIBxhlgZgmJ5gmZAwwD+IT3DIFGKCzqmrqtFiMDGgMTKmUgqS8CCvm4EFXejBGvQztYqtx\\r\\nWEqYkhQFgTHDmbBiFIof42Kk+RTnvvvuO+OYmKvmtsoSxoopMSiGU7qxi0JqMxg5UjWOT6PcGML2\\r\\nYjDCC2XeLh7ZKcrs6KOPvor3SzHLEoGbgi86oUTgoh03fneAYnM9+tGPnmkSFwnWf3TMMceMXpv9\\r\\n9ttvNMkzMhy60047bdlhi2Cz5tLyaMoAcMaUEOCw7ENOMSXA+FIElAV69ufayjyVY32uNJhxzYFu\\r\\nByOFYgwKzhrrFXF9hwVWYsU3nBV0y/Gpj8f35s3xwwt4Fj/6v0Ze2447fwj+Kj0zRnCHV8vC+q0y\\r\\nmf+nx4q0Hb1dr9aVgwePYK1xXeMpgZ5XLrKZa0VyjNzU6E53NIIbr3QenUBHX0ZOsDWQlXoe28yA\\r\\nD/2PhvE5PiOb7VrVEwM/65UrNX2TfbifL8vc7na3G85FPYs5cNPsF77ze6UVdAdzJTRwo2W9TXBf\\r\\nFN7ZPcbDI/QHODgrnIVpFiEnzHztYHOPaxjnMiJFr90LnhRwDc/w1S5HeE4X+Y6cyoh0NhQ9kbNI\\r\\nR5R1Bwc5cS++BHO6psNGrdX11leJEx44VH5roxDZwGd0I/1gHjxZidVncIItw1Lp3TWcPnJUX1Al\\r\\n2HRi2T3w5kC4x4tOM6fxrRmOKoXRK8bKYefWjV0AACAASURBVAMz416Q1M7h5B9M8aJ31xsbXG2C\\r\\nyBFpLfQQ+Oq9bTdYbSPe/ZFBDiidl6581rOeNeMM4F+GvwC+YzE64gA/ckTB4v/6idAbXTje1mJu\\r\\na5H98iI/1sDutMuRnLpHewaYarafJijcq1/Rvevt1tyswzG93jEJSoRki1MGx7L+6UTwPulJT1rB\\r\\nlSMZ2Nh2DiqL0RPPetazluHRcQ54+dGPfvQ2B4ia84lPfOJwyuDVGVpbPTNqM+vdaaedRgkSnxZU\\r\\nxrvkPp1izMrMU2fYPdmgqYNVxjJ7SM44i/OO6KKwLm+33XZjRxWGNnhbjDFaChpTFVn7n1LGuP4n\\r\\nAGrCjCvicC4Qz8s1mJLCoAQIaH0P9X6Yu9o5YaUIKTzj1XPhXvNz2Cgn83PU5pl2umhpTrCI3Dh0\\r\\nRdfGz2BTPr3AUD+PtRMaLyWF5zznOds4SGr3xmXEpCZl5ggTPHBKGQg7++a3n8r8nXPOOcOQU7gE\\r\\n3P8ib+WfRSJEGS4OVtvkwU0xwBdcg8nLeikCDgR8mqtUPLrAJRgcXQEn4Ed/OMn4lCGoZk1BFpWZ\\r\\n0+cpX6AvfsiQuKZadr0WRRq+N1clTTTJ2GF4Sty1bWkuczbtpWuHk/nKguY4ibzW21iwqID873Wr\\r\\nY8BBhrZb50ChY5ln/2cAo3vZIrxFr+DPMnTo7K9sG37lXOBfSp3BI/fmEhB0OCcZpUjxEkeg8mY6\\r\\nBBw5XoyMOTo/iBEs00YBy8AzqPXa1G+D71zLAWBAOKj0EecCLGTeugUreLjdeGAqU0JWrbeyOINf\\r\\nryp8VFI3Rxl411bemWb/6skiI2A0D31FFnOyK/+HTzC1Czx5tJacmpw38muughprN591dZxGbR30\\r\\nR/q/Hk8wZ7jKZpvbeGUmc6zgI0cbvP5nLDsklB4L9/DN8cx5ziE0bpWKAmA8owTo5G2BCZuEl+hx\\r\\n/bA2I2nOFqR0hpp14C/l9zLN+FXPmHVozAYj5wmt2Te/yxhaF90b/6ILHFgLeKe2ww5bv00PrKXD\\r\\n8J8x2BH6WrAFPuvDb/h0s0cZOH4pu4fnwacU+PKXv3zFlmmbwMMynTZZwaEkw/wRNxwssD30oQ/d\\r\\nxinbZZddhlMGPlWd6Rla81pDogPPr9UOs6ie1b9sJ6QgmZ0tEz11jNCMPPgrC+W7Mp8FH+bEn1Uw\\r\\npjCgY32BJ5100jatP4vCOuzSDW5wgxnBEDlUkmFYpR4zhpwAjKcfKA8XIzPUGA4hRfwtwrveq6IV\\r\\nxCGgFpbSqGRlrvq9AJTSQzBMKkUKlvXS6naUaG6j7KTWy8qYq5KVNdRwP91FUInCdwQOzDJW73nP\\r\\ne7ZxqmSpnJFFIPxVy1euJPCUfcfpJ8TS5HbM6Y+ixDAwglIinA8Nh/MZt4iH+ZU+jc1RTKFS5NYB\\r\\nb5RQDkWlGHPUS1NfEMVZmYuCRAf0YAA6O6m+AfhyX43E7QbKAfeb/3Oiyjz6TEnAZ3yQo1b5K4aP\\r\\ncd1T2SdF7l4wgsdvDEMKHGzt8EBb/OFzmVCGF22MUWp7M8LgWtkjPNAOHxlAkaoXnFDoZfLMxTGu\\r\\noRJectrbDCIYyJkgK+1KVAbCL3oIjO1ev9fD16GGsq8ccLjFQ66BRzSNJh0UyBkB4/SkZsEA2Z0v\\r\\n83dA4xQ/08yZlD/+kClyTo6ytqibkWkrd06x9VXSw1dFhBnrZAw9GbsOpSx7Ff3wtZdrZK7pF/yu\\r\\n3GEsvIgfrLOSsX4Z/AEHZc3RqDP36Bl6YV6eV+MLTb+yymXO3LeWfLrftnbZjTKTzoeq6bxyUQ4Q\\r\\nB2G1bIVGXnztOk4e/aU1AL3rNXIv3HA00R4erM91BVjkH73wCPzQmdHEd373yqli7MzbuWvGq9GX\\r\\nLJKr1gK3ZBj9jD11Fu0gC/fuAWcle5/BBxf1JJXBRk8woTE5ahegLCW4/IaX0id0M92pV+4Vr3jF\\r\\n0M1HH330yGIY3ws/lrnICWujTJk2usU6Kn+DlW3gyKA9PJAtehGvc3iMBdfg8n0JB2P0OC7wc5Th\\r\\nE5zWayz3llW0djKbDsbLaINfwVRzvjHcUw8XnKAJni9LI6sJDlkmsuJ/wXKZzSoi3ukoJb3pyQAO\\r\\nCu1cSDgzhmtsDIBLG97MtRb/62907IK2Gpu59t9//6tUaegwp8CzleB1rMNJJ520pV4mB5M6mV5v\\r\\nGH0LR8aEw+gOX9kjehivF6j4rfIfGfKybt8PR+jKJ6T0P1nAl3CuDLnoeXbzemX5pje96WjmlF7F\\r\\naP6nADPYgMEojHznqJi4lH9Gp1q4CUpJF1VRgAQqocJgRbkZTYwCcZiJUzWfZuSsWDQmNVe7WFJK\\r\\nvPTOHSqT5DPho6RLo4OvGn0Kpygk5eA+JTYE4qxhUgaTsOhrolTB0cFsIRUTcMI4nNZaBMGhInTS\\r\\nxp0bspqCdzgjY+JFmeaU6X+hWE444YRtmFME8bu/+7srOxvbOg1/9TR4p3gpgMokpVAxl8ZHcMJt\\r\\nmUKMix7wQKGgF8aGS9GXeTpjpN0zORY1jMNxje8pzBib0oyWHHVCAAb4h2PX1zMn8gwP+IrhsRbK\\r\\nTQm2gwUdJkiYOfopNHxAAbqPo8DRxa8pSYLv1U4YMFlP37eF3HiVlhJAMIZP66oPqT6qSp31A3ac\\r\\nRufNMeKVbXvmXFk9/Ehhlq1I1soumrsyHOWCT+uJq6whysZ3DrkFv+sZEfSjyEXrXgwt3oQ3685p\\r\\ncn0vfMEQkrsOwu0YlDKKfovm7gVrMp9cWRMY6teEI9eWPSZn7qn8jw/hCQ2NZz36qOgjtDQOeOHP\\r\\nmuiAeM7njDs+ectb3nIVxT5fii2ip1vwDD6B14KW+UeMiOwZY4cuKwFbZ0ZMm0GldHQFF56WRXnp\\r\\nS186nGprpcBrr0BHvC6ILYjJWQKDbAE6ydDASWOQHbhAW/AwFuBHG3ShV/EfmsOpwE6jP4cS/sqO\\r\\naJDH8+Ym650bt5qu6rs73/nO4/Dj+CYeqA/RmsCDduhTv2H0IXNlf8wNR/BBv7im4xsE3Ppjp/2r\\r\\nD33oQ2eyL3BWmTrnsKDO2suKuQ6u6qWEL3CWqUMn/NkmL9eVDamMbJ3pOGOnx+p5dD2c4+GpTFSl\\r\\nKTAEbwFwvWG1YpCx2kTMh+fRvcCTfi9RwfHDQ+YNj9Ga3oDPz33uc9vwvt2Gjk5IlvGYzVrmQkt8\\r\\nQ97o5vm2hnvf+97jfD16efosw3keUcJzWCncq+bQM1stHdrVyRnM6TZXiRkwWye6sx05W74rqTDV\\r\\nm9EuuhXkpauM7d70ODm7Oo9dW77FLW4xBARxOl8Io7flH5MjfDVJi8AYatYWg0gE1/0a6XJqKE4G\\r\\nDhEoSb0KnegbQ9fzooZ/8sknL4sAjdX2ZAKJgWSH2rlICDqro8frrOdd7rHHHqMHq4xIqcScjLIp\\r\\n1gKp1gE+a66ER7CnD66cMpNDzexUmqYUKbd2d2CuDpDk0VNmUsXm4igwFPADVzkHcMgZc9jfemuz\\r\\nA0pWEY2sxxo4v5VFfMdIoGVRXuU3a5RdQVf4Nr+XsfADOlPqBCNvnoBHOwxJWVJGlQYIvTndO82o\\r\\nuR/eS5+njHvHb3BdD5Xr/FbvhTlT3PGXNeED37dl2am9jK/v22UJRo6wlDtntAge71E+HGjOLKVV\\r\\nj4n112doPuN57/BTihNuKH3X1ZPFUUlpt0uVUUZ3il2p3DiiYvixTvgmd9aarKCHz3DLmY+m3o2P\\r\\nd4IhxQAH+AeMOWi+AyeFa6wcWwrbZ8bWmpsfbtC4MhDZIHuyRPoRvchH59wxWPU11vCffsgRnZZ+\\r\\nK/2jSfwDT+BxXWdboQsnwrugDq29kxf8CO853T3b7KSTThr9h67L2KZg6yssu1agB4c1wNdfmuPL\\r\\nQHZfDqJr3Dst9VU6xAP4xpzKZzXcltXMyYLrskVwBFY0rfzuu/QQOmR0yYhXjm+yVpN75fLWWPbK\\r\\n/NMoXzCBhq6zFuOaH9/QER1FIRNCv/pLn4DL9XjGtfiZ/re2sriVhtuU4J56GI0DXnzVYb1leyox\\r\\nB1c9kA6kJKvW0CYeATMHrBKpbJ0sCpiU9dAQTHAqOP3gBz+4jYPhEF5yi+dkDDv4FA7Aof2D/m5M\\r\\n43amm8ATX8AjeMzNEUFzcwuQBTc2R3SUD/yWdUVD/Zky43hvmrXOrtAX5pge8cM2kq1FS4U77LDD\\r\\nCPbJ0P777z+CAOU1GUe2lINER1o72wynPdfwa1/72lWCkQ7BxrtPfvKTl4455phtrhGswKWd++lm\\r\\nPPGGN7xhSxkruLCD8IUvfOFKdnNaIcEn+AmNszUFvGhfoG6cEipTZzgbQz8m37XIGC/95HcPe97q\\r\\nc22Xb3vb2w5jz8AQLgNTqnl6EFo9GVAEzrttmc66IGQQisEoP0oGwBQuJOhRwsiYKWNcGs986tvm\\r\\n4lhRsBmDdkZhYA7OZk65Zkw5VZQO4SBMRQzTWm21V0IOBxRa5UMwUU4clC9+8YvbMMlRRx01Y5wY\\r\\ndEJmHTU+MhalQWXdKHzOC+MuasDw8GMehoIBxQCMrtdaz9Ly26677joOhQWruYuQp2nO0tiE3DzK\\r\\nOfCvB0WDo/s5Fc4w4fyhGwVIWVEI7kfzsnYMWYaR0elQUvdloHKEwNHDd/ERJQo3pe0p/bKfOXCV\\r\\nJAmFF/7CT/jKizLHRxS5e3KA4asNFJRdCprA6RXwlPf1Iu///W1xDCiPv/jFLx43UHL4Ab3QpmM3\\r\\nKgOWii+SzBHqc44luuOxGtHxC/riHyUNOoZjV0mJw+V/BnP+qAHlDoqdDimTSjFWnnEfOOr/wsfW\\r\\nwNCb3x/e9HKPP7zVMRs5bPSDV9mIHKR2LeFtDgRdiocz4gKZyqVgNDcDR89yBnpuZU3tNcrTXWVP\\r\\n01HmtLZ2OsE7eIrivaOBOfzlPBuzTE9Gh44u41NQ6Xo4NG8Okc/oV0YJnF50dc81rJ0ELuOPaaYV\\r\\n/cxFf/RsRVlR+t1nxpn+oVdk2MxB7r3TdY7S4GDXd8Np0Xw8dTiUve106zE1dL11OJR5+rgjsAty\\r\\na9kAF1rDEQcqfcIGWR+8lUGyvoIQWfQ2J5AFwXKP0gEnh8X39L/P4GmzGBy5HwycuXpq08F0snXg\\r\\nHa0i/sDCzkhueJmP48YG0bHxAB7zGX3QDv/iv44z4ThKGMhgOnKBjWbjNbDP9xtrfmdL8RhHd7WH\\r\\nNUtiXHzxxUOOwMah22in7Hrah4Op9MtG1dcJz/VxTltNylwlx5Xbsyve67lCN3yMV42Vk1YvoN+M\\r\\n57cyYO7n5G11R+Sy/iVGuF6n0uCQjxkynv4vC8LbZTg1W1MkiInQmEakDvCaGgGPyTFSi65s4nOl\\r\\nQYtybsazn/3s5c6+AMN0B92UKGrEnVFUkyCDXiMihYEp2rHWDrciKAo1xZhyyMOtAbaeAmvVl8Xx\\r\\nkJI2B0fKdxhX9m0KG4NUSYozg1jwY71q3RQIHK11SrgSAgeDshERUSwpdcairdcUNKEDlyiEQFuX\\r\\nzFcOht0kMmxgfcc73jHglHVTP7fjY7VGcFtyCWUN7OYn4D73lPuaSykljqISM17pQD8GgYIo40RQ\\r\\nRDQUDrz2MFu4kMHE2BSOyNR81oRPjAMP1udMFdcre/kN7xjXfZQARcjgUCCtdXE34n+vXAsD97jH\\r\\nPWZkvt4QdKasvJclqgxcFFgphfyhN34ie/RCis586CVbywAzpowFg4o/8ITgCm/NBx6a7PXMtOUd\\r\\n3xtDkIcP8J4xKu3j3Zw8vSAcCbzmfoYDbNbHIHX0BAPmhedlNZwLJJvpwEU8xyhzlPBbTs304EdZ\\r\\nijLQgi38T19ac9vyZU/pFDqnhwVbd4+XskY4oXvhEc8LLmQ56TvXoQNnhezpFyRzZAps/idz1kSG\\r\\n4bjdu/BEttADDMYS8BVs1sdTuRo+NEOjcX1WOZxlz12bk5tj1k7A+jzpYn2F1kM3oZ01CGbpR2V/\\r\\nGRO6E469w50y1moP3T3iiCPGeYNoRHewZeDwXf2PnHZ45ehwQFxbedl3Ama2q54q9Im/2/xQL6tx\\r\\njY/nvWeY8Xo7UUsywA/apvfqp61igg/hB2xoxU663nXTlo4CUOP53ni+67gV93ZESRnvriFz5FRA\\r\\n/f73v39UimS38AMZIF8f+MAHrhKQ7rjjjuO8LH3Gq5XY2RHOGb7ARx6ts9qO+c1oVhvBBHN4og0f\\r\\ndH0tB3BTtahgr57YcAM/BREFIPUO16aST+K6ekDbSOHaaOq6F7zgBds0929mPcs3v/nNRz+ARdQD\\r\\nUymBAHoRtLy+rgEUYc1RARAB5XhYIIQTesDyACm8skfGrL/kxBNP3HCrqn6GMi8EDmNTTJix576Z\\r\\nD/IxHEXZThJZNk8RL92esgd3SGxtKYTKHNZaH0c73KRVKdT6rzQRU2wcIg5f50lZLzj0f3CuRCLr\\r\\nefV2WWBmTGMMhgHBzU/xgtXcxx577JqZmVvf+tYj7QxucxIw+LJWNE2xwgUaoZVMF7iLsDuqo4ZZ\\r\\nziVnirEyDkGuv6CNAWAGI34oGoXLjBb+IeC+q8F+GmG5v1ORKTq8YQ78hNb40BiVpsDhmrZ5l22z\\r\\nPusw1/Oe97yxxXgtYdBvk4OrZFDJDU+B0zrwWFFshrFMDUMHNo4f+NHZZwEKJVH6Hy04iyJw+Ook\\r\\ncXjgtJgDrRgW62iXm3kzuviAocVn8I8XwMHwGJOjbTx8Q07gh6PBwFL4cCVDQMbJBfzUCO6d8cEr\\r\\nNbhOcWY3EqNt/LZET8t+4PAZjCnCIk3rsY76bxg2+C1YqG8E/PDLOMI9PAoSLrnkkm3oJ/DgfAkI\\r\\ny2wyjjKWHBkOjcAGHIINjnibAuDAy9qvfFD0ymaF6eHArZ0Rss1djyK51eMnoyYTXC9JGxTmj69Y\\r\\ni+dcD194v1PXe3oE/cUAwo+14XW0Qx/9jz0f0Xrop0qCnBLjwTN54DjAK8Nd/4t78Bl8oBWZlzma\\r\\n7lpeL5htPfpq6LmavMs+cv7QHOxVBeKBmtTxKRqwCcp+1q2klk6ixyvLGo+zU1mVvp0+Ey949tpr\\r\\nr1kHZON3fAQ3nESBuR4tOhVu6ZDKpq6pl6+KDD1nvvR4+kYAC3b47kgN91R67ZiWMvPGAFM6Eq7d\\r\\nhx7uoyvwOAcZbV1HpvFkpUjX176B7nSJNeD1HnwuqKW/2DfOs8wumJzZph/w0ksvHXwDdvxEvwhk\\r\\n6PFOYAfLE57whKscpkvmOU1wsttuu42kRzjHJ/SOx9FwzjTGG3szFabV5MOZa54CAXfBnJ+QM1+P\\r\\nVRuN8CFerx8156kAID+mZvYqZ/XLlrlqFy5aGM99ZAkd4PyrX/3qlqshy9e5znWG84LIeXUAsJge\\r\\ntwAAk2EAQmVSwGDSUsx2GlFydh8BjgFSt/RMNGdktDWb8szDxnxf+MIXVoCn1CyOQUqJUrw13TNi\\r\\nFA9jQZjNsciz1hz3z1tPKWPYehkIeI1ykNv/iAFWChk+OBzW+vjHP34IcGUsShfM7QiBt7333nul\\r\\nVLaW8tXQzjgri7rH+PDfw6kxNweF4txoB4PdXRSrNaJVmwgwXJFAEbb3MnY1wreDIoe6pl7rBVPH\\r\\nLWDUojZKwueUFnwYr3O8KlvWyF00xYHKSa9hPserMcEX0/u//r8iGvSLZ9ELDAx8JSFzEHpRPKXT\\r\\nxg30xUuu5UBVVgxGeICDeCOjXP8Ygwf2ok3wcHp8bzcNB4d8gE+Wsz6/0s3WYk7jT0tlOSbwCSdk\\r\\npf4C1+KtMsGUDnjck8Ko76V0ePBbb0rImF7xt/cajlN4jIlDbWV0lFrgytoqnRvL2DXN1283zVgU\\r\\npJg7gwo37vEoix5nlI5xXVvV6RTZWU4MhY2vrUmfoUiZjpJhQNf5p9tzgBhlAYW/doNNHXv4NRfe\\r\\nJF9lgBgeY+Ndhg+MjAcaypqaUwnSmGRfmQadGCFz0mOdi0UO2hbvewbRYcWcaevrOBVGkWzniFSy\\r\\ntF7fw3XOMR4uyu6MKfQrA2jM1hZvlrEzbjoumfJez19P1MDHbXai9znD00ebyGrbRBIPmb9gprIk\\r\\nPWhea0JfvOLdq9Kx78ztWvwG9+SR/uJ0uZez1dE17p2WAR2E2cOGycV73/veNY2fI23o5+QgfcZu\\r\\nzfdlTY0+G4Y3cnQ7J05WrcSAMafBrrPswj0esj40g99pVnMz2Y+rc61n8nkeKxllj+BctlCwhAay\\r\\nVkqs040bzvDTx6gyJUv7zne+cxvc7rPPPqN0x1bBITm8uk8GwFfJd3Y03VgWCg/BN94oq4ffK0en\\r\\nT7su2cD77imZUmCKF2sZopfMO83INm+9rEceeeRVzgBclDbLHvII0HYuiHpEvvPbKSkwaeSaDylS\\r\\nTpUFUyCVlCiSGuMtmPBTVG0rx4QJm++UrlzDK4aQHs1CgVFIlO1qz/NbdIGuu+c97zmO/ifQduOB\\r\\nT09UEXS7RRCgvoGImaGrrEERe+XgwZXXRttPzzzzzHF+FeNrnp5YruQFJspivYyLOTQSgrvzpmoo\\r\\npBxTophFpsE66vWiMH3nOso/41xqHp1cw6Er41VaGV3B617jeaGX72pyhsfKyebxfUpNdqamXWNk\\r\\nIIxFMaOFFLTojhHlcKJTPBIc7UBrlw9erC8EPioFtyvNA06N47MMRUdnxDdwyWBOD9lU+6cci8zr\\r\\nHesMMY6HtcAx2BnA9R4GLdpjcK3VtfhZZpM85PjKQMC/z/7AXOaCrIEBz5U9qmzbA4ldyxno5H3j\\r\\ngRMN4Kh7O9eJY2m+rnfuTX2T1nb66acPpXqXu9xllF3aIUkO4LvyYNkF14KxgATflaJ3Dfy39b4j\\r\\nNLrWWNZTlomsn3/++cseVCvbghbRtlIYh0V2y5p7jpo5ODrGqREW33GOrN+TGGqqLhOdc5Dsl4mb\\r\\nOt05EwUW8Y57U+6tZaqP+q7MOJ1X2aFgBl47yDnnOacUXorS4a7IHf7LhlgXPio46CgOcyYXaMYQ\\r\\ntskFzOb08l0HmHIYO2+p0hcH1L1Kswzv85///OFQdmwLmOptq2+t0qI1pjfoTZ/rg7FGvGc+ug/e\\r\\n6TRrQTPPWp3uztZfB14OGOPuepkqgcD8UzRUExqPI0EngA1cZZT9bp6PfexjG2Yl5p+F52gVep8+\\r\\nSFZlN10HF/OPdJElB8N65zWuZseUk8GMl6t6PPvZzx6JkPnAgl0pe6Rthl5QXpQxR2O4p9fJJbjR\\r\\n33lYxx133Mr6ZQLr4+Lc6oueOl4cVa0q9LdMmR326+2GX8Q24ykPhpeRRhN8K8ApYDYGHqrE53MO\\r\\nU/bLdzm808TIvIOV8+RaY5RtJ2P1eFXNck3lyPrt9JRNs3iLrK9rlh/5yEeOA8Daqs/QcW4QUkZJ\\r\\nypQAtFsEIhgMBrUjGgzGAEAQAmJCi8IQthYzAr6jFM0FaZWgruxFGinSjRyMzSzMtQSO104Rd/4J\\r\\nz9zLuVkQHRGnRoKwVKqIIGVkEIVROu+889YVUAYd80h7IlT9F/7nUEkBw9lq54yIoDoiQGpfKj0l\\r\\nix6YHL46Z6XnJsIrxdIRFtZhXmtnYNGV0KElGoKF4IFjqjApj7I2RQpFf76vFIcp4Sdjw1jiiZS8\\r\\n3zpUL2eqkoE5YmSw1IjZ5oickowvOMBNWXAgCDseqq+vbA7aws1HPvKRDRXoZvnp/5XrlRiOPfbY\\r\\nlV6pDDs612AdH5Bxv9dkWqSJXvgPD1TWRCv0LKrEU+juu0rYDDgeYvSnSk1fpoicLLd7tOfQyRQZ\\r\\nQ/lJwGOMadbDSdN0WP1g5IEDSi8x1j02Ce/hMeOC3bjWU1mTg9FxJ9bi+86YKrOrBNvTAfAwx8e7\\r\\nNXUEg/kYMjijb8mBOds0Ym7jcS5lkTiaZJzDwxHB+zI/dG0HPXZoZmVguLAW+FivhEnXgGG9573B\\r\\nH32JpvQE2MrGwntlwaksTh3usuac3HY95mjmcE17RAXzslkcfPoMPeEUngRj04cKk0mPTMEbgmjX\\r\\n0o/6eeEYj8Gfcq/gojJSJ7fjv8pu6MuhLQutzFw5lP40Fr3VczHRFJ7BiM9da366HY3Qxlj0K34G\\r\\nD1mRHWRv6yciQ2X+OUFw473gJBzVsmI8dhQsqjnt4O2RV67zWzs78ZXMK8do2sTOYdSiI6iW0eK0\\r\\nTnuePY9TFhsejO3+U0455WrpVU7nJZdcMhIqNeHjc7gAc2U7ePPyXrDt98p96FgyZN52+w2ey7ZX\\r\\n+Sjznj4ij9OWlWk/aaV83x111FFbPiB1+YY3vOGsZzIVbVtIjxPIS4TgtsUSMoIi/UmId9xxx1Wf\\r\\nyee8DWll19eTdOihh45GyerDiLrIA1Wnxg2RMLVsWaVLjgjFCZllcCgd/xclY1yfIc0aKUgCVmmq\\r\\njBakV7+dpiERzBzPeMYzrrLbAnxPf/rThyKiGChvChoxOQT6XFbr9Ziu61GPetRwaOsBcp8xwEgA\\r\\nDjjggIWY+1a3utWInMxdhGu9YMfMGajgxGhoiVEpD9dR5vDUY5LgGS4oL8q1R1ZgfnihpHr0hPsI\\r\\nDLjbWYUHfEcojIkmXhRP5dEMkdQzRUdByMK4VwQqlYxm6v7mI/zoTllZg7Fz4CjY7/XDdzfjYK3W\\r\\n0/K85z1vRKEiaIYa7GiBJ/0V6U6bozea047ZzUbIG42pd0XESkkVWJAJ9MvRRge/R0djTkvtPpO3\\r\\nApU+46EizLJH6OZPwOA35d1pecIRDLK1XpwKuogTvV7pBQ7xCx7BQ2SbfsNL1hQ/2zkla7YRTvqd\\r\\n88lwcnTIif4vBgh8aPn5z3/+KmMpH9V3xiDmIGy//fYz/UWCLK0UMjRlmOGaHDDY4C1Dbiy8w5HT\\r\\ngjGfmV10HZu57mY3u9ng2zY5xBc5Whm6giY49ipDoERMHmXwtUVUHp5mEPSXog+70O5GOsl902wJ\\r\\nR9uuS5ta0g2cDQ5nD2jHV2yVLI6d27JlcMgGGRtPcoDwIn0B1+apz7IeT9fQbZzfSt/e2cvK63Sd\\r\\nVhU8idc4kWWd0Q6fGdeY5uNklWxwHbmiuwTU5MVfTy3wLqAAM3uMv8gfHqE3rduY7By9zl6gBb2P\\r\\nH/FTTvGLXvSiFf2izAp/9DDc0KfTTh/gEgAAIABJREFUY4ge8YhHDHkznk0mV/eJGDJ8Gtc5lpWR\\r\\nyUNHclTGr+WgSlItD+mHdMk0WwU3ffY7/MSfJQcqZ5dRzwGrEoFXa6thc6rGVS3wMOmN2nTWkqfl\\r\\n29zmNuMAT0BgHAQGNCXXicGMqXLgRgaess8gc6L8n5G1qF133XU0KzogU9oeU3z9619fV7k94AEP\\r\\nmFGOBKSHYIKRY1djNCZBHHATrJo4MTKH5RWveMVKI5y1+h5xi7AjYKWh+gcIBUepx8/4vzSrckZ9\\r\\nZ5pvRUgxBnj33XffhbaqepwDZiZI5tG8SCFhltUet7ORYnTWiaP9vayzhme44VChMWVCeOCTIyVy\\r\\nq0GVEqIkel4dwe7YBszHoMADYfEuM2AcCg7MnB2OA+b1u3sZxfqs4JjCwbyUT9k39BBp+hNRwy0j\\r\\navuvsdxfWa3dUfEaOrabJj6oGb+t9hxca5KxSMFRrODzPXikyRmvylLupWTBSDFSCjXhg911Ilhp\\r\\neXzWziO47zwq/3cY5/SMsvrGEnpwcyrxtrXAdQYAHvxPeYjs4YLxSfm7B5xoWmO78WUyjU8RV64i\\r\\nH+C0TnKDNtZkrfBRrwa5JRcUjzE6a6xGX5+9Ck5ck5NVSa3enHZJ1fuQwvNeTxr8mw8MnQPGifCS\\r\\nCQbzySefvM1p1FNZ0CSLvxk5awF3zyB0L6eWI08OwFpZDq9985vfXMjBUlZmDOlDwR386wsV7HEc\\r\\nyNLrX//6q4x12GGHzeBZA3I7pMFOVtvVpz9N32nP1KRD8Bw9pym8INTp5WiDZ3vG6/SZchvph83+\\r\\nvvPOO48H3qNp/ZDJcg5CGcwyEOTEtW1u0U/15je/eZR+OTy+LxMW33BY4BaeZLNkgaYHU8KV5mx8\\r\\nC2d0v3nosukJ+fvvv/946HDyRKcKTmVw6Cy758JxWVjZrNXOa6LX4V8WEc7pRQ4ymcf/3uGiNgFO\\r\\nPX2C7/AXGW3zgTV3HM581YLTnFO62nlL+I7dwseLtsuAXRbafWyVXdVsjYoO2wx3zup61ateNfjV\\r\\nsRUcialceBrGahtfXE/ebCBgo+bPxJry2FOe8pQROJAZ8m8Nlf3KcsdHlZXrIa2sbA1eZbUq+dW/\\r\\n6fsyqmWhqmigU+0z9Tn6bdp6kh7KGa00iGZXlpcX0g+rydbY8URp8pYXffCknQtFADI2naDMsEJO\\r\\nSGQkeP8AJQg9rsL2Tk9ap1C/+93vXuUQOFmv6vmiFS8ZC4Klr2KtQz/XUh52SvYYHEQzTo37ORaQ\\r\\nXpmjiMxafF/J60p4V5p8Ec7hqpxR8C5y9oc+H4pRdF2ElOMoM7ZorRcNRCFwzagwytOSDEPFYUCD\\r\\nemKsvUMkGVoOAuNrjXqfGKj6ljBdKVVOFhww8BSfMTrtugdcwyk+IiRw6hq0L21uLIY2o2w8f52a\\r\\nnMLNqBsjJcVZMnY1dGP5rgwJwSBIlSt9hltRIXgZbAoZTLICGVhjcihdXxMxeOAJ3G19B6d1mQ8u\\r\\n/bkuR1zZgmMJ/34TacIZQ4+2RfqMPBjM5bui2fr8fA9n8EQezUG5C3T8VoRPniqtgZXT5Z3R9X1H\\r\\nAEzLdnDZzjWGjLNRHyE8MCTon/KqP8i8lcnrU4h2U4cqQwkOeKjx1P1w71VJAG+SHfQsQwxv3eO9\\r\\nskBlNtettuOJQeWcoDfc4l94RTvBCr7MKGkZsHZ4pavapi6L3jPaDjrooHFsDVw6N45R9gcO7/CY\\r\\nA20O8lVZkY6KxtbAwPb0i54qYE78Bi4y6Dp4QVv0QHvfwWObUPAAnjJWjh1nGk7wgoASjfyZhywI\\r\\nmoyLdzjo5jN2ZbIy/WjKUNJf807GWWedNZP5qPRXw3wZGjSrx6rG9eiNfubCz2BV5eBseHQYhxSf\\r\\nohUYjZFTzuiTJ1nBjDJdU/8XPNjZNj1hnAMi4ypIjVcFgtMH9HJirJO9qnwGd+i6UdP7Zp1SPVSC\\r\\nFuubf9rHZsfa6vVod8IJJwyZP/XUUwcfHHTQQWPtSn3aXHLmbAJTsuOESoKs9VB6sHDw4RH/aLeZ\\r\\n74MLXg7Yueeeu1JOdT25r8SHd9NB/sdjaFfWKefKOxrlDJflM0+OWN8V7FU+LDikD3PAyorlYOW4\\r\\n4dcyYN79gYcsOVh1/hy1RemyjBlE4D1ypBtFDG3PJtQAwJCEFPO0K6k+JoAQbv1FDBtlJDNTuhWQ\\r\\nNehpzHv6058+jBGHSXrYgjgM7jMPhU3xlSVadEGrXXeve91rMFDNmBlKCp5SyzBm5CNMRGbM/U8J\\r\\ngrneIe/f+MY31vVubc0WAYq8NGp6YWQGjGJc9NwQzZ6cIIqk56yl7MEnSqHw0UNKnUI5+uijB/7R\\r\\nrqZZzGZu9zD+lBhFUM25xvV6DopWS68zOnCWsYFDY3LUOHpw6XcOAp7geIChsjMjBIcME+eH0ajp\\r\\nm6AZC/0ZZbwmm0dBi3xFQhSFnZw52WUA4diarINSp0CuuOKKhSMPTZeLRodXhxe/H/fCwfQRIlud\\r\\nQ2mgvpHK5ZVG8FBNpgUlNWWnmFJWlJgXeSoL1waJMmmVByvp5vy3u6cxzYuuGVvGlX4hS5x7MoFX\\r\\nlDnwxnrbxfXq4EmGRblWprdAzhzmpvQrHVhH5YIcz2l0HZ59VxCWw1FQY3xj+F1A43fj0rmMDrnk\\r\\n/FTWKLo3Zmd4mQe+4LDz/OqzqdxqDmP5Y8iM0yaCYLZ21xvLOuEWzsBGZjpuRcbM/R51Imvjnlor\\r\\nyHtNydZRH4v5/WZODiF8cVTpTPDIRnJ6OJjt7KMjwGH8ej47YJRTxXGlL4yHj8j99MBHZXj3nXLK\\r\\nKcNOrHaUw3777TeySsZjt9CjtpH4FR9xQqflXdkoPNnTEeAJ7aynshT9xGm0jo7RoL+UJvEnvaVs\\r\\nWQbVGipzuRfsbCs7wIDT2WXqyZjeW3arJx0IgOhNOEKD+mrNI7PWwaPojW7sqbVuv/32w6kyl2x8\\r\\npXV2WKKDE+ZMxPlHsU2dJdlDa2Lj6eRLL710Td36kIc8ZAQ97cK2lnaTTrNWbaiopxfc1oUf8itK\\r\\nGiR/YCqwRo90fvYLjusBb/fttHUhZ6ysazosGWt+37fDUPVjkWeZrqZ3l52dBKAe8dEjAUR4jKKJ\\r\\n2qpdJONzD09WkhBVeLZVE0iJIzamwzAYUid+B3La7nrEEUcMQfdCXEJ0ZWltIaOoERKzIwSYKWBC\\r\\nRBAwFfh9BmfnJJnPOiGZ8BA8hI/AYEmx19yKSSJoqcqibcR3CNlqHr+dF1LVnBnM7t2fdPn8waRr\\r\\nGUROlZ4EmRCKiJPDGcKY4GJUOClr1Ye322678fiCsgQ1UxIQQlvWAQ4JH4VeGpsww2tn6aAnBYWO\\r\\n1gO3lCuhg29pfYLvHvDiqQ6Ck0HikDEwlAlHkELUfOtxP67nIMqgUmxgxjuue9GLXjQeNeOoD7jg\\r\\nyDnQTura9+anhAQD6ILX4Gj+9P2tOh3/U/fp9ZnylYgU7+YEtsNpkfOLFl2D3bZwSYYYN3I+VX5l\\r\\nVsrcUUBwXlTqfzyF38hXfY459+7rejCVkawJ1XcpvgxNpakUqN+Ny1noKQ9rHUasZUEmBN7IojJu\\r\\nzyk1Hn7qETnWZi5ZL44AWSBv1uGASzwqSPIdHFHudB9+5JyQIeugh+AP75IXBpqsKaGb0xiMFUdE\\r\\neZG8kS26CJ6MwWC7VhALdjoDHTgs3jtOguNCJ5mzp0JYhzVzTMxvTeChP6wB/nqMl9/AZswyxjnq\\r\\nRx555Oycc84ZPFB2v1aKNtxMs1c5HWgiEyazKMDGC3SIniE4sPnggQ984DhSI2e60rlry1yCU3+c\\r\\ngH0+8JFlRAMvugCN0oGa9uEFTnIQ4dTOuJe97GUrtsUzFOkZTkp2Dp7gG/4En+4DD9zFm3BvPt9V\\r\\njvK59poOJYUzeDJ2xhvvmw/eryw9rWQqGXG8EB90puA0SwP/xjRvQYy5qxil+8il69pdjuc/+9nP\\r\\nrqxd75+sd71cn/nMZ1a1uXSOsjw+qidQgLOWvFnnLW95yxnb63p/+B8sBVbTDBQ84HNOkv9rHSiz\\r\\nbbySHLUJFWhku8p+1QsML+mhadBirCpQ0x5C45f5KvFijv74DnjwbW9720J+yVTX6hVfvta1rjXj\\r\\nvVM0lIrFMpYtskiTABIUAFEojGUH8EEoJLrH/6JKzAkJGBGzTA/r8pBUh496iWymxJ8CaJeDRkZj\\r\\nEJh28IgaKBvjY67Ob4JYig3SKSeI8z+mrWcEoTG59x5L4L4Ik4AXuVfLBZc19dncGN1YIisCBia7\\r\\nBo1H8YJZanyHHXZYuHbO+8f8BN391k7REEA43sxOS0baDohS+aVBOyUdTkRYBFMWydrqg6E8UyTu\\r\\nq6wB3yI+tHaN9+k5PGBMWMp69HgL+AaLeeASzsDie3wHlyl62bB62tpqbZ56aMABvurq7W4zvrEZ\\r\\nRc4nBdejI/RfVT7bbN9KzcQZbXAYCw7Bbo2UKxkCC/mg4Bh2hrjt9ujJOOBLNObYVt4lCz3+R6Rv\\r\\nXGu2hg4Qrbckg9bjpwQS9c1RiJWkGFPwGBeu2rqtlDXt9xDNHnbYYUP86kEAHxjq/3IvufBd2V6f\\r\\nvcrsUu5lPX1fk3xZCvyScSBDOXDxXgp4WpYyV03i1lApY75fhXOufKEvkI7Cn/hLCd8YOYScJHPD\\r\\nXXIP1isP39ywodXuanPo3enhzukt/GGu9R55pczCcPb81crpMjv4oV2N4JXpT+Ztw2+jjJ4Z8rPe\\r\\nMSGLOtbz11mf8g5dXl9gei+7QPZqKM6BoFM5jaeddtqynYf0Id6nv6btE3vvvfc4hqPNMPQj/m4H\\r\\ntO/pu/mdwGQQjtir6fEqBx544GgBYQzRH23xCN1mfjJQsFKLhvkFkWWUyKtA0BrwC/nKWRJAGoNc\\r\\nkd12PVfyKmio5EgvtHubrYKrdm77jL6cOTDXJ6nVhM3wHbyzmZxmvNFzAukB+GWH4ai+NbwkcAVn\\r\\n/IBXlHd7vJD/Hb2gHCjbT/6VY9dqYD/ggANGzxu60KMf//jHN3Qw8LWsMFmvApIOSJfnT+AnL3Z6\\r\\n6sRPWwXcU6Yv56sMWAGRexszRyl+dI/ratHIyfO7a9uokP1vHPQqqUJ/CAz0o23leYTL+hIAOf+k\\r\\n+ITOYX+dYlsal+HHbF6UFCD8VnaFcbSook5GaJpRQHwnbWMmvVmEKaeo8zjcr6ZeCaGmXgTpdG3M\\r\\nZuwejyNKml8HhXf88cevpNcxJqSXhoTkiO+dcsxYWF+ORqWv+iJc649QEUQCCC5wylTJvGyk4DhA\\r\\nFII11TxdpKRsOj2rZL2xlDs0AhNA8Gg8rP/gete73ixYyypgpA45RMsamr0z6CIbNMUX1s241SPC\\r\\nWFNa5pLJojg4tfCGB4xdahiuOxCUUmHY4Ifxr6eqkkaRGrozuowHPHK+KD5OHXgy7ubq2WrGxAeU\\r\\nlTn8UTgU7LTkVCmHI2L9HCDpfCl08Cu/WlN4sFYH6cnIMqjwR6niN3xPoYluJs2Qg+9zTMAjw5Yi\\r\\nllXwW305cN+jouoJJEPgBhs56miBSjkUJlp07pf70df1Nc67loKuB866O83a3JQL/Fx++eXLHjNC\\r\\ngXNCySM81iNWUJETRBYrm5mzdDpa5qiU5ken+AZu4dT1xi5LlSM+VYxlSchg5S/fFSDBNWdS4zKD\\r\\nVJQuG2q3oawEmcXHaOya1SJuZVU0lWWBJzyLrzeb+aQ/0aSjTjoWAK8ykOkjweJee+01dIJHaZXl\\r\\nzWm1Xt8xrvBWGZ0s4x/OBx7hODAU5Kqz66bOhn4k93ZMRaXv+YzoevrkPve5zzgXCc3MnXNcn1dB\\r\\nEloXiJINtGC4OQtoIDNHr6MBp6Ds2H3ve9+hr/AFx+a4444bx0Sceuqpo2RFrvGPjULrNVA7Gwr9\\r\\nyHv9PFoY2JRp7xPck0Oynm1qIwu4a7XAZ4961KNW+vHWwhHeKaiwTs6Ecp4GcjqLw1jgWiAH/+5Z\\r\\nr79pI3ux1u9rtTfc6U53GsE6XAoevOgXGVEPf54fT8bFOmzYQjfVis0cyyAzpo0D38BvwRQc54SS\\r\\n+YIo7x09UQnQeyV6MNTi0vd4rmDM/9mdaW9VVafuiUerVoHHK3007fcsS5ijZ37VltUeFbQIvQaS\\r\\nOTwZUwxIkPLGKaG27gOkZuIEHCD+R0DGRlQgyqhRzPiMtcfVTMuIDjI0NoNT46+xa34kqJhUr83V\\r\\n3Yp805vedMZpEFVYQ9EXAlIK5pxmsRKeUtZw0xPay7BU640ZPFB0ke3ylGuHqlo3hanxuoa6jfqA\\r\\nnAAvhQ3nmIvSKMUObmvbaaed7JwctL3RjW40SqmckBrNNQuLMqcMggfgh5fukRh2eaKNDNz8tasx\\r\\n1vyhfBxzSo+wEvBddtllKGs0nq5RRInX8BiDMX+UhZQ/BUjhc7TqG6kPAS5kEtCI8yA6w29OIt9s\\r\\nlmoRgfk/6Rop/P33339DR349mPVgelp8WcXKHjlT9VB5R8eiQL/jJwqpICTlVM9RPYvmL5tJYaVw\\r\\nU5RT+KYlhEpTRZbmNw5+92ccOkLGYb1HSK23/p7yAC7zKbsL3MzD4fFdO0l7vmG9Q5xSOsy15Esw\\r\\nAC+VUjldcAFOjrvryABccuqsy++1HnQga6WlGsfd3wG9xvB/fVDG4mR7wQkH07xtUgC7cXouHxkz\\r\\nhvvAz5mrBcR3XhwcY8A3PT41aGCeRvhlO/EFmMiygMWmATvZem5tTcLKexrd4QrOGEN247LLLht8\\r\\nfNRRR42dhhxNjovs17S3yi5MmTF6D9/hQS0P9Kh1TfWH57DaNUhn40Xr0ZvJYFoXJ4+DBgafwe9Y\\r\\ngnTnIrKe3nv84x8/smt0uX4nOBNgWT9nAwwCUXoLvXsCSY4vWS7woLc4O3gGbcq+0m0CTXoZbqwX\\r\\n/HDuc8+JtRa6F31zJvz2rGc9a9Wme5vOPGeT/tSqIWPjxV6fffbZYyclviJr873aUxztuuuuM2VZ\\r\\nc2ZTk4VpsFQwVhZrWgbMscFntRrUoN5u5PRHGfDWWE8XfBTsx5cle4zfuDl1Pk9LjwUUtQvhzze+\\r\\n8Y1b0rPLogklvZovAdluFgQUBZbKxYhlJyiKMk8yTYwapwgjU0QQXJMYZYJw0wdK3vWudx1RBaYj\\r\\nkKK9q+vdEz5IaRyRi6hCw521hNAUVzXgIsacwiJrawAXhHdCfU3YZdbyjr/85S9vQwCCJyOCoCJc\\r\\n63RycQ/GPOywwxYimF4IjgUHj8B0cKH5iwzhHI6dcD3/6AKCT8lQmGhH8PQjzD/njaCkLPAEnBGo\\r\\n1c71mQqVCB6/gI/zJEoVWVKQHDa8wblFfzBgZrzDkaf8CQ2Bq5zbg3bb/QhfMXxp23bdgYPStHZC\\r\\nZmzGQQbnK1/5ykL4XUSJ/t98jbPbLrrookETvF0GCZ+gQfSp6bQUfQ4WZYburkVDWTp8idboTnFz\\r\\nkKd9jik0dKV3/JYC9o6WFHO7hyjJnLnp4YnoYiv6WlvJ16Kbcqh5OVAMVKf3g6PSK4METrqBgcFn\\r\\n4YMjZM12Avcqu4/34NE6GFjZAk5N6zMXHAooyK05GEf60/hF9GQV7jtPjgMI5p5RaDxyB8cFvvqp\\r\\n0K3GYLRxjWsZz6nzR6+TNeOheQeeWlM9KvW9ZGgq/eaIuS99lFyDmcMn++Q3OIY7DrAMo4Z0OJYt\\r\\npBP1wdHHdq+VdXc0D71hTPhUOhfA4wO6DE04wfPHHQgS27hD98I/3BubLsOT0+BO/6f1us7YxuUg\\r\\nOdLAIZt0D5zifevg3KCHbJzWFYEyWlofnFlXGZoci3p5yp5YazJVTxBeA7ex22ldwqOMr894An/A\\r\\nC5h6sgS4qlwon9KBbAUHrfMBle6mx17gW5taNMKDEc3s3uzsQOeyccpVWNDKjsGNghh9dw58LaiA\\r\\nA7BOgyZzlcDIsUqGfK6XqkCviob3MuvGh0cv+HBfwV0939kK1/g9G+Kza/2es1UAkW6r7aFgg5+z\\r\\n3qOV1rMPy9e4xjXG4wUqybiYUJqcIpGKZ8C8OAqYjmIAcI2cAMMYmKC6Zsxj7Mp4HrfQts673/3u\\r\\nY5fiXnvttVCGZLoIjhP4KCW9AqI182IoRhujtrWeUsL4bYkOiX63ToxZ9irCF72388daesSNexC6\\r\\n2m7X2rHnnBslSYJnNxblQChEV4s+WuCFL3zh7PWvf/1genju8EWOnrIHoSJEYFokQ4PpO02+XhoM\\r\\nh7YiK2N6UcCcno5bgJeOWKhfynUUDaVeiY0zHR7hxP09cNoaKI+MRv1SGUxwJCAZYOvtoFh4Vspq\\r\\n44Xvi0gIAfxQIHjXziewiSLBw4nUOyBKRQPRMiVLmDj21lrTPWUJH2ABI4VJ6fqfEerAxxqc8RMa\\r\\nUPrgNp61gE+QMS1PKMGZtx4Ux2u0NR1MlTm9G8vceBY92pQANkqUoXcvnMKz65y/hN99Nh5edh3Y\\r\\nOwm8E/yNB3byyHDgB6X6mqErp7oXDn1O8Ze5roerRvdS+ByrNkQw2nBu3Je97GXD0OKhMh9grPkX\\r\\nDDW/pwx9V3kZvQqO3IPu4EoRVw4VdU+3jCubWC99wCgbDx7hWbP7tHHZvMYFh+vQ8YADDhglepkE\\r\\n/EzOK8V1lpUzfgRwAkS6sLO81tqNNa/DBCFkxL10F/zIzuBN60YDfF12FhyyNdOdkt/LTQ562Dx3\\r\\nDRwZmXZ/9TnnuFYLdBU8oTdZQ3OwWxOeqPziHQ+TNbykz/c1r3nNsufbeXAwWZI9lJG1Cerss88e\\r\\ntKqRX5ZyrTKNINS4bBN6gwUNlQovvvjilUALrtgyCQVz0lfk2Brgn57xIkvGqXTtd+ud9hvmlNSL\\r\\nSm95dSp5bRjWitfwIv0ED+SR3uUkgAdvkWmOjDWXEe78OrYrh6I+q40OGFb1cUyDzJO5vv3tb6/g\\r\\nYd999x0bsNADrZR0tQvEn2giE0WfyN6stjtzNafCAaYXXnjhmC8Zric3R7Oet5ypeK02FvehC1n3\\r\\n/zSDmvMKh8Z1b4mOMlTunS8jol9OX4GQcekhdM3pSz8VZLoWzdjvT37yk1sK2JedEWVAgsuYVaM2\\r\\nOUajrJVnWiyD06IxP+JjEgjCJK7Pi8R0mFxvFEXLOQhQRFQ+8sy4+UcfIJ5sCkZzKBpPunpuvQoJ\\r\\neHBBEqSDuYZnytf/HEOM6xqfa5BDFMjvc1FGjkAOSQ29pTanmTy/gZPQiKoiFqdvoyMY7BKU+YEz\\r\\nRglslARFpSFb87x+JfDUv7Get7zab4ceeujYDZRhgj9G1lqmEUAev9/rQ7NOOIKHHGdMSOG3Lbxm\\r\\nS+s3brzRziX44ACVxTBeDer1DbWt1jyuI6DmoaArVSgD6rNRUsSjcM6giUDhWvTFYYc7Co1zxYmQ\\r\\nVieQxkJfglsPC7wblwPge8YhJVuUDgeu926cznMpK1F2kyMCZngwF3jALhNIeYM3p8E9ZAbOKWRj\\r\\n1tOIJjVnwnG9Je6vVzBFEDxk0islnPNfCYrcubbjT+AfnRl4Y01T7Ojnfo6e61NmxvY5eBiOrjWP\\r\\nAEC/0MEHH7yiiPQGOoMHzeGitL0xa5AOz5UB/QaeDJd1uQ8uvKa7ssCTcwRekaZ7wYi3OMT1zOEp\\r\\nRp9BtX6/MbRwAzb/M9J+k3V697vfvZBC3cyp+6vJJ37WLyWrBsd6YPTNoDceO/jgg0d/EqfOunKu\\r\\nOOrkhrPI+dhsFm81WDwg+Iwzzhjzhu/KMPVdeS+TQofgdXqK3AhuOvUcr8Mtp7Az43Ji9ShNM+03\\r\\nvvGNRxkK/3z4wx8eeN9xxx1Hm0JN9uTpda973QpNjj/++FF5YWMKcOz+xIf4msw5Agg/2hCgqZ2u\\r\\nwCf4m93ye3Ao0eHVdpbjLbzjgcjk3/8yZpy0jpaoPH/yySeP3iW8rAS51tlXjgnB3+ttgNisfl/v\\r\\n+jvc4Q4j2EcjfW70DAe63aQCAz1n9SjCAVuL99jRjTJW83M/7GEPGwEHXCXr2c6urUpU9ggP47Gu\\r\\nr2zo+jb45NzWG12PVSV319If7VZOP/q+YKzxfVcmNz3r3rJaaOivHnJ63Yap1Q4QXoRWy3qh8uYY\\r\\nUcq6yLUmRwaIN9tCitx5wBgaAQEEGLXxFLFFSU2qiz/mMY8ZTPid73xnCAkFccghh4yGQMA7dsFW\\r\\n/LaxygCVrSAQKWWEL0VofA4ahOfkrdYUaVswuDq5mlNDAXvlMRurHo+Mofmrb9drgiHAUkm1EqHv\\r\\n7NjbqMy5ww47DMfR2JzHXnZwbaahcBHids3tb3/7UbJLSVJanA9rqkGaga8PReSE6WRx4Mm1OVCc\\r\\nGAxKiDgxcC/qhj+4pFQrsdZDUIodbeFLlodR4wyldOGk83sqB8meyuSgVztvzE2x1rhd2pgD7f9S\\r\\n8B4a24OLN4MrGUTrxgvwRFj9306/+VS/NXGKKXA4sP56EgUWYFWCywmnwCuBgauThn2Ph8JdfTn1\\r\\nH6CV//1eDwKHwXXkEG+XUYY/GR1ZAg7D/E438zIKok10Ny44UnT4BLyVKSrfFv3lgMO5ezg2ZVra\\r\\nxSSDpHyHdngM/dCnbGbr8VutBNZVZJrzlmObYgar62q49j1YXYdPO8up58EJUNZ7zl68ge7gJe/u\\r\\n/dznPncVB0uvimDN70oq8M5R45CAIfzjCbycY0E/tmlBENp5gu5n7AS2Sjqd91Wp25jKY5wPeCEz\\r\\n+L5NR3jB+jvawf/1geE9uhIt64krWwYG8MDhtEH+Hve4x9AT7ZaeOsSV8SunGNd1sk5wT7fjhXRx\\r\\nu2ytAZ+gW8dQ7Lffftv08tD9dpW7VjnvnHPOGbint+AXPuDcWUQa4WVfyAuZZPysFU7JK2dBBozd\\r\\nMZ7sGtzhC7iBT7y+2oHONd93Ldu02gnv8/pElpoO0L+1SFVhEX0kQwXOrT6iRfkzvVNvknnRnBP4\\r\\npje9aYW/HQqqyiGo9+gmlZhFYJy/hkNH3/Uc3RrbKzWX/ZwmS0pi4C96wAu96B5BOhtSq0CtPH3G\\r\\n1zlb9Ai5SB5KdJQZK+ikY72y2/GzcfIzjJtewbO77777lmyJeZavfe1rj+dklaUwYTt2AOx/GQIK\\r\\nEnOKFigEAFAOBAAji8R7PEhpC/MaAAAgAElEQVTlG87Il770pUEsaUkEP/PMM0e0pcarvAcRPePQ\\r\\n/ZX3lBsIJYMly0B4XbfeGRxrMcWDHvSg0VBvLMjy6Bw9VSmgUr+QSclZL0asNDDtEbIm10fkdr8h\\r\\nnP6CaY2foFNYcNgz86yBIYBL61XiMd80lb0oc4uIMDRFYwxj+R++9GPl7EmhexZUhklZ9uyzz14R\\r\\nItGxtVISnOSe3QUf8ERxVVqipBgDjGtd+IKhQEeCVaYMTxQplO51DUVIeOArg172zGfj5lhTzDJ7\\r\\nDJc5OPp+y8k2VpksfIM2HDK0k/ZWgmDoGSj3JNh4uMZXfMsAivQ6TNVaOez6ZShvwQWceudMVnbk\\r\\nKOIDaXjp/SIfMA/hWl4ehsDvrqsR1fccD/DAX+sib8ZMBhjzApeMI7y1dVnmQmQvcwA/HB34kAGh\\r\\nRKcnWa/GU7e73e1Gfx+FVl+H+3Nm2qFTmah+CLDUiwlXSqAMHVyST4frkgW8ZM0MqjPOHPooiKLA\\r\\nOAvTXiu0L5s27dkwD3zknJVFLvPVWTuUuBaEreiHcMMo0U94g6GJ/3tCAZ7IIJi3/iX8VQBYjxhZ\\r\\nQON6cfB8j4ayBjq30hF816jekTNwX2a1hmZ8zTHqWJBKoGSfLOZ8FQiTGw4meoFXJYLuhtP0kqy7\\r\\nrIUt+eQJXXKUjAmvlfJzuPwON3DkUSuqDXrZ6A3OpmBDb1XtB97NYW48Cq75k7G1jNBlslDk1hoc\\r\\n52NXWk391g0HHB9zT7fNox0ZRjv8bx1kSwZqo6A3+svA6N0qgJw+gNo1DgK1juOPP37AJ+Mjm865\\r\\npDuUlcEIz7VX0BloBidl7vEF/NGj9EslYGeDoQ08xmtoAv/GwROVy2stkIEyF12Bn6yZLjKWVpN6\\r\\nusDLgdp5551XerHoxp4oQm9yYvUJL4qveZ3CQYU/fIPHyQp9Dr56ycCPRj2PNR2BXmCwfhlkeMSj\\r\\n7FIZ7Hpve0/f+txGAPOQF6+eMEMual+qZF1yIVlJ55DF2n7gHf6cQtCmhEVtc9cti9xMmteqdksg\\r\\nNbchEKUJGIsgGJ303dEI06jbQqqZIzajVN1cA6I0JcdJdM1QSckTOoeXQfD0lN5FF+K8DnP641wQ\\r\\nRsYGcig7SJa9QgCKnUHqVN8yHpBaPdc1mBSSKytO05Y5W5XSMATcYCSMgUkJHRgYV2lY310dxQ8X\\r\\nL3nJS4YwEN7ORYIzwktY25HDieQwgGVarrnJTW4y+g8YSwyYQkdrzqd1VKoz33THBoHhWMFDxta7\\r\\nz/WvZaCNA5/eOTWcSTBSJnjFbsKiWsrYdeanFMBF+XTmEdpZDzpYd0qnTJhxOAjgAHvGrevatSMK\\r\\ngivj4kk0di8ehavObGk9hBvt0BCefJ5mgShafCDVr8QDzq0K4KJ8vpnrwLfRY5sEPK9+9au3aTCv\\r\\nfIKmObv+xwvRF7+go7+CDHJnezxa63fCjwyR3jUHQU5hcfgtQ2iu+Kn+jHofrHXa7F4ZvvnKnriG\\r\\nAUJ3mY+tPs4i3HIMjznmmMFTHBO6Aq/kQIEXT+Ejc+IpmXZwywoV9dKD9Bqlju/JjjXCzzyMtvzT\\r\\nWZ11ZZcd2aIzyAJdIhiil/GsF11FV55wwgng3VK2YcpPHjLPSYgmZaPrw+sYEnyA7tbJLnCq7fJ2\\r\\nbpZSpWqGaoXzkPTwuM+6wc1p0PhOTuxcxU/tupaV0i5C5uheeJe96NgVMohXZVs5aKoW8ZRMrH4q\\r\\nwSGcc3Lwx3oPAucYCRwFPvi8Y08qJ+O3NjtYM15gtzhR7in7Cgdo1Cu9hD4dvwGXeKOdr3hHTw/d\\r\\naD3wQA9at8/4xQv9e45h5XO6irNqfW1IWS/DpWrEcXafICfek4kVJFqjHeX1LvbcSd8r13p+5Gb0\\r\\nDlocfvjhKwe05hCyjzlb+Qhwir50NVwI0jhUdL0ypvKrnegcNn9w3pMQ8BV8lf3OdrGL6Gk8eKff\\r\\n/SWv9Vujj/E6ZqRyZf1g4DWOF17fzCPs5vG1rFHT4tvJ0KGMZSry/Mo21PiN6EqFFKvoVJoXoyNO\\r\\nJTYp92k9+o53vOPIJhizhlWEnNbWpwDawgoJPVGcUGBUihZjm5+TRgliIkjFlBldCGPcMW5ZucpQ\\r\\nRcDuqc+otCLGKEuFiNPdBjXFTWu1Ecxv6vqiwq0cSmbtslLWKcsCHoJarRnO6mnCIJwSShtNNkol\\r\\nX/Oa1xylYNEux6HdRSkLOCzKwJCULSGAS9daI8aNT3xfxITBKR+0qqSFDxgj0Saapzg4foyG69DP\\r\\nWmVgKGf9MUqQ9VjhEy/wVt5Ej7IB4LWeTpAHT03iFLRG90V3a25GkfzfcC2jKusgO5lDPO2FI8Po\\r\\nWWQ4dbCmzhf5oRTRmQzqtWQo3edww/lH+Jj3iiuuGLxV1ryeiRpUiy4rhXZd2Sv4x694wdx0UNv8\\r\\nV6ONo1HwisCOQpfppT/woCx8GSpZZfxI8V+pWzZlYLbKF86uAh9Hnb6S1dBvuMcee8wEGNNeGI8w\\r\\nAzOcMEiOHLAOnxnfjRzreRj1gSoPoRmZQQN4LftcZqyMWn2Ejk8477zzBn7sJCbj7q9EZoea/sey\\r\\nlJxRWacapjlldJxyHx1Hp3Na0cIcdB5Zlm23aWCXXXYZAQEnSpBE31T6g6OTTjppQ1qBkyPJ6cDz\\r\\nHCL2hL6ud4qz50ihsrR6iOklvCFI5hxyqtGgh5FbN8erJwWokqAHXhJoWBM9VQvBos/83Qo/KVda\\r\\nG35SMULPHvbsCAwPdAabQLdDRgXvjsawBrh3BqO+us5SWxQO4ziuCM/QH+hCzmUm2YMyUWXg681k\\r\\nP9pI4D4ONXuAH+BUcF2Vi7w7BsOuRkmaN7zhDYNf6Z6qTlVEstvea/dJh7SrEO/hUb+XNABXWSz6\\r\\nAq+/8pWv3JC/VsPT8vLy8uh2NniTd4YFJudZUrwE36T6YlwngyXSgAQpRcTT02EcwHNq1NWn55I4\\r\\nRr9o2Fjm4WBddNFFA3iNiwwxRMmgGcf/1fBdAyYMIgqAaMaVMKzFDDJnlD4ic67qNwNnDXZtJ0WI\\r\\ndiCk9Gv0LqKudpu3W4+D9WCOvO9FmVIZkQCWqkXwzgPDNASc576V7N4UBgrPHOA0nkhQ5gg9RJbo\\r\\nLB3vO9kwERumhieKmwDAgf85PE4ah1O0gAtryOlEM7igVOCrDJ+x8FGRbRmjmN+1lKroxD2UBAcA\\r\\nzcFE2ChivQ7S91PeUn6iONsuzei+/e1v35JQrEU7WQT409Pjf0FIzcgMy0UXXTTOk7Fujr71MJrW\\r\\nhNfrd9EoC++E17WM6Xr8whg1D9kjW0V+RbetfbVnZjEKZafQlyPawZXgglP0g2f8nFyUUao0w6CJ\\r\\nttHQX46t69HJO6Xner05q+2mA8tpp522Uiqu7y85w0s1uteLVN9EvV9ktP4OuPDYrbagK1fhS9vP\\r\\nO/uJMTYGfVUzLP6iwzp2pV2FZYjwvjJzZeDOYgODIKPyQdnujH2bFazLNehbz2gBScEQWLVJ4JN6\\r\\ntNqdTa/KyqCNtTI69BenqkbselqmTbv1zRrHSxaRrnSfgKyAgzHEv+SYs4DW9aPQP5VM2tQQXcAJ\\r\\n/3ZNr5clcjgvhwgvhCsyXBM72NiMiy++eNCAvJi33XzwD3ZyTLY4yc5riwc5oU4i3+gcuGc+85nj\\r\\nWYTG5UCgC4eI47ZW8HX9619/nL13ZdnqausQWUq0W+/UfeU6tK7SIZsK19Mnd8g6c0rhyR+9ydnD\\r\\nG3CLZkqzdAXesGb6Gn+069t1hx566Epf4vSoBo+s03awSM/iavrKJgnnD5IJNNWmQlYuuOCCARM+\\r\\nTr/ALR1WRUwpkGzSKbVoWE/ngOFrMtv9PT+XDOOvnpzBftZzls0u4YPHy8qCHx+XOCqRkgy0PoEY\\r\\n+3jmmWduiQ+WMRNjS6AByeOsaRRREiLGAzAAVAawO6rSEWEoJVo/F2R5Tt+0J+kWt7jFjCJtNwCk\\r\\n1VuFIWSqKmG5ToQAwaI0zsZmPeqQtNdee80uvfTSlbOgUs6VOjJSkFuDtXXmPLT7KiWUwkQgcBal\\r\\nUZRSrmtFU7vtttsQGk5kp41bV6feis6MNX9eyaLO2nrXOYPmxBNPHGtyeKhG9pe+9KXDAeChU76c\\r\\n2s7posjASCERUgKB8f0RBjgshW3d7czBqPAZr7StP8Y1r62/Xh1NwJkzZifi1yfimhQOBSQ6AtMe\\r\\ne+wxxsArOZ4OR+1QQeOCbe+99x69CGD2jqacQ2siyK6hfOEAjc2rTwGN3v3udw/DhwcpJdc1ls/1\\r\\npaA/uMECZ+bO+S6tbR3WxzkhZ/VVdIq+7ygMclT5DH5zOpqjrA38Ujbkz1xXPmts4NRuYEbe7z2m\\r\\no7Kya9sl2blOlXjNUc8VGS6Cq3fMePgAn4CbE5Mxbz14wDqVcHoY92o86bBcvFdDPzwlR9ZUn1Pl\\r\\npYIq9AsvfgObPxkN2VJOo/v1dZApNOkRUxT9Rjvt7HpEYxkuitv9jHFZPsYrvKJVZebK6a73exlW\\r\\na6/BH74ZlHq30AKc/sAGd5091sYN9+M1tCjgsC7wGBf+C1jNjffMgZ/wsjmNj2boLnsMP5xpWWK/\\r\\nyV65nlEEk78yWOatJFxppycIcFZXO0svejseRtnP2NZcOV7JGH8VpMjyKAHBmZIjB+KSSy4ZOn8+\\r\\nWHjkIx85gkT377nnnqvuPje/fiwOpTk7BkH2UlaSw7zRLr4HP/jB43wouLYRa+qIObajgBz+MtLw\\r\\nj1Zoh0/wtLnMr/+q3iA6gOPTcRX4VjUAX5OvggnObxUKtDQO3Qyf5sk5oU/JSy0QUx7Xw6b3Fg05\\r\\nTrJ0lZQ5rDLY+II94KTNnyu2WbvjYFd2Ft+hET4FW898JC85TfjNGjump/5na7UmfC0DioZ0MjwL\\r\\nmKo41YtW+xIeq30nOx4uC0TSN2jl/2xbGfz4vcDfez1YBxxwwNYcLNHx/M4HJ/B2QBwPmUJt667/\\r\\n25Jen1VNZT3WBGEwxyc+8YkVoERrIpC2WWeEyihBAqRrcjTeajufNkvwrt9zzz1HGpzB8cqhKjLH\\r\\n3F6lVhEKwcpOJUTe3QvWmuUoI/dFDHiaPjxTWtpuQWUHhk5EWw1++vDRra5t0ftsVT7ooINWDDKl\\r\\njoEZ1dL/RRDW2Rk0rqMQ6j+J1gRB9pHQcEi8t+uu8qvxKBsCxvDiD7vNlAqmGTlpeetAn6Kn+jTK\\r\\njmnilMaOXzo2osjD95R0mUSRL4Vdw6X5KTLKHG8bV3YQHa2P4yal7Y9y4Ii5nrDX8Ky8wBHQKCp7\\r\\nJjLtuAUKoicFwCtnFX9pkDSX69qpx3jjrRqWzYcvBBBKNnBBTtrFyckDJyOb0bVWimK+JMQAoIUx\\r\\nRcwdHutE/BxmW6nRtwbUeNl7Zd56EChuuIY/r3oyO8IhR8daXYf/P/rRj26ojO5973uPx7GUWbM2\\r\\n66kkBT6wFOjU84gPfU9G4bzH9JAp5fnvRflFw7VgD93f9773rbsWPXgCJrQK73Qf/ICN800uOtKm\\r\\nnjEyR8c55oESV2LDW8pR+KX+EWNqAyhQXeuxKIvqgel1PZoG3eAZjHBrTvAVDBf5F1R4F3Ao06y2\\r\\nOQev0fUZMnxmDPKNl+kBuGHcORjGKssiOCAfDL4nUhxyyCEr+Jc1dmwF+yN7NT1dW2lMz7Cx2hzD\\r\\ncbjgggs25MV53HHQZF3gBA5y4MmkJ0fQNVV78D+5mpZS/e5eWTZ8zYkk/xwo+rT2GLKCP9BfIECf\\r\\nkoc2jPl9oyd7rEf3K48QGY6e3igypCRLl4JbkNqOzbXG0a9mrfAK9vknbUzv0+QuOMlRJKtllOCj\\r\\nnaVoXEYqmYeDHFe4pHfqjZueXwi34MZHgiFyyibhMTBaY1nlenF9V9k5J2tqN6q8lHjJhpSFnney\\r\\nNyNrK8znRGfAFkkRAsyVsSzbg/gUCOIDhGdcn9WjH/3olYd4Eo5pX4ReLyWohLjFYF6KcavnPC2y\\r\\nWL0Mdi/JWlhPO6XybIuMi6Tr84GLGvT8NvVwy2ZhBkoTrhDEPXpPREn60jCVyFq6G+NNDwlcBPa1\\r\\nriE8GNicds10OKGIW4TDUZimpCk9R0G0K1TfgYiIQGTg0cGBqMqqlEZlH4xqXe5NeczvNKH8wFqD\\r\\nf/eAUVbG/QSrc59c6zPcF9lTLvDlO/P/f9zdeaxtV13A8VxDNA6JEwSMQ50nBBUJEkYFB1RkMNAg\\r\\nBDRQ0FKwahpSA7UPsNootBRbGpDUSNGgWCKiUQyCA4gEHOoEomgEHMAowZjoHybPfHbu92W9/c6w\\r\\nz7nn9RVOcnPvPWefvdf6zfPCZKV08kowOeGMBjv0lEDFhO6tQ5RxJIVRt89J4Pzx+F1nlPGgGXVF\\r\\nLTLeKNtmIBUtQuvVJ5IDlK8XfkAP+KomCHS1xHFQaIsn61qD94wo/ImuCd8iKik0v72q/YJzTtn1\\r\\n11+/syJdh1v1Pmo7yDBHvnw80oA9iagrdqbIyOX4u1EajLyK2ovYZXyhEVGm+ckR7vuN3/iN05mQ\\r\\nOklFpMyzQj8irXgbreF5L7/LZFTnB+cceTTAkSO3csie8pSnTPVC8C5aS+66fzWpjCrKd1tNqmdr\\r\\nBkHD0vrkk7WoJZQ2dZyPl+eTqRlHnme9HBzn+Yl6Nj+N/NrWuXtH0pI0sM5avFWRPtmptAacNpWd\\r\\niHBxKNkEjH7dhduMMd36DDhwAB/ZmTocM3DaPwc4w1M9GBlerRY81IUO7ng9+ZTRTg/AOd3KOEWz\\r\\n7scuYXwzKhni7iXyhR59tzKI5FmpcP/nvFef5X+6XQPNDTfcsJccOPrET/zEqWvFAxC2DZUSIvw6\\r\\n1LYQZNEdD8cQai4A0UJEBvLKhYJHBedoHJECBEuxuh6zEfJ/8Ad/sNfiQ1adj9ViicpVGEtoY0iR\\r\\nlDz1ajggBTBLtRQqBAd7QphZt4XpfZZx6Ltg1/+IgLAyg2VbbcASRuMdN0vHb8YLS5+Hx6jCNJ3J\\r\\nh1AQJSFG8I25e88CE00HhKaojCgbA5CnaU8iS3NlYrwDAUmoFO3grVdLksHalOKKBDFxEZIaCHiv\\r\\n4OR9OE+xMqQS3u4HR6ULGe/+Jvx9T2TI/RhT1RHAPXrSBQte9uOeagG21TYtwcHH4zVm31WfhJ+r\\r\\nuSw1V6SiInd4RQP+L/wPD/gHz+R8iUiIJC2ZHaTkQO1U6T/PLAVanZ5necVf/k4IonfXUbTzY6p2\\r\\nwZl5Q6Ub0At6YvhR2ur83vGOd0yyibJa1SkqosQQ4HCcdOio5xSBRO/kD55vDIPndEivepzOuXMt\\r\\neJCtHLlqVxm9fYbnwS5n2BxCPOIZ9k/mF7FK5tXlZl19XtONsgL3nMu5Zz3rWdNgY583Hdw4ELqh\\r\\nsgK1be5jb2jG36XZRYHRAvpEm9J6ZtqV1qvUobSj68kP4xjWDfiMHnS5iRRaR/P1ch68x5BS3C0S\\r\\nwqgDLx1k11577Yn00zZ6REPJWOsg80a4osmyCnTcUif9kY985JTq9F0vaVLOyCrHE+3CGzrC75xi\\r\\nhhUcq6Xq0PJNe1HvJvXf+BI4qv4OTRUQ4Pw/4xnPmKJpDDglHz63TrROn4gIi7RxlvF4xngGLkMK\\r\\n/eCJMgPwlWEmAsoJpyvoLI5EUXn78yobVWoxuyB54HOf4am9B406c8mNaqkk1CpOpYBZiEKdDBQh\\r\\nueZT1MpoMRZuw1majBOWc510rGFj+41j0KEAkRiugXaO61jXdYcpCAyMQWBUp4MBeQ6eSaF7NTEc\\r\\nstwbMgiQFL+1+37hyazZCtfdy7NcV+Gpv12XR53lW8u4e3tetUaISkvseGzHNgbzeROdhWR/+Zd/\\r\\neSIICJce0LILB82iYjwpgrTHXboV73Wve02DEkW4eBiMHEYvQhWtqvXXnl03puHyLsuZt2fwwFAY\\r\\nwz0IJ14DwYhGeDGEhuiYz+a5bEX+MVVD5WJGBhVDHF4ZTY16qL6mGhM4sAY4arr3hz/84fMmFOdp\\r\\nGoKFsrdPMKQ0CJbqssDZi0Kk8MDJnhiUYIIeEyK+Zx+NQcHgYI4efJcwAVP0gL6bEs+AJQhcr34M\\r\\nT7iWNy8Ng0e91/li+Cme8Z2ES4LO9XgB7Xt+c8ZKCfo8HnOfIrkEoijApvoc1ytwVh8CDl72bT9e\\r\\nGX3WmxOTULTOsayAMCY/xjEojDceq2t9LtXr3oQvh7AoWKmYjDg0CxfVRrkOPAjrBvF6D41RPmDR\\r\\nyRUVo/ucAsGrNWkE5yJzDIIcNfuyR/wmtVFNIN6BN/QEZ+hLLQpDB63bh3WiOfRUlxo8NSC22lif\\r\\ne5VWdo8aWjpg2l5qArIH13KkwI1czAHPYbJWsDGGpnEwIn86REU73vjGN57hP0ebGZ/gPmSPGj3r\\r\\nlkZHL9UMjrC1R58lj8lBBhAZoL6KAgYfBxivilYZOVD2wP1lSuzVc3UXb5Ob0sR0nqalF77whVOq\\r\\nvTS5wACDjxwg991T7ROZXASnGkc4oKekFtEj2WA9NfTYHzh6Hw/VbYc2S4GDdfrIs0ycHx1oZQWe\\r\\nRz+XHhNJy8DyDE0n6468Mf8LLcExg4RBtY9zqrbyqquumvQnOoEfdoX9xtNNwbfXjlVKzoAV2LoW\\r\\nXMGALhGRwnNoi8xRoiFCVTc62VfdoEaoDPYG8oKt73mBdfw/ZujGYEnOo99+0NiqwbRL9PrEBKxX\\r\\nIVmLI7ABCDNQapi7jqiA43cDMykJ1xdVsXjhu7/8y7+c7i1y4vgFguMDH/jA9J5uA0YEIQMBDSNt\\r\\nwb5DGan/0vWUAAYcQotw6+y4poIDUB0CFNBYm+LAY8hBfBQGQgJcSK5QlkAbOww8C1GXb8cckNTg\\r\\ntuoKvFd9DAGKEHRjbCrypVx4BoiHBQ8GiIKAB1e1KQQqYr/uuusOZihoaLD+iBgswcJzK7qFP3Dy\\r\\nAkdrhE8CNyFuj8LHaAMBpvBFz/K86yB0bYNbMwZqbBASdn24yDgLlxQsZQA2hGuefDVzoiUZeJiI\\r\\nM+AHLjUbSBvxeM1BG+vE0Ex7lgpCu+5dMTmFDA88PnRGmEsbVLtXHp/AJQQq+vd+xfxjoTsaoUjx\\r\\nTUqbIq8I1H6jZ/eyjgrv3bPIjn03PqFUnc/BuFpAePO3F9pNsaLzoq3gD6fuW/en69zLD1pPsVUo\\r\\nal9FOHKqwoPoJziAkZQz3lHvt2kitIYXeLKGirVLOZYazPBrXZ6XYZLwsy54KtpubQyF6qGsmYHk\\r\\nnvCAlhhF+ECKSdRD+pzSRgOeoU4PfXu+SEzeqxEqlCU8iq6KJJBVnEUKtEHJ6NJ30Tb56Jl4nHz1\\r\\nXAYomVqtUHJFTRal3QBSfMhwvPrqq6comzlGRteUnlff2YyqecR6m/C/8sorp5b96kxdT46DNbzU\\r\\nNu9vMB4dLOuDM+uTqQBD8wh1hzKg/vmf//kcmfXQhz50GvaMr9CLUxbM8ZKKy8DiNDAiRQ7VYnK+\\r\\nNEqhR0YbR5M8YlyCOfn9/ve//5xnKe6WtXAtXhe12TV1Z4q86D1jOSPXnuGYvCtNXqS+WlaGSh2p\\r\\nOu6rC0VzRVDiHzyJNtFd9UPotKHFZYUYh/ZBLoHV0nNtL7/88imipNZ0bBhAQ9aJzslg8JY2nI9U\\r\\n2UZD88+l/eELLPAgGQPf1XxVnuN9uANf++cYup4ssj8ykO1BLrsODJN9pfSiV+lB8PF9cMVreC4D\\r\\n0XT5GlaK1Fdsn/2Rjnfvslg5nOhfF+GSMSCr4HWkw45QhLxapiEZ8gktG6vjirLjcdYJgzAqSlbn\\r\\nZJ4RosBkf/3Xfz0R/ld/9VdPnTk6wDIWWNxSOQDnngqBxw5B3gKChHzABgiI8AM4uw51dBQAL9e6\\r\\nG1poX/ZZetS6qz3JO+/g0CJjCfhSKBlqBBOjxT0gU/hznbfA2ENwFcITktu6m3Yl9FXXO+vMoNfa\\r\\nZRGl0Cx4LOnOlFJwX4IAbQg9Uxbuh07gETE2NwtceWBgWP2U76c8m3vj/7oQeTwECUarPVcEBrw3\\r\\nRQSvuuqqqWaM0EXL8CetYE4P+IroYOaOgWIMSK8SjrxknhCDovlnhbIzkgj2pmpXHJn3VS2eWTMM\\r\\nYvtV20aYUKJ15hLUS47R6CBhsIIzxjbji1MhTM9L5gxlCPP0wZ1nbx/gSgFQ8vbLIChigk4ZAhwX\\r\\newWn6hKKUuRUVHzqOeDgWvhsqG91h+AhYmtopPXqHGPQMnre+c53rnQOeNbWADbu6xl1McI7ZYqP\\r\\n7CkjK+MOj+bQWIP9kkMUMzq0732875FnnDIhfXZcHLu3gyPdt6k1/xB8ve89FIWbkwSucOoFthns\\r\\n8Wl1qqWBq5/yOSfRmY0GQpKvZLXU2qrxHOo6XQOvUpkMcMoQrVD0nDPGmueQK5oVRPWlkeGBkUA2\\r\\n+Izxy+nBkyJMSw7X3gQnhh6eRY/4SYc8viuih7bwEJlBvjEIipKAT93B6A//gAMFvUlmSftZ/0ll\\r\\nv+AIg24+MoMzYASGyLe0pzlOMlK6MEXZ8BX8aRpo4OscRuCPvxhjS4b4Srerfa2ujryBuxpncky9\\r\\nVzpPN6qxOyPPkiNggzasl/yDG98p4kve2zdYwwE5gq7o4Rrp6CTXWH91c57dmKC+VwYrR7ZmNteS\\r\\n5xyCW265ZS85MM3BAogmZjOmtPMSuIgN8cxzvkK+QvCiTBjUBiwkQSk6oK5Keg+DEHqjsGVBy23n\\r\\nKUknnlQobmIg3TLqolKiEI2RC9mXw80QwEzgQClDLobC0PbZER/2C9kQTCmAIVgwDBUQvuY1rzmD\\r\\nEAQDaSdtg10qTDEXxqBgrVOUzNr8Xx0UBahugbJurgqYdNAs3DeagDBBwAiTgKkYtlSqz8pbu7ah\\r\\ncIidkeE6xFvKDGHDBTrL6Binj5sTxViAJ0oWzN3ffRgMaI/Sdx8C1zXunfJl/NjbeBzQJth5tuga\\r\\no0OkrOJPBazzZoHuY+I2mN54441H2062X4q3O+I63aRFBaw/gVWUollT8AOe6Lb6PgaWyEbvwy/j\\r\\nU/dTURURQ4obPDlVc29bGsHzvShVRmkRxlLNb3/7249EudVCNfy0sH6K3roIUvQmQuHIlkPBzzBP\\r\\n54qSTyLtq9JJrqltnp/N4VkAACAASURBVOLHGxzCajoZEnjFPeyLkvaTYWs/4Ikn0ZwIlNQmox9N\\r\\no3WOpNovERu8IE0G/upjKAUOp/v4PF6DU5Elzgr+aA2MhTryGBRa9JshlGNZdJ9cDM4pyFLHdXD6\\r\\nXCRC5ENjCVjguVVF7+Hlbne72xS1JB/wFdqzBjxtgj5DSWpP9Ils8OyGrxaZBMtSP/hcpHqXTkGO\\r\\nov3ZvxRgKWrP4cRU0wpunbV7++23H4S26E30CgacbHIMnvAXGrBfxg98iOaJZDES0Akc0zXVPeId\\r\\nuLeHInW+x6BwT7oZbeERDoj702f2Th+793x4JqNPVoIO46i6ptq9pRFAsy5Fg+nEgjHJ1uRGBe9w\\r\\nypAi312bI+i9xgTRu2WsvF8nKljgN7RAP9NJRYvts4PA8UJZpyLuBUoqvyhiXzbK//jI5/SjlOm+\\r\\nMxWPdA9iznWFfIDOYxCdKkdK+fmByGpeEtSAwJIUQTDZXYeGaNU8hynHzZsmSP7jP/7jIAS8TsAS\\r\\nhow4QCsN2IDBOttKjQCufYkCSDdVbwHQhF+CBuEiENfn+eXdMV7GERWHEvzdxwgDfyOcaijAH1FJ\\r\\nhWKQhkXap3XBi/1Xj2HNzVJxr+bVJHQRm+9g/gychltmyNi7H0QMfoQ+ZlZvhUHGeTOMTGshIBJs\\r\\n1SCJcBZWBmNeFwHX8UcIneIilP3dgE9CqPltGNS+GYgMw2uvvfasFu9D4+Bj9X5SQwYA47ucArAt\\r\\nLQtHpb+L1Ebz6K3CT9dQsPgEvY/pQAXYhvtKkbzlLW85w9sMVjKhc+m0W7/0pS89evrTnz7NMHNP\\r\\neFQvQkiLklIIpQXBnHAsHVqNpesPmUoXeWIsoEWeMwOS0PayHrzVWAXvNcqiDlj8VsEueqUMSrVR\\r\\ndA0vba4PnhQd4QyBcTIVL1HIDXYtLVdUGD+Sye5dETqjwKuoCqcwBeMa+PXKWcRj1Z6W9rJ2MIdr\\r\\ncq5O6jz7Ir32Zj/4ldJ+61vfulGO3//+95/Sbtbhu+Qn2FCaNSpI1zIOwJQMqO7W39X2wLs1+S1y\\r\\nPNZ7xZeGVpNh5LYIWfTtuYx6BhXlrYPtec973jnr5uSpGyOjRDDgzPPJRLoQ7ih+a6dDotP4R4SF\\r\\nUQRXnVoA5r5f0bm1VlKQHLOmaifdq1rZSlng0g/8yhQxshncwck90ZL94Sm48l1pQJFh+J7rYmlp\\r\\ng4rV5cG3a9Ck8QS7jku6xz3uMQ2wxTdkgzXSo3BVQwy8gJ21k9fwDT+VgMBZg82rf7avnJdq1fAn\\r\\n+uNgjVFM0VJNKuBvHWN0Huyrw7JXPFUpBdmCPvxfuQc+l9IfD8feRfafISypCWH70iUQXet0czs8\\r\\nFMERqI1oACzEbzOILkECeIDECl5Vgf/Yxz52GukA+TzVJWmqNiZ0iYABmHJntTefC0DVRwCcUK+X\\r\\nCIe1ZcEi2lIrCDHBArgV4zFYqtsplOhZ1S01O6o8bu9bC6Ka15XtghTXMnx5drxWBIKpKsBFwJiI\\r\\nEMrLqcuDhwYH1uU3ASA6yBMWOUAwhHLF+lKFXu7pxct2TzCDVzluXgwBgjYwDcPY/kUvRB8wAbh1\\r\\nDqJ782g9hxJQe1LY2LXN1Upxu97fpYIpsIY3Nq0f0W8qNLQ/KUK05D4iENu6inbBCe/THglZaR9G\\r\\nOxihCcK3UD/4U4quG2cymZllXWOkVm0Nhq8hoBRfhk2NHY3LgHOCqgGlaBeuCHCGccIajNcNqzWs\\r\\nkeDFA0UiiyiWLixlS6AV3sc7aLxIEpy5BxlBWJqJNMJAATscam5hfDmf7uabb57oCH84pDavmED8\\r\\n2Z/92WkPaBwdoS/7s99o1Rr85AyRQWAttSSSuBSfIo5gtW6mD/nCaHN/e3z2s5995lzSsUYGnCjN\\r\\nYELpWTcjh2wih0RDGWx4iSMB12O9FAd27NASxcK31aeBv/QPB6UjfIKzaGRRyDq50Qa4W0e1bSkn\\r\\n/zOKwVAq1/0yptGA74xd0s3HqqwggwAMrIshWF3uM5/5zK3ddtLblLbnkyO+26DLsSlCow/+KSpq\\r\\naCkDIIfAXsE8+TTOXdNwwgDibNoLXVXpwa51NB1ejJ+qpaJfOHAMJfcHB/zvd/Q71vvVAd3ZlfEU\\r\\nnuFglL4Ce3IW3nc97mgV3TOa1AJ3TNxHP/rRs/gDz2k2s2Z03JBbswPpgH3nyX3Kp3zKRL/BINoj\\r\\n06sDrVmnY+3AE27pC3CqsYLBRb7icd/x/ZpviqpbfzWulTShy2pVS/v5n9yoLCLclc3q/+RNtV7o\\r\\nU5H93l2E973vfaeaDhvM0MjSFCEQjbJxbaOY30IIDednIQ6bZ7xQugySog4ArEB0Xcj4+77v+6ZZ\\r\\nMwDwoQ99aK1wVI8l4tH5YRAA0F6eSxgXZmUJVzjIS8EErHvKvTqpvLO8IIgvCoX4E94Uh5fPKSKe\\r\\nls8RDzi5X8PRxjyzZ/nOv/7rvy4W+J6joBMMazPNqs9T4UXv2pk4Z7yLL754mkVGSFi/2pmxnm1M\\r\\n06mTI8AIZASMCeCXIBbRRPANzbNmdAA3dXMgzBQi+PI0wAt9UDx5Fr7zUz/1UxOs0FdRL4qHd+NM\\r\\nKsY3A6qC+PbFyCb4eKgiHgwRz0CjDEd1G+5BkaATLx50TRoEoz0RQuiBZw0u1o5xCXH3h8+GRrpH\\r\\naeKmoqN113A+rBEsGCMEiOeCGWMZczNK6zLTRWUtnut7XtUIVusFbvgTjD3HtRn11m2/+LM15eS4\\r\\nzvPxAThZgz3UnYima8muKN7/Xmi8bjHf84JLMPKq8N16CDN71Xp/zTXXnKF5jRxShfBMYOsIZTBy\\r\\nvHjTHY8VLp/0pCdNHVj2lqca/VhPdRLxWqlLz5YmWpfCUGtkz+BUPQkDyP/ommFYB6C1UvRoT32i\\r\\ne1NSCrKXGm8fK9d9x3d8x5R6TCnVSFB0Gq7RQDTh75o80AQ8pPAYCo1k2LR/OkMmgSypaYID+aY3\\r\\nvekMfEWwRJ89g8xjjJOL+NvaPBMPMdAcxUMGqS1F9+inzjDvM2b3rc+SyjbHC42YgM5Q8/fYrcrA\\r\\nJS/mtZVjIwJ4MCxLv/q9rYPxEDTEwFKfxpklF52PiFfplVJrZADZURR6U2PWkjUZUK4kKGM945P8\\r\\nKttT9K6BuuRrqWz2RGU7ZZs4kORqRe5lSWrAsjc0jFdFvGXMioRXQ4tu3K81+Bz9le4mx5J7pQtr\\r\\n9iAnjD1685vfvJcMOJKqA2gbRpBj0d1YcGsBiokpMxuGJHnkBLtFVlwGGIyedUWu7mW6ugiWzY5d\\r\\nJ5CUMAYYwpBiqNAew7FsdyEGA9CaWg4h1koJQkCdf/YBuNUTIUZIoPBEUUQrKMlqU/xO0THGIB4D\\r\\nigT5zjoDizdLwFCO0iXuAfGiEH4KrTJETjLFdxVDOE5GfYN15pmbq+McP4YHYipEXIjW3saUIFzA\\r\\nL5opVQFOGBXOfR+uGC8VMxJ23kshV5DJoLPOPDZRu+COzjqQFzOhA0xShMNaRazAjhFGETJSnO1G\\r\\niAj9v/rVr546keDOesDUfdAtHHAg4NZzCgtnPOTVoQ9Grr0xuNRN1FHJeD+e6TJ1kzUjSMSGMvFd\\r\\nAnhJdFb6DO518nAqwB2NBRvvVbswFk4T5rWPZ4DffPPN07UMZAZsNXYUUMeSMAgJEfRX90ypInxg\\r\\n/z4Dc7/dowLoCs7tDd+IvBnBMj/bTQONExTgHl0w+hgu4+HF8C/lzQhmkI3FqEVG7aW1VucZb8Kj\\r\\nY1NGA4sM4QTAD3oVGYBritlavFd9CppgxNojOihKaj6gfbr3HTFs1Nl95Is9v+51r9tLmC9Rgl2j\\r\\nVgZ92j8Fh+/qMManRRFKPzJsaoKqhqX6Mm3s246f8VzR3TrK7RNPig6ORovrOHfooC726ns5NJ7J\\r\\noDY6QXBAVFCUtPEUS5sKTp06NdEcnq3Q3/7V2+AT8tCzyJFtAzbncCfXyoCAFV0JfjUEcTLsz/Px\\r\\nkAg/+PubDFBTZC3+5oTRSb5LRzM23UtKto5tzwIbPAJmPtPYU1ai1CYaJ/vJU07PWCe8C+2su9YE\\r\\nfPLXc8gdMiTnMTlTEIfcVWdH1ohUiubbZyUvnR2JVxsEjufxqPfYAdFh5QqCG2Q/OIBJaT7yGu0m\\r\\nz6oXzmF0XYad77menEkf0i/jGZq7wOocRkbcNs3zT0AjQosvdO3BLEtCyw8B5fgNKblCoX/yJ3+y\\r\\nUUhccskl06gGQOq8LwunWDwvg4/RZ7NLJvOu27iCWR0VjSewRs/JSi7E73ft35CW10GJAHwK33Wl\\r\\nS1xXmzXC953jNME5+xfq1hrtGQicV6ZLTjHwSfa3FOEEnGcVrUSwtfj73eT02lgznlNwhBiGoWyL\\r\\n9hQ9GdN3vCc0kiHJcAQjhg4vw/fhQnoRE3qO93ihCfHq/TASoYcm0Nw4gO/e9773NKdNvZ+oiHvx\\r\\natGhLqUXv/jF511RLYX9neE6UUAzdNAsQ8OrOhtKFo5qUy5dnqeHruGoAtCidxo6RAvnk/3dWwcn\\r\\nL5oyYaCOM5NGeChsJl8YvkWTq4co7eke3iNc8VkpZQrFpGUdo9K4UtPW5n7SHfueIWY4pnuhPxFX\\r\\nz7MHikvagpKiCMc09KMe9ajpUF983dmXaF+Ex5o7CNr6mqx9PCj1TITNZwxC0UdyIscEnZM/lLOo\\r\\nTx1SDOZSWPDQbC9wcq/xLEMKV0QTnxmZwPHBh94vJQn/1pqx7d6VSJQuLhKAx9ES/lsyJ0jWAs/D\\r\\nWY6lmUbq8FbxBwe/iDRdwRAhu+BbzfA3fdM3TQXVq8ZCuB855DeZ63nwBh8cM40/XtX4cBIYbiKr\\r\\nHD2F+/QD+Sw6S/GDCQXemI94Bq/YU6mp9GVRac+utsc9MgzoicZsWAsa9x5cwAEa8LnvupfPPbNa\\r\\nVjQwOq6lptEpp5D8ZcTVIKE2dixnWCKTRIBb07YUq5NcpGeLNltfo1dKW5MxNRR4fqNKMoDQJPov\\r\\nlYrP4I2+BgfwcA97DRfe6yxD+MwprLYUzOEgPBR5zRALDu5fLbG/04945m1ve9teumTqgLJQwiQi\\r\\nacAZ5gMkQgMibYySg6S54DL12/lNiIMFPYZ9VyFSTQZhj9gIDRYtwJ50FseqZxl0yjsur1rtiLVC\\r\\nKISMP9UEMaoQSClG925mBqILcRUg+rwarg9+8INnEPLiF7/4NC+mmVf2er6mA6vVaKAluGLSYKoO\\r\\nSOGmffmxbsTD4GRUESIEkM+a8Aw+9kloYFifMXq9J/WS0qAwELSoAaFfFCRFjLgL5VoTJYGuwLru\\r\\nnZQ0mgR3kaCmY4v8ERZokPCgFLTSN4tKqs13KsjVLr5LlHOJsPlYv8b4ATVqOQH4oFQ54Q22BF0n\\r\\nGFBm8I7mCXY/OSWlBkWTRXlWHXXFoVAGgLZEj9DeKkfiW7/1W6eayup54itrshY0krBM8FVPiTfR\\r\\n7Lve9a69BOA6nD7wgQ88ba6XlyJXita60LY12BMarn1bxzQZQxngGek3BlEpkTxu8PXDEBKZSWbY\\r\\no2io74IDIwh+8Bvl5JngDxccUt93HzxYbQunhLyu+YTMBhv38gOW1sxAUJiO78AYjivSrgYrWVkx\\r\\nunWWqrUO660g3/DoJdP7RZxKWVk7GqJLRgeTjGI0gQ2j0v4Z9hSq96wV/zeGhKz7yEc+cg7uiwii\\r\\nD9Eosqb0tN/zsQbzWrjv/M7vnIwF8lGKqBosEWyRRmsnB+EMPK0P/K1XWQ0YNaU+Y6FD2Rnf4Cw4\\r\\nAY/hmTFRHRZ8oKWi30Ys5OQs7bh/9KMfPdVbclB/4zd+Yyt/0OFgz9iMjhm16AYcGLabIoTN3WI3\\r\\ngIXvoEFGtf3QmdWnKkzHH2CX/qR/XFcKH83RTfGG68gJcKx0w3voEM/kjHkveZFTWB1nRlSGLl6p\\r\\nFMHzymLV0OE3HO/btHZ0l7vcZZqU7lVkAvHrAEJY62ZkJJie+tSnTnM45E8BjBJGzPLom+b+OFKB\\r\\nl4BoRBuuvPLKrQSwr4LDtGaw5A1RHABdTRXg+x+gEywhKAFJsCEOjJM3XRqF4On7NQQo6G1GmIJC\\r\\nBbWHnIsjZaTwk9DB9DUbIK7m2mBg3teP/MiPTLDl4ZuibE8EPkGlJX4VXDsk2Gc6zxoqiiEwQWMq\\r\\nwA7uwa2WYnBBlGDBq2ZQURw8KwJoU+pT6N4ewNpLSBwu/M/Acu/qwjAiZYMJ7d+6wMI1Cp93De2v\\r\\noy+RH7yBbuzb/QmR0nfjESlN5Ac/EeDqGTtTC0zsD9y8R1hKKYiMuCdF7jmUiyiEv4WoXYd+gre9\\r\\nFjXg6Ue3GTDVSKJV9Al/6hjxJxr2Xg5UXWb+L4IFntZnDRWWonG8nufte9Z72WWXrTxK4573vOcE\\r\\ng0YtKGyfF6NzfhyGPqZmq/8pTVUKM8en1LO1gif4/PZv//ZB5cdFF1001ZjCu1lB8/TnElmEBijj\\r\\nohGdn4aewdGZpfCgFnIsKjZmBW0XMZBVAEMp4LFOsTV4Dljh6yXK19gazm0lDqVv3K8auBQQmEev\\r\\n1QX2nvcZGtbGodlUI6orz5Rv+0Yz7sXIQ4voopo8pSMMGw4b58n9U4JF2IsUVTf5vve976C4J4Ok\\r\\nuihzEbZDjgAJZ+AxT40uoaldrtHQoptOGnZVHSEdzJAy8wvMwRO92zfjUaPHLsXuShM4UeQDvDKe\\r\\na0YoLUeekNnkMyOMU43e4bjsBHlIz8CzCJdsmmutjQ6oEQ8tkY/VVKFDf5f6G+up6j7OCAPHnLTs\\r\\nn7JX1Rp6n4xjzK+TL9sOXz9yMCdFTKAyqDbVi0gxEZgsUoBq2KAoBgBS2jZQXcSqAxLVW6iPaKQ9\\r\\nZDBGlubOGUu+K51A6fKg8wqtDVAUJDp0Ni9FkSEBMBof1XRUMD/mc4tUpRwhMaMi4qkAFAHVfeV7\\r\\nEAI2oivbjNNtzGLdCA2RISYpNp6xPbLgix4xMLTg2gtC5FGuquHqHK9wxXsSTbMHwg7xdqwLAW/P\\r\\nnoPhSsvYN0K3JjRTQbKBcTwWSjmDbt3+dAnBHSPCb1Evnk6Guu8VuocXnxEE6NNvjNSZbOMzwEsq\\r\\nWKSQYeEEefQxP9QUA8ORCJkDb3nVvEdCgXdZ1MZe4TtDyf4wL8EvkuvecFJXDJoCN2vuOB978pMR\\r\\nb11eNVH4u06ZRp0wSNFRx1fw7MCc0iH48Bf6R5fW3MTkvK8K8sHQfazHvqzTvYOt6+ELnou8Wg9c\\r\\n5zz4bnWJGVYVKFuvIYarhhAS3uptOGr2p66F0a1WbqzzlFZAd4x9fGxvrcVzx1bqitF97m/rtycG\\r\\nUI0S23hq/Hweteiz42aPM3TOSfmVX/mVgypxhvhrX/vaaf3S2/usf5e9zq8l9xl/lQvk2aONsb7U\\r\\n39ZYZ5jPyX2GmGgL/Og+P65dWgsjUUpKHP1KVZEdZlHVnOJsUSMBpKTQwCtf+crpXl/2ZV821SOS\\r\\n6Zw1Dg5aZhSgR3ylg3EfA5gxl8OAjyl+ypR+ktGxZynw+byok8CdQrYf+wbDXQ+kJzvxJnmwKi3f\\r\\n2uhJ8g+vPu1pT5uMWroDH5JvZIo92yMHhRwR3Xz4wx8+8dYSQ30OB7pdNJJcsMZqn/xvr3CVDPEb\\r\\nbZFp9kIuaWooKLENxow542bgz/3t0x5yxmqGydiq5Gd01jyj+i7rBYucujqr0f5JxsBsFBpC/IBN\\r\\naVRABlCldgDGwiELo7nGQv2mjHQuzFOJhty96lWvmlI8jAHEJoK1qq1csSqCcC2CLLVl875bYWZj\\r\\nFypUxijmozTYk4XMwAK8DIgs2OoL6pLJS/M5goAABOlv+yWI6kSss8reCQywaSjnTTfdtLjd1vrU\\r\\nBXj5Lewt4mB/RTTsEXGAF4VqfELzqZa29Sok1A6PuEuJUq61Pdtb04s9K/x0hI99uxZTqHPSOMBg\\r\\nuOSSS3RBnkNLcC1cLkKhu8N3wYzBVmEhgY1+7JXRQpAKrTeawP63Gd/SM5iDQeJZ7g9XOlrghsHh\\r\\neTF8Rc7w1Rlz6mQoDAyFjo6PdppSW+7lu9sO8BbpsgbCItojUEu9u29pBO+hObTN8GCQdVTKGOEz\\r\\nJZuBctLOI3OBtOYzDhmsKdFSbtXcVHNlbT4baQO8wLM6BXTIE50bsNIZIgBg+e///u8TXTzoQQ+a\\r\\n6uUe8pCHnJWu0NlK8MfT6MGzi2JaJ5qsPrKuRnSLhsFUt9d8DaOAFuFjTPCEKWbwJKPQAWXPQXFs\\r\\nzngPR/lUKwQmDEW0XHNHEdPOibMuRiL+FckHZw5n40ZEb62VgYDWRWatAU8lv9CA+3mvyOHYmUsW\\r\\nSY80BDkHJ8M8Z9H9OAyjg4c2m31mHfiEEZGhWpeVa7ysoZRwNOF976EBvCo1bL/Gv8CbqNgqWaQ5\\r\\nykgAcgd/4zN8Qs6BB37noHWcC+MTbBgAjB0RC8pXWsnapUUZa40Y0DixJFot0nzbbbdNe3Z/tFD0\\r\\nFlzBvq42a+L4cUDU2tm31GKyCq7QpPVLw9l/w0LtDTzRAfnh++QM/ivqVmNKdVT2D79oBq2gV/Tn\\r\\nOvtnVOI7+IFv+HG9QvFKNzrKDD910Hc6Cq82YsI9RA09270ONQBbsxQ8W5cf8gIvFz2Cu7I/RbXB\\r\\nubq/yoVEvqy333TqfKSKo5ngstqq5FWR/Izv9HWlPWi4bFN1gODq+2O6MBlEzojKrdJv24xAnx8R\\r\\nPpQfhveC0Iq7ar23AIoBcBguiD3Pps5BKQ6RLdc09M61ik+lNlxPcShoxRz+h1xCWBSlMKxjbTC+\\r\\nDsM6WNwP8RDO8w6kJZt0zQMe8IApvwzweWmlGqrdKarlmopsfbfRE9aDOCsyZOwQNE0Wr3PE/Tt3\\r\\ncb6+hz/84ZNCcU8MDdkIH+NhXkQF/vBg34cu1Ja2IZgIDEYFhq5AsA5GSsT+wWOVYucdKSY3PsMa\\r\\neT4UFLyBBfgRLhmN9kqpVGTqc0X+mAhel3Qgad+2niYNE368lzpDGIHog9Gn3o23u23w4VLa+Xi5\\r\\n7ilPecqUigTzimcJnnCN7popA9b9NIyvCJnri5ZSBoz9poRzikzl9uJBizSKnFIuFAbeYJA30sG5\\r\\ncSIg6J0xAZ8VtFoP+VB6wT3zhqsVQ3/vfve7zzLu1ZoRvpSf6/LSGUhkmoh9njNatJd5ukbpgy7f\\r\\nBK99Mg5cTymrX3LfFF/OZnVKeAEsFfbHD9WG+H6pwxy5anHghqHmPpQyeVB3chO7dUwyvDPSyQ7y\\r\\nlIxOgTAGthnlOl+vueaaMyngIqKlsSuhqM0d/pudZv/VXYmGkWn2+uu//utn4eIRj3jE9Bm4M5Dg\\r\\nmFxAfznM5LI9GJkhUojXZTUYmV5Fg4so0z8i+wwb8tMg63VnMVbqoNuWwebZ5B/FaYwLxTmOp4nX\\r\\npWJFxlzHGLAGP2DQ/C+8w9h1XzjLiYNvstyzRCeNKxKl5ZSKPNMf6LwmA/QucjRG/o2AcL/G6OCh\\r\\n9LF1eAZjliy2vjJPjEgy0h7VEDIi0YLj2+LRbfIMXeDxml6sm8FGjuvMXvd9OpYNUOdyqWT3oW8y\\r\\n5nMUygzZvz3hMTCRUbD+DnSWQUAj5EHBnMp5ijSVDiwFiHaLvMfDrbsaz7HoveaqIrrWSva4r2aZ\\r\\nfdPER5/xGZ8xhUmz5hA9hqKwpNnyzOraybuGcC2kNu87zRLCgCx5goewGEc1EL68zQDqN0HiOkQA\\r\\niAQtgFDGUl2HmkFjRIH1Isw8YnsitBBCRW0Q4/0sXwDH0PaJkfI4moKOMDB7CE7wm/cyj94Jf6uD\\r\\n8R2eDeOGUNwWodnGELt8/gVf8AWTgQXeIjzzOjneIwKslseaMbY9opOihuOYixQioqcMEScDhxFV\\r\\nrRu4EjabJgMTFlKVYEI5il5izg5Ars4EPhhwmJ5hxxurkL9CS6H9JYW3u8Bu27Xb8vHbvn++P5eO\\r\\nQ38in6XZSo0XYgdvL3ScgBq7C9E5HqqolJIRyeD4iJIwlsxaqyOrPZEXPiOAyZUmI/sOXHeu2HFX\\r\\n2CSDCOoOzrW+ySM87ghKeHtPdLroouJkkTKCmBwyJJCXvCqlvAnezgzVuUYJo9tDNkwYHaKzjSxR\\r\\n4yPieUfKgNGIcHZcKdkMqYxvchCu6YaUY0qR/HAOoXupEbMfMtEg0VOnTk3vMwLhplEvRnm4N+eI\\r\\nfGecMAYoMvTGSBGNYowYJ0OW+HFPho5OdVEv2RHrYqygD+UYm9Jl+/LVJ3zCJ5ymm0Rp21P3Iqsq\\r\\nDbkQuFuyp/vc5z7TWabgsy367n4yKQIbviMKB1dwBH/SiKK4m/jAucMcbDZAdOO+1YFW25RuRS9e\\r\\nbAARREYmXhORQxOcIJErBjC7gQ7KcKqLtkhiEdgi3K4jq+r2L0LveUWzvJcT6fv+tlY/ZVisVSBi\\r\\n70nu97vf/U4TZKxqP1qS6+AakcgDIJwpNQq6QYyF4pol4h6UntAuSxTAeKwUoLoMjMi4qI2U4VJ9\\r\\nDySqs6GYDz224IlPfOI0ZJOyYEFX2wEJYxgxA6uwuM+tF7EVtq8GpfArg63CXEzHc5GLvv766w9a\\r\\nt7GEqbZd82mf9mmTdwJvCFq4ntKzP3gY63fAqlkr9pcyJvTqWPI3mmFwdXAy5pT2/Zmf+Zlp/zwi\\r\\nMNZppkNQtBQjoA9jG5qATVhWMyQq4jsUpRRaNVpg776U1E/8xE9MxrkQLroEe40TBK/ZPLuEdRWF\\r\\njykihiZ6tw60q/5QZIyyFjloDlfzv+xHRA/v2I/IJm/MWkQrvOyjAl+KBd0QMgwBSlbUg3CJF4M/\\r\\nXsPw+AO8KShGies8vzQT4wSORGgY7/ALJ/ChbrERB+Dqe01Qbs5ZNQxFYUpFWHvGbfUf7uU6z3JO\\r\\nF+NSHQ1FSPi95z3vOYf2OVhSCGhqLHgn2Dk/lKf7xoPun5fpd0XtFWfbB+EvUnbSesc535gPCJ6U\\r\\n06b04zZ+m3+uTtBsMPiX3uEs4Lvz2eSzbo146KUvfelEM3QA46nC9UoI0AQ68Bv80Ro+JafHzjT8\\r\\noZGI8eMcWvoCXjjelCdDknJWpiCi5TmMrAb94in3F7VAQ/jL/+ZQoTHdr2DW833GUbBO/L/quJtd\\r\\ncTNeT6kzrDgDZPVvwAAAIABJREFUpS5Pcr8L8d273/3uU63p//zP/6zVQ0YYiS7DL3kArnQCWiCf\\r\\npDdFbpfo44c85CHTPEX8W0kN/iTH6JtSquQW46lIKQc6J91zyQc6WppbFowzzbiu228s43Fd6byy\\r\\nUzWmeb9gSfCv1qqUojW5R+lw9OQ9P65Fh7qI93XWVwJeIR1FwlBA1KxEQp5irDandmLGlDoGZ+Bh\\r\\nHMzI4vMdbcs2QkgBuKgOhqMYhT5FlYR5KR3RqrmXcEiilB5RVOkF4Vmvee4ZSFnAIcn/zYFCGIiQ\\r\\nQmSQVABcK3XIpOwV4K0LWx9yX+6lJRkj2UNTehm2YDpXDl/0RV80zZZBQBVnNzwULAi+zsWCu8K9\\r\\nhGT5f89B/HOlIDXD88Q40obSCGCh27FIqOcyqhkK3bt1MKwZIQTnqsLp7/me7znN0CKMRUgpwBSA\\r\\ndVsv5e6+rkOHcMRIU8fAmEGXTTT3HXvhGVXzxftyXa3YPPXqfVzfvBYCglBgwMA/YwaDMxq9KE57\\r\\n9F3rJSTqfqFYaxxg6BQdsFbPpsB813WEib16EXiMN4oJHYIt459A9D2zjewdbXpJvddVY50M6boz\\r\\nq9tB541tsP4EYY0jvl8asU4//BB/iFQqAjY7SH3ftmLnb/iGb5g65ODa/CRFrWq2FMRnvLknecGQ\\r\\nrMai+kM4ZhBmXMGfNNeqMREn4bO73vWup8GAc0gAW3MpIXStgUY5A/yJmKFZRjKDmqHtGmuuqQCO\\r\\nefdwBveNE4HTmkkYxWRTdVfuWZ1Mo3OqgYPvxudU0sBZQSvohjHe1H+GO9yBWSMErJPDaR2+n5EN\\r\\nvuivGp8iA+gA37gWPB7/+MefU64hQiqdpFAcb+Irafv5yB749nyRKvyLZnyP/sAD1uL54KFDFT2j\\r\\nD85Uh9ODbfPO8N5rX/vagzuzsjuiNnPl6jge2QzrntcvicgqU+DQkBEMTg4OmIoMNb4AH5IVaMGk\\r\\neLiyb7Ali8Cb/rVPspbh4j7g477VnHFe8TU+Yax6tu+jVXj3N12EzxSGVzPmfuk8zyKv3ZvMfMlL\\r\\nXrIXLHUt0rFkL1rzImfQNzzXGKVoPOd7zqNGRaBh8ALDDJ8iVTl7Y+2o90a9bT9ejRoqgOKayh1q\\r\\nmEHvXtE/mKQX8IbPpa5/67d+ay+YHDE8KkiDcMoP8qvDKuXDuCDcLV5OeezaEC4VTidoIFpHG6J3\\r\\n4Csm4K126KbF/uIv/uK0WAxpTo75GrfeeuteG1gqRO1TyikFQoATZKVK6jZAZCEM0Dvg2OfVQFgv\\r\\n5BMILGyGp/0xOsGOIjUT7CRtuKWbdDoRNpiL8YRIqgEDbwZJCjAiw8SiSqvGIUihYMjq6vJc3Qfu\\r\\nMAODd91ZdmCDqQlQxEcJeK576t6zFvdpRo7PGqUA9rxRSgcToq15itJ+G83AyMFsFWd6JnxRzpRL\\r\\nRzO5r/XbE5j4jntTMoTXuBf1HZhXCrwalUOOz1hKjxfiOpPVpQAYynXZRO8VflLwdTqieUIKz/dT\\r\\nvZbrK3oXdWA8EEicqE21P4xk0W1G4uMe97iJHtRkqg1D5/Dy+7//+0dmx4mukENFK1IicOtvsoXy\\r\\n5chtqzcK3iJISzqkFLkzAPAaWuu4j+SEouRovFpDihAtVutJUDPYK79Ar/4e0xDVeoAvPvGbDAZ3\\r\\n96Og7b+zV63FPRoC7brOfMWLHGHXeuFtRkpwYpy5f7VEOUzuD6Y5k0WrwZ7ih9dKA9xPdBZvzZ0g\\r\\n4w0Yu2BANsDlqoHTcMvRZkBbM31CvsFjs8GsH4zH2hd8yihEg5wKxoSSAo7kr/3ary3SH3QVvJJB\\r\\n9gZW66KHUmxwaX1gRjbCtedWHM9gZfiRKeQOmFmfa+scBleOGgOV0ekasIELcO1g7rqz4Q1PeR9f\\r\\nuZ5OqYHG88oC0UnkLqM+veDa1sfAcZ9mRbnGcxsJg55EqK644opF8Nskt77/+79/qlssRZjDmKHP\\r\\nuei5jET7QHciWGgQjKvv5NCQCV7o1j3Ty66t0SadV8Akx8+11Yy25lLOlQQVUBgNLPzY2CXvwxmH\\r\\nZe9Bo5/5mZ85KRyEXqQG40GK35iJ0GUJi2ZhPlErn7GQKUNM7f0sVZ6pcPDTn/70SaATph0hoyCx\\r\\nqEpHHTDG5sWRc0Q+7nGPm45PoJjruoEYXgEgEzgdd2MfBAHEpvCFGAHLdymHEOQ5XeM+3icgOrqG\\r\\nAYjBKG5Fg5SCQkyT6N/85jdPwGdoIeAON2ap8+a3nUQ+L67UNhyceEjWSRAhRmvwfEYcLwOT7JO6\\r\\naIAe2NjLTTfdtJWxhJE7rkZDRNZ/Hqh1glnwhyMGHgJG1OsmNYO96c7uB3/ozN/2STA0i8l1/hYp\\r\\nxWir0gG8M/TAMzP7hUBblaa6EIbNneWZurkoMbTTLDi8MtY3wSNY4wPKOxziET8JtIRQdXmMcny8\\r\\n7ew3xcMMJ86c7zCMGdJ40/OkZKWezF674YYbzhgorbmShOPUxyR8Vw2aHGFuFIe142E0y0Ah19D/\\r\\nqkip7zqrj0NGAeFncFD0TC5QkuMIGnOlRGQoxjxzM+cYGWjS96WbKcg6yjxDvZH0s4JminZ0BNQv\\r\\nrTusXJqdLCbjOHQMKPxWswgHqNl4+Ej9mWJvxgH+wK+NMgGXsdMrQ7voPFjZe63wPgcTilIEZx6l\\r\\ndwQPfQBP9MA8TS9CoRaPYQ33ZGb1k5deeulpUTi0RcYpLh5rq9RXMnjqNGVUMMh+4Ad+YOWZt1LS\\r\\n5BXYgpc9WBuaYbgqqrZPNMdgmY8IoJ840j/8wz884b2oCTql9+g/wQR4ACdrI/vc1wgYqW84x2sj\\r\\nnKyrKNOSY7T2kR+ezdhlbMEFOMOXfZLTm2ZUjs+bH5e3aS0OxxaJrOQjgx7c63AlP+rYJ2MaPl12\\r\\ngFGEj2oYI+/RA5lU937pvfR26TwyAm1UAO9/NonrMnw90yvH0j3ZLjlB7h0/ZCgz5m+//fatenIV\\r\\nbI6E7AsRelgRLETBwiRMPNyrttZC+b7nM9+r4A/xmUsjBWiquPBkho18dvNNIE6dDgDwJhypoSvC\\r\\nLI0K5RAHg4NR1FRlhEKQM2wAC1FXW8JoaFyE+0I0w4CAIyxj/GoKIA4QK3rzG7Dz3BiGBCQkd5wE\\r\\nRPs/Y7JZRZ6NeAg831GPsuoA2mp7MH5RJHD0ffAtBNw0XL8ZC/se+TFHugnV2tXBXG65OrEmpcM7\\r\\nnEs3gSWY8ZIQLrgRHpjB/w0P9QwCSxcMxQJfRc/UYqAR+6Xg4IRw4e0R9tXfuS9l7XPem2t4Vpin\\r\\n9EQdZnBubWi1FKB1UnLVxUnR/PEf//E5TMF79oyii/CRkZGCosDqtLRHBgBatGe48Ax45v1aZ0dY\\r\\noEP3tidKCJ1QavaFNkr3ECAM8ua/UHYUBf6Yt7k3XLRIhe/OW5ZHHIt8gqu1El6NBUip1tpufdZJ\\r\\n+ILvmDKvlbrpy+CeQZXws57SiHjmCU94wlmHPW8SxNKJ0sYVquM7TkTHIkm7iG6//vWvP3NOYNFK\\r\\n/E8AFg0C1/e+970rhZ/TItAK2qP47Bedeq41M3bWHRKtyJ1zBUdo6TGPeczeh62jOSld0Y4l0bN9\\r\\nFOou3xHFuf7666eoXKNeqjupSxNOvKILf6MBP/aBzstEjM/+iq/4iml2H775+7//+3PwwsCihEWh\\r\\n1XHhOcYAmmX8dj6gz3Qdjkamhhvy1/M5nkZN4B2pcIdNi04nK+gL65D6KvJJxuBXsm8JHqQIj7sE\\r\\n91Kuu+DkfFzrKCGGPTi+4Q1v2LgHBjiZn7FiPfQYekD/SyJcX/IlXzIZ8aUI8VgdhHRIDTR0mswP\\r\\n3VwNNhnJ6eIswFf1vkWkyKlkUDrDNRnbdei695gSHGUXmnZdUWTfRy+N5smJKEJWBBK97T3J3Rwa\\r\\nCye4bA7hVsWfcrMJAk1YmPIb2yt9j3dA2RDIFqzGigIzwdxsFMATxh0PlzTBmfHFiPPdZoDwDDxX\\r\\ncaPPIOsQtUzmAKkFc++6BCp2L5RIWJc+sRdwcQ2k+F6zbXhf1gxBuozATIFuihahyjMXHXKQryM2\\r\\nOkUeEbqnwk/RQPdZOsvqpIyoqaFwsr3W2s3L6wBcz6BYMARByqBN2G4bG/GiF71oEqCUYHBJidsz\\r\\nGJXWZMCijRojwAdRw4MQsfVhOvihDNAgAekaOPDyDDUfQu4MLB5wBo1aHgLWe4wb9yJ0MTbjoJRu\\r\\nHSb2irnchwHkfwaV5zKwwKiapFKjnu+90WCpKxdewbAurGqjpIJKz9gHmvcZL9m9eEzwwrBDfxQC\\r\\nmDDmrduzqpObd8cxsBhRIqDuC7b4F9ylZNAxQVKqHI1Xg5Xh4VnW4TPXFrYvrW7tPrMWcGJsUphv\\r\\nfOMbFyki0RlFywlw8LV39ToN3FQ0LXrg+XBfvZ01WO/YAq5Tbd5FZjYa5btv989jH/vYqT4ULJQE\\r\\nvPzlL5/2xmFY2rGmqUfk3FpFSeAR3WSkFj2iiPCEQmKRWP8vnU0ETu47T5EyWhoEXUME+c6xoezw\\r\\nAR7HW6WE/Z1iy+OvtjFjmyHMmLaHeQmCAnZNDGDmR6PJPAonRYu/rAltX3fddVOZirEa5EG05vvN\\r\\nQmIYoQXrs2b4R4PklRQhY1+tFL5zT47KusjkLvLTgd9gq9NyHI676h7zJplNz1lVkrC0TEHmBP9X\\r\\nS9TcxUbr1PlLfpJ7x6U+Z/El2nAP8oDTm2xh7Igq42UyaEnn4bjPT//0T59ojuwiH6qla0xP0VE0\\r\\nJR0IvxXWV1BeFCrZUw0gnJe67t450/grJ9l1RdszmMaIV/drDhf41FAxN7Dcx344Yu94xzsWybY5\\r\\n3o90lfVQC6WIeJIUC8BQRoh1JACzNiCH0iH8IDMLE6JFsHgmGEd9BQYgpF72spedtUhFcR2XwHDT\\r\\nWg8phNCm41R2YZKuxQDafSOA3q+QreJKCMbIeXCuJ/gpa3VVQqy6SqS2pD8VwUIMZQZemFzu2PEX\\r\\npcaEvl1DsVbIuFRI77PXTd+xbpGBhhQitDq3SssxVhRpX3bZZSuJinEM3wxrNEPQ6QLDqNWrEIBo\\r\\nibBzHaZVeF9akzCmYBmqjBRE7ocg9757IX4GdlEvBr61UUTokdfL4GJ4uAcBwSghvD1bSoeRXgE0\\r\\nGoDXkxizIq9oYowiNRF8PqZBpGBURPgGs18o3PNoKSqKjNFXBw6aT8nWzeO9CsoTYKWG4R5uckAy\\r\\nKE+dOrU1bQ1+DB/FsKXqmma+rutWCs1wYjj2nQ5rr9D7fHQRmtdnjZ5ln+iwETIpf3RZWttnDFv0\\r\\nyVjkxIhI4wewch+fe/m74l2fgych7m8GkP9FzKSZ5jVjDtD2XTQsMsb5HI9qivfBWc0mx48M5+yJ\\r\\n1lKoHCBOXpH8MhEZzWBsX2RijiVjmowmw9RGuWdRYHwl9aw2yXelK+3dNatqsBqsDA72rDEGXTYA\\r\\nFy3iYfQXjbov5U/WkBPWzGEqsq4k45A64zg1Nt2fAyeaLirWeXkZJWCIZ6yLUWJPGYpgJxtDN6AV\\r\\nP9Xy1tgCVr6jLpHsAw/3ZDCOhfsyA0YVME49W4obTqrpYtSASTBFj+SuZ/7Lv/zLJMc5v3SYKGEG\\r\\nBhgrvfCzzYjcpotE/OyL/iYjq+0Gn+p7/UbfHV6dUY9HaiCqIYMtAV72W8rad8ugkOV0V58XBAB3\\r\\n76GjTqkoEkuWgVO1pOl66xp1f7TPAMSbq+h4Gzym9fzoj/7oNNDMwlnr61JRkMOYAjSFhjxki6ow\\r\\n0vulutQWKBw0VBMyAU69w9zAUhvhXp7L2zkfBz2PQNBGmmAp5I2gG+qJGHkE1VP5X3qBsSRMyuum\\r\\nsFne6nxqACAYeIfN16Lo1QWsSz8sQcz5ukaIXm0LAUoQSJmU2qQo7Y0g8xs+1UsQKgwoQrDBpCIj\\r\\n9smjJXgRu/sxzAlW9Wfl7wl2RlAHzhKeDHTfQcCMIYyOoXjyPFZCDWPOj8Dg4WMK0QUGrnUUkYQb\\r\\ngoZQOx4GuJfXcb5gf6Hv67gSShAOG8GQwKrWplB7ES5rBu+KzatXqL4hw4wgoyx+9Vd/dSPM0R/D\\r\\nuFlVaIJS4Kisa6xQaqBhBu9aF37LSyWojQdYWlOyFAfqDj0Tn9ibNFTlBo3rKMVvLXifwic/CGTX\\r\\nghUDB11zzBrKbA++A4ZkjBTEKoN96Vp3vc4UbMf0VNZBmZAB8IzncjbRhB9ywdqbFE5ei7xLGxkU\\r\\ny/DgKJMTRhs4Q5ExT2YwCuYDLhmEus7BilHHUG6QJflBJpDJ4AN20knjPEQ1ZkYLMFjhn/P2u7/7\\r\\nuwfn9a/92q+dhl7TZwzLF7zgBZO8gUt0AVb+J/uthQ6smxSs6oRFL+Qpo4hs41SSpWDKEWW8uRed\\r\\nCgfkr/qzMYqpdIYMpXPcZ0nt1r3uda+pI082Baw7i5QD4JQVsKbrdo1UraO3r/u6r5s6hPGCvaEp\\r\\n+xoNpMpxSv1lhFUTnR0Br/inaB2jiY6oKxFd+h+NZFh1j+qpkl2uqe66cqc6KF1T1Mw1pSEzwBhw\\r\\ngg370tdZRFnHmodTUJiQgGgeT0eOYLA8HKFvRIPJEBKCM8mZsWTwGOaEXGmm+YneZs0g4OMW7MUM\\r\\nwouDIMqCBc/4Ed0onystBLGI/eKLL57uq6XadGCAq+6KQCDgELt1E3QY3X38j7kxAyQXRmQMQH4F\\r\\n8f1dcZ3f4GSq8S/8wi8s3tNSIWnvrQUxZqggkg5DRXi8qVURKHUM0rYUgO/bG1yW0mP8INTy4Jia\\r\\nsMDUFENn9oG3daw64JVChHew013o3mgATcE13CFm8LVO96eU1qWCFUYT4FKvlGyt5YQ8WkUHXrww\\r\\ncOAN+v2hD33o4PBfiqc743WN0aDQGMMVcxKGcIsWvBJQ4alwfQWqGVtohSyoJo2xpIB9ncCGRzOg\\r\\n8EcerKiU+/PYNzW6MKzVDoqINz7EWinjD3/4wwfHsxTj1VdfPRnvhPpSWjLi5lAK63zRkJIFx9vg\\r\\nEXuzR39Xc1JRsPdL4Rc1ImMUdkvtwafok4gYI3Sc5C5qL1rCWHjXu951Fn7qBpQBYWxLF3VaB+Of\\r\\n40SOwi1j5tJLLz2n2B3Pi46bqyjDsK1JKlhedtllk5MhNd84CXsnR0XmRqf4277t26aTD3TGiZoz\\r\\nIOiMVQf/bioGX3fm5Ry/TZ0/FN4N91XbjD85nvQbHO1ygHNrYdSC06bov4n+ZLRnpWPJEk68QAu9\\r\\nzFGhF2Qa/NQEQB+Q5UVV6e/S0o0tyaCiR3IA/W4ock0I6PbYpjjTmJMsy27hSKLzxtUUvSoN2XQB\\r\\nPMHY3fc8yiMEh4kYFTZuwwmwZkRYHIXKU7AAimweji1lhjF0jxDit95662T8EMSYRQfhKHxElCCE\\r\\ndf8P//AP5whJxoB0AiAy3gCWMQcYTZh1X4zW4ZUUOePItaIhhDnPElMBLgHh+/7Oii0lhSgAnFfR\\r\\nvBnIogSqpQELBFPuuJk9oiaIl+KwbwblvsPJELV5Kow9HgHFAtH2BhbwhOgQMtxRTl7VVLimmpE5\\r\\ns15xxRVTFxdDCRGCj3tZNwVrb55TrZpJ2KuMKPclKBnInmf/PFbCklGet0GRE56YBazAkVFVh5Xn\\r\\neX4zXIqIYj7rgC+4LrIFz+ABT4w+HZyF191bNG0+RmSbwJLag++Eg6gc2KM567Y+92bkoSv04QeN\\r\\nUzzwgc6LwvkOr5YBi2f85OkW4mfY84o7Ew8ewE731MhbBHf1CXiTwuG9MrSF9KVnqm2Yd0Hdeuut\\r\\nk0d51VVXTbwl7UUZouHqJKwffuyPoZOQq26uOsw6ePwmnKpRo5TghCFNSeGhD37wgysNHvzsMG5w\\r\\nImwVMouQcnA8T0r3hS984VpjSapQcTbhi67Ambz527/924MbWIzRzs9Da5dffvmio0ZEa9dFF+4s\\r\\nk/41ccgYgGEzAdEH3KO1nMVGDeBB+IZ7vKs5RqYD/0vPymyQy/OidhEgRrfIz3gMDOOLvEDP+N7z\\r\\nHBoOzvieMiZzyTw88tznPvcMT6B3DURSsWZxPfvZz57oZl16WWoNb4vkiJpK3aJzdWRKUvCpVOwq\\r\\nGfFVX/VVU8bjf//3f6fPdbKDicG622TKneFzdYQaNUQVb7nllkVrlpIGH7wsgkse06/0BTm2qTbw\\r\\nbne721T2Ufc+fVKECY5FztRik+XuT56SsdU+oT/yxrUZPKX05mMYrMt1cBvN5iAUVa9OM7mWfs+Z\\r\\nSEdlmFX0ngNZRBetLIXfHO+APnV5YTQKiweB6D2Ulc9bWTfFFaNSghGuTdss4d0wPQXviFT0CHOa\\r\\ncJ4A0sHI+KGc3v72t08EgCF4MBhQHp/S8bkXQ8wcrV1zxbpL1B01XM09qz2qZXQMY3qPUAEPirbC\\r\\nT4wPTurJwMj6rNu4hQasgaW0J4I00Xgpo/EGGYEUIqHkpzBlqTeEg8i9EC8CE/1Z0hHTOrS/8yzd\\r\\nm1ITJrZHz9NYUJfnunVr9deRaZ+Mcj9g2XEYiNc9m37P6JwPgXzuc587FWJjLB4i4V2zA9oRFa1r\\r\\nDswJUnTIuEEXDCz0ac3VPqBDxtVSmEsBqQmDa0oeo4M9jxsPKKq2NzSLphlI6Bhd1+3YDDHKQCQH\\r\\nTDoMlnduD7wfxph7d4B0BaoNQPU+uIED/DK+CA5rsddqnMboome6T1Enf/PIm9djzWAMLmBrDcaK\\r\\nUBD4yPWeUb1DkSt8kLIlmCofKIxeitD78P6sZz3rzDEvUv5oQ8pjroREoNRRlTLT2WRYIlrgkIQ/\\r\\nztm68QTf8i3fMilmcO4YD2vVRr+tvEA9KP4HF0obD28ac2JmGD6BC7Di/aOFUg01RthPjQNgwlEh\\r\\nOzq42XcZz4xINFXhtmsS5DW/gCd8VGAOP97D/xRSHVCMGWtpdIwUBuelukXXdcA4Ge6Z9mo8AIfI\\r\\nvdAP+kUPyTewoVTcpxSM3xUpo2e8LWWmjlATE8PTfRyXVINCsoOBD59g8ZM/+ZNnolA6RBnkKT4O\\r\\nzdOe9rQJp/QBwws9+O0a9Wg333zzJEvNWhLFZFhZ+/HcNTO0zpG1xjpwmqoNJVfokiVTyT2LwQA3\\r\\n11133eRkclDgZt9oxiZdYKp+2ZIK/Rs6DN8ihvPv13DhN9rDG2gbvWiqEt2DU+fGlslZtwalQlKI\\r\\n5Ba6s0+yWDBFx/6SutWLLrrotO+TNaW/G9+ULKl5qrEs6D26re65TtbSgu5Vmg99+rFfrzJJvkOW\\r\\nJ5/qii1IZD/xle81mgasu2cy0HtdTyafaEwDRUM5bAobFqmgcCi0BtflYRACFIGFxYwiE5iugt6H\\r\\nPexhU8u0AnhWMKNEKhFAEFAt9ab8QpKU0aHrKgw5pACsl+AD/AANUQjDegC1w11FRzqShHdl7xQz\\r\\n5sZ8Xu4nVUmRpfh5R6sOiKRoKHPM40dEwffKVROUBCKkNnaiAz+XGmubruOhgDvc8SiEbNWZiQSp\\r\\noaEcgwuFBCYEn7VWjN6p8/DN+CkCwtAbvXRnlKEZTIX5wQ7zMlTs0VwWRkZdaeDJgGVIMA4wIY8T\\r\\nc7kGnVo3hjC8lgDAoJvGFhwCZnfUPXbpRMInjTjZNm+t9T/0oQ+dFCx85SXWyQaXYOz9umrxRnOn\\r\\niuj6rPQKHpkbKbx+xqRzLn/8x398UgqicIqQ4dUzRCQJbnJANINR4juKgdHjPPKrA5gDQ/ZwsOBd\\r\\nDSS6JFgp56J063C1a/ToSU960lSnhE6tj7GLP/ApviiyCS7+ZhD47VXHE9iNXjmjKsOXwiEjRQDt\\r\\nnSHDKYv/PAfPMV68T3b6wSMcP2vBj5w8a+vIJPf1YpzUJIL/wAk/XXvttZOssq+USGv2fwophUae\\r\\nWZt92Ku1cMTwrTEJjqZyxuC6QdFmIVL08No07Ec/+tGTHCaDrZvRRqaKfnieddo7WrUfa7344oun\\r\\nKCkjoMGiDChRFgbA7/3e751jgHDW953wL9XrCJ46QDkvHGC0qzSBvrP+Cq7BmLFNtjEo0XlOfPVt\\r\\neCdZhg6i+7F4Hww8Q3TX3uGc07VuUj09yijlCOAPxioZSt5Wp2Yaft3fjGLP8Go+m79liuCUs7Lv\\r\\nsU0PetCDpiHR6N+LowoudHlpQsYxeodn8CklBy7Ro78zcsbPKzzPEaiUxbNqssODRbuK7Pvt5b6V\\r\\nvvi/76P5aiLH7/q7iJq65W1G6irZcw5RCnG7Ka+eEIMsTN3QMEADGO9Lg1177bXTPXiXtXzaCCU+\\r\\nRpoM0VTYyNv6zd/8zanDUBspogMc6cN9mWGpAnzqU586FUdGAPaAIO3POvxfa6ZrGBKMgk4xh5zG\\r\\n/RPu4IT5MQSjkHEJwZhMUf9oYDGsGGsMBoyAmAkX8MSwnneIcRRLYOHAZ+vvzDshfjhDzISb/WAM\\r\\n72MOCrWInf9//ud/fmVkjielFo9wRyOMNszkXpRLTO1kd4WwrVV+H60J41MEPDlET8CYxO432DPm\\r\\n5gqdl0wYH9IIXQLDj8VrOBgihs1sA9OKTRvVUC1EUe2GjRaxgQsKbV3I3CBbDQjHM/QmHD/qUY+a\\r\\nIhalcKUcjgttp044Cl+EmcEgwiAFNAqzz/3cz53SPHiGUec+nBRrR8fo6ZCHMVuzOViiAMk/oyAy\\r\\nGLfhXjSCk1bH66rrl9blbHvWrp8bkaEpwGtsY6+gHd9FE0UvK4JHG+DBICDjGBTk15/92Z9tjNQr\\r\\ntpYal70QZZbNEEUjZ3R2MyIZiowJBgt5Sy6TGfQQg8DfPiNLRMWkKEUZ1YAx+v7mb/5mcbZgCcwc\\r\\nPyZyZe9SWgxABp+oOV6gB6TzGVlN+Sc7GVacY5/TBeSg6Ke9NubF33SL60XoGR948pBdkPZoAC74\\r\\nMvg4POSkSKIXHibTwZ6Dcggn9Wu+5mumlKq9oP9GvNBz+JqMgeOiZAzP0nNFTcduP+vMyOm6DLEM\\r\\npNJ9nkV/kU91HFZ3VTTLtWWqikTnUPq/zyrEdx84g6t//Md/3Iu+jtTksF4RhlQEpgGgvIk8XBtA\\r\\nGAyHcRaSOSwEpKNysg5FYW677bazFqSmSBu3xTKyeAMMmzrvzMRaetzFEgZZdY0uKh5QQwcxa+cL\\r\\nQk4CBaBhNZErAAAgAElEQVQryPYeIeK39RLyQuS+x4AorSqf7AdSCQtMU2un9F9ERbEc+mDaXeGh\\r\\n+YDhiPHg2ZoJAvtuwvuqOTLGDrgWY6IVDIugM6TsrXSX93njPD+0QzGCsYgWeKK5OmnAGqG7J3ow\\r\\nW4wSBvNVsGKsWz/aJIC9GIHvfOc7z6I50ZFSC8HowQ9+8JSetE/rx0TW5X/GI29xnyLQXXFwIa5n\\r\\n/MAVum/0QuF48B+9u7w9iiLBhD4ohepwVkXOlA2oXSITOFnui7fRjO+RDWhidL40RYjkUmBwomak\\r\\niejVkVBSebV4jgD3DLQjgrLLwd5LYC/KQlaUvvi3f/u3vQTskmfdkddw9Ez4hutwz3itPsVaSsGM\\r\\nqZgUGoVHbjAM8DTDc9uJEmrnpBLJzOOi98mpJh9+53d+Z4KrWuBKDciGJqLTR40c8B3d2eHaIFnR\\r\\nMfLkT//0Tw+KH+cNqvcDFx2ur3jFK46e+cxnnn7Zy142BRZ05l2ocStL6eWaa66ZshXkJAMxvc6h\\r\\nX1ezNr+3wvuGgNJv9BhZK0gyXiszoq6PvGDw4k/GOn3vxTB3H/ohWdNcRJ+Xph4NKu/D+TwtOF6D\\r\\npshvMqrOYjzr3nRQ5xFm7JUByXjzPeus1jQZ2IQEwQKwe+tb37oXfR190id90lTUlhAlfC2Q8KLo\\r\\nhGMJVUQPeJjChkSrRGJY8BBHgFYobUL7qjoKOW1AqDW8IZeAQQgvCcEJcQY0wlh4lKfAi+DVYjYC\\r\\nnNcx92qNjaDUPbe1VnOS4YDJY/SGt1EKYCA1YL+8AgiTtqgV1f14ZQwwAgHBnI/upjkDaHkGAx4i\\r\\nONbGepx2nSIFws1jIefXf/3XTx6l6JAJyIbXiezxaqQ2G9WhkwqO3Uu0kfcB9hnd4E5pgg2mUuNA\\r\\n+SFiypIXCpZeDCKRDYyHQRAuOpL289wK4Xk6HYXDoINjzwNrzAn+vEgCWGrB98DcQEfplle96lVn\\r\\nGOGTP/mTHTdyRlk7XFx9HK9tbMPlXGCycvg+t6bON+Mc3HLLLVMU1/rs0X4oGULDWuC/lKV9WWep\\r\\nAp/VScnwRqvHYySmtdgffhO5w4fNomOMFjUFR7QNBg3dRJ+iJBVj+p77FWWGN0YQA8a9jBnJqy41\\r\\njmYIvzrJqlPIwxuHilY0Smjq3Fo3dPY5z3nONKm9GqLqvhQjr4tSc9SE4X1HOkhbvi5jUU14BnP8\\r\\nJQKiHg/s1WqCNYW3aqr4UkW06rrHP/7xUyQux5JzODqAOvFErzlTdUp1EsBJnjv/7i6RLqlYsqdD\\r\\nxcnZFFyRF+UAaLealWQxukMDpWHgP8XWWIn4Ho24x5Of/GQ1s4sUz3d/93efllLEq3CmRpOcTtGb\\r\\njYVW/e54NfTbIeVGGPj/fe9735nnSY/pMKSTnF95SLiDJYMBfyvS53QZlaD2a5ei8XVrIrfJALWD\\r\\nGirAG//CF54jI8iD6qHo1xrQ8CxZg2/xu2uVW1ijOrE6uKvDcw81h0t5RC2lVB88gz+akJImb9C8\\r\\nsRmrom0cd3TG6KlGSjML/MC7GlApQvdLx9YNOE/jVRyfYd8IhgrZu96zSs2PNVxgNBbAe04Rs+Q8\\r\\n+k4OJvfGtLln0HeK3JfCbo7voy//8i8/zRih6DAdBFNqvDcMNHrzRuHz/jv13aJ5MASP4y9e8YpX\\r\\nTESiS22VsSTyoNPM/ZsLQrHYyDoPRJiTUiFQMZk6KOkHXY15l822qCOKEkR81jIKdGF/zydIajuG\\r\\n7OYoVdNR4RsFWfExovU3ZIp0IF5rJyiqHYJgcLRO+zupV8XAASsCSboiZchoqkAU7PwtvcLIARvR\\r\\nn02F7x34zJiS7lPjctNNN00MhHEZTO5rz5g6D0OYPgZzHSapUBZcKEARKHBhVPgco1p39T0ZHzof\\r\\nfRftSe/xRhntrmNAVNPi+Qy1PGy4qpi8cLH3pKBci34pXDjC0BgSXHwufO0+9gnX7oOhMpJr27V/\\r\\n+xHNYhS4h9RnR/Ood6DIPA+cFJb6blFgtAUOFAg6sR+wxDeM3WDDE+T9E9wEE2HmOrTLEAO/uqk6\\r\\nhgd9gW+Cr1Ebnkmx4k/CrHqPpoZnmDVktI6Z1lKtVZ21CTB7srdqTewLPMDQLJ11XvwTn/jEqW6q\\r\\nRgxKaVMHkjEqouCNBSA4wQSMCDjrUW/j2UWgKXkOgGuWNjcsVcLST9ZTR51nwh9aodDIIYK6GkWy\\r\\nIgGPP/Fhh9jiG/B2r04i6CxF+0Q/jYRROzPWg8Kz/z2bI9VgRc+2JvIBbrzwA4VQFMra0IH7o3X0\\r\\nYY3uh27Qfp2DpQhTjD5rP64vSuB+/j6u81ls1KhpEk1xXzQIp/OUq2YkawZb8Co63nFkYPxXf/VX\\r\\nZ56pZlF66yRzijbRg1IK/CRrY76bemWngZAnakAbHIo28aR9wQE5iDbjWbKkE1IajAymld2As72B\\r\\nayn5Mgrw6/7kGZmFHsAF/MkC9MOZzQig48iphoB7znFX+drZWXgP3XFm0BgeJFPpWLrEPpeUYHzO\\r\\n53zONKurIAXY2mOzwQqEFDGdpwWrg4rn/F8NVoZWNDnWUzVfrtR2M/4qeB8jZOg8ndnMq0ZDlEqs\\r\\nTKJRDuP4kaXyo+vOYRA1LQ2V5P2/8pWvnDxGwDY/iXDRmju23boZpa2+A9MrpGzK77ggkQDegE3y\\r\\ngP0I8QK8uosxD6yIl4Jk6AE4Q4YQgkAhzk0HCK8DggNcGSqIGRA9ty6sitmsDcIgq0JgQsHfiNpL\\r\\neNj38lh5O9IihB4FqjiW4fCHf/iHiwVQa25sBgZpvhNjxppEiDobrYjPNddcs/MzHvnIR05FpgSF\\r\\nCBRjxk/nyyVkhUb9eDYBPx/XoIi9MQUinJR4oyOasSQlUOoQDYGbzzAX7x/zohuCzN7sC4MTtAQW\\r\\nI4fwShERAs3+wkBj3ZhnUyYM7AxENOQayo5A8ncM1ygCTIvZmj58HH2c6FRt4B1VG7cr8+5yve5P\\r\\nUbiKrsGTYEnh5qSg+4RYKTnPAR846YBhfGgcxote9KKV9KfesUgE+TEOinQ/dXelK8kMOKVMGKPo\\r\\nryj1Bz7wgen+lJuomHWmYKyPgYiG/+iP/mhnPtgEv2c84xnTcT4EeS3qOkJ1QIu2UWKUnXXiHSlM\\r\\nNMcRBFdrss4MUjTvb/QNdvaBXueHY48RK6UFZJTv1PkmxSdVgzdE9cCgdKn34E+kB8+KCEndoPO+\\r\\n76xA/NWU7OqwrAfc8/qLZNUMhG58B234Ppjscj6bNKEGp5x4w5vnqXgRZntgjFBuGdDgGo9ynsYj\\r\\n19T9MGZXzabahT9WXXuXu9xl6rD3/Bw7f4M3eOAhhg9Hynv4w+8K4Iu2uDca8b/u2YYjVzZiz1Li\\r\\nolp13zd0V10reDSsVbOGa9DOttQsGhb0sHa8Hw0YGq67snl01lGNGx0ner9uzM8mmN71rned9AEn\\r\\nnGMHRowtjm2z9qr7RKdoodqnnIIc3qLlY0Q92eQ93+37Y91VuMogq+kj48n73TMjvuj96FBEb/aA\\r\\nn9797nfvJV+mL0khIGheOkWJsHmFvHchZZ4kYYqxEA+vAQAMYIMQxgfDhYA89rRWLkaLrUJvgKJ0\\r\\nGQwUoGcLYVb4bDqwoxesQdoHA607tmUXJmIQKPJD4IQd4exFABUqB/SQg/BTuryYIlS+P0bodKu4\\r\\nLyJCWBhC1GWJABKhY7RCJEOiw4Q9o5kiYAyu8zlHu+x9vLYJv3ndnkUBENh+TNyfd+DwFgkJxrf9\\r\\neXU+mLX7nvuAHwOnI2t0kro3uhHmxtR5yx3z4Hs8O/QlnIw23Ntz/M2rAiNMUs1UhbcEA8HfdQw3\\r\\nSgmu0GMNCtWTuBZ9l/pCu6VVfQddYErr9D7jYNt08l3wwLDwHKkBf8PtE57whL2Yd5fnGofACRhr\\r\\nDOqCKnze/cKP/9E0vBAyBCd+EKFlLK8b7sjhEG1ibICvrrOxqYERwfjygj9CmGFMcUghEMjwwHu+\\r\\n8cYbj8zPYlzBayUMGWHWRiEcejaRJhwGFjpR7HzojuZdcHfIax/xiEdM0Qo0Xnqmzja49QMnaCAe\\r\\nyFnK0EY30kRooiOCyBLpoHVDVo1mcN5gaTA8L/sxppo0B5AbeBXvWif6sY46HD1nnHumc8369j0r\\r\\nbhNsP/VTP3VqrrDmOjA5W4w6zqEMwElmHR4Sr6vuRd8ZlktWcg7gTU0bfkPXcIzHDuVAmmuZ00Sn\\r\\nM8LJZQYc2e89eJw311TYXlF6OrhyIr/xexkL/5feS4bRQWQ/+YAePK9IVs8EI9/NcfSdIvN1zVpb\\r\\nTXB4hMxhf4xzOndJ2x8J62ESxoSuCIpOJELkSOhVjU7I01nBqLIpQhYA1Wip1dIhKMdOIa069FW+\\r\\nnAfj3qIWiDbviGCliMdZH0sPv9yFSB3T4egG1n8Wdt+HMMAF6Kxt9R4YCeKatwFBrPSOwoAAQqkw\\r\\nPEbk3UKSSN4qgcMDRjDVIzGqlhx9sMteN137WZ/1WVOxujQdoWjeD3gwonni1uI4DUYz4uSlU2T+\\r\\nxpilJBi/okKIuYhfoW5Fy+BYN6B7IH7ECmaIF335XO2c9/NawdDnBHjtzw329BzRQeseuxkVV4uO\\r\\nVsTY7BT/Y6iYisEFl2iQoGFkF5p2jTXUvluaxHoJolqlFUCLpDWx2Hrhu7lS1gi3ngOuGfEcFUaj\\r\\n5/F8m0XluaXyrBs8m8Nm3wxRQqoWfbxq/Z4p9UmQMGqLkFg3+EV7zo7kwdae7/omIFtbRad53MHL\\r\\nZ/bgXu4PtwxdezBmYV301KgG8BFtEJnC6wrRn//85280JNUCkisN/m1f/hctAtdxQHARF89ZNyZg\\r\\nX55R8qDbzZ5XzXja974X+nv3uc99pk6vTn0oUgWupf+aY4Q3U4ZooDlcvlNUnbNSQfG6cQk6082r\\r\\nwkf0i05qkf63vOUtK+kB7OkfPJTciC/gXB1UYznufe97T7Ls0F2E8HSPe9xjqkEFG3Tw/ve/f1qv\\r\\n0g0OtaxK44UOgVfRKfxVOs4kdvJJoEFGSN1fERk8JeXOSeOMgs8YJaY/OSVqU8klBhZ9Zh/bRprs\\r\\nuxc1kwI0apbJM3W+cGPNdetlNGXs+B0Nwm3dyhWyZ0hVI15au8J0MjQDLSPLPdFaNVcc8yL00XRd\\r\\n867NuGo8UQaW/+k9uj3cu96QZzJwyYHiU4EdZI3ngAlLKgYWiq6I2UY6XFPBm0Uxrhrw5+R4hdIU\\r\\n9Cqi++Zv/uYpfIhYmuniuaUsCLGrr776vHryukCETCnziuiKYAjbe49QRxB+N327wkyKzfUUmfQm\\r\\nJUcAUABqjcCH4qzb4qMf/ehZ+1FrA9GXXnrped3nJgbBeDpxEC7FxFjR6gy/9kZYMhhTrODAiGqA\\r\\nppQfWDEKMSwGRuCUN0MpfFLg4Ge/oh3u47tqi0RKKWDPkBokxNyD0Ga4MqpcJ+ohkqb4GbO6n3z4\\r\\nqmGolLNWf8+po6R6BkKKMGSUwZX9MYK9mvtj736sv44Tf+dVadwYa4iksH1fmiOPxiBH9wi/0u3z\\r\\nVLn3rGGeYt9XqC35nk6gG2+8cYoMgU0KEnz8ZIyOhlXKFi68KGRGlsgsgY3PV3X9KrIlZL/3e793\\r\\nGjyZt88Jc0j6uvWCoVZyBnBDdAk3tEfAEWilDxkAlB48kSmcurG5YQlMtl1z6tSpySioRrNRI0Xe\\r\\n0RCeR9NG1YRrtUYMd44Zeh5nCkn5jYXwCrrto1QPPFEM0SAeEt0U2fE+POFD9Cwi7D38Cxf4h5PL\\r\\n2MeX1XThZ/QGb3AqQlTXrudYIx5wbwqu8oAcTtfAR+nY6leq2es6TrKMxw033HAWjq3drCxwe8Mb\\r\\n3jA1XDi+heyUJpxHT/C7EguyFG7BVzOOxpsGRtuvrj44FCBAH+cjgvXZn/3Z02DRyguMhxCpV7ph\\r\\njRwhcgFO6IyUNyOpDnnfJ+/wD1iTeegWDsCaHKrZi7ME3vSiH3IRjsGawVKE0b7h0zWeQ/aSs3QP\\r\\nesDnNeFE55rIDhWpWsc7oonqaM2qE+EkW+BeNLJi8rEuqqaJIlMZWwU60FozqnyW0VXHX4ZRdYQ1\\r\\n62XModkcBO9VFhQOqrHyf1GzalPrsrYH8mU8i5BRiwcZq6tKoUb4nMUMvshzELkg3Ny8Vl6LUfsk\\r\\nyqF1nleCqaQBfAapgEtAGlb2kpe85My9KT/hdkWOBI4UoCMzmo3kOaIh64aprUMoIcgwIHiFJj3b\\r\\n/yIfGIFHNRbhFqaWboO4sYAVsjEKQY65OzfJYcOib+67rstR+swcJ2tA4KINhMN//ud/XjBDapMC\\r\\ncaZWEUiERCjbH0LzG6GqvQJDMEHY9uQ6RO34BYY3GoFz11fI6HoKhlEV/ZQeEhXjbQn9ExpgBBcK\\r\\nNIsAqbkCZ/TFYKIQ0Bbm0DE071yTPrKeOgwJK4IPo1A0BBgh7SgOtMog9FyCq0iTNbu+aJu1gAva\\r\\nJ6gIjH27SLYp8jvqc4fvUvoULxzaY4X+pU8Jo/g9WFCuPocvcGju3ap1m7NFyavdlNpzjTEwWts5\\r\\nJ3h81fBd14myMWgY7oQzvCsf4AToKqRMKCD0BnfVwqBJht8m420fGFuP1GBNHODCGFIvRrmhMTzk\\r\\nb2tE1xQJ2OIFSrn6wSKm4NhYmGoeyVR8QpaiVXTnGvjBV37QLR7Em017p1TxBXjBkc/BxjNKm1sL\\r\\nPFLURQfc2z2KmoJfUV5wytP33GpTogUw9/26YmsAwnOUTadxjPDOwFa/q46ILNWdBz4mtNep23cc\\r\\nuUZXNKvNeIdqtdRxOcvyuKkl2Xoab4+Zln3wveo7jvrhNOIZzyRHGHdwzcAFo1KeaCHDp0OslTv4\\r\\nDn1CjqCdnBUwBQNwI0s9Q4SbHkIP8CAlDz9lfWpUsBa6zT38zeHwDDRw6tSpMzrH2YDWiSYEFpYO\\r\\nJJ7DwsgK6xvvPb+Gc/D85z9/SkGiRw6ttaMztIrGygLlAI+1lGOWIYevyBT7ovqrsg05WEWxK32o\\r\\n1qq6LP+XXbHmZB5+5ii6rgxVBlnORilE8md04ESwXGuf22aXHREkBBcGF1WwUEj3AiTWm4gFosLM\\r\\nPBHheoTHUq8WxmIrYJaqCZk8U3lgm/iLv/iLM8iXZuEJeBZhxTBZV7OkpkNYmddjfQROtSEIuAnh\\r\\nTZknnBCEsOgYKXCWlNoPz8xDt0dna1XA/ZjHPGYylqSveGSew+AkWBA+4c5ztR+C3VoIYQqhGh4E\\r\\ncVxHdF4NLCFleNqG5DkzKHJnSFu3iBChYX+MUaMRwFgXIkPYPhkkjaQAD0QK74SLOgR/izTMi+AV\\r\\nU+pwASNEC24UtQhoowgqkubdY846cMAafaELApQQmXtgnWUJhw3NA3cRFEJrPrvk27/926fifqlw\\r\\nAopQrM6j8DKGxLz26e86N6UI7bO01Z2hJgdfwM+S8SYUnWhhqfEMqTy8wuN153i/VGNNDg0I9f88\\r\\nAiedocNK5HHe0felX/ql0xw4hmxF6yNNigbq2DMGxdFaP/ZjPzbxjaO04NXcuTG6jUYV6WqOqNZj\\r\\nPgPtpErWDDVpVbIEj1xoA3tVyQSeaTjytuNfGDb4goNR9Ak9j6URpW/QQFH8BipXp9WpFUUL0JP6\\r\\n1FXZB3MH1dwqAh8PfE7GMszMmBpnmD3wgQ+coiDoj1Euol1JAYOSXMCrjHD7ULNnhEajXU6K9/H7\\r\\n97///ScDpQieuVhFLIwykLEhb5yVaF0Miea3HXId+97LEF9BDWtj/CzJEKF7ut6+6EBGoVmD5Ps8\\r\\ntfjkJz95KhlCg7JC5DxYOb+WM6VeVw03/JE3XuittN7YcFQJR3udR5LGCFhF7pXzoNuiVmRTzoTn\\r\\neOUs+x55UbrR32N6svqsIlo5ccdnMJ45Lois40xJhY6NBgJUc71w9IAHPGCyxig8ng+iRdQUT54O\\r\\n44GyAyiLAmwKj1I2yoGnKd8LGX7Gjp5O2JYCHGemKO6Wx64OC0Je//rXn2WQELx5L5tOK19KgDqR\\r\\nEATmLYJCQJglVDeh9B5PEiwQGaYR1RINgSDGmf8Zm03kVazvdPqmlrPcebZve9vbthpYjCSKHjKt\\r\\nCS54I35TiI3FEKUTUULIpTjtA0EtnTAdnHR8In7rV89A0CU4wIggdt/GENi3/SaYdcIgQgpzFOzC\\r\\n/2DAqMI8aAbT8cTUe1k/Y07aA27REkJlWNkfuDZd3r7hxNTpdefM3f3ud5+KUClgQhlu4I0HDHci\\r\\nqV724dlwK8oIP9IKPENROOtA6wS6NWd0UC5gw4DHE5S9F+PNOmuBZvgTJHk1he3Bi2DBoL6L1j3b\\r\\n/4QSwQeuIgIEMyXIABTVw+wMCN8ROXINj7fCY7zI6XAvHrO11ijAufC569GtPdoXHh+7Z0uP2q+9\\r\\neMFbqQ5rt5e64cAMjD1n5GVt3gS5da7q5tK9S9EqDxgP7vU89SwUlz1wWG6//fYzPKPsQGqTAS0i\\r\\nSu60fg5hR6nY46G7CBW5k2nwQHY5N3GpnLkzX6c+Dp+hhYqAUygpn2oR8+RLn+Mt30OL+I7Bg59X\\r\\nHVMja6EDHX2rvR07xK+++uppLAz6ZCj1/YsvvngaOEveoFn0hLfoInKYzpEGg3cyAz2ge13tddkd\\r\\nEvbmJpKTRSXJ+LFWVnoSL2ybZH/INe1yLx2kUph4GozW1V5Jy4I5GcVxwefbDEXZCLwpW0SHkuNk\\r\\n9vHZuNOh7QadilwyqhoLUqdetVX2U90VuitNXWH6SIsZ/j6rvorzXw0pmTcaU66pQWKMcJWSBJey\\r\\nFdWfuvdo7FknGhsbGl7wghdMdYwcB/qhujDwm4+iOUdoUJIG7EknBDhAobDcDFOy3PxtoTYltEkY\\r\\n2RAmjOC0hpuJRTjOvVqGRWMfCFcbmHuJhy50NwJBQTdgExQAWd0RQGJgwsfeCA5pQi/7YiSs65Bx\\r\\njRlflAhlBODuP3a7xBhGVZSqYsiBZUfEgJNn+/E8cEW0hIo1M+SWRCu2MSEvUTQpHLo+Jdq8L3um\\r\\nvCucXqVghEoJZQZ4xZR5xPZCYdqHFyPFexjRob+IkbIGA4TKkHANY6guMkdrzNvYRT4ZgIwh3/UM\\r\\nQpiRikath9eJofNsKGCCvKJszRrSjwwJ9GwdvosWCFT3KD3CwJDK+Lmf+7mNClYBqu/VmerejOyi\\r\\nevP6m204WvJ5/NFxQR0g7LuEgrWDZ8cXNWaEkdL8pgSS/eKHOmei+4qfi+iBt3Plxrk4Zumh1f/7\\r\\nv/9bCSMzznQVeqnNGkesUKpqAClTncTjobIcAUZkHq/1FbbPeLUua1pXML0EjquuYSDoekMT6HM+\\r\\nuXrf+57P70nTrKqLw6fwjL8oRS/yyd6aB+jvCodLLRa1aog0R5RzxcFgHEk7ofdVx4h84Rd+4VRr\\r\\n+N///d/n0IRRE9LGZC3ebaSF6DV8kktk7+te97qV9MSg1xHrRZ5w8qvJOiR8RfDpr2qkrFM0k3PF\\r\\nCaa/0KYjvNAjo5/MwV++w4Ely8h7zhRZTwaiYdHaHDQOBF3b7Co8x0mqAcez3DOj2D3dgwwknz0b\\r\\nHETz3Auf4G8OpWfAq1Q0J9M1ntNsr33hdc973vM0+igrZUIAx9bzRLHRG9lTnRM4JVPZDPZWt3IG\\r\\nVgb9GElyP7LMK/73PfcCkzrCi2AVmW8eHHoa6wuLzHtGxp7nj0ZeqckiYXSaOX433XTTmakLdA/a\\r\\nhTe6ZuS7sctwmukC2ZQM4SodZlNSKKXEeO+Q1NRYKUULZ73ySn2XgQUQdXlJ3anH8D0FdqsmODt8\\r\\nVvEyQKnDGeu29kX8pu/xSEQa7Cerl0HhFfKlGRGpHwIF07jGvpq63dR0DOQ93lRHA0hpMZgID2HZ\\r\\nilwNXhSRcB3YNq+DYsEkY7Hr+dj7eE+pF5Emz8SYiM667dd6FOKua0WlzDEpww8dgEHdQVJ5HX1E\\r\\nuTO8Os+R4YKuCJ5qScCUBygNDYYEAtgSZKblr5qMLSwNdhos0CBnALFX/0IZFF3kJLi31Ja0L3ol\\r\\naKRU1STBEUFlDegBw9kXAWptaBdNX3XVVRuN6/ONr5Pe31mA+BrcCemaGODK/hMkeZAJnopIwYEQ\\r\\nJxThW5NEhfw6h9zX0NFNk8wdnlxKhbBCF+hHmQA8gvF8FAvji0dNSFuDmhb0CTfVY/FQCfR9Zs5t\\r\\ngquGmNe85jWTcBYpoRib8YNXcsjAhYBtOnqDgUVZKn/grIE1RYk+q5lyD++Bqf1l4JI5nVfqWf7G\\r\\nF/jUvTgtlCzHFK7IYDB0P59T5OAr6mMdzTtqrlRpYvxof8k/fBUtVDNTo4f1ua+yi2S5NBmlquZu\\r\\nNJp19uE9NZMppRHW5jM5GYIiIzsqtK8ejAH/6le/eqVxpQ6rM12rr5GSOnQXqfXqZmQIkgdeRXky\\r\\nUEWa4bMB1Zw0cIObouIUPn1TYbbPXQ+e+AlufSby4zrf9R7agW+Gkut8p9KTxspYDycOPut+riEE\\r\\nTEWtRew7bUJphueQg/se6GzvDHYHSKulq76WgaWumnxhHJe98H/F6WOBex3XRZMytsBiNLA8D995\\r\\nuQbcqhV23ThuBC0lw/CCZ9fAUUd7kXrwql5rjF4VwYpe3RPdFzSqhAbfoottx6odff7nf/40sp8V\\r\\nzgvQ7k5IQKLcK2vXIhlbFoRpRTYoOIxdztGZYcK7ecLNl6B01517dL/73W/yfAkpYXhhxZMqk03f\\r\\n/8qv/MppKnyFu/aEgCtyQ8gBviMmKgKvoBDxQKrv2j+CJdQwGk/cfuWwdU8wLIUMdQtJgXkuwj/E\\r\\nTK+TwOm+973vJABFdbRLq69ibM2jjOaoVAzOmwcfe4Uz3hCaASeGNOZhoGEC9V2MzIRzB2KXfkM7\\r\\nvBv0wlPLmAFDMO0MxyV7ZLjyEMFVpMZ+FCVSAmrArrjiiilUzdvGPJiiMRzo2d/WXEE+pswzrumh\\r\\nDiwCELOt6wDkWWN6NNHgVP+DhxQmvqE8wBrMGHvoi5BpojqjD3wJwZQkWBHmriti5/74Bj1XfCoq\\r\\nzHgUTTtuLZ6eA+4pzELlFXeiSTDwSgDmHbr/6Ak2od4+fEeEggKnZLeNGVEArzO5ESkEoX2Kyopc\\r\\nrYOx7FgAACAASURBVDpay0gBRoGX5zkO5Jd+6ZcmGSGS2TwnNDSmFpfQzbZrlDCoJRUVJB+VMMCB\\r\\nPcND0V0KkUGExuGkwvMGTpInaNI9wBUu7R1tkSWcgzqYPQOemvoNN2iAAZmT5x5o2vrhG3x2kSci\\r\\nD77TzDr3yzgLJs1FI/OKXKIN6yPfiqJr7pGGx0d4jhHK4VEyQj6sO8lCWliUmUOFDq0lWiMDnve8\\r\\n552V8lO2YP+MzLqPWze4quPaZ/D0NhrIIRepqDtTICCZuG7I7rb7zj+Xytt08sau9xuvN/MQDf7d\\r\\n3/3dQXSrpiJRUHDnBP/0T//0dF8d8uaagQ2HpEL9jkqrXoqcY1t0ykAjFOr4zkCCX7Iquvc+GvFq\\r\\nVAW93TiG7l8zCp3i84y7unDds9ov33Hf5moVfSyi5TN456R3FJOsAd5uH+MRdKvwNBU1V+NSmgMR\\r\\ni1JYZKMJWOeUH8EwFhtfeeWVk5fJohs7TwgNymBT8ampwqz1arnGYYQnIap132XQUcaUaACHyLpo\\r\\nrN/+FEGz9gFyaecFJlGoyxslPBip6lIuxEgGxF6UaFXxK8+Mdy71JZqm5ZgSlkrjMYsmgYnf8KjY\\r\\nkZdE2YgioAkh0RtvvHEyqu2VAeE3xeNzilRq0z0pDGnBuivhm3JB6D7DrBjMd3jDnYW4hAbMNmM8\\r\\n1WzBuLGvCqXd47u+67umwk0wwbCYsJo7AsB79pti8RlBT7lYK1oBH/SPLgiFeUoCH1Eu1sEgY/hg\\r\\nZlEGTOqH0gETfCWi1PRk6wIHjE2peZZXKewMVb8peS8MXicgHDIy7KFjWQgPyrtaJd91jb17RmnQ\\r\\nhEst0c3I8gyGYM5EqcQ8QLh0rflWSw6O1Vgh6jQOsQQHBw+vqrHTfCOt6BrPARuKjuEIX+RGncDw\\r\\n9ud//ucHUSDRnDoLRfteeEKL/oU+pH0JP2y7xqBRKfa6sEoL1lGNHuC4o1rwANpEd6JX8/NdlRtI\\r\\n45Kp6FtkHL/A6zrZJwrOuBaJQp+u9xx8wIhzDM1YPEypGTztejzhOrSAt8gcpy2cj9lOotzSlmQT\\r\\nmaZ+cJUjsA3mF/Jzximjv/pmRjEnoRQ/uUU2kUfwgK/9BmO1rWN9rxEs1TCTYzo8R8fKs2QKyE7y\\r\\nolIcPFx6Lzy7P9kSvdVMUTF8hlRRJr/H6FLvk2Ol9Cr5aIi09z3HM8jL/h+vxwfdK5nrd+/5ro76\\r\\nN73pTefIF2NDKgHJuZ3j+kjBIQBgEgTcLCDKzgTm+REXbqAYlwKhmBPiBKewJsB6EehGOmwSvo7T\\r\\nECq2SZ79qmetIk5E4TsQyBsDxEsuuWSrgEUgvOiiU4QIpBSeZxCK6rgfOBA0AMzQaKhkyMmzV8vE\\r\\ne9VVKboHDoQMBceiH+eLHYrRdCtYk7XBA2JA1BgH/BmGlKl6iVXDHS+//PJptpRojO8RjpQWOLin\\r\\nPXa4MKNCyi2GFN6nKL3AAP49S/RK1AUxJoTQFgGFuEWX4IsAleYpRK02STu8CJ+Q81yASwlKP6sZ\\r\\nmKcBzGvT+aggmQFo7zq/SrlKNRLWCsfhj/EsmkSIuLbUl72CBZrlLMBdURzwIEzWpSwOhdN97kNY\\r\\nbjsuw31Fe6TG0TPaT9jVtFA9gt/VShTxQl/ghN9cD0ZoxW8Kd0lqhkIV3U0hohsyh/G97pR6Hb9K\\r\\nF9CUdVGkhHPdbXCWgQ7f//RP/7SV/3eBMU+dUrdWRqTTDXb5/p31WjIQLZQSz3htflzznDK0wZgx\\r\\nK3q4ahSC+jqGKJoqVcoJ2zSAU6SXQmVkccwYcL6vrGRdLZ3UoA5TdMjhI3OVHUiBqatdd4j4SfAg\\r\\n6konUuJolSF3iBrYk6xp1+9ypo+j2EfkheHXggxkOnlM53GiRV/JfbIOv8HFvHnq8z7v807TcWre\\r\\n1vE93VwkqzmIRenxfENH0Rfawl/JlcpmqgEsw2TPo572XdeOkawK4HNKSzNmsBUJ8yz7rkO8Wt30\\r\\nXilLay6i5W80Prcx2EFjzegq3BxddNFFpwGT98FytRE35IXPJ5XqHMCcQrVqlAhj1m+nf6eYPQgD\\r\\nU26bpjebdWTYHMBTzOuYS52Yeh7GFIbCkMKQFDskjIXlmI9RsOpgWTN5TGduzgwEF8Gqs6xuMwTn\\r\\nJS2UNe35PCfPaOAiAYEo3ZOSp8gpcfNapD23FUdvYpjqneyTUSCqSEFi9rwDniUFw8tGXM392jTO\\r\\nn1BUoGm97uP+7gsHdYcSfsEVUxEyIiuMOM8T0fRikMIFwecz3wETUbzmoHRoKGKfNwpQpGiKMbQq\\r\\n2sl71QnD050L0uM28LPmranpYeQSIobBOuZGZBbNMDCkleyt7pSitK61XnVy6KKCUspFB+T5bNNf\\r\\n1d4LtvDvN75Ejw2IrB6wbjA0Oo+u5FEZJGxOmO9W7FkUAK7xe55kYfgMLzhn1FSM67pm0sD/0s49\\r\\nHcBSiXUpMdqshVO1qThZMXRjATQlwJv/8aC1MNjgihF26EGTasZqQRcRPZSBjZ5LF247+sq1ZGoF\\r\\ntBwKuICDfVNKZgHiN/QNB/gfLCmcopPkP/mNDuDMdWTZqiiRNXKMinrAxw/90A9t7GwWGSK30RDH\\r\\nCz1XxP3e9753pSH74Ac/eCpr0PiS4ucokrP/9V//dV6MX+34DBLwJiOVRGwytJXXgNlYi0jHkZv0\\r\\ngnIag1fJcbxHdnZOX3VZRQ7tlb4R6XdPBtFoLLgeDpXV4HXyDj+I4JcBeNjDHnbmEHlZGfKZvuMw\\r\\nyLRsG5I56iZlLnS1tZhXtymS98Vf/MXToc/oyBrRWE0UpQLr3otuelY0mNNXTRYarYHKGurc83mZ\\r\\nB5+P3YnkWYGY4FuApNRg/3t+/ODvylb8BrOPfOQjZ9HYy1/+cgO7t9Ld2gsMF5P+8VDK3UYgSIhe\\r\\nSoLx1BlqlLkWVgIQIQEsQIqgrJq6PSLOieUISSHyqvPEzDoq+uG5gGktmDPklQ4DTJteF64jNIUw\\r\\nEXehw0LkECgCp8aodJPIiw4ic1ooQR4142bbyeI6BRXt6pjap7tFPZtnITKECuaMOGtkDJ+0Vo3i\\r\\n0rbb0ETps87c04kkqlihfkWCGB981E8l4ChOtIGxRarQC+NGmpDByWvg+YI3hjTl2vVogzHDCCNg\\r\\nCA7wms/Rik7g073nBbM84ebf/OAP/uA044zhL1KlvgMu7VH6WqSNsTBG6ODZGqub8ttexu4W9IbJ\\r\\nGICibwbPSsFaM6GmBoEDAE6etcqj0ZlbnQz4inaiYZFGaUVGPU8S/zA+GPC1p4vsUXLu71UK0HuM\\r\\nRfTYxGv3YczytERg8BXcMnjRUMq5KFURoQpHCT0CJy+vI4uKXsFbhhrlUD3UEq9a+kAkkUB1P/tE\\r\\nc7fddttaGSTtDkcUFANLp6g1kjEpZZ+LPh560GRDidES+KJpThVnQvRYFJejgca8h2Y6Bgp+wbCJ\\r\\n83gJrDMsK1r2ffgseoTnG9oJRpQs3HjPM5rY7T54Ee6LDsCv/zlcaDrD2H04Jz5Xu6UpwX3RakXi\\r\\n1aQUuXfPUjwpRFHndbJcB7Vj0ugKTtt73vOejYrHoc6cUEYDWKE5vAe3z3nOc6YSFPTC2WHYVNdp\\r\\nD2ZeVferK1x0RjT+fESWGLTSYGitWU5ogGzjeMlUjMZDRkElJ+gB7MHZd+C543/wDNqlx9zb/bzo\\r\\nNA4D3vVdMPE/+gNfjrBnoiHfkyWih0WOOGH/z9y9h9qa13Uc50CU1JiW2dUuJmZNmhhqJk1GlkI5\\r\\nGOYoRFA6NFlMBpJT6YBWNDWkUXjJEM3JP6qJqCbLNBTSSpqMyLxkaZlkJmM5ESRBsOP1sN+b33nO\\r\\ns9Z61tprj7PgsM/e67n8Lt/79/P9/moR5DtRF89Fh7JRh+iikbcf+tCHToacSN5S3zGyTQZBECQM\\r\\nVWD2Iqa1UqiApnYL3lMlX4ZSaWvPQKO+rzDD2oXXcm/RptbVd57jPf6VSvQMzyvd6Lm+99wK34qO\\r\\nVeQ0YrDWyLrxmjNGYEAQYoSZzc1yq8ssBseYFPx4ZqCHEeaA0pWV+puQPiNsU+fmBgEXRWAteYkI\\r\\nHF7AAhjHLsNm1+Qd12Pzi9J4psUuWqPh6HkiTt6vBQBFQqmptFib9hzHznAIM4NwKNttFVq75j3/\\r\\nXqj4hhtumIQ2hsU0PgQYxmAEdSQIw658NCMLiFr5csJFahkhEiYECCHvHtEVzFbvJYI/QUPo+ycq\\r\\nyXgGkN1XQUotUrgED0NDmwjzYGRgrqIEeTTmxiipDUWM5fv+b3xow5qP1SeeR6mZP2Yraui6Xefr\\r\\n7dqbsdfbrmuXvl/TyuRRj3rUhMMIXFqInbD3f/MrNJ7wqYS/aAa68MHjlC5jc+nM0U1zeOYznzlF\\r\\n0hgL6Ll0+rxH0ni/RomiSONZlwnN0bNFb8duo6BNg3cTxCKEtVDBM2i7EwysGycsj9y4GAXo0P9h\\r\\nIBnkeErkH78R9mgXLXIIAP1di37RIkeq/mZVUDLE3Gsf8J4961w5is04RyND5MS6cWxKpVtbTT5F\\r\\nUOxBrTq826cS9qAC5oQ+KHqGEz4dm4K2V7qvM7CMnQGyCw9H/lDSHPYMyIpNGO4ixgywDPJ6KDFS\\r\\n6oWGn0XizFEx0UXg42666abpdIEgJYxSvG9//B8dkGFhAWURWlOywbX0ZVW7ZKR1RMP21XPGghmO\\r\\nJH4bS/43BQvWyorP//zPP7HX7373u3dGW3Y9U+GHynh7xWBTvFFGAkwDjotB11FXtUjIGIpno7dw\\r\\nr1VA4iX05u9llzzL+tXYNqwoeg9Paq1d3/NHiEc07ftaOGTkGdcIaDd/z6iq0P8ZrIxYmZBd67P0\\r\\n/SXC10swLY9Ces2EedFzkCJAu0iCQRPO/mFyxlTVeSaL+IsIjWf4zAcAJK0ZHWErhDlvNHrIhLbd\\r\\no+EhrwjD8Eydj2a80koEoAhZZ+1lBFAmjACbYU6dZWcNUlSu9Uw4JGvCKGSkMmKWypSPPa99n3fa\\r\\nk+lM2YlKISrE7CgUApnRSZkSCKIoFAo6IeAQcM0wrQHhT9hIA1lPEaPKWylUayrUbZ+9AxOKrPi3\\r\\nDYczzkv4XXUSZQS/Vf8kRqxqPMpL1Mo+hU8j7Go/QunVNLO0SHn9mNr7zDd8XdWF/k7ZoHNGuWir\\r\\nPcaAS00W992Pi75e5ZhIaBWS4R7MqYpKa2F//a1QOTlgDSiEMFmus448PhHaNQ4ErKXoIv6RZrEn\\r\\nopfwbiJAUkpFw8e1YDjYU/ca59hWwj4bC8HJADrmobvG8AM/8AMnr371qyd6p2TXYN0ueh+P8Xzz\\r\\nsp7hSzOcw14VRRCBq50EWeZ7RwLNU+XwfZzWlBd6Wer/N45dusnpHmhS9JECw7PwTu7XBkRlrLM9\\r\\nOf343uHiMH9jxSSAPdmsGGJNumbf9bNWUpA5XVJrv/Irv3KQot333ce63rFo9nRXM1RQAsYEY3Ye\\r\\nQBnHAlerN5hI/yle+9JpE/BJfhQZ9X/y0X76hGkq0jRGoALBJ3/CiAbfqcq1qBS5FMwhxzDMVdFY\\r\\ne5ahhjb7PmhIRt7oXOZYd21FSgz+Q/vsXfrBH/zBE17DpqMWRGREpyw8L5iBwRAJfQ98bAKEke9d\\r\\npxmbxVfaz0Pd1KDTERqYl4Jm3W8CvB6L2FjgukYX+pOWoSyqqLLYDE0fIfEUUPPyPW+5DrGic3XB\\r\\nRSRVHGqwyqtiNB77jLRjrEUMwUhy8GpCS1sDBMsT8QmrFNaN0YRwefOq6RhIBGB9WOylknJGOmNz\\r\\nrOQTlVPey+CqxJ9nogJwTYECPMTrX//6ybBT0SEkrhv0kresPw/PEi12fEORD2Otu69xYMIA0xjL\\r\\n/Bgg6LvS3zwrxrOoA7wWA8H4eXH6Oh0rRWEPvIfX2b6cx4uFt7NOdZ5H60WyrEOOQsUSFXMQVBk1\\r\\nRQStj+vxj3VgHP/d3/3dVoVjn4CTRcatVf2q4GfQmeij0v9tYHkwAftI4HZsSQLSWhnTrrTUvnyj\\r\\nD5YeSADbxz6GZ81Y5k1DyeHoVqTEXqBT+1Bkp/P7tNchx8i3eUduB/JyhNBX6ZLSN6UF8+xr3oj+\\r\\nvY9z8cY3vvFsv/VDkkJDT+AgaEcki9zbdvg2oD3dQO6jid/93d+d+Bk+Ft9yfN/whjdMVcqqEe21\\r\\nEx3muLPrr79+SkmdnJxciNEjKiMFaZ0q+rroSvdoI54X7SO76CAZpBqHdkYsXkT/IBAcFzRhv9AI\\r\\nh1BlO33dvgFmc1pGQ/Haa6+dita0oLD3a6q4VaOCkqisRH+A7YwrciOMFJox3vBOZE/RqjB+c4yn\\r\\n+Vtv88LvXe9v5pmh5n5yWxCglLbrSzfXoNTzcyyNrQhxhlnjJVeSbUXDPMv7BYw+8IEPHERjV9wk\\r\\nUmDhhLAtEAHmJaw4YWuTWGpSJg8PT0IxCRNbZFEP3sgcLG8RCQzM0QYwsI7thc4F2W/8xm8App15\\r\\nwgwBjEN4I2BjcHI7r/o8Z81dd911k1GqAd42jMkaQXsR18AM/eRP/uRZU7gYQxSPAU1AUp6EMCIW\\r\\nHeLJIerK843L2oncud9augcxZ2xoPocGOqPSOudNEJqwBfvuuVQ274khRLnARBkLQ6JDvAkIURPe\\r\\nLYFjDiIRaJlRFJ6CQML85oeZCIqKNvK6jNffytGn2Es91qhWlMN1vmeYep73GCtsRPgZwiDsjO9F\\r\\nOa2RaI7x4Rs85vkY209r7nnStuZdBI6xKLLAqCUgA356vvSKSKH519LBzyIT4a0Imj71ritN6HnG\\r\\nklcYyN17zct1uwDgIADSyBTw933f952lPyhPnjDDyzuWgNGMDD224HSM0x4aQ4aGcVMi9vEYKZCR\\r\\n11SvplwdJ8W4KK15ehzYdLk1JTfQf6kdR/zYDxkBP42xNij2zt+kwMgaBpxquErbywSYY5XBAZTx\\r\\npvfhOftICXk2uvc3vIdeOD7o2pjxnvVBv+jbd+jJ9eENo+mUD5rHM9Y8sG8FPPYwnCE5pyobtOL2\\r\\n228/60/GEPjgBz+4qJBgJbWIQVucsNGpJi+subnBbtJBnkXvzIsY4PM4DuZDJ1+EnOSoMVAYM/YC\\r\\n/dlThqv1pTOsI0ORgWM+eNbc7FU8aS9L/1prEdda09g/9OMd9kW2gEzB5z7W3Xu82/Oka73bXlsn\\r\\nqeiA2u5FZ7IFTkbRi9G9ZI6gB1qTHkYvoA6bjiBbs5YvfOELpwIArYjMlfOLVoybXCvanKOKb8kL\\r\\nnwz48GtkVFGpKvyKfnlWxpi/udfPZFURsQzNviuCFr4xoy0sV3LP/Rl1javomr97j3Umq/YpCmgN\\r\\nJ8IEyiY8EDTGr6manzZmG1Bd2hAT2HgfG4yhhX15Sgjhda973WUMIIICMxOAUjQA4b71rW+9EEZp\\r\\nsvpWaB5I2CDyGuHBh1BIxjyesTYSGmFPYZ02bZuYAXNUzu93m4agEJK121QZt4aAt11DuGBC78eA\\r\\nwKvGx1AQdvehZDHlUgNI3pEeJ+ZCkFoLOXWGsEhTxIspKEd0QRiL3knRIUr7zQDjgVpPRgTvM0Ch\\r\\nPUVTni1CymPijUnHKjSQUiQENh2HsWn+mhQidsbZO97xjoleRAx5v+jO3wksXjwmNxeCjxAENs5w\\r\\nsjair5QihYhWR3Bl2BdROWtU4QZmK7JVtMt9sAlFajU2xRP1W8tosk6eQxmjm6VjTTbNW1plTU+2\\r\\nMfKh0kWrAfO2NvXNChhNyFuHMAz4sbC8Mbu+dGnVPQH+rY8WJadtSRb51rraF/ux1EZBGTw5QDgy\\r\\n1Oa0IP3ke3SmLN948FUhfHzmXvsD/LzrwON9+E73e8rIuhHyySqRgRpNGg8ao3AZAQxgAp7jSOFW\\r\\n+SVKF+yCwMe3jHA8iIbwTlWuFIF3+Ok+fK7aEgaT3GSEd/B8tLiryes4b2k3sIz4N9zsmDJBAzlC\\r\\nxs1htg54ubY7jA/RKn8fvfsifxy4n/u5n7uCLh7zmMdMDWLtGT6Y9xfieBsf540sg1GTHmRIVHUJ\\r\\nt8iYYECcOjIXojfwsQgN+kVr9s0HzZOF+Idh5CcjmSxEq/bSNfZW9J/eKCptXa2ZdcVTgdftMyPM\\r\\nT2vDyS9aZZ8zhkSg3LuUEhUFxBsjHs15iZ6pFc4xezKKQp5iri7pGSdNOx5pY/7mHMapSuVSyRlG\\r\\nfvddEIRS/0EWgiv42TN8l+FlvdO3jLNkbOnEDLoMs3gh7K3xuce9rsnY8rt32rvTPT2Ixi498pGP\\r\\nnBSzTWSNm4T0z2//9m8vPpByp3ARv9w4QWKROrPMIHlcKgJFSngkjkwYhQCDhtVbelG1AyYWKl4j\\r\\nBFnPBIJwrTC1xVoDclR1UrrEmCl4rQl4VDA1hLhxWANCD5aI8GTxm68xJ3ArmfWdf4g+JkEsBBcB\\r\\ne+edd66aU/MGiK07LEFSetaza5ZZeJSQxMBVV9YYkvA2PgqeQTQ/z8+7dLVnDGME2ArC0zt4PCIG\\r\\nvCUC0E9K2Dp4j8geYHUGJvxFwEZ04b1wNowaCpiQQVeEFHoRns7wYuyGvTFXa/7yl79853oZOyGd\\r\\n5ypaRdgX5q1pHUFlPNbLGKT2iqaqfMWkFQ9IN1CohKMIRdWwaKvjLDI6whV4bsJBN+mL6Hm2hh+2\\r\\nXaNytmOKMhTD2WRQEXbm2e94q0aU9r8oHlrhHZMPaI/x5j5YrDnWkDGtrNtz9M156UtfesW+UhbA\\r\\nzmQIucFIHY+egA+ldBgc+IvAJgyrHmZsGbN7NQJ90YtetJN21q7nk570pAmvSYEyaOBvKD1GMSP/\\r\\nPEeNrB3DRVynn5Rz/NC+deM4VUldGgbPVj1LJjAcyQcYKEb+i1/84glq4aML/9i6wJ6qBEQzH/7w\\r\\nhy/bD9kRLR3QG8MC/mqpsg10xHvtubYMm6qmHflF5iydd3iMtfupn/qpCeRuvKUIGXoU7zzDsabY\\r\\n5Bhj2vcZD3zgA6fWHv/2b/+2kTfsp/Wm/+iuEdoxfx/8LntB5JIzS7/QGbJe0ZRn2P/6W5GXRYoY\\r\\n70VGw0iFwXK9jyiTv82NnQys7isa7+9kvvfkdIQxrJCnd/bsDLwqpn1f+tF70xv4gy47FCZwyQYQ\\r\\nmEKGmGjJCwSAA0BkwVtEgjZlxsNgufPYKTkDgtGptTzFxdBIIOmlxfOQMtBbRqXQLbfcMgnRd77z\\r\\nnVsFJOFA6FHEIjdSIyl6hgYveFvrel4pwmCRikwQnoRMZdaUCcNImJfR5DvGh+v83dz8fVf/GowJ\\r\\nbzRGyTYxBiyKVBbiZtABe1rfjo/IQBGRysBj5GH0KtsOCfXadwoq0Lr1sLfm3rmECh2k+zCVMVJ2\\r\\nxiY6hDDz7NGAPjl1RxdOZ7xRnFVb+Q79YAaGiZTzvMzfus2VJEMIhqczrn75l395ohFAfM/R7JYS\\r\\nZwAykhkTfrf21oghgKnHKjPKH6MlJEXAeGCel5HKmJTitcZojtGKKf3DfHlKxoIe8cBSt999BeKx\\r\\nr1c5SwASWMaOT3z83h7mwdkb/2+Pwua41v+rMlU1Z32dLQgW4O8MpbFFhV5HCmJgZ7YJbFECEUmG\\r\\nrfMMYXcY25wunqm0BmVMgOI/+8HgNUb7UIRNqnWpdPzQ9ZTKMj/zRgvHrlLcZ1ycriIe5I9KXuuG\\r\\nF63JNsNehTc+78gh2CzOYi078EG9D+0z45ohHtaNDKR4KFNrzFHWX4mzRG8sOZDwkkDsjKOOUjHf\\r\\n7iO3GeUcmSXH2BFJxmk823pc0QeO6pFGXiqS2GeNl64lm1/2spdNBgHH4lAle95xnOf+z/7sz57o\\r\\n5EMf+tAkN+ljsgxvMRoZufYaD++KADuNQUQ5Y6VqT3Kk9i21UfAuOroimuhoBL0z6PFv6b2KxtBb\\r\\nTuCICyxy7Nnu8V4yrfGUKkU3vScsV/CJDCv34G307v/hxPBDbTb8He+wAQ6V7VPJ/ehdSqNZFGkF\\r\\nStI/yp4lSPHKjdsYv48VHRhZHtbfAcSLgHm+9AuGMmmgRc/nGdhQ/bYYXCIcuyodTsHZB3upwHwU\\r\\nQseKSH8yIsbUi4jYGtC1MmibY+PqnB6TI2LCmTCcYxGEcUX1pGJ5hgiT4YGBMYKxMegYBedtAbCN\\r\\nMe9zn/tMvZwwl3dhDIan8vuAnNIJQvGMK8YS4qRYGSGUXj2Aik463oR3I1VIqSPgurubH2IXwRJa\\r\\n9l5RgTVHXIgmUKpVGAmP6+XFe7Ve1okXBnDfuXGiqGtSatYINs88GWmUlygtJROWTNrDfnVyu/mH\\r\\nSwo0jg6kMhibxuVadN75jPiIwGGoW+ux+g6ujCHqnzVCB/YE3zES8Q9Fan8ID8ZmOJxwMyOtKLww\\r\\nL41ZGezoNHxOY2egWDvjqS+Wv1njetcUzremhA7FaGyMfVFRDVwZpgxMOJwi0Iw6+4y31hR5SDfx\\r\\ngI1DlJGzZg2lmTK4f+iHfmgqiDEOa2E9CdxabDgXbTzC6zxKyb3Pe97zprkR4nnqnB2Kn2Fgv9Gw\\r\\n/+ON8G4UFb62jiK1FIh1JN9E5+wNvB2Bjpdcg684WGgO76tYZEB5l/dLt/t4V2cjooOKdMLjGCel\\r\\noNkwOVahB3rDl9YMX1o3NFHEoLYM/UQj5mqMORLoTaqSkyfFT/GITP7SL/3SojzWM8lYKj44bcw4\\r\\nZQC077HPaNPatMfkjYg4J6l1Exmen+7Q3nL8NUzWTmOXcXAIPXC86Cl8q3J4V8uhQ95xkfeQK4xc\\r\\n9KVXmG73ID34d61sND4GviI2mQ1yXNZHxOu0/cM0BXvtX8YSOsuQz3AqUlUrhNJzOQ+lpcd0If4O\\r\\np40mfJeBRb+g5UD1GVHuycBqXAHcS/1lWIXr8vcMtKrLg06ADh2Kpb6kGoCgJUQRPGGJsQyaoMC0\\r\\nFOHcQ5Arx2wZXyxbk/UsG2hQokkMNkRKGLmW4FQ1FNbJYb3wTzbrfe9738HG0xpCVWLKI/EhREQo\\r\\nMHoRKcaPKEil+glNa0L4EypVGNgYG9wRM1XwnAJup3cQoPNDNjXQo9RsKAW0q9X+mnkdco3+KMZu\\r\\nvLUysEfmzuCrQZ2IATow1nn6Dt5Hg1FRRErZ/+uRwrCw1xQLhUjYYzjPxigENu9pE+Zt05woaJ0A\\r\\nxgAAIABJREFUPoaUNRSxhA/UyJMxIQJICfzmb/7m0ehIyoOHbG5V3xlbpx5QRGjCGmpHwUClcAN3\\r\\nomtMjr/qyO/+wPnzeRKK3jNGSQm4cB3RFUNw177bH6kc64J+8TWaJbAIk/rxjBGsKscyupqnPRTJ\\r\\nseZjeoSXL1Xo2aJNrmNA7CuUlJN3NA6HRXTkj//4j8/mKPqsuSdhXCojPjJ+QPRdJ9vvWq/xe80w\\r\\nQQcoEx4sYYvHRUQZOfgk/E3VS3g6oxzO0VjdR5YmP0VPyRNy1R6LDtvvizAQluariTGoQdWz4djy\\r\\n7O1jDUeLaIVtwcvokKK1P9u656vY1sxYWpFDLnOA5sj+nAtQD3zVaRCwVzCfxoJvyCfj+a//+q9F\\r\\nWlcRyfm7qCpC6/eABzzghONBpzGyqlzDJ/SfNSLT0C79YI3gs8gDMtR6VcnWofHo2P0ccPMkF/Eo\\r\\neuagoTNZALTmOdafbCZPXYfuBAfQIDn6/Oc/f1qf5ASDFGbz1ltvna7nDO+q9t3EG6cBmOlrUJ+1\\r\\nbSpEuzqiLMPHWiV7MubJxCoJ8UEpPDKTjvVdGQP7kNGfY5VTWCQroLr3zDG1AemDRETrzT28WL97\\r\\nPxq8/vrrdzZM37R+l+573/tOwEmfTownECiLNq6bdeKGCWKddhguRmOoIDaNBHlkNn08KFJXZB4q\\r\\nIpGzHTu2iw4o2eWdvetd79qpNPYRkvNrRZ0cu2IchRErTy+agyApzRjA33l+fkfsgW27hoFmIzzP\\r\\nGvg/L0zUAfHsisqdZz7nufcJT3jCdKI9o9cHofoQFoQ/pYIx0cIIjmSkdpafqI71E9l0PfqhYCgX\\r\\nayAig0GsKSFBSHk+oePa3/u935v224HNhPBSBALQeeyPBtcH41GPMVEzBpBnipwSPMc0WnnegNrC\\r\\n6pVG5xUV6bH3PMVjgkjPs7fjvZpA2qdC38aOdv0kPPBCjfVc0+/oPcApwcRZYEChDXwwGnhaS6go\\r\\nqrUDXv7Xf/3XvXjZgdycNDyDnpbab3gPenMNhQa2ULm1yPqxjrOxfgw60W4nDBwT23WefQWnsMb2\\r\\nxbxzhv0Nbyl2IeNqM7IEZeBQlyJCB4yCDCljq3KU3CuNXBqRbPNsdK+kf5dzxJgj94sE4NsxZcj5\\r\\nVqVHFpiTM0cZJXSP9JN7yQ597lQvzo1QR7KQJ5sMsPOsdfcCidN1PvgEpEJUmbwKUlLLDDKUvCQn\\r\\n/ORscLaMkSwVcbSGdIP1dR0jyfNFGMO72oOq7ugXRpiCqQqJvJu85ehIx3rGvBUSOQlTKlvAyN3U\\r\\nyJnBb405wN7DuOMg+clYvO2226ZoPL25rT/WfK21VhGJpC/tLRqyTskVtGU9rROaqqIwpwR9j0D4\\r\\noAtV+BXN4sh6DkfQunm+Z/lXiwfXMOhqfDq2enC9T1G1ImRFusxdG57Xvva1e8mzM6ONArHBCDt8\\r\\nS1/Cv/A8WNgYkcI0IIvG6CDUxsofoFSKjgX/B3/wB2cD8g5VDCZhsCNAVCgc6FKUpB45x2CMpWcw\\r\\nEOXshfEtvgUX8ai007x4bxjcZo3NBQmutdU6sERwJYzPsW/MMea15oDJNe/5tm/7tokBeeOImVFM\\r\\n0FGwvKgR18WLEd1EpIwya0Phug/2SGQDXfDAeGeupQAxLC+NQg7DouKEwWIP1pwfJw1FqY9rPx5y\\r\\n7OgPAoEQ1oLj2FgMaQLGonRNDJpRGpMb3yENR+t1g8/wTWmn0UCUUsrzK3KEFq31GoMOT5aeTLB4\\r\\njw8eqIVGvWTQg/fZ6zBZhKM9FsVcwjjiK9VWlAY+vvHGG/duzKkJMNrpMN9NRTbRNmNLtR6nhiBm\\r\\nYBwTI8MQgTMir171qldNCyZqb73CeokYWDe0P+4FfGAp5PCI1rXGqL6zTp3fSWkweihhe0PR4i/0\\r\\nplAko4oM9j6RDAol754CpxBFVwL5ur+CHZg5/MxAU1iSgV0pe2vavpOBtQNBI+Hd/J9xSz4oUNoV\\r\\nRa1ZqzExFN785jef6QTRVQ1PpYPJEMYDg8pHxoTxpqJZdNQ8Yfyif4ByawDnZR3DF62Re/te85CH\\r\\nPGRyKBlDorJzHbnv8+7p6+93v/udoI35GomUy+agI8UorhlPCwG5kCJnF0jp7pMio+/hVsEEqkin\\r\\nY8cok3UoGkWW9X+0VnYIrWfk15qmSj/34Cd06voA9oHTwxj63T0yCLVcyIAtoj9iaqP3QPkV0By6\\r\\n71dYZfAnBFdVHJ28zfqmUITMf/Znf/aSoyRgcMYolzA/RnHNaFj8zM/8zARaFWKdC055d4xCuFy0\\r\\ngYVhgW4pfBtH+S+BNMfGjpiZdc8bsfkEV6BQHjQG50FQkKxd0UCbzhAhVLZ1sl9iNi0z4IF6B8Wh\\r\\nYq6SUULUPhDqDNn5iedrGfjqq6+e9qoKUADjeriYh6hQTRzHg4I1AYRv4oXxfHSB93/tF0QuMIV1\\r\\nVeiwhJ2guBhEjBQG3bwzNCW2dBzH0rwYGhql+lDwh4D9164Xmrj55psnZWeelCDBj7kJX9EdCpMS\\r\\nJJQwMaFFIVGy6Bvou/4uBAav1TPCRfGM7S1v1fp0DqUIlGegW8rKu91vH+yNfURzHAMKy33W1hh4\\r\\noKWwGnvHCOW1ESLGEZ4sbE6RWcIKjVPY0jlz/IaeUeaGbozxIx/5yF7eXs1ICUnzspZ33HHHZc/Q\\r\\n9PEU03MmTNEnQegeEc15xH3t3i5d9+QnP3ky+Oy18TDkqibFJ/iGbAw/Fa/gW44VWZEcsHfusc6e\\r\\n5x9nroaODDUGVi0Qdo0bZpBzZH/wI55Dd8keMmJTFFf3c/jaHKuMp/oDeXdpl7AtlbSbqxTx2tMp\\r\\nnvjEJ06QC+Mkd8ejzuBpKXhrA9djbRmTYAOjHkh3aGQ5poBFbvA+x/Cuu+7ai952re/4vUgm+Wsv\\r\\na+uzz/2f6mt1CbCPS86sw+Q39Xb6mq/5mkkP2Y8lx4XjiSfIJs4nJxNNo0EONpmG3smUeluFi8r5\\r\\nCN9nfBlT7kEvaLBKQn8rKpVMsq61bvCcMFaelZPhnpxK8g39elbRsxHD5bsc5xowG4N/TgtZS/Pz\\r\\n/Z4IkwdNaMuZ1vCQl8JbU6q/ZL2p4DCg0epV/UHZqhAcI1iqR+TaeSrzA515MroBUwL//M//fGGM\\r\\nYp5wAUD2CKGSTwrBHAs1MhoQzNjRukaBhCfhaEMDmwqj2lCVkpiww1qBCl3/3ve+d9Wcbrjhhgkg\\r\\nLvJTd2abznAIr3Gs6JW1EF4n1BhDCI4CRbz+1kntUjUEP89NNKqO9mgFVoKCQSfus7dLYVTRPEqf\\r\\nF4heKGHvKFzMSFg650mkCwPMy+FPBeu0ptp9SC//8A//sEZwq9Z5SeDNiydEyABnKcURcyDKgr4x\\r\\ntlQ3o0l0yP+L7MA+MGwy9ggxc910luQ2ITeOlVJdi9MZe2FxhICS8RcaN5YiVwwac4n2R4xDAi3D\\r\\nC22j+yXc3FVXXXVirfASTIx0zj4hdXJDdNyz6yf30Y9+9Gw/zV0EA51y6oy7Bp55tPA+Y9HNeRUb\\r\\n40AEC3ifE5HzYG+P1bX/vGM85H4FOLfffvvZfEqRFGlAJ3nvRfZdE2ZGMcGmkznG8aBBrTPsD7rS\\r\\nqHiMLuM5ldaea1/xERqTah87iZ+eozjxGj4vUqixtWeSw//5n/95MO/vWkMOYdXqAgTbqtRFm+mC\\r\\neWqWrsRPrdtSsRYng+FrDchfEToymUPPSRsrcRk3eHGXcw3fJ1tg3Es9yZbmjtdgphlJ9gW2cV7I\\r\\n8B3f8R2TgY9O8DwdSG8GOajdR5imcFEZUZ7LQallAzobq/c8F12UCjdX/6JH9ERuVUWYQVbFYdGy\\r\\n0nwZY0EeMvA8o35a/pYj6vnJSoEVFfL7yLNxXS89/OEPP5EnFg0pFUGhbmMim0AB8ZjHKMU3fMM3\\r\\nTApIWL3eKBia4UZQ2wyAsTkY9XGPe9yk7NeGenl8VQowltYKPAQHB0Bg2IyYGyA7pSMawbAQsTOm\\r\\nvGKK0wYhDP92vRP+ABh0W4t9jCby9bznPe9SihZgW/jTeMzR2YC7hMAh31NqhFrpXu+0DpiaEpMW\\r\\ngZEwPh4xxVn1E89FJIPnSSnOvWWVoTxT0RiKUOQDsbse80gNWJvKcQlJ/XHG52hk5/4xknHrrbdO\\r\\nlVWMnh/7sR+bQtiMNtV7u/Ag29botD/aZev8Iz/yIydaQIiMqJgTMqeYMJ85H3r45yF7dd57FDQQ\\r\\nUNaqw64J8pyMsZosLETYptNS+bOqMsYkrFuer4gIZaCay1EmIqN+Bwn40R/90Z20K1JEPlBiVZx9\\r\\n3ud93lRa/g//8A9n92vdQNGoIBVV1iqkTuunfLJXZdSuNaVEHCZs/9ect7jreRf1vWra04rcnWtt\\r\\nDMD7DG58T7mgiTAy6KAih9KH0QbANZqArd1U1TfOUTseMAmGETlLpoxYSuPmsAHccyzJGWn+pWbT\\r\\nj3/84yeslVSViJXxyyqYt2jt//7v/66a+yF78O3f/u0nIsvkDnownxoIGzs5bUxoUPSmdibot3QT\\r\\nw8k64h08xxgRhPA7CA7eNH/6xv3+ZXBwgBn3+JIsJbNFrO2P7Al9RR/R4d5XBJxT7r14URPeNdXa\\r\\nZCqj13PoAfJZ4IA+z3kR0SO/7amPBtXa7WgqLPNVqxvj9xyGik8YqioJ61NVq4SiVa5t7kWjwkVV\\r\\n5UeH+H/Rrqr++pv3+ud3MiODLGOfAWbNfMJtdX3GWX09/R084uCzCBG6CWzy/ngQlKFwoQ02GcpT\\r\\n9ELvrPpdGSyhRFjyXCho0QaVDBazhRRinlciwIlgtrvvvnuRUUR3hOsRW5WIhcMREuChSMgacDNl\\r\\nIwTImGBULjW624cRrV/VHjwP/ycMhLut1yc+8YkLY/59xjm/Vim9NKbIlPVgvVvDQM6IuKOPzKdG\\r\\nnXA4lDSjcHymqA9AJUFE8DCmGGG1D2A42kOGGqJNSPm/5zPC0BO8SCkFYxIh6+gFQhVDSH8BUBor\\r\\nOrDOjlo5BIwsbUwILZ2Fpz2EPUUrIiz2lrHJsQCmxwuMCml1BssSJoUxUMd9nm1tQHisxm6uonqE\\r\\nOKYnDJRTM+hbG44JoWosRUxL24gwWktCyf0dt1NEzxFCAOg84fpG4UefMQXo/3mNtWdIMHKO7D+n\\r\\ngzFrvEW7jcPaJ8AVLOhrJyq87fgaXj0DSSQUrZAZnTUHmK+Cj+dorwl0NCdKVjo+wK+5GB8lsi26\\r\\nsC+vcPo4FJSb9Bb5Za0pMmtszdEiJdBB4v5O4eEd/482q6KyvvgNrdgPcoscRd/WIGCu+YjkmTO5\\r\\nK0Vpf4zH9d5pHSgBNGk/jKdWDwwhz0BLwOLRAgfTOqFHa+m9ZH+eu/sqVMjYMmZ/t87GJH1tv7fJ\\r\\nWql7EXzzdhQWh5wDhcbDKsLQmQvclTW1boDUm1ptiLhbA+uHZvyMXj/+8Y9fmIz9ki/5khMK1npJ\\r\\nd9Zh3Xrb3yoE2xO8U0V5a8khHaNN25qSrjl3lE4WWRkdGNEzY7EuOf90k2iUvSOz0FLd5ckxNE2m\\r\\nVMlp7KX6/b0zWvE+oDy9jy/JXTQpdQrC4rgjDqkqUHtOXjL+fMLV4RHyjLzwXjTFqa8fVelD9Og6\\r\\ne21NM6IynsKK+r22EIHhq5AueDKC6L23iJr7ep816/SKsKlhwPCPdTg9lu0gGlu8yQHQFCHhwmr3\\r\\nIVxLkVls1jZLvFSg7sb6WWF45ZxwWtdcc80U+gei8/n1X//1KaT7nve857L3iqYQXg7+XYoMqVzr\\r\\n2IQxj7+v0HT9F37hF07RFYRBmVPqBA2mqA2DTTUPGwao52MTGXgMwQB2NoBwq/qKwPMc37sfDune\\r\\nmrfX/ZwnWB4c0VW2j6godaFlKU+EPseHiCISMJrLWiNRHR6Z6B/FUUpMNQt8lnSLdUbM6Mraw185\\r\\nk070o0pWa1+bDOuKuPNu8obshWcpssDMqs9Ur0pN7QqbjzQjuqq9g9LxpSob3/MwCSe0TxFYr5Rj\\r\\nhkhn1MHe3HjjjdORJgQggSY92gc9oQv3maPrCSlzR4/mRahxGvAXwWz+lA/Ptd/tD7pLEFkLgtW6\\r\\nWnv0FzBbjynVWQxYnyp2EjJ53eElzNN+Gwch5O8UvfEydrTqwI8dBwOQPK/eUzUsdVvj0DmfUsAO\\r\\ngbcWaGaJR77gC75gSq1KCxmPyLjf7UEH26ILnr+P521raLqvrABuZsThZ5WEYZZgTtA7BWL97ZO1\\r\\nsfautf6cQPtmfp1jKRKwxgGcOy2MkBe/+MWTvAyfySGw3yKJ9qv0jPXBI+jF39Gg1P0oUznBHJXO\\r\\nmMx4SmGRaWHxMvhEbeBqRSWtOeN5PENwHLPeVIwrCpWhXaqcQ3F6csN0ADUgNIUsFeUDS1ZV8dJe\\r\\nPf3pT5/o2LjJJGlb64AuyI9jpofH93/ap33aCaeiRtzHLqLZly73vf4Rj3jEBNHgJIBbrDHgvENh\\r\\nkwgkOiLz/MyhRQ/OIJSi5WiB3UgZiiqje86CiDRDRdcBsgqPoM+iT3ia3PIJr1WkqlSi71zn3Z5V\\r\\nBaFnVPlaNsr30TC6DQoxRsbMg+zNAAuPVZ8u7wuXWjrSu439UCN+YlxVQFJ+FIWXMSIsJqXJY6Zs\\r\\nLdqYW6Y4LTDCIwQYZAZDUWBGA7T47gt3JdQrimFzxuNbGFiEEbzRMb3QJWIkOPMwCQFAdMrL/ykw\\r\\nm1Cnd4zsb3W/thaVtLcRNRb0u3/WiHcOS0C4bRJEaxlF2JbwRrjGyduoXcC2MyJ3PV+UAADaHHm0\\r\\nfhKulAOPjcCbV6mpQlIdIvLF+OGRYiQ0M6boVP6JThgvmvBsQorBWX7bOsMUabNAcFNgMQvCx3QY\\r\\nhYLy9zzFAL2+81zGDoUgyur5m4T02CVe+kIjWEqyBqhof56eYEgQMvadIjIWIfE1KZJd639Pfc+A\\r\\npdh8CIpwCNYvsGfpoML+1r4zNq17RhhPFr1zmqqs2tSOwXEn9v+Tn/zkZc4UAS8ySnZsi3Jp36KC\\r\\njAz68z//8+kZIiGA0Qw+R7TYcwYw/hQh0abgWOv65V/+5RMulXwY+3Ed6/mfqueQ2wwgn3AseNLe\\r\\nx3NFBCjAWu5wHOwpWY82GL5jg2oGk73xPX5Ec3NnR8sVUSANStEhXVAT6le/+tVb906DzJe85CWT\\r\\nk8thZ0wriAETcMTSmnT0IWt+//vffzqJRCRdRL4o69pnWRfya9t9otqMZLJNhGx+DI8jhnYdBacq\\r\\nMEdovP/TP/3TTzi973//+/fmDZAfmRh7Rf+QE3QFzDRcFnxa+0kvyVy4jtPLLuAocsA513RjWCq0\\r\\nVs+rHL3SfEW3gu+Mka8MpDBbdFA6I9xW77E/ZJd/9XHLmcg4q99b0fvoPgOv9iT03AhXWLv3rrv0\\r\\n4Ac/+KxDMoVFmfOstzUUA0DW7LFOvBaS8CZQDQpjYjLeqaiClIeX3XTTTSeiVAYMLFlKBeO6R5rg\\r\\nIruXGwN8R2kFYc41nab3WdCunXcyXvMMBkwHvBJ21hMR8KQxOaITtVkDMt31PuBnmCLEhzFhTYp6\\r\\njPdK7WEyOAnpP96I6JMo5hyAzuvBZCI39tNZj2gJXY1etOgZ+jFHRo558v5La2AqzBCGoUhKRixG\\r\\nt4cUP6PKmAgoTLsJx0cAeT7QJyVg70WuKA5FGObHeBr79FiHhz3sYVPEMzzAIdVqAL/msm8Ew/ul\\r\\nA6zFruOZtu03QSkCbA5juTNBM4bZPcP3oleEaj2PShcRQPhbBInR+YxnPGPxjEHP0VD3la985dQv\\r\\nyfE3jU97EEpVOkuke1urCdFmwk5aKhrwbsa6qh7nLEpBEOoiWMd0zlRRwbB47kte8pK9ldMu/vtU\\r\\nfS8lrqI7DIq1wxdogVPt70UIyAUGZpXfqkUZtCKoHKsxE6Ea3JFWoqen3e2vWDMGsmIEMg0/VOG1\\r\\npuqUUwQfRM+AnYiMMV7Q0Etf+lLg+AvZowc96EET/+EJEArOJ/plUDDAyWsRHZFLMoijxkgiqzjC\\r\\nghXhoziD5DhHLdiA+zgrZKCIo7XjeDB6OffkqCgpHUvW4UvvlvHBg/SBdfTuUlyCHJ5DP+tNCZaz\\r\\nLTq4jRY1AldRbs/QyalDPq21qKL0vTkZAxmDjgQojEvWy1rpdUZuJEP9Px1sbcfKPnzePHw3GSmn\\r\\neCs/o82MpZyDriu9VxTLmoYndU2431qRWN8qFmvb4Pp0DVpn1P/TP/3TQfR1SSje5ukHNTduHH8j\\r\\nHE6xizBZGEBEG2jgPFmD4pEgeCel2+jwAfrhzC3vxz72sZOAVfIOtwG/AnhuYzznPNVga4QWz5TC\\r\\nNCd9k/bpbyHMTemMaUpGo+hLDfsQmU1EeFXPbAPEe6Z2D/5V0bj20Os18910jbJ3EcYArtIgzQtg\\r\\nkdEilWCtwowwmAmakU50VhfVwjCMJEJo6XBW4EjChgCPYaTeXM8LYnCl4Ble/gWEDPNSX6bRKGDA\\r\\nCYFLFZ1iXjYygnC5MVAOPHORVsKKd7qpygbIFZ0TWFXdVXGJ1gkdgo6QsVbWrUOTrVW9jhIAvMk8\\r\\nTUIAH7mGoK6U2LV1C/d9DSUZJSI67stbtJ4MEJElFajxKSeGgDcmeDXPq5+S9fOPsKqEOqzDCADt\\r\\nAFX74DmBVvEOb37sgTenM5XJUjeMc21YRDPIE6kKUVIR3l3OlOitCGKpN3OzVwFOn/a0p024Px/4\\r\\nnTVA3rU8wztH19LkjOpdRS1rn3vIdfBKZPSI8eMwoLPRqJSatmdVbdlL9INetdaAk2SMoDX0UgTT\\r\\ndRkRY0WW54tkjway4h194epNxUExJxXanGaKS9p4U0RK5S+Fi/86GmlXg1gFQMbNqMCD9kRPLYUn\\r\\nqkulGveNLK3dB93iGdp4DB0IFhgPfrCO9COcWxWwnEuGFB3A8Oo4OHKH3IP7tZeMJ/w8phy1pKDM\\r\\nxwiUdDpjjNHioHF85fgg+kYUfpvjxTnTygI9zA/eNv+x2njbejhU2xoYg0KDseEobFw4ULRDBjPU\\r\\n2RNkpvWgZ+w1OWIN0B3ZmGFfH6pA7OG0ONrm6bkZR2RYQPkwVx39lExzbe8K+lD6kezKiXQNfgmL\\r\\n6HnGmUw0HmPkNEh3bzvzc9P6XZIeHCMiyl9Z5giI4jIZ3r6JsszHY0gwC8UGuAiUy8MwGB/W61Jo\\r\\nXcTMPb7/67/+6+lkeqkASgQYdyzRXcsE+1wn5NsGIXY4EZstgoGARGksPKNCKiNQv3nxMmwiAxNR\\r\\nuAYB1aGcEkMMnmHjENqu3C28Ci8GATBgivbtM6dDrnVMBQAkAmQgIGZCl0JkJPJArA+vgzB0PiMv\\r\\nlWJHhOjDtbwt34tqjdEIqQiRIoLFfvtnfkDyCJqQQWdSiZjG+loD4yklGxNS7K0nZeH6vA575TkM\\r\\nG2PZhHkTUanzd/1NPHdXe5AOS3Ydw8h6iHTBNDFAw38xZvJk8QpMgvk4g5NRQEgSnv4Gn1bVaO0X\\r\\n/E5gWwfrj+5E9zyTgWfNeLDmHviUZ+t56C7cn7XgEVunQKy86iJAhEZVNdYuo6kKGz/H9KB1r42H\\r\\nMXg/o3jN4cfOD4TVMm4GmfU3NnLkHe94xyqPUJVzRST1mqLAyY9XvOIVk0GJJ6UtjhnF4J2jzQxd\\r\\naxLeCl9bb2uJxvE/egj7hEYYzVKY5IT9QhOMXtepopb2QT/WGy8xhFwjQmCNGTfkC5rAO/bZnnLC\\r\\nfIcW0RQnwT52rMxYJWpvyTVjt/72L0yg91Ae7s3QSsEEzvY7Y1gEJBwYWaNyFE1KBQGx+1vVZf6m\\r\\ntH+THANN4ExZQ8/nVPdszraxzPvZcYzQjTlYJzg4KWHzQwOCHIfIwDX3dISTNOQhRTRr3nGR16Bj\\r\\nxRGifheBHwOHgbGlvxmbpd2kCOkPNCpFKJpWhWF4LvRO1ge3qT1I65HhP8or9BG9+ul9eKg2Dmi6\\r\\nT3qijEg6A9/Gl/iqzInnkCUZY/XJ8vt4Luo++zVFkICdeWuEeflH0QXhYYNbqo7SpVfFQRVopR4s\\r\\nHiaXJ186CFQPjzA3lDjL2D9CCBGs7Za+zyTHa6XuKP1yvwQND5lw5K0hCELMohMCtUuwLgQ8wepa\\r\\nxhjvEfDUGtmMvAkl5bx39/zHf/zHhTH/oWvgPoUMDvDsyAdzIvztg2MYxrPytDEQKSDYU8gMJUpu\\r\\nbtXDRVBMNdB0DU+NB2jNGUIKJ6wzBmJoMdCE0a1tUZYMqXqdjMcpYJS8Gj9PqzVT4petN+yGCFkA\\r\\ncfRpDBgs4LrKqk3CU9oTXggDU5rmMU8ri3aIyoru3n777We4RjRgTQ89if08+9u9+FRax74mTNBr\\r\\nAOaiWHmWrik0nzAbU7L2SnXfPD28NFaFENY2rxGPEGKwlmtByQx10Qu0gS8ZnQDOL3zhCy/pVcUA\\r\\nQQMU7jEPe2ZEUBjoUBqKYjeGHCt06W/+kRNoI4C7NUQvaBl/MczQnO/xgkiE9QK1MPbxsOMKTLSj\\r\\naE1Fh+wTuu9a2DpzH88HFZFgRI3RHLADex1GSVpNipDRxrGyN0UF7HPVVWiA8iLf0Q5DqPY6zp9U\\r\\nHIIWrrvuumldpKIYY5oybjN0OToiTp5tP6V7OfDGsNQrTlsJOB4RynC7jB77wGEhl2DKHHB9DH6Z\\r\\nP+OBD3zglKZmYBWtu4j3wGGho2hj/g6Vhxx3coxBLygisulvDPHoD42IMNoT18FGk8X7nEW4T8+9\\r\\ncZzXXXfd1NqGTOdUcqw45LWw6Igm+rYKUPQW3sqzir723GSG60ZwepW5dHKViEVfqxYM14VWPNen\\r\\n5/l/z8SrnpFjkQwsVYkHRC8P6ThwSZVRJ5dTrNu6YSv7ZIzxXggWypYC6dgH3lEh6o997GMbCf5b\\r\\nvuVbpsoGE5HTpmxNjlE2CpaLIGQ5ZVEHApKRtA/hGY8wO2/KhiEkDE6ACgvz3qyLucCaEQCidBcx\\r\\nj/M+s8NsC1frbwPXgpHhWgBQEZhKHUpC1IFBPDdEHHXEO2FgIN7aPBC8RSOtmQpT1xRJkdrzzA7L\\r\\n5u1XuRnD1HIgYyjmo/h7Tjgh3u281QLDUKqW8EGXIgW1DLH/BA/FR0Bvw+/ACLrXc4zuJch7AAAg\\r\\nAElEQVQJrrBUNkWnOlbpOIWlsEHKQPqQIqMYpTQYpCJJvEljEM1g6DD2zYEwEFK31ubvXdZTQYH0\\r\\nIy/R/VKM+Kau4pXYW8sELdrwPWHL+ExgFLEICFokN4Hk78abB+fveLy+PMapKGBszbKLDpW5JxM6\\r\\n3+xtb3vbap6QBoKbMzZzFynlCIIeSM+Lfls7nb7XGH27xtv3Iu3WG85sftrA2mfcG6+TYmKwisaP\\r\\nKRvrGx3gjfBYDDFGob5NItycSIqdfENbaA6NeBa83a7z6pw5KZKJf0vT448lEDdFL8OA/seGzZwG\\r\\naaeqje39/HSBY609zO6pYTsVUWg9RP4n6/Alw4EcZSiixVKZnNYKp8guirrSf+Oz5owgEWsy1PqK\\r\\nwuO/iqvGAhvZEt/VvoCcoDs7v7NqYzIbrxuLCCYDmZMwYgnRQR3X7W997fQwZDwLsOxboCV44nB5\\r\\nBQ7zNj7my9kVRMmB895wtuROho45hpUK9O6eWtNULej3nLciWH6PjouI5SjmJBtLvbaqVCdvy5SM\\r\\nkVzPoKPgiQ+B7uwUdCrCeByEjc1HJIwqChRhGJjFVB3EyheJOK142/hs4XHpKQQm3eI5FLpQ9EU1\\r\\n1ozhvv/7v/+s3JdSWiIiuWuLSuFhFukegoZQMHdeotQBj41hYEMQi7Uoj6xCj8G1dGjtsZj/PM/R\\r\\nt4SQzNNmIBISQr0MHYxdr6fTYoWz/RQWlhoxd/tGaBDA8y791lE6wBp6JuyT5/rdWjJACUrGFoOD\\r\\ntxX4sygVRitlFWPGOK5hSIiSzY+CEJmlfAmdWjCgO8LJnHn/IqeE4hit2xSJkYqoj4tx8LyNm9GI\\r\\nVnw6DYHhzllhPLmHwPNeNENxub7QuDXHU9aHwvA9urIePqIenmesjDxr5loCGH3ZL3ScQGPw8WoZ\\r\\nZu6xRlUPBmT2/lpCGJ+9CHdQJU1CikGJriupZsju02QVUL3qVM+mDNeC0SkBmC3rx7hq3+2fKkLe\\r\\nMQfHvITwj2lgiXRTpFK8t9122045uS8vkpfuQYecMntqfmgdf0RTlC4aySCnEMhNjsGulBVaIIvJ\\r\\npzIDMFQMnKLu7buxhG0Mo2I8nBuO75jygxUS3aOgGc/2g1OxyxDl3HJ46BHjR/eM9u/8zu9UIXrF\\r\\nGksncl5ULHZUCeNORAt9ey+6hB8V0dx3D9Zcj37x4BL0gDOK/+kvvFhT6vHcWjQcfq/IUD/1rmpd\\r\\nNXU+LRw56jycPmHNyR8GsJRyRUeHRqo2rRtcL0cab4oykyHzyOJ97nOfqWE3OvcpY+ZvxhiEIadw\\r\\nPCu1KHttG4owjYbZ2JahSHJZqKoJeyc+qjoyuAR66kzPWgeJBm5q5bOLhhY3U0k7BpA2ZDUzNOAu\\r\\nvGQewmTx8moRvKo0DMPY2FbWiLAcukwxsAwJGA3MKOlDwnC7Jjl+73BgY7VxdbOmGAlwG+Bvxk+w\\r\\nEBqUWl7CLlAukCnlJnohSmazeN/jodH7jPUiryV8GcSIrCgI4W3uDnIdBZa0grGgB71OCFVepWgC\\r\\nL9RaBjAmdKQepeUCdDOApJt5VYQyxWWdCBSeEuLG9KXySk3Yi1JYmCJDwFgwEsL3TMp13h/tGc94\\r\\nxoT12yfasm29ed5Vv9lfDsav/uqvXsE/vGv7Plc2IsXW7dBqnkNpQZqOV2mN/WPsWMtS+1X3VFAQ\\r\\nDq5oVr3L8LV9Vj06pqW2jYsRzzC1zwwG72IwrcFKKf7gdZM9YQQZ9IxNyow8krpFSwQtMO95e+SN\\r\\nc5F+5DyUOif8GazeZQyMTvQdYJe86MzB5IR0mKiddYPnJOfwF2VSVJihYk88m8wV0SgtTsBbd6k0\\r\\nvFaPK39zzYiLmu8DEDz6186Awsc7FD0lyOmxF3g3peZ+hlgKqggv8Pbc+IHf5AzhAzyKZjjHu84Q\\r\\npVyl2IG0GUmyGJQlx6tWHM0DH4mkw/LMQfAMPBE4ssi6XRQ+SmNWdKUg6xiV24fy8HnuI7sVczHU\\r\\nVXleVCrVGJ2+od2T95GNZM/oTElhSzXXXiGjiqzJ+CkV3neMfvzhniJXpbXDaJUCLPJVBWBR2WTa\\r\\n6ER6fvqeAeb33h14nrwuos/2OcTRuiwqIZrAK+QdU3wsd0y9dLK9slkgTUIIo5pE1VE2E9Bx09lp\\r\\n9WAS6ueRY1KeqDTV2FvlPIS16V6psZqn8uyNQWSBh2gTb7755r09CLgjwpOnTWjYWOvGMNOEbSlc\\r\\nehFz2+eZFBgj19qz2LXIGBs1Yg5/h6cSwav6j8JhgI29oODQ0AyBWDrImqokgQfAGIiWMrQujGq/\\r\\nYxw0Q/lQnoQ6mit1UWfzCL/S3MpuKSDG2N/+7d9esWdKyqXr9hWMnfdoT2GoNHNkVEiNi+Jm2Ils\\r\\nVOwwT29ogaEp51gNpKO6isU14PB99nHXtUWLrWGpvipr/O5j3QvBJ4zCO3Qfg8zeA5iviRRJ7UlF\\r\\n4THRPl60/aJgVRDucjqe85znnLzqVa+a0qsUMsOc4S7SimdF+VRHMiLQFyW4reXDrnWaf6+AB3YN\\r\\njoTjRxiL2jLo8TeMCeMJPReFGCMX8+dpd+L6i8aYrpmn6C5nGM8F7EXX6MDH/KwvGmDYicaS5Zwy\\r\\n36NjMsFakBF4nsG7zXmQrhdR1qaBMyaywqHKcZJWCuOkilmLDw74+973vo3ymKElE+KZFxHBEoFX\\r\\nCU+XaZy9Zm13XaNQiMxDT9aNjvBhNJT6r4K6jvuinKA0QOP0C54kJ90jujkGPUYaZFxx9DnGcJPb\\r\\nWi/tGvea7wVbYLBEFDdBfUBKRCXpSnZD0agR/mEdyP4yQmNla+lRtFeLBTqg1grRrzUiF0ohVh1I\\r\\n55SOtAeuScYZg+cmA/FEwPinPOUph6UIv+iLvuiE4GQUVR7P41oCqEsN8eJhsKomE+4l5HghnThv\\r\\nwKzYpYiP6JgwosXpiAjvEynDKIf0Clqz+V3DsOCVWDgbDNhOYNtQlXJdBzdEAFU+b6yEOyXL0zTH\\r\\nUlYMMyF3/wgm36mwcw/BcUzPep+5brtW9abIjzUgJIGECTgMQLGYO+KkFCgTUUoMPp6+TuDCHmEY\\r\\n3jxaIGgpYB40WiGIefaiWMLGgeJVneryi5a8I4+FEmZg+ZvIIiPAeta13JgyCqw7D3ep4Solckjp\\r\\ntp5Y3lckVvgf01Xujvmsl3WjaBge0mbmLqonqqbhovGKclmPqiXRxKmnN0Vh3BtQ2rxFNRi85o8e\\r\\n8ZX5+2nelD0eI3Dwm+soffcG+szgIDxEPryTYVtRAPokOMyxzvgBQKvmyQMMi5UXiQ7W9I0LLuC9\\r\\nSve1aLj22msnWrEuvMFdkeqv/uqvnox2BTG8bu1AdPIuJUXQmktYUDx9TEdGew5OH4/7137t146i\\r\\nXI/Fu8d4Dv6HPbSOaI2sQk/2nGxEO+gDPEAanYIio0WMKHnK3/fo0r2eA5u41KJFM+HXv/71lzUC\\r\\nFt0TSbOf+IvTBUMpVUY/oFv6YBdkBAidY647vHVZe3j62jWEIRQt4yyaH9mPjs27Y1bIIXSIHhk8\\r\\naFyEngzlhJEB+Ji8qApYVBZ9B72hf/GwNS6VX4UpXhWI6FzH2sOQyaMTxykmP5J7dJg19A6yey0e\\r\\nWBYCHezrDJD5nCEOFXlPJ6CbeUWpCCi+tk50f7LJ/M25qkD0GBi+ysGcgAqu/B0dZmAF0QmLVRQr\\r\\n2i4SZj/CoiZv0UTRsqASrkGjMLRvf/vb95YDE0HblE0gQYpQxAfBxHxSZzwbljFLlCCFssd4rjVZ\\r\\ngnVeYcZ617uD8jRgAgzBUgYmPgIZ1zLAvtchHtY8AWIxEYBoC+NI+J6yJDysCeVPwdpMRiimQOhw\\r\\nZhjJmMu7z8ehuSMGU0U1P9x63zFfxPWEnghDUY1KwAnQjkUheO3TGOYVuqfUMQFlLoWDkTrqheGB\\r\\nVhyVYg0JTsRO8AKIqjZyjffw5AgNaQjXwp4QrL7vOYwH74oJ63lS6a2/w0IRbvv0NBvXlKcKL0Uo\\r\\nSF0QhLAKGW7WSjrCvlsTNIMBGVTGx9kwDoqIoCQACWX/FID4OyMTXowBRgB1zEotKjyL4UboWi88\\r\\nhC7Nt7YA1kp6G02as+sYZZ7pmrw6+webha+8E1/2fXgFa28u1i1cz1g9aH3cT3EUvscba06VV6Gq\\r\\nw7Z51qpFgYxUDmGF5saIxZy+NRAlG2Bz6qekygo/UdTGY10JV/OzthTJtpTZvjykwSzZpu/Ptn5f\\r\\n257bOaWn3ccn4TzibrrX36yz/TQv0SKRiI4HCi8XXcBrkT9kp/XEC2gFL47VmQxd98wVpciP6F+N\\r\\noms2WpoYHZGFeJAxzKnimHII8AEZ77uO1MEPGQq1bWhuMFOatTLOR/nOEJJOEuH2XHQoOoq+GTCn\\r\\nx5JtVGjgGFLEDBIR9TIfS+u7796P12s4y8n+7u/+7jPsoRMeyCQ6xHqTH3TGmPpW/UpeoM3Xve51\\r\\neyvm84x5vPe7vuu7pigWXoF3Rmf4PsC2oIn1PyRzMx8jvLY0pP2m4/0jU6zVSIO33nrrdIoIHRA8\\r\\npZRd6TnPHgtugopU/YzufdBsjZEDxpdC9H0FUgHiwzky1PytVj3eG+7UfTmZridfGahrW8uM63LZ\\r\\nxktjUHKFxqo6ErlZ6vLt6BsEHlCaJVk6R1ntaGBRriIdp+dznQkbURTvE/JU4nvMMP8SkRIu+m1Z\\r\\nYIIJIG/J6zqEwPUUY7QRNtJlDBGG5r3xaBWRRCmwQISIFEMwnufnDloLjKr/DIVOuFq30m9KwYX7\\r\\nGSZoRXSFkUG4dBQRY7WoA2HLMPE9AwLdUPgEPYMO0WsB0neMDsTPE3RP4O0qR2qIqeJoU8PQbfv5\\r\\nWZ/1WVNKr+gMD4uQlxpKaFIwInt5j9IXY583mC8RpjFVgealFu+8885PmYBV2SO15kNpchZSpNYX\\r\\nD5RqJWTq70QwFRkjJAlhRuCauVx11VUTMHiOw+xYJPxun5faV1Tdir5co0pLJRT6KIWC/uqpQ2FQ\\r\\nbjznpaj7IXzsHsd3oWeRxg6tptStmTFRugwcH2lkCgLNkm9ow5pZa7RqvgwivObv6NmYyVetPShq\\r\\n/MNYlEJ1HafF+80bf0gRURwUEkPK//ETI7D+YJ6Lf8E7GOEMa+PKAMPjDFdGjL8zaozH3+uInbPr\\r\\ne2mRnBbGGqXI6EM/eI7S4VgZZ6c3gBq0D7WrIVco3nmzVrhEMsW4jYPsEO21HoD1856IMDzG0KHF\\r\\n5m4sz372s89kFlC5PVpq+XAILWjBIgpPTx1LTxwyjkPv4azoxI6eDu1Gvvbd9IBgy5pm4QI3iufw\\r\\nUacK1AKo6uaKLPD9WOVqPP7me3Tq+vBY4axyyF0z4reKynsnGZI8LHjkeWOTa/eTMXRPDY7Xrofr\\r\\nLqnsqCO7B2N6ymZbvpagZEDoHI15MD3lQphgEIzPw/793//9M8WiIy5BSRiNoEUEIBJmIkK9u8p8\\r\\n95nc0rU8KmchGiMvaVubBl4kIUrgiVIQAhS8zaOIbI6N6f8MBFEuioyCJuCkLu6NBhbv2joUUoVX\\r\\n6uBu6ybaGE6DcrDHmNT+FfIFAuXRAuoiTIJOL6JAsIQxQiaIrRkv0L3wKJiLQiHkKQRK85WvfOVE\\r\\nLxpUErzWFxNQ7q5505veNH1vX4zdd2G5rD1ve9/z6FSVEkAiKiO2yBhE4UQurY19hTnk9Qf4Nt+U\\r\\nAEwJwa/iqVRVIfrO5lKBCi8B/E1xmjtDhFPj2aIXaAeImgI27yphpCDxGiEkLcALtCe9n+eO9ypF\\r\\npnStr2gDZUtpoV/83U/X2rfatCRwquChdKuy4Y0zBt7ylrdsNBbRg87r7oNdWXKWAGFFMc1TJHk8\\r\\nr46RiuZUr95xxx3Texhc1pVxZ6wMGEYuA4PhYJ3M1bovOQaHyosnPOEJU5RHNNA4ySVYQ3tSG43S\\r\\nORwKe1PaAi27Bs6Mwudw1SwxzAxnjLx82ctedraelE5Yx4sCI0vVkrdkXxiUIpf2nTLy8R2jri7u\\r\\n5AUHmQJFE/gZv5FtjHjNJAHf0fgHP/jBaU7Owdt0bI7ICR3SYdh0UI0nVZpuygx4rqyLdDGjlFGG\\r\\ndzOorKF1NY5j9K1ymoAzENFX8ulQmvpU3IeOyWiy93d+53dWOXroHL2SB2sKUsZ5ie7hBfyNfzKc\\r\\n0f3cwHayg1Y2wUDQHl0bHjDgOTlVz6qxZ1tpwSAPxsGOCH8VZtf30XgpR8+soMP751XUzakxsIlG\\r\\n/bh2Ly897nGPmxplCv9vOo2eQtOlnZClcBhKlAMiZkTwmgDhnXOlas4ECXQGE4UnhCpVZuFFtsb2\\r\\n/rAyQHGE0PXXX3/ZocFrJ7HvdeE7GJSUmVy2/yMKwpphYE3G1IuUi00hXITjCVGbAqOwhPUB8uW1\\r\\nERbHAkjuO89t19tT4E0EZw1ElUQM/J9hoeABUcI4SfMFWiTArJFUnr3vfC7KHlNSnkLS1krKTR+h\\r\\n0eiBcWKYW0frniI1VlE1KTq0IB3GcyjKhe7+5m/+5kxAXHPNNZPiZShjEIzAWFHNtHQaABpcUlrO\\r\\nxmMMw4eNqSBpLt5+aeT6/VBC3scoCsOEd3j0IgMUJEVRisVcGbGiBJwO3zGu/M5oNEeGkL8TQpje\\r\\nWnperUC8z3t5e8aD36wRg4wBMILsgfStC0PMuwnXqs/CJaBbtF2vrapoqiKrRUZ4iNKZlBlFsyQn\\r\\n8DEv31xULW4TzBpFiu6K9IQLEe3jjOCru+666zJFMN87hpg9yyC0Zs997nOPCnQWuWCcMiSMazyc\\r\\n/ph8eE8/C5aNjEYD5HEQAXRb5SBaY4jbCxF4KUIRbGvuOuvte7zNCMNXHBXFKhxSuFZ7K9okLbwJ\\r\\nG8fIImPQqypyDgJAvWNwtq0LMDWHFz0z+D760Y+eXc+gpZ/w0ogXPXSdnbQBK6b6ldGHThkBYBMw\\r\\nqMYAXoCXRwzvpvfBKc0Pcz5kbBXjzO+dn8ziJAoRV87xGFF2mDp9Tmbag84y9P+Oj0EP5gX24P59\\r\\nj4uC5/UOckbmg8yCu+Wsoj2RT7KGnKkvVc29iyJl6I3pa3/zqUCjaJWf9byqOfLYA8v39suz0XHR\\r\\nqyAQFfpkhBVZC2N+SMuljYQsykARhPinYDAcg0Jlj9wzPBPvgZKFlZB+kxfHoBYQjoWCxjyUseMs\\r\\nlpSfs454MAyt+QnshxDfrnu+9mu/dkqFWkjgRZbpoaDoTe9SxQYvQvCvCZnuGvOxv2dgCecjXEoa\\r\\nMyFAxhPhCRdF2I0pLx2cCVlpDFEZhMoQRcw8WIYVIclwEukaD04WERJqDxTOoGGkex+PmpByL6Md\\r\\ndsd1qo4IbEqAx/33f//3Z/TKixUtYcyjTZ+Apoz5MecP76FyDf1SCAyUjK2v+IqvmKIS5tKYPLPD\\r\\nXBlKoiTl7jGjj3F5nujWGIUQIVX9xkAM5yC9yKDaFzR6jD2/+uqrJ3yI9489j+qMn2Fctc1YSVMJ\\r\\nvnFYI8YuT+4v/uIvrpAb3iO6p7pyqafROBcVmvbOu4taP/rRjz5hnGlEOD9fbewl5Dk6Ruvl5P7S\\r\\nB/Z3k4N4yDqCP5BJ9t15d/tGRg9559I9ogkVyTA0RfDwXKdNkNF4B+9SlvaZM4iXKAiOE2NARRnD\\r\\nA//CsqGFOvpXGelenyL0fodt03z6677u66ZIHJrAs6fNKacUIdoQxYa9FHkmSyhl7+5kg/ncRDq8\\r\\nh+PEkCUbKEPNjJcwbyJoHAw0JlLm/RQi2ub8V7FOJ+HNYx25JlXMmSQzyLmMBbRq7gwHBqK1Eq3j\\r\\noOZcSGlyukY5OO7nsWhk23NEy+lkMt6ZoPaSPKT/VM5Lp8oqiLbvquxdM95TzN2ZfJDNYOzCeMt8\\r\\nsQO8F32yCzKg0CqaRDvkTC0Zqi7sJ5op7YdeMoLCepEHRab8je4wxzI1Ya7IDnSf3hsLe1ybw+Fe\\r\\nshLUZenov11rcoWgFKEgvEQiDJZFyeJU0r/U5f3666+fCJCAtmgWgnGV104xYjrRkU1lvKxsz2Bg\\r\\n3ROC7Iu/+IunnkQ2tJPZdy1U3wMv+n+4FYQa9gjzWTMeA8a30XA8+zRmXDuO815HWOszlEeKEAlt\\r\\ne80oFh0h0OAcCHFC+7T30BnN8GrNv149UoHuG0H9gI8Od3Ud5ayyDk0xqigwngvBxKhKMMF7iL5Y\\r\\nT4JBQ1Tv/8QnPnEZvT7lKU+ZGh66rvJdwpUwnIfDnZWmi7oIaukHhj2lwJi0n+HnGE4+mLDyab9n\\r\\ncHQ+n/mOZ3O2J47XMd6l9ibn3bc191MynTtGQXScRmDmigYIFTxQJVheXxWbHdpOyEgz+ruoGiNq\\r\\nNCqlR6V7OBNrCw0YZDxDH+8h7FTszXspdZQX40DUTTrOfWGTqkJDy4fg7zatp0Phvc/YyDC0S65x\\r\\nSChRdIt+a0jsGnSIhhgujH3ykJHBYFThVcSVwqFEKF90xzCiNPBb5xFWWS0CYM3xZyB3z0bvrjEe\\r\\ntFZVsz22p5X/Fy3wN1gn7zUnc6jLOOOArMp58B7jcg2ngzHDWVS0QUYwnjjat9xyy8SPIhXuRVfS\\r\\n7ebJcBL92lSurx8XI8UcGE2d4mBsZETPHvfHCSCMK4rT+xmW5K2o6q6mq2v4Zumar/qqr5qqWaUJ\\r\\njxF5OnQch97X8TWc6U0HcB/67Pl9HCE41SBA5LhoqWgmGpbStb/oyd6zMwKk4x005N+I/URTtU1A\\r\\n64HRu6+oUxisDKkA750DaqxVQ/tJ71VJXWp8jPCXPqfbfKTDD6kmnhhE3xEhe8KCwjIJvX9Y6Jh/\\r\\nW7hfTl/Yj1LCfBjbYobzIDAo0E2YDO+XpsE4hORFY7C8z/EHFtdH2kbEhWEAM8JT0rPHGtgchkHW\\r\\ntevdR9ASsNaGkCRICQpCgkeDECgMayp95DDsYxHxsZ6DGaw34kLc9sxY7TmFzEjkbTA+KInOwKLg\\r\\nRJZcgyAJUh2CazRKIVoTwpi3zFuBz6MgpQzdY33RiWdr5zGGnnl9iHoUZvXMufvuuy9bR9cymHzy\\r\\nOmISxqAI3KZDZ+FGlINTnBQWwwxjUzQMJ78zKqyLZ7sGTVBgrvE7mrce8FEjj8BHiWJhUtW1I55E\\r\\nNRyDpRQMJZ7gaByBN9HfCKyFi0Nr+IlAWfLSRYcIL2tI2VNelCqlX1l9JcquqTCl6swKVjy/CIdx\\r\\nMWTqnCwyHR5ONBh+TFXxO9/5ztV0DnsppeRjz1QebaoCdCQOXqpimXFhDWrfYX5ocFfrh31450u/\\r\\n9EunCD6Z5n2B7GuHYQ0Z4OjY2pF35AGDBl7M34zLGvvdx+/GTMm4j0GFhjyzw4/RXIdb4y1pWXwo\\r\\neoSX8GiFRJSPClX7w9gIA+t9jKNgDH6WLtOPCs7NvqMv4/MOz8xbJ9v83TiNwXdVwIowwciN0dii\\r\\nH0DO+uaBWNifsFhL605OkDEKA9C0aLbIONwOWgJfmKf4RF4U5lgvRh6FTb+4fimqus9+b7qWbjqt\\r\\nxF1N28d477GewYkUsdRiYpeBJSvAoEcv8w4Aa8ZDp3CmRXs6+5JjgVfoUPt8ins+a9grxcvxtcZo\\r\\nP2A7OZS+DaowRrGKOLmmXlVVIo5RL7KlNKQx0HdhTGsL4WfPw8cj3svf8Zeim10nFSyt0SXnrBFe\\r\\nhClLk9DgtaQwu0lbfYYUIcGIAHiF/RB9ojwd4Gow+lsYcKfCU1pjumRpEPLcsDcU/jErgZbexbvX\\r\\n86mFLt9qUwgU4x4FHoJgIOxb3UiQibxQ8oeEFtcQ9HmvEfantCjM+icxpigUBhJBS6ATxPaHskYf\\r\\nIhkM07HKDsCZkcyoIugRKWXDgCHwle1bawaKtYbfYDxgytI8lMhojBDYIlma2fosCWxNa6UXfLyT\\r\\nQjRu76Bk4PqWTpFHz/pVuZ7yNF/zRvsiDNKdIgNoYTyc1Hs8u7BzZxRSdLBqFKf5Uxzup/h523hM\\r\\nGtX10qD+MeKsGZpTok6wWT9zxovzsxUP2W+HFlftlvdn/PaQEu3ICnvTGvp/QNPSxq6zngSwdRZx\\r\\nxBsaPVK4+0brnvWsZ01FBAxY44Hf2nYOqrFRyjrDoxN7YowMVErW2u9KTe6zfvpgwa/Bnrz//e+f\\r\\nlKsqQmvGAPL+lIgUsPVcewTQPuO4iGsdA2TN8CKlE0CfrMaL9tl8OFVV+KIdykf0siijKDheC3sk\\r\\nwgQbRUlyIBhDm8DqMgH4lpFUxSI5K92Hh+znPGKgKhGvFt1y7A+sKJxQ7SE4N+TVMQDu1v7pT3/6\\r\\npPcYcXjZHsM/kQ/oH1TC/NGG9bNm5N3Y/JNTxWCox2OHfFsj92dIchjJB7KI7LAO9gPvMUAFARiu\\r\\nDBIf+oqhSd4wouwZucFBtG9kOhnnmfbUuNCzfWfQ1zvMs9BwFXNk0754K89w1qB0pLnia3RFtnXG\\r\\nn3faKzzLmIbNM2fZDGM1B4aWsRe5KjLb72UURvxVVYQZYsYyGkpjxJ48r6dWz6xCsShsjqTvkzEM\\r\\n/kNsk6mBn0VfEg4sWhYmr6J29Dz2eS8cyrUqDgDWyoYNFGGwaMeDJudCQ7hYaFk35mP2slkSTlpR\\r\\n3HLLLdPmU2iY5pjvBPQ3f7gCBCPcPT/q4SKE5iHP1GSWwOLBIibGVO04AM4JQMqEd+wawpUBFn6J\\r\\nwGN4YYJKrXm4hK4qH4yCuTGF+0SVGFwYDl0BVtbTSTUSISWdwiOWn0c77mFgYUIFA0spZPMwfwxc\\r\\nmiYDCIMQKGhwjHDwhtEbQVA7EgYhg8v+GRf6pYiK+AQCrgLFffVJAewdFTzsAUEyP1YGTnF0XjoR\\r\\nQVn6ddddd+YlUxTWce7oCLuP1+3ad9E/AlgEqvRRAibgaBU2CajC7+ZPuFsPykSESrUioW2/O2bn\\r\\nwx/+8N7ePeUIOmC/jI2R/8Y3vnHjc8wbbEHUw5rXXqTOzFoK7PLQd63V+L3qMc6i1MrSkUj7POve\\r\\ndC1guXQXh7pobw4DBSN9A6dozxV5lFYh/yl06Xdrjp9r18AI4EBwKDknHZ1m3iNusnXAe2RLjUbx\\r\\nHXiIaDPDluykk0aHSsWZ/QBVYeCRFSKAwOec2CKq3nF6PMzeNLm0T8DgusqrwpF6yPEAACAASURB\\r\\nVNNvi9Ejeo+36RAGA/mog7lIo7WYp+PmZ/4xZjgTTlnAk3PsEyC8vZFeDcw+8v0IAWjM1gNPZvT3\\r\\nd41YOQV6YC01ZD4mbYbD5NSKtjISRXX9q0eftRPhxL/+4WXrJ3PCsBSs8akSsPRgUaaxQhC9kmXh\\r\\ntTKeqoRF12Fnw225B017bgYVfVTWIIwXWW9vcuDAHw4ysOYLrDKC9y2N46Um7h/lOgefzu+lPBCa\\r\\ngVvQUPqU7rYS1yc/+ckTw8FDXTQGi5WtwaYF5BEAKad4C3XzzEQSSqHYkJo9BtJDQJiNEKLMbSbP\\r\\nicJglBBQFAfFfk+fP7eGaTCssDHjwVoQikXalNJTZCIFvtdfalReBADBhoEIR0IXUZs3jww2pYOO\\r\\nFUQwqniU1hdzMcoIZJgbYHgfBpdoSIYeLwxj8mzQlGeqEFzCPDmQFWPw7uqhYs8wh98JK4YTY1ea\\r\\nkndJgWp623ENlAXngSIJLI8JRfhi7rymuv2GGTB+NABn+JrXvGYS7I997GMnbxRIeKwuoihEgUTK\\r\\nOCWiMuaNdhhZjE7/l6rnJYsUGjN6o/z0tOLlSd34m+u9OwwNo5SgImwTLhlO6LHjXRJG7q1KsWcU\\r\\nYg90ClPD0E2Jwd51yDel05zX0J1rePSvfe1rJxrg4ZoP5S2dugRUV5ABr8HRs5d1eE752ydHUm1K\\r\\nB68d13hd56qh0WNEEtEbeWNt6x9H0ZIxpX07VxGmk4Hhn7XBLyIQeAKf4SF852+lIDkEPh3DwiFC\\r\\nx56JnuwffpAeLA1kLPVBq72Hn5xO/Ca6So6jGzzOASPfPJd8IzfIAHLCM9Gi65J3n/u5n3tCMc0d\\r\\nWE4u2qZs0St+EtE2H1Fy7yZn0Vb4VbAO+40HjAH9isxaO3OV/bCunH1OwfzM3ENowD0wTAz7//u/\\r\\n/9tqsIEcCBL46LO4jxN06NjW3MdgtT/bjhxa85w118hmifqKPoJ/lAoPH8dpt99oDh2DFshu2f8C\\r\\nPBwAeGxrnhGLJsNUZRwZTxGo+iFmWPmO0VQqMDmWnCYXa1Hjb6UK/b+WDwHkXUeOP/WpT4Uv3Nto\\r\\nv8S6hoXAHAwGwhlDCT0i2l2VOcKdBIKBFd5kjPiYMAGO6eqnMt8owpayJgiEF49RWruLGB7xiEdM\\r\\nWBYLjxkZF4wDAoXQEL60BpQyj6wjS/zdhxLG1AQXgUZJzM+jk/YE+BNaPqQD7K45HOP7+973vieI\\r\\nyzpQsgwahgrC5MVal1KjgKzmTTAyKqXEGFN1Kb7hhhsmOqp5JWzV2FdK+bCmm7UoYByIDFAyPF90\\r\\nh+YYE9LPoi6vec1rpjU2Ht9vUnYqkuT+6xllDBi56jnPsN/okUElHUchGG+eFNrtSCBRK98zLGLG\\r\\n1ttahYEpzUwJeU49vyggStA4auvA0ERrUhq+J1QoXDRmbJ7JeAjrRoF6PyHES+YVE0KMW2sj/eLD\\r\\nqOvdBJp1NRf0bC/9lFKwHuiUUKokurRgBpYxBO50r2spcIZrZwBaF5EnAsz9wJ8j4H0NXXKoCGLO\\r\\nDUHMgKjq7d///d+vEGLPf/7zJ2wPgYvmRNPMq+a13qlydNNpFGvGNL/G4d7ow5ppO2FtGDEMW4rd\\r\\nvhShpzDIL6lde4re/M4IcV9z42hk7DMm8AKMp+/JFnIGzXbosz0gj8hmStLekCfh6XLi8G0Rvcrb\\r\\nO16Jo9Nh0cblWQoS6i3kb+gyJ5EzzajnZDOAq5zjzZdiQl/kIlol42qaalyc5CLc2mn4nsExHhcm\\r\\nYyE9jLasCRo2T+9yvBocoRYPKrzxjRSdd3FAxtSVViqeb51UeooKybrgg2MB0tEqev+f//mfncqV\\r\\njDOWsZv+IbT31Kc+9QSdLwH9933eN3/zN3dE1c7x7/vs+fWyV4xmTX9lrETf8Ex6gE5kkDOS0bL0\\r\\nMNlCRoKbcCjQAfkkwMPJJCvRBRnlg3/CdJFBDCF0FAa3CJV9qPdctF3FYFWGnkd2e95ocGV0+eke\\r\\nsoaDMj+QfM16XVIlUfgMoSNOzDTmZ+cPcpgtZYmZTYTQlT+nvCgWglnqxXMJAUy0qcmZSjCC0qQp\\r\\njV1RsjWT2nXNgx70oAmDYPF0j2dhV8Zs3AjAGhySh/ZuuCJAcGktAmve0XrX+O6p7+93v/tNRz6Y\\r\\nKwFGqc8reJxZZq8RexVU0jmOEEHMBBwmCq9EcYyAU8oxQK9Qfjl4ygWD8VSk16oiFOERqei4HO+l\\r\\nhDALobuJPjCvYzdilFKD9UjBhIWXRaowKoUdw/rONe5TRQnLIIXh+45zqD9UYWRMHWCdgifUtbJg\\r\\nnPP2rYsqGopn3kNF2wpK+m1ve9tlgm9eLr2pf5fIF6NyDb4PEJ3CpWhLD45Az7H/S/iDcA3mis8J\\r\\nfDQihN8RPtYar+wDMC7lwihQZaY4AIgdRs9+8BTHBsV44YlPfOLUAqK+YASwf9bZT/NigB4Ld+Od\\r\\nlBxHwhwZHEUxS1mE8WBoFE1hrDAYGbPW27pxPvGYSPZ52nQovvGcTVV5+8gMx3gxADkEtWnBj+gf\\r\\nb+A9tGmuPt5r7ykihqBr8b9oqIbBjL/Oa5t35xfFosQ++clPntE5+YtvPIsjVxubUmmKORSJ0EXG\\r\\nZO9F2+eRUjyA7zqz0tpoL0QGHSuCpOcWA5vDuCtVLOVHp8y7yEvpMQbIMvOuoXCZEXIFnIQx4SeH\\r\\niCHP+ODImg/H85Dgg7W2PwI1+9DIIdeiK/pfgdwSJpOTTu/ifTTFUURnopXkLP2DT9BgWEfOQEcy\\r\\nWSd7XQWta6xhVYf+ntzCk+gODY0GFXlWY9H6uVU9G96rg6Fd693+cfrXyNr5ul0CJNZ9e9OCYmyD\\r\\nNQmMJaogbI25LFYRD31tDFS6g0IF7MXAFpBgXOqYDqfiwFGCyQLrZTPHnByy0bvuuf/97z8xOEHy\\r\\nkY985LImdTalyiDjtqkWGOH4zuZbj5iBgCekKGSCXgUdgrZeCIAH/KEPfejCiXvXnJe+x3y8UXuJ\\r\\nsEcMESEnyiByAPQo7IuYKQ0KxL7yMhA8Qcl4sgY8aYQuxepexlGYBC1APNPaUdQ8A9iZeuXUQNAa\\r\\nl5J0KKxU3mnl3tZ1FMlCT8ZnbynsojOlvexhOXvfoWnjdY/r7aGKETSpyjBsGeYzBmuQskXv9pjA\\r\\n+NM//dOzsRHyebHAvCKjS6065j1j2qM5ZuOQvR3vEUmQ8sVjeNIeBXAPf9a8wmOh67BYHWRe6wHe\\r\\nJgXAMZK6k3LfJkMaC49WB37RSD/HnncKLjzvtPHl2VoyyJxZR9kTwPaAMicEOwLD36SYjtnJXWpI\\r\\nlOVUsV0WjT3vfnyq73/a05525oxYR7yRN9/ZlB2q7Xc8El6LsrfeKmfJR0YDBUlGapfwile84jIe\\r\\nFVFCH3hKPyj6RvNR8sY//DaPNsFoSWVKQ3u3MYKZ2ON56u8hD3nIifF45rGOxxn3By/q1TaHSRyy\\r\\nh/CW9MHYUkL6G881L845WALjinFwqJPf+D7jMz7jBK/+y7/8y4XrILAIcl+kky4vFW4sGm+T+fQu\\r\\nfVmzUA43nQl3Rw5ztM2dHMDvRYLJXHJDlJjMorPIMraI76JP9kj/L/rq/UW0gk3U9iSjCg2hYTK9\\r\\n9iee02kaoqmHQH02LrpePtJBhBglabCsaV65VAoPxgRFaoS4lVkjDP1SMCeGcp1GpRadQB27IQOD\\r\\nAzIHlLV4WjkIER9CvPvcgykpd4oRwfvJgGIYmSeDAtEHdKshps1wrY8NstEUsWcwLtxrLcwfwbDQ\\r\\nCei//Mu/vPA57TP/rnWQKWPSoboqdnQpFuIl1BhCCEw0B/ZJBYxolko4ilAqynp0JqEGevZa+sZa\\r\\n+hDCDChClBAWpcBglYeLmAI2/8Iv/MIUhufZjU1ZVWJ6nzSHCOl8HZea9lHU3sXoC2dkLIR07TNq\\r\\nsWGsjAZpk0LLaNaeiTx4DuOic9rQQynL0ml+ol1RWukyhgvArjm/613vmvYdDkLaB0B37PqvRxga\\r\\nGdPn3/iN3zgJKR671DqvVeoBLsG7jK/KLPfzro0JlsGepBDNEX36ZFz5f8B18w7LUpSvtKB1au08\\r\\nG20TjvYdrdc5m/IxJwbxaGAu0aLInKiEsZAjf/VXf3UZT5we0nvWfNRRXTUyFg0SKSJv7AXBS7kb\\r\\nD34TQR+P1zmEF+b3cP6Aqq133eaP8dz5M8aIJQcEnZAxc6OD4kVb6IfTS1aJjsOdMVytSylye7+p\\r\\n6pnxL1MQtKGO1n7WF817RLXREr4j10WRAsF30L3196GYONQMkaWKXU6SqDReInfJGEekjGOcN5N1\\r\\nqLzoOMVHZqAx48HHANulIWGz0Kh2LQG8j9U009xOC7gOLtO/CJrZ55mCCfCe90Qvxkc96lFTSwh7\\r\\nZY/mrR5E49GdAihyIMecvgCHwMton2HJ5kAvDCk6KkeZE4wGyADy27voW7K6htFhBN2DNpOD6Ld2\\r\\nDAWGwmfR98l0cj7jyv/JH/JlNLDgzT13Vxr3TMgBl0mJUGaYy2R9MC3FRxl2Yvm4wbwhwtdALEoW\\r\\noZCqxn9SPtIkQucdlqhCSq7e5OQ2WaEUmnvWNirch8jm1z7mMY+Zyv9r4CdFZRFtnE0Ttq4z8KHv\\r\\n0bWWIINjurdisDRTRPBy3z6iWax3hG/P0YEUEOHK4HItDMgSPgCuQqRJitEapswRuGgXL0VqEe5G\\r\\nKo+CQDOUNwE5guj1TmF8817QE6WzVCa7qVoIiFbqkeHDG+Kh21tMRWCbk1SUKJMICbxJBjNhXuSy\\r\\nHlGl02pmWroxvIvfMWRFIUW7rCf6FgWzBjxJfGQsdYDufEOnHFhvEQEKjcBxDcXlp4gohaZyigFI\\r\\nyWXcdV4mgRSWxfozPLy7fk6+tx95kGEPPKcxhzkLa9axUAw894okjIUGUrMilUvRi5F3YFngz6y9\\r\\nvVzqs8MQZVCjR8aq+aKVAN4d2WM9rKHIIGMCrVrnbbCGffmYA6jKlMDnJDBg0RH5SKBbS++178YI\\r\\nrwSnht8Z167pjFVryGiuOMF8GLB+l1r3vTlTEMlQtGKP8UZYqAyc+m/h1XoHiRqE90KPDCPrhN4z\\r\\n2vBCAHLrVrokLGGy29/NBa+Tx6qFVY56rnmTD2jfnMxT9HqXd5/yRXu7ZKKKOJV7Y5qSATUHy9NZ\\r\\nKosZh9LNnTqxKa2+Lw24XtTJWMwXPYxNlDkY9jGjEj6yw9LtWxhd8hOvcTjJl2hlTdR3HLN5Bfau\\r\\n5cO2OWlhA3h/00033SPHtSk2QtOccvwS3pDsspdoHJ0K3LhOVgT9w9iRWwwp8gGeLkw3Ocj5dl1F\\r\\nGYyhqpjpatkK7wiY7lqyAp/R856FRmpJg84zsBhJyXF7iT5zxO2l9XY/3bUPFKJ9uQQEx6PAqHkw\\r\\nFkGEalM0CQMApPNGCAVMhnkRFGZGRMK5lfw7cJJi4O1SvkLGlCcrlyCgDC2iKqJjhvk3ER9MB6Xq\\r\\nI/R7SIdWqR8EROBimIDvNo9CY7AJcQNub2u4dwjTH+seHe2z2kuNEayYAQHzCih711Cs8z5DmkUy\\r\\nnHyEegl8hnSd2hllDCkKSkUQJiCUCXcVURhjjOgwjBjr7pd6Ko+OCf77v//7iijg6UGsi9FBwk40\\r\\nFYNleGA6z2TUYUyMJc1pv/J2KJFy8v7W+mDe+qKgd4zXuZTmxrvmiY1OCPzZqPQZoaeg6cvGrJUC\\r\\ng2JMcUh3SlFKfYxl3GiX4YSXxhD8JpqwDrBajABj9BlLldFw0drKmksZdQ6jNeAVqogcwcqexVlS\\r\\nweceSngJJ2JfAZ2tO0W5rdoPJrQO6gRbDT2NkbxBC2Ek0BbvnKw5ZgWheTEqzItMZFAQuvbOmpTq\\r\\nEN1iRBsjh5TS4FEzysg5RqnvGFCdSmD85keR4DXKwD/vIHd57GSH95nnMXFl0Qi+EU1Gv9a1o6bC\\r\\npLiOgSdd0zmqzhpk0HbUSM1X/S57wfAQgTP+JfyTkxQUDaABxSqAzzBLDEoysnlymhjZcJ8UJJA7\\r\\n3YR2i8LAXllXMgIu0x6JGuurJ5qHFg/BKy3xEDpwpiw9h87AGRRmwef5kJtVsYmEe7foSi1jGAho\\r\\nxnqhCetFFzLOa+GiohuPzaN/UqXNg86la/CAD1pELyJ5xrN0DiJ5I6vA+bCONZ+t+Ez0vGyCsRl3\\r\\nldNsAnPbRx8/+MEPntZ+Sd8JtND51gXf0hcCMAI06KLTONDiEmaZHPNsMlKEsqa67mNzwK11vmrR\\r\\nezILD6HrDKccf3Rf/6si9kWA0VaRU3oQTbNTDmkYTtBPOVrpCJvmYWP36IiOkGRp2uB6DVUC7z5g\\r\\ncQJDw0CbI0LQmVKA7FJmFs8mewavJ4bRLRfgmeW66WDQYxkVnhMYj1EkovCHf/iHi0paKB5RMABZ\\r\\n1+ZHMNbxnkWOCAlE3omQvZ82ylqZk3TjPB1yzLmc51kOvUbs5iFNSAgAFRIU5mnslAWA38j8GBdj\\r\\nImjKnsC05yIZgRirPLMmKSUGJ0UilTBGCKVjCEuerZYZlDbB6Vk1O52facabU30q9bwt2viCF7xg\\r\\namRHkJsTJqUUMZUPhsdsgdmLcplfOXnCzxyqVHEf2vc7mhaRgZVQEcko3RaF5RHPz6YkPPDHvFMw\\r\\nHBB+HPt3aaMC52hd1zK8qiwKFa2GH8zbK2xeyXOYwo6SIGysncjjpvdpGsrhWjqsXerPuxnWonS7\\r\\nItSMUsBp+2NtRbV//Md/fKoOU21I2TJwi0rWXJH8GqtWz8MX7hWB1tTUOI7dAuK8Yzvv/YoK8FeG\\r\\nNL5PAeENe88pUajRfqFR69Ah5AxKtOEfekT/dASjcw7mh63kLOAhipxj7R0iO/RBhj1D1PvJETJI\\r\\nNBxY2rvpF1FShgkHkPPOyfVuDr0ojQjWMdOD1pmcQbfewYE4ZqXqefdxzf3gMNaSQRNkYc19h1yj\\r\\nqTEjHOaWziiNOz5LY9FOEmBHaM9En5JHDEZZB/iteT+vNeMpVZ4DxhGSjmRvoFvvq6DH89BdEX86\\r\\nuwhubSGS+fQQe2WTnbBtbFOKhHU2r05hVfPIhZTlVVnPwn7yo5RSoGeLdVoyfQkwWjiVRQm3U2SI\\r\\nkpMmJDAZI8o4x75YT3rSk6ZIyD2FwXJ8gPmYB4Wjx5e0C+amTKTACI6se/lilmy9ZPzdRhH82xb3\\r\\ny77sy6ZGcu9973vvlRgshi1shD21DggMEY7dmsf5Ufiideb/Z3/2Z2dz0gPGvlszjEz580q1+IAT\\r\\nEknyd2s8AjwBXgNc8+wZZbw7Y0JDxoRRb7vttsX1cwoB3NEf/dEf7VxfXaZ5Od5h78Kg1FcFs1UV\\r\\n6/8xpDlhNJEtTBhD1jMqw0xETjoPbseznWxASGhjQjj//M///DTGb/3Wb52MUzn9ysp1v0b/lFMH\\r\\nRGsA3DqIAFbOzACirERLAC/xGf40LgYUg8x3eLKxigh0Zp91rslkAiYcTqmiQurexYg2t7e+9a1b\\r\\n1/grv/IrJ56CyRzTF9/0Td80Aezt49vf/vad+4ReyArjtB6EdRE8URSGWi0OKkjJENvVUmaNkO4a\\r\\nyluFGvq6tzpI+8xnvPaaa66ZHAF8n0FNqeTVJwc4VxQLzB/FqMDJfYGHKTKGN/2B7mCm0JIo9qgg\\r\\nH/nIR55Fpr0Pn6B/9Oe+0uSlhRhexjY2sOWkc+RHWQCjJ0XIyP7Yxz420daxDSyRI5kVsuGuu+7a\\r\\nSb+H7slF3SeqxPllrG46ePtY75bi5yjbEzzKdiA/4FMZ1uQiwz7Ma8VCpfPoXdFctsWxit1kAmQB\\r\\nKs6qihrtjcYWxxoPJO/RaZXCZOfBVYTj4gI5Y6I6nArDIWqpHILmjjvuuIzAABMpz9oyMMhC9Z/2\\r\\ntzm7XpqQcsaUIg9jGPl7v/d7pwal27zkYxGB5/Q+yl16p1Tmed4x77CtakLHeEbpRYJkzzNmHgfl\\r\\nTOGKVlGkc5ydhouMToYxD0OY3PWIjocgx8+AYED5jvEg3cuT6dBbzDYHQVNgjArMJ9UlFK9qq5Sk\\r\\nSKBqtW2MZs01rIQVWYq6ztdGKq5DpDET44iAZ1iUKutcq5jLM8Jg+Vv3dVi4v4luEhLSQ6JkDHVK\\r\\nguIPPyU9ymBADwQNZeRZeMvaFjnwLvdg9DAAgewzhKVL7AXDxd9EIBkb1tl8ikq6zjjM2b7UANj/\\r\\nR0FjnJSqT9gEAkaUgpEGL7mrr5D0EE9fRPhP/uRPJr5XJfmiF71oMvykNLedadpewWpFO9bWWpgf\\r\\nA9e6WWt8a00yGo3xBS94wd7HWW3jHc4iA4u8etaznnUQhkUqq6rM0ZvnaduLseXIHM9jbK5Dl9I/\\r\\n8EYMWPtu/u4XuRVlj4bRzrwr+HyO0oNktv22Lz411q0QxBqjKxGjIjYKXPA1rKz3oXe8q1Ew/ueg\\r\\nk6vuVaZf+lrElsGML0So7a33iUiN/dPIA06Ba+2rlPlv/dZvnekPUW3KW/QrWlS1hrYpv7e85S0X\\r\\nYvycdlKf1urjH//4Ud+BxpYiNdasanQylFyxXzCM1kbbkA49xx9jA8w6v4v4yhgUIQKJ6Dih8+iM\\r\\nbfc+/vGPn97JyZLKW0pdPvzhD59arqCvjJoMesY5G0GGo/6KxxirKB4jk5FF1tVmp95aVRiWSiya\\r\\nH/CdHOYQbGo1tTWC5UtWujC+QRCqXoiRhd0p3iUi0OSNQdVhyKITiKFDWUUx3v3ud58RpCgVTILr\\r\\n5p4sghJ+peD3OTD20MUXVfjpn/7pSVABR2462BKxsqgttAKAojw8O6kKwoZwN1ebRXDkEVKolABD\\r\\nc20q59D5HHqfqAPlzkCZG0AwE+ZujxEXA0p43t94sZikc6ZE9qQSVLsB9qMh1zKQlGY3Pt6ENR+7\\r\\n9TNEO28wnBMBTqntCwJdsw5ojYKxN2gc09UQlNIqWsUIYQD52SHQGK8DQ8NquZ5CEbEjAEVcOA/w\\r\\naa6vCzi8iWvjJQpLUYBzMQkj0TyYNWuBjigNBitehPdAfzASUmYd8iwyrDJPQ+CwMktrUI8w9Otf\\r\\nJcqebT7+UZjGV48YvxuH1PHaM/6AamG9GFr4Ai0wwqVx1qT+HZ8D5C8V737GNhpDM7XTMP6AvlUH\\r\\n2R/Hvxyzhx6FDnvj2Yxg42EgWxPRRP/nnEhpBIoNw2rtjBlvZYgzMPAQQ9p+usZz0SCjBFbH3Hjx\\r\\nlE9VgWEDKQbv9tPf3Ct1gXYD9XKCrV2G52nF57R2jG/vBnnwDPOhOPzEd9Jzdb/20zVgHuFwNRIm\\r\\n273L88zVfBhhOctS0fhpjFKrVOaoS6MzDPCelD0slki5MTMirQFZoyUH+brU2kbmwXVgKMbeofNw\\r\\neDn/DIs1tLZGVrgGj8EMM7A4GgxY1c32qIivdSY7jI3hE25KanOTYyLVL6LegdroJRwamQhe4h+6\\r\\n8czA1vbqDW94wyRTZQ7I4qLe45wY7OhME2efpcrdrhf1i0akeucVnV3HIEQbRfuXGqo+85nPPPEu\\r\\nESvGFicPvySzNPmmO8CSzKnnVaFNXtAd7f+miCRdg87HogPjHI/ta9yPfvSjp0ACPq0LAN6pnYO/\\r\\nV+RTbzi/t+bew+hT2byWbrru0md+5mdOisBDeBiOSaBU5mcTCs/zoAiNSnoZEzaGkGA02RieJENN\\r\\nJUFeBe8WCNGghYff/OY3XzZQADjEC8uzKR2078S2Xe99omiIuzP2Okme4kzYSVOJyFkPwhwjEaii\\r\\nKz5+ElpwRaVjCEaGF8OTMBOaPcZRG8ecf8+66qqrJk9aqiklSkgCmEqJihxIT2EGYXwGshQe8Kt/\\r\\nI5D02c9+9lSxQlBIW/GYAh7D1SgqYIQQhpVnS0/DtxU1Kb0wj5Qee+7SbwwZhiCBhcnriYUX/N/P\\r\\noloxm/FRgq4fMUz2WKSNx4Y+RgUzHzvHpIaFBKRnjUB4aQ9Gv2jCCPYMx0JRjf2jHEaLjredMwZz\\r\\nA0iKlgmNsFh4196e9p46M7CKDlGW//iP/7iXUJF2ZhjVHZwBuSZyxfiGwRThY0TiK7iujr+w3sZj\\r\\nXyhXnzxgsuvY6Rt8oAWGCmMtM5b6ETGa8TgeQhsiMOE2KEb/GEXkiPEzKqw1Q6V2Jc7gNJfKvjmp\\r\\nFNI+PZ3IV7RcFZ3nFVGncKyX5zJ0QDoq4uCx26faX2RYkWcca4pHGTpsocyGueIJPF4KXXUVx9i8\\r\\njYEuSJlee+21JzCdZEFOtZ5ssHTeqZAK+BqOEz92ygHHvorzkX+0c+GEMDAcu1KqnIOLZqypyI9n\\r\\n7jo4fK1MOTXYpnWCDTymEb92DOe5TopeWp3uwl9oFP3R452qQVfhN3THuBEEOW27cWmemSGf0LNr\\r\\nl44j6jzZxizCmrxHi1KEjELrSa52bjGDnhwTuEB3imHwDCeUUYTO0B6jk3zptA78hZYYcnQW/Y3P\\r\\n8F6No2v2G70XmTLGeiLWoNSz8EdNdo2RDCID5tjZNftySWSJN8TqnFcIESAAhxbEZlCQmMu1UgEW\\r\\nAvbGZClODMqjNjGCEqZK6Fjo0KLwkgze4o0MoDM8z0al0RphvGZi265hDEgt2VRzGb2wpfuWDtfc\\r\\nNQYhb1E5+eSl9ha77r8nvv+cz/mc6WgHCheB8nKVhhPIGNKnLrjy5hjAfBIycBkMJMYTgmZUdyCm\\r\\nTuUYOQ+9sDAlyXsgkBkj3s/bwdBrzrSjiAmDtcezaPngHQl9c4Lz4V1ROJ5FaYscBPjG5MZmDVIk\\r\\nRX7QtvGLslX2ywDvBHt4J/eJWqqIwj8YmtDHJzzK0+qfKV2iZBnvaLqIJ/T20iNIpMDfpEp8KA4C\\r\\nHg9Kr+BD0SLKyTrjYVEVwsDYrelpRc70vXnknRW1ILDsQymnqmg6nkIKaF/cxvd8z/dM/fOs+dro\\r\\nl/1Q6UiBMyDrl2fvCGR/58wwBmtSa03In0DXS42Mz8ND6Ne5j5R9Kc/zPO/ecC+ZZE5FoCrYibZL\\r\\nS5PToqcVDYhMMn7QCrpHkyKqlLQ9sQ+Mshrx4mX7okiATPnABz5wZqSLSGhKTR4w+gCa8RtDTPTC\\r\\nvSKymwxM3cDxq0gX2i8SUgdwin9XmnTfvSAnrRHddt7Gn/u++7zXg0VYvx/VagAAIABJREFUW/sg\\r\\n8seYwv9wc8c2FhUrcUocjE0WoZXxCDnGFyNctow+IQfpFD9r3G1sKtZVL5L1YBBkYZWY5C+jrOgh\\r\\n2er38UP+Vs3v7+FTi9DmRJP3RdBc51n+kaHe5zq07RpBg0PSlld4pzwMiseHRUh58GaAHefhuOc8\\r\\n5znTAmAMXopNE+IXwcJw8vNywKxmA7S4cDbSPyPInVCWXxeSP8ZRELuIUrUL44cSsJlLbf13PYNl\\r\\nb30QCIu+MDfjBNNTnkDKIkCHPH/X+4/x/cMe9rCJ4BG4PcEMmICyY/VT5sL681Jd4W1eqL22xwiY\\r\\nh0EIwf9grspoCUxGDIFMqFrzsESIGe5ubQrKnNEnY2YsMJDKBRQnXG+++eYraFr6LWCuOfKEYaAC\\r\\nh4tAzQ02zM1IgUGx14Q5xeQnerfnGWEUE+MpDAsGdS/DwP/xBYWDaYX7rYP1KSwehgufWXORYrTV\\r\\nOVn2hzIiHDvixzry3HmcPoyo0k4MJsYRY9l7/Os4ijqgW3tGtb0pZWSsRbMJR9HsfcGmV1999Qlh\\r\\naZzOjitCs4leRTcZZNZkKXKh4bFSc+tmfdAXZ42Xavw8WlHoO++8c69I2y7+ufHGG6eojbWh8DP6\\r\\nOJ3eicelbAnzbUfgzJvhSm2gf/SAnvAZQW9/PdM6lJKOn+wRusgDZ2y6p2bAxlEEnUJwvWcYm9/t\\r\\nPdozF+/EJ0VhvbdD3Tk/FBi6Y7BkXGt+a1wcMXpAVSsnlfPgmcYlpV0akuFFB+CJpbMlRete/vKX\\r\\nT46cFKH3VTwD9zZCCNqnTkeQfaBz8K7xmCeaJmdre7Brb/f93lFTIvgiQCM/wBhaY61myAh8XKsG\\r\\nRmqRyLmDrrJWOhQPgmfYS9EgXd3RkoghZ0gqlYyxR+SoD8MSf9tzRgQe96GnOVnz9GhFJtb5oo9s\\r\\nI5tFSLXtkD4ecYfmJJKG7hjr5Cd6k7US0cfnCoTMwb3kGwfS3pby9n90XnPynHX0Rxa4h/Obw4D2\\r\\nq5QNY+oe19cLK0gPGV6GwvvQbpAVz2QnlJrdh37OhJLOuRaAMCYcMQsmo3zmVruUAyJPaTCmKmF0\\r\\nSKrcMu8IIbA05dqlHEU8VFedKoSzdzu/TSSM1zQvVd9nMmuvNQ5lvRbRAsOIzA071jjBZJMwCuYx\\r\\nXwwVcVgngp6A8BOz+5sNJIRFSeCT7q0esK7njAVGlBAoBS6SaN/8bd4fjFdPcFL+Ij4EPYZA2BiL\\r\\n8UF5lA4QXmdkir4EKLdGiDnjatMh4Et7yZOmhG699dbLlKkwNAXgQ/AsVXcWja2Lu7m6BwPefffd\\r\\neytn0QAGJiHASDUuSoygY3T6CG9LMQXWlZr8xV/8xeldAYJ1stcSQGRBWfz8uCJCR9o9+iSERV+N\\r\\n/bnPfe5lrQk8Rzh9fvC499k7e4Q2A7zbA/tCwFOUHYoaJo3S3Mc5qF0D48wzzH2bUIJlIXPwGZpj\\r\\nyMx770krkBnohpFBQBN4oijGb93ImjFKslYObLuOEybSUvoUf1sjvI9nOk/NXOsr1skAFAE+qDy8\\r\\nw2itCeOn4zfIEvRYo9eqIzvr0XMrYkBjjBA8J1LMOCF3GJ1VT8KW1nCR3PIcaWHvpJjwLsXOMLHv\\r\\nxhP2pKa6fk/2O7CXHCxVS0nbI9AAdMgh9nzzZQSQBd4LSmBd5j3cRmOpNLhxmYexmMt73vOerbwI\\r\\n7M/wtbZ4jsHoo1hpn55N+9AIrKo1BJnAE3RBBVuib/bQmvmg4456qUl3NK15bThHe1Hk2T6hbetg\\r\\nTt7lb/hC6tRz6rVnvr5DF4w+8s76b+r75UxNzqSM0kW3aRAt01dQlwD6Y1NLC9AINkJnEIOoMPLJ\\r\\nUrrEp3MGM3yCa9TLr6Poir53wgb5EE/l8JLxrg9TmyPpPfiolj29O2OMwWVP6H0G1pve9Ka99cQl\\r\\nxENQEQ5eQFjJwfKMx3JrygE2B3PyzN2jB5EUkcnV84rF3MnvJgsoOZ5PRUkK++upEmaARU9ZSDse\\r\\nMol9mKVrH/CAB0z4IxvZWXu8Bd6X+SBymylKMFfoa94nasLjGTvYr7nvnrzmoQ996ITPQMQRoH2f\\r\\nFxr8xE/8xJRSsyaYIcyQCCaGV10kqiQNxqsGiicYGBg+gakRNqInZCgqOLi1pfU8HJ4Job/PGp0e\\r\\nwTLdwyjiPQk5E4z2med73ipSwE5GZD2mRPM4J3BPFEdl/vqHUY5h08ZGghwTY5z3Wvn6r//6E1G+\\r\\nkYcYS/hORVUG2/+zd+ch2+Z1/f+/N0JBK9hqi4klNGVammmYRaloJmJuTe45uaGZ25AmSWaG6B86\\r\\noiZKKSpaqZXaYmFCVlNSaZORWpmpbUZR2B/+0R/3j8fxu543nznmXI7jPM9rHHVOuLju+zqP5bO8\\r\\nl9d7/bhXUq1xUHTzrtfy3fSEqTqylhMlchJUYy8wCsxzPvjBDy5ab8pdMjBBDnwToEAgXt+UqyGR\\r\\nFzgiwPBhh65v2ltgVBiaIIxnedfkSgLwaPaaa65ZNM6ltKOqVRUwECSNYOxevyt5eaQ3+wtAkIMp\\r\\nQPlSFKN9qPs6OsQb5+29VyUu19X7ACJrX8Nc76dIAHC8jC+ALuCKInQPb4mjscrPlU9Ioaa4KCY0\\r\\nRIbuau2hwENOLllQBas1kpM1N+qsNY8oAELvkC+Ah/EaX/llPCFyE+UBm9eSTudLaAGQfNSjHjUB\\r\\n1DFXdcm9p7rmkBSV3g3MAMJAmZDtpqOMTjVOnQJEElQOF36bF5DhCfgAjej9R0agG44I2AMYRBf0\\r\\nLrrC4+QpcMs7yONrzzvixjWAEH7qnFnPQ8sZ8h0fhtbLH3cfGvI3dOSDBgNXQJl3kOkMIqkxhzh/\\r\\nLkCdBPiYONuCWwyhHd4YgobVBozwVFDIEhG5BTGgsJBrXEvpGiiX/1hC6rmsbBa4vKcWnwfL5qs6\\r\\nO+8EZ2MgaFQdYW4LDBCwTI49Hqd1q30FBWtjro9zoA5hkq/6qq+aLCoEjYDlAo3nRaqgsbfCMyOw\\r\\nkQfBVY34rV3xdh4d+19HaPRCMKEZwrkDhoF09IFhKMdNtHfIfLbdA9hQKAC8MWJsDA5AjJWux7yT\\r\\nCxygFLqgjIDN2jVgZMq05HGCmgCgnKy9cB7QJ5xuTEAKIMYTwKrDTxSWUKPny/OqO73QgbXMg2Z+\\r\\nBIUTCryXcCH0CLKsQIKnyre8WFUYVqXnPoqNV22hYJlyOUs2BzT0w8FjmyrCVAwCicaxpAT667/+\\r\\n66dDfT3PGFnIQHJh502hqGP2E2AkI27IZ4mund/ll18+hWPRTkch1SzUPjAG0Aj6te8UC/mPd/1Y\\r\\ne4aD++U5WSOVfPG13xlU+1oaaBcBfOchRId0wlwWkNXJlJKzU5xV+KIHAOs8cl1Vzgl5eYf8yTXF\\r\\nB2v35zyu5/GT5+ZDxqt47sy+pXmsS8fFECKzdvV95MUj60rZkDLEC+qUCLqHbgGk61rPQwfsA/UA\\r\\nPSORB7H2LQAX2Zdsq3+VMdc4FG0x8vudYQFsVdBUo9Hkn/t9Vy4XjPTOd75ztRG39QZ5Ns6DK9lL\\r\\nqLDYuJwpExM/tliEPhQoqZ2ng7XJI/aBD3xg4/Pl/sibaMBAnpwlpZCHZOovJYCuUyFEeFJuKifH\\r\\nppm7niXmDljmckQEFGANWG08V75NokB9T6lvqohZO+bzuP4mN7nJRWsA5MyBhuIHod8xV064RgiR\\r\\nIi3PR/6B6jl5MgQhV7m997OpfHg+jzvd6U4XhdRGYHfquQLweeCyeLNUMPamkNrSMdR3xvU1sLU+\\r\\n9h+dWAdrzGvh/0I8PKWuoSAoDQZLbTAAJP8XXsPUwBV+EtKsQgZAoyD9XYhN+AqYURIuMVz4YAwZ\\r\\nEFoUa2eGGgcQ1vEt9YXJK1DDVc82jne84x07BQvBJ2zjrLbRc6a5K4+DDu/zKkdH4lgjOT37qmwp\\r\\nWUaZMReCTTk4/wwYPHV+Ca8tj5x92dXHTs6ikHkWO+VFYQAjQAljAs3Zx7m3lpcbSKxootQD8qMw\\r\\nK08wOYKGGCo+6IOC8Q7v9Q60YX3IJ++1Jv7v3ZSPHzK2RrPlZOVVrh1E4UvKmDzzfxXDnimsxZiy\\r\\nb8bgIx+usGf5Mmh83+HfaFJREwOspo9A3dwg9w5ePzmfDBDzlnJCITI0GGmAN3B2yrMo439eb5Ww\\r\\n3nvqStWlMma8rjytpffWTJoHUAHJIR3Sl74LeBK14VhhYM5ztjc9hzeTvBmLkLpOWgf+8EOm0a3l\\r\\nE5KrjAJyHY3SRwATI8EnA6JEdeCq9i5VhXciTVWDvnd9ocKMDny0BieM85wEJyWBiTEUsAQ1GigA\\r\\nNbr49BACrEzUpAotInIue0KPMFRJQGlv64AsTEjwyrkijDCOSekhdJ6KtolLmOTGLClYqMUC+j+F\\r\\nRxgRVCXEcWn6Tn4aQcQzQ1ARrDaVd4Gw8zcbz1tBsAmB8JT8y7/8y2rku5Soj7mOV4CAJbh5BISX\\r\\nFCvMBZUEzhLfzW1UuBQRT10uVaBsDKcsGZ9qO+t4auvwyU9+8kSvnfuGkXjkyiMzNrk8h4J6wk7I\\r\\nsdYiOlaL1dt7CgGDUjYEDm8fvtqUhA+gYPpAiFwmgmTkn9pgSByvUtP4v/RLv3TyHO3LQVK9pfcb\\r\\nJV7Po5JG7R1+R7/1xSqHiGLxzm3hK/wuV4khMffUKqUncPGRysh6Apkf74V73v3ud+/kDUniEqIB\\r\\nFGOj6HkrKv2+2c1udtHfTt1EkREGYFkjYMU7KHJyEgAqj40cxOM+ZIN1AzjIRjLQmMv5ACDQBlni\\r\\nGSxvYBs48jzypKpIdENpoBvP8L3cHvtkDPbFfZQPmVOPvhKfXe9ZQJUxoX3KqDyf2kkEsMYEX88w\\r\\nb3PDz8K3kq+F6fEOo9p95uP9gHuVXehLuodz5nbxvtwgAAmPAFmUG88Y8DQPb8sP7sxBEYHOA9Rn\\r\\nzfutu5DjeYGHr/zKr5wavkprqYGqQhmpEdaoPlho1PpU9crzH7hFO4CwfXVdvct4ifEv3WINKhKi\\r\\nY2oES7+mX1wH5Fo3tMOr7R2dUVjUwPv86IWFXhhrf/qnf3queogcK5cUz5eXJk2msDJPv6pGMuhV\\r\\nr3rV6vEw8tFe+V36NTJe0WuRs5pFuw5toHk8jAfqfYU20R1axztVy+MD8rD/4zfPE2U4pJntNEFn\\r\\n87FIWC0YSnl1naVtroEbIKGPqUuOROxezjrmvRL31vsE4VEmEPMmwWyR5AKYLKYyScQC9Y7de5co\\r\\n50Ov0d0VUESoBL34vw1ByIQFobSrJFcYMGCBaczDusRknsXDYI6nDl8cOuf5fcK7Yt4ltY/5PzUA\\r\\nTXCKiSM8SsM8O96CQLCGmwoF1oyT9UOZ8GjMz7AacxCAPZ4ViorCwTQA1LaESqEIisW+yA1CvxkI\\r\\n/qZ6smNsjFfOh+95JmtCyvCgYMeEfPuv6zTvjHCJ3EPgUw4J0MH7W5Naws0Ya1rJEGGd4Se0R7Eq\\r\\nXfY+TTp5LXhseKbwGM8xgMUQIZjwp8aiLHt5bAQ6rxbeJSDwrrkR8PiQh04rBErKXAgjSt6+4z37\\r\\nWngnRQ0oCgdxyQupyrec9/fiudRyBYB861vfulFYyhczF4pALos+ataNkhB62VcqftY3bMrDsB7k\\r\\nEaUmpG+9hGXNe8kxPGvpUe6KNUI33idciN7RXtYyg8wa4wvjuSGfVaeXoUIHsspYySj8k9VeTzj8\\r\\nXMik5HGhMnSJ1uwB+gEAKHSyGx3lReMV3lQJ2PrLB9TygE4RCg9wlEwsjGWdgQPhbe+iZ9AAxYcH\\r\\n0ICEfeMEVAH582qh4MgzvIwH5g4Acou8sJ5oAo/XvgLwQhvWCx2ZL4VffhgZIIeQge6Db60hWhpb\\r\\nJgElQAJAYB2AFdWonBTe6/5th4K7VyqC99DvDGjeLD+eZc+BVL+NddNB3e3bmDO6iZeqtgSS6cRy\\r\\nrOeVtCIKPLQjkJbzSK6PRpoCC+uZl9M+owU0CJR6hhA2uhERQ4N4FU2gKdeWt2WdqjqssrAjwUYP\\r\\nlv1JBjZHRsOh6UvTadYWl5A0aBPiVSJUMRTBaLFGK191GPAAlJisY254QTCaCWFQQnysfppvyHd8\\r\\nx3dMRyOoXmNtCdkhgPOudDAOVYTi0gEpXoxNydOuk+OBoY0RQQIWKTDxZpuKcXLXYxAWg/VwHevy\\r\\nfe9732qkvkYZHHotK5LXivewXBsdrJUHAzuEJ6CJuc3P/gIarC7rYJ8RORCgIeGh4xjvI3yFHdAF\\r\\nYscsKpeqbM1jKPfInhgLpc1ypAxGV7MQDBBGCat6JfDMBWNl2VA2EncxX2dO1oAWWCIcCHIgTX+X\\r\\n5ukIIc/mTeLm1vYjT6X3Wj9l7NYWfRg3pYC5O37K+qEVDExIEAiArDlTfoWaCBbr7xrP9cxyEOyR\\r\\nvxOg5oWHayBY+TJwh3YpLcKjkmZjIbw8D2iuiztlwGsh/GtvvvALv/Aieh55E2DjQUDj+H+XYP6a\\r\\nr/maidcJd4aceyjEXUo4mtAiABBV9atE/l73utdUgWTP0CJFjQZP7cGSDqBvEGWxptL1FDxwXs9A\\r\\ny6pS0UvtFdACOknZojt8hRZ9rDMD5J73vOcUrkEj7q8PEflX/yx/8xxA+D3vec9WeVC1qfArgC4s\\r\\nzljFy/5GnuAtng6FVcYEdFVI1fpcccUVkyEDYKtKPHX/q96D/sn1sTDrvPboPJ+rKTEDi4wZew7y\\r\\nxJMLx+Ygf/u3f/sEwu0HAIffyUthVnShr5poGTpJtjRfupZ3bu69dC9dQ0bCIsYPMNagFJ3CGgAW\\r\\n+iTP0CN9xkAUeeHFrceffUT7ee3P5Nv0f3RWeNB6kM+wEbkJHx1SgDdNmNJB3IQf9A1UUDjQ4Dbh\\r\\nwrLEGF5uUKx0QphSKNFdFc68I7wJcTVrmkgwip1TFly8GPP6yFeiAPVbsYjGDrlDqDbRJlkDG1FP\\r\\nGErYp3PmLDriUbZsMyl/vwkmoQseF+vCUvf58Ic/fBLwcWrm47kEZrhyjd/vqkgpXOsDXFgjxIdJ\\r\\nzJnCR7iEM2t1l3JdO2ZHPFg3DIOoMZT8It4YuVqs2H1ej/GdLG8KWug7pcJj5LnmUzinkA6rXE5d\\r\\n3dbHZ6kWxNhAM7d34QIVtirNCCheAoofSONdqrnn2OHb+llrQo7HTEi9Y04UDxgbj6DPVVddNY27\\r\\n8nUCB38BGbzGHSektxCwwbsi1K5kndAaK/iAV4qs5M/2OD6olw7BNIaJFTsAU55bTt7Xfu3XTqBJ\\r\\n3tW+cyDRWWEO6ydpdd+JDejAuqA/FiYjjxDkSSAs7RFeta7+vy9EupYO5QhpD4H2llQRr82NWTue\\r\\nU1wvTCzvCf0HrCmnwlh5rvyNTqgAhueOAVORBjoJpHfGW+DcNWjQ2m3LwXHgufCgUCLDXb6v0FLJ\\r\\nz9I1FD7YXzmf6Iz385d/+ZevJUd5Z9Ak2gDU9p2Xecga8hTRUZ13ed4FOYeM8YZyj4Ol6T3GmZDa\\r\\nGo8iOQh3kPuFekW6ctoIQwNt5GkNqslFRivZQqb5N50dHoEnePlgm/T02Fi59igZ8rWsKV/Lc/x4\\r\\nJh44xIi7wArg5iawWQ2EK+Ux7+reJhIkhJ6wIO8VZTM/CPobvuEbppg1gDXPq9Ff5u1vf/slN5+B\\r\\ne4bwh3cv6eZ9LEEJWwB4BEWeJ6EpG0j4lPDJc0VZOmx13zsps3rLAJmEAo+ItWUJ7zo+Zd+zz+v7\\r\\nW9ziFlPuDwVLeRFW3LoEHqtBvhJByqpEmLwtrAwWLADBs7QJQB8yXj2RgCfhQcfCAO/ywgh6TWhH\\r\\nMHHI88d7Xvva107ggBHBW2OfgBqCmrufoYEHeFTHvReSAyx5ysoBkotx5ZVXTvShcs6aoHu0w3NG\\r\\naXhmjQFZj0KxvAlAltwW3hJCoz4+d73rXS8W7+/sROBpBEsAFXD8+te//hJtCuu6Th+aTQ0+gTPA\\r\\nzZqmJAGeAFYJ0zzT8/JqDUR5OuRaSgGwZoDSkkIGuXBy0gg6YIhnuzXbtpcKaRy9ZK0JykK7xkvY\\r\\nokEGGmMI7Z46DA9U2keyCbAvrFA7E2uGJwh83k2WNOPEnhL09anCJzWURXMJbHxlLXxvbhSS9bUH\\r\\nJZr7vmpXtNq+ZczhXTKbjCl/C82WkwOgUFjCscaGn4XdfJ9FX4uIwoXGZ7zGwhOaJV87BXuIhtG3\\r\\ncZuTazs/0b5YIx5muXLzkKmQmvQQcwH28mLykJEtHYPEYPFcHhFjk24yhvKFq1QwAmoMFj23ziM8\\r\\nqwoPEPSRi7itpcumM/BG2pY2YM3Pcgh36hN9/dDbrrYd5o827AO5TF5ae2kKHCP1AiQThPk5MDa1\\r\\nSzlWlo73K/JhyDJKjAEdlNeJloQ+14yBnJaqgR/k0pLL+Mwa8mZ14L2/ew+6tgYMBJ59tE1GFh4s\\r\\n1Fy+If7FbwyL+ldWVRv4sme+wz+HVJxf4IJHoBhz7KnTwmmrYHI+whOFFTACr4JEeIwwHjbraAFe\\r\\nHy7VubeB5UvhAGV+Y0zCBihRsTS3Uk5JAD3rvve97wTyhFMsOpf0vP/K+F6g0ibnTrcGBBWixvxQ\\r\\nO0L3PGvBqvPpzC5Kdzz0+DzmtPaZcogILQTlYx8IedYABUapAJz+7yMcitDOyu4nl/ymhp5rx7Hp\\r\\nemBV41nrysvCu3h9AO+1Y1clR/nn7UJX9n9srqm/FSEBYAELvmdUEDSMDbRC8PCk5R1S/s54ac6S\\r\\n59Ep/qhbNbB0ZsBcy9tUb7P/+I//uI4Q5zmW61VZs7GgUR90nIK33vOu2JK+KUZ0QoCtSSxXVEKZ\\r\\noh8fdDeemzdfd7ldgCB++pM/+ZPrzIN3iXLtsGeyZl+DyrV7q8O8xHxgg5wrJOudedH0+CMXCPhC\\r\\nEyW/k20ADeHuXp7RQmjWueqmsxSCifd83A/sA0eUFfroiLGaKfpOGAZNATmASScNMFKAPO/vxAHr\\r\\nY9/c7914ivy2h/Ykb1Wdq6vIQpMUkOs8E4hjCHiG+0YPQB5avymsFJUcxRGsq/r0fHsr/zC5iE/I\\r\\nGGM0p8KO5k5XaCEzhpRFXqQyML6Mi7f4POQRWgSw7J0wtRwseaDkfx330YeUGuth3dECgIFOOn6r\\r\\n44lqmIuHrDf5UXWv/9u/zm21TtbC8/IoM8w8F5DwsffoxZ56F/DgmQCud8i5I3/kEI55iqqNT2Uc\\r\\nx1vf+73fO42NXJqfbgDoWTPrAhhliLi+Ioy88dt41bpLaaGHoynzILt4v+hj1dYdb1M1rn0p9GeN\\r\\n0Zj/o5t0X3200LZ/o79ORwBk8fBHPvKRvY6W+di33sCjwKuFcQ0EQ7FcEDqPhnCaQQoPEEaEtv+L\\r\\njxIsFLEk1vHEbZ4JFUE8Eza8c4bKbxJivD66nvMQ2BDJwqrAbACLqURNCg8CNn+La6MweU0aJRVC\\r\\nxoEo4JDAQOCYTXyZa1npOoJY01BzrSI45notEmq4WV8khA8AmAuhgGjN35yrSqLo3/KWt6wmtvlY\\r\\nASnhO+BByGee3M6S4zFCS0uPKZAsSfAaP0+Mec3j/cesWffyOlFShcckbvIkzBuFasYqF4sFVM4i\\r\\nAcpbSPnypFae7/9yBwhLDR7RID6RQ2AvrD+DBrNT7BKAKxTp6BY06zt7SEhY17xccu4oAuuJlgkT\\r\\nQsQa5W4nrIRb5kduAHT+boxkwLak9vna8oYCQ8ZKflDahKxk/m0hhK/7uq+brHPtAd7+9rdfh860\\r\\nRgAUaxXAOHzXu951ND2OY2dYqroELj760Y+e9NmnoL9jniEZGYAH+gr94xcKHdhCX37IcQoekNMI\\r\\nEj0CfYyuEomNg3wQ1gOG7LN9QSf4Gv2qOlZsQjfU8wgQ8P4UseIoSc50AdqsihvP7GouDJjJ1ZLT\\r\\nN/e6HrNG472qrfHT7//+76+iAx7vuVdNmPbUuWLAi3Wno+wRr+bYpuX+97//Rf2mgHLOBJ5fQKR8\\r\\nzs4DtKf2u1AxYG7eS5u2MjilL9B39p9M2TVXhhdATtZICSgHTFX56L3rmKT5fsp9pYfJE2OWjycf\\r\\nt2bWZGbHstX1wLjQV+Cp4wDdgxfKRXVdye5kEVr913/911X7P/HGfNAdxSEMIM+o4wigYsxSvg0L\\r\\nAjghxCkIm+MaG8cSAbaEEJxb5R2UJWVCoQv3YAZCWy5UbnTA5pBEsrWMRNGwGlSw6N+E4CB+YSEu\\r\\n8PFE+G3P3sQo49+EGCT/npVxr96YtXM65HrCicCsmy0hyzrAoIgLIXYsgzWy3/ZVE8slYdM1Y6KI\\r\\nK0efWz/73O+b3sPLQYBk6XXUUUct8BxQzMLdQDBwb9/RMM/drvwBOXws1UIW2o54hny0uUBx0Dnh\\r\\nR0kB4ZgVUwM+9Q+qQzmmL6cRLfq4Vvja+vO68ibzCvBuyS+jtCgYfKj1CM+Qo6zQntABIyLQJwfr\\r\\n9a9//bSvBAZhQqkWJiTsCFQ5FHNXPiHtPfaIIF+aj6DfFZ7vAFipBfIiJE9vamD6Ez/xE1PBgL0h\\r\\nOAFTwAxfWh/rISxFidtTRpG9XDqepTQppKNqDE1s6ucnz9J6UT68wWvyTXaNgZWOx3reeSjkW9/6\\r\\n1hfJbDxuPzuWpFYrFCMZgF7JL0ZQB8Kje/IiT1gtIgAwNG2fGDiAPjoTnsRTaMe9aNnxUPM1wK90\\r\\nB2MizwKa3qXUAG3hKMrx7//+789NxmqFgua3tR1aSlPndZ1zU/EVfqZLgSxFAWhTpWJHC61tF8SI\\r\\nBJI3tZbZNJe73OUuUz9LkStgBY3hn7xDaGVN/uy+9QK8nvzkJ090TE4weCs6K82HAZpHK/ouBzXj\\r\\ngN4rR8t8/RtfoHH/B9TQ9q5+eNvGOh0syUuAqD3IIC2IxqK/+Iu/eB2iZYl4GOQobwowUeqewpWT\\r\\nIiHW4gqN9Yx73OMek2eBhT4msqsmJCwxLYR96kNbN01cXxUKCEKn5Ixpk6VM2AGUEvAwP8EOkJib\\r\\nTx3KbQjwSaFTJjZSXgZFvdTzso+YzuN7HixjJgTte25mSpZHr3MDESSPH2UudHNq1/KmubFo/P3Y\\r\\nypbx2R0bAVRIHufZAvyB7bNz1hYJ6bG5qGo6928KMcuT4MXlFUCofotQAAAgAElEQVQj6A3Dy4vR\\r\\nBoEh4u/WmlcLDVFs+ISXUNKuBHqgUHUNoMmrYr9GutK4l7IfO6ZznfMSSQ6uvxZ6Bp6MAXAmQLLS\\r\\nSnbmqTQeuS9oguIkZOR2+c6/CVHP3VQIMK43AE/wC62MIfIv+ZIvmeb0z//8z9dabwaXnlqMun09\\r\\ne4QjhM+AEet6SH7ELp6S48b4sy7mbc3wgPXyPjR0BgAmnq+NBAual6beVuiqUwvID/fy9ngOmeun\\r\\nUBuvEdAY+KGcfCiI8QBa7wV46oVUjkjtCwppsMIzHhmv5WkJv3tnPag6YgQNFeI07oc+9KETjyQn\\r\\nCoMaU+fl6SEIQI3eZzzBa4l+PBNQM3d0C1jP+1XxRPBeAQe8wH4KjaEFf6+BJJlLP3ke/gEAGSPv\\r\\nfe97F/HuIXL0i77oiy56vzB3iftjiC09MT6bdx5tdjQNehIOw/uBjjxI1p8x5HvgCG9YNzzot7Xw\\r\\nd+DVfqIxNGD/7IN/4+WKE9CDKBMHgj0XmkMb73//+89tjcz9sssum85s/MQnPrHxPfQosE6XknWF\\r\\nBM8KCabzLdH5mlw63ljyt3MHC8nSwRkC9bvyN3xXL6zyKuOFvsM37ulMVuuOxpY2JB/p4MKXf/mX\\r\\nT4oMIftBAIRF3a0lmlkQG21xEHXnFlLAQh1j7FRX9rqtsui5/xCgSgwWzH3ve1+lt5c2QAKsXhYQ\\r\\nL8EzD7EcwhD77tFfo4NcETeClzTn/YVG5KvY7CoLKRaMXq4VgbX0HL194/l0fS9fp670ELvKHSFO\\r\\n3hj7TDBidoKSErEG52UpbnKnH7Mur371qyc6nB+foTElz8ghxx7MPWl3uMMdpjDhti7ivDeUM7px\\r\\nLAyBSzELOyn/560CWnl6tSBgbeI7wpnCEUq35rysJb0zYBwrJXQy5kzy/LhnLI8XkleVKCeiCivH\\r\\nIxHI+C3BQ6n6NwMLwCNggAmeDN9VndPxJ4UCgNRtXfAf9rCHTSX0+Gp+tqWeXnpjycFJaEnmF8ag\\r\\nOOW8XHXVVVuVgcRjXi4C0TzQ7oc+9KGTKg/8r9GokKwTJvQZIgtLoi3sDGyTEeRB3n2eFetH6JMt\\r\\n9h3oyvvDKB0rbykY86iwiIfUvpenViNoigS9eZ5noCPP9Tf7B7zVkLKmisnmlBdwovWBalJWv4/n\\r\\nub4jRPwWvYjmVMaS0a6rM733AFdj7m38ypBB7/VXKlGY53s8nqXCIB5NfGAMVSF6j/0FONGQ9fBv\\r\\n8lcaQ2fS1Xz2PNv74GOglbGET7fJJQn8DHBjqgChkz38Bj587BPA5Lc1Ks/V/ABIc7Rm1tvzzF1Y\\r\\nnlcXj2rJUjNYxjBgxkmBTz1T/uzIP/gVAONFxt94bEmLlLXyl6cP6Nt3TNKu5/Ka2Xt6yXqgM3LE\\r\\nfps/ZwicQraXAA8AoR0f8rW1iwf8Nv/xuBzX4oW8W92P/jIkAFtjsXd45ZDzTi/Id5DUStjNrRCe\\r\\nLZtnYBCxa7wIA9pQHpo2ShKscAshb4CQtlCgaitWuJwSbst52wcVfaqFXO/5Y1XU2g1eej1hzm2K\\r\\ncUtYxRRCL0vdoUveNcaVl1x/fV8jtyBLCMPrB2ZfgSuMDlwRCiwgya28KvNeNKcasz3hkVDJB9gR\\r\\nMktj/9vGQHFV0ssip/SAAp5Swv6YpFitB85CVZcELlCX4hWOo5Ryyzt6qHUlHDsPTviQUHjsYx87\\r\\nCQwWJ+8xIUrxdMJArSF4joVbAB/X6ZhNIeMvcwW8eJ0IGUDM9ZQlo4mSwGvWl0K3xoUJ8XgJygS6\\r\\n/+NJAt2YJGEXvtehXTgSP2/y/NYGxTpv6wH3zd/8zZNFzzIUxjRX+WH4EACOBhh8BB1gQxgaDw8a\\r\\ngSjsimbOw4MlB9X6qU67IVYAH8N3PEzyZNAdJQPIVBWJHig31aJFH1TH8nrxLDEWADp8Gjgm5+yd\\r\\nZ9ETFCOPjDBhoNK7VFM/+tGPvg5AkbitGlD+DroEHNEsHpArxus1P2pJpTpA4Xq0sum8y2PWaLwX\\r\\nrzM6eX93Af9TvW/pcwB+OpuTwlqXywnU2yf6jawh8/AafrRWAAl5QMb7m309a5l0lJECS+DXbd5n\\r\\n0QJGx9oTO0TZpCzxhqMtc0Nr5ILn1SLE/2ugS/6VZ1WboSpn81Shc3KUR8vzXEf2VSyAtlxL9tCF\\r\\nH//4x1evzxR28GKMYLDCEwiX4GIdebAQ4Pz4FIl1kiAJfpaVTcOUJqk7OEHIyoI4JflScC972cuu\\r\\nM0AWOWsUIWCqUyRP7yNQFpaQh1AIUAgo7gtJsJpZG9z4BD2CtT42BjgBRFoHc3WNNaE8tnXZ3TfO\\r\\n8/5eN3sKrWoVVjivSd2HeSgBLgxo7iz5XQmnpxqvEC7hSrmtOf0dI2KW+lNtGg/FTkFUzeIajGTv\\r\\nCJzXvOY1e5lImFxjXF7ZKv/kQcgVChTq9cPS7tggIS1WF+VBiaEXv1lIhAJmB3DqnO9vNQD1G6MT\\r\\nBvgEw/tt3ARkJwiUsMxaY+3leappJNrF64Spa72zKkLPYC2iB3SLfuvu7t8a846hYWX1ZAUP9hgq\\r\\nlJukNxaakXi8zeJ3xJKCF0KQFc5Lbk5kRmX/FAT+ojgUxFC2QCLlwHsCUMrrtO5zL9mxtKhwh2Iy\\r\\ntkMs12PfP79/PM3g2Gc7wUFIOnoqVOK5/kae4fUxX+Yxj3nMdJIAmkAjjPKxZQFA2rmmDHDyghfL\\r\\n9WjuzOuwkbd413gvedXIIF5DdAC00THk0dVXX33pXgCeV7aq1LNcyr18e+i68VQDMPryXR99GuX0\\r\\nWUPruSu3T8NvRiOnBn3U8TR5yxSJ8JKTNbxk2qPUKJmX1d4Ix8nzE67kPJl7pPX+A2johSuuuGLn\\r\\nGouI4Je3ve1tW6+j740VPmAYkS3JLd41BuW2vooPf/jDJ6OVPCtZncxEv3kNO2EBSCJbPJtc8akF\\r\\nSU1GydQxpOj78rM8x8f/0RkcdEivvQsy9gEFFnCVJVCugYvBP+c5z7nOYrHOlccaEKEsn6RmfBYQ\\r\\neKEETBAAs3C7+uUQ1qwXVtGmsuxDGWPbfcaIQW0wZQsQqZAyZrlTLADCm2CgbDA5os0aG12RNkJu\\r\\ngU2j7AgSv4VkgFfP4/k5ZTPOU60H1zFLs7JpFSb2jMeKQEEHlJs5YrJRyJ1qDNueo1UBjw6Avq9n\\r\\n0vgM1UisqPGQ6vF7zzWXseM7C52AIdz3Hfz8wz/8wxNQovi1XdjUb0oIGkAcy6J1MwccMCzhUB5N\\r\\nSgKQtQ94CR8qv37MYx4zgSfgorPljBPP8VIRVGiTUGIEuZZxw1OGJnmcCFLg0X5azwRPvc86VLjj\\r\\nX7wHyCPcCWD/Nqb5EVaKEoAuIHJMnpVriX7cs8m71V4Q6uaXR9zYKbBtcgLgAejIKu/VFVoJPS85\\r\\nL9g+A2ktvUpyBxDtF1BMiQPg9Z2yfmSEdeLJJBvsgz0EDOxvHfjxFGBojoy5rOs6qAek6/UFGHdi\\r\\ngefzcuJDY7Be6NQ7jY3coYztg2vJNO/2LiDHc/ADwIvXKTQ97srPig783bVArXmOdO10B0C23C7K\\r\\nFl/SEXiJR2LsBydiQekLb6XcjIvHc1sfqc4mNA/03akLgAEZrJG1ULr1deQTmvZsY8ALh5wTt5Qm\\r\\nNNCs2oyHDm/Zx3ml7bbnMRgp+rG5rhYt/iaFoIISwNHe0Jm1w6GbnvKUp+wENvLB7C1Zghfonrxb\\r\\nxuTUCX3o/vd///fcQKj3yLm0P0vPohX6BgBLPkdLo4eTxwuYQkt4zZ5bM59yR+OBvFVouPYt5Ta6\\r\\nPiCFN0q672++x4v4cvTodoyUd6LHD37wg6vX7wLBT4haGAws1jsHVWLlgIKXCzn4qQGlsF4J7vIW\\r\\nCHiCAkNZHAyz69gEk2NRQaaY+/pIcgd8CM+sKwtpvFnOFlPipoU1h5qpYmaKitXg7LddvXzMi1XH\\r\\nKjukf8ZS5j/mOgyBaFP4noU4CWQCmsCmxClf1T+fjiNDCPe1oTzeRoIKMCEM3/SmN61mjPm6sio1\\r\\nDq2qD8NTdnOAxfjAKxLMCxdq4UApECBc3JQ02gIOrDcw5v8URZWJ7sFj2kDwXqBVFqT8JYIgTxuQ\\r\\nwbMwCrUnPvGJU9L7/DBVzULtZ5Zj52fi67oX4wX7PSbRCtFs6pGHb3kp5FryeqB1gpzSUOCyz+Ll\\r\\nTQRMvJswPFMmU2sQShX92T9Ck4fDOgEt//iP/zjtp7Cr0BKFf2rwL2z1tKc9bZJJ8uXst3cDdtEG\\r\\nUJEXG22YhzxGAKkKJLyEv3jo0A7wUrUupej7evRQqiz7Gm5qvMzYA7CAbsAKnfDooCNyybpJhi4t\\r\\nwzM66klF61mjzMlLQQF7FwB+pnAvHUYd0JIjy9AdvZXyaoFmYJw3xJiAYSDPWHhhATgyE82SkXjA\\r\\nGgAkjIIMOaHJOV1IfuYRrmms9SV33e/5PvWUoqfyNFgLa62h6ete97qjeXybLHVUTud28nyjCYA0\\r\\nbz4eNJbRcz7v7M+w491haOeNdJ99O3Xbhvk8VLTLJ0Sbp5CF29bpdre73ZQGoc9dTT2P1RkMNgaL\\r\\nj7VC2xwhaMAe5L1CK2ihaABeNIYS2/FcXvuiBTXULTxelKBwYQ1IO0P2IA/W5ZdffhGw2nT6OebE\\r\\nKOKfBAzwxYqQjCnuK4yI2QhJDG+CFHON6CgPwtbp57uAgPJOMW6lkPvA2DGAonvNiwIkwCkrLukl\\r\\nFQKUrPXoCAkCgZLynKqLauaHKLQ1IHA++clPnhvzH7Med77znS8dlUOJIUKAOAJkPfo7wSxcN2+f\\r\\nsPbdLLR9zeQ8k0XmnUstxG3jENaQTI2+HSSOKTEoYWluaBeY3ue18nwCkkevDu5CfmiHgUFpsrx4\\r\\ni4AR3qSqCuUmqljFpNbSPX46kojSlltAeSkwoGDxGYAhuRPoEi7BH1W7yEGifHnpJMar7MRn+Mdz\\r\\nHFJM+QInFJQfni4J74ATes19jl6NC03j187fqvGoa4X+N3myvZu32pgpdmuKfpb2jVL9mLWZRVoP\\r\\nOuOR2Fo1WcmoPGPWm0JnzBUmPXWSs6ov3a/l6i1REpsqydbyx/V5PVAjBAokVSzAK4Nm0A6aEyIE\\r\\nNFVT8s4Bg2iIzMMLeIfs99t95D5wiB4AMbwgZ0nyt8pyPMCbP7bi+fEf//Gp1QjwiZe8N0WIR4yF\\r\\nJ873+IQekqwN5AByDBf0v+1YnmPXVB4nwIBn8eISPXHsO099P++vfEK6mXEH6Nkz+0kezs//O/T9\\r\\nqi3pO6018APaqmIUmAwk8whLpdBmAVgC0LcZY9rcdLg4GVBYzxjJ8wo0kldVD/p7TbQL8wFf/k3P\\r\\n+V0rh8KBno2G/dTtHdhicKL5pXJtXL/rKH7eKh4q4QSJpwYuzwJBVz5JkTg01HXyHzAA60WSNNDF\\r\\nojZRTEZZ7OvC/X3f933TyeDKSv/wD//w3MGI/DGAgVAADClgIULWhYRNFhf0a34ECOBI4WNyrnoE\\r\\nSqFYG6EdQp/gQABZIzwQcs/cKyH4WLBwKNHvuk8X/46MCVwhLspdmBNhIW6ehbVN9ja9F0ixnmMl\\r\\n0bbxyS+wxktKdjUXlUuHFufn4vHSKWtGmyzzjgvhEeCFxOC8C/69Kdy3aXxAk3CV557F+CeaZaxg\\r\\nxHKSug7d1FeM8rHWmB14KeeK8ENjgE/f18yRd8gnQeGecgXqrM6r6voqbQgxfMiLB1zKN6Sgagvg\\r\\neQSbT0mfdXL3f8DHD8+lqiRj3QSw9QBD5+6hoFUALtkzYQuK1RhqaWD/gFOtObLy5V3waOEj4xjB\\r\\nDk8dBUsYHlO5tGmPzzynk2dOSFKYegy7SPRHO8CruY8h51Pz6vje8dnHnH+oJYaCB/KMEvGhcMg2\\r\\nng7eV9WDKg6BZv2mrLNQIeCLfskIcwfu5cUJCWrPQH5Q5A960IMupY4Ik9krdFklsj5uGsbiIwUX\\r\\nvGf0BVomg/3N+noe76WxkteMYx3VgUT/NrZTFieNa6y6mYfWGHTuHyvgT73Pa5+nStieoVHygGwr\\r\\nl/LsfMZJLomkvPKVr5zCh8K0HAM8iuQI48m+ksv2zL7bl3krjSVju+lNbzoZoWsqeqUa4KPe7T14\\r\\nn3c/eUhmkosZ+7BFFYCFCDNc0WPAK0dBHuJOYinp3dq5ryrD+CBDtjxX1wP6h7SCuQRmNCfk4ifs\\r\\nDNJkgCbMNh6iiaiVjdsgKJg1aVNZ3ybAcwOpup9QVB21DyFjZIzJ/XrqIy+2KUguU3kEFK3xmidl\\r\\nYtyIzDxtLOXLkjLPNQnXAALFg+gpnaXKewkhn+oap5930Le9RJAEmpALokIPwLN1euMb33g08NVM\\r\\nkFKdW4E8irw1wIqigE3ekqVzrl0BWgSaMBEBPj/6ZenzxuswPqbXJZlF5kBbIZBOHzhrPzCtE+UP\\r\\n3AAMaIzlb00pphIxAzQYnLJCb1lOwL09YdgYP7AJJPFk8d6YV2Xrji0SnpCQysAZvcByiepwrVLT\\r\\nobr1cOIlIjj8Lldm7BWDNvBvyfCbhK5O9Tx0jAsVjNty38Z15An2XAaOyl3NT4X6VCoW6nPagvVB\\r\\nE+bJWONBAJRHoNexXKeuIpOXZ13JMHvDg2OOnTHIAK1/lP3jDcA7CevOE7S+8kx4Xuw9AEOu+j/j\\r\\nxvVAr70WbiTwGTVkDoDhHf6OL+qjRdlTkp7LYwlUA8BFD/JKksneOY9OoBOg1XtrKmz/3U8Gy43z\\r\\nXsDFeOxr4WYFHuS/PaHY0aWxCZdR+AqWvJPBydPUXkkf4e2kgKVn4CHNayXb4yn3+M7amJc5W7uO\\r\\n9WHIAnpoVXEJgIW2HQwPNCyhu0N4nieGsgcC7J3GlmiRnqwp9Zg3xFtnLe2de+wFows4pEv8roiE\\r\\nTmEgmXtnOHo2WnIPPrcWDFw/eJ4+QTvWx/6RKd5VbzC/0YS169B5skRI2OHpuwqAWh+6C89vO494\\r\\n2zo6Bsm4yLzym/EEo1e+FdmFvnadsejZeI9cIMPJQzLAOhoTx8cIoqyJNfCdnwqCXIN2rWcRppqJ\\r\\njsnv/u1TBXV5WXl18QE5xPg7CGARujbAxlGmBAlBR7CPC8Gik9xbYzObJ/kMgyEcC0EQWYBcuiam\\r\\nkmFT9eC4Sfe+972npHmC4pBEsrWMgzHlAkD5CN7GHNrfiTfPxpXEzmvB9Y5JEAblKqH+vI5xWDv3\\r\\n8XqhWXuFKBEwgCmZlNCT93HW02QCWPuaSi4ZB6tfjH7bMSuOJwHcETVra1+O27Z38o7I2eFRkbhP\\r\\nKWIYAOVUHeh5AIQ9NnWa5lnwndBziklZeSXAxk1A4x35IylA1a3Wh2JClwo/eG3wp7/zJDMGKDiC\\r\\nwfMIa+9xHIkxCQWoFsooUq1nj3lZgVthNQLDuykstFsuYkKJkLH3FIU8JGEf39UslNXpfnzjfZ3F\\r\\nZ6zbkpjHvdJc2N5EBzw0PMr2XSNVe6SYAOgi+CgiAIQioTwKv2qLYU14vs8jyVnZOSENDG5q1aBB\\r\\nJmUHsKIx8s5vf+t8P2OvStcaUtJyCoXL6zxNKQpX2wf7yxMEYAEw5AilhRfGI0QYgPIMjQ8wwcNo\\r\\nwd7i5XpjebZ9Ri8dW/bYxz52au5MQfNiuKaGlgAXj5Txk8n2WVrIS17ykksG1t3udrdJF5D5foT2\\r\\nAAB5WiIRxg0Mu68EbuF6HlTv02TSWtXGoZYw6Nn+dlSXMXuPsaLhFB2azNhVCW3/z/MMW6FsOs6n\\r\\n4hLrY3zWiswk51XBA9722VxKQVAEoOnwuN7uxQP+VtqB55Md+A4APVUX/wc84AHT2n/qU5862kje\\r\\nJefxtUiCw+bRbU4WhqNcX8ZfjVY7e9M6qJREH7AFXiFv8ECgynqgF78L3xkHmg8AkVmF/sopBdzt\\r\\ng3fgkzz1HVxeUvsugEUOMiYYg4c0s72AWbjpDQIjzg8lJqARF6ZBEBbAQL2Ue5cw8XdMRvAplecK\\r\\ntpides2S2uVCd3QDi8yzS2BdorAPvUaSu6ZxNoJQong3VS9C0iFmyB8wQyiFDf2moGwYRQ4ceF6x\\r\\nZpaoTRZOPeURAYfOe37fAx/4wCl5VR5QSbKEHWFhLhQowSbJ9xQWIteztZk3/9w0n3mzxbVzZoVh\\r\\njpJ15UxRIrxzVXOht32W2lk38msJJoBAo1rMzdrf504HBFijFKViDharj/EZAze9Z1kb++F7lh+Q\\r\\nhbdYcpKo8RHLlPDJakOfBJH8K0oVKCOMgC7PoNAkQdd2IWVP6BF25l9n41zn+KIyaB4FSo7xRLkA\\r\\nAcboN4FHKKJ/73bPvoIOIUWhy/mxHXoz8QhSWI4koZAcLm3NhNjbR5VFKSQgg6WrmvM8kne/4Au+\\r\\nYMpPvT686mvp+5jreV/Jbx4FeaLkPxpCgzwpHeSMDgAnygVYAAyf+cxnTpEO3jS0gwZqTltvRDSL\\r\\n3ihR+ybtgjEOUNEleQ3QDvpFp/EEeYN20SIapRdq1cEriAfkaQnXkb+MCf3g9qWhHLNeCsGSg294\\r\\nwxvOFaQcM85t92oZI2+T8bK2YGjNeAAsskI0aq2+U0jBAOwDaI+hOzINraBN//YduuDE8LfR814I\\r\\nERhDh+WEozH/Lk8rr28ysKrBgJdr3UO20RuHpMlc6h49LiRh5+EsZ0yDwWo6B2ELfYmTmxwBjEHy\\r\\ncHA/E8A+eqmwroCzbQsuxs3Dg7FZqWvit2s2f7xWnpkqJwrXAlI65sDKz2tCQWNgLloWV3klXJ3u\\r\\nW5JnIsxBsMjvOibsdeg8992HqClrbur6kfA4Ao2UIMIFKPU1OoUHTq4UALCrZce+Mc+/F5YDRAh5\\r\\ngp2nARCmmEerG7gDJMcz9hgDDIFN3ah7z7z/EOWk4ilFwXX8uMc9bmei/FljzqlDO+sOvVlzCq1q\\r\\nTWvOWGH1AVT4gQDxPW+G+bF25aagWTxFUaFFggcgBvbsI2uVQgBWCrkJ3wjleQZDynUUlt/9ECye\\r\\n51M5MzlQRSH+NHbeTQqZkramlB5jAq8Ip2wLh5Mdwjvav2wK2Wqx4dmeYR3Qimq1XX3kbn7zm1+U\\r\\nt3NqD8ZZ0vq0T0Ja8+OhxuOS1tLsDeX6Dv/GN37QA5CPBtBeoU+KyL6T9WR7oVF0F80UqhJCk7A8\\r\\nP7DXnHXplkvlB3gC3nglPR99MxIYBGiKUkNPQpn4m8IVdvKbXBYWRJcAFo/WEqPt0HWXW1S6y75o\\r\\nzKHvOM/7VOtKM2A8f/jDH57ko/1E0wwWxhJextOA9Pwc0qVju+1tbzsdIv4///M/B4HQW97ylpPO\\r\\nRQ+Bpjqs+43eSk6vrYIx553yu0rZwoUVFhWGLmfL//N47crBquky7+SmMzT3rc21FoLLm4uPUmWx\\r\\nIv6AFcVCGXUYLcGDKTEWZWAilLUqu5iOZc4CZCFtKkUFroA1rm5ADpAZewftG/yh3yMqggCoqhEZ\\r\\na3k8gfzQZ7uPa9daSCJFuJI9lzSwPOadh9z7nd/5nRNDEFpVEfKQlF9AuctjOqZ7MQ9orQeET4GI\\r\\nU3frB5SMlRDEWCxlypnAFj5AgzyLx5yhKG9IGF3OVaE2AEeezr5cBfOuT9x97nOfKRehXKsEAosc\\r\\nD/g/IJMnixcYjznah8dGVSQlxGNMuPAePfvZz76g0Sml6N9oQYWfkxjGxojoHlhwv322XgRIOVmE\\r\\nD97tU2VsrnmK1fvwu+8AM0quxrT+7lk8CptAq1CFvDTh0028BoDL4fEM45OmsKuxrX0H/in+d7/7\\r\\n3QcJ9W18AxSrTjNPFZsMD3xhjxgf5spDQ9CTlbVMwPdo0NrUjZ6MAcitFXALMJcfkoFnL4W9pByg\\r\\nXXt51lB1mleAbjyuyXqRrcLBwKux8grZLyC9jtln1a3XWh/h+F/7tV+bgA5ZbqzoAgCv+sp+G5fx\\r\\nB/wBee+klHxv/IWY6QvhVB5GBqo5zL27cn1f97rXTaBJeHdfSJkHmYxynmUnjShSSuGiJYnu88jL\\r\\nIfJw0z3argjJA51Cl/KL9KVSASfkquK5dgHGNOYrj89zvXW0ztvaMgD13gMMkWcAUWFdvEuX2Nei\\r\\nQfbcfsxTKUReeP7sK8+VdAl7xuExN348A6jxnJLA7atq3n2e+fl6OR4LOHrlK1+5mhetIw8bvkoH\\r\\nlTOFV/BU1aXW2zpV8ee6MS8rwFXYsKPBSoFA0+6vG0DVg+g175Z/ez7+IH8Zq4fImClvg5dFCKNy\\r\\ndhuD2Tt7S4IcxgMUOhqHZe/IDt+53mTKn4JEMTrrgmVCkM+Vmyo798tBMQHJijxImw7NPRWz9BzK\\r\\nSM6H6iqbQWnsOpQZ8OTNqxrBcyhsGwWQegYCpsz9tnE8CICqOUoSffOb37ya6E497/nzlMB21Eg9\\r\\nbig3RGXPuEV3NYtcMj6ggBBGT46cUCl0fZzhKPStvQhllsvYeIUf5BnaS0AGSNqk7CWrMiAolrlF\\r\\np68M5csLWkXkqPjGg2DluUnsHBWJcCV+qyWC38ZhrPiIomJ05CHC6Kx98yAIebEofeuKzkqyv/3t\\r\\nb3+R0m9MqoeAzbG33BVXXDF5iTwbT3s3z0C9qBpTSe/ogWCjRAlg/65Rpn+XDAoY8qpRhgSaH7w/\\r\\nJtBTGoQnQAbY1c+mkBSvIwDjPT5+E9hAifGYu9y8PGnmxuOCVr3bWAF413pPRwFVBWTcCeUOiq4r\\r\\ntPdSLNbfPuBv13smj+WSRsEMKzk4eR15YrzbOBmmAGPne9aGojMKzcE8rQ2AhQeNw6HaKVzzJlPQ\\r\\nij3zd3sowgAcdRKAvbKf9qC2MZ7tYzzAjR/zK7clUFXoxVrUY6gqzxqjWpMMA2Op2krYkEHgOh4o\\r\\nv3krvcu+uIe301rIKWRQj16BMfyrPYSKRfd5jgRtuXkPechDplY5xhuYNGaAwJ77d+d+0kvWxlrw\\r\\nsFpTPIOuyHxrDojUDqKCA7yBrl3j39bV2M8OZd8ox/e16RBatd4ZWrtk5zHVofPnAogALfpQMLxE\\r\\nZh96zf3ud7+LnV5i7Za0v+ldwrD2s2hKVdJ5msglNJlny1r6mz1F42MLhwBWHv5y4gJhaIDs8lOS\\r\\nvH8HyEq/sO+e5b3C0oe06LgggQ/Rs4jrmC1EKJyAKREnIqkDk/AAACAASURBVPVT40RoXF6ET9WD\\r\\nXIt5Or7sy75sckEKnYyN+VpMFohEcK79cicsMOV7ilyfJQTiFG7CldACiuQZUbRaFxCCvmNB2nAC\\r\\nj1IjPKyJudU1GUEJE20KGVLSLGzrsM9SWzLmU1+jirCGfgQUoY1YKW3CW/+XY/rLyL2gbCQrI26A\\r\\n55BeIofMW8Wiirlc32gLsKJYjYVwlYOEgTaFP4UzNh2IKiQpkfesU/Z1BBb3u2cqG8dHcq70UqJQ\\r\\n0JOKI2BM6Tehh8EJgkIy5oqh0WU5KoCefxc2JEwIA4oKrfKqmROwAeB0egILmMcI+FDAYK8pO4pQ\\r\\nrkT9q2qya06AdmXKnjlJ5bP1IjRTNgkrv7M0CzVSyNaXkjV2wst3QCKAVBPi8iOMw5pRfPaLAjWW\\r\\n7vM9vrMugBAaxZdVDAUA6+Lccz0jRWl9a29RSMC6Zw3XEy8Q5v8d7IyO1lQQH0Kvm7xMhzyne4A9\\r\\n+zIetcIoNj90AuBXqWodGIrWxx5XjNH6AjgB7hSce3wf3bqPXIw2rbG1lwBu/6wl3gMgXffmN795\\r\\n2m9GylwRM2CAJDRkTPbdtYBQgMte+z9lWRK18QC16MuHTpLKQm77tzEZd4cpm4vnm2/VZp4LyJP5\\r\\nPp6P5quoX9MOQh5hFcd1pPc8Rp7qSvOkP/DvmOi+Zt+XJMIrsLFuzt899nzXXWOTs2hvefmqcra+\\r\\naGA+PxiCLCITnCITaEY/9jHANIarAf7yqdBd/O5deY0rLiEjfNC7n9GLVWWi7z3H91UPogWfxoHu\\r\\nyTM455DjuKbyyRZdGBCwwngYhpUMuVV5RelIcMQoBsYCmec+KL2VOEnI6x+zCcV+27d920XW3Bgq\\r\\nmlvfa4jskGt5OPRzwZyYUtI716/GcktKWZe8U3WkcJJGfbtOYV/yrPO4xvh4L+0FIqPUKWM5EoTP\\r\\n+9///qMsHkpDIQSrm6Vunf/93//9qGeuWQfWrkoo70Wrx+RPyOECltAMxSH8qGdboYLGJc8qj9fZ\\r\\ngcHTfCV3AzaAHre/LuDA0Nvf/vZJkeAXe0AR+SQgCBRCg8L3N88A6PEmLxfQJiwo95GrX3iOctD2\\r\\ngqAjMAgv7+Jh5eGqqajrABq8XD5YBS8EDuCSgMuLkefCWCvtd38tKAg6PJV3y1wqk+4a4+dy99vz\\r\\njdt9lCjQqIo1L2qtA3znnR0Z1FFWAKH31z/M+gUYybCOt6r03X2EvnU0Z+ue9QoQeq+xuDewy3Nh\\r\\nnXmj5QRpQYBPjI1hoojAWqAz91tDPGUNKWsKVGWUcA2vnu95TqypZ1tTH+thjsKJ3u/Z2xowbvOY\\r\\n8M57rvd3SO2m/Fc5UpQ+WrYWwt/RQnkq5ahYW3ONFigrQCEQbKzeR1f4u/nYg4xOVaeBXfRsj8kd\\r\\na6+vFI9NypAhW1QArVoDPeeEXtERGeUd1rrDyK2pvcPrVcIzprRyGHs6zT1D9F26jdcZ6DRu60eH\\r\\nAfP+DRB5H5Cm8rxeUzzBvgOihOTRETplnArx23NjbXz0pue4xzqYE7BX82M0VrWqsQLCmxwUa2Sg\\r\\na524ANCeVRKfm/x19BqDb0nBCfDJs0bXVKhj7UcPeaG7IhD9v0R1dOjfGQKAk2cV2gaSRsDk2WRF\\r\\nOV7JMPe71/X9DQ94jg8+Ojt8fPXaTdU69dbBGIjgrKX/pcR08XQLASwYDCWhdD8gwmp3H+Fi8IQK\\r\\noSPPCZGPBKGrLEb4q7/6q2v93eawbl/0ohetnsQaggMoKTVCPKSqj8v8tPY1z9x27d3vfvdpbSVh\\r\\nHtpy4BTj2PYMpfDGZ7+FGggTwsBeyis5Rem7lglyPRCsXmO7DgI99Vx5mwAiCbE8SITdvlMFNo1B\\r\\nCTGaZW1iakwIYBGIBGoeMDkxo8dvDBt6LqUIyOOdziXjMeVNonTrqE6QVFVFgLD0ACpWtAR2Qkxu\\r\\nlUpLylGCLyFKSaJlilFYyj2UAEFNoeNbxSiAL6FF4etbl5XX+aF4mLAhDwAUY8t6ZOmXq2CcPNuu\\r\\nRT/upzB4FqwTeeDdaKpQUl4SAIuHzX0UkmvdywIGOMtbsr7y03yshYR3+XCUnBwja+zfxxhFclas\\r\\ntwan1sZYyoWjPHligQ8Ay7tULVIG5h+IMmZggHFa8Q8gTfEyMuWLAQ/dU2KxtAxAAegIeFG8nsco\\r\\nmB9RBJjXtoC8pJzRB371TGAE2JAz5jn2R+XYCPytJe96PZUKj1YWHzi2JikZ4zFOHslCj74rD7ck\\r\\ndOsBBNUbSs4VYOY6pzhYX0DGO6zX2EMKEDMmQGbN+aPxrBCj94/PnPNzwNR6oNcALIBlf9Akbym+\\r\\nAUDpsic84Qlbi5qk0aANPNQpFXRqxUN5s43D+YNk7doKu2PlItlABvPCKCDZVTRyzLvstTWrMGWf\\r\\nV/aMJiejqSOQasOQZ7nxkDl4pzzRWjEUnnZdIcFyA/OyZjDkGcvjPoYC+7fn1M4BOKsZ9DycvXSd\\r\\nLtzmNreZhLSNp4gwfPkG3I88VkI7BCumFdbj7tOVG0InQClkCoeC0NvmzHK/1undCFFM3URUUs1d\\r\\nlbq5s4LGyq+lkxiv4wb3fy59cXyKkVBE8AQGqwkREDyEEqtxU4hIaT0PgUU+tEmlzt68B/rBXF+h\\r\\nzzVrdt/73nfK0UHcudt5mggMYOjYvTAWwoaAIqD1Hrs+8q9agwAIgY2OeWzsf+0OllQejZ4C+VQE\\r\\nL6ajMCjZTh5gOKCVfV3qPQMPFM+XTM2Sw0dCGWi0g2ULt+TVAqwofwoVvxEgPCpo2P3eT8mia0KF\\r\\nogUUCoXxNLgWUGTpl2/lHp9yF/BxOVnmWhKz9xsfWjF/67hLma2hxc+Ea5fmxijeIXP2FT9smzNA\\r\\nBygsyfs6xbrJMeWxIcfzpuXVRKtoAN3oz3ZMocgpxnrjM9avgOISTgXtgkqaX/+U/XfQJwyoDHPG\\r\\nQPmRZFApRj2J4aqAoMa4/k5uoTmyyG984N+1YUhGVV1YDmhFN7VtyCNV/lXgqtC195QCUUVizUqN\\r\\nAx/U4BQvwwubWjntW5ULt7rVrSZUPfcs8G5w41IiUD2rO4TOKtMHiDImbMVYeYDcQwgDJn5cU+UH\\r\\nQPbsZz9768GcWhpQftvO/dLo1KQpEjkwUCo3vYUrbGFBKBmLwS3P+nadsABFZHMAB0nHXLX+Blyw\\r\\nuDwna40wUSlE0SGMBz/4wXsrDHUqZplxTWvJQGg9//nPnzbxXve6lz5G5+qZ27fRm74XVgKwEB0L\\r\\nlKeB59E6ap2xrSJmybt0ZxdSw2zoQk7FeSdZbhuXakn0yGvCwxPIm3uY9s2LMVI4izFSXp1Dh3mI\\r\\nrrnmmr17LP8QPfJW1GBUIqo+V2ilg7ZL7vQ3e1NSJmGA7xhCrsUDABAPCE8POubVACgZF1qEUJCA\\r\\nvh9J0y984QsvCFn6f2Xv3lfz0CxFf6t5pmdyk7Pk4ul963XI9zzMhCMDiUeiRpiV9fMoMdY825zN\\r\\nnyeLQVQSrDkBjzxSAD5hSojPAQvAhN6tX7ll5AE+4PH0I2cImCR3eDiMjfwgMwFV1zAMyS7ywse6\\r\\nMj4ViRifPBPjj9eEmcYkfJ7EerPxmKAx7wS4efXmidF4y3iMm3y2N+hhLMYgo3kGX/ziF1+iSTmB\\r\\n6INMQ0/eYQ2tsTF4b73Nsv799nfjFWLaVdV5yH7feM/5rwAekPPpjNI5yDnl28lZenVXwVjvgwcc\\r\\n35MxWV4z+YYe/SZ70u+BIfRZIUZ9rgJifldpWJsGf/NTWDGjNRBVn0vPd49nd69r8Fiy8d/+7d/2\\r\\nyvf5ek43sJi8SNyYu5ig9dtiSf4ec7R4uwgl7t2S9XooLxQhZEAGrAlgSoRLWgNSAn70YtSETodp\\r\\nFjeAIizASid0PMv/TRSz+3f9MAAmwquSSmAPOCJ0xqRUB4oSIBSTsI5QCSHMGwFhu4cbncBtQeUN\\r\\n2RgCct6cjWfERvDqUdwAXc3zgDUd8OU4vPjFL54ELYB2Q2xQpzGcOViLEpMJalWPxyS3Rw+8NfaC\\r\\n4sM0YzXbKRl717M6S0x+CICFBiR8rwUJwn8EAkYFmPNIcr8Lsyn62NRMd95HaxwrumSYABVAl5Yl\\r\\nBI79oLzRNWBAqNgXaygERRiZA96owSKA73rXlVB62WWXXWQYabXyrGc9a8rD0G2dl42SBnoBw0qe\\r\\nA3IdG1HiKCXsA3iQCd5hDAwvn9GrAfzU5dp4tpWkz/cM2BUqxVe8ZH6TBzW75V2p5YvxUPpylYAL\\r\\noVOyohwK9wrzAEP2y7Wuw8vmkNcNKPPOKpLILEKd/CPnCo+Wf+a3ZwMb6Np9AFHhOUnE7ifDrJM1\\r\\nsp/lQ5E3ABNwdtZgdjoUVyJ2/czIMLIXePaebQesC7/wQhqrfZtXunouGioPCh1WIGCe+IB8c68x\\r\\n8vB7H/kqzGi9fUeuWW9zJPPJW2tofZeGutC355XjBKTbL3RNlhuXvbY23o8XPJ8n3XqiJ3tr/8hl\\r\\n17oHgOXJtS+jZ8b77Ku12dSBP9qz/3hoSU/DJfJqrcEm9YZeqqed0JV9sS6tfcYOehNpEc7ujFx8\\r\\n0t6gHyBetGRekCESpdBGq4ta5iyZz9prHFtlLvsa8woNasci1y6ZEw/iL3uSJxXf1osqoJTnHV2Q\\r\\nMT7lYwW6PC8jtZwr/3cvmeo9FVD0DM8pFJnsK5/Ud/KJGW1r1mUKoyFGhCsRlnWFAWwehcETw/Ky\\r\\nqQSWJFqARHUKJscofoRfED0mAbIIbv9WQWeyDg11jb/Vl8gE/Zg4qxBD2CCMbIKFNjYliBMYrjEO\\r\\nII0lGUNVvWaxWLeUS1V/Nmxels87ZhwElncCHQQCAUsYzlsVlM8gZ0A8GwET9phg7B2igy4vmS7v\\r\\nN0QPVm0arIk9sE8KE46N0Vvv+iA9+clPvugcPs+W7D8KQi0ceG4kYy9VxGuI27X2RguQEooJefQp\\r\\n4VvIe03vM/ut9YjkW0fT6G8FQI/e31HIOhexkKG5zj2CCi0I0Nos8G6pWPOxJ0KbaBj/VcmFxgkT\\r\\nvEgRyQeijFUL8uyiXzxKycub9HfPqHdVicsUpj3hcaaI8X/fVXnnnXibYAMS3ONa/EFQSfa2royK\\r\\nNSXZa/fwxuuv3xUQtn7pS1966cgX8n6eM3vKEQFEZG1Vu5LPPR99ozdyHqgDPvFuxjdjmazalutT\\r\\nFd84Vrlw9X/r6JbK8fHVoQ2hjQH/rG3S+dznPvcifbdGDq1de+urfx6HhzkGwOg9IIehRIYcCzQ1\\r\\nNHXaw6au+gyv+mRadyAZiK6K3R4b2xjCy3OUDApg1bOR7KkLew1FyayqhKsOLLe1UGPVzgBaocPW\\r\\ntNSIqmU9v/zDj33sY6vAlWdeUNFnoqxAYCJrlPLgnelQZ9b/mIAuKVAIELEDZFxzGADRa7DJKspz\\r\\nUV8YyNGiAHHc36wVoMy715S/YpKzYxJWTRjwktRtU20m9KyPFysAkbHOjMXfjXUTWgVIAUVKheKj\\r\\ndGyqeXSOVomp97rXvabz1Dx7H6pfyzSnuJ4Hi6WOqMyHYq5R5SHPL18JKKekef4AYc0H7bvw7K//\\r\\n+q9Pe/bwhz98qrCUF3CewsW7hEtYTHL/VIqyXLOU1oRBecOE3ITKNP4c14gQw7ijx6ESaqEuh4v/\\r\\nwz/8w3XoFcgan3WPe9xjSsxHf+jRuuFBvAlw8Xz4njGU1cc4AYAIagpJaJqnqua2OqQLSeoxZ+7u\\r\\nx4MJVPOiUPGU56NjgqecnIc85CEH5yEeQkefKfdQUGSnsMvYw8n4eRTtm/QJ+0TIMx4ZhGQnpY5H\\r\\nhOmELhlt9pqsBBoYJqxnvfqy2MeWC5vWiMzm/QCa/Sjkoch4pqoG39evqefyPjO8Gdpn5wyukrWf\\r\\nKXv4uTBOZ5zST+fd7BqWQC/jYfPz9SWLyH3OCMbiGALs30BNx+H4WwALv+Al78ATFeUU3fKucqsC\\r\\nSPR8nlL3+ND//TtgFtBzfR4t18A15KJ807/9279dzQNT9RGF8dSnPnW6mbCVv8GdDXg84hGPuFTx\\r\\n5HuChJWt2oNlo5KFW5LAEHLg4gSsWLmUNgEhhEbAL03a1PyUZ0BHWBVD+wTLXNFByhaYUhota0rd\\r\\nBvGiUUgpEGPv5Hl5C+4FtCwsYuCKpvA6SgI4BDg9a5fnRc7D8573vOl9h6Df82Z+Hjb7SKk6B+7Y\\r\\ng5DtFfCJKbT7cN6ccCqvjzXmbanh6k1ucpOLws+n7uq+ac2e+tSnTuEwQGHbMS5L1loJvLAvQ2I8\\r\\nlFzPLd6jbWdVfc/3fM9F9LTJstNKwtoAt6xfXjKhyEq60Rgl6X6hZtVywpXCOPgTbQGLvKTAo3kI\\r\\nPfKovutd75r+z3umUEV1z7bQqBYsTjNg9OAFc+R97eiSXUJzydotvUZDRl44Hjzgn5Hnw3AjSK1z\\r\\nZ9Kh21oLVO4uNOfHPJMdWmm4dpw7QFw7gZe//OWTzOrQ4RqbejavNlmEphXHGBejiuAFVCkDsoBB\\r\\n6W9A8OjBt441riTofQ84nR0pMu0bA82zCPcOj6ZUjJlS8WzvNy5KSc/CUhw6D7WTNaxVCbpyaL3b\\r\\n3LSDsG6FUuWWUVDohLfTs3uPv6M5MtycyDv0J6/V+DM8GU95mYyL0nQfekRHo0eEccvYBDIP9RIt\\r\\npaEbr/v/VwBoRzeatNrvt7zlLasBwpq1vMUtbjF5B0Uq0AEDY2zjxKMPW0SHaKS2CbWJyZjw3tqD\\r\\nVDGIrvGKv+O7sY+gvwecgKY+ZEaV337Xyw8flGfoufV5K5neugXMqoDWFWFtN4BpwSHcGoPxykC7\\r\\nmFiOVcDLdZjkmc985mQl+57A5tZ1P0BGIGMuE7V4BJ1S8U2tFypf9lwN137hF35h1eYTnjZFflje\\r\\nA8JALhemJzQ6H7HFZr3VvJCCEsYkoIQ/CfD64JgXYetav9cAvN4ln0vOmTUREj1PF/saJhivvcMd\\r\\n7jDlRgAeYzLsoc9z353udKcJMBDshDrrWQUL4E0AA5zoRyd9HbLlq+17n5CB+Devy9JO/wwB3lVK\\r\\nBj2gaULG8Rz7QqDofJP38sd+7Memo50oTQm/aEM+IuU+Jv+iZ+8ChiTAY9bCgPO5svoYBGdu7Wkt\\r\\nzo7WmfiHgnU/fmLQYHbzIaSqtMEHlKDGsMYt35ERhJ7lixEglJuPo4/QI9BgjO078MjzZe/MjwIH\\r\\nLrLmeFooWc9kXeIN3mB7Sjn7P0DAm5Yr37jsu/eYi30nCP1mdAFQ5AjAIZTp/+blXdYDgGQAkCfe\\r\\nwSsDSFiTKo8YcYwi78S3AID1EVJy7RKjjiLyjnJN5bmM/afkypAV1oyc5Ck0J0Ka4Wg90BdAklIw\\r\\nPnQB9AqPFK4YDTLecJWG3o9O6+NTI1YC3vMBHmtGOdib8agUebPmustwKKUhuiYvKT+A0dqZi7Fa\\r\\nVzwD/Flva2nfAC8d6isgMg50YX/QCXBo7p5RLhC+Z5yTL+jb+gWW7S2gZZ+NwTzRKPoRYvIdWkc/\\r\\nACAa8p01tQ7W2z74XmgLzRgfmYO2O6LIc+S3uZcum/cUm4cQn/70p095bXikfeJJdP9zn/vcS3KK\\r\\n7pGSUqoLurV3GTv4zH5bI9cBpuZgDfBJVcjG7dnmeh7VuBLJ8YA9JovPM8HdnHnj6fttURDeeXoX\\r\\nffNCAUjlW+Lf+tmhhfqmjWkLJbrXHLTqZusJGPnUdLSUiioDa0VTjpX31XoGqAtYecbYWNd+FYnj\\r\\nhNh1bu0mPXaBy07VC2JRhbQp3ym3srJLlUnKdSlGSgygwSSEmomyyBAcJvU3Sbas823JmruUq1Ag\\r\\nwmxMwhuEHEYjWC3wvtPBMQMh5FrjxNSECIVUt2yKojO09in78XtNSV//+tdPTGL9MBLiIXgoYsxF\\r\\n0FAmv/M7v7MXSKx59ymuvXDhwkXex2OPwxnH4gBZoAPjELD2yhoRwIQ6Aq9ihEVQZeq2+Tz4wQ++\\r\\nKD/IOrqX12uJ0hyf98AHPvBSLtwxrSdUQ/KgYOKEpGrCseO78A8hwitcd2zrUN6D+YwFD49+9KMn\\r\\n9z3D5r/+678u0cgjH/nISYhXyep9PimjrDICwIewplgIEkrNulPOvCkEPy+syjMACTgkRChPPEFx\\r\\nUrL+VtuVqvbQrnfLofSdw5ol+JsnXiQkKWKKj4IDAAgsQskz5LxRdIEy11LQ9v2z4cDkU/DhZ8sz\\r\\n9vU94p1FJ4xa9ElWaqQp95B8Rid5YVsT0YyMM7SFfsf2F+VroT0gx3PJGr8zpPJk0mO+22XUAcNL\\r\\nCmCAMzQONOGLihvMLXllfgCna+hD/8eTfvAkPqUz1iZOn4Je6FIgo2PMTvFMRTXShbadRUj2wQ9k\\r\\nVcfrlQdFthtLhSljM1EyLQ9VOVYAURWD5W3VqqEE906kyAPm71Uhdr95l3dV/8H6YPmuikaAj3Ng\\r\\nn76ar+MFHgdWCMU1JywJuywDgISCSzkhQhVJCAmY6hgLoEXiK2sMasY0QoT+huBDqaNHaGRKYQrP\\r\\no4C5kb0fcwFFSwAaoqmcncXPItXJF4CkqBw+fYilIMQiH8Fis8JYlDxkhAWCAK6Uvs8X9wd/8Aen\\r\\nfBcWytVXX32DAlgUu7DZy172stWJmZuYkceO8OIp8ZvgiF7uec97Ti0sMELdkTvuRBhxG3PzGAk1\\r\\nKpTIQ8Qqw4ibjrHZ9hweHQcfy8Fae4CpMC/vLOEodMaiBjZ4ajY1YiXEMaM2H4D2eNiythi/+qu/\\r\\nemm+VRhSPDw4v/Irv3KttfC96kS0i54JBx6SPB0EBmHtfUASgGXtARjFCqq8eC+AffSqenfsXt16\\r\\nzU8voNTwfBXArtNMmOvfYdH7jJpTCOsbn3HjCty4Ap85K0D+M5il3tCzvIXzvMSv/uqvnvIKC9XB\\r\\nA31qXpz3yP8DTmEH9wJk5F9Vg521WaumPFmem8fLc8q58nyfMffLdYBwkYLycxtb4UvH3q3RO9MY\\r\\nNm2hXCUVSCbpMOaf/dmfvXSdbrSO4QC4/JioRE4KQLM6ITEDJvRNhsvQD1BSp3folcKS3Lwkx4rA\\r\\nN0nWb94Lm1dLfAtiQ3eVxO8jVVZUuQvcxJQpD5eSd547wK8eXDbrSU960qSwxnCS3BgKkEIU2uAZ\\r\\nsxbmeuyxM/vGv+Z7ngM9qrRjOEX1ngOEKXV7DoAKSylaoNzRSmXogBEwDzRXiQZAbGt+x4OptFho\\r\\nUJmxe6zp0m7swIREX7SMRgCEuRHxlKc8ZcpXKrHSflWKD0ADU/5vD4FGIBtolt8n3JixMNKxKkpW\\r\\n2th0VCNS1nfWHZqqW7UOyGhqk/tZ/pb3sd4bW9V9AJW16TDdjilBu3Ow5nD1zgpdSiubys4ZGwyg\\r\\ntV7Epe8cr5NEnkBN6PEEAJN5oAlFHg18yBuHBms34FmF3uptY18IaN47gFWICYDmXcX/45llcq14\\r\\nJtAs2dNeP+lJT5r6/eVZl+OFVhh3HRINXJN3jCuhZB4L3o2uY5TNu5XzCpqPa/yQmcKy5JCxoT3z\\r\\nQ0d5KJOp5ZAtbZ1wyH7ceM91VwDvysHbVT1If5FdHAUMfEVA9IP7eEQ4ATgp8mSRSWRmVXVo1H5X\\r\\n2S4kjB+SWyJFPNAKGejhUV+fYs+0HKLX9p1jePOb33xq0/Bnf/Zn18EVDDQFTXiv3Ce0ax7mOXrk\\r\\nA14MSHRN9talPQ8WWVjX9yrg/a1+VoX8xpyqEVhVIFRLGe8sjO86z+4deA4WuvLKK1cfXXSdhZAz\\r\\nwttgwwjvsQM5ACGfhgB/1atedeleBAMB6ulBUCEI4Q2C5S//8i8XeW40WyRACCTCLMXvnYTNaE0f\\r\\nSzQSi22YcnvA7BnPeMZFC7qviZ4CgBe84AVT2AMx21iEb+4Ih9ClCOsjZg1qTDk2XT12/Mfe//3f\\r\\n//0XeWAO7VA/fz9PHaVnrtZRLozeS8LPPJmIE+PZR7kAFS/o7O9Tcvj8XD/fSZKXq+X5FN1DH/rQ\\r\\n6xy/tGs95M/IhaMoNzE+j5PwHGUGGGMqYW4hPXlJWjyUE1PiMbqmqP3gEQKOazwvJnoa+80AXEBl\\r\\nSe6MlDFnZh42HOcjMZT3jQAwDuDGOhoLYVofN+suTFIujJwTNCmfhJCRwwacEOr+T7AQ1B0Rxfsr\\r\\nlC4k2PlnvNuMDUZW43384x8/gXOh5W2hgGPp0/32RWjFT/kvQKp9wnt5opW5k1XWIasVAClkVEKs\\r\\n+TKQgDDgSpsO/MogrF8OIFsyOWGrKS0Di4fP8+ReudY9ngvkkXe82wl2hljWdTls1pmcIBcALWPx\\r\\nUwjDOPwbHZW/Zg4pmPJ2zC/gVQ6L9+IL+85wBdQZtOZnv+uxRBkbD+BXEYGxJMM6k9E1HUeCvgBB\\r\\nipBh4zsVhfaA4WI90D8vqnGTd8YMSOBXa+FaAJFcpBeshb8ZrzXwbwb6mGMlOV6OLn7svMTmuUlG\\r\\ny5lj3Fv3bUUz9IhnALW8LWT2mJPEi8xQsc/2qeauY8iQwaHoqSR+eyBM7mOu0mHQJvBkbkCTa623\\r\\nUL05GyNatbbAs7/Za+tYvjN9Sm5WDdoB3ACWvVFYVkGSUKUWDNa4AqJT8N8hz7jpTW86AUk5vfZa\\r\\nhAvtkkP+bX3r1G5OaM8+xKPlrRWyI9M6tqnwH/r2dz/lYvUdudbz0aN784LV18o9/u5d9oIcdY3v\\r\\nxzYOgSx/q+sAgLU2AjJ5GUwe82Aki8EDMR6Xo8QdY1PK8rT0lmoDKIfO2LKAPA3OH7zjHe845Zbw\\r\\nQCw5MmJT6OKQTR7vefazn32peaFFogQpWsxsg7YdpOoZvCfF8oUYgSqbRlAhZgKsklACZt5t2TPk\\r\\n/giZIYrr85Djfev2FV/xFRd/7ud+7uAT3OdrTPFTXuLr1pbQJFw60Fb+j1wlNCYvSWKzBHBhSoL7\\r\\nve9970RP97nPfS4C1/MjbISRVScKcx1S6fjQhz50osWOtdm3Pn1v/3i/0EyHDZsfhYAezMWHgODd\\r\\nIjTQxcgfAInKmY9+9KPTHB/2sIddpGzrAl9jzvJCNuUlPfGJT5zCuQQBWqMEag6LjgOA1j1rznj9\\r\\nGK8k4yxBgoRQIdh857ecLM81TmOjDAl8+ZXoPcBgaFNBDAAAIABJREFU3uRAzYQpdOCmg6lzw1M8\\r\\nxgSAZHj5zeunMeS8+SPrlpCkzOdNEpfu1WfrdYAmxUrZoiue0vaA4UAmU+poA/2d9Zu7VkL2mJJB\\r\\nzlIy5HxpF5uiCEAL8DgaAl3nGUAEsCXPCThHA71HJAG46z1o1Pdr+yyNSejeQd4ewv9og4cTfyxJ\\r\\nEVl6JNJIc4zvtfP7bKNZIcAxdWJsikp+1VqB3EAPeV879zTv1JgrVTpEFYJ5mPNedU/tFsiZPu7B\\r\\nFz6+91PYMEOm5PdCi/5O3qPdGgsDxGSuEOjaYrDpGBPAiHAb0b/FoTT9sNBYvikFA1YpVVIrqxfx\\r\\nCwfVid0ZQ5A5S/dUnpKRIHk7WA3eAfDwfkmu1msJoCMMWKQU/TbmVhJOyUC0wgQ2o87G9RliZfje\\r\\n/AADlp7r9rniufuvuuqqyatz1u9rkSfvvJnOodry6j71qU8dPR75SbwZkrh9XvGKV0xoH7FmKajO\\r\\nrBu5fDxucF3EVULd+973nhLi3S885iwrIR0eqyU5d5vWSksGNJF1g+F4j7SIWFKx6JkUBIGAIYEN\\r\\nnllKjcUPnKA34JGAyBKromysFuWpQleaknouV7vzGP/pn/7p0tpXSdZc0E296LKeheW419E4YYTx\\r\\n5UwCdh1CbRwATZ4QdIr3jEuvN2PV0JWSAWoBQfOwfxLyx+Tis2OtrpUWwEPAM8kDSQhZUx5IXhce\\r\\nP7kXhJc1G5VYgLGeYNvomweBsNvUDf+8eeLG59+4Ap/tK0Auzg8OdxYg3aZycwnw3LdGIiPyZefh\\r\\nUrqYjAesAKK8UJ28QI5VEZ133f87LaGk9VIkjHkMD9LH6ZuiSZ7J2CSP8mQZf98DamRhXjM4gFzr\\r\\n9IgajAJbngFr/NRP/dTqNj9TNdD8AE9udwfQGgzhOaI27nLeBFbqvA3CD/3QD00eCUKeMjBIvXW2\\r\\nHRCqvQMh7z0saMrVc1nFFIQTwE1aLsSYRF4HeQsOXXKtzk+LL+m6kmMWoPH4Pwuca1doiJubsqEo\\r\\nEMG2ppejVSPkYwPlYAALPATGAYQ6YkZcnsfAfHgHveN973vf0YBmH4Ev+f7zPu/zLjpm5Xd/93eP\\r\\nGo/wGSWrv9LTnva0ydX9lre85ZJ3BdBCmH/+538+veexj33sdL0K1PKg5CHxktibGpDK50JDjjM6\\r\\nJJdAfowws+daf9b9u9/97o1z5eHkbTU+++i9XNtAVXlhvF9CH7mePRvQKvEdYwMv6B2d5iXzPNWE\\r\\n47lcd77znS+af6GAObga86SMDY11ELnQvbwMQocnEFgFGo0Z+CEYrBmDgPBg6eMT+4DehfYf//jH\\r\\nTx4Hayx0NJaeL6GdTdc4HksF7qGAeNt7ATM8JKRlPsAjsGgNyAiGUxU9imOE/ciRvNLux+ME5K7j\\r\\nUnq/PBjPZQyRE9aTYOZp7RreJMYmxcAgzcjyLu/B6+SYggXCGy1Jp0D3aKRjQYwdSHY9JWCfyTz8\\r\\nArjbm3LuvKv3JPdShjquG7N5e9e+HJkle1zF+LzwYcm9u66xvug2I6VcOvRqjcj5eTWdMRR6rV8f\\r\\nOY0e7I/vrCPeJMPxIDkshD+2F+JdwjcUP+PJ9cKP9oRXleeNscgrzRhkROArH/vK63oMfY+eOJ60\\r\\nPDTkINr1Tt5wYxlDUMaKdpZEgHatPXDF2TAW3HQ9Y4rstm50Ll21K7Kz6z0aa3Nw6D2JVjkXjF0k\\r\\nwHFi9ivgU1jPXtSDqmq/WsNYJ59CdP49dljHL2QEekA/0QKeyAvlPXixtgzxW1XNnlkrCNd4ZiCv\\r\\nDv/u8fPJT35ytc681g28QgiPa5hXiwCv07VmirxSGMR5gnPES7GJBZscS5fVj6Ec8GzTMD9iKnZP\\r\\nUBZuE7v28U4TZw1TcEuY3EZaEPeWCIsZba6Nutvd7jYtDvR8aB8Qc9P8kXK1mfIC+rfnej9FPs8T\\r\\nE0t3aDLC/cAHPrB6c44VavP7VeUJA33iE584aCySNfN0SECWj0AJAWxnjS2nfjNyVzDNPHkdMwMr\\r\\nqkr3neoud6o+SNb2BS94wSQceWwAfAqI55RXcVOCKW8YUOGaQwoMWF0vfOELJ3pEx/adQCZA5JdJ\\r\\nPkfXvL73u9/9pkaehY7rLTQejyQcSlmW08i4oFTzqvF2UdoJtx/90R91xNClfQKwKO5yWDyLQKZo\\r\\nOk/Q2gN5xup73me8zLuFJwgPHkXjs7aOCsKrPu94xzsmXukcw+/+7u+eBP9odDzqUY+awkajoDZO\\r\\nvMcQ29dfbCk9Aw4EJ1lCwWRVCvMqojAPCpNy9m45KWjE/jB2gKDCaJ6BPoEaAhu9WkNAimLxd8qe\\r\\n4K8Aw3Xmbn/k7KBba8rKJf8ocsKcFT0mquvebs2tvfGRR66rgae/uSfL2r75lPuRAqm3GKVn/sZI\\r\\nzpBp/l8fKHLIu2oeKnpQE0f77F3krHlYN1a4OXoWvhCBqFeUZ3uvayg064qWzIHh6L7WyvgL6W47\\r\\ngUObEdfjW/MSGgdaKDvvB5jlatmL8qvm9AOYkK0BTCAND1CE9qeDue2350oBwUPoZVO4Dogip4Bg\\r\\n87U2ZDNaoys8t4apwrLoydqhsxrEjgCIUV9j6u6z//a7Xl6MH3O0tujG99be/33Qnnf4DtA8Bsjt\\r\\n4q/RmNx13ZKis0332xupRJ1W8Y3f+I3TWpNR6CyDO/CErgI25VoFgsqbijfoktrURHt5swJftVYI\\r\\nJAWU0A8eDEh1X4As0Ff+luv6d+/K0/Xf//3fq/XmdAP3PAGLMCRIxhS+443pcEmeBkI4jxSFx0tA\\r\\naCFGyZ9yN37zN3/zwm1uc5spTv+EJzxhYtS6/Jo4q5DV5759rkmhBYu4LfYuV6pnAGQEzr5nzgmE\\r\\nt6Gz2jqImsflrGP3JNQw3IMe9KAp18aGb7MWWYCYBTAVAhOOw0Cfbg8WD9wTn/jEibn/+I//eBWh\\r\\n2ANCHMMgVtVxwl0ADKHGQ0LwWa9R+Za0DmgS3AT1tnVzreeM3lI0QmEieOsPxBi/PUZ3PgCWRO6A\\r\\ngb9VJUnZEMRvfetb9853DGGZmzYLkr7LFyAYCArCgPeIwqKgKW/KCAjzg77Ru7lSMADpE57whInW\\r\\nKwwh7MzrN37jNy6NC2Ct/YFO7ATv2JyUALP+vIT2oB47lAOlD1CkuIEFAokS8TfCntDCR8ZMMRkb\\r\\nvqZsAhZ4GGikUDpQ2X0sOevMe2DcDCKKBUAwV+PyMWfP4EGg6Er0Z6AQaN5l3Dw3eAhoobjGsKBE\\r\\nYvu9pBfRUsB2Q75OI8u1eR2HzEfelD1DC/Pm0egCQCjvFv2j9byn3revx9UhY7rxnutnBXjNeNzn\\r\\nua3HvJ3epdsqkiHjn/GMZ0z9JIFW1eF9yBdykSzyqbFn+U4BLDKhdg2uA37IN7/JrAykwLC/d71/\\r\\nVwk4tn8gC8djcMrD8lxy1P/JyioGjaGUILKvkKa/Pf3pT19fRXizm93sImuHYGUBlaDLY8XbYVIU\\r\\n2Lw7K+DlzEGLqeeO5FSMCbHL6ZAzYlCUemGY+YZSGqxSi8A9W7yUixaDU8rADYF+it47LA4KgGKg\\r\\noCl0z6ckWFS8UvsqCcc58Dr4PwWDeABUChnIZJ1xi/K4UCwf+tCH9ir5Ywh+373OHTwLSxw0DooA\\r\\nUXJlI0LAwroBvsqK0cpP/uRPXiukIoyI2Nt/Xhv3jl37ue8rXecRE7alhCl04G1s7MZDYC2Ffvzw\\r\\nmoxKYN8abPpeiNw5gbwgAI/x/NIv/dK0l4CxsQHMvG7GpC+X/QYijJOn1t4DLIABkOXf5h2QEGIo\\r\\nVKonl9YPf/EXf3FpHyTCo/E8cY973OMuCnkUMhkLQFRXAVnmX+Kn8JAxoG0/Aa26rhsLoYbG8Rv6\\r\\nFMrkUVYl2VFJAKmwps/Yr0uY1D1VFxLY8i15Dj784Q9P8/A3IX3AkyGCNniPNp2CsKuZ45mgPohG\\r\\nD9n/T+c9CoSso+at55Gn+umc2+fyu5c2K920RkuA7HgNrxyQUX9GHiM/ZMBZm6UL+hCS/X/0R390\\r\\nia/oXh7QksjJBRhgKdhnNAImo77ktaJPyW3AhEFGj9cipXyngEuV0FXwjd6l+lUZt3mU6wpTMMzG\\r\\nT56vsdeVv3meMdZ+yXuqWCQ7a9Ls+VUlWg8Gpf97J+OZHGOYkmtjVGIJjV8AsORJjRajNgaELctY\\r\\nouzY84YAlBhrAoCQn+7lXpQcTGBTAFywwJkwShY6JcvTZXImbiKUmPAKa1bYYl8C+ZKJuYbXhkI/\\r\\n9jBhQIp7OwTu2cAGS59FOIZ2xrFR3kKkFPGY2Lx0/Ke67izReDqeZkk+yqb38vBoSmq/EP148CVP\\r\\nHcDqzKt9e0epI+CzzrjXUaTaElTezoOE+IFW4BdT+AAwwpCn6OHledpJsPDqZt6RG0LhmNaxM5j6\\r\\n937v96bxCtfhDYIEyBD27nxKtO1ZQA9rDmNas/KdtHBA64WWtKEAxMpnVE4uj2/cg00CGz/JM+Ol\\r\\nklvFU8ajjE4JMIIF//H8ERp+d1QHi9K5hjyR+BloFJbv3DAtU8b2LMZSYcI4LkUip2yfsoTeN7Xy\\r\\n6D7rZO98zJkCsRbAMwNQYQ7as6cJT9d0nA/FRCngZ7xNaaE/nnvGHjCdwrC/eJ+RVpVp95JnZKAf\\r\\nH0Lasygw4yKwXcOo5Kn0N5EDv9G5MRo3miocqhjE3z2D8QZ8H6PIl6z1Z/s1mwov5mkpwsPkgogE\\r\\n3sXvQn54nzMCz6kUp7yF6OkbfOcafM5Q23d+3byS2LqPkZlj90HOJdm5CxxwmKBltO/nrCXOVkMH\\r\\nRsAXIyCTKqHqWn9AcsHRQ1rM1AoBuAF68jb5uw9+DBCRs3mRrGkgqD5Y/u/fYxixHC735okKzJVI\\r\\n3zVjS4Y8XdamVi34zTVjJaPoFjn7yEc+cvWB2VO/EWEUnpaacrF8Wexj2KWqOJOThzI/OxCxytEy\\r\\nMH0wbJb8ox/5kR+ZrOEId1MJ7FpBsfb6QwmUQEZE0L0NIlDzpO0S9N7HEyKExo1qfT/ykY982qxy\\r\\nFgxv2v/93/8dNQYHgwM98nJGy+WWt7zlJIS2JZNbj9ELY214qjDyLg+UNXY0jVAWwE/ZKQ0/5Nih\\r\\nuTAlGIEOyo4QkBtRNYr8HEqT8QAcmzMFSYDqnaYzOl4REk2gmj+FSJnycJ0d+3HJOFE4UsHFyDsE\\r\\nWyH5GqOO1bz7qu8ANMp+yXmZ6FmYSKiVwACqCCDhQMJGAr4QrPJ/njBtGV772tdOni5eN0dejTko\\r\\nrGCHX6toXHuW6KE8uSsvU/NhAJcBICer47oI3nI/vBewIVQlxndEC8DsOvs3yj5rBmwJbfPQ82YS\\r\\nuPYf7RD47rEHfqMXQJaHEyAqH4zBWUUy+srD4J3GiZZcTykD5DVT9S7GHBBvj8pZ8gz0CpjJiwPk\\r\\n0SJZk6IRXVi7L52bCDwkZ3knKUP5gWjUv2sASz4aB6BasQdewa9oq1M8gFjjA2KtOfqjxOVwMWAB\\r\\nTnOLhxgg6K78R++0rvUPowg9nycd8KWXPBvfknXArf0xJt5U99JJ3uHa8uis35hHd//733/KrbR2\\r\\nYygV3fAceecSXjuUvs/jPsCQ0ffOd77zKPk/ju0HfuAHpmjC2PSZfuBgYQCQnQxH+1r+VS0W8I4f\\r\\ntI12qipEH/7tN/4Y/+26nDIBrPK48EteLGMck+ZLlMf/AbtAXvMJABa6JAvQF3DsWegVHTFk55WY\\r\\n+/ZryvBnnVFiULl+RSW2d7NqL1Y84mX5zsN1LF6JxyYj1KFjtCTH17zmNVNlk5ysXQNZklgnj4Nl\\r\\nQMFa2GPOlNs2Fg0zMemSRTRnBESQEAqIxQ+BwxNHUKrEtEk++k6tzQ3bt3lLv//8z//8i6z4TY02\\r\\nlz6j64C12g74mw74P//zPz+B6bnnZduz9XUSclJtsvb9a64/OzR5egchAyij0U5xL8lS2DOQwbOB\\r\\n+WuYWqNUYAON45PyssazsNxH0dWPiLKk7Fpz7TEIeaBm3mW9OUmc10phrOIZy6tPadUCDpS2PMly\\r\\nFwiezi1kZJk7r4zeNuZKKQKONVCkNClT9/A8U0pAK+UGcJYkSji5vwObrRGPDN7BJ36sqT2wRz7e\\r\\n7UOIW1sJwADK53qvoSX0D/gyAuyhdA2guTMtgQd0jBaBQgAGKFR8gn7zADB+8EFJ8X5TbAAjhVlP\\r\\nM+DQ3trzGmjy8uEpe0pWlAyOJ8ghERF5v/4P8BgLXvFuwAeIGs/E5QQAXgFi40CvZC262AZ29M2a\\r\\nFzUd0t9qyXrf0K9RYGPP/+Zv/uYk8lZ4EA3UOHmcv0poBivAb6/I0UJzNRD1f7LBXuNvwAYtjKDK\\r\\nfVUHVoRQxWFAKE9TnqiAm98Zy0XJuqdQYLK/noAZYWjZtRWoZJgZA9m89jSMC07AZrmO3ioLJgdL\\r\\n6KBmW4TbHChxnwoXYjwdtsdnACvysQjdj3/849faWJYmwU1ZmZCNwORrB7+JsFkZvCMYX07ZoSGx\\r\\n+bNZzhQMIeTZxk5h1CmbQrEZowIg6ITVEIA8i/lBptcHYwrt/MzP/Mx0TMwp3k8xj1bxXe5yl6ky\\r\\nUC7P0sTkEficcg1GAUooW/c5Xc/fl4cIeHEodUALgzEmtIrgfSLwWfLonXJBVxKyX/7yl08eHGvr\\r\\niCkKCMimLIAXvIEueFQoM/SD9oXlR8vZIdn+PuZmCUWq5EVT8rJYhmiOobMvFLtmXVUC8mBTjKx+\\r\\nyarmaz3lpynsePWrXz0VpggDWyP5aMkD+XnywggpuWNkhWT4qtQIPH8jIKsYw++Uo8pU6yPRfdw/\\r\\nBhVBB1h9ugyTNWt4Q7tWCFk+HW8OgIVmedXIxDr+o6WRP8hlSs/3vLXXx3FIN7R1+2wcz+1vf/tJ\\r\\nd33sYx87CcDat0aKdDhXyCm8zxtUX0L3kgGBpfpM1duqpsZ1gA/o+O3jPs/0Cfx4ns8ItAoF+jsQ\\r\\nFfgCuLyjfO/m4nt/933eYIY4EA8D+XGW7Zoc7WmumxZLAzLhPoPkgp1XYbEOhL9UHhKcz3zmM69j\\r\\nSXzxF3/xlFhHOBPYdWim8AloFkhnGc7P5Nq1gbxpHbOAaFg2PiwuVpBn8nT5u3DOoUnQSsUpRxtN\\r\\n2Swtcx3HTshZJyGjZz3rWXtbE+wj3EO+165Ahd9//ud/HsVcFN7ca+hvQDjF/573vGfr8+Xd2TNC\\r\\n+9BWGUvmzqsI6PJ+oE17BwiMvah2PUfScUn2mBJQkgwuWV9Y7TGPeczEfNzggASLGnj1WyhE6EkY\\r\\nQqxecv4DHvCAqZI2gAFgeS6BMHq3gAyh5NGz5WBo3qDWVSEBXlII4F2nBh14XqEC3jQfVUCUr6R8\\r\\nSreTCoSIlGNfc80119pvifCE5XiE1pI9u/Ga812BRzziEY6KOor3z3eEn7tPl2+Jn0U8eIkLv2tP\\r\\nweNEt+46moVO4kniKaTnqqJn3AALtRRhBIqy/PVf//XRdEAOvehFL9r5HHmdz3ve8yavlHH0U1EO\\r\\ncAMbAES1OSIXc+bUw4rc5IVlaJW/VR50bRnqq+V+9xVuBL5c2ykXhRADaHm06qXmXtGNwJgxA1ju\\r\\nq20J/fWud71r1Rpeupjnh7L87d/+7enBkoiBq7GsXkzc5lEUhLAjUOa9S1ihrHwAp3O+nv/85+89\\r\\nhbqDmglwOS/eYdJccwAKF7RqrHrGdC6Y77mmxdL3HaMgX4XStWlVwB3D3sZqExESsGecxf15KhBM\\r\\niXpVWx3zvkPuVdkhfPOyl71s2uulQFHOnX0sbi9RcnQJy0fhzUB8wsD7qk+EBIANAIg1nXUsMVKI\\r\\n6NSKWc8mIAvgroJv3/rJK+gMsMIeaFB4BfAwdv8HOHzwidYE/sajCVzVEoHQdPKB5rt4AeNi2tp1\\r\\nCJMKIQOnaEcJ8HhSu55lwoka9ameBK7w4inDhJvWA30A5LwYEq7lUOB5HjjzB/p8b36AnvHjASEp\\r\\nIXPHbFkT/EqInSeg3refS7+fNyme37fpEHl92tCB+Z9yjsB2rWyWjv/G6/6fXKDJY60S1ykkeI6u\\r\\nkNuGDoWp0WTHDQlLUrbW2oecLhenptRkOPkmjIUP6BnPAAp4Nihxsj9jh/Gfh4ReMp6xv1YNQ+na\\r\\nWp7Ug80YvReo8gG8RAZ4H1XiL40OjLRAFwuJ/fRP//TEr5saja6lHUYj4xBoxwNjnloFTFIP5OTV\\r\\nx84alENVjz7r07rXCmY8DqdxWV97U4VgyejlZ5Uc39/dN4YXqz6sianrwhDuHfO68qoZd/ldxsQZ\\r\\nhJ4cE7ik5c+4pheEAglMG01g2FBCckTOEnGFPuRqObds07l7PVQ3V0QC5Up+boPl2xBUcix4rDCE\\r\\n5p2UK9c1zwBQZUII3SYKD2AEfzMux6nsIwhVaJRApZ2eWWUEDwNLYR7j3/dM3wv3YVZhje/6ru+a\\r\\nwhfGRpnYMEga0/CadX6XElol/0KgS5X8krGsuebyyy9XCn5p3YSEVbctcf9jJsJlPCLJuyl58yJ0\\r\\nEGXN5daMq2tvfetbX6So91lFhzz77ne/+9TVfX7iwLZnAUPRDuYTQumAVdW0ACJG4yomQPCE0K+K\\r\\nLtYoz5ZjJ1yjczLQjw5VGRHwLEqJkjxDzt/zPB8GBebt8GQnBfCY+Rsh67p9zVKFK8czEA9Zr/Ge\\r\\nM7qZxg9I1ndLDqS8Hn3CjM064SmeQgZFpxfIrcF39d/C58Cn3wQYuSCHCy/iGwaPd/k/46m8Rh5g\\r\\n95XTBejit8rAgXX3eUbPpwApFIZUh857JqCIh8k7SbgUHm9BXjvj8f18HYWG513GeUsZo0q3x1Mm\\r\\njl139y8p1V/yHs+RI0cGWpt6/ZFd1odc5SmxXr6njFyP5ik1xomQYrpAPiCQYa/sI2AhbAxY24N5\\r\\nO55NeVC8wc95znMmeYRmhTHJduDCe9GPd5Cn+MiYUoT+bS72Hk3iKXlkjIHCOejNfQweylxOMaVa\\r\\nJ/jLL798oqWqfV2PTuWE0jt+zO+zKdfvVre61XTG6yHFQXM6c/qE6BY+VbihNY/UHjLrpS996bQ3\\r\\n+BtNwROMz3I8y7HiNcqT799VDvZ9uVodyDyCqI69AYw7QqdKQWMtqb1WDoUmx5ysvFie27PRW8Ul\\r\\nJd73DHqOka0d1dgj1PtgmrP8rI3Y5MJNbnKTqZWBfBP5RPOWBpROFVQqAjcp5m0HNXMnisUKmVCg\\r\\nrHZl5IQi65xAO6TMm4UCEAqrYCwMRSBQAhaUsOhDyS0BE10P+BHAlCvGNV5jtaEEAeLxrqWVJEDm\\r\\nWSftveBwidBccw2LClAdj/v4pm/6povCP0tbV/AwdYyNdwsZAQx1lD6rlFo0N16v+XmAt73tbS86\\r\\npfxULRd4yjq1ngcOuF0iWJz394IXvGCylNBUSeqYDTDnpcOAFABhRSn7YRwwBAAqwr9GqLxZCQiC\\r\\nBj35jY4ofteN1hDDxDMAOSCmsPm3fuu3XsSb+0q9lURLID5lbpbQLiBtvM4Ymzcq5NUEtAie8TgP\\r\\nXhjrV9+sbTQbHxPU1gefEGp1xSb0RrAjr24sjNgEKtEYHl1K32v46TPxWp7oGsiSZ2gQ71pbIITM\\r\\n5KnhfReRoOQYDyIU+KBEZIqQXPQsf2d48d4BpGiaEgJi/ZTXBbziRWC7FJG8hXQG/nAvzyyaYXzb\\r\\nO/tfNSSF6jrjA5DxnGIsvRuNRWHNPg/kZ+K+nXLM8qEZg/Ipl+qtfe/ncHjJS15i/afTKBTx8Fy1\\r\\nd1XY4ueAUP344I1a7pC3AayqCCsyKqcqEFRD0jxiXR+IGvth1dvKNf5eW4cKb7wXTWes5bFyfc1F\\r\\nzcE4/XieM3I3YYldXQ2m5FnMNJ77RtlIWs2Npzx7U7IwAUuBCV/kwhytLwz2pCc9aXJxHnLumWRo\\r\\nwp11w6pRjmuiFJyFsZkEBcWy1k0vXChPxjugU2EaFZB+EzBj+ekuYmPB8exxHVd+zfvACmLRa8ZK\\r\\nSPEaHQIm9xH6ru/n/YwoNAdWqmgcQdf8GWOyMQ9nyl0yM0uQt6AOuTx4b3jDGxYBrPl7eMj0TcH4\\r\\n56EQuaxVM73uda/bOz5M4mic8gZqNGdP/ZuVzqvCO8sTQPCjQ3RZ2T9vGSWBhtBDLT5Ya9aJIUC5\\r\\nuR8o+4M/+INL49JLzFjHghD7JUnZ+qqCrDP6rj13eDuDiGUvQX5fkv8++mJwAHg+5IA58VYlqL2P\\r\\nAp17OW9UevtW9ob1/SYv3aYRuo6nqRMvblizuHE0m1aA8Sa/kue9zuunWKm73vWu5NMkw77lW75l\\r\\nOvsTYC/sCqDkqap6r4OdAZ2AUx6rgA2AVUHMGCIsOb6WCz2jBPZCf+VreX45WyXJ+38J7cbtWeRx\\r\\nR+6417vzhNXwlMd27P3Y+u2rTL2O4rnjHe84JfoKdQhRjHkhPZQnSpNDVgbLdgwnSqpmKbH4fbb1\\r\\n6GHBACZyXmwKUEMBdXQH64RVBN1KLiPYKTn/3pX4t41wVDwWRxfaY33Nmyluu5eyYD3ZCGO1ScrM\\r\\nbWDnuwGpCEoOQIgWUIXyzU3TylNUSa5hDN3bhTAShgDSG9/4xgnQ7PMY8QTN8+suu+yyiwjVnvjN\\r\\n/SvktekswKXjdAL7KXIDNr1vU+f4beNiGOhEDiBhagAJmEJzWjQUIt9U6qxRqfXo6Jvb3e52U34O\\r\\nwwLNCCUJowHcdWA3DgID3eAjoEiu3EiT4x7wRi4tBnEfzyseMi7nDe4C1Pv2ClB9xSteMQHJPHzA\\r\\nJKGD160NrwIPtxYTvBHy39D9GD7O0+17ni9rzEiqH441w1OEnDWxD4w8ewLMjmcz7hvzod/PvWRV\\r\\nmQK75kagMjKMFX1U/VgfQfLJfMgIQpt84wFnpCh64dHhqSTnXGMN0Zc+bLwzPJujfCNrhbAIfcam\\r\\nPUU31o0RZ42FY+rJ5ru8ftdXv8BD1/pz6T46BC2fMoy/dP2ECBmHp+iDJSSGhslKtC1EiF+vuuqq\\r\\nSX+TD/Rg7T6M0d/mob3Rc1TbBjSepymwVDiPzgl41a+zhtVAEj0MDLnP+/zNPXnKRoDVETueTQa5\\r\\nr7xazyGDfFdTYnNwnYKmtblwE8Cy+VdfffUJjmceAAAgAElEQVT0UD0seKX+7u/+bqPVrw8STxKv\\r\\nkYaTY8+es3DSdF7hfDOvvPLKS12UATjKpoaOwBM3tcWhDIQLCNh5P66lBLUpKdW9S6208T1yUSph\\r\\np0RUjxFuwpD7FptievOb3zwJQYn+h55SvnTe43Xyj6zpqODkhMl7W9L0dDzY2XPlUwgtUghZEkJZ\\r\\nb3rTm/Z6h3aN35mPS3OklqwDz6TwMSEgnMdQoJwx0DYPomRNHlsMVWwf01GCjADzJCCEKeRwUJZC\\r\\nLzx5aFbuld+MDUrwt37rt6Z8EnxAGFCcaIZnqzLkDhAlABJGxnrsei5Zo0OvwcNymhgXgFXVQUJL\\r\\nwk3CpZrN8lyr5DVH3eJ7X93g7ZHUAfSZAJWf5npGEAEpR4pQsyfW0p5KYdgX7sXjQIgGtdYdCAFw\\r\\nyCz/J2h53DoEu1BGhxmjGYrC/+0LjyM68O+EMeFtjHjBd/gb6AJ0vIs869BhdEcB+UGTDE57zjjx\\r\\nbM8phwuIsx5j/o8mnP7mXvJSCM5B6TU9tQ/GwBvvHFRzPEU7lkNpZNt9gKs5jFXd5gYY7jv4/RRj\\r\\nEdI6xDBf+245SmO4XM8o+ozO46Gm14AdIc5y1hj/0guccVoIyl7695IekbvGSBc+7GEP+3/3u9/9\\r\\nrnX81dp5uZ6XvQpo8hLPymcj+/B/oUC0jSbNCY8U7ShUV+iPTO0cwDGUV5guz1Shv7qr479AWfld\\r\\n5Haep9o3jO8tHBiIIwfyqpFjo6dsTIIHiuvlJRq3LVVjnvDf+k7nyBF2khk3eRKAL8Ky5nKEl0UZ\\r\\nc2koyar+CCyDmjdT1D+JAD4FyEB0daOm5OStHHNWof5FWcqSH+WISfSnWG1I5Z7brA9EbAOFi1R/\\r\\nECSErbUi8AjsT37yk0cBkTUMIYFa5UgJiN1r3V796lcb4+qxCDdKxq7RH3qgLN72tretehYvBjDP\\r\\nK0HRWaOlbRSaB3BD0UvCraBgXB+Cu4Ool5zxpuJQXhmvJuascgSdU5ho+v9j796Dfe/r+f+3McIf\\r\\nJIeIHKopIVJJqaEZI1KaaZrOmGYqqUSXRqHTcBGZJhdFOjBTZDAOUxgTSkgJhZCaTDl0ImpiBv/t\\r\\n79zev3Vfv9d+7/fn83m/P2vt67riWjN71tqfz/vwOjwPj+fxxcWOYY256lD77FrGhu+AAOFmAo3i\\r\\n5Kmg4N2Dh4T7gC4hNrRiDkKkCQvKxg/Bw3g5a3hvC81suVaRwwtf+MJpnEIAQusdCM8DQ4kAGLvO\\r\\nILXejJYS/wkwAg64OjmW5JL+dfgLuAdWhDl6rrApviV7eJPwraRpz+NpBo552uxfFcl40bvQMd4G\\r\\n5Fw/phhQkvg5YOW6KxHC3rLmx17LM2suQGDNOxla8Y/kbjQP7HXIrTW1dv6Px9AnkJCyqbqO5w1Y\\r\\nEC4GqtE8uh4BItAIWOiJSBkCn56JbhgirTO6wSf2ipGCt+ydfePVtSd4pXxbChLgzYBxT6X1vqNw\\r\\n8RODnbwxZtcztnxO8TOQtTaoySk57/lL4U9Gwdj+ANBdapRsHUZaETXwvoDIdUFHd7vb3aYzc9/w\\r\\nhjdsktUjzXGskHWvfe1rp2csFTA4U5WHnhy1ziqL8ab1jXbyUKG5GjVXaem5vq8y3/8zavIqlbdX\\r\\nbpd70VKgCj307K7Js9VvNDWGKtGguaE9dNMRPsllNM34k0vecWJzftzlvLmgmSECWOqVIsTykpe8\\r\\nZBJGyrTHIzy8gPsa0CFMazpIgWr3QIHmRnc20a4wEmXpWjkpeayEQ1ichGbnIp0lDNViOD/JYnYg\\r\\nL4DAzekYAfklwjiU4HjQbffKtSKEciUKHXVGEW+W0IB1rBw1IaPpGtB2Xl101whaISpW/wc/+MHL\\r\\nGErVntDVli7qQk5CROZrjv4BjhQQj8LJWYermJfAtY6IGQOwXnWDH3MAzZHFy+uzL5TpFALXUoBA\\r\\ni/F4dntwKMm6tdRokwAud4CiIBAoaZameQtpUSYYnPIhMAl1ApnSQDuUFuXtqCgeBcotr8lJCHH6\\r\\n/l73utdUtSQsBNjxjHkuPvMuNEYBoMlduS5yBymlsY3KGto472vMUZ4hAGkNK4e2v+ZjLf0TCjU3\\r\\nHheAVDXy2FbFuYboSshtPkbHl1hbgg+AxcOs53/9139dRXPnPedr63n7jgXaMgYGFxpV9QcokHE8\\r\\nbuibIaiKFy/iH3RvjSk/gAewomAom2QGo5vCK3G9sQAXQPMTnvCEy5QwjwwlNgcYimbwETB1fTUo\\r\\ntqz19fFaXQDIRcdeHTM+nmvG49q85JEenvSkJ53mM1WdV/Veyemu9xkAlCcrOUIudv4goDZ6t8gB\\r\\nsgUgK2er5wTWxv+T7/7lzfIdY9n9pSV4Fx4wVp+ROcZg/WChQ62g5uu7uODOinv5y18+WZSUwbx7\\r\\nqfART43ByPEpvwOqVYll0B19Qaj6m5VLCRGMLAEWb4AlpVQjS9VBlM4uC3gXkWhwBvCxkAgP43CG\\r\\nmhb33mHBeBQs3lxxAxHQN+Ck8pA7nlLF/JSHOVAYkLmN8Q4A8FDDR53Ozffqq68+FTzHEPmWe252\\r\\ns5tNPZR+53d+57L9ZWUg5LV9p+y1eDugYM73v//9J3CkooL1/yu/8isXuN8R/1bia06sU1V39ery\\r\\nOW/bz/7sz05HbeybO6EurI3OMANLnUdzyWAA3PWeouD7Hrjy7hgMc+W6ts/+z4rCCymg/kbLrvFO\\r\\nTNr31hcY85lr/UOPJXwCUJ7ZMTF4wXfjMSAUHm/X0rFNGqLyjmnwC+ytBZJbaOiYazUr7Uw642LI\\r\\noBW0KL/MmmzJQWEQ4V97UN4RfvRj7YRrR5rxeaGVcfzjZ/KSrLV9IxMAP7/9eE8gwj1kHFCg/94I\\r\\ndNGmPXW9e83VnmcZez4gKWet9gcdNdNxTeVSkUUZBbwi2goAqjyE6IQ3tBYE5o4Pzb2KTgC342Vu\\r\\n6J91DNVe+XvOGuYbTztotM5pBSrw1z65SyerBCarj2mF44QJuvtQ2HnJg8NwlhpTzu4YnquikNyu\\r\\nmzsgg59cV7d14H4EQOU2dhxO+V0+L3QfgJq3eSi1JTCWNw3vVkXo/eS/a8vVKgwpz2zu6NmVjtQ+\\r\\nXaK8IFVgQtIq5aH54bzsW/duvVO4y8bYuYowuRlAjZwMwIxLV6jGBCr7pVhYTAjD31vj7wQkr4EF\\r\\nJaRYYgRaB0ryeAFynm3z1iQG682ipJ83y3N4TuRbAWP+5m3YWv6uLwhg1WHP73znO4+yHrayv/c+\\r\\n97nPnbqO70qqB0TXKGUWtDMGETMLGHDhZbDmSraBkj/90z+9gInH5NqtY3Y9UM2yHiv+NP7k6TgU\\r\\n/uXtkjtDuVM+Y1sJeT8UULFzXlcJ2GgQraBlnqTOIMSklfLWjwd4rHS4ylo0DXCqoOWhpBRZ+0Ib\\r\\n1gXj+4xiJSwIkZ7n+ZRhQgIdR7816JSvZU2X+tdobYG/hPWFWSR/OwNsbRGFnl27zo3clUtwzJ5u\\r\\nvYc3m1GDF3kIA7oKKdArgc2zrSCgVgPkFOMHaCYHgGU0+i3f8i2nPOsIGDIjIUrwWnPpBQlZ4LiK\\r\\nUUUwhQUYXfYRSAR4k2PoBbBCS4wy3kQ5NGSOkJix1zYGTfIGuYcAN2b77R01tC1J/WEPe9h0BJOx\\r\\noVkeX/cwYiXcA1juz0Nubnl+8GstGTxn6/rfcP35rYCeYbyu9JxUk12NmMlOQJwMImPRF96Uv2sv\\r\\n/V80gl71LDQnBIf+hcSjvaVitGbzSZ/0SVMLl8J7a2epvQO+2FWFLc+XIUGOZUyhf0YFOYpW0Tl5\\r\\nWK5joMV88GH/L8Tns6oLPXf0QBl3lYOeSa72fdV+9buqpcPYD8vz/ATufFej0dFjVhJ9ocp42Zm7\\r\\nW3HAxIRaNWgehpFtmnDg6E7kEubFIDh4d8Y4ZMKLZcZCNRjASr4VhcfSVi6+K3a5a7O5sikZikgV\\r\\nFsXWgbqEL4FGeRGKaxqQeg9wBhwAYHp2EHyeVbIy4eyZcgvWVl1pY+DZhCElR0HKCyoWL/FfRZec\\r\\nqHkPqLWEvuU6J5oDtTyJueq33O9aTI9xVIoiRsCB0rFelBjAQqnZE0fJWFcEvbYoQTgIEdtDDInu\\r\\nKE0eA5WrPAYUrcRQ7xzP51uai8ouAIswmgNH+VjGLoQonCbfDn0CR+iVABEiRkdCI1lRAe3yPAAm\\r\\nQoFSxMR5pXwPVNUvCNP6rA7NrvWsmLWSZKDNPTFz53ZZi5Leran1edrTnnY6L1W6gCFr1D4F0lip\\r\\n+45xGIHTvFKuNWWNEYr7hPVWWjp0PeueAsHj9sUe8gzLQdvXeoW37Bd/8Ren/bA35ITTJ1Qvz5uC\\r\\nHhrDoe8pu2tzTQ6N54bvr/8rAOzyOF4f2ll83Md93HSCCW/SLsNqvqLCykL/u1JbPudzPuciUEjW\\r\\nSbUBDhkj9EZNRn3nH51REjrvkb/JOfKtkN2YhG4seLpE9BFo0UcluZf07rqAVgnx/R9mGMOOPcv7\\r\\nAlzks+vJ7jxXxlASvH00Tuf5bkmt8YwL2jLwshDwqqDmbkQJkUr7vWDejZx1xZPhINg2iJVpY1xP\\r\\nsfkxsF2ARSuDlBlFRzEBa5SWvKwWhzUo8XxNkjyXKqAkHAHg2HgbxvKrCzGCOEZoVra9lsUdeWL9\\r\\nlHgeaha59pn7rrvDHe4wxcs/9KEPrbZghYSBpaps5I0BOMCHJpJQuw7w9oR3EjDgEbBPFCHmtbbH\\r\\nADoA1SHLiBgNsvaAHf9npfnnMOVj3Nvj8Uueg84BbBYWjwHvE7pCr2jQHNCcv4Hujs4YS3/RNGYk\\r\\nODwHfTIEMLJx8/66D3g07ipsrF1HdgAUJWB6F+sPvQIWnm1trTEQ17t5R+SDLYFY580RajxYclqe\\r\\n9rSnXbb3qpnm4TR0NLaCGHtXAWHGVdft86DNPc+YjBQeUiGyJUNkybPGS2D98LdEZgfOj8c5XeEx\\r\\nf0Q+XmEAOlXNhz+sH8MZv6E5XtG8D5Xcp2woJJ/lYcCvqjU7No2M5zHGD/gHjfPOCH3qA8fg5jHG\\r\\nMwypOfhgVDPI0T0DfX72qTYX+DUlh3aF143Xe8ihlC85gqf8Y7xR/DUPNg/GlHnwBJNzW0LXH2kb\\r\\nr5k42bLUx2nXXOR42gv50/PmmnSaYql6Asqf42lXTU0Oogu/eW2BMLQAD1TVl9eqXlOj18r+AUwZ\\r\\nnkBO/6I/Yw4XlC8VQPO7lgyFULs2QFW1oedk6Pq79hJVNlfFSHaT6d///d+/OR3jwo1vfGPHQAjR\\r\\nXCaUCW7MJ9dh7hlYCjOx9LjTuTaF2IROuPvFcHklOqKgnAEhoRSI7ySKc39aUMrvUK8miyJXgvcN\\r\\nqLChXKgWxPsxT2X284TMfUwivl3Ss4UVv97qcpcboYoCc5vve97zntWA5ywM/Nmf/dkXCZeth1KO\\r\\n7xRmVDVHMGIiAqjjXuTS2B8eQARIqHkfr98aD928679DtXkiMJY2Bbyn+55Tqf8xawR4ozfgmhKQ\\r\\niO45wtvAlwq1Zz7zmWfap6/8yq+cXP5y1A618Tg0B418hQALhwv7zht6ekZAElilSJbytubVTUvv\\r\\nHpOqebWFxYSfdh3dcqjJ3qH59f2XfMmXTDQrn2/XPa4BpCSaLiX2Aw6UN4/q2vde29fZH4qGnKJs\\r\\nAG30CFDzpvIUUxBLBT2MIB5U1wA5Sx25Gav4lBeSl57ik/LREWQUH4AiCrFkidfrC62QWQATDzDA\\r\\nA4wAUhQnmWgMvMCHZDRFPRqzzrr0/yVjjEeWHKc/GAzzwhd5PsY1P8ZGaFnurTExkKwvxQk0ro1E\\r\\nXNu0cG2978SAutEDHvCAG/3qr/7qat5w/ikdwKDkIKn4xIkRDGLrjJ6sO6Mb/8qZRR887EL09rD+\\r\\neUBLoXGgKI99Sew1GcUXVQHWj7AoR0nqnSeYJ8yzy6sa871qKloyfEn1AaiAHL7yHZppPFWi0m8V\\r\\n5zhxZN8xgUt7egGYGPOghPwKh4jvLlm98wexjllFrHZVIkJA9Rz6lE/5lMnzYUN4DUpiY42bEBf/\\r\\nvlL60armHbNoJs0jIYTEiwAEeBZwhrm2VBzySAFBFrnmif6PSNYABmtB6QOTxaIBEoLQOIW9IOO3\\r\\nve1tq4n7GOazTnpuCbXw9O1TVvueT8kKDRLE9osFYj5+U96Fr+rnZP2BWXPcmk/XOJwfKTykV8tZ\\r\\nAc4xa/fgBz94yh9UiHCWoyQIemDfWukKf1aAZS4aseJDygKPyQNisODReUUWo8fnLEZ7tyb/sPWa\\r\\nJ2uO/5/3RHMPekNrUgmWEsuP2Qf3AHPyrNAZoU2p690GAONRno8qlsd3GINQKuDMC8NTXQ+rks/n\\r\\nR/0cO0b3daBwXhhtaOwPwcxYBEKABWkH9oQMZOzVHsKYKBX7yhNMMZkr0EJW4gOyiVff52PXagDE\\r\\nvXjQ2WhC9HlpKIiaNQNGwBvexM+8DGvD+GdZmxvu3bYCHBM8avaKLivnFGAGloFk9AQkjcYFWY3G\\r\\n7OuuRHeGEqOEvv3jP/7j1TpInuY111wz0S1A7DQH+u0FL3jBBEIYX8ZL1nBk+L/vADKeZHlbeNLY\\r\\npW/IRy49AmBBk2OrBvw+tmJoBfNG5YipQrzGpXircGMerpLZ3dP9Y0+tMcnde8Ykd+CPV7cjfIA4\\r\\n78Kn1n9rqtPpgttM1jLPjaq7pXLpOdmoZmIxEXpjs8g73elOU3JcCZ9yI5ZaH/Q8lvDYawbog4ZV\\r\\nEgJMjneRj3EWQS7EoIKMsJLgPJ4Cvo0d/r+rMQVi2nfQK+LWkM0mEf5b47fjuChPhMRzZI8KeWI8\\r\\nlnCH4RLEwldbWzH0rtvc5jaTl4cFjKgAVwxGYWPmChYwPuZSCMGFfNZGfkKQYvljuPmYfTnmHpWe\\r\\naO2HfuiHzhQqcHQEcOXA76UqxmPG5h4hW8nUeMSPPScInvCEJ1x2PqDvVYq+4AUvmHhbGA3YYMkD\\r\\nsmPjz3E8PAtLVbvyCtGUXkTGAUwT8jwTwji8Cd6x5DU7dr6f/MmfPB0qTODWLT7Pdsc0kQs8rOSM\\r\\n8CBrGaBwvY7y9Xw6dgw33Pd/cwV4QqURMGRGHcGItiLpxW/6pm+aPDlAxaH2Evq+7VPMj3jEI6ZI\\r\\nEWCSV32++gD8s571rEsAkvxFyn+fF1GKDw+U6NAWgKXQgsemUxboMDKHPiB/pCzUEYDBB8Dx2jMI\\r\\nADpAXpqBaxnP5BdA5R7yBMDyU/5TlXqFnwv1ml95VAysvFG1eigPy//zSJWHVTjbMwJRPvPjmn7X\\r\\nkiHZWp6Ya/OOebcw91Jl/j5OuaAqkNXHbXyIUOYP0nyMYKupqDJ4cVgCT7iHotf4T5K7HhpjczLo\\r\\n20ILE5oEgGDREYJYfe7sY041lwhM2Fa9YCxi9RZoC8g5FtAJBUDtGLVGpUo893lHeAnk79hUFi0F\\r\\nU+dvniPWOGBovYtpC6MKLbhepaM8Ai5chO7/x/Te+rzP+7xJccrHA5wIFvMwFv9Y2JhJxSVLevSU\\r\\nzb2ha0S0ppU8ZuYnFL1LwKx5lmt4o4wLLfFIHvJaCIc8+9nPnkLSx56p2NiARN4m7RO28tKh+QnX\\r\\na9ZYoUGVLTyIrLNdjK8FBs+Jxp74YE3j1caiTYKwG88iQchirReO7tPPeMYzJoE/5kftCiceml+9\\r\\n0MgFZ2XWhLAybF3c9eETUuY5E4atuSRZYc8JZSFmBuIWPj80trXf8zgZ7+hBt04Kh7YcOH/offrO\\r\\neY+0BfyTIqFs1uSoHnr+/9XvheSlKzhK7BD93PnOd56qBOVv7ks/EdoV2t6XQ6pgQ6uZ5z//+Vek\\r\\noe1Nb3rTi1/zNV+z+ZQI+ctkM2MGjwEZeM7/FVGh6bvf/e5THhyvMS8VOfHhD3/4Mk8ZPuA04RGr\\r\\nnUKhOnq6bukBmgCYd470XUJ7ye5FtNBsSep5qOprSJb456fk+Txm9TscD5x2HZnqs4qT8BZD9Y/+\\r\\n6I9WewE958ItbnGLqc/FmgNxY7ylvh4WEJoX7wesVCwASloGsDS5zy0K6973Jsj7s3Tm3RoG50Gy\\r\\nWPrkUM6AhmcDVqr2IGVEtSvx+rwqgwh8eQEUXRYPoQf08HAZC2XwjGc84/R7gpjXicJ0r7ECZJA6\\r\\nAFOyKaL1GSvdXNcKaWX8FPExeVhf/dVfPa0rJSW5XfgBsWEsig0zYTAMIQFy7AMmrCQkssV7IATG\\r\\ne+RHBdjaVgP7aAQYkfunRxvX9a7QJQ8jAAE4mu/aatSldwsPOncSU/Loeq81A5Tr/0JI4QFChjeQ\\r\\nNxUveD8a9sNTiF9O+jxNzMy7RAgZK+OlA1Vr5UB4AMXyHIGojJLAjnYXQJbvPJdHUvjQ9yzLwvbG\\r\\nbExolmFkLkAqIeO7JbA6Aq1jjqJqLR3DcXJE1xQSsS6VbhuTszxH0GrsPHjWkjFBvtSbzroDuuYs\\r\\n9CLUaA4dHO86nxd+k9pg7QKMng2wrQl5A5f2TkoAa99e2z/yzToK3ZkLnlEq75ksezzP4Jo3E+UJ\\r\\nRicUCS8A/uOx9n8eXsYVL2nNQNFAxRnebSyu8Zk5WRsGkvm73/XWl/yxZgyLWghoYcIzbc/dS1nW\\r\\nZLHye/PyDN95F8+isVUOb80ZgYVuyAP/J8sORQ3M1f0dQ0aO1hja8wud7WtsvJRrODeU3U/G2jN7\\r\\n4HtV8qIx5gUIHEoz+YRP+IQpJPz+979/r8KVy0QX7GvSKRIEqL30pS/d2Th4Vw7l/e53vylX8uqr\\r\\nr14cB10jdxONH6rG3iVTv/zLv3xywthvHixRi0LjJ96501vx1q58Yx5+p4HQZ3mc/CbbyKC8V353\\r\\nJiC6Q0slv+dVGrvAJ7+qECycHhjr847A8QyfjXlbJpCc9ndtHzrWinGJf//kT/5kG8CiGOYgxDlX\\r\\n8/wjrkYMuuSOxJgq5Wyis/oIMpsO/CBaE6V0fHdsM0qWACbjbqTkCU0LS9BgYC7dQ94uCZs2jCCX\\r\\nM8XNuSVPxcKLTVt8VTjGtOudXMiEC8KkTDUObO68TIiVF4hAc405PO5xj9vJKGtAZ9do1UBIz8NU\\r\\nmP2QR8eROPau/RdWGlth+H7sgbVlXOO1XN4UkWpF4JKgt4drQtP73sl7KDcP0K6FBCU8ng/W/SxH\\r\\nAMP8KECKHOMSvhgaHaP5qv9yUaNDz+RZxLQ1FUWLrs3iSlBg0iw097Ka7Ds6JLASCHUNrhcW5WUM\\r\\n5sML0nEvnlvvLM/reKp6znRkCGFHQQEbCTDj6OgYYzB3czX2sT8XYSMfxG90zGv5u7/7u5cIF4BK\\r\\nIUfnJ554TzcJoKuvvvpigPwe97jHlLORcDVO3exZjksNfT/jMz7jojm+6U1v2vlOz1fpJhnXGlT6\\r\\nbV28xzuE07c2NT6W7q8v9zEw0TM5ih4pOUAgEMNzLS8RH6FL37uWwcBgLMHY+qN3dCwXqGPCGNc8\\r\\nGox3tLvPew8EoPPakhgPAChsVlFKTXl5g3x317vedQKuABkaxQ81Ba7HnOcJF5O/eM3e4yljrCda\\r\\nrUCAuR/7sR+baJ1ccsTOi170olO64tnX9DUgw2jx/le84hV76V1qh3XeBYDQAzkk8vOBD3xg57MY\\r\\n8vP8VB43epcRDkTZn3neJz0EPKJzOviY1AWpAZ04ocr3N37jNy4ZJyPBcXvowto+73nPW3RsfNEX\\r\\nfdGUK0jOdjwOugJ26qiOL/3YQ3LMvlZROCa5187GtcnPellNnqMLF6Z31CLC/8n22jEEsPJo5Tkr\\r\\nZwvtFEas550q5/kRgLv4uf50l23oUjm08lhW0Mtf/vLLrr/Pfe4zlfoKMUYAwo7cpxSxwZ0c5rxI\\r\\nPPXewUiulSvCwrC4+tmw3k2WIlDJKAxloUegpjKNYLbQmEksG4A5VllnIQU0ETemk3tyyOMGbBJM\\r\\nfihnY7LJ+w6pFcYRwsEgx7QjmG+yo3KApDGficAELsfDVpeI41DXYWvxUz/1U5MXRV7ZMYncQBpg\\r\\nRYHbd4L9LW95yybFvDR2tMS9T5gSwAS+nmAY/81vfvNlzyfY0CiLiuKgTAhN9GWtfEZgAF/oMUsI\\r\\nE2YF+W2PMWiNJNFrpcDCurxLvJmECeOAkuBZqP8XxYC+c5X7PFd6OQfeX48t340NTwlPPOhfAsoY\\r\\nqvai/KqgKWfBdd5T9QxhQgDVMoJCq+N8nY2F8c3DWFWT4jUgTRURRbsEYvcBCuFc4JF3Cv/KAfVe\\r\\n8zF+4T57w/sxhr40RFbhZI/+8R//cRPdqJCVxwh0BpDR8dKZltcXMHTDOA6vgDxetH2oqnHfk+it\\r\\nn/zJn5y8d3/5l395SlcnhVb0yWWtI+bP29rGx/34gDMCeNlVnARMzVuQ8Pip1iNH3/72ty/yAUMW\\r\\nr6iEd3oHnab9wlI18r61caYinboPYHA+KEjRzmCpISfdYZ5SYegPciQ51mkKydX6VNXPioytso9s\\r\\nqHN7FYXGnlwuF6sqd7+rDvS7/K5ytQJ5tXMYQ4xkqv+TpVoSzVuH7Fqz9Oi0KScbddkGycHgFlvq\\r\\nFwUZUxY6bSecoDaxZC5tCs7gAAcCXl4KLw0BTkFQehaq4yQIViBtLSiyWSkTFUaQLjeesNDWUA/Q\\r\\nZhwIFfEZL4Bi/LsqCYEiVgfLGDBiGfkHiC31ITosIm5kzS4CBVvCtUvPBbDsS5Wcrjk2N2b+fF4K\\r\\nrmzgUTf/tfvVc1g7rERgxJ7xICFwrUIOgb+eIZePJeQ+wpA732fAkj0bDQGAWCgWU9nT+joBnCwt\\r\\nTMbzqhEpJkcHvDmARGW+dQzOyin/CSNj2JjcOyh9giNPVlVjLDQeqM7TI2DcZ7zozbMCYcZD8AgH\\r\\nuo8Xh5AASr3DvH1vPJ5ZnlJWF2CENzqmpdYlDJ28akKR+IUxYC/MH80IDfoH2HgP0Fm/L3Mzd+vR\\r\\nOV3eaYwKWbaUgdvLW97yllOFcV4l7xHGFLpBX7vyYD72Yz92CrEdCs8c4jnhTfxrHXhZ5GgCXTyS\\r\\nwpHH5mAeeu8N318/V+DESyQP9JJwODr54R/+4QlgVabP44WX5hEMLV/ooDx2S61MnKEqLSLP6/3v\\r\\nf/8JBAnNAkzokffO83//93//gugRXSR9i+oAACAASURBVOPUjPnKXbhwYXrfriIyBgUjk7Gy1Irp\\r\\nvHdCbpp2N7t416kp0obIPnInsFN1evItzxTZUB5UXudAVykE8wT5cAHZzFh2Pzk1fh64IlcZdN5D\\r\\nntZzK8OTvKMXyDjVknnr167bzsaElR3P+1/lbUEMY0US9E9ZyDsg/Gtqpi9TsXphoE6sphh4C3b1\\r\\nleCNYGmGOAE9CoiC4lFAhJ53qL/VeQpJFVXeL8dB+wWC2Bhe+cpXbrKid20OQAtwAC5LoTwhGfce\\r\\n6lTtcFzKcmR+AuHQuYlricY4hVhV3R1a//kzVekQFhS8vRU2tp/F94/pfMzL6YBxHifCZpcXUB6D\\r\\na3hjAf/yi7is5e8BOuiK8AO0gCOhizxDgIzPCrPx3vg+b9BYeoxOeHXySlU9AzwBEDw2nXsIzFgP\\r\\noVKeX8n+9l/4nsHi/EfJ/xQAkIUPgChCEygAII2DJ0inZh5CQtWcEryaOLIugUchsYBmVVPC5RlS\\r\\nQDBhwxiSG0LAmFtA0n4BRsAXAVYlkDy2LTl0OkxbH4K2th/+tlYMFWtivDxnhVi+4Ru+YVJGAN1v\\r\\n/dZvnQvfZYDYc4oNDdgftGK/vR+fa91iruZuHwHWLHVyxvrM++WNKRjCcu7PADtLTzfeAvvS0TvR\\r\\nhL2hDMhW4xsVHU+/tASf21/GJFoXxhvlzejFPk+5sVa+XFfX8SThG86AwtY6mgt/yXtj/OIdhhzj\\r\\nh+edN3+W9nJRLmmtROhFzoaRLkQ5nLzw3//93xP93ute97rIqCGzX/WqV02fkeH25i/+4i+mhrC8\\r\\nu4o8xrXB51JPeKeAwnmOrly/xz/+8ZN8MobXve51i/xyXv3sjE3S+2Me85idkY1v/uZvnnoOMq5L\\r\\nWwBm8D25msFJLgBBnRuKt/zU+X0M4Y2NRcc8LjROZo+d2vNqhSs8r/tb27HPVv25yATy6F3vetcm\\r\\nmXPJxY4RYVkvlXIDFxSjcAdU3WDkNQEbLMAI4DGPeYyNn8rCuVw9U9huV4m47tPaGVB0Ft6PhaJE\\r\\nTErseF+XcHHuFhYgXNNU8RATe6bFxQgELSErVEF46TN11n4yPCvGTKECbHUXrqqBYKc8JeKWLE2I\\r\\nIhp9ciT4LoEb/XmsOYZL+Hec0Xn1mNL3TO7N+973vsuITYI55birAziFzk2MqHkstpa9Lu0bY4A3\\r\\nCggw746DkMSOXud5dgQWwSi3p8OJMRoQz4Pix5pHc/Vim4N1yofgrZCBB5ayKu+OV5YQ2Rd+wiNA\\r\\nk70WTlRIQPGp4gSq8BfFT2gTFAQtz7HxAWasRR5FSl8hhd5Y9puVCLQ88YlPPM1fsm/4DO1sOVVA\\r\\nGgCh6H34AHBEpwQjHuW5JRsArv/5n/9ZLYBue9vbTrk35WMQesaMxyoP5w0EFhhknfAARAAJxsIr\\r\\n6fcxpwjskwGPfvSjJ++WtUarABa+B7LOyvuHZM8x3+N7MmTf8UJLz9We57qYz9jfcOt8zRWvHzI0\\r\\ntz73Lne5y3Ss2SMf+cjT/CuRGpWFhaodPk92kxvygef5fw5HBsSe85zn7OQD1XlkoJ55Qpr3vOc9\\r\\nJ4NVHlUhKBXJeOuNb3zjzud4F+OKnhIBWIp8SCxXHEPX0NGMt33H5TACeHEZb2uLqlpnoJ/RDaDu\\r\\nOutWtMz1DGoGnHkzZvB+5xVWwUcu1Kk9z1KNREvL6LzSkt89ewRcnuXeEtz9DlyVPO8en5W35dlF\\r\\nL+iFIhNA4D/8wz+slm+eO10MpbPoLercc1KIRWIhq/FHfuRHLnkBqxowKpRGMBGODqB9yEMeMglm\\r\\nlr4QBAUCCRKO4rAUkLJxIToLSTHt8miNKJuFTaFkCWJWIaOzJKoKMRH2lB0LBdBThUhBSnjcl6S4\\r\\nhpEJBWBN/o31srnWyU/lqjwo5dPYWOCAMmFVB8IQjzER+BRRVUTAAeLjAbPe//Iv/3K6T8J6gOpZ\\r\\nWyA0T4wN+O2qFtkVchbHl/gq5HWoDPrQmgJJgD0hJBfI3jnvcVQW6ALdYhbAhbKWL4Qp7S/ACshS\\r\\n3NZVXtHWPCJeAaAH/QFBKmO1KwE28hQAYbwy3jGGj7n+ea18j/7tNxCFN/xNqNtraya8jhbyGJlD\\r\\n5yL6m6VnnuboPutBcBGsepqZN95joTN4JOzmbeLdAuLQSJV0whhAjedp/GkdgU+FCK4zP/PJemct\\r\\ns6bR9TyUISxwItwvkR3Ao9J0P0BUgo2Hr27n5iIMbOyO5yAIWbfmHhgjQK2P9QaA7ONVV121SRDu\\r\\nojc9vnhHyRtjsf5SCeaJvofo9f/C93JX5dTZA/uDN+0JrzQ+Ie/wF3lEL5TbmDGJd/GOZ/gO7aO5\\r\\nkvDlzVWFi3/Rmj2pN9++1AzyHQ2hM+BIDuQcjCqasM/4uKo/tKsbeWPhNS1P2TzwyFbdoO8ew1o7\\r\\nErrAb4BDK5JynHi1ADhti3jNlozpz/3cz530prnsqxj/+I//+Is81BwVPJhkt+fu6l2nktXeHZPq\\r\\noiUE+bLF0wNM8gjSfQBRSev4u5YO1p9srGK19keupTfHXNiOxPEd2kIzpWN0nFLNh8svDYB5fm0d\\r\\nKoSoBQy5JL9sC7CfiAWKBJ7GLrGUJCRb9+ExP0ZjNIQ690gp2dRNnBBSkQGdf9VXfdWkRCgMk+UG\\r\\n5eGYd6EeBZAmZyxHhAMsVNlSn6WzuDT1m7JZFhSh1RE+lyPhTSFhsi3tBuYClHLn5aGguGcBq6oG\\r\\nKVCbTilQvNZLzol1oUyFRWyma1jolJO9sI5QPwKiUAkvytne8YAgOs1UfT8yHLestWwdjxX2JXDa\\r\\nU6CGpZdCXvvMfZWXa57BO0kAez+AaY0IjkO5YDyS1mf03OSRuuqqq6ZwtDVHF/aFd8s6ohVrT+DY\\r\\nh4Tpk5/85Alkul7IkULg2bGHBKP9IWj8o2woF4wqbEcoEuQYuQRLigJoqe+L96ELgsBPx0W4roRN\\r\\n91MaQgTWgPWN5nh0HvvYx073Cz2wlgmghz/84VO+oLCj97/zne88BSH3vve9pxLqpz71qZNHyrMo\\r\\nQXxoDFX2eX9rgxbRoFA5ix2dASOE2egF2LWvqpM0JUT7vMMELH5gLACIc8+jcnHjoizIEn+XO2E+\\r\\n1tqa4DnCuRwP/5c/0Vmba+hsvEbjZAAaPZB7gLnf//mf/3kuIG7reD5Srp+fDnBdj5vsQNNog0ye\\r\\nVzY6wBjd4X+8nuHLUEFfPNQMW/eTA+aHBvc1m16as7P8GHy6owsDqnIlP0bgLpqkBxU54jp685nP\\r\\nfOb0m97V65GH1RhV+BZanL9P5ThdLIdslP9LpzOcx/7c7GY3m3pube0pqO2FuZJdZF987Hc5UlUB\\r\\nkpn0doAML47J8HS5PQLIfDdPch+7xpeLVc7sPBneszyDDoBhxuKHNet1mYDQBZoXh5dh3jmWxUm5\\r\\nsSQIuaoaVGNRMogWIndMiE1XOac00+C4DsdKoGL7PGBcmBYWsRBeAAZ3PIG5xRIFwCgpSgRDUBhV\\r\\ndmlo6sdYQsgW3veEtU3rgGEeqzEMum8hq3LEaJL7E+71c6HoRjBJqWMungTIm/KC0il3io03BaGN\\r\\n5fuqF8zLfdbHuiCMvGAsxiq5VNFRgL/2a792urfK3ynBpSrQNUQyXiMHr+MS8thsfcb15XqhacyD\\r\\nVl7+8pdPTAkkyXlSzTr2ddqlLFTlsL54DhMs7kNn9gh9oS3/B6yEReuNhe55hwAM96I/z/GDhv0f\\r\\nrRLqcn6EDoG3kuXxTM3wXvva1077jRddQxiPlta8RcfSfCTEAixjeFeeVOfnETD4snAc0Eph+d5Z\\r\\nlP5mPKBVwo+hMtLhfN8lD//gD/7gdJ1ck0N0cbvb3e6i9+9rNcI4I0B5N5Wn4y1raJ/xJvBWg941\\r\\nR2Fp+4E2CHfgF29WIYrvNGHFu/idl5minCtcYTiFHUL7ZBuhTV5Q5NbU3+71w6CSGygfTv4W5d77\\r\\nyqvyG/AH2G+ofjxENeu/1wPQPgihB8adWADo4F/yma6QBrAlxD4fgbAjrzceLzSVXEjvAFhCiPjq\\r\\nDW94w8Qbt7rVrS7SBehDd3YggyxAR+94xzsW+Yc84PnVs9BpDPOxaGOCHs/rUHftLHjk1laXc/CQ\\r\\nYWSHyFGHhBtn+Zl5q60Vui/1ojAhvo5HXFMrhlozjMntnhvACpT5f96qPvMcP4E1fG//tzbvPl1w\\r\\nykZeisE6DkNJ57gZXJY8MIAVAaVpHHCEUGw4oqsR4Kd/+qdPQk7IkfCwEAQb9A1FCz/wvFBmBBek\\r\\n6ZkELdCwZnN4UwAalqWQBSID/ihL4Q9jGZuJysehoIzHogEkPD/zvCSKyCZLvt7VjZsHTThE2IQn\\r\\nxeYgdIpS13pWvXcQ7jwrQjAAaD1IgEvEZMw2EtNaL+vA0+WZ1sxzCOX6EVFalBeFzrOXEgPGuHwR\\r\\nGWuIIhirHW5/+9tPHfe3dqFdEk1AtsRndEI5bK0cWy/uznZlZ+VRaPZ6fnDs05/+9AkYYW7rbN1z\\r\\nHwPYjAX3runIDnTKO2Bpzkup980CHUigBaQYJECwMdl/gtX+slLRFwAGUGmCSJkDbviUQOB9qwqO\\r\\n8cOYMP7f/u3fPuVhIRLPEoYot0KSLCE2hgr09/HuKnG1RCAXeMkCcYd2htAEFIFHz0e/UgScmze/\\r\\n1+HY5sz1vi9HUKoCz9sWGsb/5JPwJ57Gn/iShWxtrd9SWby1UhBgX4CZ7/zO7zxNUgaoX/ziF0/e\\r\\n74wjz+JhFMrs6Kh9a4Q2hanwLTlofwt7kqX+VpAyensBPXxNueRNrL8a5U8ukJ+HmnnKz+MlPNRI\\r\\n89Ae/2/8/mu/9munQ8fH83fpRUBdKgZaoLMOGd/CnDxTvL1L4UO5XvaM3CFj5Cef9NSaci8lxEvD\\r\\nYJAB7+U2C8OXWsGrCnxzEohO7MvVYpjQJ7xYS3lVQCQDbukQ9S37HN8ECLfc61r0Lt+NTq/BKF7l\\r\\nUIALgBw8h298X4VguVueUaV3wLXWOn7Tx4Gt2kDgoc4p9FnfV1FY6wbPgzO2nil8AbNTmDwqBOt4\\r\\nXhFCYb3l2RELZp2JPQMX0KQDEB3R0mLqzM0ytxCYHniguAgO+Rslih865RyyBog8B6jj/erwUwrG\\r\\ne9cKCdY6QES4ElD7OryPRCEhO6sSg0mkriIBqi4Zj7IzPwwFEFHmiM3mHGqsyrolUDEVAhPSoewJ\\r\\nXeEmIIZApHx5woA1iY08WYgMQKD85CogIPsovv/P//zPp3uiS7Zr1yrIJcbgqbPfBIe9J+wx9q4O\\r\\nxefVFmIrk86vl09gnwBaazSGEiVlyq9Ak/ZNqLw+UJQxD0WxfsKOArPH80oxeRqOQuLN6MwxeYL2\\r\\nEu3XbdyaCbkBpyxWvEHwARiuI7wBJkoXM9tzRg1aI4CVcBMq5kLBmxfBAzzjE0o76w0AN2YKA/8I\\r\\nIT/rWc+aAL15eRevCgEPnAN4nkMIG6NqTF5sf/OKVmnp+f4m9Ag/P+jfc4zB3+Zy0r16Go95472l\\r\\nyj9hG+FEQtOYshzRmHBqDYWBK7Qu3HGMIuDZIqeEtwlwc7a25IF9te8dB8QzQOGoytzXvFg1LS+5\\r\\n+dkL3qez8NhZaf2G+8+2AmPTW1V8eJCuOWkJMkUQ6I7f+73fO5WtcmvnxxNlNDCeRt3Y6FQWijKg\\r\\nP3Rej8Sv+7qvuygMiVc4CxhD42kCCogy0nmPjQvYB+z3nXX4BV/wBVP+Ge+vUPkaB8YxK8kIYpgA\\r\\njPsS6Q89W66utWEY0WnkIeCD/zv+htwkZzoVpkpv8rpGs+VT+cxPPbYKC/o+gNWYAmLuKZWoHoJ0\\r\\n8T4guzSvC6oDO5JlRLdKSbnZIWhCyGZDinKsCF1eornFycXKg0KB8ABRRqxrFrmDMUfFVCI0i4qQ\\r\\nQgAWgFC1AEINQAGldSghmjKnzPzYlI6sQMRQL0XC+l9r/fJIsA6AyzaAAvB3SJoysvDchqpG/OOy\\r\\nrwqEe5+gpsxGkAVQASnuI7wJaeDN+Fg0rP68YgiqGDQAQIGZi/lRvsbgGvcWKhDmUdH1Pd/zPaeM\\r\\nxE1MIS812zxE7OP3xg5IFN+2JluPDuh5SqJ5FYCHejbxeG7tYXZo/AwIYBTdykEaw0JyCTMGeB55\\r\\nGdEP8HDISp2/1/FEmL1SaDla9oogQEvoG0OjmfbNPhKSFLQ9tNc+qzcMZncf/kNbPC4JWMIYUABO\\r\\ncu8D9fiNkCb0jUHVoGdW9IDfrAUL+slPfvIpTwrXOV/Mu4S1jZ2Bg3/QIy8ULzOlQ9CYizExotCD\\r\\nQoyS9dE2ACln0L2B1PqH8fKMIZbOgCPQhNh4HPEOgy/vmkpRwpsnjHFV2H2pMfI+mmAcorcxjGfd\\r\\n8Lq1o9zwmffIa/v2b//2vaHL7/3e752KV+wTuSeEs6ta+hCtfqR/L6KBruqaLodVARU63lVVNp/z\\r\\n/Bics+Zs8s4wYPEXvsOLaIxOKQfTO4EnRoFQ2lgoc3Ko80QDDiGXFjE2cJZHyLDxbAYEWc/7xFgb\\r\\nC43GeXbuJm+oz5NJIjvWimFE3s89vqrzrS/wX0GXBHE8+vrXv36RTk9ScSY5scW7fiwt3vzmN79o\\r\\nfdeE/JfeYb/JvxG0CpfCIh3mPh6rUyuGjE1Gn/0OVNUmJ1BVeLDkefI5r5VrChUGsHxX+tAxBtTi\\r\\nppgQwS/sYPP1a0GAwg8qAccjBKBNShLoYn0CSK7l8udhcs6SJFuESfADE3K8ACgb4R9PiAXa10OH\\r\\nIGW5E+7ABcsCyvU8SqFGYohTPNdCWywgwFjWVocJEfJU8WAg3FrymxsFyluEwClFYBLgEh71YzOA\\r\\nJPcJ03Sv+fHeBWB3ndnGOyWkgWEpMwLeHDBVPYp446rA3JWfRrFa16oGeXEA3D/7sz87mOeyRPSq\\r\\nQVkFlLvQGgCHGAnSXb1V9jEo0FOsnQJDXyw2njvelqVQ0rEM7z7eN4J1V5dk66W4gKc21/C+41eW\\r\\nxiJJ3P27BB1BHIAC5DArHiOIMTCrjwFzcmTGaTWNe/CGtcZjjlNSWCDsy0sFhOw7JcBYJdWi05Fv\\r\\nl2hQ4iuQMAo3bSSESIT3X/aylx1FP0IbABPQxhOFl+ZJt7yA8jSNE9BbarsAlMuPW9N7jbfbeuFj\\r\\nczp0j+uf8pSnTJ44MoNMqzoRL1rnXRXO1rjeY2SEatY6ivM0EOZbjuSadwMnFzquSWNY3nIyyJqa\\r\\nG7nDc3iMZ+8sfPWRdO9SP6/OgRSp4flnJMi/GvPa5CS/4AUvmOj+67/+6y8C3mN1HdkqAkQfXX31\\r\\n1ZPHCi3bG62KxjViuNMLDIilAipGhCIle/q3f/u3F6SikIljmFEiPrp873vfOz1bs15yZN85g7e5\\r\\nzW0mYHjecnVp/1ViokdnEaNHtExXrsl33EdPnqPlDP5E69ZIZGBMTqeTMloDXsZSflZAyns6Vsc9\\r\\nfmrzFMAio8IU5DKcMU+7WEP/lxAAFx/vChBRgizUTPnx3kD3o1JnHTznOc85PeC0HhGSquVcUSIS\\r\\n3gEGgg6KJhy4RXl2dpU7Vi1IaGkfQbnXjRq44mEAWggzlslIrCcu2wmY8H7tO2TTAvEgsbJZ355r\\r\\nnkIGGsXJe5DzwlIvL8dYCH9AR56J0IKNMC8baO2OaejpOKKqthAEhpi3xAgsAFi8gzw+S949HgGC\\r\\neAQJo3t5DWHMrwEQELM1J4yAR6GiXYDimHe4p1DOsfcv3ceyxuT7BAxLkNcFMO90+C2VMDoYW5td\\r\\nni8eTUxaKw3jQUsUub/Rl3AYSw0tEiAEZ5YXfuLdjNHRALoD6iSVjl5SfasAs84OBGgBGhb23EO4\\r\\ndMbZuIasfKkBQgtnPWHAcyk6SbcA9vyYG5VRjC9gbim3jzxYStQ9RCtLYZyle4BWAhxd42UyJ9Bd\\r\\nCJeBuasjtnwdvcjIOnPT4kGVpH3m8Z+XxZNzLGiGKxAtWgA8u4/HkFKydxQ/w9HYajFASZNLvIQE\\r\\n/6Hcq0NrdMP3N2LUTko8D5Z8UwAnWlQlTz7Mu3mrQmbA7arkG9eW59mROLs8o+Q0AywPkMOcx0bW\\r\\nPGrAW2HKj/7oj76IN8d8y/F9gImCFx6xfY15z6sh941vfOPp+J55Dvc++pImYE6MkH1HDcmplKMl\\r\\nGgM/0IF4h64HtkqPIMfxSsnrtW0IRPl/niz3lpYAdPn/CMToYjJbFEQaxb52GEtznAAWKwuQefWr\\r\\nX30J4JJPRYizGkcG1k0ZsACUeByEVwJL8pbEhSlgHisVTUCLkNW84qXFFJMmRIAl+SiS14EHrnqC\\r\\n2MSq3jhkiUpU5OkC5vTY2rWxhCFPFe+QOVpYnjDvkvsk1GddWCc2nweKp8FG1qX3SgglgFa40xiA\\r\\nNflUCIrQ5x3jJiVYiz1jHN4q4Mf3QKKkZMTCCmqMQr771mPNXFhYFKAxWAvrdSVyTg6dh7hmrPNr\\r\\nhEnR11JbCY3+KC55a64DdClUjf/WVrFqIUApzrstj+PQxkD4jIfTOmL4jnNgedm7DjfNXe03hW2f\\r\\nyxPjbUOHPMxAEyWO3xgdQhV+ADU0jYYIDN5eQoc15nkAPADnOu+lsOe5JI39Fre4xRSGYL0bp33H\\r\\nm8Ch0FjtEYTJPbuDrAEL1uaS8lcI476x+omBxyADbIxHzpz1oow0SQUwt5ZJb6EVxtZYaSvsKwxr\\r\\nnQCcBLRQ7S6vIQ+4ECyDi3C2FkLTW3slbRn39e3aPEPXt3EdGo+Kd+Fx9Eb3SV3hTS2fSM6mBr7z\\r\\nI5p4+IHjNefUrTESeMo0NDVeIJyOSm499KEPvSh/UHTiZJ0nh8Ao68d58rDhKby79qDiQ+u06/vO\\r\\nRrSGef22PksxHeC0y7gVztWKxg8vLhlE/5HXZA2ZQkaJ2DBC6aml3Cv3VyHot5+amMbndGgpQuQt\\r\\nWfoHf/AHm7z4F77xG7/xIut5FIJcprw6NnJM0qNgO2tQWGyO5ljDwBWhUszXOUvCHjxBLAMxeYvC\\r\\nSkfAFrNjMigIhGqhtggkeRAnBwZPiJYVsuT9sYgAoFwOCwakhGA7G4kwtUlAI+Gq8sp8AD4hu6Vc\\r\\nAu+nXJcSGrcSmHCWE9IRBc+G8WEOiszYhCtquiZcOleK3MrczLwwY58jlo/1XZsLMY5bCA046Yig\\r\\nSmGtyXl4NeZrdNIfaZGQhaysyZZDsdGl41WAhL/+67++7LlyIliqgAiAgzF5k7ZYK8qTJYXv64nD\\r\\nemU9CaOjV+AZWEXzhALQ0jEsgBBL1ufo1DUEKZDsvDO8w3LV0JcQFV5DFxLZS4zlrmccqIITfucN\\r\\nUSCBFx1nUQhDaNC4dvWJ0qMGTzIygKjyEHm7CSHjI6RYjgQSr4r3ds4gugU4JLH7J8RCxsgB63kA\\r\\nlfkzyNCZd/Ae+U2QCtvZFyFSOWdCnKxKwJjxcZayefTHsJF/NzcyGVkMyfJEzRGtGA9Lfaw4i46t\\r\\nswOk/RgbgHUoj3SrnLi+XS8MbZ8ZynL3hNoAbLL0UEHTfC5jtdzaeQqjetehoqJ9z1MM9Ju/+ZuT\\r\\nfABe8Oh4nqvPv/iLv/gi3ZexKoRIVx4K07uXbLc+r3jFKzYpafdaEzpzbJ1UfpVw3D65DrDxiB+K\\r\\n5qxd613XWTPnNWrjc0wUx3PpGjLvkKeaniOv9zX95JEmH8gQ868xcx3cxzAgneLHZ/6u4Sn5Rq6S\\r\\nb5w8o05ds14X5tVe3NOE++ht4lHQQFDCLEErJDHmNLmnM64MjkBKUCF83isClLCReO4ZKRQW6qGj\\r\\nGqB4gpt7lkLyQ+BRHACGkCQvj9DCgx/84MuqvFoICa6OkWGNEpDGAVgBeT6zAcYIuPBkyY+hLMxJ\\r\\nBQbvQOeTAV2qN9YIdu5XAKnKB+/2PnOfN7vjIhaC453QkZq3YC6gWFKsml05IfZLIjFFPlot8oR2\\r\\nuZLXEAtFzjpHbMCKddrX52jNM5eu2dUJ/tjnSZzk1eSlBRJ2gUIhAa5+a4sht3TrludAuOxLihZy\\r\\nlmPHvc1CA2x4kAho4Bf4ME70CKwBWPIX0QtvCK+msJ/5qKbD8GOIVksFRtFYXetYDkBkrA5+0IMe\\r\\ndFH4fg3tWnPJvRLLX/KSl2xWDGgRrRNceIbAA6pYncAUY4CBZS41NEVbaAyoJ0RVbhlvB6tXCao7\\r\\nuPVxLYFoHYFQe7yv+m9ORzzpjC7jAZqWcs0AOrRfJW2hCXNZAu085IUH7dua8NGx9H19u+8sjaDP\\r\\nMhcgpEqzjgnb8jygHw/Oq4Tnz1BtuCSX59fJxUL3OQvOKwzXe9C/9jA19d41V3Kf7hmrH7esy9pr\\r\\nFUHROx/84Ac3y4newQHCG7Wry/zasXSdrvnkKBlkz8jSurcHnvJYBbjGRPdAl3tgl6UDt/eNabJq\\r\\n5Q0QZKyOsSwUsJHLU88lwkQuCAGOiYAc7nxggPtsFOxZISwbZ6VxGy5Ze0uD42ZHEDw3QpEsSwrI\\r\\nZ3MFRmkBfzwOuxA6JaNCiEeoTt2Eck1GgSYKtS6uPFV5IpzlJDGR0nPeE6/NmvO+MKu5AYQlKkPO\\r\\n80aO8/kDpLwQ1lms3tjybACRBDxwCghQSvUPAwxLpJXvoxEdBfVXf/VXp8TuaJZjDlMex8gTxvNi\\r\\nTOjhSrudtzLUvutVueqDZtxLVS4ApP1C0yeh2dWCwiGnKm33HS8hmZ+hwJuG3sqtUBLOOuUdsb9o\\r\\nHr0DYsAezw2AfgJKpjHpVxWgOHTYOCubMTACdTl/wM6Y+L5r7W5961tflM94JZJkVVyRI3jDTx3Y\\r\\nayfBM4yOGW2U376TA8q1s7YEqvVxDz4nHPdZu4AgGWW9yTMHVy+Vmqs45JnDf8AxWpGXVb7buIaK\\r\\nhV7xildMnjjPvN/97jcZVebCIzkmvlO+PIJLpy2QpXnayTBz4yEE3KwTryvjU35eB9XW649S4T2b\\r\\n56GZB1A6T4wHHjrBQEj5kCfhPPnzun6W9gqM0n3nCG4Zoz3Fy4dOmdjyzPFa4UIe6auuumrvqSN6\\r\\nQEorGI2s+TvhAEbcIXB5aKyO75nnVh6650p/Lz1G01Yyht7CK/ijI3bKc8VL+KcKw7xZ1oVeoPvX\\r\\ndiJoThdUARLg8wOVhQ4pAsDlJHdW8gAAIABJREFU7/7u7y5RNMpJWY6ElgS6eV6UhGE5Jp5JyHn+\\r\\nd3/3d1/mbjUIeRfCWfr0EETCFD4DItaEsyTGajMxbyTZBIVuWPC5CfMi8dIRUIQ3lzYBVlsEgrYq\\r\\nJooTAra4xV9Zp4TcebcUMGYuUol8Nr2zuihb7yfwKGiAjUKW8C98EgInLHkk5bABnT5/y1veshok\\r\\n7CJ0HjPWPVoQNrVPBL3cvLOc/3ilGWvp+ZSeXB5rNw8Byr/i5SqOz2gQglszzrvd7W7TuWT7woqs\\r\\nM14/CtH+AMd5hTQfRKf2k4JLWcpDsueANkOD0cEbLM+uI3fss47oW/vbLFVWLc1V0jwP7mh8rVmT\\r\\ntdd85md+5sRPBJ65CDURgnhWGBTIEjaX3zVPMF7zDoUT9RPzfLmKS3SL13muAV3ea/+EMfcpSLl3\\r\\nioB2NUoVUrJv3svzD0CRbwzaK7Wea9bkI+Ua+bloAQ2Q2faRbgCc8dIYEhSiohQPtdaYz127BHmv\\r\\nIjS80Gtyqa7t9QOQ6dROE0A/QtXAgBSfXYUXxgk0kxeM7rNW8x2atyrHf/qnf1olMw89a833Y76u\\r\\nTgM6GDBMR2+7+f/ET/zEJC8ZWwATHUpel+BO1ljTvOEZNOVnoTm5l1sjQJcthJwDg2RlyZsYk7oI\\r\\nBkiQchKOG4mbm118mWXFasMAT3/608WOpzAbi00VIuEpxwJogJZ3tSxYWlwehvKSEBtU/r73vW9x\\r\\nM3nYJLGzNOUCtHCY1CIL9+VZAhgsdP17AC/Xs6yNVSzenLk/AS8ghsCsFHsNIay5xpjF0ylXTQ73\\r\\nAbhDYTQgUHKj9d9yOOW+cfJo1nlcGEeeyXWRWyIP65heQyxKlZ8EKRC1ZGkxOPTG4qXQ8+kP//AP\\r\\nVwkLrmjCbp70b58IwnI55Hlo4gkMKRZBa7wEvIvCVJIygSj8A1RgdPmMDAFrzyJ2D08cA8Y6SMg1\\r\\nnytVfKE559p1WEPn82sYc7zEDBx8RgASaAQeucGA4ikCwM7DY4o3gFyerjxiddUfrXwhXP2xeJJ3\\r\\ndZlXTSyf7SQv8jJaITN5pAHkRzziEVPuDk8bbzQDlecZACOjeJvIJb8Dy/IDrddJFfZBWtxXheU5\\r\\nxotOlzp6z/fFs2qsXE4NLyzvbqd5uIcMJw/P6v3wHHJYEjPvqtw+rT3oFLQhisBALieGHAeG6QR7\\r\\n6TpGKM8+/WJtKzoB1DoMHSBmLPJWMhh5J/zNsJHLWHubY2hZmGye8qI3oXl5Z9GPpevm70N/DGlA\\r\\nn44yPnyAlsimztijU0VX8A19Zf7AZ+Pg6SJL6JR9DUmPme/8HmcR7ur/tfX5AJM94zCwz/AIvYMm\\r\\nOW3sNdkKKKE/YXu0gL794CNr4xm1X/G5+8eGpP6uR+EIsDzT/+0dcMbgnudoHprTKcOajJwBGyiP\\r\\nQ5VRloAySs30AA3KYZ74pzoK2OEqlyvBCkDghDILj4eI63WLkPZOzQQRh/sJIItbd11CyYSXejsB\\r\\nYoAKQqyqClMCV4S2DSCwMCi3vAWuJT+mhGYDYRRZHZ956w4BCtZQVsIhELS0OZQZpqrlxdI13qEH\\r\\nF6uuYzMQIQE0JkHe8Y53vKjybEu7gSUmp4xqZgkU8DhS6N/1Xd917iDzEMEe+33KksJmCOhrtKsv\\r\\nlhwnAklYbld1znwcKhExJIOEJY2m8oJKMlXt5/+PfvSjJ15RoYie5fUAVPiFx1gFI2Gi3YMcC54p\\r\\nlpPwEtCnyITRgPF1WC/Eo2UKhX1scum+ddU80LvOC6gvvUvIE7DF34QZviUs0TThRy5Zh7Uexa10\\r\\nIgzHMJxbqEInBPe+g98pbxayFIsl4I825I/hGeCYEjTHLOiUAhDhb3IKb1MEFAO564dRy8PGo07B\\r\\nkGWeU/Uwo9i1PN/kF8UAeAAPKZVylMhD9Ae8ks2UEZALfNQ/0DPc2+kGDFARiapRGQPmwFB1P89B\\r\\nx5dQap1JCRx4F/rssGTv8lz3VVxi7MBBPQw7AgVf+Ueek8118zbPCinM1bjKs6lBpHfSSVJd/Jw0\\r\\n5ZzSBFyDx83/Na95zaQHxiKRrTS063rheAbS2rwwuVvoQD6m9a+aDc93eLE1tfYVPAES9gFtdV4f\\r\\ng2Qs4uqMXjQjv5enjp7VPNpn1sH+LPWgW7MWckAZ9VpCrrl+1zUqBe29H3TEkCcPyEz7RRagkVqX\\r\\nlDtl/uSH9WLAuK52DJ6FT9C/ffY5WkJX5WTVM6v2Du6xlvVGREtbG6heUBlIsGAGGygUkLuRpwaw\\r\\nKoQ3z/UQ8nCvCUo4L8dDtZTPCEcKw0Sf9KQnXeaRyfIBDiwYC0QHeO9jJWEgz1AxNh5Oy6rTf0s4\\r\\nRX8ZBKGhKSBmsTCaheusvzxVFs6CIUaLnRC3UZVzypUYc8VUbFGCfq655ppTT9iV6jsj1GT+lK6c\\r\\nHmfhCRsSbAiCRYfprJXxWx/7Jk8OOKSoAV0C1d5guLe//e1nIngxbHvEuwDYEoRCuvtaEpyFweTV\\r\\nYTDATmiSUCS8z+q9ADg7uobFt+vQYF5cIXD0svZcLSX+aF3PKIqAotLCRJsHgB94aPxywQhIzUWt\\r\\nq6IGdMxjiacI+8c//vETeFJ55FmYO+WtHw8PruTvsav0WdZ8372sUopnVxuH83gvDx6QQphRkoAI\\r\\nviQX/E0hM6iWcp3O4/2UoBYxx1R4ef9NbnKTyYu45BXlMSM78CTPHFnjWnKq+ZorOgeu0Sj5hKcp\\r\\nVAqDMnW96/zzw4NBgWZl+8yzUwxkYMd84CfPr8FivX46MNc9KbUaM/rMs401EOiZgJffWf7mRK56\\r\\nN/BjfJ7rJ2+C95Xf4u/+nxcmMECm2fMMYevgmp7NQEpJkgnGzNvLk4FvgCntgawhOYqWjA//dci6\\r\\nsdagEvC5733vOx2DBqAKo21pCnsetDc+QzhLBMnYraV52GNA2W9yI0eB9fSZa+yt69GL9bPu5k0P\\r\\n1/ep/CPrYD0VhHkPb2E6017L/4UDth53I3VI6gPj9CzGGGNxLODCm+Y9Og/WrLuIEGPWHBkl9te+\\r\\nA/F+F/5DDx17V+ucaN/6+t4ao9Gt3jmK96KcDsp8PFFbewVWl40g/EevlVYLPDtQIiQ8dqxldesd\\r\\nglFsOGCA4VheoUvAyL0IgBK14ZiEhbarpJcHwlgwujwZyX2Vb3sOwAEkWhBEQghEWIin9vl+l2fB\\r\\nIkNE+9y1wKJ3mYtOzyyfjunYt8nFhiWtGwfBuebsxLquIwpMYsMxFE+UPKzOdySAKJ7yOJYqVLjz\\r\\ngaytbs2leQHDBBh3tfkolz/veD4QrQklpgjwmjvFRAjua4GwhuGEa1SRet673vWunaCTslfdhhH3\\r\\nJYaO72R1CvE99alPnTy/aErLEken8HoCqYS8FiL2UGEJ74GqN4xPafz6r//6NCZ9dQh+IJag0j2f\\r\\nlQmwFQaUkAvoClvvaq+wZk3WXMNruaYMfc2z9l2jGMVa1CoFr+F1QBL4wdtXou+aMSmsYdRtPSKp\\r\\n+QDC8lye//znL3aN/7RP+7SpPU299mp10ZFiFABPuXAknsfXu5rukinGyppHo2iIEcvzXaIuQxEP\\r\\nkbOUE489BeF78pJMJnvJJYrGO/NyuZYM5WFioKFF8pSMNgfKXBqD++wRECQS4HN07NkUvTl2nhsw\\r\\nVKjGc+UWei4PVCDK94XQFOq4txMszkpbh+4/6T0l7eWoatlDz9/yvQIplYHo3ZpYy/qwAbWAkh9r\\r\\nbY3slf2zz1Xo20v7XR884TWylOxmlNuDWhHQ++RVRSF6SDFsd3lkd81FNwHh3X3Rl33rIM/MqRF0\\r\\nvHev0Zdb1lUqAkxj3qUN5Z3CK9arPCyAytpa45Lg6eP3vOc9m5wVFwApuRxjDydIFAMBPGPVGYZn\\r\\nydoIXpJ6hpgkBQ+5YmiAhsdKear+MlAtZtRxGDpGBPtc7gDcCVqcjg7BuAQJtzklj8mVjc9DX5SY\\r\\nBPHAVOf4AVIWx3v1MAmZG7NnCQEQNggVCBybS8qZUS1E6BwiHN7AelNJDLc5hMzWZFaJ+cAT4Ou9\\r\\nnnMsmLG/rLpdRQBrCHTsS6ORK6H71re+dROhrXkPIUfRmHs/9hKhc2+f1Vsj3COHUIjw3e9+997x\\r\\n68xOqK0NEVLQABY3dp4xSoLAQKvamkhkp0zqqKwiE/3xDFPQvINoGpgFzihCLnvKSYhDaJBCZljw\\r\\nZBJErFWJ4FfKuwSU8hYfov01+3voGkeJCEVKT7DnwrgMJ0UJfoTFyZWz0PKuMahmZNS87W1vO5qu\\r\\n9Qt79rOfvRhi+dRP/dSpS7z929qs8NC63fD92VdA7iUvI5qj9/DcdXX0UCk5ALOf2gmUN1TYq/6R\\r\\neamqjC+MSnbQfQDCPn27tHrSUOht+meL3L3VrW6lOvloHlLxyCnAQTMvrjv7Lt8IqJ+qgDuYPs9f\\r\\nnqvChhkbQC4dlPHgGKwtRRSnC+GYAFVMlDHFXh8soIpXQczfRrImx9wV4RRKxPe+MyCWut5XrA9V\\r\\nfsItzmmab3IJ7kJCevJIonYvsMOK1c+GAmpCQpbyfnhydmXzf9ZnfdZUzQX18/qwlAhrQppC8lzg\\r\\nDUigzIEqyhsYs5D+QfhVkgBtGjPacJ4vY9oKmHYRhlLpecsHFZhCTVzWuxqXWq/izeWEOcRXOHHs\\r\\na+YzSe7GfhahDjgCBoW7HLuicuW882H0M2OFWf9CBFV8oD37iT7P6rFBk4TW0nEs7ZXWBGjhb/7m\\r\\nb1YJC4emo3OufHRSFQvgxSDR5kASsB5U5tS7HYXhHh66uva7Fs2zCBktjJmxNxMDyLVyArdWDm4V\\r\\nUvLRCBX5T4DieRd2zMdzhzvcYTpKZN5oGLDnzWKkscqPKXLYN3ftWHiElnparV2zj/qoj7pIzi31\\r\\nF+OVFPpR6HNePX7WjuuG6w6vgGNY5A/xMDLEKVr0fqVSQXaNiGEubUCESIi4kG6NMHm0Ro+Kv2uc\\r\\nSb9VDcdLQ6+ZS7lI5sZjuYV3NNH2zjWtK+geKRIf+tCHVsnMXWvAEJaaJE1mbMty1jZDvHT6hpkP\\r\\nDABnlEdoLOVmFf6mgwAr8tl3dJOCljn/7jt55IL4JoDEY0VpOtC3iVMGXH6Umz46Wi0kYCXFWwTE\\r\\nwNWrZL+4qbJrFgBrDQr2bA38eKCgRxvOMpVUx5u0tlxcE07jsYnzRHtjpsxY/kAQTxRFDYhQRrxU\\r\\nLZKF8x03Ovd6MVYAU4iiHBBEzXPgfgBD8v5alzXvRZVR8qIilDGXzBrOGVh+jZ5dXNXf933fN+2F\\r\\nUB/r17oZj3EKM2EmCofr12flF7Fa/LBoeD14QsxTzs/ao1/2iSRFDTyJOlSPvZHkwQG3W05tBwLl\\r\\nlMmh8A/gRfzlktQSgrWG2M3xrMelCHmpHtrXr0WxAYW71qPBAuZhAQAZG7xwGSK8oOZRDxUVhzyp\\r\\ngQjeE/QFQLLe0F+hQLldwrLoIW8yAaSyUMHJla4K4r0UDhaulBcG9I80fFh1nc8VLFsCkXElhEEG\\r\\nbGkmemgUgC7a6oiSQ9fPv6cYhX3l8Cy1l1FJpkKNN3CtDNk6hhuuP9sKUOBkJqMev87PlZV8DfTU\\r\\nW+xsb7v8bsdBqXLmlSbvyHXj6eBid/CqF+IqQbtUEveVq1bosFSZGl0DXXSGXLaxWfi+uZS6QWeO\\r\\nR0nN7zkBQD4+E8DyACkXdB1nj/AzLKHAB+idV2ly1JAN9IfohP2riThdD3P4oZuE4VujDnWn5/Ng\\r\\nzc8t9B09SzZU3T8/xBvvi7AtFRhd0BgMABgPgiRUxYCBDYr5zW9+8yULxhoTiuMlYnmPngwJalrl\\r\\ne6G4b6EMKBAiZY2vPVJGPpdWEBLNgZWQpaqCpYZ88lIkBEvGBgqNr35CQIe4qzAAgjUe4/OZ/yM6\\r\\njGMhezaGIhSBGwS5pGzlTFGsvoeMMSAPhs3T5sHarkH/I7GqOvJOHsGIAwEJP9pszFIS/9izBaER\\r\\nDJgQ6FWKLewiiRrxAURjHtN4Uvw+BkMPGHb0HDm3yxprcmdMlB6PoL91IXc0y65n8lQCiHKIeOtK\\r\\nhAWuMEGlshil86E8y14JowmRnaWDvGoX79nVw0vHf/R9cirBKmGBVuXfyIlihNhDyba94653vetF\\r\\nRQgBp5NecafP1mqBAAO8CBZ8U6KpZr0MhDEfjIfN+NYCwGOVgb0HrAC8BIvQugoneRy8TWtyEo99\\r\\nf/cBoebL8yd8Qfmc53ulMgD6uypLD43f/S984Qsn4Ld05qcDgclURumVCuceGuMN369fAUYtmVlU\\r\\nZ1ebDk/UzoLcZcwqPqFHFKWQ0Yxiyl7BVhXq9CoHxLwpMVCB7xl/7kPjnfrhWX4qFAAE6Cqys6q3\\r\\nkve9jzHKo0V/81oJN3YMl7CfMWbAr10Vet/YgZ2lU0RUT9PNZ+nkzgvGU80ZI90I4HRsHcfPl33Z\\r\\nl0354iPAcT1sQO/IEVTopi1U1ZV0e41zAauKNKwZfSMUOB6Z4zmup4P8a30D3tIX9oHM+VpekuAt\\r\\n614ORCWtPDbjmW+EhJyoFpnCzooUSlRtJxRHeXbkhDYLPGSSfZes7bGVgXCEUnUeAAsDFEHciMWY\\r\\nKGRCVh7GkhveBvCoIaCQfgTpPiAI0fEWYACLRtG63j9MwlslcRMB2ijz9bd321wKkCcBWrdBFB9i\\r\\nEJ5bS6iHrvvCL/zCKYzEY3iWs7V6j+Q+jAv0jlVxFLc4/SGvFiVrHYBTAEL4SqIthWJvCA7rCthi\\r\\nZES8FD9HX/oK2aPKu/3OShC+9eNZhEdl+taifeT5JHi2HllwaM3H71VtolkgXEhnTdmyIgzNJuUz\\r\\n5gU+KZCY6IIb2YkGwDdvJloHzHlbhYmB+W/7tm+bDm/2z6GyBGJJlfZQ/iLAFp8Kc88Pnt0yzzXX\\r\\nWgtFK7wzgUU5kqxKAosBcah1yZr3HLpGXiI+fNOb3nRufDa+8xGPeMTEI2uLGubjlWJBMQrbLnWb\\r\\n14bCfiueOGu/qENr9b/xe3qCspu3OijN4kocEG8dO4uS7CsJnGdL5R0lDsAwhhnWZJ/fJZ9XZGXc\\r\\n9aYiu+gYxj+jHtAi//Ay7woFD9T556ceT57huqou6wdGTnbmYyCMXqr7uL8Z21Ww0qeiUYdk/i4a\\r\\n4mWTawpkzY/eYXiRFUutk9bQJM88HpGSJA9O4Z35kb/y0uh985CuYP4S1q01vW19FQ3BCZwR1o1u\\r\\n8gNMua4iD3/n9bOehQbbr7xZFRT47cfzrN2WdlOnwkpeCnDj4YCELP46tCsd1ZyRAIKOtWQY0a/Q\\r\\nEM+RRYcGEd/DHvawKTHbhqjcYumOZ7vJ64H2LRQlz/VPYO9L5v78z//8CUCJoy6FCG9605tOyfGA\\r\\nlMWioOuLAsUDbBEkAMZKsDkYBCFysapWArY6odtn9aah4PZZuJTmGLbogE6K0rphxnnOFa+T5wek\\r\\nVIwJI6jOrKpsTpzusW7yb1g9mBVz8ih4lrlW7YMogMN65vA4jmFgIADBrTl3jxLyXgiewBMOAa7Q\\r\\nDAIXiuyMSSFa/dQIJWtuvQkRXgI5Ya5HuO4lODBOvUlc6zt70tFAxkjoEBD2YZ9FuYaZD13jVHdg\\r\\nTgL5Gg8kDxQhDGwTDELfwsTc2jy3Dh9HHzx+QDqPMd5gJQNxqgUZMM4qJEA6YUAYME+N+9EqIQL8\\r\\nEyhXqrlo68NzpIpWR/MAlhCxkOHaEMOhtV7zveRUcuJKVTPyKKLVd7zjHZsBnDQLeWpkBi/VUvXT\\r\\nJ37iJ068QxYeOnt1zXr8b79GKx4eDF57hjCvPZlCeQIo5AfZ7bvSB8gSoXk8yBvsc/8/L0ArH4ls\\r\\nol+kqpBl+JRhSLcYj+q7og7GWNSFXKYD6CPGSa0UgCOGHH3leQAYHeod5HrtMchI8rHqNrRk7uR7\\r\\nOVi1zXBfhmr9sqqSox/JaOvCIH7xi1+8md7JLZ5YcmweUndywdq81SUaJuPkn/GQ05ciXkJv5KvP\\r\\nzJn+8M961dLD+ktT4vwpRFh41P9FV0Sz7EmVtvURK5HdHtjfPFeFDu2htec4stdbCn4ulBtgMIgZ\\r\\nSixxVuyVRUZB2xg5PCzwgBcmEELj8eFtGcGDuCSXKSZpIXiN5F3pXD0/ZPqQwNAfSPPQWgQsueE/\\r\\n5mM+5qKFJ+h4Brwv7wOrXwK9zUPUGBYjIG7KHbFQ3hbSfcAk4oSoKXbKnsduX28Qoa+lBPgt3ep5\\r\\nArWDQPyjl4b71TraJ94kBCUElavTfBBQZaV++zFe3ibMxzIAxFTKjIcEa5RoX9c2wvNcXgzWuHVh\\r\\nDdRgMCsq16trs7YID9c3RsLBfiH0eh4RBJUk+w6R+2evPOd1r3vdZoFwiLbm3+tbxNNmfLpvj+1L\\r\\nulbYGvNnEKiANG6WF/CDEXlsGS6Mgs6EfNzjHjflWRAGqg1VeQKRWjDIzbHPiiokuuMrIdGxkvcH\\r\\nfuAHpnYA1lwT0jXnYm6d/3g9zwuFpv1E/YGui8N8pTIQuFcKYDnQ+kTJbaIvKQLCyWQL2mb8zXOw\\r\\nTrwrk3LlmbyuqtPOQgfX9r1AazxYXoycWUaaMJC1JE/GxGSKc+xjVP8scp3T4Eoe68V7k55jNCl4\\r\\nodgBsMJ1jFG6iQPCd7XHoPTpIXLA+Mlx8t+1dFD9rszVffUZ89zWgbx1XT3KAI/SZFzv+UCnv0WI\\r\\n6Djes2P7yikKUDHrGWRk7ZUe9ahHaVi+iYeWaIvh7/iijHfgxlzJTbnidJWkdS196A/6cJ8n/WlP\\r\\ne9qUwmF90jH0iufSRzVwBT7Hgjfr7zt61r6Ifm0CWLe97W0vQst6XY3eF2jdBL0Qcf7cz/3c6aLJ\\r\\ngZBMTqnz9ghtZGXzcvCkIAYoOURPWf793//96oX3DkQBtRJexmExTJK1uNR0TAUhIpczQnkRfiwN\\r\\nC4gw8+JgTM/2gxBVGlpUihCQxJCYOA+XuXg/5WkdlNcLjaw5K3GrYMKoziwzj125TMdWUziHj1sV\\r\\nk2kyty9Pate4ASv76jlyzDAtRgcoKP2sB2tuzfxgAISKoOvO7NpyrRAwRnK9fcnqy9vo+dzvEsiP\\r\\nzZE5tA/aJLzyla+cAJ/3FZdH+0sHIqMt+8RTqyqHQaEFhIRwawBEAeSsL6FYALEmlsIa2p0AyP6h\\r\\nUSAe3eIjlav+37l7JyXkp7xjH93DGzavtts1T+73Y/rK8E6rfvvwhz+8mncPrfUx3/Ne89jt8uoe\\r\\n88zxHsaZ3L4tZ3fiVQYohVrPIt4T6RFjCgPaQit4RArGlQbFZ12L6/p+OoQhyIPMg0MhAg/WD5Co\\r\\n/Q39k4FHnpDTGXZjeI5cKTLDkAQujuGFfeuinQmezTNPb9XNnnwjy/yYC9le4nRNWlP09AovXT+8\\r\\ndubkGcBBxifZSRdK+haxSD9aA550NOnHeKwR7693kNnG4jBzn581BUX1NPlgrsAWubklhLZrTVVQ\\r\\nA08Atb0DqhhYx1bwiw5I0egkA88sT6sWTniY7LeG9qmTFay9z62xsO6rXvWq1bLwwlzwQqAsMhsr\\r\\nFDj2fJD4J2Ea8csT+emf/ulLXkSR1ChMMpjwhRws4UUhwnlZPEXDXXqSQD41mKSAKSifAToS0TvS\\r\\ngGWPiAmppZyn293udhORIyYgzyLaFAuHWVVpIQDjt2glIBbH9c6O4hEuwAgUvsVGnBL45hu8S3GZ\\r\\nGyWL6ISHtggtFWw29M///M8vu0+uDsEi102ozHoZGxcoAQTIAI3+Fqoy15LvC9GxjDxDSfmDHvSg\\r\\nTWNzjpqqNoAHcOq4jypbvCuLgKAgCOpLVsKh/cxNm4cqq4wQyU3eGVD1JvEu+0GJnUeIUPUqI8K4\\r\\n7Hsd/FX5dXwCj641lVsx77/Em0RgCZdRBELeACcvLcPjF37hF6ayXknNBAZPcKBJiFW+AqucJ0xe\\r\\ng32sh4xEex5ldM6TbE/HKpUv/dIvnc7A29WYdwu97buW5ado5d///d830cl5vd9zeIBVTaLnfa01\\r\\njn2ndAWAd8tZbZpBkoUUKQVH5pAnQhQUIjolv9AsZddZaNflOh67PtfWfby7dAVaBwzIBn9nDJeH\\r\\nNKYVUJKuIzfIHXxLbnTsib/rF0WvdAwPTwQ5KIH62gx1z9dSFbWxyt8znnni+3mv/bGG1qFxaBLM\\r\\n6DMXxVnz/KxD96/9niykY5YKXHi06Cb7TUcUylVZSBf5PABOJ5XIHhgvRaUIi/e4rjAkgCVqsKVN\\r\\n0KnQZCU7i1ASl40m9EcwIe8C6ACcuD1HxcxdiDF8DhVT5PWpYulLkKU0eYB4iyBeDEEJmbjfBn+o\\r\\nFX6HVmrmuORVcAQJgccVy9tR2AUwBEgIwOKsGJO3CjEQkOaGqQEvjUWFNyn2kuVsjLwozwYEjb9+\\r\\nWxh3aTxriWZ+nbwq4Tf5P8bkfYSI9+QuBsC4kct7M56SpYFLQmmufO2TtQc23X9MyMV+Ahv1KzM+\\r\\ne1u/FusKLFk7P/7uaIeqXqrm6Dr3mJf19Bw0QYjWroG3DUjh1fRMtOL53/Ed33FKv5QwQLylCVzr\\r\\nDsyUZ+U5ergBqMBSLvR9h+je8pa3nAAxkGYuvGCUtb95cCW+ywPRcgGzduSU1gOsKkDJPSoqrdUS\\r\\niFClKM8RqOYKv/vd734Rfa/1YB1Li0I1eqnt63x/7LPX3mfuDo63L1uE29rnP/KRj5z2Qchj7UG/\\r\\n97nPfSZwjU7JxCqpeavIIKkRlHudtdE6wHUlmieunef19To0xsBgyEg16HzVTsAgL8g0cqEqL/Kw\\r\\n42CS0z5jLAWwzJdcIQtdg/f8cw2DiFeZgXPDnpwfZZCldK10omO9TftGQz7z3I2yv+vJV4V2HYcH\\r\\nMJGn9jpQ3vE4aKozHvOIdnxUEZR6jqEdNOUfObRFx0wK6va3v/3kjpNoPm/JIB9FkiuFs3ROl+RQ\\r\\nhM8tbtKsep4m1jlQwhvGu0KByP2RwHtMc0TKKHDAzbuUiyN/SRPMcmcof/kwQj8YiXLyW7yWsjIu\\r\\ni0ox8shgPiAAA4r3YmobZEMxvYUGED3HNW0y5Tse89CGz3Ov5NdYk0PN63gNgF0l39ad9TtWJrGe\\r\\nze0Y9678GURImQOhx+TNJV3NAAAgAElEQVS0sPitab1agFLElzcKQZd86ncVnfW2QtgVIdirPrcX\\r\\nlR93Lpo9AcxrfDtnPlYLTxFPqHEwEOTfrW0F4nmKOGqCa22Fv4ErHs8qX1lO5riUMMurJzzY+3kN\\r\\nWcjW1n08mcakfYPcLQK/58pjBOZ5ZwBkPbow+LyRLj7UU47CFkYQwlbNNJ6beX5i8v9/Etc6Xrk2\\r\\nct92jV/IVMPVK+X90cSUUviv//qvVV46BRA8n/abLJpb6yrPTg69Pc3xZBSQfcfw25XY1+vLMxVR\\r\\n8DCQsXiuI0woSTJAHiJDiwGcPMYf5K1r8aTfZFFeK9+Vm2WeY7m9zwsnAnTkMceAgpzO4G1tyl0d\\r\\n8255nj3P2OQy8VweigIIJZO5AB1vt6iG3E1ODXRh3uZBFnICGJ8wJsOfV5sOq0loIUNODI6J62NP\\r\\nNfnSMAMPEl17TCL9WvoUhbAfcqvJWca/H7wZDVWJmUfK+tLz7gvQFyWpeKD+Y64NnJO9jLwtwPGC\\r\\ncAilRjGNieOS0CVFGwhrfK6watnAyzJ6b/TK4AHiBQNa6pTK2l7TP0KXcn0w8gYIq9iok5L1yTuG\\r\\nQHflcyFayp+Ccw8g4t3CdJQxRgYIVQtmzfAE8UxZTAQOKPi/vztjC/GLv869CxSy6zAKNy/GMGfP\\r\\nkNMlb6SKR/lL1lOuxz6mdCYTd+vYm2wEbaxtzyEUrA+PFKXuuYAs4pA7ZEwIzveIrKNHVKGZlxDw\\r\\nsQz6hCc8YSqprUqztgolmfptPQlHgKuKTusCcPk8QWhurs9Va9yIufYMWnwsVZcCsLwr1oDAM3fP\\r\\n9EP4qMA7JPzmjNyhzcYOTANCqkG9h8dvpOGTfnCTUtaoElB6yEMeMr2bR7cTEZQYqw78pV/6pela\\r\\n7UTQZEfqyOkjZK+55popyd2RHYydDoeuCSag3Rlj5olur1RO0rguqiHXtKo4JBTNY35gfPcAJYw8\\r\\new/YEmoUqjYokoJPGs6uAkCHxjH/XgsMtPwf//Efe58vz0aBgX1m+JAHS4CJwSXk2JEc9sq+8Tbv\\r\\nCnEyDhXW4NMMDu/431pxyJsu9EwuBJaSAeVhAh3kCt4gq9FGFXJkSKEc65XHvNSD8jvJkc6o7VxT\\r\\nexHwcj35SNHyMNY3SnEJkOAddEjn6GaIu96Y6Il6ICqUIoN5rYEv8qw8VO/obDvvL3cVT1eJbR3K\\r\\nEy5hnUwr0dq11kOUyPyMSz7ssednbuWTLdczOjkJpOxITE/2bXnGoWsrfLMX1tYP/YKHOgcTvfi/\\r\\nNU/vBJgqssrgdz968GMfChnW4gI/Alhbjq1bFChAiuZdQNLcOpNbpKmkgS+ViN/85jefAJt+SSar\\r\\nTJ2QZCVIymXFEyasccSL8FQp8Qp5H/BDcXTA6LwZWt3cufN35Z/omSPHSC6MJGRCiudG2M3niL5G\\r\\nqON5hgAQkETQIWbEDZDZkFrmW2TzEi4UL5d3BszJFRO60TcIk561UsiZTjwVmA/jC3/J7wCMWHPe\\r\\nCdwSShjOnAgB31Pwo9XFgjIP62X/hPeEN1SGbfH0jASvVBeQJlwIRHtp7/JIWTMAyfiFUOSh6FBf\\r\\nOwZMIeSJjlxXb5JKrhG9PfDssXfXEtNJ+rceBBFvVoxE8LICAVG0dchzqnKlzvGEMoH58z//8xOP\\r\\nfMVXfMXU6FJIuWokie0EHnrHL+bjPZ3RydMhx0PxiDCUudlT3i7zY80aH2+iuVLYPu88T2trHQF1\\r\\n73B/PW7KYyM89lUC2W/C3j4QQmjEmkqEJcSXKiTnazyeRblP6AmPGS8eQQvGje7wsh/0CzjilRK9\\r\\nnWYA3BiPH+vuhzKsMtW47eWWIplDwnn8Xkiex2mfB4vcYdgYkx80tdQzi2FKMTMS0bq1yDtB2ZNz\\r\\ngBfFUysS11W679muwxf22vqhO4aMZ5WPRI6hVc0V0QIjA/1ZJ7xQzz9AwfMKlxi33D6gFaANPDB4\\r\\njMPYXFsVG1kISPhB2/YOj9sv8yJrGJX2k/z0eTxu3HXLRrs85ujDKRA8sHmfytNMSVpjfFW+TIcZ\\r\\n4+tK533vbz+eWRuD9hW/VH4PxBX+KUm+CkRzscb+7x85O8p6POL/1qB9KcrhXbWl8T0nBVnNI0ev\\r\\n2UN7gf9KebB/ri1x3f2lTPjMGMynVjWFS9NBnuP6WlSYoz3hAT+UYrOFJ87rWkaV9X/1q199tHEE\\r\\nL6CfogcMGHSKH0WhOvy6BqGttTnktfJZnkwytpBfYUDX5q0qDF00pbQczxAiXJP3qjiI9/WSSbMq\\r\\nhPS8SG+eeQjqbne729TJVU7VPMmcG5/nCKjJ8jZoXbNZ8wQC4KHqwYJjXATFG4XI5u3nd20wa/qJ\\r\\nT3ziVAWxqxxUlRVFS8jIJbMZgJNNQowWSvWW8nces4ALbw+BQJi5B5ET+Bjfs2yQnkb+jWsDkBJ0\\r\\nleASXhSn5xAOhJ/nYCzCiNVhEz2PoK38vTmboxCrdWIR3e9+95vup7DMI1BFQWNohJDFD8TwAJy0\\r\\n3DjdX3ks9gBz1j7D2oyd3bcwlX4nxkFgEAKeW5iQMKNgjf+xj33shPgxidCbewohZo1aA8/xjxIp\\r\\nwdwzrJ0crDW9qHgYlHa7n1AsN8z6lPhPCFo3tEfwuY7gF7YFgoBWFUYPeMADJo+UdgnoFgjihrZn\\r\\n9hb4poTk2xhnghHdyD/wPOEPzIkOakKIjtCENUBf9cdBY1lM1qh8NbwBHM2TMwn7jm/wTMAN70n+\\r\\n5KlV5WldKW7/8tB6t/dSKviccEK7FCV3vjlVloymKAshwte85jVTDhwF6n1V2Rp/YR3e5Spwquiq\\r\\nWjRPADqpFw1+q0IX3wUeChW3hyUnmyMQar+2eib30TYZhW7e+973XqYE8A3DrNMa8COQqshn6VxG\\r\\nNMTwMAfzyUtbzyK06DPrlje3NieFvHweb0TL1qmwu7Xy/O73d2Erz6Z8Ax3o0Z5ntQdi8pSVm+Lz\\r\\n8pfG39FkVXAlkltPe4kuy530XYnpPi/PpYo5z6rBY/zuueWyGre9NqaS1gEe93h2ffNq25BRRu64\\r\\nJoVatbLPRi+5+/2LV9EXXvDjHmvgM+M0dv/sE14PVCW3rXc8WvNPz8VL5AN+Mi5yA++7hvw15kC3\\r\\n99gf78WfxkKWWJv6VRmbMXd8jrHkXSHn8SJ6w+tkrRZIW+T4tXGtsKq5bfH8jOOSdpTHUmheyNQ6\\r\\n1oai4il7Y7+jh0C4vfVdRmlgqlCxveyeAHwtP6Jj7xOp0pZqrq+X1pChpehp2gyCkxcJgQtdzM/4\\r\\n4qWh3Am3eUWcyZcbZRJZmaxenhZZ/YQxQLMrPLBrk+WnACuInuVrgSg0FhBhu1Rl17NUNQjLINy8\\r\\nJIhTdQGF41msCxsnFGGRIU5E6zqLSbFQAt6P6TGQsFFN7GygZ2Eiz6nHU+c+VWXnu5jVBmIwzyJE\\r\\nCBTXlT+QIMNQxp0V1DMTeAipsdv8GqMiCExX764OrxWGkmcC3Hk2pmbNzk9KX9uzyzE7aMZaFdNu\\r\\njQhFgNC7lg7l5lHjsQHSuZL1jDEma2ItzNXf1pmAk+ew9sw9yd/AQ8mM1tsY/RgTJQZ8okdCkIBb\\r\\n6p/CAkFrWmV4HjBmnf1gPuMlBNG8ffcZ4ZhgtG8BaOtjz+2X6wrjVrgw5pGkgNBBys+aWC+/UxLG\\r\\nQmjba2NBw2iigoKUZEn31hC49EzeFWPF71V41jcnb4dnmZu5E/h5c92HBu1NyjAPZEKsCp0Uv/8X\\r\\nKrGfJZWm7AIOrg8ApoyNI8u0Y6ACacYEVDKaznIuoR5mwPMHPvCBU+VEKTAIfG7+1l6+leOL5p5Q\\r\\nYV3rwWshWbvz6hLOaCYPin0tfJFizmIOvFiXmk+ihypsPa/Qe4A8OvP8jv2yZugNbdQjiCEG6API\\r\\nZJZ3kxGeA1S71v3ekdXvGvsBNOBptOB3Pfd4wOQB2gfGCHkfeDGuGm2iLfdlCOZ1SuZF5/FBABtv\\r\\nVk6fh8p3eSOMN4OsHKwaeOahKmWgxOXCkBkx1tn6JqM9x9/RpPfmgfRdPJi3o/0wN/xgvchVqSGd\\r\\naYheA1j2lozwXLrNHniG/Dxrhs/LW7We9oNBgX9EAdCY9e9sXHnATpHggaWztDOQmrB0lM21AaYO\\r\\nvYN8JofnfTMP3SfXyjmtUnvcXz8r+5w3Dx9lOBSWT16PoCpezAgKYHXt6KEMfAdyhbW3HNF1QSjK\\r\\nZklSn7u+tGywoYDVvHzUocTCIn54WMYTui2Gzs81BzNZimrpEGCeL4QrZOV6BIrYgB2AIBc4Iivs\\r\\nBvAJU/I2LOUpjZslgRVQMseEFWIlbPwfMxDQUDF3eozpGfVuSnjVqwTjZz1h8gRlfTXKoUAEvidc\\r\\nMJXrvNP3WT+5w1M21irh6f3GE2MHYDC8z4FewsDc3O8nb4dr8ywBElypxmAOhClL3N/zxE5eoLVV\\r\\nEvKwhLM6VBsQReRohjdk7cG5cs48h9fF3hi3OZm3NUALo1d0HzMC/OZuvvVji6HcV9hFPtquBPF7\\r\\n3OMeU16dMbzxjW88VboqZKqAzStAANpX7wx0eZ95JIQJzvIoohF7UL5f1Wbm7Z5CNZ5pDSq0yLIl\\r\\nnCk7dJSlzHtUvx/v77BTc0ZTDAd7bn/kiBhPicC903WB5axDdApUGVsnGnhG886Nnpdh7FsUMLJW\\r\\nlc+7L2+Le+p9ZszokXcosFeIKWsy69Rz85blhbNWFL31oHTjOfcwzvaFQh/84AdPh5fzTAOivMBy\\r\\nGnmbgVKFMfuqF3n+pTyge/MDLChKe9C6lF9jLp0akffC/rYmGWIlY1dpjc+t4ajk7W1tCqxJwMBe\\r\\n1e5EhMD78D4+tS4ZHUKZAJc54jF0Gg3YB+vp3npGqcZGs9baP94Eaw28AVsAQ/Kz48jIVuALPya3\\r\\n8hqZq30vBJMHovSMvBQB+Tx97rEW5uS3+8c0heQ1eeTHmMzZGo8Ayxr73P3eGQ0l0+OPjKYAc+Mu\\r\\npOf7gJn1sJZCweZTU+5kFt1oLUZ9eQhczL+XN82o14Otfmv2hhc2LzteZxDMDeit7zrv6xnXpXHI\\r\\n7V7riVYcpFAgGWjP8moWDq7rfeHugFKeK7/Lzyrlwp4nX/ztuegkR0aYwbOkOuSwWLsuU5K7Y3Ga\\r\\nqD5LXFu8Tphz6QiVO97xjlP4RHPSsUJAc1JCBtI2UNYlASC7n+LXmVxVFZepZ0u2huAJA8KGYF2T\\r\\ntAv4EWgYSHXWkpekBZDjgRAxBaVGoGMq/xJiFtaCel7HH2DKlKTrsjyzhIqTe25xepuRhZV3w+a5\\r\\nv7YQKeHCB4Se9xAigS9/GwevVC5La9TGe15hmTFenBDP02INEk6jBcgLN54xOSeWfS0J5tfe5S53\\r\\nOa2qsa81ttNwcy5cDhGlfCFHiVhrzxmFpxDVofuXvpe0jh4DBQRgHe/tlbUYD8wWLpIjVRuR1772\\r\\ntafvldQutB1YD1DaY/sbKHEv4duxQP4eQ2f2uVwjezaGWOpqTwnZ48JkxlpuSxaw9UE79rtQSKEV\\r\\ndAZEodcKCtCP6yjOkoGtS7lOjaXneZ+fgJtx+4d2jSdlnZKM/lJieCO698w8wYW9ahIZf6Tw4k3X\\r\\n5enNs1J4yLg8r/ysPAjmbe2sI4DEmmek7QNYd7rTnaYE+wQsWaVYQdHBnKbmXewZGcLYjDhr09jd\\r\\nl4ywTsLxQtOuMR7zYlTKT3Ud2eS6MUEXrfmObCz8nsckT2fg3LytQeDaugANgfYODWZ0eAfglowi\\r\\ny/OiUCIdueVevOL99tKYeec6UcL3aMl3QDhesofWwn7ZH3wcOHS9+RhzxmaguUov9xeGi/+TdfFQ\\r\\nMrh8uABfnq/ksPdk2I7Ksz2NTjOQjGUEYPglDzXlXf5WQM37/POd95RLhj/I9fgaHVoHBrEUHOsF\\r\\nhMnx7PxWa2rPeATRkDXPw4xPxh54jo1hjOpMPnrfyW2yS1ifl8s7OSHWGqfHyNez3HPNNddI91kl\\r\\n1+985ztPRnje//gkmVOiu/0LqBeOD8AH0JN3xm4vCmv7v3uSKXni6VCfkSVb+3udTo4XgfuLMqJA\\r\\ndEsf3e6AirMKMSPvj8Z/4+LIsXnUox41WUMAW9UvepxwtQNShJb49JrE2vnGQf7yj1iWQlOYjVCi\\r\\nqHihHvrQh+486gVoRHSSu4V6CIqsjtzuGMUiEgbAn4Uuwb34/ohmU0K5jLPojdsml3+Q275Nw4wI\\r\\nwBjySAl3FnZM0GNSgp6lXpiCwPCeBI93EYih8BRUFlvIPMVaHJ+wHxMitcCoc/xai6L9ufe97z0l\\r\\nhmcteA6P5y//8i+vYpz5PsuJEzJMeNqD+UkCW5gaXaM9dMtip+SALGGSXMvoqPPErG+HiKJzuTYK\\r\\nBuQ1Sar0LJa+PfRDiI0C12e5nAMefgfq7b+frN9yUAr9pRB8XpgsUGE/oy/fF9YolwAdjOAkZdxn\\r\\nWesp/nIUCmF49jxEiW5dNw/vGEu5dL2/PIZCPylRc3KN9W4t8ryYt3lU7ZPR4501+Btz6XpXRo8x\\r\\nB9CE73heWPe8KRQTBSYtYFe/sJNTESbAIVEY3a31LvAaOL6LLDAfssCc49HOBKUsFeUs5aCoMB1D\\r\\nDlIrCllZLzIXULI+3uNZhUK8py7h/g6YyBk0Z2vIEA1smhuAZIzkhucBRWi6KmTgD2DMcKOohcqt\\r\\nu9A6D1ag0LvxJj4RzsL3ipKE/cla4zf28rvK0UouxSt+22Ofj+Fi9Ov/jAbf5aErj8z7R4+rMUe/\\r\\n8U4e8YBdNBoIc13ycfToNtYxV844i1wYW6CrKENe0zFtojmWrI7XePVESzLafUfOywWme92PZwrH\\r\\n80bZL9ebu7QbSv/f/u3fFmWsNj8vfOELp/u9jy7BG1eyXcIWmTy/lgcYXT33uc+9bD4KUHiXhQbN\\r\\ng7xF69YhXsv48Dve8HfOjryy3ls+VsAs3R54tr/oIdCNJlzrn7DvmmR9WIiRQadME6I8HHdjMwCn\\r\\n0bsh5KJjMYJwg+T3+RExrDjhPMJtDNk5445bz4ARzJpmhc5GxOwmWB+Qzl8yWeDHewAmrlYLhDgR\\r\\n4Zve9KaDSl2+Be9cqBaw8S6ELRTAa2S8NpT7PKu9MBOrbHRPYq4Upuf0L6VQXkohwQgjASZ8sRQ6\\r\\njQgBS4DDD0FI6ZRcak3rQZUlOFfKAcFCCMZhjqwncxbmtXfuVyFX1dw+hhktD71i9D3LOj3JaVrd\\r\\nsHHpPaqRgH0KktDSpmFrN/yl5yJ8VZPyaxRksIiAq0IJ1ogyynPiGVz9vo8mC3uVZG4fAyrdG5Ag\\r\\nEMr7CsSg5fI6fI+xS7C1B4WXqyLKK+LzFKh7EipjvkA0FTgbQyjjs82ra7KyA1feNwqwAE1KEm8U\\r\\nbskgMQ/Xpaha+7xW0cYI6Nybx6Ck+kIwflsnvJnnEe/nqUjooXXvdi1+WzpkVo8zgIHs8g9YZunb\\r\\nf2ADgNc+gaW/xbgAIpwJaq/9tG+UblZwANP4yNXacqBvvGzNyLCUgnUqx4bCKceIR8mzsrZrYUIW\\r\\nZK33DHRTxWGNib3L3nheBp//583PICMXACVjECoNZPjMtQEJ6+49ng8MkNPGGI1aj9Iw0H9A3xjz\\r\\nyKMFY7CXaNm9fkfX7bfrAlJd67exdaxVHuLG272F7eK9vLwp1XSA337in8ZrrVrD0QuC5sqf9bnx\\r\\nyTe1Dniu412ETtNPnkWe1W8vHqlC128eSwCCXA6My++bp+7c9773nbw573//+3fqO3rUvgHoaJKc\\r\\nk2ZThfNZANG1ee9JE+iJ/hlB6C7wUwgZjQTG0Vc6L7rKaPM7kJUzIlDftQF074hG0U/RiHe/+90H\\r\\nMca4PhfkH2ACTDM/Y0fVIDCCcJyrNrcCtSSgoGsZUANNisyROTYX0yJGSspBqEsdWJV385yNIQVE\\r\\nS7mZuC7e8011sPLznve8iUlTZAh6zTlB8scIx8ATwpeDVp4Zq1aoykYVAszDMIbhRovdxudexqgJ\\r\\nhayIgNcoTL0f0Y+C16b66VgW3jdeN4zOu+U9ufsRUz1RRtc64ZZwtz5Z1wkQgtm9CZp60WDCY86R\\r\\nuuc97zkllhPAaOk8yum1TOCxBPpe+tKXbiLqtQLggQ984OkBrcZeon25KP6PflmWgaFCGeW9uSbw\\r\\n3HfWszBu+SAxbAA5D04AfAyb4JVKy92X1WVe9j9vRVZ/4ckUcBaY7wvPFO4ojBSgyrvlGbnQjT0Q\\r\\nl0Aypjxo+Hn0bFEeAcJRqHlXfBNQLFSNj/KM+dv64p8KAQIEgc9AgGsCdtbb+4AcqQLjeakjDTAS\\r\\nVQJSfDxaeAmIsLcOVt/aHZ7MVLlVjph3FXo1T883fv+MMSDkb3TDu4ZHeY+AIf98Ts4Ks9t7xp15\\r\\nljpQq4AAinXg4SZfvBMd2Ze8lAFiit+8C7GWzlBeljVgPJN1FJg9K+zH62ssZJTn8fpaP/l8hcfy\\r\\nTBpfRUP2gweL9ysDsH0PZGUQtr8pzeSk9fHOwHlpHBkngdrChSnR6NnaJ99HUOe+vOPJ2rwdjWH0\\r\\nQOOpMUKQ17hijELtAU17TBaatxQZsnoExFddddWiLBPpAfh5qp7ylKfslXcqVSV8q6ZfOlpHntMD\\r\\nH/jAC34zJBS1lBaBT1RlL1XArpWbV/K6k4PRL5n/rW9968lIypmBX9BP8jpAbVyj3vO5/wfaM+ii\\r\\nhwCaz7svb1eGiHv97f3oSRHLoXY/lwAsOSpLDUCVJ//Mz/zMFCt+2ctedtmG6zhNCDgGZHTtUYxC\\r\\nMWLJKhIJASfIY1SW4pocq30byPpDiAQP8AdZegfG7e/Xv/71qxQykCY/TMiRJwnhsRx5jGoaiqEw\\r\\negg5Cz7FWMgjAdZmRgxjuLAcmtzMCYkqhsyHBWNDCTHMylLx2w/B5dqECKHGKs8b4N6uS1kSVLlO\\r\\nEVwJxyOqz/VsTYUPj3ElOxsvL8n8NIBjGTJBcez9a+771m/91qmCrJCftU/ou1+IkJKyNjx1KaCs\\r\\n7Rg4azxGTfDah/YPLdVjp3CHPcuVnbJwTd4edFTILRrLws7jtpQ7EoAq7FEoxOfu73cKJCswj1Y0\\r\\nZR5ZhKO3BF0lwHye5yaBVL5V+Q4lmEa7rssoqLilXJ4Envl5jnsKy7qv3KuaMOIJJepLxhsPFmVE\\r\\nVgETPOA8YxLat3Rktl4KQOTQKIgxZ+O1buiDTAJQgAy5pcbcMTnmju8oT+E7a2XOlK+QHF7nWdWe\\r\\nRf4rQydAYuyuy3Oel9T7vc+zCnXbJ/9GD6QxVt3mXnRKThqP8ammpTx4udBa57F6vzlZN0YOOVNe\\r\\nj/HYu11gwVpVBJVncwxTl1OV8VGaxmiwmleA3u/kaHI1+RUQH4G899sX95lzoKz3jJ62vNfuzzCx\\r\\nhsl3fDq+M0Miz7U5FOpDr8bt/9aX7nSd6Aqa4QVHK/UOFIXJiWAPeAGrthWlQSvArb/LwzMWBV4i\\r\\nLPe9731XVeZzGEh7ULxhXPSlsWlBszVPdo1MPc9r6AC9pxi59jLAneOgvLvkrneP3m70F10lJ3Ms\\r\\nBLAC4xlK9qzvks0MGXJjTRTuEoA1/oc7ThdpnqC3vvWtiyCF10qOg0q/8fgSDKUtgoFRSmNfq5vc\\r\\n5CYXbarKwi2dicVfLQpLykQJqHq8cH8SZD6rNNcGECYsQbkBJ7lkB8GWc8UwQBVMY8JliiAlk4sy\\r\\nizwmNs4sn8BNrmdr7Jl5vxBD+QKYX2hSea37AT5zS0G5p0Z7xdMxofsT0uVsEILGWd6Bcbh//FfF\\r\\nn888I8swYOb/u/Z+H+PwQv74j//4NFb5e0utD86T8bY8i0dVQrG1IbDGKkk9zDCv71h5KXTrQFDa\\r\\nF73CCCn0TUiXNE6x54UBSNxrzQPBKTpC0VrnGQIWyiNB131nHwMX0Yfnl7+RcM/7WMgsMOV34ZJy\\r\\nTFybZR4IyuORh2W0+rPujM/3AS/jyhPtmvjAO/2/cJP3G6/7UmTmnYfX9YGwhFi85LoKS+T7yFUh\\r\\nNygXXp9aRgBKeFzy8Dx84vBc7wZM5EH40ewVkKi56Rbaca1TK3jjAQx7bF5yTY1brpM99D5rVvGK\\r\\nCi5zAVIyYKqAokgD9ORVjYrRBcXpOXlvaq3R3gW0rI01kB/lWWS2caBl78WH9oHc8Szv9MOQJF94\\r\\ntSr6MVZgzfiss2Rsf3fsSHkp9o0Hy3fuRx/2JoBsHDyD6N14629nX9FOdIoex/y6PEijfHRtFYmF\\r\\nwfN+5R3seXnJCrenKJPNKdm8vxkm1sfc8JF7A3UBrDyq8bvn+i4vsHHV3LVWHsaigtrzrAUADSgx\\r\\nnl1fDhGg5bn2yzgrJMlzImpRPnCJ3dYcrzEI0QEPVoUYgIjny49bynH2/XOe85zJmYBOvNsY9JNc\\r\\nMky28siW60vVOHQPg0MkqVzo5E4RmWh7DOuhjRwZ9q82JvYsfRzgTu4VLjQe19njALt3obt4W3/K\\r\\nLakEp+CDG50S8iNZ/eEPf/glwEQsWF4Mhh+7n0tQU7kgl4BVOD+zzBEYEkEtxvve977LwI78L+5k\\r\\nCJvgNEGCs3g6QqLkls6AU04vtFjFGVQOQAilYW7PIHgIkB/90R/dCbSKaRMeeREK7WWltsiIvnws\\r\\nY7XwVZCkjLw3S7MQRqfDx/y+r5eHje/sKWASkxHm5uDvQkGFJEoKLsnS2ErSQxjWLJBorJgXMEWI\\r\\nmMo485Jg3noTucf7WVWFWp/+9KdfdM2aQ3B10PcsShEA916Jww996EMPgtxDzHalv+ex5T0gxEZL\\r\\n2hx4ParysYYUij2wLgno4vX2y74WEszCSjlYd5/5neIKDBEOfrKgXFc7BtcEegIkrs1z1j09A634\\r\\nyVsQyEFL5eKkuPK2jZZe4ZM8IhRJoUAu+kJW5bdYpxKuXRcNlsyfUvMOc6rAw/MDIMZu7RytsdQA\\r\\n90UvetHF5uOewobAg/wVwMHz9NvT6I/l6zMnFtR9fw0dEeyAg9AZY7IQceE+RSmPf/zjT+la9auK\\r\\nrkr97Q9ZCKwIq9VbDLgBangyAJr68hk/pZzxSdaiQ3N55jOfOfGOzzyfUSmMKKGc4hYtsLfuT+7U\\r\\n5Djl736J0dZCezO1an8AACAASURBVBJjqhgFEJt78uR9eqZ2HmSi5+Hp/8fdncXad9YFH39PvPHK\\r\\nYOIQESODIIIYo3WCKCgVFK1ClKaopaiVAhXBDoCCRdtSKNiQiiDVSotTLcUiKjhGhDpVEIdolEHB\\r\\nIVGD0Qv1yov/m8/K+Z48Z/33Pnvtffa/9H13cnLO2XvttZ7nN8+P94p4FF1WfysN5RqnWzAqlI3g\\r\\nkRy86qhyDNA1Awsuyc6yANGu9XoPfNDPGNH1fs5s9J2BVao+GT4ahmPU1j2K9uUUZ7TlcGZEoW/X\\r\\ng6X9owHf9SqiXLeZ9zhwsjrgCzdohRwHe1kdBpf1u8e2qelo14xHskrGRbZBlBYc0SzagIdV+tLs\\r\\nQjByHZ1LxwkqOFKM/sGbuw4DXcdXz3rWs6YZcWCAn8gJaxVU4JwwCMk19II/OttRc5JgD/3OeM0J\\r\\nDQfRQU5ahlD6NQdmlMPJt+iiEoaMqiJZ6BRuvU/Ow3lBjB/+4R8+dkrKJnkyHS7LWubhrSpwZiDJ\\r\\n4QpzzrtrOguI0ja9uoiWg2kJJoYNBv6xH/uxSXE5vDjPCsOrysfsPCXRF4Q6n8t00gYMIpV+5O0S\\r\\n+p4HOIiPQQEwiAhBE3ir9mcOF6OCQQOgdRcK2bpnRbSQUz1LqZJSNZ6TB4QA7KO8O+a3PwYWhYDA\\r\\nM968hxEreLVXhEJY8mrthfAllBFFXYARCsHjueNZVu6dsrOWvDzw8D6GyrgjAH3fj30iMNeABdxQ\\r\\nVBdeeOEZzx/PqTwJJ5gd82Im+8I0XvC77hy2TUR6Lj+nuBosS0mjAb8pCjioFglsDs+Gm/DSeY7o\\r\\nusgTHNXcAI8Vbfu8yFbwrjC7Wq6xdqC0NPwlzBP8aI9iSji4tpq7anAy6jKcSnH7vw6njDz3QlcZ\\r\\n2RnzY1Gvv6PZUh7oiXC0LkoDjTBE3cu1Ta/uvDQ8ylPWYCASKLrU3BrC1joo6XnDh4YKtMlpYpjA\\r\\ng/sXScSvothgpVB9rI8gn9Ra4hNF5tU1rqMnUUoT2xkWTckGU00+DTWlMMdaVE0eZqOJgHMqwIL8\\r\\nGWuw6kRzVNiSKdDj+igaBimjpWg6pROOydNmssEHuuBUWj/5Rd6Qsb5DiYG1+6Eb9Gy98IYe4cyL\\r\\n/AIzcsD75EXXUsTeU0rhGXAJRo2eoLw9q9R0tINuKlUo5Tae2lDkNLq2brhFX2itusMcGvcvEuo6\\r\\nf1e+kaFG9vpe6Xj78FNa372LCJbutv9qaT2rdGh1dUWEPS8jsZRTe6YP7du64QbtogH07Xnkte+S\\r\\n8+4jMFDasHrYZjLKxLjHmPlRAwjudDJc4x1yHczwwjrDjSMAV+SyMphKbERD8al1bZoruVQWK78x\\r\\nPaBGMbC0Rs8AU7TFRkAL+NuafF4az3V0X7goVUeWNWYmerLv6hyLTo2lD74D5xnkY4q61LP3imCW\\r\\n9k2WZ2CjpR/5kR85MTU+h8/BJ3/yJ59RwL5KgbJ4IcEIhBFpF1988dQFIzdv8ddcc83kZWVwsVgV\\r\\njVebZdinsCYBg5i2zftqh04gjPNATCeXj7a+O+6440BK0fA7RAxgdXMRyJBhXbzjV7ziFQcOaeYR\\r\\natsX8tPa6kifpg9DNGZMCYxh+wws11T0mNJzz7ptqhMo4oURi3qlwBpxUMSA0ElRIjhr71XNAgIF\\r\\nfy9CpBC254kCNslcjp0BJzqIWMHF2j2jFGEROt+1x8Kj4EUAUGrWsaQ9dR3zMdIYXZiGQWGsxjYR\\r\\nhaVMva/rTLOnmNXhVQsDdwTkOBdO9DUhj8HztvxdGJ9wLJUb82NqAhstVFuUsVvqDV6qX3E/r1KP\\r\\npY+LRjGw0GkNGaV+w2Vh81KF1Uyhb/eMT4qCluLxTDRnjxnuDAzGtz1INzTTDk7RoQi39aAb8NCt\\r\\nenjw9lEUE9woHTSBJ33HNaX78Dsjh9cvelRjQJ6mwcbqOedR9nX4b24Qj3g+RJcDySACa2u2T0qr\\r\\nWsjS7aIP8yYf8ociJPCl1eyf0SHN5zfFhY6KWDBkgg9eawwLWDCGSrXhN/eigJJlcFhkpgHO7lHq\\r\\nDY78hPPqsuyj6DkZkyzK8QMzdMBAIgMobc9Ev5Q+hS0Sx6FgXKGdSjXg14vR1iw/OBqNkeq+rAts\\r\\n4dKzS5eWYk/plcYpmuBzPIF3qmW0z6JhpYOsw7OL+JcScr/qmsA0Q873KpJ2P9d7ZjLS+twrPvVZ\\r\\nDUXNMpxHTayhNDoeQqPkNB2KvjU1uF/1PGDJ0agmytrQu7WBLZqQTSAz7d1nZLeD5+sMFJEUZSxr\\r\\n8+53v3viM8bUqpT4OBakqD1jrdQ83tq1ThrfGmUDdvFSc9DATsTVXuEUb6tB88qJLBqfQVTjSzI4\\r\\nHZUxnD7FF5XBgGkRRTBKFxeU8LzopwBExld1eAVOxowRnIORMphtDr4/4CGNXXpXXHHFlPIzRHQ+\\r\\njFLEiDAiQESsKn4XUr777run90WKGGyFKA3mkyLEJB/60Ic2poogyYYJl3LhrF2ENjfOGHS6gxAg\\r\\nQkPMjW7AxIWWC0FX/AZQ3lMYO7bNnn/++VO3AsIOiSEdUVgPpENQjM1jg4jqTazVvf3ver+rvcmC\\r\\nzuJ270Kd3kMcCNL3vF+nT7U8pYaKMogKLIks3XnnnWd0P4jMFEGs46z6g5GIEWt5aREaz7nnnns2\\r\\n4m6TgWMQLW+fUubtS/3Webrpu+f6c6luwrHasR/8wR+cmjUSphm3FFBdWf6en/0lQkNoUril0cC4\\r\\n45G8h/7gvvB2HnUGhL2WfmjUAvpAdwmIFCp8euXpFeW0Xs/IWPJ/NWPundHn8wQagYQGSx1aT8oc\\r\\n7RUxTWGBF14prU2JoCsGChiJ3OLNirnt13fjCZEVBgeHwPucAYZBUbAEHJninp63bp7VSfRBbomi\\r\\nE/Ad/O2ZlJjoPdh0LFN1jB1N5NnJQWkx0XxOnL3iVekVcCGHRJDs1T3IFkrvtttum/5nhJENRTUZ\\r\\nqSJuni36Zf9F/fAeIwteGPnVMOXE1XHI6IF31xVpsg94Dlfwx1EiP63X/RiF4GldpT8ZzvDNKBQF\\r\\nFDk8HLg6RR3BY86rYxMKOW/ci6YcePRCf2NNS/Wz1c4kl0vtVRvoO/EIenRdUSJ7BY9S7t5P0cYT\\r\\n3cfv7lM92sg/5Bz45KjkTIBpkWLPI+ObQ1ZqH21mdHmu9+m4nBv4RmuMn77PQK3dvy4+4z7AA97Q\\r\\nPf0jAub76zr91AwzegUHalC7+eabpyHfr3zlKyc5LbK6pKwjvnnsYx97hv5GWwIWjMEm+C+VvaYO\\r\\ncJrq8gPzZBacliovEwQ3AgIZTkUe4SH4Z6xnPBfhHNPKleZUU1fk3v1KFY7ZgIILRcVKB1fTmiwt\\r\\nq1Cq3fXkiA7NTTBhyE71buOFmEQ+HQDe/va3H/vM2WxmWkE8oZJi/57v+Z4zd9xxx8QE6m3GAZMO\\r\\nzBVyt1BejzENNg+RBBQhhwiFmwEfcRHChtVt2oDPn/GMZ0wGH+LkbXWArXsRZgGqXH8FzIQJ4QcB\\r\\nDEWHPrufCfEEUB6N92KaPCTfwZQQ1qGdGVsEGybx/RRyXhckFSHIq7I+a3XPlJv/ExB1kHkvxi0l\\r\\n5F6Uk7ToEiNF+kMHFBh4eYa15SGXMvK/5+V5eB5hn2e0BC8nXcPYu/322yelAlZS09tOxz3tGrb5\\r\\n/qtf/epJ8GBiUcCMD/T727/922fRKcGGtuAHjcB7njLlBeaMDzTvfTRUBKoUQ8qjUHU1Ayln9J7y\\r\\nQEOENhoXhajYPkVEEWQ8o7MMMJ97n9JLeFkboxHuKQPGG2Ox2iF0DQbC/rxP93j2s589Pd+P7xHy\\r\\nnvOTP/mTBzp+0Q8YcH4Y+JQ7+o+2rcf31BRRRPZFjqA5CmZV2/Y2+OvaJz7xidN5qmDLUfOyX8aH\\r\\nPcJHHiy4a7HXUZvzqezh1ltvneQK4+QFL3jBVDRv1h+Zac/NPWrav0iF69XliCZzQhmjZJU6mSL8\\r\\n0tTgmjJhpJQS7oSLvGrf5fBYu5rZ6i99l3Hn/7oOK+K1hoqa8TfDtsYJMgsu0CH56ztktffBBizs\\r\\nB52oj6nWC17doxoxdWsMPuMrckoyCJtX1QR4a+wkg9J6rsm4rxi9aAT6L8I0Rh28Bw5F5TKwilZ4\\r\\n/li32HpSrO5V6rsUIzhXl1UUOdk/RrrKbLhHBpr3qosFR8YKAwJfwqNr8YdniIh6diNdyJWidRml\\r\\nImDkjFc8zginU+HjmmuuWdsJq+OVobNN/avxDyYHeMHzt33bty2aPyhahjcEN+AKD5eFyYBN54Bh\\r\\nJRNgBD/pywzc8Jk87Jrq5nIefd5InSKfYzRqHiTBA9YGzmihtLXrxro+6/KscX2+A55XXHHFxL9L\\r\\njCzF/JOC0CVDyGOqZjIlmESJMF4GxeixQ4iIBCJgqJRGNOSMpUdw2lTD2jAoYUMQnVRMhziy4BW2\\r\\n2hwm970I2PrUcRGOkEnQUwjWUz0UoVVqsCJHxtXhQM3p+wQ5xRdT8rp9P2+8+U6eB9EpDMjJ+k4w\\r\\nNispCxoh2D+kY5AKhbvX6H2l8Ap9lyr0XfeopqfiZfhSJGgUxpg2PUn5MIYJQcxOydsj5ieACUWE\\r\\nY832HLFTtMLGhMXSlMwSBVg0lLLmiZnPctVVVy0yrJfc/zTXjAde8wxFJtAF4yCDgABSzHrppZce\\r\\nqOMDVy80NxatY8oEcLSTwECT4RMtwXPF9Bgc02e8+44X5YqP3JPwomA6bgqOrNN6RRxKJfqe+2XM\\r\\neyYBw1P2XHwK9+eq89NhtJwwzgt6o8CtlXdvDf5eIrB2wanIJMEvuuKFb8gqeGEI44WUZbDAF/5m\\r\\nkJERlGKwFnUt2iO1At8V9YMhGMMBWQAPaIEy5bAaYSNiVoqCg9SRYWQshU6GwWfpFFOsq8G0/hqA\\r\\n8ChDCe6qAxRxshbPhn+foRv3pMzrWKxeRxQE/cAHfqe00Ybri+TVzOH9hjB7HkUvDSoDINpVlydn\\r\\npPSee5OTycUM6JSc32Dv+owZsMmIqh42eWr/GY32hT/sufRQdF0qlewci6Pn9OO+dSoW8XNNkYzk\\r\\nc5E48CzyKy3auYw5SuBoXXBZU5EaKjTBEPCCW/uiy0r7VgP73Oc+d5pdJbKKhuDaPWWDnHCBjkUc\\r\\nwd79zYEcs0+OoXP/6pm35Smpe3PhwNM+8KpREKuOjBphqdlMNyv4+A46q74NPYJj8iu94v0cvIIR\\r\\n6cUiltZRHV5NRBk/PkM7npmBNEaeMqKjl4yqnpHTWYlMdbRFxjIUyzTAMb6QnSN/VzURrJJP0+yV\\r\\nhO+oQC+77LIprfQt3/It/+etb33rMcUnGuLARoRhAnyhSN6+OgfIl7ITmVDrpPIeMUPWXXfdtVGJ\\r\\nSlMSKpCFQdRsQf6qEQ9f/uVfPoVGdQwhtsc//vETkQFcrc15UPZpDdpYRRp0/hA2nWjuWRiNwE+5\\r\\n1elXnjcB4HPISGmFCALcNQjK5xjYZxRnHRSe4/OMvp5hfSG6YX++Wy4aAlOG1j2OydhW+egOJDBX\\r\\nHexMYIowqd0iGHYZ27B0PcLKvHpMQmBTRj/xEz+xkUbm92ewEXrzsLaCULBCS9UoEVJqTOAdTsCa\\r\\nkcfwrkYkWkOLlJUZMpShZ1BsFAoFychVYwFvGdMMdrh3b88RpX3yk5880YEUk/co8ac+9anHjqNa\\r\\nBTPpdwY0o4+BQviW4kY/FCdFVqMDoV+BMBqliE3CF6VVDkBBnGtDlucGPl5S/eidkAXjIh5L6WPX\\r\\n63S3KeQlo8gwcGAs4cciQCKBPpeq67gaUTdOmxoRsIUn3wFjQplcokxSgIw1Bgdji2Kt6861onxw\\r\\ncNlll00F9mYO4qlqfUQGO2NT1yODjoHifroUHVV2yy23nFnnjFZnY0QKpUZpz8dW7Aq/Xb+n3pbT\\r\\nRAaCVeUGpYqKxDF+0CkZHT2nPEvr1LGHt8iHyi58r+J013hGCpS8Km1aqqk0o2tKvWeska0VwWdQ\\r\\nlS2oLjaDy7PwD/4mK+gd0SQyQ+RX8AAO4di+GPENbyU7rJmMoKDHY+Y4cdt0FIKxVNx///d/H5OT\\r\\ndDnjqkjgtsNE0ac65BpvMro5k05wWTX37Morr5yK2St3KMpUSrf3gzFcwT24uz+69Sq6WLqvGrpo\\r\\noVKdjGbfqY652kL04eVZ6C08Wgv6aU2Vv2Q4j0Z90TM4H+9Rw5yxFuPZtZv45CxF5hiJ66+/flIg\\r\\nQpTz9M1Tn/rUqYVZampspX7a0542FQZTOCIe42ePetSjJqMHUHmAb3rTmw6cbahoeNuC93FD8pzq\\r\\nuyhAAok3zFNGxIif4u6MP8D0Q6iVxiSYILZCWoIXQWAi+VP3yAKvEA9Sq4Uq3FnI0jXVE2DkiAKy\\r\\n6gxDIOV83adOhQiRcVrNTgSTd1edl+faI2MxD0adBKMNsy9JGW4iDJ+bKcQ4Jjh+67d+6+CSSy5R\\r\\nxLi18bPpWZomwJtQoggZRNtMg5diAct1iohxouiSB1hBN+YjSPyGU8qf0BOV9Z4amQ4jB2/CkgLr\\r\\nmCiDVeER/tQsrDJUN+37NJ+L7IqGiOzWQYOGGM32so3A3nYd0naMys6oY6D+8i//8sHll18+1WIS\\r\\nRkLp9wVMOEqMG8YM5ULRUYBotnpIdMVgKqUGv4yeUcmphWGAlb7FxwxosMy5YhjjafsTXahbzH1L\\r\\ns3pWUQx0I81S1J/Mc0Zczpe0qOYczqO1khGipOSZGkU07R51eWa4MKbz3BmB6IBsIL+kPylE75V2\\r\\nAg+KjGPgRe6Wvm7quN++T0aTf2iJDPNiEDAOGA54RXQNneWIwrM9SG0qcuYwuk9F4GACho01sa9S\\r\\n20Ufkq/2m3ID59J8dWb7PCVsbUXdSifVPZbDW3TE74w93y+lJCpR2QS6SIG7PsOuRgI4YgzCu8gS\\r\\nPeg+DGtrJiOKStlPacH2zskGs64jv0VAyRk4cS/0B3+conURqEc+8pFTxml+bEs1cSJZu+jVJqYz\\r\\nBjkK8IZuwJix7Izh+RRzcwQFVcjsAhRjZgY+RpyVDszZzVAa4V6qPpyCS3Vx6VrPqDEi+dVno5Fm\\r\\nTZVYlP7NsMoRLdCRbna/0s2l6hn/7IHv+q7vOvFou7ksPaYsH/e4x03nIXmQtmbddn1BiNLQLwRh\\r\\nonUdCpBKaGAuBtm8dotn9vKXv3xiVnUL27Ypa/e0SQKUkQboomOOCMDU6sJ0HLk3BfiGN7xh+hwC\\r\\nvQ+YWck+JyxEIYrW8XTdE0HNjyh4wQteMHmzhA8AN8qgIsuEH8R6j9HjBaGYtpqXQpcIpS6xJilT\\r\\n0K7Noxu9Od9nICbg6/ryP+bFCEYpbKsgt7mehyLS51kEJoN22+LHTc8zvJYxrE7F3hyMC1cfj3Oz\\r\\ndJNWZE3hFn0iWNC6tM9LX/rS6YgpBhucPOtZz7rPh/Vtguk+PxftZFwwUhku+IEhQOAwIMa5eA9/\\r\\n+MOnwa0///M/v9VAvqXrraHGeigqxgYFWKqfEh9TnXhY9LEjZTwHn8KZyDv+J1esmQHiPtI6DDKK\\r\\n0/2kEhnc6qYoQrRq7w0ERqspJI0RnsUAYahQPg0mdN6cWYIUlmtKx6WAyBD8TymI5koFNX9JBLbU\\r\\nl/u6juygsCkK96quiUFVrSA5AUY1M1Q2Qf5Q5PZYpxwDlZxG0xSYvyl8naAZRWCnNq1uOMZGSle0\\r\\n7RWveMVkEMKNfVZTSvZRiDmN9lJNYdGNUueeVZqxlJLIVF19PquGLCVZGhEcUpiNb3C/amyKiNQ0\\r\\n0jidFGoGQLU8RcjAz77sW8STrmPwoq3oj9HrWc0hg7/SxQx/BosIEXrjlDU2hJMgY4B2wEQQgCxc\\r\\nF2l+2MMeNjmUH/zgB8+S/Zwfz9l2qK5uWgOi0bnIOh2JVkTE/agz9MwLLrjgrFFKD3nIQ6boK1os\\r\\nY1MnXzXIdbWWmsvgBTt7jobDFRzOG8QynjOIa5bwvvuNDRDwB5fV+BU5zaDPmC6qRS64xxjByiDz\\r\\nnme6PyNz1aHU6+TXEYJEoACR5/R7v/d7R+9DvnAkL024E4Dr5FFb4TsYcB76f/GLXzwBHYMzvhDY\\r\\n0iNsLDbjhqAh8AhUSp4lre6lDUllEuYXXXTR5G2q/QLwjBFILyfO8CFECETdQQwwKQwM3tEBq8Kq\\r\\nhqU1FTrvCgLrvkI0RTOynhGN9+e5fe8TDs09ySBD0IS0z9yDwPeD2QhIa+SVdo4Zb4rxlUdkP+cq\\r\\nasG7Fxn0TDVf85TxUuW49DoRLZEQzPqxj33snBqQq9bEkFL7QrDAyaqQsJQkfIi8USbvfe977/N1\\r\\nLoXneJ0mA0IfL2g3FsXFA4SR2iL0SlF4Dw+h12aC8dpXHas1X4fZegyIbfj9pL2oydSlR7kRyJQb\\r\\nAwZ/zdMWyhfgpWgy/lBDIvVHiZEjdRtRRJSwezKeRHDwtP2iPwYLQcxhY+AQ1njTaQtwLlKPRqWJ\\r\\nOog9o8JawZGjGl9SYpxTvJzBQ3i7v/tRyHiMnFPfR6ZQ4nUqWyf5BTeMQREwMq96EDPoPJ8RXMrT\\r\\nAGlrX3WeazAfuwHHv0VC7Hebs9ec78lQyBkFPwYHWDdupJqr0kRobCyrqLiYrK1jtVETcJKzWxkH\\r\\n44vibJxD3V9gXMah+tmyD0VMSrHnJGfE+p8ewQ9gbs3es1bZG3qSTtRk5XMwp0PgyrPIjVLLflcL\\r\\npBgc7jiRjkca6V65Czqiy+oGXMUXyiqsZ58yx0gmgZLv+77vO6vmSuRVdsreOFeMvze+8Y1Ha5dJ\\r\\nMuGcI8IhKQVYJMj+q8MuopUhm2GTHixtaH8NkC3aWMqvBqIyQXh9TOuWOeqefsOr66IT6/CTDs/g\\r\\nyqjKIMdzaK4AyA033LB2DhY4iOxzvNCEcpcDnYOG2GnjnYf0dQ4SSKxax00UstRuf9NNN01WLmLT\\r\\nMTQSgpTNa17zmklQEFqQY6Emz954441TwV6dWZBGYG5jFfYsAsu9a/3GPHWgABDEMmQ8AwBj7ArX\\r\\nS6m4jhHHWOTVMSQJrjFS4zBO3gpjrcJRwszzCkPXEl/XGEEuLJx1XdGn9UNA4XhRNX+PxwudpHBE\\r\\nBRmHvlPnZOFUCsWeKVF7tg/ELe2wtDtz3bMZFRRENUu33Xbb3oyK2orrRiKERC3BZjT4dzEqzuV3\\r\\n8I/OG7R+66237g0e265ZinhUhOqtOtqFQTCmWwgRdI6ORWzQJyOeQEPPePU0tTy86MOhmsfScNvs\\r\\nSSmChhU8hL8pMAbg3MADfw4c3sPn5Iow/vz4D/VKd91115SOIVg5J6I4jBQOl4hcdWMiVAwvqTC/\\r\\nCXT0qH4Of3EyfUbo+h5eZBylUFP8pSco2+bIabFXR0f2MHzG+XIEtPc3RYjJV8Y/o8M+LrnkklPT\\r\\nncgg/NtTEbdxZtJS3F1wwQVT5zi4FYEoKtA9xjIJ14FbdVOVSMANmVbZg8+LhpVy9D9FnaKFJ/cC\\r\\nQzRTFKOonPfHhiTXFj1xnwqve67f+KY0EUUL3viqrjLXVF9WVMyewNJ34ZisR1v0E5lGP6A79Tz+\\r\\nR0PWSg/bN33rRxpaxBw9WquOa8GOO++8cwpqdNrGUtycdN155503lWkYK7KKnkyPZzzYr/3Tl+95\\r\\nz3uO0Z2ovhEm4MGgrCa1GqcauKozLiJVyryxDvBb/XLF6q6ppAbO/B/dlFIcacFevd89fTd6BH+f\\r\\noYdoEc9GAxnS1W3lWPk+HIyzEFfBVGcxZ07094Age/rTn36sQ4xwhuzDg5qPAZGHoy4H8bzvfe87\\r\\n9plWaF4ug8miFGkqeJW+K+zNUwPA5tqw8pZ0O8zzys5N5EEwYBA9pY958g6LNBUqhwzRMDVgiFo9\\r\\nQVPe5cLHwmqhbmePMVQAmTLyN8Twjj0T8fM2eLsdOlsq0bOso+4eSGhIpL1jPl4rOJXOONcHGxvC\\r\\nKv0LHoQzAWRPCNB64NoaeZsE9zohT0EwuhnW83TwnNh0k45p5nUMrkbK3CBCg/cGd6KS1ouO0Iqw\\r\\n9b6PcdiHYHIPsBVhQVvzSeTjM3iC1cf5Gy0RqGiI0IAPuEFPlIdUD6MBs3oPXsCEkPU9fCuFqSCf\\r\\n0+I6+FUH6WUCOX4krG+++eZTK+Ft4GWsAUW7apTF/D7KAPAF5YrXpFF0/eFXEVyKTYQWba46B+x5\\r\\nz3veGQ7iSd20atY4faXozflpOLFaMnDFt6IQnBLPFkFmvJEVaJKswrdgzFCTIs5AhUPvuwcHDT7h\\r\\nkgC3LzVfnAWRYAYWgQ/fIlX4j9LKIPadjpqhpDhH5BAjPkXAgaLw8G3lBmSse+RI4hv79R6ZB7ZS\\r\\neu7lxzOqSayWz/PQT53LIns+k42wL5kIyo2spYiszb4amioFao1oFQyKGGW8FKmqHorMqcaGwiu9\\r\\nV/ef/8HVnlKaRaXooPZS/Q3YdZ8MKLTlvVJK1bCOpRzdP2OwdFGRLutpppZ9iaDWJGNdZTAYEaU3\\r\\n7VlzC52HPhhSRY/hXt2we8APnYIO4RivezHmf/RHf3RqRAMnho+OZcO1yd99GFiMdWU1RX0dKzXP\\r\\nRmlUc421Z9SgWY7GGMmKr5upVa1faUN4CzfVKtdRWhQq48n7YAq/fhdBLOrkXkXD5qm9gg2ll+EO\\r\\nndeo0mgizwJjet16XAdnGXX2UwaKPEbrGma2OZHkmNBV1KzuBCHNbyKEKIJD8BDq6lACqBA+4mGU\\r\\nmZTelO68RgoZAC1uU8snjxQieYx5IJiVMQRhDQZ1uDQPtyNl6p7A+AknRAywAA6ArtFmyTuXMhCx\\r\\nAlACtaK7VWeg8eSspzwxBpCaoFghYzyCI0NJKoZgUiOm+8t3mtkB0RiUUqA4tjk8chslt+5a6Vfh\\r\\nYLjUDVOXBRgjZEqdcqidmPdFgIKf9ykXREkQ+6HECfN5etVzEPEYmWO8UjKMqc5fo4wdeYRhK6KX\\r\\nZkIHjNAENYOVoFmSptoHnLoHh4OiKgzd5G70JfXCuOH5gR+FyeD3YhyAFaFLQaFNe0bXBIS/EzAU\\r\\nCVqmDJoY3WA+91IziJ/ghiCm/Dku8zTDPvd9mntxiBwuy0hkzIAJ/AUPfMch8X4zsPAtBYPeKKR5\\r\\nQwVlsCSylXfKQAAAIABJREFUJlXmXvOouAYGBfF4He4q0u5QabRf40qF0Hg3p8h1HR4LX9ZJOVbX\\r\\nIVqBZhm0ZJY0M1wT0gw3isZ3PAf+Xe/H/UUP0EJH0oAVXNdc4TOyzPuMHIZSBqkoRwNhrdv+pCkU\\r\\n6ZM1pXbwqgi8KF+RSlkI0Ti0VrMEuKDBMSKqfkwaiBzEg2i5NCy+QOPWVBowheUaMjJDC00V4YgG\\r\\n6iwrypBCtsbqV4twVbzuGs9tjpT/4yX3715+ZwxWFwRf1WqlnMNhBdCVfVQgbS1FqMjt3/iN35j0\\r\\nH3lWGQwd2LT6Uo1kbPVEYIPmyQ/Ppc8aqWD9cINufIbOmqPlOTni9IoyGDL3zjvvPLXTRI/KSjSy\\r\\nBc3MI/HSzJ6JxsCwM0fBWSRLA9QoK4x2MuuQ/gjW4Fo9FHyXmgu+NTnAp5f/M6TLPoFjhncdhI1Y\\r\\nqRktXQ+G3aMxKnixVK3fY/F8DSXRasZ89ZGNX+HULpmEEDwmwLBQ5YYJ/FUep7ZQjMUaH+dgmasE\\r\\nOZT0CGQGiRQiYUO4ICTEyWKfF5JLdxlOR3BQ0oSYXC4BiNgIhVUGiJZS+W8CubqnQrUZS+VOKz6E\\r\\nINdDCs8B02g/rUZCiNM1aiu2bXFdp4wML6V8IbR1VDBJuSA0CqZhqQ093aTcpIQQ07bFjO775je/\\r\\neWKAd73rXRsZlABRU8F6R7CEe95cQpowJsh5yYSZ+oSOT/I8tQUY18Gk/sfUFIqUcft9whOeMKVO\\r\\n/u3f/u1oTYqrXQdnmFOUCO5EuX7xF3/x2Nq/8zu/c6r7YbgSZCIgGEt6hkLwo54FTRJOBFu1AmDv\\r\\nWp/54amLUKKflNFLXvKSycjhTBAcc7iLwoHHqlEim3D5/+rnmkw4T2DZeZpFbfGi1Ib30QdDoblG\\r\\nFFTzi4rkFH3T4esIj7HOchN84MRz8T0+O+xiPIu2HW2jpIAQVfJgPZQjmkY7Un2MFjyJJhj86p04\\r\\nSuhH0S8ZZWYbumR8efmO9KV0n2eIBuBxtAQO9l8XsTV6pme/7GUvO1Kc0u9gISK2zd43wWbd5/MT\\r\\nPDbdRybC2B57xl+MBDgEDzKafMBfjIQ6/xpdAt6lhzIu8Z7rqqdJ4fkNdmUeqo2xPnjxQw75qYiZ\\r\\nzIafUoNFkKrzqYnIfcdaqz73XmndGpgqxi5FXGG9ddjvqgYc0SU4JwP9gEUGg30wYuyrye4peOsH\\r\\nq+ZpeYb9FHkBowbCMm7IJDJwbC7ZhL9Vn9e4Zs+j3F11LT2Ax+gCtJ8jkJNCx49n/epItE/rTi/b\\r\\nZ+nWmgh8VtSyuqdxdlZpvIzbDPbqsopIFwGDp0YggZ91FjjI6MeDYOrz0SivjMJ1fgrwFEnzHZmU\\r\\nn/3Zn92oN48MLIqN4NBVM1fuapykygDAvJdSNDxJoxwIT8aB9M44+l+YGAMyVCi6UlIEGYOm8Qk8\\r\\nL0bHSQV9c2QTviJslC1EjPlcgECkWaEQnLeQ18riZrwRBiJuQuDCsLsQ6JLviJTprEEAHSGAaSnv\\r\\nhs+BL+KFYOnKijYJLetnYMzrpxixPCYzvZasY7yGMMck56ID0Sw0BZyXXnrpVG/nuY94xCOm2pK/\\r\\n+qu/mv7XmCCSYLJ/dX/SiQQ4pZPBK5p51VVXTcYOhVje/fLLLz9rzwycas3Uw4jwEGgmcnsfzaA7\\r\\nTMLYo0Ax6abGAKk8zsWSI4m2xcNpr1cLuQ3vLHmeI4I4OPiS4cCAwjtg6QdNeq96GDipI46RgfdK\\r\\nqzCYKRjyRS0mhewaBgpFBAcVYy9Z22mvYbDjRREmxr31iSjhRZEkQtX/+DFFXySCovDyP7qpjtP7\\r\\n+BaNfcM3fMNEYxwN1+Fd+2/WEmHuWtEl/ODg2IypbVvrOcWbOrIZnutGZTiSzPrGKNU4YHcOax3m\\r\\nUtOD03usvq7ayYp80UBlFc23Kn2WAgSPMbpA0Y8wrlGpiJTP4KgUDl4OP+7jhc8zspuHBF+UKQPL\\r\\nqyJo9/VeNVdlKDLUi5qVjnIPa4dTBkWdq56HJ8hjuGaAVb/HyAI3vESOeSbcc+LIFQaqF7jRAQ2F\\r\\nrf4LDH3HZ36nu0SvT6u3OP8CK53lu4S/0A0esh/6/P3vf/+BJih1YfZFTuvwlyZkjMOhn6JeNY7U\\r\\nQJPRU4Qr2BdBBtvSytZXmq/UMDoryuna8FvKt2ira6yvCBc8oh/fj85qrnCPIlp1v9a5CF9//Md/\\r\\nvFjnHqhlWoUoU4cZKwrxxtoGhe+OXKG4pHnGYZff/M3fPKXFxsOBCTVFwAifR7hNekfLPOFMMPu+\\r\\nAjrETRgiODUvis54noRaIX5AgygMhvHqGqIIROkIVwah7kDXQELRlSVEts01DCxDUDGX/bP4IZtn\\r\\nLG3k/dp5GWAYrHQRA9Q11u86cLV++yfgGa++475LUietW/oNoWxK126zz/Haiy66aBpnwPBGO4WM\\r\\nCR7pZcRq7dLJGYgUjBEQagvGlKIZamo85hGrXdf2/9v3lija9ix9reAdTRUFwDeEDoOJoJGaI1TQ\\r\\nIWMKfXmfwmCYVLCKFruWAiEQGVGUH15lcLi39zkN+5qfpnN51cBDe7Q/gp/RsiqdaKAjo77Bs51L\\r\\niFZFzglc3YMdLVPELcPe3tFuvylJZQ/+FxEuXZGXnRIp7VRNSF1V7l90r6NQmuTPqcLrcAOWhD9H\\r\\nlSywR8qLgcrgga+ebX1+GMNkJ3mjBKKGnBST5/gOB9n+7Nn1ZA/5otasaL/ZVkZ0kMMU6Ktf/epJ\\r\\nwUhZk71kMZqCa6/GL6Qsi1ZYZ7VXritlU41VhlRGbIZSxkZF0d2v1vkiIEWCwB89218K2u/qa1qH\\r\\n57mmCAsDqkakjK5SWN6vS9Hafa/aoKJc7cnv6oIrlKZL0Zl1gW/zu9BQ51TST3gO/9R00uDjcUI7\\r\\nHfuiF73orIDItrJNCQfdzKltvt+SezzmMY+Z5DvdW8ZLVuR7v/d7pwCHoEUF/WBmf/bpPbRSEKSx\\r\\nHI1yqDAeflxTxCvjq7Rv6d3wENyTaUWcfK/on9/4Dxxdx35xP84kXeo9RqA1ZchluPX8prn/+7//\\r\\n+0oDS5RX4MAzRLqMgTnrQjOJ1DYRpnNj6DM/8zPPeDgPdBSYQqNqtxCFGqfOP6I0FZY2Kf2FL3zh\\r\\n2jlYmBUAELnUH6ZTYFqNAyOowZAEFERRxoUl1V0o6iV4ELw0EOKuXbh8frn6Og4azIcAeCC+Ox4A\\r\\nvYTgTrqGgXnddddNtUTz8/xEe170ohdNtTWE2zxKxSss5A4uDDEEITpTuBvyKQzeBENknfIZ1/j5\\r\\nn//5ZxwtNO+0Ou1ex+87fkkRcF1SD3zgA6fDY6+88sop1eYcSYww0tiDH/zgib4++tGPHtHlgx70\\r\\noDMMyF2mu+9zP/fHe5nh5GB23ixlCJ6UMCFNCIuUSJGKFuXNZyBUi0CJV+QJP/iBd074eB9P+H9+\\r\\nqDUDRrTGfRlSTcRPUOUEUMx/8zd/s9jj2xXOHBmpOcbEukNudUIxoA7PBTxakwGpHJ5xOnhTt4uy\\r\\niIaTGRRkHYQMS+lOypaBwdjxvWpVGlBJceJfP2Ca8zdGYsiquhvdg9xzH3KYkTvWPblWJMM1PoNf\\r\\n+PQ8cpFCg9dwYr2jXNAxmPxoxAPjNNoo/a2z97Wvfe10f4aVelG0RQYx+tCa39VDNW7BvhiOjUYY\\r\\nu/MyhkrvWTe4ZJxVBF0qMSXrGaURg+VYo4Vu4KqUYwXtvp+s9x4Ye+WMd2ZtHWp9XpqoOkj3KTpW\\r\\n1M09mrWVU2/PaKU6KvhmrDLmyXh0Bm4+9x4DHZ47QF5Uy14bDivLUpoNH2bM4vlqnXflGbpJ+Qrd\\r\\ntDTwYbCoblw0yMgbh1o7AYTuFghRqgGm8UIlAjWzZHj6XRAEfpI71bxGkxnj9lpqFx1wFNBFKehS\\r\\nhRnI8AZHDU11f7P7mnwgagsGOoStYxw8WycrHFanjB7+9V//9UR5pkyA7BXEOLrQmV2ENcK6+OKL\\r\\njxWxC/dhLJvUDROzSiEKMTICzM8YC8R5mh2OGlBe+cpXnnU0CCNMqL4jajDzOHeIotY1AXC8AsRX\\r\\nRwDAzVtFtUgqLkXopTEKy2Ie+wMw7/lfVMXhslIVupkoDYpmX0aWML10KqN0zFHvyhS+5xBteXhE\\r\\nhQggvxAoRdvsooqGpUUJXCle4VzetjDv0vOUdlkrZoO3Ok0Z5+BNMDDsnvSkJ001U3/yJ39yRIPe\\r\\nM2/sP//zP6f31P4RKOfyqJ6le+OdnMuC8vEoKHxV3QjDvyJdhky1S3iGogNDBnbz1fAPBUso49lS\\r\\nXQQMz7AoSnNg0EWeGqFIsKdA0BVny/MZJRSF+/P4KCYC37V4ivPjekokZaMbkGzgZN2XqcA5TtUr\\r\\ngtcb3/jGSbHix1LDajk1DRDIlEApDHCzJ/CtlqiInUYG9/G9FDhZ5PuUK/mUY1etUbUnvud+5JkM\\r\\nAEcQjOFGU8RYYNzokqU0uu/rKGDNJ+SoGp2rr7566iYDm9LARYYamVAUCX0xSIo+lR4sdUM+N3Ot\\r\\n1A0Yui757Bk1uNQxVpd4BhSay1D1XfdE6z6v3qp6LrRKf9RkUqrQWirGrvaqVLfnUuTV+tS5WNTN\\r\\n2j2ztHL8Vfeb365ptpnIjzMEvUTw3/a2tx3gdwqeseA5ndFpH2qeGO5FOvG859G3pzWwRHRFXDxb\\r\\n96COb/qYUYcWnY14GFA5Q4egazWMdbI6Jm9Vl7haZsdU2Xs1WnAK3kUI44vgCi91rjaqo/8LvMAN\\r\\nekg2hgs4QgfRVvh1HdgXAW56waoBreqCNaRVV+xZ2Qs1YcAxeWDY6KbsjxNxpnpPAFQTw1NVmzJ+\\r\\nsQiUTQkljy3oX//1Xz9ZacKE2pcbZKdluporQCWQC7uJmtxwww1bebPOgnv7298+EeTIIIheZIwx\\r\\nOG8rJVAJLQopQwsC60qAjPLykOJegKnO7KSBfLsKMEcb6CZxnMiu95h/zyDXwvMIsYOaEYgXovSi\\r\\nFDCoFwa2b8JQ95BidHUclDvY7vMwZ88z0uEd73jHtBDTfhG+miqMK+KgVo+gqJZEYaQonPSG6CVh\\r\\nJA2snX5fcNvlPugJDeog2eUIinXPFFYX+TVuJCOlNn8CFf80d4ewEhViAGByEapmBNWA0BEqCjsz\\r\\nfKTt6j5D6x1IW9eS6xhxnodOXO9ZFfRLKTIaRJ9rNlHweig3JqfE9zLW1WgwPAg2zSue+bznPW+r\\r\\nOstdcNR3GMKiSatqE0VRCVkeO1nHSSH38D+egAOyIc81xVnxsWsYl/gNjJt95fsZAtYxdq3VhVQd\\r\\nUooGHpQqqAUlq3i7HL110belMCHYlT9wmK3X2sg0nWBksffaB9yTS1Ij8GVcjsik9VuXSATaYQgo\\r\\n7BUBpJDBp7Sae7kPZTcaNxky8E8xpQBdi37HxqSMtIqKXTN2jlX8nNEDFhmsnlMdFdmXUQXOYwrK\\r\\nPYue+X7F0PZd638RqfRD9Tl1pbsW3jkX9l8U2N+e7ft1JYIH2OAlMLRf/GkKPDlcEw75Zl2i/e5R\\r\\nA5bneGXIggfnpWiNqevblIWsox/4FvjwbBkhcoXcFclGk/SHzl97sU6/q7m0Jp2lq3SmWk5d+vbD\\r\\naWOwwSNHx/05zuBcCrZOVPDK4fO7JgdwcK8CCaXdSwVngEdX6XffcS05ykjcNMNKTbppCV6+U+ep\\r\\n/93b/einD3zgA4t00sGXfMmXnGGkjOkiUSNC1Y8W6zE/K0RIIbCy50XSam+E4A36az6Gk7Y7Vd75\\r\\nZCcVZjLOAEwhLAIleAhLgsH/NliHQVEbAFc4v4rYpA15ADFERkch7ULO3qckGIt+Q+o+Zy59yqd8\\r\\nytRFt6Rrb6kg7TpdmA7eFlq27sKcmL6QfURaurXaCMoUA1WP0bEOPHEw4oU3M8TzKHgpkSIXUpXe\\r\\nWzfoUOE6vImSaPP1nKuvvnrCFQbUqJCBpRaQxa9TFV7gzXcxlmdgGEaktYkyUgBoxb0pPUZGDCkS\\r\\nIy1CWHS8ErxKtzAsCQieoO+gY/ehLJvBgrHs3XUEALqTDhIZcg/0wrlImVbnQSgSJNsOzdV6vWm4\\r\\n5JwuREbhndCl8KVwxnEh29LReH0F155hlhW6IXyrvdEkAeYEFhitaxRwdiXhbG37igiv2hfFj5Zr\\r\\ne19Hj86PRBe6r0x8F2GlhOGvNExpIPxT+qtIeDOp0AQZBQYdro0+K6JOMYMNWqkWq8JZdFaUxbM7\\r\\n4gZto9O6DP3tORX54sVoXU2mzyuHYPSgUU6l5+DrUr/23Fl3zSZyvde6Qmmy/C1vecvEc4rxyUMz\\r\\nExkG5Ic91oVZF3HNJAw28MSPHcNDBoGF9zN8inZl+FCEGbkZL0VD7akuwgwt36sMpIiV99wDHsEZ\\r\\nrrxcV+TFvYrCFVUBYz/kp2szmDuKCL6aKs/4cA/GeXVDOTvW1jPLkmQc2QtY4hfyTnRQcKK0VPBC\\r\\nD2jJM8mcjA5r9Z61iQqPtdFqMa11lyg7HXLzzTdPTq31M/7JMbAgQ+kFRiI5bF2MMQYSw0mN9kmH\\r\\nx5PzHaM3jnbimMmkdI5jMyzRlDXAIVoBs9L14FOtYTot2ITrDCq8gf7dgz2yTUPAs5/97KnciGzF\\r\\nk+AAl56Jr57ylKdsnAGZnJo8m7GlnsElTTM/Y0zExPBHQJ2n5dxM3lEnBMt6jISYceQ8Lhu99tpr\\r\\np+Jy7aEWq/7IhHRMzDMizClwVr16pFqJHedBkAEiRUgAxeAEDs9A+mLVDKs2KjU2HvhbNwKEIhrE\\r\\n47mGo55GOa367sHBwRRivffee/d+b8+DQ8Kwk+QxP8LAHP5OsOf1IT5WOIPANRGQ1GrToQmMvK46\\r\\nNUoLRcw6rgjvX//1X1+5L2FXxnh5cYLkD/7gD6Zrn/nMZ04e9e/+7u9O/ztiQ0SOAYOhaom3J0yj\\r\\nvsb6G45qbdZPqXifoVT3KAHFoMVgjKiUJcNLtMb986KtibLKa0Kn3isVXROHaBy+KPpR15L7SzNv\\r\\naq2fd2ihacZe9Yq70pwaNTDb57mNagLV4YhUncbR0NygvgGvMbK2EXKr4AGGBD3jmONF0THa4eSk\\r\\nIaPupZ5RilAkzrWcL//Dd91jCXPrpdjwAKVcdKaoCtyTF+SQ57u2Ilr3oIDwnBfazfBK8aI/90LL\\r\\nPpcqRK8ZHL53Ej2tK/SnKMGFA+L+ZGIz7LaNjEnxi06gb8qcUaBrVU0WmJG5yYiiKuGsNFvF7tXM\\r\\nFD0vleN3hpS9V5Q8Xp9RBq5FpcAx57garvixCEYyq/sWBaOQK6YHozoEXQ9nvVcEpNqwRg6QHyKN\\r\\n5JN6o5wr62wUB/g08xAMMjKdRtA4I3MljTjqjEIyCx1x7uyzMylLd9VokdySqk3Pqqkjm61fucCu\\r\\nk/0VvXPaPB9PcaqkIY3AETgRyRRwAWv7n49cWifDOGRShuC2rutZurKBtgIynHcv+rmp/PHUmPIF\\r\\nl+qjRNwafSEbRS6fpjThoQ996HSuKp0YTaInQYBVTVecNnh47Wtfe6QPjylG84pqN85YsXEtmNpQ\\r\\nn/nMZ27dbcfwEmqGFMghmDyDUluKIKkUnllDLkvrASxChmzETWGxLhluJyksBglkivpgnAQBo2Od\\r\\nsbCrAlQ8agSGM/w2hSd3fYbvGSfA+DRPCBEQ2pgewdXlwnDgTYAlgwQ8qxFIWUkbYvrqGXirGQHS\\r\\nL0V0lnhK0oCGisLNNddcc6wlnOEtRfPOd75zwpXoQhEq0SnemMiBNIrwudByg/esiRDTgi76Q6nw\\r\\nhLxe//rXH+Ee3RCCFBxDcF7Uf1Jb+hwXHA/Kxj62mT1WysYkcese2+J9Bs67ph3dU00bwT22DnNM\\r\\n8Nu+Zrmto0tpKOM+OA8vfOELj/GcVCH8Eqz4UqPCaWpGRE/QrIn0xndsUz/ImEIH6IqQJ3/QU7U3\\r\\n1aYVxcI/4EewE67V09RSXn0ROVTqhOFHGXJsvO9/903R+sz38SQleOGFF+4lxTPihgzAa0VvOsOU\\r\\nUibb5jg6Sd580zd901SLw4kBs4qCzz///EnpgGEHMNf6XlYhuI5RiOpn/Abfmo0Ym2Nqzb1ylIpQ\\r\\nZdgyRn1GnhXR6nd78X33hjd44oAXuUoeNt6hqFqKu+J5687AKiuA99EEeDCyRMYZ14yRIqAZfdGT\\r\\ndboX5axrrcYw+ke9T0NH68y1hzrqOtKndHUGF/zalxrakb8FKpw4AOe7Htkl2sSAdpj3mJ3iDOrw\\r\\n1hlnTt2ueuorv/IrpxmCDWnddB9BHTIfLBhdcIDm0LNIEn2hpKTU8L4nAYCHejn03OHl+PiwRnul\\r\\nIUum00fWRI9OwPqMz/iMqY6CxWcmRrUWz3nOc6Y5WDpzMGiWGaWmWw/xIOYxAhbQMDvPp06WOkt4\\r\\nkJvqnFJK3ctAU8RDmLHwESGFijBF1KRrEDzGsQ/zaJamaVjtIie+az/ShPs8Y08oVFhYq/qb3vSm\\r\\nnYlzEzH63AgN+eMEDOLkhYw1atK/wp+K7hVeMraEexEQ2M7PlVzy3G2u0aVaqunTPu3Tzug6BXvR\\r\\nM10pGEekFK4JLMRMiGFM0c15vd34bJ7cPJJh1IfoF8NxnRfv7LyTpulT0CIxFPCf//mfn1McLoGl\\r\\n4mfGMa+ScyGCtc1sliXPGK9hyDVTDr0wxgkRxjMeJPQYP2hqlAUElAjKPiZOL13zaDSLEqghKwUO\\r\\nf+RQdRXWLmXmRTGXCqzWg+IvRVSnW0qZckz5knGUbykukQh/w417jikjtK7uaRdHTupWlJ+y8Qxr\\r\\nk4Lt+DFyUCREpLaOrFKF1lPxtPUwmpoOPoctT5zMgtdqXESzcqqkjo1ucO+c3YzHyjCqralAuTRp\\r\\nEaXgQhHVDVik3Xp8nzKbF6qDefDMkKlD1vUZKe7v/9KKGW5Fydy3yL01ZVRXcN9+Sg1VS+bz5njB\\r\\nQUa399BB0Up/d1ixeZDN0WM0kHVkbmut0Lt0V8X+9hdtln2IxmSYxuOvRC9lC+hpc6hW8Yu6ac/y\\r\\nHM9wz0odGP14mvGs632e0n/Ywx421S+SNewEtCd74PsiW9ddd91GueikGAacZ68r61nK5/fVdeqT\\r\\nOdWVz5AdolT45yQehucpqs0zJDx1CeXhiFQIXwLey1/+8mPTqSkxZxHK065KeVFGahtY+oiN4VNI\\r\\n1v9Cd89//vOPkGFwKCuRUFBPgyiFuG1g9LgQ0Jh6VJivXVTh/Kte9aoDirsuSEAQIVOXscRYcgwE\\r\\ng5FxAnjW4rvucVLacQmSOwON0bep82DJ/U66RsGiSCPBh1EwPUHCcLIXQkd6xeeYfqkRuuqZ6qsw\\r\\n67b3+Lqv+7ozjE2CCb4YyHVQKUwW+ZC6qbDU2jEkr5Ey5LWgKdE6BqKIKDqFPwITDdUiTMCK2EkN\\r\\nqynwXZ/NI6eiaaNQYnAp1OY5eSaBiEcIlVKcHAiCqppCPGMfm1JVp8Xx+H2OyItf/OIU7UYBt+7Z\\r\\nnIBxeKt0aAXxYMhAjZ8YDSJSnYvoN15fFdVTCoAO13mWu5y/2QHE0mTqgdSwMKDQE+Wnjs/a0YXo\\r\\nmghJUQceMCPLfDbRTGMu1HlS2hXPjg0w+KWOJfcs3Z6yq96Gp8rIKdLqfl51L9Vg00gF8ukjH/nI\\r\\nWfgSKQAv66XE6uKSRSCX0D1ng3Ftz9UKtUbr8F6t66K2nTXIIeU84gPGzrqoKeOKAwZ21Xg1Emd+\\r\\n6DoHnOPLmLA++yziYv/kg/8rKQhepXWKLFXvZF1FrdBdBlbwLkIGFxXZ152YceLaOgtd19FGnl06\\r\\nMgMJvRTNst5qs4rI+Q0X8FidWNGmivbreqxeiLwyfgE9kj3kGNkvfQVWMgzRpHu6H9lW8wqjzftl\\r\\nHty/OsHqaskiGZG77777GA2tcjDjeSOBGM1eFc5X40Umiu56lvdE2/7wD//w2L0/9VM/daq77FWX\\r\\nnb2gqfm5xCfJOXynw5g8vj84rJtkMtvCRARwb6QEfDuZZj6cfe6sn1WDxcrlpTKgDA4bUxqMJyF/\\r\\nR+MUhWhxvCt1VIhKjjLrmiHE6yrEKs045mGFNgkM3hVEn9TJxprE+JiCwBDmZ12O9QpaRKUDEGrH\\r\\nYBAsSyZeM/Z0Prl3xdGIkREgxbFtHQPYMBgcsyLsuulw5E2I3vZzBhdmtR/CJq8afsEQk57rqNp8\\r\\nzRSklDElIP03rxcQHeXl1NlFuHUGHCFQTRYDi/BLaPPcKASGFoOL8YWeXN8ht2iTkDAI76Sicmsg\\r\\n4AgbERjrJUhEHs7F9Ptt8Tpe/0mf9Eln7PNDH/rQMYEoPUvxMS4pPvBIyVCGoiAVZqNxjk8wccYm\\r\\n/l9iLK6bFk6gG2BYRFnKepQlu+xZdKoz+jhhFCT8oBE4b7ZT6To0gY50bq067Foxqwi9+xCYzWBK\\r\\n8TOExtoq7/spguIz6dFmCJmnxaunLAli3/d77GQqpfSnf/qnOxvEFClZy6BrrAQ4q7mSbSgChz+s\\r\\nkewFk9e97nUrnwlX4EgOWz84ciZ8rywFw5qx9N3f/d3HhkvDo8gEHiFnpG/wtr1nMFWDlJGCLotW\\r\\neRbeorCbOcWwydipPg4eM2oqkq/2phRiUadqwNB7tZWNJfG/71cHNhpO1WnZU5E4vzPCwLM5ZuDN\\r\\nMEJj4M2YRRfukdI1TqeSDXtyXZE7a2SA4l1pfnAgu+CAnKvspRFDrrc/a3EvOm1uYJ3EU6K5ovAy\\r\\nAjWMoQn6mJNMV5CPnElGvrKW22+/faIXhjSnF60rR/A9OgTtWROcK3ZfEsxojSI8ziql96U7T1uL\\r\\nuos82fY7X/EVXzHV4VYXh9/mhuhXf/VXnxHJr6B/AqBohLQMAuERuiCPFPOxvBEUr3CVofJVX/VV\\r\\nk+ATthxDhSw/xdcIqVH5il3HqAfEIqKOGRBdQWSFwREuBcv7I0QRFyJBjEKiDJe5h2w9Phd98GxE\\r\\nL0WEGSjJk2pTFFsr1q+1FIOo16qQtcNpWd9Lzw389E//9DPGXNzXBtYqAuL5K2SEj0suuWQycNTs\\r\\nELCEENjzSBT7U2jwQJDcl2fsGYRKKaITXaulEQhwOLRWURXMSVh0Phy8Uj5oiFGV4l1SXK2gm2Ap\\r\\nxQJ8Qop+AAAgAElEQVT/8K7V2H0IcylKP2M3zLZMuu/rH/CAB5zBsyYqM3YYCoxP++BgwB3hPKbu\\r\\n5in4XdbEMaIISr/edNNNZylvJyVYx2no3owgSo3C6cxIjhVHi2K111J9nfWpWWXuALZHHmazhBgQ\\r\\neJ3Sqo2f4i09hR8oRdc1z4eSRW/kHTpjHHz4wx8+2ruaU0ZKIxLAngKiQCtUdl9HSc2dC86YZ69K\\r\\n3Sk6d197puDAoChOtU7kXBEPRcpFJihOxhHFIMXjb+NBfA8Ped+e0LZXyu4LvuALzmQsMdDRUxEO\\r\\ndAUvFO68HlMKO8NUs5LsA0MmuU7W16VMvnB63LduyXAATu2p1OxYr1QKUIS7DrsiUX6DRbVLDRmt\\r\\nDquUH7y7zivDzf3Ie8/HW74LL6tmPo28oyZR3SFZge6bbg/OGXTop45FMCKHpdg6VkxBuOi5Fyff\\r\\n+skizwenJqHTxWZSjoM+T+JjHb1OYMmRsEfPdo95Yxc61MUtUk2OCpBwhudlFMbXqCXDQ/T00tqq\\r\\ncZ0CImiRY7CNwbiLzNrHdzR6sJXIHXiWaRsbjOhSfIJm0PZ0XAxrlAGAKQsdJ4QpWYheVSDpdHpp\\r\\nNUxaN1ib+LzP+7xJ0WFEi2EUxRB1a5T7Jhj9IKKImweNuLQprwpnK2B27IXrxmGVnv/4xz9+CqnX\\r\\n6VPXjud6BgHTs8aiPYP0ROgwIYJhMAoNYg4eQ50jGITgsW/XKbRbZ2yBnzoj4cR1HuQ+EL/0HuCm\\r\\nm/Pv/u7vdvagL7744qlJgHG7Kvd+2u6zRz/60WekpkeGliYhHBj+YIqmqoFZdTbhUnhsuk76mMCr\\r\\ngJSgWSrUNt17H5/zTCmDJRHaTc9joDFem+RuACF+pOTICEaG6B+e9t4muOvcQ2vKD0wBr6NnPHcP\\r\\nfBkUcIq//HCk4JaAIkPwI+VCAVI2/sff1kNhkR3SGuvq8xo0SmGQQfg5o0Cnq2LuOlEZ801uJiNq\\r\\nC2cQkEccNHKSgcdQoKS0gVOiomEihu7vPhW898xSMAwuRuDYiWSNInwcBLJlfnSJTi4Ohns1iLFR\\r\\nItWYWZd1es44s1ANq3o93yX8OakiioyHdSUQFIU0DuWp5o7T3RmycPBTP/VTk8GEPqzDjLgldTgn\\r\\n0SAeV1PmvmDf8GnGCjoAf4YrwwQM0SndBEdogGPou5ywzhotiuh7aMX7jFPOFDjBF0fB8zLolJ1s\\r\\nO1ZEqQ0DuBRzoyTgoxRoUTmfoWX4oEvwUmfm2uMYQcUHdCBDFp7hwx4bxur+aGnTAcSOsZOdKWXr\\r\\nt/0rXt+1yQYulUagBcakaQEn1bKuwz2a10hHxjK05lGhTXLr4/G5sgqlUIxDsu2ee+45S58yVCcD\\r\\nS6poDN9jZp67QZCrACbixfDg8UgtjBEhRcWIF3NAPKZUK1Xxn+8QdIgF4xKS23RluT+PEpMgNAQo\\r\\nxDq2kwvlEUY6CjEgpYGAES4BU7cHoYpwK1zECNbVi/GGARlSFbSdd955U6dl07I9x/cJUwykdkst\\r\\nRAapCJ0UodPPz3UB+RJC0zr/+te/XtHlzu28S54zRgy2ZToRrA6G3uZZ5+patUIOomZQbupQPVdr\\r\\nWHdfTgFHYpsOsVX3UpBOuVVDQiF5FblUHrCN0pECUCMlpM4LxucdkOveIsAMKNEVyhGfMlgonNJC\\r\\n1RDWgk+ZMwx0I+PNk+iKXDP6QFp/Xr/Z/o1u4YHje3IkZVcNj99NDK/mpHQiOcGQItdc0/Enzdgr\\r\\n6sr4oAzdv3k+OgiXdlCvw7sIomhJ9VfgB77kmWjUKFPV1DEiGcYiw+CyKkqmZk7a0b7JbV3WomD2\\r\\nxElEH3WMivSDBdyRxT6Dn4r91R3BM6UplaKmbEnKeQn/KDNAIzVL0QnWsbSEQwkAIwfsRGfQHcOe\\r\\noQZG8GPt6JcBDV6ML7RsnwrC7RPOfS5bQuc1ZsHaouGijBlTdVGWekV7nAPPdm/6A/7gwboy+vAL\\r\\nGkJLBQf87/mMTwan2sL5cWvBU6SIkQ2X1ul71vSXf/mXOzva3VsHuLVKN57mSDOlCcZPWJeB1JsO\\r\\nM19CK+f6GhkWawZXTsY8m3YMuCJScvuA74ykwpbjInXdQZQi6bEl3jWOQ0FA8rENPXROodyvFyNj\\r\\n9KzWbd70doRFaGD2vNhC7H77XLiUJ+voinH2BGKCcAYWz5uBVYi/UfgItVoFRN5cLESb95O3VygV\\r\\nQ4uueLZCbd/h5VWsyLPkGXgGJuiYEwKIB/jxnkgO3t/6rd861cR97GMfOzVjnSvihb/7svNs0z54\\r\\nIg7sllIdj3Ha9L374nMGMwWw7yn8J62dgpIaRNdon7FBKaB/Sp6wUQfp/Qqc8QWlxUOnjPBQSkhE\\r\\nhYKo042iJmQpMt/LOBGhmUcPi4ZJS+kYjP84cfPUsCgRQ4MiawyJ53pejTgcJWsmY+ypmWz2Ri64\\r\\nzjqTFzlneJ7i8nk1ReSG/frfZ6JwDMPf+Z3fWcx7aK9z0sDM+kRvvRgFjFSwAlt7Zzj4sQ7XNxiS\\r\\n/GHorprz53gxKSGRQ9ES0Xq4Fdmpfkr3t6YUMo18Z5iOKZ2OWkMXHGdNEaJ81emQ44wzUaT5wE7r\\r\\nt1aRsU1R0VV0uWpQL+MZ/divGjH7q/gf/KqXAh9rRIMdvdJojeoX4dZ1je5oNhadUhE9AxJN6Tbj\\r\\nyFeaUrambsjqxdCEe9JBGlUYhyK+DFqOg5SeUo66u+krtNqEd+tFn9HSlVdeOaW+paxWnUfbOZyM\\r\\nXQED+hHNzBsXdpFZD3/4w6e0GD4S/VvXxbj03sZFiQwZC7HP00+WPn/b6/DoLbfcMgVjOLv/+I//\\r\\nePYcLAjgESEUhYzzglShfEyFgCBxNGgsSI0AIp63Ln7Zl33ZlGJsIGD5Sh5QxYaYmFfKYxKdIgh8\\r\\n1nTedYXYrEc1XoS876hr4CVR0B3jw0NupklzVAjQZtg0mAxxEKIJMfdE1B11YH1GHpg+7iXqR4jJ\\r\\nx/I6XA82mAax+Y2JXeO5mI/Ql2KghMZOym0ReprrRYcw99///d8vFvKned4u391HjdAuz133ncPR\\r\\nElNr8UmzVih7sL0v69XWDZ3cx/45R4RGEZqUhd91plIAeBUPZExRLowCKRPwwGO+U4Euniol4n2K\\r\\nleLww5tfegRI6VuKQtSYclKo36BUMFAzYQ8izQwSL3xNqdtDo184axSnUglrYlwwWJopRV7Ull8k\\r\\nqjRQc/TIAAaI+/q++zUZ3mcMLI7ZtqUC9kOmkCeiJsbKkFP2w4jos2rSGsRoXWpe1Z+ONOl+7kGJ\\r\\nWReZW7SOXANLxc4c0w7rZVSZvE12ca4Z0B3kPtIaPSCaKsvBsUYbDWZlYDXHKaPK8+t6hn/rVZsm\\r\\nYmofSjAYDvZbBJXxxJDLAXcv6wdf8hZOGfHozLPRKHyQw53d6roc4uadSU/RG+BZqq9idPdkUIkk\\r\\noR/7EE1Fu67R8SmarCvVdxvC2gy1ivTtw4vO8/K5GqxVTRimvdsb/uMU+7EORp37g5cylvFYKHBT\\r\\nmyx7NEaci7TQY3AoOqdsBy5zFhhd8SXa9qzDI53W6oq6+dG8vawqF9pFFkndN8hVuciuw1N3efau\\r\\n3+GoMIrRnHMawX8CHA+AcbAuxPqMZzxj+pxFOb9GtxJGFHoeO7O8r/OguTPy4yxwCEM0xgnwdESf\\r\\nIHYXq9c0cITCmKk2AYLzIBBi0SQGHgHFwsSIhDFvjaDByICC6DtCorqtuskQEOuf98sD6uw/QiyP\\r\\nW5gas7mGoHJc0NOe9rSp4D5GwdSYQ+qgGTyM2je84Q33icHDwCIg/uEf/uE+ed4uxDofG7DLPfb5\\r\\nHYzDkMfotc7v8/6nuZdxEQT/uonF2u4J9bxanbjoEV/iRWcsVsdEERGwjAR8o6bIdZS4lIVC5yI8\\r\\nnI3qmCiWhi4yVPzU6k55+446RfzHKMBnoiS6lNZ1IY4wabAoT1HNp8j0SZPOL7300qk5wx6siwIt\\r\\nglCxOT71N2dSvZP6H/KKzLD/jItmZ9WZVjduxdFF8DhO+JqBphjaOJJ77713MrbIGnxv346GWprK\\r\\nWkcXUtaMCzLUWktVkl1GLDBsFbNTnvM0iwi28o9GmTS7iVz0EnmCb8090oTgRk6Tq+iBscaYRkNN\\r\\nJV+3zs/93M+dmhzQWR2CTUQHe3QhpYlGXGf91gWOYOfle9bDgXYfhhPDjcHMYKo8o+J/eOroHoZb\\r\\nTnqp3k4ByeDJkECv5HB1ZeCS8UlOM0yUt2So5gRqwui4F3If3XgWXHtGNYz225gJuoB+KTJGV2wa\\r\\nDorP4ZsBSM/AORhZv7rQUX9ccMEFU70VY7U6P80dImX0OJoBc+vD7+AFp4zOBoFH/zJZGfKjIcex\\r\\nY3A3C41xqtbSntxj27KQE2TgdO6p+Zz3hwzQEln9WZ/1WVPTn4zHgeGUzuZa9UUCDRIBbFVXjnMG\\r\\nMV5tyuM91HHVGUI452X+3M/93NaK3ToYMpijowIQsfQf5FewzeASlvbCaIRjw9oQFgInLDAPZuId\\r\\niUAxluyRp0Qg+78Oogwt/yNCjIP4MJ/7d3wMRm/OivsLlYqmEfa8Lcxp/YrDCQsEDgkNy7O2w7qS\\r\\nsyaOL0Hq0mvUxqiJuz9HsL72a79WWmRrOlkKg22v09lDKb3//e+/36xp6R6MDqhdn1JE37xeSoyx\\r\\nQnnxdtVRjnOpeM+dP5bCwwMEOiXXpHL3Rsul+ChMvE4B8O55yVIZ64ZaLtmHTma1b/NaqtbLQWQo\\r\\nSmt5rj1aH35kMJXyYezgbfyrEFoknkJ1AD0Zo67U9yonsN/a/Ctcd8+Klcm3ug8pojq87Jnj5t5F\\r\\nxN3XPSjDVd1o0kPuTVmDG/km8saZo1DJWXBWB+Qzz6YgOYtNsrYnsoYyV48zRsmTQ+QP/ORUFpVj\\r\\n7MCtvZNDRcq8J8LiGZo9FPSSuZTxJh6laFzn+DQGTGMCyF70QpbCR4eV27c9M44bZ1Gqlpz1XEa+\\r\\nv+HYZ+MxRdYN9uQsuHPc4af7g68f16QXOAr27lo4qrBe0XZNWRmrparBnu6xTmuylnEulmfWIWjf\\r\\nnoUG0ZL7N17CNe69KhK4hC80E8mowCljaizZoZvhy+yrmj/UWTpzEE6s0f6aHwcPYIPO0E8z16wd\\r\\nrhhlruloKcX28AAm6VpRTs4Kh4tRuipVuWRf4zXSuzfeeONEjw6NP9ezJLdd37rrjehQbrVSYaRQ\\r\\nGCOramF0kSGYedRFDRfEje+bHO5BkGaWVGe7jQvTieD/wseIlkeD4RAzIUOoEFCMl1tuuWVat2J2\\r\\nxPr7v//7R/vQjeRgYQxCoNZphrgRCmZCWDxOoXADVRlXInA8EKFxXihjinGZYPR8e0BwGMp9EVxF\\r\\njJi9eTc+U/Ogdd0B1rwyRG7uDuYXtQMTYWsEq5uH14mordl+89oIOALBetcdqrsNUfDUr7/++qnI\\r\\nfdsDhrd5zq7X6ihxuvv9yQCk4CkHk+a3acjYFQbn8nsiyxXCok30TTGja8qNwKW0/Z1BhXdqDEGL\\r\\nok8UBx7Fq/iaYN3l0Opt9soIYTT80A/90FRLRV5QnhWRWzt5gMdL74sgMBooUCkqfK5WCx+KYIvU\\r\\n2CfZgoer+cLLGVjW2LR2+/ZcshHMePAMFjIDLDoAGLw6HJpStTYGAJlDiTEMvN9oAMXg7oX3OWMi\\r\\n/vDAMSRTGSXkiv+7n/VZr+dSeNZDlmn6qQBchEVpRwfew6X1gpuIPOO6waXkGwPGuq2DjHKdtYBn\\r\\nZ4+KpDD6NnUiP+Yxj5nKQD74wQ9O8lmx/Tve8Y6zdI6ItXTQ2972tmOfjaUClPZP//RPT01V6iAp\\r\\nXvACE9FlkR0pO0M+zeQCuw6f5gQ0lJXiRwdkLZlLzoMv/KD5GjDAq+GyHHE8wmgGe7WA4CgNjhYa\\r\\n82CPvlNUjNONR+ibBpH6PF7yTEbJaTuAKXM0rYRhNEAe+chHTrXImtVqMND8gdYaJVAqkx4rbdtx\\r\\nNGP3a2nnxmXkeJQ9Qh9kA93GAaNrFX1vOrVlKf+LxKuDxcv/8i//8v+Eo6uE4dhCGSdO+OYlIbw5\\r\\nAymkw8gXX3zxMUWjzkGXFSOgSdcAp1AP40AUIdxhnQwnjIsJhEfzMCBrm/C5eVeMl7vuuussgNuL\\r\\nEGYDQyGmNmdETkAQdj5n6CjARzzGNPBq7MVUaF4GJiG47MMeMC7h5h4VKuYN+E3QdXinv3mtlJrR\\r\\nFdZBSNx0000T0xXpEklsMKq0J4FegWiE30HE42A9Qlvr/NJDqtUvGPD2X//1X/dLIs3L+p//+Z/7\\r\\nzfrUlRh+Cm+bZuEsFRj7uk5thbSOcxlFdDpfsmJwnWEiVa5B96JYpWtEXChN71My1RwRsHn2aJIC\\r\\nxysGDJ+mpXubPaslsS5OD+cGL3B+6n5qSjhewKMMIrxFefmeyAAlQMGo66qwnXFDsXpRhJRv42Iq\\r\\nvm6elvvg9wxM0Ru86J5SZdalRZ2xZB1e3rM28KS8OGOUF2Oms+hWwYG8qnV/6UBWjqnviN6Rs1Kn\\r\\nFQW/5jWvmRxbUT1rrtjdXjiGZMaYlaCkO3bH+lxv7wzwUnFkGUNDxISBuamd/olPfOLkiLcm53m+\\r\\n973vPYuvTfbWOGVkwLpUd0X0L33pS1c6hpQZ+Q726qDgzrM7BJmxAzd0jWgMvMtYoCsRVuUvatIy\\r\\niMAM7vxPF9JZeAcvNEsKbOC50R4VvKNH9/c+g99PZSR1EzZTTPPAacdbwJeaZnT9z//8z0fwVUPJ\\r\\nkWZ4jsXsaK0aNnrOvmSZGI/0IR5Cz+BCJlg7GdIAX3zGoVAz7ZloougruhHxDMaH9Uh7keWMbMfv\\r\\nWZeo6JLzcLeROefi2qONO9xTSBHiMY8oRxEOx73waAikOTGYsYLBeTnjoDHeMQbvoGFAYdWKzOza\\r\\nGcDAq+gSoXfoKCNlXdvzYx/72Gm+TsWFmEaKzloae49wCFWEyCuqsLfi3DpOEB2GJaQJY1Y9pvLC\\r\\nuBg4ge9vBOvemJOCYjgRtBoEpMEoQ3USiNhxQYQewS1tyYhDpG9961sPCBcGrHVU8+W7BF8n29sP\\r\\nIxB8wdwefX9ueIlOwtef/dmf7YXo902U6p2ccScKeX+Z7qsl3nqk1k57dNK+4GX8BzybPVOoHm0Q\\r\\n6nnSIjlosC6pojnoFn2Jlmq/RztoSZ0U+rmv4S71Vw0OpS5S0ekD/sdLHClrtPYGF4/es2s0kYg2\\r\\nUBhwRVk/6UlPmqby4+sMH9EML0ohx6iSgMYw+B9cvMCJUSFCIBJNplgLWNXAQ6F2WDTlju/jVUbQ\\r\\nfNL+nA5Ea8jeDiQvWtd14+yw3mOYSFMxkskyp1qQ2aI75AW5V2djoyhE1slisLOvpz/96QfkqihX\\r\\nxc7WW8lDZR6MBM+ADzKUrCKbTqJnU6051hn7DK5V6TCHAKv3UgNnPavuyTEUqfrrv/7rjXJL1oTT\\r\\nDOcifvDOgBLdklLzP33VsWFgQv4zIuCR41HmgkEa32RwokVGBpi4Fg0U7a2L0+/OUG3mVHwYHMGW\\r\\nLvnbv/3bjXtaIjcatfLOd77z6H7OGfY89aNLou/gbL4TGjZeqPFHis6VSXhfM5kOXXVYUo74oNpK\\r\\nOoc84owxTPHraSN0494PS5qmt57//Odv3TCyDo54aZQ1eGSbA+XX3Xcq7pT+QJAK1XhBpRB0mxgA\\r\\nxuNdxUyATlAj3HEwnq4r0R8heBayTj5hZZbupjoW7dYIthQcQUtRdFwJpCFuXRfSScbsC02uOuxW\\r\\nWzah00C+PHRClQBBeBXE+8z/hIffDKeOWnCtn2aQKIy1LoWEtewmTDEaRvK/59RW636QVpu/YlOe\\r\\nsHAzYwlzi3S5Rsun9Ywe4oMe9KDpDD+F85D5jd/4jdN0ZAKU8CdkrZ0hB0aMT0SfMCj6Zh32YdbL\\r\\n/XHOiLoCxiYY7yOHv0QwbbpGPSGhw+k47fyiTc/iiStURlcUXhHUprLDr/fqdsprF5WAb7TLQUK7\\r\\n0kqcBsoCPYikiEwtjZBsWutpPme0ihhQdvZDGVI4jB979Urhkz/WjpZ97n9GlPfwNoOAvKAkyRvy\\r\\nQwQL74Elfmx2UAZD9/QshkapOgrEvcgYytN1HDipRC8yjOPIcLWWHLecLc9xz4444XhZl5oo96om\\r\\nB79S/n5KdeF5eIRbEQXrgkt8zqFrlEApr2gADOG1Yc8msBd5sx77cQ/yXY2cDIX3G07JgbM/a/Y9\\r\\n6y99ac+MsSL1jdSwrne/+90nGgZShKIZ11577VFJxx/90R+d9Z2HPvShk7Op82pdjY1ZVw6cZoRt\\r\\n6tKVOZEGa8CnvTII7Y1zyTBiCDCg0Ya/4dH+4coeGd+N2RE59VnGg6Pg1BJbE4OtsR3hFuwyzIpk\\r\\nNjojveO55LXo6nve8569GFhwJUoI5ulwXX4ZxCc1hsTLmmBuuOGGSY6MxqwyCcaU4/NWDdWmi9Uw\\r\\ngrlgDFhw8uFUdP00smL8roYXNEB24A/P8GqYOb4FW7IDDtgOnC6ZHvj2Q1+KvrmO/eJa2TQ00P9k\\r\\nJ1pwD3IATvGg+zGKlfX4nG1T45rUM/mAl0QIp3l6DnEkdFi4o/LIY2Cdzue2qIFgeInMjFErjMoT\\r\\nGccqADwiBIDSDNVDQTwgsXgZY8ZEWBhhJ7LjM8R7Uoeh8RKEKONjnsOXupQ3dz/PdL6STTOMrKd5\\r\\nWoif4THWNtQ1VA2X/wkBAFZQaJ2EIIRZZ91JGJGA6qBg7xOiYKy+AUMRTsLx8uYIEqIQNORgQAWU\\r\\n4B5sDWBjdPzHf/zHRKhgiiBiIudHMmAR0rve9a4jYrZ/ninhj3isS5SrlAiBnpdFMcGB91xvvQiK\\r\\nwXdfRzSc3M4Duj8MZgVvU60dcC6dfVKaZ4kQqSPOteqh4AKsdWhRugz+xh2g/YrQ0YgIzTjCgAPE\\r\\nSGdkEQh1uO0j5bBkL0uvsWdGAD6QCormOtgYXVYI7Dfh7BqOgj03wJJi8z6eIuxFb+r6LTWIP4su\\r\\nu67uQcZN0SoC1d8EbDVJ/vZdfIUPRZopVgJbNEyLvHQb3sDjannILc+qQ7hZV9aCz+3F8SRkGZko\\r\\nSkXm2R8j0LPBhVyBRy97rnGgui3PaR5SdTGiL77j+Z4rqnDVVVcdUKgi4NZHvpFrZB5Y1M2HlqSM\\r\\nwR9O6nC0LnIrOvLb88COIQs2rrEea/zoRz+6VnFKV4swgF1Ho332Z3/2GQ78OIxSbQ3ecl8G4L33\\r\\n3rvynhzvK6+8ctJTYzfbKhqUSqLkqi0jwxnn1m2v8E8G1yigDqrIIQcHzJorJ4jAKCOXwZSyJasr\\r\\nzif/S6PBpxc94t7u06kfaDijHkzBmfHN8J7Pk1zKV6uuu/DCC6czSItiKSEwOmCeYTrpGY973OOm\\r\\n5oTRGGYPMLw4/+tSc/QUHc7wR3v4wMDZfc8OJPdEM+lPuEx3gz9+x3dgTI7ah3XQ0Y3XqIPUdfDS\\r\\niKYi4jkVvltDh3vQoclnvOGFt1xXGcHoiEwdrPOOLcKQYLF44d35ZFaFigSiaEvTo9WomGbqhnLK\\r\\nhSIhV1oMIZmCzdrkrSEuC6WwEOs2HjUL20YZN4wCNVP+BgAFmxXAjwQkBYHox0nCwpuiEvZSTQog\\r\\n5XFACMRhSAjxzIiG0GUFQ6LvU4IEUPNoCE1Kj0DDaBjbdwm2akUIUvdAEE3WxazN1rEOoWv3YEDy\\r\\n2PMowJWA63w5k3R5CutGCJh8zCAklK0LLAgF67VnBGKPdYQgODiyPn838NGawdkeCBhEBk5d4/sU\\r\\nFdz6fNfZJUZJEMTViBDWlMnSsx9PI6DQ1yoP2VETcDg6FGoZRuPT/4wkyoKHhC4J5uZH8brcg7Bv\\r\\nkjkYup7hW1GtqFORKkp23bl6p9nnuf4uRV8nmH0X/UU76K+6r4wgv/EbGmLgoCNG9nwyNb6lOEWR\\r\\nKPxS9NW64MnSM2Dvb7yExsG5yLR1+A6epDQrERD5wI/a8jknGbmuoWDxqHuRAfF1BhveaNYXXqHo\\r\\nGDDSsOuO8QkPjHj3Rh9FUDyDbOIkip6M9G/OFCXjmaIzyg6kxgwDLUpSCYFnoDc1ZPbZYcKUh/1l\\r\\n0LvO/3DhZR3kQ/KvvddVdlKZgRqwq6++eopEN1z6IQ95yCS3xoOujQBSEuB9A3NPioqpYeVIb0rT\\r\\nG0kA9gxiM6GsF04zvMl0xpz3yDm6Se2vzEvDb9Fow0nhOycVbHzH543wIP/AyHU+LxICfnDhWvzd\\r\\nPLmaofCEqPg+j95SS6ce77rrrpuMRkejOabNGjXpbKpxBjtRKuse67k0tqE3NVAZo6tkCBrkVFTo\\r\\nTxc4SmqbUyCWyCZGtMwbWOIRP+CZ89ZYjuo3S3GTD15w1Y/vwpGX63u/EU/hluyo69Jn6Ad/48HG\\r\\nnrg/fYmPlRod8xZ4CZSCG6nHGOt3amMWtaqGCjLUS1TDobuoDsLzzz9/6vJgpBGwojfrBoauAiil\\r\\najMQJeJUO7QN2BgCGAuOKUChbwqfMGJ8CeOdVJSrfkyIj+CsqBEiEr4YpXk+GSANGXQdRivlkHcM\\r\\n0BBECYgq8JR8l7dIePkMjCGIUMlQ8f28K9czSu2dIVTnEgbRlaG2wfXqGRQygu/73ve+xWFYETCw\\r\\nLRUr5MnIZSC4rzoOhoZiUWvosGPCWXTNPghDXZbNF4ND68/YIszcXwSMAHcfXrjn2ht6kNZgOHkP\\r\\nDuwbLSmcFEHoiBWjN3xHV4qaAOFqeKDErJfXBEb+FqblYaWwrC8PHA11SCcah1/Kxrr9lG6ryNlv\\r\\n+4QrDof7w2ctzHWeVXfX3JzqV5or4z4N4vQc+0WfzU1z/33WKSwRUPu8hhAnmMy+MdcqGrFnqW8e\\r\\nrTQ+mIM3XFJERW0pfjxbCzsBPkb6WqsTHkTOM6xqLQfPUvT4sdlHDREGXwLPM8mOaq9cp6uQAwN3\\r\\nHDTOpXscNvlMtF43IaOXUcKwynhDE/aBvhPIGZa9RyaM6f5rrrlmchjQAhq39lKezUtKWeS44Q/y\\r\\nonor6wIHa25Mzhd+4RdO9aYpfjzhfuAU/emupgDQNdmClvEXA7KhqCkS+Ki7zH4zwMgD+BSd4MeT\\r\\nWxsAACAASURBVACuGgxLlyhEFsVqov7nfM7nTPKFUdGcpC/6oi+aJpDbmyiLQdX0CpjAa2ktPK9d\\r\\nX0Rz7BqPNtCLtZIf4NqB7NJ4uugyxOEenqwDfPygPXKLU1Saj5FPxmdES63aN0fVtfQMGMhENMja\\r\\nWoqIZLiWGoRnz8YLFb+jSR3T++q083zpYYbl//7v/076gCEutYomXvayl20suxAdEim0j3/6p386\\r\\n0imPeMQjpno//Lep+5yRpxmOjOu4pU3p5G3lEb2Hb+EabcIXOUzvFrlCv41VqdEgR6yTJfCLe8B7\\r\\n9cz4Ay/gCzQFFviIkYyOyAH0KsCkxIpBi1bZG01JEAmd5pTZGIB4iLB2+fI2jFEoWjf98R//8SOA\\r\\ny3MDNqNKiDVPnvLWcYV4WM6sc/VCIlkMhNELk8JCDACBAEVsMLxxBNu2fD/lKU+ZBig2g6fzAily\\r\\nnqD/havnRZQdNjsiWAExT7CBouPsG2vFUIQumEEGYQgRdQFhXgJN19mqok0RNciz1wYi+j7BnuJh\\r\\nGLCOKWECEtEQqD6vmLYDQCks0cARP9sS7C7X6/SiTBmS9g7HlA3DCYwIE4K7rsfgWMuvPfncXu0T\\r\\no+Q9MPDdE4OCp3vYO8EV44BDHkozZrxXtJHhWMTUM6VFwKrJ1e6H0URLMB7mSSl5NnhjKsYexqUI\\r\\n4AxzSVe5n3SMNWpOYHxRgAw+9/PdVbWBu8D64/0dNKsOEi7QLHjCGdrHX2oJ845FtMEEPFJIHaVh\\r\\nBAEaoQjxKpqf12hodOAsuRaMM4IJbTCFr9JaFRejt0YfgFWOEnqBP44h46JDq/0Pp6KFeNEzrAct\\r\\nxoPW2XyjDA3PZTChAdfWxFPdpfsSzvZnTXX+1sVFrtkH+vJdAlk3oNIKyrqosX17BuepdAc4UyTW\\r\\nBz5kGpnKwNFURGZ5fhGX0q7upSYNP1SYTVZW9gAuU73IwcGE16KL7R+f+ttz7Q0uq21hnLzqVa86\\r\\ny7njIFPsBqtqNuDMmr9nD95rRpeUFoeTrGuSP57G//E8JcjJ5niRhc6pm0diyGxrx3vwKWXaTCYF\\r\\n/+5tj9XYljJCP2DjWeiHHuq8UY0F0oPgo7yErNI1Ck7u5R7oF0343/OTUXDrmc0pI2eqg/V9L4ZW\\r\\nHZ3gApbjub678PwnfuInTp31DZJ+whOeMDWveTGwOsJu3b2l+TT0WE/jNRi8dPxhUGGRI8+JIGfB\\r\\njlwH402p3W32a06fUS3oBr1y5JXIwAF6IZfSE3jR2sGfPmDIk1dwJyoHN3jF9WiA7m4SgPvAu/fp\\r\\nWzKPs8OxaLYfI5ZcoQPGMiulVAdf/MVfPBG4Ka/jjCoRAMQESBhiDAuaTi58ihgPw8BHtUE2jUFu\\r\\nu+226T3X8tYsXq59bMNV0Dwe0nwSgK+//voziBcx8zLzeIum6YIkuAALEAiB6jUAC9ClNVvXJmSa\\r\\nhksAA2xeLARVP4ZoPKcXxQxWCWgGz/w4oXXP5PV7Boaz7s4Bw5wV7dm7z70HwZ1JRvARoBDO2xIN\\r\\nWDVrbNN+9/E5fIJLKeJVR96Mx5h4ZnPSEDtvHBGDedHT5zznOVPqxN5LBdeQAOYEfvU1hBpFB5aU\\r\\nB2Xzlre8ZaJDTQWUs/sL3UodUETmtohi1nEFxwxEv9G/gtEMV5FDBoOUT8W4QtWiNGP7+aMe9ahJ\\r\\nuPBw93GY6j5ws+QelBS4EEaMSTCgRNAgweUzygEve99wTak0UWKOFdq1b4YCmmQgnTQ+5NZbb50c\\r\\njeqIOHj4S7s+HHLePJfg5KiJUlCgDL2+g25Kc/vte+iFwiQjRD1zGjkE6lF8RohyANALJZeB5LNq\\r\\nEysuR18MGwY43oNXcohQ7Xw79xJdkQ5RDynVGB2ioTFFggfQbtEZstZ9KCOGDyVAtqBX9FahujVL\\r\\nZ+F57ff2ftlll02etNINxpj1ldqDq0ZP8K7hgwNQB6n7MALMc6KoPAfvwT/+KS1WAbD3a0pgOIoW\\r\\nc7xXzeezJ4fKk7n0hPE/6ML6tPjXoQ3Wpc6tkbNm3fZuH3hV9B98R+PTwcJKPpQ/WDteF1kxi1G3\\r\\nm1FCar++/du/fZoRhZZzoBhvnov20Da5A5/gz/DllIMFmpCKtu9qHMEvfKAzBlppRTwmMmhvjBzw\\r\\nFoQotVr62nXw4lngjz44JIxmQYaf+ZmfOTJiGDfbTEX/hE/4hMkYajK8tCz44cd1nazqzKxDpLFR\\r\\nTQx+nZfqB0UAyTgGxD333LPIwLJHRj/cM3SX7mNVt+xcdrkGHsAW7vGs/eF1vEDvcJjAFE/6XdE7\\r\\nHQKX1oVP4QbO4B8PkjXjGaYcIpEoMmJs5FsiT10zzWb6/u///mOCkLfaTBAPzyqDCESJQeXCx+I1\\r\\nOVpMMHZE8MyuuOKKSSBgmE1pLAJ+DDdTvgDQmAVMBJi6FnlVo7HGipTLF1GiRBlHGLJBcIjbD4D7\\r\\nPoCdFJq1V4zCMmbwlMqjQDCHzxKg1uQ5EOR9xg+Dh7Da9QgcNQwYV6hb3YnokD0TUqIo9sCg8jfi\\r\\nYlxQcJipFIDflNQ+2k2XEtSm69Yx0BJju7QzoVjRvr/RF1wISds/w5rwgovoUcSV4HY8izUyyDEe\\r\\nQU0ZilZSpJSqrjFpRoNseTp56OhRXQ6lVuOF1AUB9JGPfORI8BBqjBBKUmv/prqHTTDb5+eMDEqc\\r\\nYqQkOUR4BW80oT3+QfN4Dg8SrmiPEkLrhNSv/uqvLha2q/bAC+UsEe6UH/xJlZrdVYqHomYIwyVj\\r\\nw+HqcF1HHnzhkzFFTyG61y/90i8drU99jdoQ16MdDgsFXkrRb4rTe9VcuC8epoDH7jaypmL9IkoU\\r\\ndvP4KHXC23PAVsRFVMRxJ4qvwdkzyFaGDKHvuorZwQP9VqtjPwwTMKAo0BU5jLfrBFSH2aiYZBB6\\r\\nF7U6HBMx4RIeg61OTsacyJDv4iPrKhIDZ+DK0Giuk/9r5LF+dXKK613L2OHkilYw0HWVMVboCmkU\\r\\ndCSqeRjZnfbO2BJFYLCb1J38FwGjZyh26/EjmgQfrmXIUpKukWFhNCkZMbGeI8BoIYOtAc2SkeSn\\r\\nH9FnChU9lS4u6gG29oseGwgaL4NNKUT3gfPoB0xcZz+Uv/vbK7zWAVoUMCcAfqTjyuqoPSWzRct2\\r\\nObydzpCWLT0IJ8Y0wK1I7brJ+073gLOyUE2BZ/DiE7SM5w2wrWFhqUxCE+tmm626h6Gz4DXv1mY0\\r\\n4U/GJmcOvoyoKcoKZ2jdD5x4wYl7gTf9iHfKErkevzGEOQquZb94BkcP76J5Bj47Ah2zHcY6bs8Y\\r\\n63CVSlTWhE+mRrlxk+qsWIUYXr47YmfFIejaHhXQ1UnAq5QSRGxjt6GJsYy06m9sXCH2vCZKmpCR\\r\\nYCMQ6j55i4DAA16HJIYgo4ZHSeAhBEpD0SeGo0jctxbwyaI8ODg6/gITASKGFzZcV5SNADFyXQUJ\\r\\nvuow+h9QXee+YNVREAQ0IYkB91lrA6GigwSFtTEsCFdM7XnVolgXQyTByGhEMIiLwGrfDTs87QC3\\r\\n+ZEmqzyQXQdW6nDJGwF3zEHZMkDBGTxE8YRv1ezAAW/OAeDorFSNwXzooxQv3KAF16stIawV4GKY\\r\\nFLVOGl00PMTq/5z8Tvj8xV/8xREvnXfeeZPiwqSOqthFWC4VYPPrCB9812gSAoYhyRvliYEPJWJt\\r\\nfhhTiqgpRPRDaYGJFwVFMBG+6IegWjJLZ+naKVGCcoyOm7nHCPEssqAJ53gNbuADb1VDZy9SgIxB\\r\\nAnBeH8KgJ4jhvogBmUT4Nd6hWksC137BzvMZ36PXKopepzOa40hVOP+bv/mbE/7VhlDwGXz4q844\\r\\nqU+GrRcFPCoRspciZOijHYpDV6+/1QaSiQwLvKujUcpsnALO6BOdAyf7Ajuyrnl8DAwRR86WGVvS\\r\\nRujfOuzDdQwgsG08iPtUz1Xq3tpd4zNwBHvOXp1UnRFoL50GwBBEU2Q04waeSt3j4boeRW8YKKIn\\r\\n6LQB1L/yK78y1VS6zpo7cFrKCQ3psCbvdFDLBkiVkm9gZlwQHsDbNSGIbOaMgheaJzcZjL4X7Wmg\\r\\nkg73P6Vrz/Df6J0iV+29wu50BRrwbIaWe3PUGV9gYW9oQ9qO/KUHRfysEczxpehR0TlGyqayGY4d\\r\\nXVaNmrlYOv+sQ9Q9Y3wTf5qVSM7Rv6Wb1SpuOnty1X0FWbbVJ6syH+O92RzwyjlEg/CX41RTGT7O\\r\\nMQPnRjSgEzj3A6+l0ckAPIef8QQaca9KEMjH+fB16dRmpqFLOOVMeDa5xNk4UgrCeXLVbgwZY5qJ\\r\\nRYs4pAMgvdC2+UAWNIY01V/YPCGAqT/84Q8fNPKB4eP4mFWIOCmCQbDZCMIlOBArQkXohMHhnK6J\\r\\n+QgLBhfGL9/Mo2wuRV0AecAdIdFwTgyGgQs5j2tVj2ZfvlOdT0zGY7YezyE8MBuh3yRhYfbSEQQl\\r\\noUSAXn755aeKAqxjFoqWEAYTyqhUCga2d0ZBnlUTiK2rAu86pcCTIdbcH3BBpOuiYhSavW8qhNzE\\r\\n5Os+/5qv+ZqpFxpDMQgQNM8DcUvtEeLSA83QkjLQxYQGKO7C5CKUhCV8g8XomUpr8CoJPd9pOKI6\\r\\nEqlxSsDBppQ/44Tz0fN4YBwQjOu6VUeDbLt3RgfjiOAN/qIgnkERoUWKjWBAb7WOUyI1Z5R6gVe1\\r\\niHnfUm8EhQgD+nWdz/bd9bNpz8997nOn6AeBad0NTC1qAN/4h3IShbFHKZhN6XCRdbALDo1myBBJ\\r\\nCfqfXJHan6cCyC94xvvgQz5wYgxihAdpJPIG/MkpRmNt23gn4+skGDCw8GPDk+2veXzkHsMKD3o2\\r\\nnEuTmmU3RtaM3KmD0Hc7EsfeRTDQOAPOq0nb7tWMtGogWzscoBf87lXqsegA+qPQeybYkC+UUeUO\\r\\nnU4hogQujJ4yB50hWc0iOSRFg5ZdixacF9m4FvLXtVJp5DWHnI7RTea3CA3jkUHNIeBoiW6Bn2t9\\r\\nR+qII8bQFQ3ljHCuOWpwVYbA/cBKdI+MJ8sZWDXywJXrvTKoyE6BhKKR9uNvsOasgKUggJfPrEc0\\r\\nPNnBIAI/+ALXTfO+oic6Fy16/niMDEePsQpvDh7eZuwNfYzmwYc8dF7nJh4+15+PZ6WquRbdJPt0\\r\\nhLJN8AZcwA3YoiE0SsbTSWDB2WQfgC9ZSdZ1WDcc0ePoTtYBLZG5cA4OPqtz315l3PDYSVMQDtQD\\r\\nyMFTHBY6Wqnm9ChUJISEuWuZlk8VtRLp4j1ECAwuRIu5dA/efffdE1Je8pKXnHnzm988vbcOyfOW\\r\\n95DFmp0swcNw93iA6YhQQpAABGCKIg8eIVeMimkA3LrrZGreVQXqzbrwO8bgwY/FhyYlQx5jCsNC\\r\\nCGMJ0iCrc7Cq03JvzFVK0fWEmHVZJ6VhbdZunxi+sPtpiZZxKp0l2uW51bx5n6eXx8ooHDsWmyuE\\r\\nWMGh+rOKO62TEmCA8dAQrT3yWgk3OPD5Pg/nZLzpuqnIFHw9lwB01BEvjxfHwIEvKRkwl55RcGht\\r\\npXGMEUCnHZ1iraWR7QdOXE+pUZ7qtOC2EHCdR055LxrHqFW3VcGu+q6x03WsP8NDFFtpJIKcwIYP\\r\\nQr7uNDDF4GgK/nrf2uGrztNa+5vlwmtzrd+NAUHHnnd/SFnqvqEs2ysHoHQ+nIFzLdM5BQyrWv5X\\r\\n8YWarnGYYgJZHR/DG++DWTBirDJcwA7Ox/IEh2QzPsDfukRhrEM9F/7n4Yu4oAs8AjeUsGGfaIti\\r\\n9z/8/MAP/MDklMK5Z5Ed5IYaLv93hBdhXQ0QGIAJg801eIqnXu0QfmVgjh11zjpVf4T3aiQhX0qL\\r\\nkHnWLDqC3slBn3FQPA9f1RlbUXjR4uQX+qzmzbqs2f7BiKy1TnJNBgGtgQPjxo81iwSNslSmAwzr\\r\\nzuaEg4F9Wy+DqzILMozxISUvssSBAQMGFd3FEWKoSpMxKH/t137t4MlPfvLkXONXMIEPqS5RUzKB\\r\\nrGhSO/ziMzLOc6rvtF80AwalUd1HRAN8GXxg5z7V6KIH+yDXrdN1FL3oJsfM/cGYYbRtVBgc1Cly\\r\\niMHOc5QycCzTxYwDcEiOG72wz+zJJr20Tp9v+t6Sz/G5M4TJDjTGuKpcQTkNHKwbfTGuSyQMfNAS\\r\\n/KBdadJRjnBuZdHmASBRPrSyaYbZwQMe8IAzh6H1o7lW6koYSghTpIUSqWJe8TcgYKw77rjjyKol\\r\\nkChshK3YLKuOsGFpIjifnXZQ44iAa6+9dmod5RURWH4oE4QmVypq4b1aZilKXo2cPOFeQTrGwCC1\\r\\nd0JQ3lqpI8qcMiaIa9t234Rkyo6wai5O96+LDsOyshliEEuwsqoZVpQroecagp834p6ux9SYc58T\\r\\nccFROiMDiTVvPfLNjBbM26GpHQ1UZwV4Vb8CLg3UKypWrhsc0Qnh5zpCiVDxfdEnz2CYui/h5ZqT\\r\\nInoK1QkzMCEs3YvgFGWCF/clbBhRFDingZHj3uo8wFCKQv0KwSTiBeYUqbW7p7VUh1Ndjt8+KwpS\\r\\nKz2FL0Io/YTueOuMMjC1Fut0X/sGCwzZUNk6TwtJgznB7tqKyhlI6A/8ediNg6CoKGnwI7xrQSYk\\r\\ntql3WCLMTnMNZWd/+AWM0Ja12zu6t7fGr4Af2Nsz/mBMMH7wtn2NXiLcuqf7jI6I9/ES3vLCi57H\\r\\nkPVjLXjKbKZ5R5OuJ88mL9wbfMF1VQTyO77jO6bIZjN4Ktw+LIM4cJyHqFkdhnhAxLO6PUIb3VQv\\r\\nQobhIXRDDlWUb1RKHa9gkiGvdoqR4TUf9mnoMIeUcVcUEDwy0LyP3skmnzeTzBp9Bj7wlFFWBJGs\\r\\n86oAviiW+5Ri9RuuyBK8Bp4yH2Qu2pd10PWYLnEPtZFkMbyJIKh/5AQaWi3liQ5qZFI/KLLKkFS4\\r\\nLoUrgvnoRz/6DPpxDi7dxfkXGZLB0CWuuQr9WQ8dkFEqakpnMeo6XFvaiXEHZkWt8C64kC3V9Pi7\\r\\nEwDQSqm90oyVi4hgKTkAU/dBh6JY9ssIXXU24yaec6yLwAZa8TyRzHEYN1q2L2utFkiAZJ/ztjat\\r\\nsc+dprLNnMul973oooumVHy10JwGNBs9NlgWDsn5jHYwIWPJDjxFrpNFaLf6xgIheBxvu0cNIHja\\r\\nc9B15QQcV7WIRZ3bL/6dCLK21Aiet2eBlFMpPYQqhcg75zGUImJN+98iHcRZCE3u1enXNsd7YWQh\\r\\nLAcN7wrwMQeNiJrdArgEFqGGEWyYp1bRnpogzMqw6gypBAQCJEQIhrwPvyEOUxJ8lICfhgiGVDCi\\r\\nMAknwI7JeC1e6hwocsxf6oNQda/azKUs8n4oA0qAsvUbUjv1vPk9jAqM3WwfDHbSAcSb6qFOImie\\r\\nOqPLs+2l9FOT6sFa2BT87Y8QyQgTii00iyDB2G9wqp6monL7L3KIEQhV+IAvMKZ4wKbUK5g3LgFT\\r\\neB8e3ZtxengA+IQXa7NuSgyjgH3D4TBY83Z8v4ijddZKncLxP5yAewYeJqVw4ND+PBusRAbsoyhS\\r\\nhpH72wtGpHDURXlP3SPDz3UcG/urbg6N+2ybGXJLhdQ+ruPZSQnBPTgXhbUXxgF4pejBKiPKvhmH\\r\\n9gkWcAYf0kzSs6JPhCHvXuQSzbmW1wrulDFeqsbIvRnO1gLXFb+jCWvxXbjGO4wdipkBSEh7Wbtn\\r\\no5dVXXGMqiKa1kJR85y9yDaDcd2DA2AN4RqfSzuua3ZRmAwmaNV9wRHNRTP2Z80UASeCAS1SqisP\\r\\n3Um9zYdBP/CBD5wMW7IOHZInOSA1yySTrBl+8JuIDNpmBFQHVsRq/F0EGcyDM9iCHR5j4FXP5nN4\\r\\nQsf+BntOkbXTBzl14GhN6sRuvPHGyXH/0i/90qk0hcEkAihDUgMGXXTttddOkSjNL/SPKDb4wT/j\\r\\nSzE/PUH290zOXlFQNXHKWbwnyMAR03RBtoBHcp7CpQdq5S9tirbQuxe54hlO+SjLwrhwrAvcMmrp\\r\\nQrBAc3SVVP0v/MIvLEq9ifRx7BgQUnfoguH2ute97qzv62KGw7om8ZZGtiVH5exDJszvwTDGy/A6\\r\\npvmWPAut28e8ZldatG5jsEe7YEM2kN/43d++a/+Me3QOZ3jBZ3gEvcZ/8I6OySV6lvPh+74H9uiX\\r\\nvvNd9I0WN0Ufj5AjjSeX7csiTeOBkQoHpQoh9QMf+MDRd0SndGl4uA4QAERUPEfMZ3ERG2K+/fbb\\r\\nGWxnVeIDtEL2wsLy40KdhLdNuv+ScQ5GThBSAQUxU07O3GNIYr6KGzFJgpcg0v48FtuKjhGWBFSz\\r\\nUyqwtZ5amN2DwsRolCegWz+DAROJAsaolAIBg9Dr4CGMXOv7RXUwdEPvCFuwRESlMwvXWwOCIJgo\\r\\nJ9dVcF+4mnAlNE9zfAqcCvXz1BChtTZ5m1Bh5DU7x3Ok5lzPwPJi0GAAa4uIKSCKwz4R7uGMlelz\\r\\n78Od59hfCjqlUPoE46BJe3UfTMy4BX8MAG/WTMCBg9/WAqdwgbYaKkehqLnwbAqkn0ZAUJSEsLW6\\r\\nVvSKwhXlw3SuQ0e6FNUzMpREf0VApK91sGFoQhE9UC4dRfHgBz94OhqIp29wL4PDNV4UEeXdMMkl\\r\\nQum01wijZ1gLj0vTU8zoE62Cm89554xBsMcH+A5ewR2foddSQz5DD6JS4HhYeHtMOXAGqr/CF/gH\\r\\n3cMRvKARePR/Hbvw6dqijODmufDrbzhFJxWd51iRCzkG687kpAzIRE5Sp1HAEZyje8pR2q/6F3SK\\r\\nNiuorrCeIVa039Ewvo8G8ZC1W599up4sIfQpeO/ZF3jbBwMQDIMvegL/cTK6/f1f5u481rqrrv/4\\r\\n7/5jYlCcUaOAEofiTOKQWJWKQJCoYIJDnREwgmmgrbYaiW0MFGrAUG0IFMXGlgiSSnDACURwHjAo\\r\\niHHAWTEaQ4JCTByeX1479/1kPbtn2Pvcc3mek9zce8/ZZ++1vuu7vt/Pd1xOemD0utYzSuhFA/LE\\r\\nmgAu7knZ+Nw+Y6S6NwMnGVqFpu+aW30A0RgveFl77/MC8Ujz6vNKeba9WZ6b/VvOi7H7Dplpzc3X\\r\\nfayvcCyPjBQVZ83SR+QzmYJ/7G8ePO8JEQoXAVjmZb/bP96XHE+O80oxuu3RjFGKW1dy1zf/eljh\\r\\nM+PKa+d3Sf6uqULZ97zQDn/4jjHhLU4ETgZVxACcuaGFkCfaVg37Z3/2Z3sBlrxOnr8MP7Snb53H\\r\\nO+51DghzQn88ZKz2AD5/7Wtfu/c5Z5Ub275P1+FtFYj+xg9Lz8HdVuCm6AFt0Rx9yWMywhrDEeXx\\r\\n2TNo4Mc6lfLBi1rKBidRFaN+n7UX2UiHiehOnMeENggEPla3qLYi6AzOuUlc6wShDcxSsyFqdodp\\r\\nCRuer7nF7cxAgorL34tQsSF4z57//OdPZc2UoqTlpcSfL+gjHvGIqaQb4W0S1gkkz7NgM4zNEFk2\\r\\nledbJBbpnGHdH/FZRJibguFV8Xc9YQiZPFs2UUi33ASCpKol9wMAKJgxWW4+DzFgAgqjFDZ0H0Cp\\r\\nUJN5Gkdu6ipZKmmuFL1Ot7m5CRpCWc4PAENY1VbitJfI/TaiRGFrTRDW+8U6luNDaHo+wUzA8jIY\\r\\neweEywcAPlhxQAk62fR6lsiDqDS8MCFwNbcMeNMK5Z5XGOxxj3vc5KWoSgjNeEIJRbktLBv8ih4q\\r\\ncigAORwEqvVGUz3jKH05h6xx3gXtCFRAoa/wNU8LZaanDCNCrgRA4HpAJmsfz+ZZ23RI7rEForCM\\r\\nPVp/J+uCVwilQFQKG20ACkrceAMEgIe9QQlRhkKb1m1XqxDCEn/xktpfwHjVdoBA1a4lrQIBAXJj\\r\\ntMfRylhy25fT6IxH4yxh3H6QOP3KV75yo8LhLeNR5GUI5NsfFFr5LQokhBLJSh6PPGbGAkyVzGx/\\r\\nUqb4oyRhxqo5udaYSygnW+xdc/dcSj1Bz9PGkChfxHzxDxqbG3AuzDUWluiQjg/RxH2rpCND0AAt\\r\\n5cR2DJMIhUag7it05fnkcYYGPixHiyyKL6u4AzDMGxii3Ox16483MhbM11i6bz0Gy7+q/5g17Bge\\r\\nidpkDr4KEPL8OprN8xRd6ehNxsrvQnOGMXmjLZAKcBEZNGUI6k2oeMUa4yNzwrvm5H4VAJV3lay3\\r\\n18yj4ibXor/vSZo3L7qQbDc/a8UQs+/Jxdr4uL+xcEIYs1y+ffKMjOSxcz1DGo3nHlGtTeR/mlO9\\r\\nzIoUmPemFg1Lek4dImPwK90C3MwbbcMIaH5Wb5p0ALl0aEvG2DeliKBB/erwp/0WaMandJR1rPGw\\r\\nvQX7FELlHaPD0LkKSHKafLfGte3htAFkd1VJTr1+MC6rYcypsmDKRj2YEq9/EAsMuML0FMN4xtZD\\r\\nHvKQyQJVml4irftIPicUbCQMQjkTmoTRmmozDOFehL5NHCot4ZobkEBTvjzmZoi1y8epXJbHwQKr\\r\\nSrEBlKDOuxFLgDttsnqJIFa6D5gV6svLYENi6GL1CSPjKUcnC7CcGRsULSDwXYnHYrkUX4IqZiEk\\r\\nxYk9FygIvBL4nllSpjGgfcm4ARVMhhkrDEBXDIRZCYy8AMB3+Rrml8eJkqC40NXnGNa8jZNw1dTV\\r\\n2PEXr4Px1rV9fmLAIRv52N9RcWhjmSMh2VEqrF4KC1CnlLQwAaRYQQ6mpnwJada2jU248lwKDQGZ\\r\\nmkAyIPSEA9C+7Mu+bDrXUC4I8EUBWBOKEsDzQ4EBdGht7Q6xQAFbwqXEYsodv5if/Ye/VcekNCiE\\r\\nCjDy0OKZcg477qN8hbwZ1rwedcIgY47NuEa8PYAqvsHDnbBA6bSPytPzDHSg8NECyPXDo4fWFbHw\\r\\nVuA7go5hh16UOyXjb/QmjOXgdSyTo1rGXD/gwnN5k8gVSpMQrlnjOAdCVfl+3f/tHXNh1LkH8Iwe\\r\\n+AcNTws/9noPeInda0meJbllT5KpnuUZ6DU/G1DUANC3p2tLkSfPfgRarBtl715e+NcPkFI4tyKd\\r\\nchDzoPc7DxAZAPygI/1gPXjryKJ61VVo4DfeIpuMyf/+RldrymjHF3pfkRsAM/mOb+XQ8i9cmAAA\\r\\nIABJREFUiaiYs0bXPFhkHrll7QB1MklbIPxd/6z6uvG84v0KKQJ4xoNOeTO8j76MCvxkffygA951\\r\\nD3zICCufEA/QUT6vSAF9fF40wlzRgw4Zj1CayzOGh3CgEDS9qZpvU/ha9AkAy4tsXWpMbT/7e1OT\\r\\nUbIZzTedNnIW2QrAMhThhgrdut+xQB3ZZh8XpsY3+Nx6mHPRjbHgzLrGS0WeyBh8BqR1XBua4xEO\\r\\nJTxFlvspxQVWwkv2OrkN8+DP09NbLtnrJw94wAOmwx2LeyNE3W8tzHgeEWQqr+q0d84lNwJiCGjh\\r\\njJpxPfOZz5xCRZidsDMZx8fsKq22ADZlOUe+QzmxIhEvRgWSKs0HplQKAVGAhh8bfZ4wLalbObp7\\r\\n8J55EeCA4pq8MJ4LAqikZXMzljr25hpvIxEgXjZrcWCbmRB2DWADfFk0HiYWx7yhme+vZU7uccAM\\r\\nqOG6jhmMleIlDPyNIdGsTvn+NmaC1diM2W+fd34hhsbElSjbTOWuYXrCD+DrqIj6+lTWrffLebd0\\r\\nQLM1OWhPfOITp9CYDUdIoRuvkrAnQ0Qyqc0kbCRplAdOUrHcD94CvIVvKRjCmzVLidmwaPf2t799\\r\\n2jPuxbgAGFiwna1HQLi/fYTX3df6nVpaF/cb8I/WlAq6EuDuMR0uenIyCQfgUC5Y+WEEPl4r94Cw\\r\\nMdZOAKjS1jh9Bw8Kh+HpqhvnieHc93h4l3Fgz+El+w3QpuyMtxwl3qSxHJ3H2HUEGkDX0RRre+nM\\r\\nFYRcJ8DYvBlU5JQ9aG0IVvsP345ycLwHEKbtCdlUk1bfwyvuUXNCa29PmLMf93RdVU7CjjyE5oj2\\r\\ngA2es/cpOz/W0jpaW7SnDMhMcgd4cP9SAQqJWgeyY96ryBmtwmeVruObDKPC+p7lc7QGLL0PjOIV\\r\\nf+MlsqAUBdf6TkCEvDAf18krwsOFeoE38zc+96sKL9Bh/MbkOeQTowKgwK940ffxgb1g33mmPQk4\\r\\nGsOznvWsyUtER1ScUl6t/DR7x740Lx4JesPetHd4N8m/CjFqUcJTUeGOOdU9n9crw8Pv+qhlOKOr\\r\\nl7kxlqSkGL9nAnoZuubAqEYLvFTncJEcxjsZW9NLkRX0c/2mPo2OuQPoSsx2b89JV+IVz7nlllu2\\r\\n9nlcq1eWgi/6B4A/ZshtfLaUIJ5ka2SO9FRhcHQFaAGqnAD2qr1lvascpLcKI/rcvmIEWrN537Cx\\r\\nApHRVpUpvt3mkZsUhAM2GziiOIuIm1jJce/rfI1ZWeXzUBpLCQDKm8UNKDeLoqCUnH5uQOLDwJk+\\r\\nW7lnMSWrWojAZL0wLnRvs7kHIMAjsisPyxgALMxNKHGNU5KUBeGXR4uAI3AoIYLOs1jdNsQhSF5F\\r\\nECEJsFjMkh4BDAtu0RJS3kvoUlyV3VN0xkPQEFbeJ5gr7cUAPgMGLXydmJcwOtcmpplXkFhnNCd4\\r\\nMB1G5c73yrOQEMGoNm3J6sW5G6v5obv3S86tb5bPEmDmY10JTkxf7ybAwkasbxlGJmDwFKBJABTq\\r\\n3JdUuIQmm66R54BnrZl55VWhMAAVipOnSkiIkiWs8Q7FkYKxZugJfOMJ4y/s6X7miB/RGvjEA/4v\\r\\n3OJ3VXDuCaBRHNYHD1iDeDcl6ZkUF/pbnzwF/qe8XGdO9pZ1qFKSB6N+bxQVBe9auSvuuXYv6Anj\\r\\n/mMbFcmt5kTZun/70XX2tT26r4/Voes5/54eQ/LbCsPxJpp3hTC7noMfGYrmkiFh/Dz+vILkJWGb\\r\\npyhjKo8HYV+IhvwRbuWNydNgzcjIxkBWAjtzo4/VzjOALygISrtcqIoApEGMfQm7J08peee5gaXC\\r\\nhvaj+9hjeCaw5/O6mpeH5H74oxQJ/xtrbW4Ytu51zz33XDRS7BX3tt99VnqDvwNDAXlAikfXcxkn\\r\\neSPRkAFh7nSI+wNHwJe1sEeqFuNZEHlR/Q5cAWwMBvew76yLPZp31BzIZoqS3DIm+7rQoWcaK+Dl\\r\\nM++bvzn53b5qLew9YLe8OfSVruJVixB7jQ6Up1kRTwd+y9M0F/fb5g3WJsA9yQPyGcgwLutkfnRK\\r\\nkR305hg5pOeio8DoJry9rYflsfbo2vt86qd+6jQ2crEiqfKtYABjrlqbk4cMtb7kb0fp2c/p53oD\\r\\nMmp5pOR1MYLwLX7sCCtrXq87fE9fSm3aFOq9uKm57wkgA2DdjYcyyznw/pi3YMNitmL4EUf5pAQ+\\r\\nTNk5bDxfjhixQcRNAwhrKwrGBdAcMYua8IT6WZIY17mKof2rrrpqQpo2q0039q1QlWKBbFjeBMzv\\r\\nfy8K8SynnHO/AjAUso1Sl/C8O1Vc5d2jHOu8bvFrE2E+vu+zwiMYysviY5qEoDnui+ePNKzHR+8J\\r\\nf7CQKV/jrAFbjOkzggOtgGLCuspJ/FHvnaoCMXcFAIWQzIPQrFsu5e9687RJyscaQaZ1qSlqG4gS\\r\\nINhLiCdsAyfugRby3PAJgQfY+T2e60WRobWXXnBZpMYT6HEv4/WbcGZkZMG7xrq63lwJaHxj86FF\\r\\ngNPf6NT3mq+NXYWSZ6O5l/fQpdw+8yzZGR3RwPxqEIk+1gQIp6ytBWELjONB7439o4QezsLbc0EI\\r\\nxHe4qnUttyYex0clm2t4qN9UJfdrheqh1wvBCTuhhXDeWNY+3pNxqHEoGhKam0IylBtPnH1oXZMZ\\r\\nI/DAC1Uez4/amc+BATHmXG2bIy+9z+xBBh1vB57m0bH25C6a41N7mIKZH20iyVh+p+vwj3HiTy/j\\r\\nxUvlkeI58zM2vI6frW/NNgEDPB3vuk6+GeCsgzhjw/eABXtCawW8US6WMVds5FkUFSAkp8q97a3O\\r\\niDRGa8Krag8ATvYlGWivkJdAs9+8wrUEUv3JQCJbPCMvrudWZVdVYF77iopc7zP7z/fIshLb0avq\\r\\nyyos0SLAVXNmXjTvOcaNAWvvuwea+RtARB9zBQDHQqtNfCBPUq4VkFC1qevQlTODHOSBsYZoAcT5\\r\\nLaS6rYfkrj0lH7hKUyGws3qSD92/8+8Jk4s80SdkszXAM2QenrU/7EsRE2tfcQR+orvQGo3IR3wE\\r\\nULlP3kj0rIgMj/keB457MWKsr3X0fSDXXiMvyN3afNgvE8ByfhOh4oIx78DxC5hw3tlYHpbmeXKd\\r\\nxsOTKWzuWgOq6kl/LBvG5sCoWjkcskgqmQgGIAnDsEDmORIS8m08zShH5C8PzPsEfa5DitWYgASx\\r\\n1hFQHosJ3Mdp8SzWKg/HsmbMQVHWqM9GNCaL3PWYpZ40FpxAtOltJN/NG+AzAso9MRVPhAW2+Fne\\r\\nS7pzA9oYzgYmAKrIsZkJdIK7HCNKlWAQv/Z8a0KRBnwwOMZ0vfEADISuOQDbxo6/KiHn6vY+Ieu+\\r\\n8qESWmjpPjZByfaYmbAPgJZI71pKxvP99nkHfpYj57sUTPe0WXI1+751Mn+0L7+u1hrmYY6FSEtW\\r\\n9j5hhP6An+8WgjVu62bjVjDheda8HmquQRM0ByAJBXR1Nhlvhj3gc/xxTIB0Fn4HUhkRhZmERfBd\\r\\n7RooJUqkUDEZg17WUJXXWZ699rsPfehDp0Nt57lKCl54ORTzEJQAUTmnPUM4VEjJ2AnQ+DrvRcAW\\r\\nP/ubQrbOBDIew/fWvlCudTcWa1myuvXGVzVYtS8KnwJGWjPUDqAcJnxivK5lYErOty9r4yK01MHI\\r\\nc3rJlbFf7RNjMFbr1dmUFJbnlPLgt3Wrmq2kYnM2H3tM1EH4W9UsWSsy4KgooF7ln++XGG+v1Kco\\r\\nb65nkANAFLnlfS8K0P3rX+S71oI+6Ii0jqtyph/QwqgQ9qcE7feOuxHqLefLb7xr/PYn+Yt3C1EG\\r\\n3pJ1ycRC3K07PkCXvHnxe73ceKfwDVqRD1UUbvI2buJr/MdTypOe0V0el/UyHmkL/gbAAh0VWfnu\\r\\nWu//s5/97AvkmFSItXvtvK9X9CTsaV3IT3uLnKFnSmC3VvZYdHr6058+zWNuYHacj9QL+9oaKsoh\\r\\nbxkGeJT3igeYzLenloY9TySmYz5Ju0qyDaBETspNOG+sKpSLYPNI9h1zL+Q4YNIxFCUhHHLn8qy5\\r\\noMqbl7zkJeeyYDxtNieCCHFCmlUvceWbj89sOIxqTASLOPfLXvaycxkTgMnz40V4VA2UpQP0YQDM\\r\\nQDHZKJ0Jhmls+hrGla9lc9b9uaNtCAV/mxPBRKDb0ASRje9z97fWGJAAKSnQ58ADYHyaEHnR8+F7\\r\\nvD8EBWuopH3A1HgIYRare3ivslmCybzNh/AnCIEnnpYYfb4JVW8IDar08RnlTQFgbIIZjToTz3jl\\r\\n9Zx2ep7W2t/6zpg7rySBruktD5zwtOvNxzPcC1gk7M0DDwAKAA06+txmQ2uVSsIWaMmKQ+M6PqN1\\r\\nieHWlkBzdA7AbuOiiU1KwKIFvrTeBFc9tvBCh+2WS2D8h7j0jynY8jDbO+ZQibv2LFXT4glrBITi\\r\\nJ7RIAZTvgxfQVUhSyFWV8HnlfWybv0ossgh9AQ45c9aessOXWcKb+lVphukaVjFZhjeAMfOhkM05\\r\\nb4fEbuuMlzwL/3TsS3ky1jsvdI2H8WIh8k1zEIKVXG8v2GNeeM29yp+yd9Eeb3kPIEnpC0VtU+aM\\r\\nqlNjcGqzgxfJF6E2Y2+O5SbW3Z0cqXUNOWVf5AlgvJAZqmbJWAYBr6WeVIUDPcd+5nnyHEAJMEI7\\r\\n3wfWyheVu8tYFJ5HM2vAm2WevInAnEpbRj7jH5DX1FovLfl89pqQD15kCOaJQj972PiTdbwg6Cxc\\r\\nySitXxa6uoYcyODz/fZ/hnAVtuiFVgAwY5hc2eY53bTmupIXaq2Fh+vMH53N3bOMnzwybnIRn5qv\\r\\nOdYbShL8rkreTc8HMBja7u1Fvh7iBVsqk9Z2f3/kIx85gee8kfYUnYl3/djbfvCvvUEP1RsOEO3Y\\r\\nMfPDa4xDciF51VmYQFrHHwXk7DOfMyYK7+M9e2IM7U+d3FVbjFV0knAx9CjgCVvdYTFUnXURTu8N\\r\\noMZrFE4EGs8VC8amofhsWIJkSe+PJYui39JpdcWkkD/v8z5vqsSh8G1qhPM5ZkTMERBS5jaahcCE\\r\\nhO78BO8lY9h3DRe156AbOtSewPcoLgtKcBAw9ZUhqLyyZDGIzYKBgAH/28w2UR4Y71n8cts8BwMQ\\r\\nBmiBLnloEvToVBgHQi83qh5aBHgWegm4GJRAGXuWGdsYJiNYgTXjGxOYl5yszgU+PyboW77lW6b8\\r\\nEcK8hGsMTlm7vwOXhZ4AN7wLLBkvfpU3RaE7w1C1j7GyYH1OWQpdo5VQ9xd+4RdOoS78Yt6EC2+a\\r\\nSkBVhGhrr+AllbIpNmOxHlVbzbtrW0v8RjCOIcp9vHPI5/sOhHVPRhKh0VgYR5QbEMs6M2ceHR7L\\r\\nEkPtYx4BITSNH/Ne4F9rjy8LsTJivMrD85uiPYZhpXCGItkG0jfRjODmpabYzZtxWI5bRuWm7+mY\\r\\nTWbZL3iHN1RO4E033TRVQ5q3vYAWfvCMpH20AMgD3IVu3cd30MnLfrXnKG68wQL3u6aK0gzqxccg\\r\\nBGQDZ4UzzINCSAnifWEpcoHX3vgLbwFmFImk7TU5dpKvPd+er11HuYVVFNub9kDdz43TfBk3xkc5\\r\\nk/28K3mEjcv4ARB7CRDyt5AeufzWt771xL5RJQjsMHiE8gFX8grAMk+eRSkpurfzekuGZ+TY01JE\\r\\n0CZvHB63VtaGTCRzy5Mlg3mLGZRkB5lCFmnLAhhWcWncvpdx5l7m5j6MDDSoae7S8wTn/Cd5XY4V\\r\\n/vAKCJJbeOylL33p1FNKaw17EP3I5lIt0IX8r/3He9/73oMdCDxZjGV8iz6bcqGXyJ1D5Nmu7/BO\\r\\nWntOAzILgAWi8CE+wHe8lnkhjR+drDswZR8Ap/Yk47uqUXRjUOHHClYyHN0Lbe3Z8r4UzTDqaxcz\\r\\ntmC6hOiUG++URPYxt0rOgfi5AY0NKyXAmSDraDwCx3E6FhZIk10PSPAgGBgm3dSTY05I3i9oHCgh\\r\\nuCDVGn5iMkQhaBGTV8G99UbB/LwZvmcjI5KQF08CIs6P6tGfi/CwEJ25V6PAY7hG3Z+iAjaELjcJ\\r\\nNlZjFrU5YwT0s2A2fflAFpWwoCjMt94+NrrN5b08K5Wh2uwEk3sWl8ck1kETTF4iQpNCRa/K3zEi\\r\\ngQ8ohd7NwXcxoDG1ofOaYThjwugEHmW9pg3Hts3EgkRD8yPArDmghB+NkyCiOMxPiMTcAEe0u+66\\r\\n6ybhSrCbizELpbBmWR+A0g/8wA9M41SVYo4Etzm6F+8VmvB+oCEhTuhqz+B/n9XygNC3Fu9+97sP\\r\\nFmaHCiHKGCCUBG3tjYXABx7Roa71CV1HkpSvx4PBI8Mrhf/sKzSi0NEDjSkdIEsCqGRf60z48EwG\\r\\nuhkK9qI8HHzinvId0EcOyHmDy1200xpDawMyYNPxJJrBMgi96iGHj/FYbTsSzPYKGlt7+4B8wus+\\r\\nJ5jtB59TvEAJINV+xKP1RAI+0JZcI8DLXSTf0NsLL9uX5JfrOuomA6wCkpLQKXrgQjiI1+uOO+6Y\\r\\n7ltxjTF6pjXG/xTD0gpqcooeaL0pqU4lKNRWkQsA1nvAl3kz6PBUPQKrOjY+e9R1hWOsgep2nl+5\\r\\nLwAaGuEx1+NThlDhf8C0ilgFAPY3GQGgZjwCKb5rXdyr3DK0dC0a2ft5Kynr0izsdcCmPCyy2Hxq\\r\\nmrs2/LaJVytiACLzhmW8Gjt+ZLyif/lavOQ6mvPKA45exlzBjP/x7zvf+c7VMqmjmgqHoiMZ4bXt\\r\\nZIJD5dch39O3ED/yGh/SxmbpM+lIfGftgTC8aO+Sgfu8gheJDg0SBgTv2CJAywYMK1Q4Ag5Wr00P\\r\\nmLRBHSCslBW4KT9KMhpFRfgT7pIPX/Oa11yy2CxMlpbnEz6YpUqrrDuChJIofLSJOOYAqCCCcRH0\\r\\nARptJAAWm3I8XuCaa665YGOP/UgoHONwvc92HUWzb5FYweZ/Whp8EJOzuggE7mUeBC5gLmPAx2fC\\r\\nTrwxlCslkefLxvJK+FYSbQOyxn/6p3/6fuOxyQlgyoMHU5Kj53DbE86BKQK03CeCMsBXoij6eR6F\\r\\nC6gBrVWMiXUTWEuEkvHwrviheAgZINIcMDrGx1eFP42VMMcDeIeyMX/KtTYTAKXvmgue+6M/+qOJ\\r\\nDlzOBLNxytuTt6AowyHnzkHEo6pxPF8ibQ1WPZvFbU6E0d///d+vXuc5HxFugDGlgXfq/4bOp17g\\r\\n6YidKm8JZIqcMUHQllNmTOZkT3ZWZwfwUjaERAAcXfx431rjAd+vUsb+s6b2MMXCeAEEtuUvOmiX\\r\\ngjMu3sZNFYPndVbZJnp+13d910SLsZUBbxQgaK/jD/Oqdw85ABRWYYrugBRjzx5EO7yNN0uyRTvg\\r\\n3mf4w/rwytiT5EBJ04CI5qDyk2osDHxkQEhkH3sMjvPResHz8UKpBp1hmYIFFOxFfO86+xG/G18h\\r\\nLDLVnFn/wPOS8I/q49FCRyN7jsxAQ7yETpQRnuzIHXvG34CQa4F+fIVOaBIILERur6OZV/l8ed7t\\r\\nN3MxZ98jE6wDfgzwBvRqgJsX0f3Qwrytj/1FfnAS8Ar5XPQFn3suo7vK3PFIuX1yf+nn2pgwQtCu\\r\\nfNJaDVhbczW+ig/8D9ian4pNe5LxGC3te+uKxuSA7wJl87zDXeOTo4Ru1sW49JAbW40ocLNn7IUX\\r\\nvehFZ5Z141jac0vo9/CHP3zCJpL7xx6eS7675hqh7dqqoHP7ekke7IkzjqBSCtAxLmMV2hd8wRdM\\r\\nN+Z9KqlLYmTtGubudVYihs1LhHkoJYIEs2hcCuAQ0DWa1PcGIxPslFRl/DYQ6yom2+fS1rGXtYOh\\r\\ngKwSqM0Jg+WqNV8CB2O6ljVqTOeJgOW5ARpvfOMbj8qMm5hE3NwGBLYqJUVDAgZNCaMxKdzGYalt\\r\\nqpYa7y+pkIKgPNAWwLNWNZv0XrkM/vby3BLD/c3y4s0g4AgIwtGLcGS5AhIEceFSG5ir1yYn5Fi1\\r\\ngKbvB27MqWM28JF5Ei5eku9tPGElYQeCv35l7mcuxqThp2pDXjI5gsYMhBgP3sWblGohFsIlBVK1\\r\\nZ0my5iW0sCTcrEFg+RujdR5gs88omaq1qjg0ZwogT0J9iqoCs4/yoBAIwLR1p5Rzl1fWb80oQvuB\\r\\n55dxU3GA+0kaJdzRbmn3ZaAY/ez9KkB9/21ve9u58/82wUlpaJBs3rxuFCrZZq15Igq1Ad68mdIP\\r\\nrDlPgc/QPAMTP/H0A44lh1sztJLLKXdGGBV/q/CbV/KtEe6brgVy7r333mkflteJ9yvgwLfGbM2z\\r\\nuo21w5ztKddXPYhXfNfnlLL/8cISBbJmLmOOjcrTAL1x2ON4sRMiyAB7FdCqGjejirxwvcgDeWHN\\r\\n8K/37H0/5FNedDKhUCA6ZPxt6jW4Zj6HXmt/SHnwU/Uz7yQwbq+jP51Eplgr+9lnFRyU/F+/KzRI\\r\\nNlRIUYWjzzTGHFsx7Ru3YjF7VwRKpb4iEEAdP/F6Mqjog5rRzvtFuX/NsYH3NeH8fWPrc7zkfEV0\\r\\nQyseJd7pXS2MjAkNlxy75zmcGUKjeq5ZC2CbrLB38Ce5a9/QodbN/gdK7ctOo5mS3OdVdISR2C6w\\r\\nlCdK3gaL3mJr7rbrbDuTFw7D1L//+79/UagKwSCISsJdzF3IDANxDwMMHVhKGQBMFLWNOXrV5DvV\\r\\n0I3FTPFijDoAdyCkRcckensRomKoWS9LF3jNdapa0MLRDZu+h6FtqqUHfy59NuTNoyF8xrKxaYAD\\r\\nALRDYtG60EQg1hlNNv54ZJFWG6o48x7Z5MIXlBRBSSknqKuYc1/MVm5S/UaMnyAf+83UD6emg5g4\\r\\n13SWqu8BhzaJz/z2wie+Vw8b73tuuUB5RmugmuUf0COUXEP5ApvuU0GEDUNJVZyQx8f4a6Xg+f6u\\r\\nDQPg4/nACqGEHsbrXl542Ib0eb2QqszyG9/Wbb9CDErFfZqbsZpPc+44JkAmr5O9FtA1NvQvX8F8\\r\\n8GSJyvu8w3OeAyKsrzEBgsKGNZvED/ao/eYzyk6o7RD+5gEnxJaCu017Q/6oI41q3kjeZeD5DPhm\\r\\nnKE1BY9G2/ru3XDDDVO/vTr9Ww/jk9dVsqtwowIL9H7qU596v1Milu7fbdfJz6n9Bl72Ex9ZZ7zn\\r\\n/6xte4nwZzy0x60f49J+rrFpxhKeRQc8zSNlHlUv8oydhyfnrDS5Er8v6ZmsxXfy4chUvGWPe/kb\\r\\nMKBTrQEZZp8zXEvFsJb2GBljX9W+xtraw6WH+H4GrvcrvnGdvb0m75lxIWJB78o9rLURvi5vzvgC\\r\\nMwq57Ade8nn+bBV6x14fjhltGugd+dNkPbmLN4F3eg8oLUdyPq6l4wHKrB9Zmv4s14v8JT+tVw4E\\r\\ndGf0aEXjGSeA09jS4Bu+4RumkAwrXGjERcIjQhTQG+E0hna4U+dgy/U2eK52ypnFV/hGlcfoKVP9\\r\\nx/qwaDWvxBQGTmBQJrwR+6qq5H6Jn1NOxjkiVaEAYAuDAFi8IwiGaU+B3LlZ187Tsrnk+syTHlkz\\r\\nKjyARWHYXWcULmWKXdfJCeOJ0tV6V4LvpnvglTwu1qtQSE1Ty40AVghrQpnQsB71ocF85WrVlwb4\\r\\noCRYqB0SXPgqcFVCsWsmxj1NFi4sVy+akhZLzsdTQEfNQMszwwfGF/DAE0AP/iEUPcdc/a6ku0ox\\r\\n9yhnBu+4R0UIxkvY1UvI58Zk/X2P8CtZH50oLGEr4LWeQEIdgAkeRReWemED1zQ2itP9CWAvAMH1\\r\\nrnVNRQoEgmcLJdvD87YrvosPN4WIRq8Di064wJ6pTQgPT3PzbEYZY4hCpzh+8Ad/cBI+jvlwLuNa\\r\\nHpZHlLBa+93xeg2V0dgYlbMzsOSQAio8Ceiy6SgSIQuGJZ4AurzylBDoVSHyyuMzchJYs/7mrTr7\\r\\nUOG+bb5C2YBPFYLW2XpbY+/7O0PEOOrSz2t35513XrIGN95446RMKeqq0szTPewFfO05fjwH/+Kj\\r\\nekMxsniQxoatlyPh+Sy8cYzvfsd3fMdUcGX/M+gZHFWjVWlpXwJVySAekdoF4ZVaVVgnP/Rl3np/\\r\\nWw/raa28GIM8KdbCnvT8vFlkQq0jyC9ASc7tmrlKq1GcpnBi3BtSPOgQeyaMANTwWuOTN7zhDaue\\r\\n43By8o7+W5OnyXFBVlIHa+Z1lmvhI3uLV3CJ0XdxYEJLFtGAgZnOxBImNHkCZJ6zMxfKcgkIYMpq\\r\\n7Pr62Z/92VNeTy5sMVOCGKMZJE8LRmM1EVr7EscQiJcNMxsvb5bwB3dqsWNKXXhwDNVoSNo5fRjX\\r\\nK0/IpsTXsyzE+N2rr756smRe8IIXbExyF3Jg5XM1ljh+bKHceB796EdPodR3vetd58qULGQKv+Nb\\r\\nzI/CBYwIE3SXkyFcAyhQWjxJrA6f14aiaqlCWX57lcRZM0e/yz/wHbxVp2X8yLpikXkmXiR0hKAJ\\r\\nqaxzoB+IyBKU41SSMsHWwdtAHSGHXykc93IfBoF58KLWXgN4kg/ofwq+c/NcayzycwIQwAQgqOxc\\r\\nXzrj5v4GsPCt8QKuxsRiC1TmmbLxjTOwitaUJUFb2TIeSyjav+bu3pQsgFn5eg0crZu9SYnKCyLA\\r\\nzdWc0XnsaSdXqQ729rq9aS7lHfHmXH/99efKd9v2LCChRx8FgG5kHHCw6bxB98AHKsfMwVwBxkL8\\r\\nLHkhunrAUaaFioFNf1N6DBDe+mPOmbH6oz/6oxOwtk+Mreo9fwNYVSfm4bBuxiWkY72BYjwZ3zE+\\r\\n0QIQADjJxqqCyS1rjuc9E/95lYPpf+/7PlDmukLOaOB5ANmxw43Hks2b7gMgWlNGlLGjU1XnVfWh\\r\\nCVr7396SC5pxU0gSHarqK9csT3VNakuTIA9qQWPPuq98WuCfHKjwwveSY+WXWS90B4SAaTLGe8bh\\r\\neYAco8f/PK37ej6W3E6vSrh3P7zBUzQaYYwWNNC4t/UVFTIGxUVVw+5bK7nT9owG53hm6fcYGpwk\\r\\nvNNjJIvnMMPXHllTyUlvjfvV2Kr+RQN5rO5NFuN5aw5rkJebcMsk7MRYLaZs/LE6GqPPAAAgAElE\\r\\nQVQXy5d+6ZdOOVgIuMnqHQmnyzC33Otf//pLBOinf/qnX2CJ2/xc8ZTbvrwEViNlpu8LZUIgEPCE\\r\\nt7h6jfQIEvctudfzax5ZZSGEryfKfPySmFVEmZ/7cc3yJqiuWbrA+xinzx32S5m+5S1v2ahcuGRt\\r\\nFmCT65MVbBzHdsWzPDRnwzB/8zd/835XdKpJPdtGB6QIfUrAJqHkMTBQ5PM8VQlwQAxjE2w1rSVU\\r\\nrDkAkDKppQU+cy3ewAOUTGE9ig9/5SWtQSleKomcwBNOtW6+Vz5ZCobAzCK10dyDUCNsKaW6mRMc\\r\\nwAYBRxgRVsXpCVFzqiswK9Q9PJNgdH8Aq8NLf/d3f3das+uvv37yxpqHsZkLQW5MGRgl8BOunufZ\\r\\n5ofGaOW+vWr8KO+GIDdeAmvNSQvPeMYzpoNps9o9y9i6t3EQ0MeoKjVuLT/Qa1si+Lg3KUdeYp4F\\r\\nAhxY2pSTQibgKfyIttYcvXihxnPg5KF29InrrC36Wy8KDO9JsTB3VaprPcW75IoEYy0Eaq6YoVE4\\r\\n3LOtt3H7jOx81atedQI0MBjqRSctojQNKQG7Ck7IJ8Yr3kfz8jBb34pM7FkAHQ3xPb70m2fPePGA\\r\\nv+1ZBjE+5AWpqMJ+GE9oMA97gYxmhNEj5LT1AQQLqRUeZ/BUdeeewLEx1By5/E80cG8/ZL69ZjwZ\\r\\nbsYMMNlDFKc9VQNSax2gqeLa94Ftc6SvCv1xWDBQyJRaQrjGvQrHGhvZUQ+r8kiBKGtZxVp5tPUF\\r\\nRGPvMZjKB0I79yVDrb09WCrAO97xjuksS5X2eGJ+ZuXIc7xRQpryeFVyMsjoZB0D0FplNTBBnwD7\\r\\n1kgbjec973kXiwSsD8C3JBdVwZxx2pvotw2szPfFgx/84Ck0iQbaR5i/FjwcCGShtSJfFXCMHfLJ\\r\\nDuuCV2AMr6qhO3rH2pMXFahZN2tT+kvVuxWz2AtV6XvPmlvXqfePD7kQI4a+J7oGU0BLqg+gPAw9\\r\\nVgc6ZFfSMGGGGfyNsT2Y8lE+7v7CkRgEoyFshxDX0bz4s+spvfmZeiPRhQgJAJtKOb1wmxJ/G4Di\\r\\nYHnPWy8IT9pMNqvPy7epPQShsS80uQ9ofc7nfM501NCtt966EeWylkdvgCTWFN3ShLx9Y/C5NXnu\\r\\nc587CY7xEG9lqPuS3Jfc/xjXaGIpxwUI5wUVxrFxxnywXc+pKo1HliWF51gdhAohVhiTwlC9YxMQ\\r\\n8jUfJZzq3pt3kyDDQ4AcaxKvEn4MBvezf/C1v/EPxdr5YgEtvJ0isenryWRjE/SUhw1dSTmhYUMn\\r\\ntOZzZr2ZG2HP4gVYKa56/rC8Ca2a7Jmj59Z4UAiCghX2dd2mg2S30RmY4qUjdAoVApbGQ3HLK6Fk\\r\\n0EtjSODO+5uSYY/BM0vuARTxClrb0ask/5GwJagB5fIVtxmU5m7d6zfne/YqeQFAVFX1iEc8YooI\\r\\nuB/Zmncj0Eb5U1Ze1mbXKQsAkHHjDXT3zLxU8aa1KMxXrl/Aw1rjBwqnirSzJHjzfDI+KFH7oBAx\\r\\nxVJeIIBXocU4rjzO9hOaJJsDqBSXfTL2fzIffI1P7bW6wbuGbknpARWe5Rrj6Bgsn/vbOtkDnum6\\r\\nfuxz/Or+NXnOM5EnqMpsz7CnXJ+Bbw2BN8/FG7zWeEGCNH0U6BFW8hnZw5voeiCIjslQIputmzmT\\r\\nAfSn9+wjtKMD0QJ97fkMyHKuCh8an5f5uObv/u7vJvDD+/qc5zxn4jnGtirWcf8AH8aLrjfeeOME\\r\\n8PQj6xoeVOCLfHOKC5DF+23/a+8UhqBrALTzbOcgMmQ/aJ/x8z//89MYGfH40b4g7/cVx+2THVpX\\r\\n4UfrBMPgObjFWrR2HXeHj3LOKAKYdIrmnIXHuPg1XuSWJGxYbvt6pEDFwEkJb26MKaHRrCJhRkIW\\r\\nQ2CMkjApBsyDaQihtcQYLWzhP2gTgxV6GTsXS04lFGw8jJ7CptBtCu7JUcjJPYGmC/UY+75zojYt\\r\\nlrCp0n4LourhcgMZlZ4U4T/90z+93z1Y+5i5z5XfskiWWD9L77ntukKChautO6GELykP+4HAwzfA\\r\\nlzyB0ctbQiUBzrta6Abf1OxuPE6K+32Ny3rbuJ/2tKdNZ5LZ8HKKJG0LtVtbgmXJsUjde56IyqKs\\r\\nAjDQRphU0l7Fk4oi722r3CELVCDbR/bXvD3LWdduzffRXRUz4du5ozyNgAnlBABuC+UBFLzKZBgQ\\r\\nTL5ZX4n7lKMwClBJCfshaIEP/OJasgMNCm/Xh8l17gkAUILAvt/ec398R8kyEGot4DtV1ZUHSJ56\\r\\nP6OUsvc9Aj6PMJ4QoaDIj+mh1+ySUczj4nfggIIzrxpkNndrVp6kPUd5mZv3CnkDQuVlooX/zQ3d\\r\\n8HtNTSv0CMyXk+hehWn9DiQZi1fFM9YFuHZfn+GHei1aC7Tz8ru8UeP1wyDy43rz9rl72A+MOYY8\\r\\nw5VusQ4AiM944LyHP/BeVaDlcLpfZ9nl/eMJIo9c79lSDaosjGbm7l7lqga0Kh569rOffVF/0YX6\\r\\n+gHtEsVvu+22i7rACQu8s/iER1tEiEwxt3vvvXe6jkeTLgUiX/CCF0zvMWxdxxg+Rv/IJXv7NH/c\\r\\neO7neFnT7mHJs8ZrGO+Lj8rpizwFypi5WTvqY+2DoV8uurFaSDgD8iOALBYGIuDuu+++gxQ8QNcm\\r\\n3WRl6uRNiLJAMPMv//IvX/KcL/qiL5rCVEIkQA9LEpOqjFyS+7WWJqxPYQKKVw7K5QZYX/zFXzxt\\r\\nhH/7t387iP5r57/2eqEM8ft//dd/vSzjY5GNfCDRU/jcvuA50G9sVy+2tfM99HrHWWkwSBEDMds8\\r\\nEsASRZfQc44oISjUgA9Y88AUbwvFzdNBWfAsM3z8TZEQpj5fYmTId6oxH8VLecj50RH/0Pme5Xu8\\r\\nV5QSwFsvNUB5V9qDtAlyi4JCJzJDHqqQEoX74z/+45NRSBFTVpR4HhBKjrcIKEBr90BvQKBKUzSx\\r\\nLsA8OZQ3o4IFCs0zgYl6zI2Vs/Vmqvt0njFjkB+CXxmcyULAh+eV4cvAPHb6gfUBtniFqzq0X/Ks\\r\\n1V6lFglo1HwCMr5nfNI7CjVW9GReeaCBIutYr7eAsVCwz/AuYMazgf4dWo+WDIVaIVQlWWizsLbx\\r\\nWAff814tEgAl40BbfDAmZNuP5pThLkdYyBzvBHzz9NFLnmnvur/vFcavjYrPraM14wXiTOD1kuNs\\r\\njvgOqOpsXd4yPFFlr7miZzQGpOZRANErHiAe3bFQTQRL7qRTMCpGY7wZf70syRshdV32AcDA11n2\\r\\n6drvArC8bHK6S3k4TVOa1g+fe3+cG4M6L/++6JAO9kA83IJ/RS+A31IyyE5ri0c7Cmnk+SnCof+P\\r\\nP2wMQvDVr371JUJwaSNAQEI8c+wnJbndQvNGELisQBsD0tZG4TzAhnAcxmIxE2xKkblDCccISoly\\r\\nX2Iu4Mp4fL6pEeLaRZ9fDxASwAQspH25kz0f+9jHXuBuVtV5TEv2rHTq+ywPlWdvf/vb36/KeFu+\\r\\nEQNBHxQ5XAQu42A8KupY8z7kPh/0QR80VevquRRv24eV6BsvbzTe6ygJe6N8tPIVKX5CB8hiCK0J\\r\\nxxIwuimTISU7U5AUK0VFUBN6BPwhDXvRn+U/HnO1lFY8c+QaJWNu6MAroL/PXPY48J5yo7QIVePv\\r\\nLDP0macmyE+tiSp68zyRJcJx5u0zypiiJOStBeVUXkyAzO/yDcmrcgnrr2Xshb2MvRzAUYG6tudX\\r\\ntl+FbOeHui8PTXlF8uEqZFpKz7NcZ197dvKPcsQb5g/Amxdg5DcAAqBmCKMrupVjVIXttsaoj3/8\\r\\n46ekaeeQWk+6p/YqlKP7UMD2BiBGV9xxxx0Hyxv6xNFI9hO+qW0MnkN3niK5eZ6FH4UJ7Qlz9yP/\\r\\nlALvjFj8Zn0AQR50oNza+Q5gB0QxXPAdz6s5yo/qGLFaveCL8sW+53u+Z+P+A6aECgG10oGAEDoL\\r\\nH5MVjshq7bVasj+czCDiJKFcwYfxM1raV7xk5jN6x87CP5u+6wg1+YgAnnECN4COcaMd/gFQi4Qw\\r\\n3tFsrHjdNiYAmfNFNAwvAtfkRwVUDNHO6bTeHQ2Xp5NxKt/05AM+4AMuQMOEzu23336RkJqEuuF4\\r\\n4r14pAfMhRP3Ozd5IKY+MIALomOyH/uxH5sYD6NjCN6cs1bKcREi5NitXTwYgxpLfWkkhkL4rEQL\\r\\nYUPnpZA/Jk5urCwV34V8x9YVZ2EM7kRdvy2UHKx5zPss9z7kuzxY5nulhgjF+JUGS8o8ZH6Hfmeb\\r\\n25ciJQA1HFVZJAx4qPf10LFt+94DHvCACyx+5yOuOUR20/0IFF4QCoDlbZ4UASHS0VFCVSoaCXpy\\r\\ngDIkwACRhH0Vij3DGY6UgbYgx2i3cBYaqtZV2AJsCm9SsBXe8HCRC5Ttrh5/GhUL7/AilNQKBJE3\\r\\n2lDwEAIOFCLPU7lIlGKtDYAttPZ51aCuK/wHTNTnqEpYcpMc9fJ5oSEKtHYi7mdN/Cboa+lR4Yd8\\r\\nv5rOAgJrSuLPQvdN32W4y4njlRLeZuCgmzWhHwBGig2dzbd8KWAD7YCwjvJCV/SmYKsQBjLQs6a8\\r\\nAAReRbeqgF1v3ZZ68xgvxgwwGyOw5l6ez1MFVEt7ETrm5RYi97zOiVTF6m/jtibGiIcC0dbNuhSC\\r\\nN09gBg06I1QuMkeFPFV06Yw8a82RYJ5ox3uJz7zvWaIo20L5Wg8oypAvCNihGe+4NCH9EgG3sVr4\\r\\nyU9+8lSU5Xl5xslJ83nyk588NRZlGNlrcsh+5Ed+5Fxk+ad92qdNx4PpFsAxBA+gFZB1jDQMfEsv\\r\\nuGcFWJ1jaa3wKoNqV472dFBu1UnjRnDMBeIGNAhgCmZbWfP4XVVzGNDRFJhQfwzonoCweIDMb/zG\\r\\nb6wiuolWVeI3hs4yz/qQsE455HKXQzbGSvUq4fYH9Bw+ywJ6ylOeMnnwVBpSJFyAlEeubowNgNq4\\r\\nGGpktCVCR9iUh8FmQI9jAbclz950zWd91mddsKG3NT099L7H+h5Xu/L4MbHyWPc+5D6sYQLPsUvA\\r\\nO4ExHrV0yD2P8R0eAcYLXsZXu0DBpufx7rDss6ABKUKEpVZD1sIwVVvVz6wO4ejCetyVj/BJn/RJ\\r\\nUy4jWbKv0ajEWPtsn+v+EPoB7pSjOVNaxm0+Jevuuqc8O99jRBK2VZJRZHmGKFbeTUAtz4W5dCgw\\r\\nRZq3ijzxXPlcNeGtRxqlSkZWfUo5upYiJUPsXZ6uEroBMOvjffOpsS8F4FUYypgV/izNHTmExru+\\r\\nMw9VuxaoMt65J513y3zQTFiX54dXFN3oETyKrryt8zAvLwVPIfoEUt1n7Lu4ZG7bciWdvuD77m+M\\r\\n1j1jXbSiXmKUPNBnDObQ2ajlpPk8pc0bYp0YLvYUQFNFJACB5xT91K1ekrn9Wvd9PAi4kVF4BQ/i\\r\\nrfLbAB/Vg7sqRYEmALdDsd3fnn3lK1856WnV7Z1zKyRLftDrwGRVsnpiuoeCD+1nzN1YnG6whOZr\\r\\nr/n4j//4qf0RvaxSUKqDPQbAJqush1Dr6Emjk/GRPMU8qsLL89wxLRsc6s4hgcbWsCPZ7Ev71PoL\\r\\nRW8zcLdOfF+JNoFlc4/JtASkmCwrkEvfAHU0tjBQZtWE3JqsY0zAlQZtSi7usNmOUEAsmwozWjDE\\r\\nGBsfzhdEortSZC/CDwNiujFZGlAkKDEQAmNo43rTm950P1pQYgSAeRKwmH5XFeM2S01osETa5z//\\r\\n+efCbEuYU46Ew1/RZU1n3yX3PtY1NrJk5PEEgGPd+5D7SCZnLZaD5azOtTxwyHP3fYfSpzApUt4Y\\r\\nm5zhwlNaGwqClZubl8T4U1gdBE04sVJVwfAQEBZA1a7jJvaNa/xc0cxtt902GVnGcDlagzQeuZcM\\r\\nROAQ/99www07Lc9CH/Z+zWMJbYYYIQuskU/oip71dyOnKFGJwjX/tPetE2FPSfKQMwKNBxjz8h0/\\r\\ngBTj1N9kmHtQuI2hakTK2U9VdJ7Pq1Bnfvf0Wdf4nrPr8uqvWcfxWl4cY+ENWtNyg5cEj206/3S8\\r\\nPyCGbysk4REEPkaetDbme5ZKyEPn73siOeVpoS8AZN3oFDoNWC4szUMnOpRzwZrbnxR0usff1puu\\r\\nw5uaehYSl1PsO51cUjNh/wMW11577eRJkfLhqBjPBsA68ogxYSyiKPvOfqU/X/jCF058A5CTK6O3\\r\\nXh6W3EPe7bHNiUp9AFhkC8gUgZAXVQL8WWi967vSgYBS8yPHeKbRxHrQ2+Sd6AOMAW+MQB5W2RdN\\r\\nss7lX6I7T3y5c3gZLuHB2iUvLyp7CWtyqKDW0c0vHjtnZNdaMBZ0ZeTKnT18rJi66qqrplJlSXRA\\r\\nDg+TWDHLg3CCIsUun/KUp0wAhBDAaCzeKjcQZ9dGArjkWRFKLBeIHwpnFQhncJMK72w6DNJ45GFh\\r\\nKJ3fzxqy3MQMKi7uvvvuifEpsMsZXhLekLCNzlzA+zbceW2MfffVO+1P//RPLwsQBaoJ78LOeIRV\\r\\nRkDybMpXWOvF3DffQz4/tbCnr1Kcwj/4nhAgVOxF+4jQt8cIIUIQCKOE11QZ7hufHBT7Go/bgwwk\\r\\nzwesKnunaDZ5yvfd+1ifqwQUpkQTYZDOS53fH8AHnuQDUYBoZ+3rKwRQUaas5fqgoanGpbWpYFDq\\r\\nu1WXfZ9TqtYHPci4ktTHxPVOJyhJnIJAT0DLnvVc19dAEj/W78rvKtnquu4+1qGKON8VBqKIPJ8M\\r\\nXhu2ZXCQ6UJrS3P10JjBDtDva7rqGCBzpiPoAF7jjADz81nHcjEMeA2BEr2P0M9n1kWuEiUrNcT7\\r\\n9ADPrPWrDxXgZp3RkWc6b008IcylQtA6AJRCgIXMKfFy9qyvZ3mu8ck57jn4ngOBs4EDQYSFJ5LC\\r\\n9nxrwUPnXkARnlFI43+97owvUGXNzLcmygCQNRZtMU7zMFaOA3POgwaM/fVf//UieQoIiyA0Zwbl\\r\\n6KAAOhTDGeuf//mfT/eUx3XfffdNY7v77rtP8Ihx82QdcnrD0j0vx1v0yXM5UrT1gQfIQHutAg/z\\r\\nX9J1fddzyQXywF7yu9M9NkWkTo3fiTYnKn4AHYyjLDPAxEPFa8P1Nm+fwMVmQ/Mo6dkE1VrU3/md\\r\\n35luKhYq5ouhtSiAHAE1iXH1lCgmPoYcKTfu36qbMDVGra9QwtriEjbziiYtF2xIAlElGmAm2a5k\\r\\nVArGoo9JbiqMgA4uWAdb7vPcLV38rsOwNoBNYTMtSZA+9hgaizOjJLgTBs6KXGOBrp33odfLW1BS\\r\\nzIt1uZPwtdjQSA945x0gCCnn8yiGOIReH/3RHz3lTf3zP//zJcJzl5d3zXPGMIk9TUFQZviHZcxS\\r\\npiQoBWEQli0etzd5atAL8KIsyAI5iMcG9fhl6WGy9iKARc7J+wG6KLGxgSaFSIgW2mMRozFZSJg3\\r\\nfzzBKweAkUsUOjkDxABT6APokDm8DIw4oQvXAGfAAxlaX6jCfmP/P8+toWFHNqF3QCyDtLY35fLw\\r\\nlFG2nWahczehz1CgfMytKmrfsTb17xr5Y15R6zM0JKPNqST5bfKKnlgbmvMM6SB4jYKkHM0FgKIX\\r\\n6g+Ip4AcfEbZWQPAlvJD58KqFTZYU0Y3XWIt/FhTIERxl3SSubwBFBgrvDlojncK8VmPWjYAgOS7\\r\\nfaB9ged4dfqDfWDs9aoq1GZMjG6yhf4FknzGMwJUoTOPKBpwFhgzZwS+0qLF89ChxqK8KfgDX/nM\\r\\nd9DDON73vvctAljGra2SeaAhfnTE29j9nU4VHpTPrIltPKOzO/oYs24CdDFvLUfMeXgbr7nmmqlY\\r\\nzZyBLHSrSMWeQHP4AdYwrgpOOG0ALvzpmlrS2AuFYctbREc4ZDzCDc+4H57zHXyA57zIQXyVIXsi\\r\\nCZU7b4xlO6/OItW8a9x03LPFXIEm3ilC5y//8i8nQgNJvCMYm8UIhAFrYsCVkJo868MCjT2FXMfS\\r\\nyNWNAfd5CyTUE3KYDlNgUptIGHJ0URIW3PbcrTYp4Qj1GicAJFH4rA1FNykvpbCdXC+88MM//MOL\\r\\nGX2NMlxyLc8j6wRz/Mmf/MllG8eusfKE8qQKq26rEloy12NcQ5BwvQsr4RnryMP7Qz/0Q1cE7T7l\\r\\nUz5lyouwf1mzetaxulnthIJNT+hSUISCF4EwehF46Ah+isQca+JIeDC8vNyLEqPwvCgcSiRBrovz\\r\\nNne7hpuUpf1JObzkJS85E+2AIl5qzzYeBtO+fmkAJ487hUW4kjE1dkQPCgEwpCQr4GGxlnSdgKWo\\r\\n5GSilXtRrGRPXnCGHe8DMCA0S/CjlXxPPCSUSEYZd93Qybqalvq+efke4FU+lt81jqR4vXzeWXOF\\r\\nQzqOpc99581vfvMl9FZFTAmYk7EBaeYAIG4CQ4wM9y8vDlADGOgL4UI5KviMEnMvtKBgAj34hId1\\r\\nzP3iBUHrbR6w7//+75/GiC/J6ICcUBSQIxQ26qsqZ93TqxMx6IGqLjfJEuDcGnMOvPzlL79IJ2vP\\r\\n0wTQbGo/oIWH9aSwrZ01q6iBwraH7EvA1ToDo/Sd/F/vK5KwppQwnej62nHYJ/hACxBh//aVHCmO\\r\\nAIDfPIUFgXeeRAABv9lfXsAPUGYs9QHjcFijez72Yz92am5rf+AVeUzWosR56y0y4zlj+5XP/MzP\\r\\nnKpFPbf0GvwlinSWSs1N8lz+OFrir1e84hUn8nfJLUDL2uUB1Hke/clB4x0dC4Es1wNj8Rpsw1C0\\r\\nh+ZNmDM8GRb2Mlky9gt1T+s7GUPjwN0UKLLZuPrGz+bnDl533XWTN2Q8oNhmtCgmEQjj8iWMlKn6\\r\\n7TsI4DDppQnfcoe4yVlmNrMFpAxKLrTBMDvr0MbApAiGMTx3DP0BWhiwYxTcByHrdHsMxdw9xKOV\\r\\nsNbvRuXkMUMza8cqv0HCvQ38zne+80yKbu2zl17/0Ic+dApBOLfxPNp4LB2H677iK75icjfXk4jA\\r\\nlB+xL8yx5hlnufYhD3nIdAQT3mdp1YCRUiGEGRGMH0ICTatmko8AeLEwCef6/JQYbD8wbiSwApUE\\r\\nT8JZMqjP9x2dZV5ysAAbygcQ2nQ8zZL5yw0pSZVBRbEsSdYmj1RcsXKFLdHCXMkGOVjzXDrXd4wL\\r\\nxckzgA4AEs9bFUVAhVwbdKWAqigD3pTDM/K09qA8gR60piwZd5Ss55NljEDrxjNGbgIoKSZ/W0O/\\r\\nq1RLYRuX77m2o3H6P0VdpSGZMybgKkDi+QHIlyo8IaD6M5GtvC68hsrkAaq8SjXnLffMODuSinKO\\r\\nhwAo6+4+lBAglIeDnpHDg1fdj/LiGRUyxNf2I/nFOKcLagyKJ9Aar6FbPbU6TgodR5Cl43dJ0QAj\\r\\nXVF6C50l5GXtVcUB1p5DDpirlBR7xfN4edAeD3gmRQ64VmHKg4tPXCPh23qZF4BmHxX2NUcvBr97\\r\\n/NIv/dJF+cxoMh408Uwv8wFef+3Xfm0q1BLWBr68OkaoqImxM5bkQy89tumFL3zhZFyqBAy44hng\\r\\nFu/jPcYEY8c4xhCc0w7uueeeaazoYE7oJr1i3zmIS+RB13ziJ37iJP9giU2Gm0R841d5eR4etCVj\\r\\nvbiIYsROjScwiq26AZcwpuU6v+uuu6bruRABnrGJJyEoGXh+3t6HfdiHOedq2lxCeFUqAD5rEr5Z\\r\\noZhxV4jhW7/1WyeCYmBExQAsHkntGHou4AkOblTAD+NgoGOGpYyZd4xgJUC5ojflgi1ZqGNcQ+EJ\\r\\nDZ7mLFyRAIsFhN/e/e53X/bx4enOPetICgeLnoen85D1lbhN4QjHE3j4mMCnkPE9Q4eQk4TJ2vI5\\r\\nhcOdnlXWUTl9xz5f0idm03iV3hOmegJVSWfPGgOFuCQ8vum+a8KAvi/snwHFWJT2QEnxiqDXqdfp\\r\\nIn/pBcjrBDhRUvKUgBl0misOgI3HAb3LbQPeOtiYsgYcPKdjwYSVVSgxFBmB1oBi8H3PM1bvAUU1\\r\\nGq2XkfnU0Rs4tHfR2E8exAC19fYi/yjFsecTgELZea73gQegd95WYxP9VfUBnp5Hocr3k7Ok9Y51\\r\\nNveOg6E/eITywpX8zdunLxWjWqER4ISW6OF+ftDOGvhunhf0qKdaYMln9RjjUQHkPLPKPZ8DFZS6\\r\\n/eB3B82PDUo7N9Cz6YuUP/4xLzQ0TqFwXlj04w0BmNCR15Nnx0sajQpGNEJ/OUiAs3U0LzQHyoBP\\r\\nQMw9gFZ/Wzd9If0PhLnWuIWr6DO86Tm1rsCbvFmusYZ0GG+VexovEOe+7me8vGFaRLgPA2BNrvEH\\r\\nf/AHTx6pmpjyxgGiwLW5bDsKhxxHX+tifh2/YyzHiADQrYBVZwFyDPH2aS9V2DSj0v9C4ngWkC1N\\r\\niTwoH7LzkjNMgEh7GB3xGh706jikGuGaX81zGbTuh2ftLylHJ9/0Td809bTA7CY/WjWOVbGxxGAr\\r\\nZ6SkIdvaLNgsXIU2koMhE9w333zzpJy4321iQkxTMC+TwJysmqVt9QlvjDp6NbjquEoRoYN0c7eq\\r\\nWpT05nm33nrrBP4sNNA1R7N6QyE8gYewlMExvRSOI0Ifm+T9DbDGY1DQyzlUpy7tyw5gNglzbl9u\\r\\n17/6q7+6IsYnLAEw5N2RR7Q05+cQ0LTmO8I9PAjvec97Lgut8BarmuIT+gLgKCECnvA9TR2YhCsF\\r\\nNk9y50WwX50Zumbe47XkAn4GhHighKe2hUJ46HXCJng7nLdeQgwsgtceTYapNOJNKf+uHBzAqR5W\\r\\n5o9fgQzjAIJ4VgoRJus64zLv+9hGAaDwDDIC0C2JmRAHGurS7n20dU1HrKRI/faeH4DCDwVdovd4\\r\\n1Aol4ecUGCxWuOjB+8Xz50iVO++8c2otwDDljbP+vCfowaMDrFdhVyucn/mZn7m41sKN1gOQ5f3j\\r\\nUQW4jLvGm4V2gFigMm9rR+gUqgP8OmPQ983fCz3QGsAruRyo5bECttBhn3cDX9EzFG3gQEuCcoPx\\r\\nuvEIzfMU4enab1QcUaitsZkXhczhYH8AeRQ6IFcyv/eBKv/zopb7ifaqwS8hdiEAACAASURBVOmq\\r\\n+oO5v/QFvMSbNYJURjU9y3uJxho5Ly1QkGMNvKAdMENHWmt/+7HWjBj8JXpkXoAF2qsAlZJCt2qL\\r\\n4nOOhmMUuwjjypsDbhg09px9gkesBbp3NJ99ae/UBNT7/netFywCfAFGeJtM4RSpBUp7BX7wDP+T\\r\\nMxU84HW8hxfJEfIQPdz35CM+4iOmozMcFTP2n5FABp3t6l2D8eRbmeDrXve6iagAF/c4xFhcm6UN\\r\\n0RMiBtj5aUtChA61LbeAZwO6NxEl6nNwJncMgybkxg60CWUN0QgC+VA1QPOeYwHmyfyOD7KxoVFA\\r\\n8dCkcA3ROqvujW9848HK5FAl1Pd4KxQasO4cr7LUXXzW5675Pu8oBr2cJf3jeB2XoIgjQSnkcp7d\\r\\nidfQ6uu+7utqS3I0nmKFj3zOe0HQE06EuOTVworlFhJWFAE5wEgbQzGf8RmfMXmTVNmdV+sN3vd9\\r\\nBhEvmHA9hcSbQflTSOY0yj0yrUPCKXtCmCwjI4EAIEwI0H6uFxWZBEzKBcEb0hDIxcAQOYo+FDrZ\\r\\nQylQ8OQhwewZ5KLPeZo8x3uUl4R879sTQAePuPHnGfTcznl1D0qXAqDoeOKMnYcDOPRcn5sfgFnV\\r\\n2W//9m/v5J9tSezCeQxXoeTR8NXYGZ+Yt7HnTfI8AHaMXEjv6CBmkQZjRRt0rkloif556swP7dGU\\r\\nYuTFAeTwo2ehqc8Y2Nbi9DSRxXtkPMeOEdGZh+UDy800VnQ3P7+NDdDyLH/jd/vBe60JEFBbh3QU\\r\\n0CHkWPHCeHA1ngNe0axzE/EU/hNqrqek+bqvMDT+RvuApbHhgXJuH/jAB07GPnC8VP4LxdGraFpY\\r\\nWk6VKJSUHzTncAFM6BcALCMHEAW60SNePWtT5GQkxwg6POlJT5o8wfjG/BlQ6JWXs/NGNdatwg9f\\r\\nkFv7WjWskcebrj35yI/8yAvf+73fe4kVw/3G5RgS5do2gXnnX81ITSLXP6+VYzMk21Xh97jHPW56\\r\\nj/CxQFybNohSVpU8BvXiF794OqgZcJK0h8kIBNaAhGfCHfEwlB9CkeCBFgmVqi+4U1kOxorpMKZk\\r\\nvLnHwTgxvfvaDObKdbot/Mhyw5SHHnPzhCc8YfI0GPO+PjBnXdBd3ycon/vc5060VaV3OTs5bxvn\\r\\nYx7zmMk9f7naNMzHde211075DYQd4cbrOh4ifp7rte/evH1AwP/+7/9eojxuuummyZMjjEGIUEC8\\r\\nBKxXgpLQlrNCKVUcQjm17yg31htr2+edrUeZeD8FJjerozooknnoVAiewGX9Ot90ac7Pvnkf8vk3\\r\\nfuM3ThVHZIe9rFI1BcPwkLguZMAjA3yw1Hk+gBT5ZoytSux934tSJI8ApUc96lH21LQOHabbAcYM\\r\\nNPQ/LW2fZFT5WRRgzY2js7WhyPJ65MUo742SEA2wluhOBqr2lutFWVM6XkCknoTmU9gX0CSDed6M\\r\\ny8+2lhUjnecnHQS6xqKnrpdjBQQCFOUfkcGMFXMdW/mMz3jOc54z0TivFL1BPqMF70Ferc50BGAo\\r\\n+viO0syjx7swFlDt4xnftZZAKD7BC3i9FgzWxHwq9iALrG9jBZw5AoBKumps/Cv31X2rhKQz8Y79\\r\\nN/bToo/sMc8wX9+RVgJw01FAHRr0nULUAI73jcWYzANPdN4jsO7oGzwgTUdeJK/Tb/7mby4CnfQl\\r\\nnhK+rHLSOAE3YTr5YWiDx3kS0Y9ulnge3Xmrj30006Mf/egLwrc8ZDWm9Ru/GJv9i4ZoUvGIz6Mb\\r\\neqGd3/Lm0JAhUx+t1jJQac7uSa6iMVmBF3lHraeQrf9riK6X2YmKiICOxLbxzC9E4eLzoLFSQG8n\\r\\n7xOuWfOEqZYM119//UU3Ko8Si0SIEXgR0hBKoKzqaix0wGrjHrVIHdcjZ8J3TQZR6hfTSfS+jyH9\\r\\njpEgVVYf662NRxhx3Xrv1HN2CVMZN4YjhMTBDznzbN/m/dqv/drJ4kGbs4RD9j1nyefOkgJg3vWu\\r\\ndy3aXEvuecxrrr766qltyJVylA8DgdIiNG1GIeb3d5h3G311MiY45gdjq6Yh8CkZv6131VQUqr1E\\r\\n2ds3FAd6EwqsTKEcAobQIJi2HQwsTFG+IjnBS1X7FACC4rfXAReAjKdBYvncS3xM3jFvIHGTN0uT\\r\\nRMeBAJwEJqUFgFCKhLT1DdiUiyk8whAjVIEZdImONY6k0MvjAHAoGfdnGHbkC4DbQdBZ1UJOBLQ1\\r\\nQLf66/ifAqBEyTKy0lpQGH6XBK/KFj8WrhRKZMmbDyBtHauoYnB6LsBMBlKAvivvZA56eQOBdjTY\\r\\nlWsoUgFkOCsPzQE5uT08oCINlBaFhGYUK6Od8sV7UkYY1XiD7N8WcnfyBkMBPwGQ+AjN0ADP1uwR\\r\\n0PeZ8aAbgIL2ZD5wam296g+GVtaTp8fa+b9wn/UrREfZonnHGdFP40Hwo7cXSOfNMWc0xmfAM++X\\r\\ntU7JF2rDR/Qq/Wd8AQDjtnb2ozWi37zwCEAJ8NvTPJl59Koi9cy6+vtdvzRzcxaoXExAGe/wQqON\\r\\nSNB4RN6m/ci4cC3aA1MVVlj3JzzhCdPaqNhDU/nW5I714dnc1wXgLPvfKRHWKFBtjPYavhJ5wvdo\\r\\nVvsSWMIa5qwxTk4Z9LNv7EFzygvqf4DJe4Xg7c/oan2tW4eQ45vy7dDCsy8qWZY6wv3cz/3c9B6G\\r\\nUcnF8zS2O+C18uCxfPVZz3rWxFxchhYLOGL1E9ihWNYJq5HwINwMxMuEDSTmJzBYP4jReVIEA8To\\r\\nf5PFrJ2xhMmAI0Qj1IEym5aHbBTmBKwutUIYI1g0Bl4TiyAOXqz2WG5M99cKwzgBrPM4BmQpkwKT\\r\\nXMOblPLSe5z3dZqMnp5YfkUAQBVFFLCNRuHxxOSpOG9a7Lu//ElhLwZMRtKm7/BaAECEBEVtr+yq\\r\\nwhtDJJvuJw+TNZsFxzvbUVIUgfuTG4SWUJnrWHeKaEYFtW9+uz43J16Y0WDZ1Lepe3zlV37l5Ekn\\r\\nI8gL3m1ep3ml6nd+53deoNDJA+M2B3uXsKYQT72rkweIci6hGIAhfAFSslGKBaOR8ubRJ7TRn1wB\\r\\nTnkzgAEKE02MXRqFe8rz8T/hj+fkcpQzwwjGi/qzUWI8LF4Us7WlYFxvPDxV1saL/BzzUgABXozk\\r\\nafmq5CSAZS7lhgEZlFfGpzYLrSk5bW6M7U1NS9ETAMr7Rq9IDeHVIecBEHPY1IcLnRim1qKGlXSL\\r\\nceEzawG4U6aSuL3oFkCZrqBoAzSM7/Lf6C8eKnoFCPM+jxG64d0lPKqK3tpbH/MDWKypNe5VMrV7\\r\\ne6ax1PIF3ShmQNYLPUVx8j7hQTxWtaH5Cml3TNfDHvawKWyHv+hSz0VHtALK8JFXehJf0Meey0uI\\r\\nNl6ul1e6rypY/mKtQtBONXq929xXCg0vEG+ZZzrYXcWxsRyzcnCUCQ67T+5wqBgHRw49J3QtDQg4\\r\\n3taLDcg3B/wTjkBLniwywg861aainKt524ZxTPZt52faYycUiEUEfHKpQrn6W41Vb5pUElAAyktf\\r\\n+tKLyo+Fj3ktYMmP8lRUL5S/5ZBVjdFMIre0xSIUvJcV5z7e82NMhITN63eltxhv7Gzc0RAYzffF\\r\\newkNzHvPPffcT0nrBcXCYsWxOAlNCf4A2aYQoBh8CHjsdbFEOXCfS5Kl3IA3/YKWJvUvuf/aa5Tz\\r\\nSthGH4mPh4Y81z53zfX6htmUney+5rvnca3EUO5x/Ggzf9/3fd/ipODzGM94z9PWKZN1euy8MPkU\\r\\n+D2wxROMlxkwwBKrj4fES9iUXDjt+XTJnnvQgx40HX2ilLtGxMegyzxXbNs9KXggg+AkE8rRGI+K\\r\\nqpyb3GGJU4Q8MmOrGi1XVLglrwAD4Mi8gU0yCkByD61rKCGKjAGpLYbnU8S7gLA5zJvE6qkDiM3D\\r\\nK/KcGEtAgpc9DbCgtefxLKT06+fjM8ovsEHues/6jTLdmvM+8jgBAJ2yEcAizxlBnrOvlQpdYlxA\\r\\nj5SE8YgSoWwggUyXyiHUU3NRXhzjB2wBwVGpAXiUHf4rz1a1u/HiQZGIcmvwCYXnZQ+nbIUxgYBN\\r\\nfCM5m76xph3ijG6A0qn3fwLHPrfenALGSSEzXs2DF4v309zRl360n+T44Q1eLbrQGgDi7udvYBaY\\r\\nck/346jwvue4hxxeNP3u7/7uyVuGT3mz6D260HPztgBZ6FnfR2PDC+4PyAFb/j/NRbokpLdvjwKY\\r\\nQH7ODuBe+on8TT27AC7ztW/Q/diFQYw8sth+5EHjOcujTs/hHY6W0o7m+dPAO/5B+6Jp6MyYBmzx\\r\\no72VkQW8Wnte3wom7J35MTmAKDqTIVMzWrkJY6yUp4kbELgacwqE0QiT1772tRNTQqcErUUaKxI+\\r\\n93M/98IYOnzSk5409Z0i3DANRsgiKrmz5Llc7ZgJQ5tUDIKImAfhKglGvDrr2kQI5JqqlwAoAmJT\\r\\nkzn9dHzHBoJgVUDuKl/lLTBvVu/Sk7o79FqOGEDJql/T7G0fk6/9XAkrlz763XTTTVsPqFx732Ne\\r\\nz9tHQFwpjVAf9ahHTQoaj6Kb4oB9VUfHpMeuezmFwdmfa1taAEsEP9BD6Qmt2W8ZN+YrDGHOgEHJ\\r\\n2BQCYEUhMqB4HSQpb8tdBA4cQQWYAiNrqocAPIqDBbomrM7DQzAStilzAEo/IrLBnH/iJ35C1eEE\\r\\nDlTWSiEwX4DB/MgpVivZYs1VeqWQfE5BEaCUSFWTZAmPknPnhMCAAM2V0ZUSogwpSB6XtcqGRb7J\\r\\nw8DbSxnUzNQzRBIYjK1Z1ZzoT0FQ+q6nXPzPeHRY+KaqMqkg287d9Bn5v8uax2doiJ5jqGg8WBeY\\r\\n4TEzZh6IwjIUH0UluiGfhxI0Zn0EKXfeImtCr1iPGnwymAHcQzrIt9cY4fgBYLMnABSeMfrGvqG3\\r\\nfA5gcUygsRYU85CqcdpLDGsOAKDK+uQhBdJ50KxVBze7X8dNmRPdgQ6ejd/sO14VvCWc6XqADeCt\\r\\npxava3l+ASA06kQFe6oiCvxrjubi3NA1vAkraNVRAQZjQgpFntJbbrnl3KIQPNgMPjSl5+15Bo35\\r\\nVHXbGaH2MlkGBHfUEpnkvXpmAri1YkAnNO9l7fMmFkpEM8A0UGxPMXKMB9h0D3S5SACCknfD4mmm\\r\\nmKUFiGAKrQsCXMKJyhj/9m//9uL3oVZoz9lFMffXf/3XTwmVEuF8X94Wy8QCE1QIYENVLmvD2LQG\\r\\nikhcon4TgBZOyM9p5h0BYBKIZNJVomAyz0K4DmpEYAwkR2GuDJR7AhuFDDx/SXXjEiWqjxJG5/kj\\r\\nHFgb53Wy+JLxuMYBmYSs3klXwqHF83GrODW+KyVHjGWsLYlN46UgZCnAXromh14H/PGe/Nd//dfF\\r\\nQ9DlxlCaWd4ZKPZIVlVeGnvP/kl5ETqFMggqCljIi4KwJw8BllqUCHXxYOC5fVU7Sz1Tm2gmfGQ+\\r\\nmwT7U5/61Cm3jyAmTIUU7HPemsr70cF+5VXh4UY7wtv7BGzl3kBT1V71++KlGJO3KWmFJJSv9QDU\\r\\nPAcA4H0Y6TBPIJ/PbduRM6qfrT9v1Vg88/mf//lTkRJZVlk5GZjQN3Y//mfEkovzY8f28SRLHX3O\\r\\nGv5RCQa0UMpksHWhD2oBABgYqyaVdAZQYU6+Q8l1HmR9q1xLIVKmWgOskeW8S5TskjxB4B395uAx\\r\\nuunJSNdRsuaCzn5TynjCehin+biPSA1A58f/jH46g4PAd/CP+YiE8JQKieLjEtvxJiCIf9FFQRXw\\r\\nSfcwkjrXEm3NkZ409jyynuV/YbXx+Jt9fIBmKvC9GMbGIFWIIWPPH7Ov5HwsFdABqeSW/U3P83gC\\r\\no/ZARxyZP3qTcbyf6OVvvASk1oKF/IjeaFnvuQCaOY571/zdZ1tkamr6xhpwjAwG1xQvBtNMjHBk\\r\\nEeQKU3ZJQCsJZU2wAOVqefBf/MVfXARcX/3VXz3lfUii4xnST0jipxfG4L4LtWMYQsjECCDnAo4l\\r\\npIAK5YDxJD36vs0G+fsb8RCs88EsMAZCNJ4vhFbN5GUxEH+M+X/zN3/zBYqEwEAL3ru1h6DuYkRh\\r\\nWBYaq3lNc9V9zH3I5yrPgGjC/9CGkoc8d+l3HK3Cev3P//zPc7N+lo7FdWLqeofZqKeba5VHZc2z\\r\\n1l4LYPHyRCsAQ/ibe9s+QUf87ne5HYBAXaY9r3AGXmBk2VcdMExYrk1SFRZnOHnZ/yVzE2LysY7B\\r\\nc4wigGdJw0THbwEPvCnabZRf8eu//usTf0mkJnAJU+MuBYFApaAoCjIQnfNmEKj1+kIjc2NEltem\\r\\nqKUEdsqNQgWuyDeAQJhBn77CFsKCnmtsFCABToGTibuUvb1iL2uxM4a7FB0I1wSuyE73okApoPLK\\r\\nPM+4GKT4YpPMUxEJlJ5H8Y8iAkY37xrv3tx7Ur4ZYM9YtwZjw07rV3oJvrU/C4d29IljpICX2jpY\\r\\ng0AXXcZDRPHaN74r+rKmkTC+4r10H8A8L1cJ/ECR/UenVLyAtzyLU6BCFPyCp/CLdaOLgSkAi8EJ\\r\\nQAJsdFo9rnhNiuwI6dYTEh28L8lcak6RIvf1bN+vOhhPeG4tV/AfkMsjt7TKvM731sLLPfH4Go/1\\r\\nWtnnevJPQQfjFx4BZgGiNTmyY7FOYyBfrKf1Omvl44kzhyy0GObYbt5Blx4ylnKqOCS4uSnFV08H\\r\\nN+UWyAMBiigkLfktWpYaVyLhahOwqjCVZGHeHPcA0HJTWhybneAv98BGk7SGcWyQSowRpEx+jIFp\\r\\narTnPpDsmPMggVOMFfMTKqwcisc8//AP//AShc4C5aUDxs4qXIQXgUuN0Y6dK7OWMfXkAjj/7//+\\r\\n74oAMPPxO1/vtHz5ihifpFy5BoQSviXwfuEXfuGKGBsjhvL/h3/4h8s6Hm1cOrtQCBqtKKp69thj\\r\\nZMR4QsQ+vrX/WPFjgvO+7/Q5j5D9RuiOeYbysXim7H+WOsXL8mW48XwAS6q6yA5hK7KK0uwwWJ53\\r\\nFn/HpGT0+V8IiPIiS8nIcnjcl2wlu4AJ95NMLSVhDGPx3HUINK9Gva+As7qa33TTTRfXmefNqQLG\\r\\nI3WD4gUqfvVXf3W6hueVQvZ837cmxssjNDY19Z6X8CiPg+vHvCqym9Ja4wlauk7yetFlzP/qu/qv\\r\\nCa9ZgzvvvHOaE/AOrAAcxk0/kP/Wz28Gez2y6ozv+57B0EAjKSpkP1DF4wFY8dDSBb4PzMnPqiWQ\\r\\n6+qkD4AC7LyG+MY1+Aw9O68SIBcqQ286TCjRtaIFQvHy+Lw8K8CIb+g0oEqIudzjADn95Fr38j0g\\r\\nDggq8d/9Hv/4x0+9x2rEWkfxquLqIl/OsnujIdrI9aJ/M8LsOTRyPu8SDxTe5dmvSapne87Tnva0\\r\\nc3UoKFwBsNAPJrFnGUlSkBhHACZdApzSeRUAmLf1igb2PBpYVzxXD7YqCGtL4zunB2dPRqh52quF\\r\\nCiugcX+fTTlY4vi6xI4xft4mQqjzkPQvwYyUS1YG0MNNCcTUsNNCf+AHfuAF6LmDor/t275tChMS\\r\\nMgQAT5kBcWFKgndv3XwxQI3IbJL6WbC2CC9CCxF8ZoMRQIR6fUo820YgyG0aBIDwMe2mDex6z1a6\\r\\nbVFUUuxrVrhUcMyv069DWNNGXoOuD33eru9dddVVE8CydvvCNefx/H33/JiP+Zipsex5nA2579mb\\r\\nPpdMLM/AZsO/lPb8nM5D7nuM7wh7MTzOE2DJhSJ8WcH2oNAMj0YWu7/tVXvTuvFM80hULSvJnbKj\\r\\nFNbmih2DRt1DyIYSM27jlBs2T9BmQNob5AFlJv+Hgi6nAgCqRw5eoAhrQEsIF/pxDXBJ0Oq4nafq\\r\\ny7/8yyejjYeRZ7/8JRV1PBr11vE3WQY0FMbxWS0ZPAewqooQmK0TeuOoh4/KNOtXXySyt2iBvys5\\r\\npxApY3OSzE2RAF2HACugzPc3pSAIqaCddUAfzxgrWuXs4iXjr+0AmQ4MyzXy8jklaqyBBN5SugBg\\r\\nsIbmY84BZekZgA7QHiAqT2nkA/l6DCr3KVJiPQEwerL8KQrci56xNsYrlcUzjQ3YAHDpqjr8+11Y\\r\\nkf6im4R37Q9AwXdFb8yVI8BzO1/U+tK1xuF9a+X+9qVxAp7mZz/ap75XFSNa5F2qSn48qLqisZLg\\r\\n8a7r8IEK5fG4qPme5FAxFvOUSmQeXskEoAT4qadmlb68th1dldOEPgdMq8xtnWGFTdWdT3/60y/o\\r\\n7yV9SB45Bwq627PWgz4v/F6xjv5t1sseIw88u+I+sh7vmI/x4zvrDdziB/ik1lDm2GkKeNDeLN3J\\r\\ndzLcTgwyJMxap0ws4qtf/erJaoDYLSShGaFdJ19LjtTo1nWGE6GQJ4wXjIvSda95zWtOJEaqTrSg\\r\\nPEMAFivcJsD0VRaGLEuo9b4J1HOGUKv3FUIgSPF4E6MEEIMQ8lMHYah/noMl8dsiSaQUWlzjHl6q\\r\\nAOQZENjmvKSp39L7HnKd44+EeAmRTcn/h9zzmN8BsKzh2972tsvqlWlOvDPAN37DU8985jP3ljQf\\r\\nkx677sUjI9HT/gL8xrA6AUZQAfaUAAElDIG2CjV4WgjmLF0CWpjBd3hqXEdYEfYMHHvO34S7vVLX\\r\\nZELQ/9vy0nhMPfe0CudMa0o42udLq1/JI3KDwiEHKDQeB/LtV37lV+7XDy/PRF3O8zaTd9oFSB8o\\r\\nabh8E0p+7OSNfgAaoW9dRrowtFSkkn/G4odC4YWkZAlvMs+6VOhDvgGENTB0DcFPoVlDYQyKt/L9\\r\\nb//2b58MX99xHbq7N96tHxR+MEbKPo8IZeN/a98ZlkDE2DDzLHwNuAAgxkL54S3PGZv2yjUDSHma\\r\\njJ93IG+xUNxdd901gRm86XO097f1MnZAmOJUVIVuHUtjvdHC2pk3cMNTpUwf3xtHwAkAtrZSRoAQ\\r\\nISJ6C903hVB5b6R/WDNJ1lUXArp+eCutUbTvzEp0zyOpiEGulL2FNj4bD1gfC0nwIh4GFK1/bRjs\\r\\nY/rF2AEdNPF3cqsQKhCFbubTQdno4lUrjxpw+x/teEiX5A4bm6pH4NBzrJHnmj8Z4kUPAlJVRtYO\\r\\nxDy86Op61fm+OXTkU0CVl7AjaewnaU2HGAJzfhZN41iyZ1pr8p9cAJqBXGuELry9nD3WCi97j0E2\\r\\nL/o46ZiJJz7xiZNLlouyvlcY0Kao3YIBZLmN8VnVTFCe72a5ak6m+gYx6jvlAMg63lIINpcyTknE\\r\\nNobBIj5mwQQWx29Cy6JDin4Im46pqElYDQADVVycNnMnkBs3IogNsxoCUoS2nh7cobVhkBtgo9Qb\\r\\n5iyCxXcl46EPK2rsH3bW+x7yfYDWBpWTtvQ8qkOec+h3HJWDF/74j//4TMr40OfPv0dJC+3gO7yl\\r\\n4mpbefexnrn0Po7K4f2VL0Gg2iuELpd4VUJ1Gu8IDwKrc/QINfuTgGCUECw1IhVS8T9vy9IjNTaN\\r\\n++EPf/iUF0aJyWVbEnJwHxVYPEbA4CFKXjjG3PsuOSM8CGwBRHrS7apyovRqYkhpmAOlV8iNAqes\\r\\nUwLkE5mE9kJEm8KhqoopcEq2fCH3oYjro2WdKCPed+O3jgS3cJP3SiqXO2btvecz+TpyYtFODomq\\r\\nb4Yxa96rQ47JVs/0nJL2XYMmhaRcgw/c91hVz8ATZQgImQ9Qac7SQUajl0JT8UmpAQwBYbqHd4R+\\r\\nwOM8VhQ3HiYvgFa8inaeY50Lh6JRrXboH/OzXwA5QLYQo3XDp/K2Rtlo7IEzAPT0ZIITbVKAK/sn\\r\\nkA0g0UnuZW7zHB55X3Qq2lPSxs8LTbYYJ71YSLT95DnG6hnAS/2/7NH6taEX0IEP8Zi18x1riker\\r\\nts97Uwi7Klj8WGNc7+Vpw+OAxb78SXrU2KwPrynwBqB6TvcidzoFoW72o8zIy4YmxpNur7mu3+bn\\r\\nnsZYQQ6a21MAtvvie3LNWm4r3iAPjNG9GpdxMqLwF4xhXzA6/e9eeMs16GocXp5b1aG/YRi0rpDg\\r\\nRFsFDEJwaAQaQ2ipbwCBo6xl4KRWDR4AwWP8MQznaBhMJJEz5OtMMqgbEsQg4qOqFTCcEGLJiawr\\r\\nzAw5+yHYXN8iVS1h8wBBGAyxA1AEiZiqe0DyJo2AtW4wZpsEAxKYnsdV+Xu/93uXKHRCymItTfTb\\r\\npRS/6qu+ampVISwx3zxLlemxrhO3Rm8Jv0s9Acd69pL76P4PjP7jP/7jFQGwVK3iI4IGr6i42nU+\\r\\n55I5Husae1di63//93/fj1ZCMYwLgsDeoozsJRZ7gmw8q1PZ85oS7SVzkEcFBAAqBBnaLeF/XnNK\\r\\n7Ky5j42Rsed8VDKBJ4G8c+rEpvsDVrxVwm/GzGKtmSclSN6QC4XryCB/J/TdnyG16d4qZIFGwppy\\r\\nJIjxFZlGZlG4Kd5A7bZWCeQz4A9YMBoBCvco8kB+UbqU99hagpwkE2s1kdfA3Ap/UMIAAll/rDWY\\r\\n80u9ptBhnsgvrAMI8VwoslCx2LjRWaWdNZI4DgDiMzxGKQLUAAklj987FBr/awNhvcgXipTO0zbD\\r\\ne9aEUW48836HQsfuI39LCJxCn4Nz+wf9trUsqY8cvqKL7E16y/3Q3nrQd/Si3DxhY3M0J7+tibEZ\\r\\nq/xBHjYg1X14MwFORjP9rfgBqKpoA+1Lu/Es8gCfASSFFIGJwpH2CX3rOj/2orQfwBgw3daUVDSM\\r\\n99T1+LJWBwBTAI/s8bf71kMsAOi6juLBs75fvmDg35o1pto0mZN71f/L/8C2Nb322mtXGYhF52AV\\r\\nHlR4BS0U4uE747POnX2Ixzp9gZwAxgBL3t/pTM0P+ZAPuQCZiXOWH/QlX/IlFzBbuVWq7GxUX9CQ\\r\\nc8xVmpcYf/iHf/hUvgpMYH4ATAfnLGkbB+G4xwkrDFNynffzkAE/rDIbQbzeoli4eoKUWIYZQraI\\r\\n7O/OIcIMvuue0D0h5Br3wZgdKspKlJCvf80SxbH2Gt5BCYjK1Pd1zF1777XXs6KBPYrvGOBx7fP3\\r\\nXY9Wp9Wm57IW+56/6XPK7J577pn4ldK53GHexvihH/qh04Hs73jHVt4/5gAAIABJREFUOy4rrfR8\\r\\nYsnbmxSdYgCC2x7LC92xLs78LHfpLOH4TWfgbVo7OaCdK8c7UMjw9a9//UQzQLSGnHmgKCbCkqAm\\r\\nKwhUSoBcI4ey8M3X/+ZIoZCN4/4GFN2rUKMeb2QQZS+scZrXc6JpIgVev6xC97w5nklOeUZhC+Ff\\r\\nHioKVnjQc1nawkz4wXsEvIrNr/mar5mAlnmXU0JBlZNVS5zyXxiohT95Rpc2Rt7WSmLbfhMypPT3\\r\\ntUTgubJ+6Iu25i7kDCRpJyR/Sz4wQwNwKVQKKONJCo8XlD4rFw745ACg9/RYO23Ye9Q9ZNydBcqj\\r\\n5rgtdOV1sUdO5z55rerBhC84ExhB0maAJnpOJSIvkh/OAQr97rvvngBkPc1Ova3THPCZ/WYfViRR\\r\\nuwsyrKpWTgbrT/8BMp02gD98F98XLvR9POP5vPib+p/deuutUzqFtbJHPIsMsN/90MP4Oa+RPYXv\\r\\nfOaVxyqvcHlkxujl+17ujQYZPLUbqeWEefiOOZHXY/HePvkvagcjGFe9z3jdebzoTd4xfCOvzHq5\\r\\nlseQcSRH3bOB1fj6hLdp9EjJm0LguqA76PH222+/3+GQvDJuNPZ+IRB4RrhGMTpUrx2ATe/hUKH8\\r\\nH5NPYFU+7H9Eq5R4zEmoJX+xWURyXYnw3vcqRwtxoFtJ5TYiqwFjeL54sudz+zcG33U9hM4tvSup\\r\\nb98CbfpcXxpWBua73HlPnUCu2eI2a+uQOR7rO5LwCcX5+XrHuv8h99FxWnUc/pGn13FSh9zrmN95\\r\\n8IMffAFfv+UtbzmqcjDGbQBG0juvDn4m0Ag3oYEq8RhLwBXhzaPCoAIECHEKW1Kz/Tgev7WNJlrI\\r\\nyCFj/O1TxNvuURm2MD0lq02KNgoADevUmhon76T8C8qNvKKEXEP5kRMls3sOS9sPxSDPinAdc0Ak\\r\\n2zKo3H9MCeDF9wzegF/8xV+8uGbyptBJqLDjVIRsyUNyyRhqR0N5eS56up4HZKz0vuWWW6aKbYqX\\r\\n9W6+5LDvU5KACMVt7cZKMjKRTC1Hp8o5SddA17bjY1TcmSvgQOFQzO4r98iRP9vWZU2/MyA4maxJ\\r\\nqZxZfGY9AUn0qMITfWoFwlHAE0fmr203snSf8jDiFfyPpvRNyh0A4i21jvaEDvOiBio8XYcPgELe\\r\\nEXzhukAHYMKDog8bRV8LITqOJ6WqV8/GC0AHwGlfVllnDfGT38CR7xonPmBAlNfsPdeUD+U7nWXo\\r\\n/oANvsBDp57wS9YVuOa5sq+NhV72MjfzAULK9wo8eXbjA4T8LRWo3OryrN3HXI3dj+975YnzXd/B\\r\\nA3jePWAH3+n4PXzipxxSPIM/eSSNAz1hGXOGT6o8bfzmlTevYhA8bgz4Lpnge/axcVgPjp7JvVqP\\r\\nK/km3JAlZmoSWC+dP/iDP5iIKuEOiJofFApwASgJTkKMZchilZclT4snC7NYAITItT6d2XNyMgkx\\r\\nRCmfoZyr0b04xmkRpAqJwFfHQABZhDwCEPDF6gkflgzQg2iIwCJC/JJMWYysQHNcmjOya0M6YNki\\r\\nQb3bTpJfuqHPeh0PlpDXT/7kTx6lJ9FZxzP//gMf+MCp7854lMmxn7H2fqxh7nfAj+dhTMxde69j\\r\\nXi9sLxSyKd+Hq1suiz1JCNn4fsyB8NF3yN4g6AmnytvtG/tCPiYPMMOoaiTWtc/s3QRd4Xd7hmCz\\r\\nzyiSKsOU4itN91xtSp73vOcdHQwK4+7rL8eqJ+hV3LFCCVjzr7rJugglqnIm7MmovOkByZo6kjG8\\r\\nIhTgvBJXXpxKJHR78YtffHGucsJ03ybTCOBAMZnLQxPdq+I77QU3herQnHIhJwlxa0WeALreY0iO\\r\\nOUN6RvGAkKc+Iz8peyDIdyhr93EP8rZQTblZ+MOas9R5T9BpWxEDgFULgfiEMgb8AOM1XfiX7A1g\\r\\nizIHjI3L3PCgMQNd9IuwnzXkuTPXa665ZsrJmXtdgDxr614ADQDByzfyqOcBLV4l56Mb4EFfiLB4\\r\\nvucCLb4/5v2I8BhbAJkyty95t1wL7NozJbfbW3gBuAf8jR19ATXXWRM8gffkAgkfAuM1M63ykj6r\\r\\nOMx64AWf4SXrHH/X981n6OcZ5lOrhUKF6WrXiU6NNNIvkz7xjE5S8b2cJp5Zzle5f7VMCNiXd+U6\\r\\nPxXf4HW8b51c43sBQc+rj1etFOLB2imgF7lnbr3whzw7BtD8CB3XMCKta3lv3rMm9o81qVmpZ6Ex\\r\\nT7Tf9r21MKZCsifKqE1GCO1nf/ZnLwoEng6oeixLV2YMHUtmL3+DB4wwILg07wTYlHYCaioGxZMp\\r\\nKB4jG8IGx9AxawKnZDwLTsES7ghThUNo12RNLHcjAeNvi5lL0+J6D9MjCguhDQjlc9lfffXVU5WV\\r\\n+XHxIaBF8UwbpQorG8mCQO7iuoe0NviET/iEqVs0i3JsabFEoBz7GsDXWrzvfe87uqI7xlg/7uM+\\r\\nbvLKXClnEZqT/Imbb755mh4vzJKKmmPQYt89AAsHmG/KwfJdCsT+4f1RzEK429MUasK38DzwVN4B\\r\\n8EEQEhxZlEDBtoRRAglokUTeGX2uJ2SAeZYi4eioqE3ng+6b577PJdgKke3yijEs7GVK35jkgwGB\\r\\nvE1kEEBinGRHCdFVOgEjaELZzUP8zuXruC0yhxzzfcZdrWqM/5M/+ZOnsE1nxWlMevvtt1/cg5qD\\r\\nUvJoxgtjLK6X4kDBWEfgi7wD9AAH12elUxZ6C469tXiugAHrYoye7f7mAyTWroHMwxPeA4wKHaHX\\r\\nEo87PnvVq141hSkLmcp/YaDaK+S/e9nXY1rCeGTOvjUeP+cBogA9A9go8bkWG9bQj/UrQZohnbJl\\r\\nCJgnOc/jksFAOQIuY4Up0O0aSrP8YcZEVXH0yjbwychhvOMLXj66zxr6jh9rytABtKaeSScnE+hl\\r\\nNNGpPKP4zsu4Kq5RhMUTyQiyZviF5xAvWFu60D5Mp9rjFTSYRyE879n3haDLBTMuf1tL37U/Aki1\\r\\nP2JEeZbcRmDRdVUWl9huXcq/yqsViEOHUoLcvxYheVU9O4DmOnsguuXNKnRorWv8i47lcuFp4/R9\\r\\nYVo0IvcKu+6LRHAmAcCwCDzAWOVJFakzZge3Wxth61IPrCEaSYGSR3kij8PxNqM714G7p0LnEgvM\\r\\ncQUSC9/whjdM73/UR33UBBxGZa1qyMM0GSOQ9ZZ40YteNE2U5S8RTnUhgifcbRSvGomyNhCi3CsE\\r\\ni4g2TKWcGDfXZwLDe+7jRZj4MWHPYxVgLvlWmBhY9Cwbi+CqMhG6lQhOaRDINi7lVKMx9wTeCKLR\\r\\nAt4mJAAswnDecXmNUDnWtRQNC+rChQtXJMCS74fuV0oVIboLA6iAI7QI5jUNM4+1bpvuc+x8NaFQ\\r\\nhtGuI3EIHcaIXKJaFihPbw8FEAhXtKJg7GP/X3fddf/v5ptvPhrfAXaACA8D5b0r1wKtGFtAoxw/\\r\\n+52cojxPQ9KTjCBH6mlDwVHgfsaeTs94xjMmwUsJdWZj4RPyiZAn/wpL6Sso1MlIk/vjeUIWQJ58\\r\\nVj16yjVtnTsypWqqFFRWcx55YMs4an9QpGHkF2kejEwAuuorHpES9cl690VD4bR9B1Jv4kU5KrwY\\r\\n7lVrCQoJP5kbI5WBSj7n3dQlnvJKUS3dK4BjxzptCv3ptSTnCZ3d39wY9J4NmODR8Wihpc/ddZ28\\r\\nLnqCPuQttCZ4v3AVvQPkVe1Il5T3Ri8Bp74LDFgXvAdU+V2PNHO27uV2mY89COjID/LcGm5XhQ9E\\r\\n+l691arQL4epxPC8XPjJfYF7L9ehlzF1yDver1qSlydvXjnVpe4Yq88ApUJq6FKulevwC91uvGjj\\r\\nsyoNjbUz/zy/3mbGlzEzhu/xdgaM+Zg3Zw0dbz+RUeZCF5u38HdFfOaKr8xXvrkxiXyVilQbBuNF\\r\\n5/JIfe5+6N7aoQnjQquWE3HqN7/5zZPQE78X3wZuxs7mQhEEg+Z4WTS6k997771TB/eSOFlpJvDW\\r\\nt751uh+PF6YzQQDLohWrNTDE8Cy/verFYlMitA1iomMzPwvlGZU1W4ysAYvn2hLzCL0Y0G+LjUDm\\r\\nJjdD0jnmxoQAk+cRpqobCWTAjFLgJbAgwoaYi0WImAkS4QDx9G1Hdzz2sY+dek85vuJyJrk7fgNQ\\r\\noPDsnWMIlmPfg3Wq+es2r8yxn7fkfhrS5qZnhb7nPe+5IminKaN9+S//8i9HGQ+PmHAVoV73Y3vC\\r\\nXlO1RGF6HkVM8LHoKQXXELgUqL05No50jIYwBkF4ww03nPnsuiXrNV4jxKPazr41jyzkrPaSbAlI\\r\\nnxHC5IfjwcZTFwBLyhlQyatENlWaDUyScaUUAH8KScgXMuWnfuqnpjWSdtG5ZxSofBDCm9Dmvchj\\r\\nX5PRmmeSkcaXIqQI/N/xPe5B/vGy+Q6ZyPsxtthgKJC7QAfFzwNSiJhctJbGpNrOuObVdPtoLw2E\\r\\nzCWTzZHhbBx4Bk+R6/gjTyMdQu5eKW1P9s1PxTtvkzwqXlPzxC+8n/iiogfAAl/ZJ9YNMFGw5Qc9\\r\\n7K3TI64uKn5rAnQD4ZwYvsd4EF0JqKCd58vL4gnkIRN29urAZUYE3jC2curo0sCS3zkSOvmEbgsc\\r\\nGF8eI2MoXFzeNB0KrFQJmLPDPehD79sT7lEvt4rQjL++XcZoz8W3vtsezEGSJ8yYSxPyt3vkmSxF\\r\\nqH0R4AozVEBgnL5jzsYBoPnbvV7+8pdfko+sAAM4E2LmSeSNQnf3BoStLToUOgYM61NnD+JpmEBR\\r\\nyonDnJWcyhOyoDbBjTfeeNHtqUJDnyqVKlX98DLwggAfdUFl/VKMvFysCtU7BshKI6gkzQodmqTB\\r\\nICLGQ+jcf8V7q2ioZwvi5MWKEVrMyosTOBYAUV2PwUPj7oGBbQhjUs6rnNUCY273JeRco/JAbyxh\\r\\nUz+O/nG0RdWTynYR1/zczwvxKRnPHA/G9pnz/1iw7nnMMw73CYTxcxYWIaCRLEXz7//+70dRymvG\\r\\nsORabRrk7PzP//zPFTM+1WA2FP4AlN/0pjddEWPDh6ys173udVvHY+z2Vx4YVhoLuN5B9iNvFI8G\\r\\nFzolb18SGsIg8ih5ffSNWpsoLHxmj9grHWElxHoeeVgjb/GSUzRkA295CqO8EHvVeKypFAGAJMPR\\r\\nPtFE2fx5qAnqGkkWkkNPCq12C9rRzKvtVJ66hjwtOoD2Qs0dbk/uVD2YhV/+aYrQWK2V34Vq8vSX\\r\\nt+r/Qrmeh095q9yTt74c2/n+U70o56y8mcrPM3wPPdScrFf4YFzAAPoxTPAdAEFvyIfi2TPuO+64\\r\\nY/V+EqZBO8DtkEPI98kibRLktVG29jxABFjIwSHnC1PRH+bAyEA3PELn2Ds8GPSQ9eikAzKY19R1\\r\\nABAQjC/tMTxH+buPkCIg36HVDPiS9x0jRJ8YU2deBmbrPYU2Xnkny1E2nkB81aLGWyiv/Cf8Rmfa\\r\\nQ50OEM3q2xaoCfT0G3/T3T4nXzhW6EVzMR4As7CsuaKhsaBH+VU9K73ufl7uZ4yFf/3tu+WOGXfe\\r\\nXs9v/1SpCPShERr42zik7mQA7eOLPhcWZ3B5FcbFA+Y3yoITzT9L1uPG/a3f+q2LzM4Vjpj6upQM\\r\\n9pjHPGZq2CfHwtEBJsClBhRxuXmx3EwiNyzLqcqE++67b8oDIcRLqgyhVv48xnARqdir63yGOCXH\\r\\n1cHd/+6XC5IlJ09M/F83eQwNhUKkXLXmKkyYsLVg6GAj+LGpVAhZWMBzm1J1BAdmRlyMUm4EAY/p\\r\\nKaxi25czyZ1FLZxx22231WRvtVBbynxnuU4jVOHZKwlgjfOhOLcdvXSWeR/yXQqbF2JsG8GyptgJ\\r\\nFIKHhYs3WWEUNUDWuZ+8OBSU/+0dyo8CYYHWMHjtuBzMzmttj1OoCXN7ipK1B5a0uWCdL+nOLOeT\\r\\nQUWIA4mUlzCf/VxX9cJ+lJc9Lay/ra2AZHQerxpQkmsEKJe/PA7yg+eOrOLRG/Oo5MZQpnfdddfG\\r\\nvfXIRz5yEsrojt5kKDnJ21MSLhlE5nmRvcZeFZhrSjY2P3/nwSKnyBmgkHxDb2OlgAGCsVJ87Zoe\\r\\ncr38KpZ+BrhWCEKI6CMXD03pBMqdXF7bMobhz3OEnmQ4BV6jajSsTQClji/Qm87x/BpXAzaiK+Wk\\r\\n1ReQ1xNIoPOEPnl10RtN8QOA4AcfyKECdqQ14AfXAVEUfvfFn/jSWlsLugFt7A/eQn8Lo9IVxg1o\\r\\noQ0a8RzTI/YyPWS+jPoOD8c7+Lrm23gCTfuNJ+hG/EF3egVajNErfquiv9wm98mjFb+5ttYlnjFW\\r\\nHOLTqmv7nv/pxxp19j+aeHUAdkCVvKjPVZGpMf8qY8l4/Hh+iftoV9FDDpnm3H0rZKtopEbkHEPb\\r\\nokuaHhuncCMZZp2sXXQCvP1vXzPWAqf24snDHvawqbpGtcnYBFBDSgMWLmuDleTO5R0xIzzBhYiU\\r\\no2TL3MuSN3nAKiV2VAtmM2HE8owxUZ0VjWCY2WedhI5w9W4xHt8vRpv70vcwK/e2iqU2LZDFEkcI\\r\\nQqempogdsvU8yqYjCNxHSBADe39pzJ4g4YGhYOqjg0bGSPFhYuCPIhNSeX+3SpBEbm7vfe97r0iA\\r\\nxarVQuI//uM/rsjxEbjn1S9trSLTxsDe6oDffd9ndUlKpWDw9jEOHtcwsjCW/SUXxB6j7Fjd/iaU\\r\\n7FWKwN60/4AL3g2CTgsMik+LlCVJ8MAX40juFzlEEXgeYdpRJe05CtY+Azq2hfCjG9DlvhQjhcXz\\r\\n4v7ykuxdY6QgKWVeE94unhgFBAxHLTw25Zgxbv4/e/caa+tV1X8828QXXqJGvERFNGIkoIKCl0hE\\r\\nqdaghShEboKXllaKldKeQmmrbT3aHo61pZW20FKlRaClsRQRAcF4IWBEUECjXBSCiDExvvKVb7f5\\r\\nzJzvzuxi7b3W2nufi/7/K9lZe631PPOZc8wxx/iNyxyTUUo2ooP+knkMUrJU/arOQPPc6vm00YYc\\r\\nJLSrJZZBWjI+oFDF9nZy8rhX9f1nfuZnxmYHz47umwKaVby1zu/Atw02ZK554enX74N4oBQhldYC\\r\\nfKBdu/XyjJQnGEAqRGUNuB5AAowANIV2efXw0hzmNjaeYG3wdEq1UH7I/YwRPG7OGDJAh2eWy2R+\\r\\nrbVCZoBZO+XoJG24j94TQkQX+safdcMTmNcFmDCHQJc2pOgAWuXStes1D6d11jrIAxQwcT9aFHb2\\r\\nPR4LwM87+OlJ/cOz/kc768IYC9cVwtOHduH6rtIjAd4S1yvJ0OYzPNwmjAqhkheVb2hXY4nxeL/w\\r\\nYLtg9b1Qpee0M9FYgFYgLvDZ2jG39CHsYmew58ylVS699NKRQw5cuUYb/syNeeaosebywkkV8Gwg\\r\\nmjd5SwK2rbi5yFjo0DRLs7OSuElP5MWMxFUoukrHUJtzCnPXZrHouCJ3CNduGrlcQlSdUI4AuUYR\\r\\nCaNh1Cw1iL9XzJWXymfMaQLzcDUZ2uX2W3bMg4NIuV5ZAUIXEKz7PcskILZJwHA+I6QzDN/61rdu\\r\\npPDRzJjQyaS3DZ4gtWjqdwd0WogsOc8sefEwtjgvFoI966yzxpEV4s6b5lisI0QPeg1Afvz4ccB2\\r\\nI3of9Lmr7jefQmSOKNnNQ7GqjcP+Xc4LEDDnSx70GfLNGBssMrvt8CMlNHtq5mdQSKUOABI8v/IU\\r\\nrGPAi7Dk1SWcZ8u43VRZwZRcBYK987YKXbrPmumILddZt9YVAduWaMIuzzZARCCSEcuOw1lVtZ4X\\r\\nkEKRDN9urEpWdMg8GeJ56nrtdkg8QMt7rv+uLbSBDmSCPlb9uVyU5Bp5QXamPNzjN0qoHWF5IzI4\\r\\nCyOiPblqgw5aeskNU1IBwOHVkvpgXl23jqfwoHzV/WiPrmhRrbS9QpHzOXzaMDd2xXZocN8xjNGQ\\r\\n4kbT8nvyagA2QJTv0RH/ea7+oEe7KMuZoxzxLfnvxYvVcUJAKq+Vdtr5yZuVp4n+EfXh9QjIApfC\\r\\n5VXyD+zSn4XUgCpjEPrLgRHo0Jb/tW2MdHDV6MtH6p6AEj6x/twXCCu0GdBp3VQHi+4pf8u447t5\\r\\n/meQpO/xaE4Q/SuFp1wt7etDnrQS1d2PztZyu1r9r58BRM8OPBXibLdu+VR54Vybx6udioXQA1z6\\r\\n76/r9Nda81n60Jz4rj0GnTGGh6JFBlbXLFtHo1xBYUFJrjfddNM44iaPjQJ9wAAPF0HKwyBpFbMB\\r\\nBIABsMKye/DBB4dSFBIkWDD6+9///vEdBWUrL4IIa5i4Yr+Q8Oy+rG5GyXh+853JqWZWiXMBFYDI\\r\\nC9Oz9AgWeWO7bS2PSKrPAhyUQpbFnNznOyUo1glrrCuEuKB5HiwS/TYuKLhkRONmRRHqxlFhOIvs\\r\\nIKCLW12I8MQOkTMKwEQ7dYRY+2fKUTn6xQOKPxxYLiR8mLywLs8su86GAGvpM5/5zNK55E2lbCkJ\\r\\nhtEc9lN9nQCyju2m7bwt3mXrkeLlvWV9X3/99UvbJ2B4Dqw5nimeW4qIMHKcB2OFbKCEyAdryXrN\\r\\nqq6mFuOGogFqZte7MRN+1gLhaF36Ky2A/PGb7yQGWx9zQUz8bi1Rrp5rLRnnbuPxPB4RNNUPIahe\\r\\nWfaEv7ytucbVsrmxYYhRalyAjkRvSplyBlp5bkqSLQqQckMPv5ORgCVgYJ46DSNglVJIWZAfZEUp\\r\\nFmhmbhhxjOAqTcufRY9O0SCnla85WWeTAkPGDoR0HJO50U/P3jS3T7VtQJ4HDODmycQDDHfjba7i\\r\\n+2WGJC8U3uRVBIC90JmyJ3etATyAX/KW4LsAmjmyRvCd6/HhIlB8/vOfPxwMtWPe9Ve4Ge/zdvIA\\r\\nm3/gS5ixcgCOzKHw1XezViW785QFuq0tDoZyrspTnqMm6FviuHVU6QM0si7QST+q3u/eksTn/KUM\\r\\ng/RjQAl/oQ0adV/AqDIw1a/KW5YRVDTK7xXzJY8KU+pvuV9tXMPf5VtVQcC8uzYwGADTH89oo1ue\\r\\nxfIWjUUb+kl2WV9Cu/DM5z73uYfIO4ajOfTsxeiFzXLGQKfiv0XP8JbqwsoSQNYEkZINVc192MMe\\r\\nNoK2TjjnMuVCt2vQpEbkDnL92Mc+ttMp24It9MAArwTL6d3vfve45uEPf/gAbQRiRfRKVjfgMv4x\\r\\nUQW7ir0ScF6BsCY/CzGE7zqEs4DXPWCZUBRCYR23u9EkWHgnY2u+REoMkMDnDZD/YcFbsFVwLrHP\\r\\nuC1SL4KbwOJ93GSb82Me85hRt8xRC/up6XUQQLDOvTYEYNZPfepTZwwABFQofyG1F7/4xdvrnKe3\\r\\nzlgPeg2rWHjpIx/5yFJa2cACLHRchcTbztey/nyPF6xn//P8tENqWeX0zrcTCqymDIEvV4QHXMiS\\r\\n9U3gdibekSNHRh/xsmvxtb8SZAmt8kj8Tiha94XvA2+8PdYimWGt88AsnrhgPZEj2iYsySgKELjb\\r\\nS4nbHQZ0ELKBOH3pRAgApZCG+lV7ndkoBUKeG5mhr4xVnjgpA+edd96Qo4xayoTnpOKlGYfGmLJA\\r\\nC14RCtC1WdztVkshduAsJUCBpHTJSLR2HXBAsQMlAEHWuDxbstm4AVayxu+AoPDHpuBnN55WimJR\\r\\n+eSN2nQd4DNGsX4yCNpBl0GO1/Kq0AHSMcwtuR5voY1r0KZICb1D31gnaOyeQmfWTSDCvHg2npgj\\r\\nNmQDoKTNcoHR1cYO8to9yVyyHmjigdbvzl5UYzJvsXHiS8CrM3oDEHi7XJ/WUt7gAFSJ4L7XH+Cl\\r\\nPOcMlvSueS8Uid/qf2uyXMqS5dEAD2sP3+EzdGQEVLagBHPzW+4WGqfDy9/yDO3qZ57tftPPEtgL\\r\\nHRbmNB7tme+qEminZ1gvxuG32VAyVt+Xu0VGGDvj0G9kC29iu23R3hr2jjc8t5p07cSMXxhxUh/Q\\r\\nB79tPeIRj9jWKFf3/fffvyOoJXvagVM9FxWZWboIaQLcjDAaJjhiCkftzIUYxTDtiAigsBAVIEUk\\r\\nnTQQjFq9i1B2dbIQwvMCVSFQxJuBh2tKbIugrqGs/SbvaZ38DtaWfApKBHg0Pn2wI4QnS9sHOUNt\\r\\nE2FCodleTjgTsJSa/lQFv+RXdCRkgcmsL0AMw99yyy0PUb6Pe9zjRpu33XbbadvRuBcNJAKzPD/5\\r\\nyU+eMQDLzkbCAog4k3Kw0FGI/7Of/eyBaZWVhucJKHlL5sG4rQXhHMKEkMFrrtktF41B5dBZBpmU\\r\\nAPyW91k7+Bc/U+jAGFlSeCB3PoXk2RSb3Ijdku4pKm1rR9iOwWENkE3lNyoUC7gQ/JRmYRKyzHit\\r\\nL+vqRE2/scblufAiaHsdkFEVePSRiwVcAa/65U++1TXXXDPm6bu+67vGzk6KAXjLE5X1TvCXpgC8\\r\\nthM6AMQQ9l1J4toolyXD03MCHNrVL2MB/HgzZ1lvvgAVhp0+AyHoQVHIiztZpWXsPKeQ5lISm8jH\\r\\n+VrFHnkE0cVYOAzMNXANZKVs261GyVOWxgqAkZXolAcU+Cv8J88O2GF0Z3jYJc9zZp0A/7ydgJBr\\r\\nzD1winYz7zDgAUOvaq+5FihAa4peoVhgVNsUvn6ZkwBRyeDWBr0E4FQTim7MEeEZ9AMeKKxctASP\\r\\nBOLTIYXgfF85hTxT88aK0nDQUbvoSHfTPfpqbXfIfHlfJbyXNI/O/s9AKGxY2E8fjNcYjdczC1WW\\r\\nQ6VP2jE+69a763O4aMO17RhElxLw0QENfC40bDzlhVdsmCx573vfO9asULJrrbV2YOs/nSycLAS/\\r\\nzGDY+tZv/dZtqHlG4o694f5s+yzmuvrqqwcSZwHZmeRhGBPooOBt99VhYZQYX5Vk8XaWcQDssY99\\r\\n7HANN8klm7UFGSGyGqpSXP2aamKZVARvN4T3YrHaQdRyP7SvX6F8YHCdc9CMwSKiHIA07mSToC+E\\r\\nnl1ZFsRhn1u4l4Cx/VlYkeAgHCiSE+B155iSQq0Alt995iEAMttFeSJZc89QyX4F3UHv+5Ef+ZGh\\r\\nDOfdrAdt86D3SxKmmOSsCPvMPH7Qtg96/9d93dfxru0bYDFMCNauAAAgAElEQVQorCsKiYK1buRf\\r\\nbloQVKgdWGGJU3QUesKL4Ks2nXVjPeJJyeIUHD7tuB6/oTWhSlBL/PW7zxRYCsTaowyBp8BX5w76\\r\\njvCjvCg0ievWTLvNsuhZ3p5lfZMf+uiZlITE1nWAlZ2DvIRAqDUnHGhcPBM8d/rruDAgRT4Rz5pQ\\r\\nKuUkDDh7XwBX8qr6POSYtQCIWbNop+/6mIdGX5OFFFU5R9rwl3zN6DS/lJadfMtyCaV38MIIiQOg\\r\\nSirsd0fpKt5mfHvGOsWaV7W17PeZNxZ/3+twakYUfmNgoD0ZyiCoMrk5xTspaDwKyNE9dOIyw4Mn\\r\\nF0+YL3LEXBbutm7c61lCVPgCqCrXixL3F9AIKJn3UmRK6raWSzUpXIoHcoYAEa21PDl0Qyk4gTS8\\r\\nlKfUPelk/1e4NE+UfhhL4cnypQtLVj3d7zlQAlH6UO5g4yuc2Pjo3Xb/6VM513i6tVLaQWAw50ub\\r\\n2Iy/3Y9FyArNV4icnPEstDZOx6K9/vWv37dsNcatCy64gJU5GsFYSiwQXuUY5MminO+9994ti0IO\\r\\n1vnnnz9q63DLCzfpdAVGtfXkJz95JMuWHG4Xhp0X7UCABJus4rHecw1GvNHJra2d3Qozcl1EvBE/\\r\\nAap97Xlmrs2OFmAxbEI8CcU8eKyKQIznsFLEXgnVVflerKxqmexHYKy6x/wR4J2riJ4WFwvdVuUs\\r\\ngraoQt4EAlpYIBQYwW0sl1xyyZ6MZSx2jK0bfl3V9353igDvRfl86953Mq9zvBBepozlsN111127\\r\\nHo9xMvux2PaJo0bGEtnruQGPVX0Dtlyz7GBfnme7/YSZ2n1oQ0z5lLwqFLe1Yb2V44HXGGF4ylqk\\r\\njObjXJb1SYqB8AmBrB20t9YAGCAEz86GDcuR8gLWPJ9ywkP+8HQFi/E4WVLxVO21JtxbaMRzr7rq\\r\\nKvUAd6UreSaPkvdC3TyhP/QALo2/yuoEu6KlABxg5TfJycaV58k1xpcXvnBk+SVo6EVRlVMTwEpp\\r\\nUZCUDUVU/lZeuXKHPANo0zdtMpbb0bmYVwiAAKWrZNoqnlr1u1yodVMVHMsGwAPODEzzV5K2eSTP\\r\\nKick5xc/zkf9WC/mHmgV8skDpA1gRp6aXDGbO4qQFDGg/8wX5Y8uvKp4kdeUXlw2TuCb4dJJA6JE\\r\\nPF6FSm1Aojtdo22GO+DbEU7C7daXObJ2KseAL7zwbOAnXZcjwe+F5F1fbpTvi3YEItGtTSnoQF/o\\r\\nc8faBETKTdYX7eWJ0mY7Br37zToEGF1Tjpf+VEKjhPi8T+VRVSHd/WjdMT+N2fjyXOlXG+JqD48X\\r\\n5XJd7epztMljpt95fjvY2b36hObyT61dBg1Hi7/qlJXTZd461Nt3wovGqHQVI3IUBAU0hPbUKZGc\\r\\nmnIjuFyIMXTkzjvvHEjewbeYQA4IoQvNO0RZEU332D6qo29729t2GO9Rj3rUcLnKKUA4r7xYOt2g\\r\\nfWfi81pVNDTkG0J1fy7wEH1MbiIJZQtGUiGLTF5EBRbLb7JQJawi5OJBoLsJhhJ7uaEJdWBG3/SL\\r\\nAPQ8rkULaTG5Uj0N4ZDCLJj57rvvPhBC3kuALct7kLANhPnTl+Lb2mleejeePGVZCBjVCy3t3OF+\\r\\n9wdksuL2UkqrhK3flQcxr6e6bs9efVN9G1+2QYMXa1mO0jrjO8xrgB6nDBxWOFWYEBC31sup6ABT\\r\\n1rzjR7xY3/gCD1E21hFBYy20w43QFv6RJ7iqPAKwQnFqE39pNxBkxy3FA6RRqNYZoUlJtAWcxUku\\r\\nkRl4mszAiwl4bRUK0X/pAvpmrPpu/b7xjW/cSTGgbHjd5xI17gM6eOqtBaFOiiNPn8RrYXfrQh8B\\r\\nyfe85z1bKtnjHX3zW5sOqnWEp4wZzfWjcKE10K4n3xciSVaiQflahbd8zuuQxyrvls9AcDsvU2zG\\r\\nBZyQWZsYnIfJx+u2xQsEdAC1lVYg1/GosQHxQCNAmcenEJlnmG98LJxFF/krL0l7PBbulYdLtrnO\\r\\ns/CKsOqibAPihAY5JNBT36qT5D5tCTWbqzlv0640jgxREQDBnJKfjJeObiNjgEBrAk80T82vfuOn\\r\\n8u8KB5rnErxdiycWj6BpzEAM3rJW8GW5d3QbgKX/2sqzVBhfXzzHHx5F+xLey7uyRtoNn+HQJoy8\\r\\nY4Xs9KMUodkDhaaVfci7W34ZEFdotPWhvTxxHd/DmAiEz/lj7im/qyR6n/XbqzScTn8xR8ZhfHnm\\r\\nfSbfOg2ivG/6vfqXW4APBEZoOiU7t3gV3mN+YRI7Ny644IJhwarSDGC4Ly+GBQCQEVodmMnjJYmy\\r\\neGgosqS5vE7FQEtgKyZcEnyeK5PUPQaddyoh02fAaTEZWahTeQIEYXlo04RVQZdSsNAwtUXVsRer\\r\\nBABQqT30seAwayE6jCF/az7fS1ItLyDB0GRRUIrOWWS7bfte1Y/9/A4wmpuO5rDI9IkVU7iE0KCk\\r\\nKF3XdRxGrujCGlkExgycoUGu5XagANiElfF6YdI5B4Pnk5fwv/7rv04a8NyUTnJFCDM0Ibj/9V//\\r\\n9Yzp2/nnn7/dwet7jcuurUUFoWxKdYOAJ/NdAjohYX4pCoKnA2mtDZ6h6tNRDJuGE+vn3XffPXJ/\\r\\nPEeb1jNhzQOFh/xvlyKQ4PkMEsqg/CzC0xomLO08NTcUY5YymUCuGJMcKHLDbr7qhikj49m87DZ/\\r\\nGD+erVyLOl7ON1TaBQCUW6r0Ql4S+V88DPrLWrXu7cZjxZb/BZzzUMg1Nb5yQfIktasqL0O1rwhr\\r\\nsq+8kPJist7n3BNtAnDWlPd2Z/reqxSKkokDZiUEu6Z8MN4vtAYuKPuT6XFftQ6dVVjf4nFGwKLh\\r\\nSq6bH7poMZHeHAVK6SsgCDjGE3lceTmlxLzzne8c69oRPvgf6MRfKuHztPktbxu5yYMJJNEnaC7v\\r\\nij4hP6WizN4z6R34BJ+Sp/jFHPsrr8fc4SF8jwcry1AOU14cfO9lDO08zQDO85N+1Z7xF0rz/xwR\\r\\nKmcp4KZd3+lLobrCePrhN33u7F/8Im2l3Xqeq08BLe128Hu83k5I7aIZ2lm76Ja+t6b9H1Br85v1\\r\\nrG0vbbsn/s57ru+emcHld+vG8zw7j5y2zFeFibWp73nnAn0HOX92Sw7HXDMKuqb8hb4kqvKCKPxo\\r\\nMB3ybKcMQeXsrXvuuWcnvChv4UUvetEOmDjvvPMGKHNveRgt+lyJiDjXpSjemsvRpCRoQpftLESs\\r\\ntqfmAcNIhINip3udBE8xORdx9qJpv/AGkAhs/emf/unGypRARh95DB1ZYMHwlPEGppDQFiADtLgf\\r\\nLbx2NgB4vGC8Q/s5fHWV8Dro7/JJWFgWlz6a10I60HtHCLVIMTiGpZjzglEyLRyL1lwTHq5Re0yS\\r\\ncbvJbIH2TO0k5Cg795wqb5KwKOu23bAHpeFB7s9YoLyBEUIaWC1Ph+cHIASQsrCAZOsEyEU3Qo1w\\r\\nweuVVGhutEcGuJ+Vttda2u847M4UjqHoKDhgDeCifHwm7Cg5AFx4hwAFaNpJK+8JD1YPz9olS9CB\\r\\n50DomxLEQ8kudeB4sNTHYvzhN9eScSkh46Fg5VO1G3IeI7CK73lPGKdkFuNMceOqgZOj1rRdYMZR\\r\\n3mhJ1uSW9WJ9mJNKT+g7pdXpEPidXCofq+TfFEVGZpXM9RMN0FG7aEJBGGcKQ1vV93INHkjZoEE7\\r\\nuvCA763vvTYa7Hf+V91nvQNEjJvAKfAhRPzqV796Ry47Nsc49XNZuLEDyo2NdxR9O3zbdww68pZS\\r\\nNlfWBdlrjqwheVHmw2/WWmEkNM3YwCs33njj6NOc+6XMUYAX+Le+8Kvv8AReNpeFActFNu9+D+zk\\r\\nSSJnM2z1Q1vl6RUirqyJNW1+rStrmFzGr0Cje+YaVp6rXW2Wv+R/fdA/zy/c591nG+AqL2Edolfj\\r\\nwdte3tUEC4gy4K1v9PRMvwU43e/7nCjli82514VEtV3oHE3KN8tTDQPoeyHGgKH10waSdG1eswCg\\r\\ndsMpecR40K0jmEBhXN5LNMgAIcsAaBsDyS7GCbm6ZVfZ3//93w/GILTVr2KB3XbbbVvlTamfIpSl\\r\\nESUbDJi3pWTfJz3pSSP3QLn5EiLPOeeccaK5MJ2JtwDqdFanCSTIcudp17V+h9YNuOS02SWZ0NGm\\r\\n/7WrLZOLIBhLQv6qWjXGzDNngZ04AHknSRSR84px9xsHRl2s8LtKSLBcWEiS0dHIpKPdKKO/tTUW\\r\\nqP9ZXq61gcCi9uy2+5ooViUhgC7uPxOLhK6ihd+BIovIIrMomi/MSgAQQsW35aoQrP46aqX4PsFh\\r\\nMbk2F7vvgDOKAR8RIOhtsfG8VAmbMqpNwE3oh4AgYPfKPePVPZGkvBboNlbjSYnhM6AAz5rflKDQ\\r\\nhUVp8RLukrL1j9K29lyPXvgcD6EZYWTtoEeV0sthtA7wFYWK1u6nANDBd37H08sK47H4WaMns1o9\\r\\nhcjwMh+8RvoNyAFEFIFxmlfjNIdoaA2hlzVvbMZtbJ24YM1YT5QvGmrnDW94w5BZPBcVD3TwOl7g\\r\\nETHv0hkoTR4QtPECPtAXYJrDm8Lr6iaZR7IJXfMitL3e2PAlrz3DiSx1bTsYjSuFgAcKb5QKoU39\\r\\nqWK0fhQOaTd1Cq/Qovar5N5W+2hnrOQL+gEVaFSaRoUzS8eoxhMFpJ1SBTzPmrIGn/KUp+yU31ks\\r\\nYrzO+j/INYASg8LaEAoswoDmgJj1i6fQsi326AkEGAMZii7GQuFbWwy5m2++ecxJZ+OaF2vPPOIL\\r\\nIJ98Qhf3cjwYBxCtHYqVTHG/tchLZU70s53o7XDXDnrnHIge8YFn6mPexXKLtFcUYPZAFW7Tt9I9\\r\\n5g1geMTzrH208Vz9aqecNvPakJXlNelXYKmQor6VT4UnL7zwwhF2FbUybs/VVs6OdCj+87zOaSwx\\r\\nP/kMQONJ3+fd0i/Pz+Oboa5f8SWaWE/65Vn6nsOkEGAJ9hkervOXV9D3bYQLnBVF873rzHFpQMbH\\r\\ni259WKeAFDlcXhqjiuzBC4OfHNysfIHil7wp8zlr8gfc3Dl83/d93zcYCkOG3CR2CrspRFoZBICL\\r\\nIunICUIxy0inI4pOISgGKCSIsLk3I6TrGmzx4NyBoWlEi6gmksJSlXW3g04XFzqrgyCWyF7iXOcl\\r\\nATWIqX0olpfAQttNCe21ewVoZf1S1ASwCQPcLGj/oy/GKh+FYMzKLfkO4CoHpWrQmDjkzeLaq1bP\\r\\nQYTcqboXOLnooosG33Aje+ERtMkKbQszwcrbBcRarAGY8k7KgSFY8BbgiifRi7K2iAhCrxKECRu0\\r\\ntdjMD0VOUBPS3P/mBRDSNuEa/xI45lGbhJrcIM8M/ES/4v5ZeuUJFKIiGPx5Fl7Hkwkca2C3re0S\\r\\na/XnVFbn3o0nyBQeB14nghI9ACBCyFpDM3xM8BuT8abkyIW8BsYvzE6I8wrLlQFc5IKanw996EOj\\r\\nPhll6HxUhp3rPvzhDw8QJT9U+gPFyPAD5HmxtO9agj7gYyzmVF+UW+hIDCBP4r0XeYUnyv3Ec7xg\\r\\n+NFYyQuAWJuEsc/GWE5LO/zyHM2hnjwb3q37dgK7t23xs4IoH62QO3DpVb6Lcd56661bSjFYH9WB\\r\\nMj5gXd/R3PMCfMkZ6yWFZg54bMgW3p2UtR1xle6ZK5efKjmx7DkBPw4D8rTcW+sZ7QrHXnfddQMo\\r\\nKeSJBzgH3GvzDroCk4Ep11lb5sGceFnbZBF6AU7teg/EkAPlDLk+UF7YK4VOXhX6Lbne9emzvItt\\r\\n6ircVQ5S4CM5497CYO4pZN6GCGMtPJo8LJLkN9/NOwHbOBEQy3MmARxm4C0PEHrHB3gfP7W7EN3w\\r\\nXlggIy8Qi6Z5+qy5Uoq0h7bkRyHuPHj6lTGGBvqNVunL1lL5iP1eX5ubPIXlj7q+nYqeGfil9/Vb\\r\\nuJ8RhlbLTouZeXJLzku1HuYffuiHfmhbcilXLKQuudNA3/72t+9Y72efffY42JWrsCMpbLMnPIXo\\r\\nCBnCLGFRiM+AtIUYbUGOQCbEAA0slO/+Bh0S7Rq/FTLIsndNzEeAC82tWxySNQRkYQhMSEFk6SE0\\r\\n4Vq4k2Biuc4l9FXDp3zf9a53reXleOpTnzrOBsT8BFiCmSDzLIsWTfyfsPeZQG07e2ccorX7Xev+\\r\\nEml534AQAuZ/k+fL2ZcWr1wY9KGsWJMsJor6+PHjo8wIelxxxRVDKNjlh2bmRg0lyrzQL36iHFzP\\r\\n44G/CV9WsUWHRlXMznNW8ibAjteB99zyWUva12ahN4LFHAABgSPPATDyQhqP63np4k3gW7/X3VV1\\r\\nOpXY/GwhcYqM5Y4mKWZrO48j4UYgUci8xSXGpmw6ywudAyKAFBCLr6+88sqh7L76q796HO1FDtlx\\r\\nSth+8IMf3JLwzxvFGPT/jTfeODwUgBCvsOeiLYWgT+YHSFA41PoT0tfHlJ5x6H/WKRDBiKE88I5+\\r\\nUhZAnevwhPVJ+JpngCwPawK/MDg+Nf/4sUr0/i80UziwviT4ffYb4R/git7tMDSmEoNdx5rGh+VV\\r\\nmgNjJxvUWqIo0AP9yZR2inmmdeQ3yq8UAPw8KzHtua4585lcYhQxRg9axobuMcY8BvsNVQvron81\\r\\nDJ0fiQ7mnqxs56yTShhb+JnxRUagu3XKA1hZEfQr5FoYCW3Qz+dCbejWzs95LbRpoRBgqTABG7om\\r\\noLyYjJ3XKsDk3jkVIz4u1Bt4yjOmj4XD/c+Ydw/jUJt40gtP0rOuxQOe0UkL1hXaoElRB+OzPnii\\r\\nPYsxKmyrH2QDXKANtMv769068lz8x0vNSIgOnl+Jhrx0AUh0QOdoGQ3y+um/PpWcn2cq8Nm85bkr\\r\\n/FoYUr/1w/yhE52DVsbeWs6wnoG4/nV25daP/diPybl6SO0qeRFCbLbo/tIv/dLIybJIO69QAwCY\\r\\nBFTCLjDhWt/ZVaETyjJUHTkX65yPEDqMIfJCIYhXHpkYqdCgwRUaDMEWVoo4Id7KQvhdv+SbbaLA\\r\\nEIrwfetb3zr6ox0T1EGXiE8xa/uVr3zloOO62+KXKUi76OR2mFjCPWCZlZmLk6Btlwvml9uFYdT9\\r\\nYUWXLFvysPYALcqP0KXkLA7tEc4pD21kRZk7rni7Q0+HMmeB2iVHwBmrMQh1EQTAk/o5BOXLX/7y\\r\\nsRuU0rVpI+uDxQGg4VFjt03e2F0LpLVr6vu///vHUTi+FyqkpK699toBnBUZJXB5SdDgB37gB8aG\\r\\nBoKEIMDPBBAPBkBQDs7poNfpeObP//zPj1xGIUd0A4YKZeFRfEiRUUYEH+HqO3PiWrQja9DYnDDM\\r\\nXEsgX3fddYOnpR5YYxLIb7jhhsEL5pFHEaD5m7/5m3E23a//+q+PmlOMjNe97nU7Bkg7Hc2XduSW\\r\\neS5wBHiZc96pBDm5VK4GnivPyfOlHTjOyRqhDEa15hMAuzwrAAPYKi+kHUklLRcGKpxXyKhdTCk4\\r\\nsqxEXtfg65Rp4CwBX2JxMjV5iCf6n7LD48k/Ry0xBgF9dCTTGBHJhHIq0bOk7Ao3atP45iiDZxXa\\r\\n1F9/eIFhlFdE23QB/UBuMZLcJ4ncs31vzDxDrjNf1rvfgEE0JNPatQz4kJO+d63vvTI6he/01Tyl\\r\\ne/AgQ8lz8IRxa9P8WdvaCvgEbvPeZHDlBZtzqFzre++BUONGh5R3oLndaXkjS3koF6q1XLjNfXMI\\r\\nMPBlfeTRysMVuPNeiA0Pm0+f2zAR8Ldj1vgZM3SC3+kE7VonQGWRonKn8trrb8VA0YgBy2uKt81H\\r\\nNSdf9rKXjeOS4sWcF97RH+31wVxbl+VMGV+eOd/V5wyzcsNcl0fKOskBE8DK2DGOgFlAOMwQkJ3B\\r\\ncZshCsdbK75jYKGFtow5uZZ3zThGUdj5LEJlF1iBL33pS0cuyrFjx7aPHj063PNzyQXH60Cy8rEs\\r\\nVlVOWYYmg6Iuj8QDcr9jCL83wQZlEto27LMJ8nuCKsSNMUKy2kmBlnuVC9AEIE6WAmK6N09QeTni\\r\\nphT1qu3js8ISCiWIjcmijXktqBYFRjF+yB0gPUiYjsChsOR7YLgYk6BrG73x+0yYY06T7+U+AgbD\\r\\nEKru5b3iCQLeCCRKzv0ESjv70AtjUAgln/O4EIS5RpfVSDqZih2gsTDF+ylUVk6J2AwDIEyujCRc\\r\\nNWQoZWC0ukYtqA984AMjxw2Qkn/DU4kGdsRKdrZNH9+7D5j+9Kc/PQQ/74zK/h/96EfHZx5HPGBX\\r\\nGkAACKCXe3/rt37rtADRk0n/uW0hvyxLCpCnNysXz+fJKAdOCCWPIVDEU0CIW/fXX3/9ADa2o3/i\\r\\nE5/YAa9VQTcH8mO8ACx86NgZYcFCA9oB7IRRPeuOO+4Y1jOL2m9yFSvYiIcDf52fat1Yx959V1jY\\r\\n+rB+Ct1RGIwsytsa0mfKPk8U2VXisnvzcmeMUQIpBwIYv1iblKzv3ast8g9vFU4ulybDs/7kVeoe\\r\\nY/C//ruX8vN/nqm8/LxKjA5ebEm6QKW1RR6aM+2UUKwfXjw55km7eQICinkCk92zZ8vYjdN6IjsK\\r\\njxl/4Slj9yK7era23edPTqJ7KbLCluaVTEerQkDo59mF6tCtXXCu93vAJtlRzoznFgFpC76+ooNn\\r\\ntOtOm40/0BUImD1KeTYKdwEZnhUQynHgWb5Pmc/0dW2AwLPyZkVftE0faENbeWfK2fMctDR+bZWs\\r\\nPoeCA/p0FpkJrJrv+Mh463cRJmMmN+n1QKL56DrAgwHjXtegYaCp3D86RxulR5grBmuAvbNDA3il\\r\\nBRUyLYXI/TMQ1sfAlWvzeJVvNdMYfaIduka/MESe2pw9+kBGMOA2MaK3vvEbv3GbmxxRWQmVXLA1\\r\\nXUIn13w1ohQdtSvHgsz6J3TF9qudpQQBhUTJY652BhCwCAksmAzED0AZeB6ufvO5gpklvutjFllu\\r\\nwQBUAmz2fhXSc02giwDUXpaYxc2VrXr1Xqe6z4rGjiZJlehF+FgEWaEYv/HkNSP0D3JI8yoFSlgC\\r\\nvAQRcEthEFCY1qKhWCwg80b5pDxOHPo85ogC8o7+BDllUl0vbtFNk/tX9Xmd341LwUf9oJABGrlq\\r\\n+qjvcku0Y1crgUh5mA+7WylBC4hytLuVYuaJc0pBYW7eKVv0JUILIylBgi+EGS+77LJhZMhRBEoD\\r\\nAY6msZCPHz8++oPX8RPPy8msaRa9AMoWOGAIOKNPm0tYikI/eM+8MXzQCzghINDJXOMHa6J8MeuC\\r\\nYCtsXzV2wAa/eIZ1xE1uvfgd+BciX1bpm7F2yy23yFPcOSLGGOziw5P/+Z//OebOsTHAM2NEHlXr\\r\\nHzBSk4+XyNzx0AI3vGWVFMnzzSvN0MDz5g9woBh5OYXzEqTldZW0264r4yKfyBzPcR1PcCUsjBkQ\\r\\nIWQBSX1Cp5QpGuoL0IVeFDY5V/v6MlvfKRagJnlBEZIjGY2AiXa1lbeoHBLypfpHnlFIxHOs4ea2\\r\\nXYqz5yPPNtr73twCMp7lmRRkAFSf4wnjRsfCQZ6D3hnI+p2Xh2JPuZqP6J43Z05Ydj+66as2jQGd\\r\\ntVW+booyb4Xr9M0z59BagDYAgC5zMnk6Q/uBJWPC2xWkLPyf4eCZ2smbGJjwnbF55cHR97xVeTXN\\r\\na+kqfssDGShFi7weAac5DFudLPcGxlwf2NK/QvJ+L58oT6H15Pnud1+6NLDSu3vRLXDakVLG517X\\r\\nBWjQio4ge/yGhvgonYpX/OElnkI6qbIvxkMfkd/GDiMYg7EHxvWxNVI0pbCe/rSWejfmeCSPX0C2\\r\\n/KnWaJ7UGaQWBQucBiZz1mgLP/DEipZceumlDzGk5TeK3FmT9KY1Ush962u+5mtGHaRnPOMZO6DJ\\r\\nbg3hvb/927/daUiCHyufl6DtqASie+ezB3UGEBNmbDGaAAlxDjVWe4cC0HmdyO2NyAZh8ggegiUr\\r\\n0Xcxj/fclVlD3hHOwvZbCx3hc/WLFwtLEBgsb0jdJHouJkRwORsEbPlk64AACo+iYUHL5UmAzYuh\\r\\n0IhcMH0UTtoEBa/Tj3WvkYBvMVgcQGJ5chZBdMh7hdEt3nY0mhMLy3wUGrPAhBEtKGNu15yF0a4e\\r\\nysrYfTY/BLhNEGglNIRxKe1FjyLvkSOaeFABJUruvvvu+zwv0Qte8IIdD6pQoOTUN7/5zcOb6CxG\\r\\nYUNHfoiTC22/733vG20AI1zYdofZ1cYj9qpXvWqbx8R5mZdffvmWw6fR6zOf+cy4Rw4Q/vz4xz++\\r\\n5XzO1772tYM+lP9+qs8LbTFkbHxAd7TMGJk3aEjWdo1wvXkwBxS9sVpfrEIgiofI//ge/2f9Axvm\\r\\n15zmrSjfwvoptASkej6eZRh4mddNc/fIBmE63iVAvw0hdu1a/wCzWlFf9mVftm3M5kRZl+QCjxGa\\r\\nAirWF69MO5hyzeMx/QXEHMkFWKALL2V8iw7kjDH5nUwBKBgbDCS8px3J7uhAQOJtv7m38Ca+rXxC\\r\\noAj9PAddCekSd/WJrMTf7vHeZh5jKBxEQVBCntuOUL8FTjxf+3lr2nZP1nl2OZbmtPwfv5UXVd6U\\r\\nNvU5z5M+kYPlBxW+8hxrk3xipFEa7tNewKdCna4Dsq0N/Fc4NLCQwYx/MnrzWOVNysuUR8j3eVvy\\r\\nlJR/GjBJcQYaAwaBWGMtd8y1+tE93rVTSAivoKHrteN74y1nKQ+dPuXZcF35c6Ws+K51EtgNJOVt\\r\\n6dp0les9x98Mnlzns+/j84BmwKq+5vXLQxdYtO7z8nmOeU2mG3Ne6Dyf+opO1on+uj9vYB5Xcj/P\\r\\nmjarBq/Mgv7hFXNiveJTa6wyL9qnXyogTOeUG2usjJKOoitFJToWNtePQFbOEvcGJAvruy+PVDqx\\r\\nEhcB5cL++BoAzFgy7uakNeP5RXSKVgU0YRdyyVrK80vOaMP4pR9sfdu3fds2702xUtu0WY/cyXmu\\r\\nhMeUb+Dpqu6VM6tUo/3rv/7rwV2qlBOUgMPVV189kuJLDqfohFR8lgdTyM9nyinFPrvyyocISRfq\\r\\n8e66rIKI3WIoJyHr1qQE2o4cObJTAJAi5Y2jtFogmEDQNn0AACAASURBVMqLK1M7+i3vQt2LdQGM\\r\\n8xcBF0pBH/2VDJkb0oQbt8mhFNvNsu4zTtZ1AI1++0PnaniF9oEhYyAQC29gLN8RcCWiWowJXdeh\\r\\nf+UBUjQWR/F87aFJRSQBYYALeJFPpgYJnvGd8J6NBAqyVv9KMjw3tHmz4HmWeLL+4z/+Y0thQh4Q\\r\\nQE04T85Ju2Kf8YxnbFsEjAHv8kF4tSz+Sy+9dHi8JNHjgWPHjg0e+Nqv/dptxogClIwFfUQrALJa\\r\\nS5vOz/Hjx0eZE4rZWrCQLdQUc6F0a8o4Cbc8NmhPYRYiKtwF8LrPnPHSdhoDAOx+wkUe00Er7+82\\r\\n1l/91V8dBz0LURNiQoVKJQBYDBxeQn2VYwf8Gbu1CDQaEwGHjwjr8i4I6qzMEm/xkfEDRKxiACkh\\r\\niafQAc0AKkYe3kZb4FnfeeAJdwCrOmH40XNSvNHfPJMzXvqUdyMvgT4Dr1W5Nyflx5hT46EoCvsE\\r\\nsFJorkcTa0bokzxltFkzxsBLrZ1kWp4cz6Mc9cPc8lDiHe1XbqGkeHzqe7TWJj6gfP2Olta6zwww\\r\\nvKId/dAH/fasam5pBxDmkfD8wlDtNKRsjRd98yL6jHbaSqHPHr7kt+vKhcqTYN7cB9QBRnnRtNNc\\r\\nBBRSmpWeaBNBXq7kU7okMJ3Xj/5oZybwG5jR10CYezwnz5zvM+5nUFR4MRAQsMRHaDintpQz5Dv8\\r\\nV+5ddCsdJlCcJ24GrwGmwHk8V6qM9aKfaJBnq13VeWUL1+WwKGyqLfd3tIx1jT/wnWtEDvAw+cyw\\r\\n8sIHlR7BV3jGn/kMULvH2NEosIq+eBHtjSlDBg3QNOBbCN36q9+B6ADtDKzTZ3m70Ll+FM73vDyg\\r\\nRc7ysImQGLe+Jj/VSCQ/2kSRXNz6zu/8Tu6tIWwkWBvMvFOQq5+glOPiBHbFMW17ZjVWANNBr3Im\\r\\nWKtc8kAUIYFoGFzn834Q+OVm+S5PT25wShdhEyQGYbAmujh+LsGYrgnIPWoiECcwUM6C50lEngET\\r\\nUMHDAoFTBCau51egD3NgDEJ6EzBky287T6rlk/vaAsm9X8In4YVuvG3zzsRNFfZhXW83FoUHjTs/\\r\\nTukEHhL0QlN0rn4P2sbMvvN/B6BaxFB+itN7lomF3lENGLgwicVHsJnTcjjwCLCAbkAOvsBrgQ5n\\r\\nwmF8xUC9fvmXf3mALdaT5F6L33iUFPEsv1lQ+KodIkJq5koo0oviFg60G0pyM0/JJZdcMvKtHvnI\\r\\nRw7vlrEwSP7yL//yIcUPja1EXcYKZS7ciD6BTuBidr8DgcZFSaExvrQmKLW8JNZCSbwAjDYIs6uu\\r\\numrk1lg7ixWtD4sn1m0nTzWvsLnHD0CDTQfApMRacgA90IicQJcEPB4hXAFJayJvdYmoeTBSInmT\\r\\ntMPjqW2yhlEIpPtro0Jj4D289dZbd5R96z5QhN54PEWa5yk+1u8SwQsZAeM8j4xMYWf8mjzKm5Iy\\r\\nJGsI5cbgvbwq1zIYUoR5sfRd/1xnHZBNs5chb0ZHxeAPdKgGHBnjmgr+atdLG5V+wW95OT2Lh8F1\\r\\n5sa6oGDzommnAslkNRkKLDNOGZp50fAygFhulzlFG2DQ+vV89ChMRSYUfkLjDO30RCAi4KR91+lj\\r\\nkYu8CtE/L5x7tV14HLjswF/j82xjSv4YP0CBj8mPQoGBQHNovgKq7vOM+opfAgTe8yS6hhyKn/JQ\\r\\n5e3KERHADATOINQ8aDOwXW7ZDNxc47P3ShDNoDDAG6gIpBRSRb/6gM8rd+M7Xm79QWvGTAVFyUPR\\r\\nBHIKJjDX7bCUVgF0mXteajRg+OJn12vLtWSea9C9aJO+ZdTrS4A276PfvQLSOU9mMBuAyyOGR70K\\r\\nQc+086zCxp5lvPTKuiccbH37t3/7NmJgHFZ84T8PZG0KSZx77rk7Hq4v/uIv3rZjrgrncq64/BHE\\r\\ngBGq+LXOYEwTwqOQYg2JtvjciyAWUTtFSvwMlepP6L5dStrTVmFGjBlw8Z17s8z+5V/+ZQvKlJ9h\\r\\nIhePF3nhC184Dt7MPW+iCAmgquQ/i1+Yi0Lr3Kt1j9PRf8crUC4WUgdEmjT0Kecl0JULFpA1P5vs\\r\\nfFxXCR7GdXZZovWc0C9Hrcq+xmOMgKY5zaVKMAMFaIkWgETKxhy6FqOjVUrGZ4IfAKqWizFkUWeZ\\r\\nmCfKCYixOIEVgpP3Ap8TKPiykFKuY/w1dn6ccPknvAhs31UmQ9v4Cr8S1O3oBJQT1oRKXte8c955\\r\\nDhKUhA5hbKxt/yV4PI9gwYM+67s153D15gyN8f6VV165tnf1MOZ7nTbsJuZtwxeErrmOVglKtCk3\\r\\nMuFmnvMOZHVrIwUFPOMXdBFiJnfQ0Mt8AtG8j+2KthlHaJjSB3aALXMkZ9Q6Fkpt00ghrZRdnp88\\r\\nBuYpge47856gFgrxbGNqEwijk9e/1IV2cQXEUgR55FNiARk83PmMARrrAu+Uo1JbbXPPM1kYvyNc\\r\\njLlij8Knxmi8eAwQw/f6hyZe2rPW9NHclUdlHfGAWbf6YU7NE/4VfmeQ8U5qi3GKvsbFWAJazBkD\\r\\nJqONctUH4Xl90m9yQ5vmmV4ge1P4hYMK+5bEXf6XdePZ7eQrtGP85ICx5O1FO8CJ8cgD57Nx8cbI\\r\\nN5VXo1+u8ede8yHMhQ5ApGdZt8oPiPqUv9iO2fRTnteAdflXaF0oDE9lPPi/XKHAT0AejQI0OR8C\\r\\nfIW14ln9wQN+1w46tvvRvT6jtZfnZUAUyTHv8Zw2A2CuL+qEH/Bw3tX4Bi92jqJnoJln03NSInom\\r\\nvmSEeZl7G5mANM8zN/ptftIJ2go4o+/ssZoNIHLDy/0BptZrMizPYeAzzJD877685uEPvIyn8KjU\\r\\nIOuAfKA72jzW5rCRg0WAA1GzZ+f5z3/+SFaXqJryFIqBMBXw00kWvUVDwHgA6xRhKEFKiJeBIoT2\\r\\nJORaWFkxESaXYAg/dBpgy6LL5Wcys+BC5gnhXPjlk+hjk2Hb/VyThYKak9Uceq3/dhdaaEIGJlz/\\r\\njdl4CKWEjrZtbea1s2jXPSx6lYK69tprRz4RRTxvecasADDBTuj4zKO4qr0z5fdFejuHbt5UAPxS\\r\\njjxkBKWwNeVpQaE/RWDBX3PNNePYFJ4PLzxF8AFZAFrCjaIilOS44En/+yuZHx1djz8sEM/Ct0AU\\r\\nAVNyKYBACWfxaTcrS38oF/Ovn67LAseLeEab+sQDKvRZErPnU0KbAPTTPZc2vhCshDaaWXfWvTVS\\r\\n3hYDpnAUgYdWeZMDMeVboj06EYJ5T8xRW/FTSDyT8jcXx2/NklHmFPj64z/+4y1hX+tSysOjH/3o\\r\\nbaCBUsIv5T8R4OhP8XT0Sc/yHk8YI2GLH12vHf3lpZJT5sw63lw1txY9hk9/+tPHOYXlSeEfAhqf\\r\\nBv61jZ8KbUuvYLC6D43xIEFuDHjVGsBvPuM9fG3NABL4nOzyHUDZofKAvmeSHeS8kKPftY3O7VAu\\r\\nQRlNrAVzQlbrtzn3/OiM39HJcylO7Rs/jyAPLzACgGgTzdBPyR/zh4eklqAnTz16VqiS3MUvnude\\r\\nNOj4GuNGJ+us3ME8fPpTGNl15l/feJ/RWC1HG1nQ1Xwbi3UqrxP9GV76sph7KzezHD3eOM+m7yhP\\r\\nu8TxE17C88CktgLo6FYSvu8C5K7JMxq4zkGAPwpB54ygbwILAYE5NJlxOEcFAmh56sqrymOov4za\\r\\nanlpwzPcl9Mjvi8frZQd/XONd7Q0T2hh/ZObZGA6PgMZrT2rnCzA1fN9z+j57d/+7cEbSr6IhM1e\\r\\n3IBhXjrPRrdkSKlCAdWiKD67N5DV/3OoUP8KL5YrZ9zzNdoLcxifPzqBccBDZwy+IzPoDvoID3KK\\r\\noMmWXVF2as07gRwJgghcYR1sKlcLY1Xz6lu+5VtGVVvhEkDEXydXW6QatzjyVmFACzG3qAWA6QoN\\r\\nIBhllAJDmHbK5Cotro1YIeg5GS0EGpPmPrRd20Lx/KuvvvrzBLU8HZWetaloqvyahLlJR4uO9DAm\\r\\nk4ygmCsvBaISJianZNfD8C7wegFUrHXMG6MQdmjMMkNDQsYC8c4qEC463Qp5P88XWkG/TUpo9Bwb\\r\\nDvAk/osXVx35ohSJRWGxdECv9oRDLZgUwzwWtbfwGOXS+vC753vHh5smhe+HVuvew8tIWeF/64xA\\r\\nAIwYEfhXLhYeopStU3yFn6v6XZFOvEYpEyrWg9AO2s07wNpRhQbapMxaJ9aONvEpcGm9ADGuEz60\\r\\ndvzu+3Vrr5Ff+MUY9BuAIBOsd55OiqHEXrKnsJD1W/Vo11vT+KZNAWQRGrFSWdg33HDD0vVkF7Y6\\r\\nXgAF4wBIkMv3hCc8YXir8UjeB8K6nBpzkPFGofD2C1O36zfjCnAi9H0ORGiDgWWt8xihsc/knGcB\\r\\nYhS/NVCYJQXC4i4km+FhTs1RnmL9Sk5rN1BTvmvhOXQDctA4769nN4foax48hyy34UT5GbXM8FqH\\r\\ndps73grt6l8J+OVtadvvNnSYSwp8zsFcZx14Lhp2woFNI+gADNJd5Q/Ph3lrt6rwShFZEwzfvHZ4\\r\\nvxw5tMsJMAOlgEm5UnnbGlted88qPSKvi3kvN6j5QyO/B5rScQEL9wTEzI8x4hfXo3eeWzTWJ2tZ\\r\\nH1xXGFD/60NpDkWH8nq5x9x7hrWiXfTFc/jR/8aDt4pCFCbsMHdrRl5k0RnnNvJg4QdrxxpprIVV\\r\\n2xQwJ/IXjjXGUk8aizVtPDl08lrFMwGq6JqXLiyRRy4vls8nIkprnc86DntWoK+jNx7/+MePHI45\\r\\nn4TnSodYiN6d54XwjqIhhCT6IjgB5yXujwAWW+5tis/CzSJiXUCxJtYfQuSBKoEvwiF0MdZclSWi\\r\\n5trMWijZ0aQSloSvHV8RlPcDAyweoKzo3n333TeEXGczzguXR88RCiFoi83EoUMCyf+Usn773bMJ\\r\\nXICnQp6H6bGQqM+ysoAoPIuf4PIqD4FlD3FXqLME1HVjyIGNGUisI9D+/zWbUwDQB1oO4tkCpoBC\\r\\nbTl4VDIp4VLeI6VnXbQTSi8JGbyah8laJTytBbuGl5VhEA5yQLKQCeVc/hAjLA8zLyQ+LFFVHt/m\\r\\nVNn9DsaHWny8CvqvH9ZC1cyNwWcyiuAtCbu1S1inuIy5vCPKvHNW9+qvnNU8djYRAIaAuvxJYNvG\\r\\nCi/yIWWmj7yZnp2nz5wAfECRdx6YFBpZRTEFXPWXXCWjyRRjKRnadWRPobM2OPiuHCPzDsR01E15\\r\\nsGRZqRqVLMAP/vdefmtArwgDeeg3/cwbR0aX6oDuedtsdGJ08jLyKAJ/jrj6zd/8zcEXdq/jVX3s\\r\\nfFi86RnkqM0u+m0szso9LF5adqaiEGH6p/mxNuVIohWZiu/IXOMvimK8gfhyR0ucT/nrd56pwt95\\r\\nU/wWQCqPqHB5ct27tuZcrLmdOS/J9+XQAVP+Wid4LY9//feswIZ28gQ1D9EEf+J339P3DAHgiIHg\\r\\nO3p/TvPxHLxUaBIgO3E494gsiWCoYZjxRdfmPcvrP3ul8vq5JlCUFy+gq//zDktjy0FRGFCbea8D\\r\\nlaWG5F3X54Cq55lP/Ih/fbbO6NeOVKOLfY8Gw4PFAvNwuQkExV133TWYV2kGVhmB44xCYR0hQx23\\r\\nI0/DtsMXP/aAYq+YS14NF7QHWXAlQxJ6uS87esTgTEIeIM/HDKFSg/V/Xqx2ZCC075o4/5ccydIx\\r\\n8R/5yEceshhZM4g0h0TtgrzzzjtHQvNu3hPWDU/Su971rp3kOmPXB8zj2d59538Lr511rvFMtAB6\\r\\nMBe6HibgSuCYN9Y7EJsF1Nb+LPW8PGhMoMvxYTm0Mw8QJVB4L1ikXoSbkEQMhnm53Vm5rJFOlmfZ\\r\\nYcjdrP7DEoz/r7fzwAMPDCVQeErZCYCH8Mf71nMVl9EKLxR66X+WLN5sTQID5rl8F2DPGqLU8Qye\\r\\nNt/4iPdEO0J4PD2E1iY7bvczf4rFEuL6yMpt91zgwHrzMqYUHSGa94WcoBgKBbpfeAjN8PpeZzhS\\r\\nxORhOVDGT7DyrHSGax4QstLxTRmP6KVvaClU7PkdMN/BwjzU5UOZvxQrzxTwZU1T9iVyk7XWoPVo\\r\\n3szBMs8fQ4wsRpM77rhjbITgvXz3u989ZFU5Sp4HZJaDFeAu1wtdPauQr+vQot1gbcLAB74nAwN7\\r\\n6A6wk3tkTrs2pVhUzd1xNoWf5GySNXkXjY/XCv/6f1nIeFN+YiQkk/GKv+h32WWXbes/GuuT9SHc\\r\\n2oHjQLJ8tnaaprDR0B9aG7tXaS/xZcnj7ik6M+dfFWbMSHZfURk6cH5G4KOwlnb6vdC7+fVHFtgU\\r\\nROeio9/NofdChHmoAnxogC5enuWFFrPnR1kPHuhC2+5lxAEZ+LWQdJtC/J6h4b7KPF111VXjeD5j\\r\\ndd6x9eGeeKJoVbSobzNwbSwBwjm8GoCKT5qzPMPlrqFfXr15dy3a1G67UzksMnDyVrqXXB3Xc3G7\\r\\nwAcx6T/6oz8aYESNH/F0QArgEMMWDiQMoDcPkABfXBzR/Vmg/vKk5J7HAIitg4AZBKtEgTa4Feej\\r\\nJRDSK3dnDIfQCE5AFpv17rnl2Bhc9SoM0kQawxVXXLHU4hEiAjDU7GGd/Pd///dKy0jyrMVP4aCD\\r\\nBaRvBHTJyRZixQKLtZu4XOmYD50sVO7p+ZDtTQXFfq839pJ3zQlXuUWIpnJLWvQUKjBoXoCuPALG\\r\\nU/6D/zvywLh9tpuLlb24dXW//f2/fp8wxGL1f+uOgPKHr72XWwboU8qULHBLCeP5hENeYUKCoDGf\\r\\n1o55xLPWJuVIGGrDWiEw8hZblwQePsXXze+prOavbptxAVOUsrWOR60j31k/+p3HBBBEi3JgrMOM\\r\\nIN+1ZiueyjAAEBcL6QIheJ23h6eiXW12U+fRIyPf8pa3jDwSu0qvuOKK4VEGouRRmqtAaeE4c0Ee\\r\\n6DOZm7eb/GiHF1pXiBHPM47KFTFvWccZltYa0EJOkscAWSUN3vGOd+zsqDL/PGxkbYcgu5ankfdB\\r\\nuRIvdCra4HPGsP7imbxZHdLt2gC6vhTaIRvwDLDoHd9pQ4iF8gSUgS6lVdA3WeQZDFkApl3oxooX\\r\\nKfNyZxkYDMLe15EPwvv6cu65527ZiGBd4BeATp941OgKBmaRAUYLfYUu7TA0nwCqsRWKy9GQVzTw\\r\\nk9JPwaNnXq3SSlyLNu4tjIXO8Yjvyj3CC+Uul6ISGPdeXlbzhq767ZQEHu1CgPg7AFPbwFQbLvSl\\r\\n3ZbNnXsDfoU7YQI6LC8w3uKBLE+qeUHrNj1UJUBofLGOpp39jENezhwEja8IVmCn3O34NDrV32gZ\\r\\nXdNpfe+9ewKOtd36yusV8MILz372sx/iQOBNtwaNz31oYD1uPexhDxtMZqDveMc7BrhwNpsfq3Hl\\r\\nO+5wwqNDHwmDEhirDaIDFgtFHRKmmHlSOvOKcCT0CB9ATTttaw2IIE6TbLGlHPzei0IIEcfI3meA\\r\\nlfVACQE/jkvZbRFW1FJM+N57790TZFnQBBchAEwkzNEDImcNE/QWrIWELoVNQrmEU/FhYyWUTbAx\\r\\nYFi7M9bNQ1lHsKxzDRc92ssfYk0ScKxmXkiKN2+B8TYv6O2eQhrmKiBsrLmjKSoCt2RodLNYhRYo\\r\\nEJ4SvwNzGF77FhhayoGZFSAP5MnYVakEyZysrKzCvDECIEUD/ayO0kUXXTQqu1tcFH5JxoS4vrMc\\r\\nzSsFhhfaXYL/8b1333kB7TNgwuNAP2GKV/y5x8sz9SOewU/4Br3R3WdgKxd5ngoJqf5KmrYb9nSX\\r\\ndFjkTXXO8ImQPdkB4BWOLyG3dYQGeAnP+M6Lgi9Xgxwigwh0fCakgy5eFCtvElpWb6t6QPgRz+Pr\\r\\n3TzavBwMM88238CCMJYddbxG5IPnFfKpHEOC3JgoJbLW/JAT5gvgxfPkqN/joQCIa11jHRpfSs/3\\r\\nJcf7v9ybQibWJtqQU+6hBFTBl3MKUNx2220PKXWQ0eS9sKS+krsiHYwydKWo8Zt228FYHa7WfzID\\r\\nLdqpbTzG4QSFefe6+QemgRfjyLvkPgWA1z1xY5Gv1Hi03vBB4eCiJtYdL581xPMuxFt+VAWz5bUK\\r\\nHXIKuA/wzjPaJgHywRjNNVq1MzYF39oNUKWv3JOHqHwo6x7ttcGQMH/t3AzUtZMw3djO3CI9hbna\\r\\nyUzP41WynWwpAqRf5eDlnfKddWSMRY9KJu96vxm7dtC1ULh1VKgZj5Y32LrUDvnoJI3FeeKJR2Py\\r\\nEH0CrIHN8IaxFubPu1WYMC9e+ilAqo9onecxMGrsM44peubZeXL1E78DqwAluU0+4X/z4n5t49ty\\r\\ntLe+6Iu+iBLZiWkLLylX4OiPEsLVynIDEMDy8zKAdnt4EKHlYYBB24Z5sVrMMVBVqhFCWwZmgvxu\\r\\nULnIE6Chxzl5rThw/QhZ+n4OGcb8PGUIo1/tWFgGOL7gC75gFJHk8kfUdXcGUvgWIeBYPBegsGBL\\r\\n8gNM9cdExDQm1/gxJcuz3UuB07Zd+x0w9UcA7OaNWwdEHfQaiYiANmGX0sO0CQNjyxtS7Rp0xwd5\\r\\nvqpuneDXDgHi9wQOuhDgXiVd56ksDk4BBrTzmpVYyTOBppiddUqgeq5F6Vo0JiTxLg8m9zavQ7u8\\r\\nPJ8wxqPzAitkbTHluo4fU3T6h3/RqM0RheTwfbWAXJOAMG7rIM8GWuij/uFpz8NDeZPQG80ceI1G\\r\\nwlf6WYh3nmfeGBb7Qef+sO//tV/7tQHi8UcGhzUhCda4yQ/jzGNl7vJUoQX6zzkv7RAz97zx5g6P\\r\\nzJtNFJL1THOlLWFxAlM7PDnA0V7jpKR5LoA2OW76DgABKotHaMhV5aUJJBSuzdOB/4yp8gL425zi\\r\\nWW0y0Kwb8gs/KH1BFuAB9DLf5biiR+CMwMd3aKftQGnh35QP3jNmu+yMGbDhkfOqblaJ7NoK6Hsm\\r\\nugqZ4Uv8nKKPduXGok+Kp5yevFLmL8OAt9uck6MUv7Hrp7CgeSVzyFQAdplSXoc35ScW+kZr9PMM\\r\\nBqXQc5siColWzNSazUjGk8Js7YJrbAGcwtLmuDQWvxVaKnyYJ8bazjBwb+Eq7+7PeKXQ8QJQR9e6\\r\\ntsgOORFQCISUU1W4NoCDntoh6+in9FWendosepTzIE9POrV1h0aBmLxdeNqY0+mBcjxq/D7jC3zw\\r\\nohe96CH6jMf+7rvvHqAlWYtP3VcfClHnUDH39bfxpFvKdavfzXk0c29h6OYwz1VGW8aP75MbHZBu\\r\\nLeJVc0WWlOi/c0KAMg0OqqW0n/WsZw0mu+iii3aOcnnuc587aptgchZf1bxNkoETUiZfZzRuq7DB\\r\\nUmoEHGGBEASHQblP53gq/MZSyetRsmDWWSENbRtYE1eNpKyDmNJ1MVqLnrCtLs5ei/D+++8fOwlV\\r\\nlmYhcSUbA2v/4osv3pdy4oLuzDYCsl2S6GZCctUaTwUDsxp4GDCsSXU92rXgeP64y3kfzMl+Lbp1\\r\\nhNKya2yEIBjRGyOZN9bwHMrAyJgcfxin3Zn4QfJiljEwAVQT1hRRMXttGWM7RShctCDYvdAiGsb0\\r\\nHTBMaWk/IV6cHY0LleUhw5f4sbCL/uOfvBie41Vb+MxzSzB2v+sbj89+N852naSgPJvFZhHib3yh\\r\\nbxR14KpaWPLy5Ifox5EjR/bFe/ud28O+z4kP6CJkQGjKwcHrwi5kTQmkaGIuC++ba3xT7lJWdMAe\\r\\nbfAIT4q1hXbCX4wc4GS3szN/8Rd/cSTnm3eg6Pbbb9+VvkK2+qMUhLCae4BzcohcMQY8/k//9E9L\\r\\n23BQOVBQn/Nim++8u3hA//GQNUNO8hahEUXaeYXuwUPkmnvbjViKRmsC//VCu5RQfFuisfaMh3E9\\r\\ng0qlJwBHxnSe+EKXhbCMGX9X+b4cvtZHnp9AgHbynjXWjBHrg/eIDHAdfsAX+ME8khu8yI5RsoUf\\r\\njeino0eP7tCcUjY/6LJsl3j0EMbRd7QwJ3P+q+PdordxMmTbGcg4cdoCHqazePTRxByk7I3ZmNyb\\r\\nB6r8nWSW9gpHBVwCwNEOP9Su77TlmW0WqU5foIAMNR7X6kPeJ797Fl6NZyrBgQ8BRbxALqZfAuL6\\r\\nG+AqX8x3s5fNc4xXXzMo9cWz8mq1ZgNAAS1t4x3tCbehtXHyADMMFDYvnK9PGcT64h5rpT7mUZs9\\r\\nV/53bbnR5afFBwG1aOX3+pqBXgpSHsB4Od7mCWTE0cHWuPEwoOgqf/TyCNsLEfqhKsqduaYzQoUx\\r\\nSztzKlSGMPIR5vPSMKkOILhFagDF7Qvzub/EzHIoJGdaYCXDAzael4fLYsBgVb0t7wfzxLQj3nmC\\r\\nsN6zuBCKZWQ31F7HglAER48eHQcDLwIW4KsCkMbn+Zskpyt7obq4XTRc4a95zWtGIU6TogTEHKvP\\r\\nFYtenlN9J2PNtUkA53Y1PvQhmI0xj8ZhK8q5vcc97nFDoFWTJ0EOoEDzLUpMq294RTKrBGiHJwNZ\\r\\nEv0tTgrXjqBnPvOZA9xXAVrS/e/93u8Ny/LYsWOjDUUjKWl1dPJ4VW2Z8CA0hHwIDsKQ0s2r4Tv9\\r\\n1DdCwG/A8+/+7u+OCuvGN4cDJSsX+qiv7tfOuqFbic7GuMmOzZM5b4fZtm3urGkAGt0LX6IP/kw5\\r\\nkCvlTFYzK0+La9pJF8Cw7tEZr/NcusaakCtkXTPgdjvlgKdOKsLNN9+8K2ji6XOaA2WerOPZIEgV\\r\\njOTdwlsVAnaYtWvx6QzapAlIYtdXZ1fibR4gsgYf4R+Gq74DScaBVuhBBuJnfGX8eLVEWdeSC2iU\\r\\nAgQ20KNyFyls60tb+k4OFj4qXFV5iEKH5igDDv+T34u7qYXAbr/99nHYeTvLn/SkJw2Dql2YeYHo\\r\\nBrK+dZWXBs+3q9R6kzaRBx+YMj6goTSDQGHenYrSAsDtMLzxxhtHCJNc129tcgo4aURBVzxGZrzh\\r\\nDW9YaZDgE32cd0bTXfohNNz3woTGir6UJlnNEDSnaEq2peADWHnp0CLvNJoX5ioS47vomMIvjKVv\\r\\nKfI8uEVC0K929atIkrZyLvSuDxnoi/lE7So22mRkDAAAIABJREFUT4UVzWeGYR6jvDfarM/efQ6E\\r\\ntcbNgbktCpXHs/Hpdyd+BBTNtZdnV4aDQ6fcZu8l4ucVywtmfDlZSmbPU6Xf5XwFnnzXXMSrxl9u\\r\\nnDGFg1yHrz2zCIb2usY7+TTPe7tNq9k4MMnDH/7wkeROESVw5N/Y/oxgvi8hryrrHo5A3I1QnIVn\\r\\n4jEgUMT6IaAM3v8SE+uIe7nkhRN5KggaRMx74DsAq/wBdUYQoUTWUHO5B7kCE8SzW7F8AwLSRELK\\r\\ndkwuKzlAyXJX8sbNh1wvU0oWOwG1LshSsI5b+a/+6q92XfwsJOOuEGCJ85AwWrDWeTvQilDGrGgq\\r\\n0Tkk7rcYkmXLAnzTm960UuBsongdliw2zhNjDtCL0JEcSikQguiMASXK//iP//gAiZIrWfrA6q/8\\r\\nyq8MpqZw8Ybaai996UuHhcqiJkzQImEp/8+8VybkrLPO2mbZSrb+7u/+7qHULAbKVcV+4/nRH/3R\\r\\n7Q4c5XLGb/iIorAQ5HKcjDyuTWh5pl3rgGbJpRRVVb3NBTCNbr6zpqrVlFGDH8kK6931pREQQAl4\\r\\noAW/BqDyYFRt3BzihcoRWO/yJnPTL4JUBhFrtx1oaGkNEYJ71VDjGVSHKQOFvGDs4FkgSn/w9F5l\\r\\nANTGaycjmUgO/sVf/MWo8UQ5WLPCLwwJYyKggagUk7VBBlbbh2GhP+QogBVgKXyYp1ffAlSV2Uhp\\r\\nuab5SHkUtm83m2eiD7p5jnzTVeBfuQ87q7VJthhvEYM8xfpSqY68bHkNrDWy0ny7PmWGD4As/cEX\\r\\neY07Esq7NJXSNIBgxaLbiAEI8eLLc7MZS5ifAWuzwbrrSs6p9paF1ckpOq1dkowqch+Ysx7ytuY4\\r\\nCEAVlQiMZPQHxihw8zKnsrjW3Bfyrk3PoLcASu2Tl2hWG+RZ4V7P9ZpDe0WG/IbGlTsKeMylNtzX\\r\\nTly82BwHsBpfYcyiSnjbmoUT9LcjmuiCmU9Kh6HnA+Weh3cqFdEO03JHPaPwYEA2cBXga7dqAKv0\\r\\nmrxxrs+LGwaJNyvj0O/0LBoX9UA37WZIaNM1PaNQf3yN/uGWUhm2HF7La/De9753hzEf85jHbLNK\\r\\nKVEDNNAWbw0QqASRzzrir2RUiwqxKTUdVsG1bccd6kgAuVfn/I/BEtImyf9eXHA+W5C5Xw14FlYG\\r\\nHoPlasXEJs6kffSjHx1jI5SBA0xrzK94xSseshi/6Zu+aXiqWHCrcjHWXcSuk7Qn5t0hw6vuZf2y\\r\\npAGUhFCxeEwJtNqJQ5C3eNCGEGdp8Xxhns7Ukysh2db1hWgsik7+NsdqmqkkvVffjEPNM6CJx9GW\\r\\ndQoEr7ztbW/bIrBe9rKXsXwHuPuN3/gNYx9HvChU+8///M+jfRW264txdjLA93zP92wTkpJJAbn3\\r\\nve9943rVrdUb6nimb/iGb9i+/vrrR2FQBW/tjnnVq1619YIXvED8ftzj5AC89uY3v3lLDbOOrgHC\\r\\n9O0f//Ef1xbEq+brTP1dSATdrCUAphIKwkAl3Beellfkz3oEhqwx65MwT9BnSbqn2lYESe5wvClM\\r\\nR/DgLUKX+9zRGPg3fs1g8o7vALJ1w/DCdsaE383tprR/8pOfvE0uGQu5pCKzteCEgGVtUbQlcwP9\\r\\n7u0cSP3HV3KkeELdz2A1Vh43Gxt4X9HageOFHygZu5DcX9VrMq5je7RTiIJcbIcgxZDFj7aFLQJq\\r\\nxhQgLQennBx9smaFYciP3UKoizR46lOfOkJj5k4bZKr5xRMBAp8ZgIy6CtDqG/4BfPJukjPxUikc\\r\\nnue7PDYpJjSdy7w4PNwZuEU/Oi3E+DwTIGMgL+7CXYc/luUvijqgt+ddcsklD9GN+MG85PExVusm\\r\\nEBC4ykNFdwaAK19gzHlEXJ/HL0+U+XePeWYo2vDD+eA+32egoJc5z5vUs6NrQCTve4Bvfk4ensKV\\r\\neZALf/Z7YbieV4oEXYtO6NWmAbTRJ7xZqLV0gJwDxoYG+DtejpbRLkA1g5l4pX7N4HYRHLaWAmDh\\r\\nmRwxAaboWugyQ8CzjCV6FZXLQ4Zmxuya0lPwon7ry0hyv/DCC3eSv7mDKeaIm5tahySws4JS1s7z\\r\\n4+0CWsqD8BDCQoeBFUQ1COEWi1uHKL5KNVgoQg2EugnzYvGwlt3vmX5nZWpLu7O7tXwABIgBtGOA\\r\\nmA/YE/rbbWt5O8VsB3fwqzPFHLNx0003jRpD7RZbZ6Hudg03NlT++te/fmOFUJsKsWkDbTEJpkQT\\r\\ndBNiRTPzgEF4k2awpDo6T5c5KlcqN7T5wgjobZEAzdVMmUNhis1WA8vzcoNWP0gi8QUXXDDOoBNe\\r\\nIHDvv//+Ha/TD/7gD24LYZp7oRjAjFVnAUZjXif054GQ5wXIAcH6L1dP8VuCT0iGwkKHN73pTWP7\\r\\n8Stf+cotngUhJGO3Zd5hzn/3d3+35eBhisyYjcHCDrwdZF7P5HvtijUXFr58IXOMX6wHIKHaZoQ1\\r\\nDwwjR8gebSi/dh21GcC6w2uUqDkjsDqfTeKxteL3ZScItAO50Jg5KvRzqmkIrPO08xQzAHYLN/KS\\r\\nEvblGpJTAJn6SxSy3+SK2BzBE5Sn+MRu5B2QD9yi1Rvf+MahRMgl4JPMVXPLmiGsre3OKS3HKpBL\\r\\nnuU5KJk8xYXu5cE0p63tWR5mfVtT6x5YX3heO4V5U8KFZ8gPfch7rn/6UQJ+u259BuzIKYaZVAJt\\r\\nUEbtTsaLAAjDfnF9CsmiNfoBtQxJz0I7AJbs+vSnP71v+SqcT54k83jM0J2xypBj9Eq+77xa47Em\\r\\n6Ed9ysDPIzd/h8fNidfsvSoE5dpCdX7PC2Ut0n/6QGaSue1+M270SmcW0iu3K8MbUDBn+KecUu2X\\r\\n74x2c2K8+2ePTPMcMAvc5F3SbmDP+LpOv3xvXgJPJf1rH+0qbtz866uXvrUZLHBTmNHv5fd6RkAu\\r\\nJ8/s4Qon6FM5abOHsf5697vn6kvhz/LlAq9+11Y5YGiXs6cdwubHmI1vzNVXfuVXbssFoLye+MQn\\r\\njh1iGLzJD9QgrMVAOFCSFQj1sPIoIkJo3r0sZ4LXAuVlMJgSX3XkgQceGIuFkAcOCBrWkr/i9Yii\\r\\ns7lVEc7AQqu+T/DE2IhkwbjPb5TMlVde+XlhIQuLB4aHSXhEVfvFM6nE4jH3XgmUeymKI0eOjDMc\\r\\nV5V/2K+ykeQp4RaINXfmk/Vsroy7k8oxhHO/eLFsAw+FF37tXDIWK5rwkmmLMORNM7+AUyFJn7Xx\\r\\nvOc9b3RdnhnGyj0MRAm1UCL6xmqXhMy9b+cOEDRbqWefffYAYbyHvFmAk7l49rOfPYTf29/+9pFz\\r\\nIQyjhEhhRfXZ7OCSx6WmkYrhvFlorvQI+qCBMRHOXO733HPPvoXxfudpr/sA6MVwDe+JObMurAW0\\r\\nJgAYOR2iLKxqTigv18lPy9vpHi98YB0yatq9I9/B/FnLJRSXYG4NAVLAOMDts2e73rrsSKFLLrlk\\r\\nlCuhtK1JvzOiOvC0Y4oklgPI1jGAJzF9r928J4O+c5uMSJ5TO+hKGVDkUEgP7+on+SdsyBMFPJSP\\r\\nVDtA1qtf/epBUyG0ZR4hfAdMWC9AbcqLvEJHNAUaKNA5nON/z0xZu7/NIoS97yls3xVO1K/yN/W/\\r\\nXVIpXPcwMsxnx52torNcS2CpHLLCkeW9ek65PX4ryjEs9xPlHMovdR3D79Zbb936hV/4hUEX43dd\\r\\nbQTa5Vflrd6tj8LZZAqvIpowEBlTq8bU73KuFsE1Dz3jmide39DL2K0n/MJzah6tvY6YaeOVdvPU\\r\\nBADQx5rw2drKi+R/35UXigbVTywPy5jwBR61rnmXtd/veabagZ+DIT4qT8sz2/Ec/3lutC80WTgs\\r\\nB8YMKio15JkBLL8HmPoeP3oVgvR9ACigNOdMB04y6MqzLlewPE79jZ/zKMXXedMChXOYPD2VNypn\\r\\njD4WWm09acfvxqAfvndNKUjuyYuW3pw3VBlXQM09rc+tRz7ykSMObbDVJgqZIZSHeKAJKxfLzdWT\\r\\nCHVaFIRyBUZNmHZdh0EALMJKpwjllDOrOuZIiIe0TXZhweKnEVofAlmEEYZv91Y5BwZcbN+kAXF/\\r\\n+Id/uHQR8sRJSgU+PvnJT669UNdZ0AAWi3ndEOE6ba66BohNqPNIEhC5ZtFNfou5Ld8GPeeyFIs1\\r\\noAgk4BsYZtUn3DFTh676PiYjmHi60J/XSPI5gWHehWXwDaAkkd09PFPmlocAiOIlfec73zl+s9MV\\r\\nUPzzP//zrac85SnbwlCS+ZWM0LacLorRobsdcyQsqA8pcsITGMF/BH3hJYoS37Csl+ViRGclBQAV\\r\\n/Tcmwl0ejrCLMLZ3wgywNY4KdhLK6F5Cr/s7gZ2SLX8JGGKIeAaaahPgNT7zlEWnP9YLfnZdFpc1\\r\\nShgDOJQ+cMyTJ2nZPQT4OgVCHdjrOoAD35AJbQhQYFNye0feyElJsZMNBNoyI+SGG27YduID+gCH\\r\\nq5TnKt4+6O+KK5sH86TfgFQeBCHLdc/x5OXgpd0tt9IuYrxFphh/iqRQnnlMjhU+IycLLwT0jDdF\\r\\nlVXNu9GxXBmV42iOra2xPr3Kk8nTUXhE4eVVIVkeI0f9ZGgH2uM/z2n3GBnvug5PNyb832HLAXR0\\r\\nMP+MrK5Hi5L3jddnbX/2s5/dUwYrJ8TwI5PI/qc97WlrRQjIMbKl46IA7Aoh423PN9aSsa1PytOa\\r\\nEgUoTBcwSd4VMgc68jZmuJJ11QhDC9fgPX90XF6VwJFr6DR0ICP01V9AoTWH/p5VqYT0M/1n7iv4\\r\\nGhjLy5WHLL4p1FkqUCk38aRnlLLju3BBIW/t9ezywgJbeY4WvXyFhXOe+H32TLkvvo1WbRBYjGD5\\r\\nDB8UsvRZf+b8uJw+eNP3ASo8W05W7wEz7/ghnKE/Xu4JE82yaG4nGm594Rd+4ThxXiMmMVRZjLnv\\r\\nDCBkZ8AImetRJ6raW9HQvEsEAUWE4Kzsktk7zkMHtYXQnpWllotxniAEDj0mIBGswc5bWHPjuZ9A\\r\\nmePouwlo+ROsFrWwHnjggUMDWS95yUuGe/tDH/rQobW5qZKhOAkHyt0fgGXxBph4OAodlJOA3rud\\r\\nQSgXhleP4ibg8ACmbvdnFpTf8ALg4PltycYveE14CX/I08H4gAFewDdq40iO92c+ARCggwdKbocQ\\r\\nGIGdt8XzHVCuX/fee+9Ojp+28I3n46t2OeVu543Na4CueJShYMF0QDKlYByNM+tKu75zHT4uX6bn\\r\\nACdeGS2dgpCL32+ME691jplRwFI/9Ffo3G5dNKUo9uLZO++8c+wEa9ev8A/wx0O5LAxeocV1a8Ht\\r\\nxY/OngMU0RuNPvWpT52WdQA08uBSlnjAHNpu/Za3vGXj/gCX6If2DLNlxVrPPffcUWwUD3hmu6C8\\r\\nE955DTJG8bh1Y134H8+glz88BuxaR1npZGAACD8Uzs1rkgLHa9aJtnlwrf3f//3f/7wxB67NpfVt\\r\\no5M2suL1K49BfdS3FHGlC+RP4TOV7h0/RuGT0cbdebVo73r9B05cY1zo5DcbEXYrPwMIyccK1Ouv\\r\\nhHcga7c1BOwK8VW8Er0AB7LDGuD5BwBnIyRjwsYI9+Idfaw0QmVz0CTdqO/RC4+JyPjd+Cpp0zx7\\r\\nfoAkT18htjxeaJtn2ThdV95VejgdmWMi747romvRpTxQgfi+D1x5Rk4T7QZW8qjqT9fEC4FtnwMh\\r\\n7abU34BH9wUUAzk9e3aw9F2er7yB2pi9VD4HntwTLRbpNjtt3B9Yy2HT2pyv05+MMOMy3/ohhYaT\\r\\nwAsAF9qnw4y18L4+jTxIIcKqZ1NMETVUmNvTwywEr6xxg/ddCeU6XkixHAEPJNgp8xQJEIOhXVNl\\r\\nauCKsCJESrLTh5Ld+j+Xss8GX6KbAZV7NSN1hLzmmmtWWmzG9djHPnZbvyRsbwpg9rqe94TVtE49\\r\\nrsN87mG0RTHvdT6bZ8xHVUisbpcjfkq4EGzAnBCF8CTBgqkTaHaAVezTPYRR2/otbvyRddjB1Qmq\\r\\nXNJ4DIBBa69i6gBWyYzaInjwGT5mabewsyzxpf+tC/3oANPC0JQVgc6q80x85zqfK+jZmXSHMQfL\\r\\n2lCnDZizO5WniaIQUuUxqfaNtWnc7cbkzTrMzRv1S6i2cAr6z7v4ADlAWGXmQmNChGefffYI5Z4s\\r\\n+sipXDykWnkUeZZkBgFsvhxzs1se1tw3fO0eChPPoDP+FvJaHIPwFX7nnS/MV7jE3FRmxn14r9AF\\r\\noE++8bzid8/Ar/ppTZSWUR5IlrzfyvHJw6Bd/MraZrQAPa4Xxmeo3H///Q/pNzBEns8lLr7+679+\\r\\nW1+LHpSUjX7picKRnmVdAvpzORxhe+kXKZzAZd40Mtw67VW4mqEELAnXFZLuGrmaUhasz8CO9qzz\\r\\nF7/4xQ8pt+IeoVph3PQWY7Kix8kCxr9UBykJi2sX38jnFNZs96DxoHk6x5ykt1wzA60AC5lXTb3k\\r\\nj7nzPRoHDtzfdfQvfsvjZpzkay/3p+/yCuW5NDcBENekO/Ou6G/0c08eH8/Un8Azns3TOo9XO+GD\\r\\nvHZtgiv0Fk0KuRWaCyTpczlPrs2JMnvdZmeJ+1o37vVb4bmAbc6ZPHnRI+9vNHO9/71yLNWWz+EZ\\r\\n36U3yK55Q2DzgE/JOEaD57qeE2DsIuz8OQu4AeYmw/yzIsu91iSZBAKg3S0eGMqvknegy3MMiuDx\\r\\ncm+WREmYAanaKc7f9ybeJMbQIVv9tlgR10t7rvGde4QHeUT22mUiGReBlhHwIIpADgp3+fvf//6T\\r\\nplAO0r/DuJfyxiuYC2gilDoMWL0pygh/CRPbVbjsmazmm266aShA4UULmycpN7J3vFjBxxJGzXHH\\r\\nNOQ2J2wJojkp1/+8tZUdSJAVW8czeQgIYP/zlvGueeWdkkNGGPPuCFVce+21p2RebZkXapbPJE8O\\r\\nHawhNGf5A33Cnz7bebSfI3Ds1kJjIcrFkOLznve84QXrHD80EfplGNmVi75A3VxPrHl+whOeMMJl\\r\\naC68CmD9yZ/8ySmhW33AX3afpjDwwuJB8F3bsUkqv+MXMoeHg/dnL2D49Kc/ffA9XgLE8z7lrSq3\\r\\nJs+QvrjW5yz6jt8CBPAmsEb+5QXSR9fib8/QRtZzYcUUBoB14jik4RFSXd7auuWWW3Zof/nll49c\\r\\nK7w+5wH+1E/91KjXVwHh1ku5rbOXDQ+Y00Xgpq82uPCc4dc8NCX8F36pQKXxMsSBQOCH53gxBPvT\\r\\nP/3TA/AwbspLAkptnpAUvlh+hQdVkrjnl1fHs4gP0QsdySibFYA6sswaMnc8+Nddd93YJMTQSsY1\\r\\nX+bT/KXHAjEp+bwq6bvCuGRJecUBLPREB/eYV2PCd8CfXYQ8JfobCMhrGd+gnVc6Mc+Rz30XMJ5D\\r\\ndvFiXriiD0WWAlzan4FaTg5jLtk9kBhgSwd7RuCq3/R/eHlO6OlyuvICeZ6+BCA9r35nsHTvos43\\r\\nLwGwQGZOo4wCbYRjMoQyHgKP0TpjXb5vueTr6M2tL//yLx+KMXdYHqOS3SKYwetgKDmvQTHgdo5o\\r\\nJxTn3csCRWDC2cIhOPJQaLOYPNSHMCnJwiqu8X2Dz1rTZkjY7zF11oDvOmNMG8bCjSz5epkSkLeD\\r\\nkQlRYGy38Ng6hJ2vsdXZLq3Pfe5zp1ShbNrP03290KSwBEE/J787nkS+hfCgsFgWzZwsyivWwcV4\\r\\ntWsADQIUYPI9HqMM8BYQps2Mhioeu87veV09G+8BCNoheCTs4yd9WHdX1kHpC/ygT5Y4xckrmIfB\\r\\nNvV16gCxtqwLdDB+/wsbkwPWVOUCWGA8jmrdAZNCJpSSeyiATcYtd46yplBZgadrk4FCtyVYs94J\\r\\nzMJKHSn0ile8YqzXdcpAyK8EeI2L/CHLComZF9+Xv9ruosJrri8vsp1w5kDYHVDu6B2bRHhsXKuN\\r\\ncmbI3nZo4V0GLF4GCLum8KN1gN8lhc+GnlxNYEXxVcDE5hB8f+zYsVE4tZ2oyf/KDWTQlrSMh84/\\r\\n//ylu0Pt7nWQdN6KvGsp+zzAPrcujcF685uyL85LnNePUkKVdAi8Ctugvz4xgtzDk6l+Fr4uFGj9\\r\\nyJVsnvC5jRrlYtlc4nr8iuY2EJE7XnMIqF2bvitNRV8CBjkHAhHeCwmW20WXpehLfK/QLIClz0JS\\r\\n5t8azfGRIyRwlDdzDr8V/iML86LN4bU8oYGTDE39Dijmaawt16Kbfuc9CuTkgXJ/wNNvhfvyVAXS\\r\\nmv/mtZCj91KBZlDmujxheX3j//R7Hq6eO3t5A5zhi+7xjEKnM/20bQ6q1ef5Tnu544471tbjW1/1\\r\\nVV81Dqv1sIREaK5Ybm5sTBRaDXjNrkDovFpWQm0dDSN8YOGwsrXNm0Q5+A6St+gr7YBhsmYidOAq\\r\\npsp953NejJB7DNjE5Go0Fh4Ui9z9BA5LbiaWpGkAUPmJgyrD+X6WIHBpp+Zhtvt/sa1zzjmHtbiS\\r\\nTrw5diIelAYOucUTFAcLkdAmPOQILqsLduGFFw4eOVVeq8XxUehyyaw1GxTsGqS8rCvJ/nOS+bLw\\r\\nis0EACMDB08S9DYQWCfGJVcR0EULin5VMvRe9JfTY21L8Cak8iT/2Z/92YHn7SDzLteSnCDPjNmO\\r\\nynUT2z1XuFBYVoFLYLTQBBqiK/4h28pDIcfINQCn8ITnt2MJXQJb3uWAdj5g4wR2PK97GArkWOe3\\r\\noq95ZGTwFhWayVtAKZKxfr/88suHp+qFL3zhAFc8eTw4wDOAgpfwBYDjtxR0obzCfXlGXKs/8ykg\\r\\n8/zwfDrjEABEm2qr8TahE7AzJ/HnLaBL0A2vL+4QFG1w33Of+9wRihEqx7PWBmOLDkEH3p8M/iqO\\r\\n55EBXAAYa3234rTALYBFd5ER3WuuRWjyKrYtvzmfIyvp0wz/vIzps8Ju9GWJ8UVizB/Aa14CPulh\\r\\nfLdT0PIEkPGM8om0Ycxe+K2oTjrStQGUwMucfxVYyZuTrtfHcsTy8KSjizKU41SYsn55TkCs/oQ/\\r\\n8pAF6kqmd09eukBRa67xBxLncGJ5WI1De+4LYJUa0ryEIfK2RbdCjCIE//AP/7CR7Bo5WC0gRIuI\\r\\nIVDEiDh5mCwonc5Cc62FQ4DEhHIx/LH42+JfaC+XHwa1gAGfdiq4hoVRLoFBVmrB86rBk6uwEKDP\\r\\nM0jMzZkbUr/abuqekD8B+5KXvGTkzvzwD//wqKO0eHzEQYS5ex05RAjcd999G03OQZ/7v/F+57ep\\r\\n0n6qz1dcl1YAGUWxzo68dds8yHUXX3zx9ute97rB+2orqQd2kPY2vVe9OIrNzk6eHGvVmpYfI3le\\r\\ngjCPke8ZWrxhs3dy0+fN1wOCQOI6G1jm+xSqRS/y7OMf//hKetl5BsAYgxpalLi8GJ6GDp3WHrnI\\r\\ncKMolQWhCEtIzrAr5yNwkpDXF7KWLNQGb9Aij/EEASpkGxABHIgGkGuFbdED8Kh8QIAupdI5pq7T\\r\\nxwxlz5XwX/0peUtCYnYfAyh5d7ueBxNAEcIH3Izn3/7t3z6PllIFFBsmn40J4CmXUv95CgFH9Cnn\\r\\n0jO06x46Rd/lkQlBupcnp5pYPZP3UX4ZD187xb/3e793HOdEp/gL2KAzz+zP/dzPDWDn2buF09HB\\r\\nnKNpOWgBHDQJHPgtUJsDwDjK9fJ7uVlzGIpHSxv4hI4CplyL36rdRx8atzxL7aWP8wQFNuKtcovS\\r\\nkYGdHCV5gXJg5J3KexMAy8PlvVC2sRuf98K88/3p9tZb3qzCc55RvlbAJt3dWjDf4Y95LAHSAGRg\\r\\n1/f+qjrQ5o4S7ANYeVDd55p2LbZ5I3qGD5qzQuEiBIuGzyr5Nc4iNAgP7YGF/2bEq5OEgGvbPZEV\\r\\n6PN8L9Rc7Lm4MitkTl6fkWyxXkTKBT0/Y0aUMU3hyiZU27lg2+nVwjIOxA1glZzoc0cRcCkrH2Gb\\r\\n+35Pa9+N2KqYUyx33XXXSmG+asIO4/fD8v4cRl8W2wBGP/jBD54RdDoZ4zvMNtXOEjKkKK0XIOcD\\r\\nH/jAgWinUCahCERai4UgtT8XB+WdyjNDWUtsFlrZ6/gomz20u05S+WHSabEtpwSgGWX2iU98Yim9\\r\\nlG2hxI1NYjvFRr6QczwrAA2Fl4KdjVTyqurOWeFkZ4I/xVvCd9a33xmQwA7ZJJ2hCvGNQX043hQ7\\r\\nF5ft/rzsssuGp0u/gD/9Ju/0h8fonHPO2aljpk3eOMUzJaLbmbfbJgh5TPL+jNP4lQQRRtSG0LUc\\r\\npU7MmOnt+CAGAHBUXbR+l5vK+wokzl5NYAnteQf1HT1sXAFoeBGU0rCDU4kG50HultOZcQsAmjd/\\r\\n5D2+BsQUNe5oMb8JSwJvQCjDO++k/Fljb77y8jS3KX7rJiM//Wfd+MsZYY5d73kBHu1U0Ba45onU\\r\\nP3pUX4wV4DqRM7iz07R2C295Zmky5YUVvquPRaAqs1MB2dnDtQyo4cfyz1xb/lcAag5HonuhOf/j\\r\\nGf0plUFb6DD3cdHDFZ3qSxEpdCvMOucvGl8bA9CgBPfAV/ORB6tUKN+b10Ad3nBPO2ONtVI4NsgU\\r\\nRl5XPo0QYQi4m4pV9j7nYfmfm9lAK7Q1I99AWSgQ4WZEHPGLO0ck3y8m4vVdW0P1J5fjHM/NM4Zp\\r\\nAEUEazdDYU/feVVkLcuhPK9cvMbCzY/BEVtS9ia5JssIDzQIi77mNa85kPJbd1JXXcftvSi4V91z\\r\\nqn5XbPR010k6GWOlsPFVYUcFbnnpKLj9lEIAhAheO1fwKkXK8/c7v/M7K3lMTps1LMdQgrOQoZC+\\r\\nNigtPM+bQcEQ8K496I4/nr+bb755KP1NCkKejLlwXA6FzdPEsJKuYOyUaDtFyQV/hHbhiTwYJcnq\\r\\nGxmRgksYa6NafBmErqvgY/Ky5PRydFJCZBgl4TMPzl5nmM70OXbs2LaK8V5AIaMWGGkn4G5hMInv\\r\\nAJbK9nuFhF0nWZxsBf4Oes6p3FTAzHN3O6rIWM4777xtZVcoeKdEHD16dPC4DQV4cy9Z5hmdZ1tt\\r\\nJvOAxiXrmytzYR7wJ4VKT/ifwU3PtdmR8GkxAAAgAElEQVTGNSlnfcgbkwKfecHv5a6lrwIWebMC\\r\\nA3nX6Ct8SV8AxPgSCC2SxCPnf3wZeCtsFpjJEzPnunm+73NWpJONtcKervcyxnLr0tO+D6S2sSBc\\r\\nYF70aa59FQgtlytgV0ixHEHthhUKZ9duUabWXwYKeVdeY7la7pk9T3ndtB8GKepWODMaVLKl0GRe\\r\\ns/BHQNomF+kEnZoCAAurA+PaANDlpzZXQPHYRdgiLRktJikmmisRI7ZzSeNc5TFbbtGQpjZDxfP/\\r\\nAbBitXMCnIEhUpPbwLIMXBvYaoLyXPVbg0toFSsu/lqMPHdi3jcCcE6o6zlVMrbQeAic4L6p0FfM\\r\\n1W6rgwqkTZ+72/Ws0T/4gz/YeByH9fy92pGD9bM/+7NnTAhusa+Sgi2qvQ4DPhV06hkOEnfANiv/\\r\\nqquuGgVYT+Xz52fxqFnzebFm8Pjyl7982/FGrPPTfQ6knCAekvKgOoCW7CEnEsopwfmze8gY16YQ\\r\\nMvoKQ5Exc55MiiF5Vl5ouUFkjTbdQ9m53neexfsC8K6Tl2jnIw8M4C0tg7dH2Hivcwef85znjKrl\\r\\nPDtCUrvtqgzo6I85NBbAdNVh0Xvx4tOe9rRxEoDzTRdLasz3KZ8j4Rxt1NWan3mijaU8z5vHAAE2\\r\\nC0fRB+geWDb3FGaGeXliwBUQA8ChpTA3XdFOu7wxhbLMVR7doipFeFxb/lphNTyTl8RY6T7XuJdu\\r\\nBazRmdIGqvBMuX2uK12norKlwuAd/fRsOhLowcd532a9W+Qq71SAo2e5Ny9bY0qvtsECHvAc7Won\\r\\nXT8bEZ7tvr7LkPDeUUvzfW0U0G6ALCyiLeM3RvSjtxfzvtznpT+zd6917L15a0dx3r/6lucsr6dn\\r\\nBMRrp3Vf3wsTz7+PECHCzl6mOuVhIWs3tXU1l1rn2BWT1UZeqHIO2no5C6nAkN+8inXOKLcQYC5O\\r\\n9xS/dU/JhVmc/R6zxhjV48pLV7zX2Ag1f/paja9c/QEs7VaQElPb5kuwsOwtzlWWPaVj5wF39Dq7\\r\\nkk6FcnzUox4lN+G0KeK9xmgLNith8WiSU0GXdZ7BE2Wn6Zkyl/r8FV/xFeNIHTWA5jpG64znMK5R\\r\\nB4uxJWRmvVRFfrHtRzziEduswFNdnkE/5ALlodJX+VNZruRKIIicKJySRVwOC1lUyCGZ6Z23gyIg\\r\\nH8iVjLgEr/dAlfZLgwBqhIT0xf+FXgJw7iHnKFxGx6rcUPW3yDGeR2UIeK46VJ28WsxVkyiOJvKY\\r\\neESFCvc6z+87vuM7tu3APognXt5cCe+Kd5Kte1Vtl5NJljsE/u6775abubO7El2vvfbacS7ksrw+\\r\\nsldZDoCKXCevzZ9nyr+Sh2XuFutsLfKtUKZj1LzwTF4rbWWgB2AWPUTpmzm8mG4q2Zv+s24CCum0\\r\\nQl50EV7IU+V+zwlEeIY2KvJJFugb3gmsuCf9WVJ9/OlzkR7j87x2Ccbz6Vf9KGfJc9A0wyHHSADG\\r\\nPYUHtRNIK3yYp631lndQO6X7VGm93wrTV76h3Zsz0M0Tl0cq710Gkb6EO8r1TgYEvOtrYXvPqSKB\\r\\ndcXQKI+zOed5BNbNG9qQM1tf8iVfMhhYw018HQh05UHKupuT0kKYHpaXaGaEmegluhlcLlqMBwT5\\r\\nDeN3jESergqZzu0ksBJai3Hnnh+I6nrf56XKzc9CCQx6fgSPkRC1cQW0QrI+658cArTi1nU48bxA\\r\\nFeq0FVwO1nve854zAtQ8+tGPFhY6I/qyKMy4/e1oquL4YQCAw2xDgU+7is4Ub6Qk3IsvvngM0QaN\\r\\nwziOSZkCPM6aV9NJeIQgVfH8oosu2ha28DtjwzzxnOD/vY4a0j/1hAijVUDhsObLzjvWv74Jg/LQ\\r\\ntMuvnJgs1RKP52db+3kKkolZrYUdKDUyy19KNKPSWIHOQh6Eruex+n0HOFFWZJJXbbrPc1JKlIx2\\r\\nOgZqGX0U9HQUlDnzp20CX/u8HNrgAcIjwqI8no75kUulnIFzJQGff//3f18qFxQCPnr06E4VazIP\\r\\naNu0lI2aWDxs+kZuS3r/8Ic/vPPMSy+9dNQiBAzxnmvvueeesQnJ2Yg8S/K5ZvkA4AtdUm7GhnZk\\r\\ntvn2PfqiLZ6VO+eZzjJdh8/kq/Ka2Q3bqQ4cCz0jwz3APYMLcx1QocAz3ksUnz1dhbwC1QGb+CJw\\r\\nFFDSh8B6Ow5n/ps9P6X61IdCbhkT+EJ7HVuUU4VuS4fm2QnI5JHK+JgBYmtK3/s/wyTnjd9yxhQK\\r\\nRJecOj2Hji1fLY+UNReoKdwX8CokP4cBA1i1GbCcPcq1h4boEgj1bM/tOwaimn/kCaClEkFhXvXb\\r\\nKv+kpI2dxltf+qVfuq0DAawEScyXAPD9jNJDg7lF+4yAi96kEGtxWc+LAJ5jgn1nYRXHTdh4ZjkJ\\r\\nxbnrY8xYLkNMENNro+MCMHrMWexaHzqyxb0EqmeVvxUDBrBmpu7oCr+5nhIiBG35FZOVw3LllVdu\\r\\n8cg4qFOdlQcffHCtRb3Owj/INQ67PVOLngpfAliLCbEHGe9h3mvXHA/WsoKKh/mcddsCIiQnWyf4\\r\\nT47KkSNHdviMxw1vV1OpdtUHEn4gBGwBJ9w6YF1Sr3WvPcKMIpVgCxjZFbjOkT679X/ZodbrjnWd\\r\\n64T/CD/KwS447+SGP3KmGnqz9yEvees8cJMCKNSDjiXf6kvWrf/JjZRsgClPB0DVritt+l9/yBP9\\r\\nqB5TVnTKaM5B0ZZ8qmWeGqVDHnzwwRHOMl7tavOss84aJQwAqY7EYuhJV3D8lB18KpzLC3QEE0MQ\\r\\n+IgPnvOc5+zUVfuJn/iJAVZ548lR4EUem2vXrWkmnCfcRubqI3rq88c+9rEtOYm33377SDJHG/3m\\r\\nXQPk8qo5JFrojPcAaNTXcg4dhWOnn6KswJtdlu7H3/pb+JZx4ED4TQykJz7xiaPcCHBujtuhHlAu\\r\\nxJsHMoVO8ZbrGwCZPUrmtyLd/scX+ppyr72Adp4s/OZ/16fr0rna7y8PUQ6H2XFSyJQeQ9NqbwXQ\\r\\n7QzmVW3tlAKED7VXGC7Q2HUzaCwEGdDKCZPHrgiSe8MX83PyUkVn+hltGT36gWZFzYqi+S6Hi74E\\r\\nEgOX6XR90o/aKOQfTQvlzpjBvXbO0uWdRLNX4fIB5JRpyFM1u71zSSbUQr0BqDqY4EjwBJzcX2J5\\r\\nnq9connKtDknmSNI1wSW8lwFzvQxoNWzI/aiF22Ou2dFJky113ZPY3FvCYntaoz47onxY4ZKSWjX\\r\\n9RZu20B9RzkREnIH5ACYGPVtlh2Gu47iOMxrHv/4x0v8PCPA3uK4hC0kd+4n1+0wabRbW86zUzvo\\r\\nTKHfT/7kT47wRScqOBKl3BHKypoCNCge1hcetOOPZU5htu2bNwoIo+isp1WC41TQetUz5MMRutak\\r\\nsfAstnsPDYBCMoLXolxR79a+9U6AV0W7sEzyIa8+A831CX7yKXmZEAZCs9RnAe5aSooCK1m+kElK\\r\\nMsBV2MezKj4ZaPPsjiJadp6pw9CNk8zRjmdqg6HCquYJAlQoKoqBp9Fh7kKC1eaz208lc6BMArt+\\r\\neaZ2jx8/vquskG6g/MKqnaHPetazhocMHYAy3iabWdRqA4wk2QN8fnc+qd2OAJc+71Y37Zu/+ZtH\\r\\nCYh556Ni0RLiFYrWd3xfyQq0JbcVut1kp7j6iDZ/kO+z7pqT5QsLo3t6pShJujOQlReHfjG37Zif\\r\\nN0aUS1XYD1/lPcVDbQ4rd0+b5UXhraI78Wr6b/Zi5WGzDtCFc8Af+cvIcoJFeU4lstdnYyyylSGw\\r\\n6H0KYM1Om5wt5Rka/xxxyrFiXK0vXkvX4OucKvrrmhLeA6OFJTNW8FOYJcNnMZ8MvbTl3sKfxp2X\\r\\nsvN2OYD0Q4kSofJ1yi7tAKwZXDVg7xFUJ0LfESkQlUs7b1aJ5u3u2w1gZSlG1FyTuR1nt2vWZN4v\\r\\nfTDpxdcDXYGq3KL64PlZGYG+/2nuTmI1q6o2jlMOHClRo7GP0TgzEh3YMhBRYgIDEEVRehEsKCE0\\r\\nQtGXdCqNAVEoaYVCCU1QQYio2CTGGAc6cqQTp8Y4c2Ic3C+/k/rfrHrr3qqi0Y83ubn3vuecvdde\\r\\ne+21ntXsfbRNeLVXrrZc8PyuCFrFffGhRVFIsjBhCjOgadH4rsP1RLdEBAgyZRfKfjEOzdyfQer6\\r\\nS7kGS52Hk/Rf7MNeD5Q3+7uPFy0i8O9///slAVClVDtHSH3K6onXjee5HM0h6iUKkEzOlwBrDwgT\\r\\nQSDDomD/jfcbznnwihsgiVfdidrWFAUc8GjNlvKnFwCbvOTaS7ek4H3f7r4MhrZStPWTcawYejqW\\r\\nlDh9klFj/DxnbaMh41ZkIkeQrqIXMrhFIQJYnRelfff5fvWgQ5EbL0ZWy+V5dDEARc/MIzpEdBgK\\r\\n0b12Ra++c08Kd3U3n7MB95V2fs973rMGlM1X72y0ht7whjcs76vkdDr/CoAKxKPDRg1zi341rk8/\\r\\n/fSG6ys5Fkm+9dZbl3dJdlyEfkVInWsIbAJSImZAeJuazItIlFSid3dudJjwpF9k75577lnqachJ\\r\\n6T3yFXgpejODANmuojVFWooAFeVajRDlCJCRUpGVsFSagz4AY9or3xW9CUgUBIlO/ydj0Yq+0tsi\\r\\niwC5Gli74b75zW8ubQIxBRiyu0XVApEzRRfgKq1Wv0XUPJt9DIzOKNsEgQUwtIEfAVyOT7SUIq3d\\r\\nGUnOUapN7cyxl+oMYJU2tPbQa3ObSK6oqRQ8OfBh10V89+V8uG89RWggfibQamIQqcM8AY2HSgMe\\r\\nVfcjvnMuAjkBrArzAkmEjSLzrMEElsrFur+wfPULKb7y6tG8DGZ3sf5EzECU/qOpwtaAo3vbolsK\\r\\ntPqwdke4p3M1AmrGVugS0/XBM4tHKeb4ksLTFuFwPbBHgXrNw6233rquVGxrF9Z/rgeb7Q8guO5c\\r\\nruuvv36/NTMH0taLfY9XN9k19VJ9MbYIlojR//dRA5Pv6ij9f/nll++RWlUbxRNlUIATvwGVzs0C\\r\\nkMgrUOI+ipZhIssO0mS0rclpwF6M+Qbg5guBa3Pr1q1L7ZeompRMO4Wd+5R33xEIdETOS/pkRqQ9\\r\\ny7BSyoAFw5KTU11Mij/9k9drbWqT0gWQim5Nr9szvq9OS3+9Cqci4xS+dot852Hrm16tJjSD1aab\\r\\n0og5n+bEWESXbrrppnU9sWPHjrU77rhjaaft4gBWZ2mhk24xDnoKGHcsQi8l32w+pR1FQM2DAvNS\\r\\ncavv3nzHO96xJlq0r121u19BtL4zTsH+6q5BNV745mBTkUjAaXXDhgNfd+zYscxLacCNyi6891Lk\\r\\nyrgBhaKWAB5Z6ByzY445ZlOHJL5s3759cWAqts4WtKMwh7qITnbGvPmuaGlznTOvfc8CbdX5+tvz\\r\\n7S7Macge+p6cdY6jNorEks2CC2WCspETWCWH2cqCJuTD32rysjm9VLsyobI+RXnL7JTebD0W5Z0A\\r\\n1HeNPTrR1Y5AdJUBWs1i1R+eZzPdU/3jjF61+zZc4ncgqghgPKiwP+dJO+mC7DVZLQVObzkyQ12f\\r\\nfozDWuPYdnTI6npa30UYojRhDXSi65RO0auIq+LfMwaMCZRywoX5BpjCCnAUKo9pIXz/B36qC6sA\\r\\nMGGY9WLaDdRMYFZBXEoXMwoXEugWyARsKWq0tDsBD8p3WwCNT3vuyWtwX8qwv1OSKdX5Uk/jF/IM\\r\\nZOKrxU9JGifEDIihuYLj1UMCn6+xs5vLQYXP9QTs59vfgT5nhxGBNs4D2ZZ+oO2+mPfZ+v3QQw+J\\r\\nnLwkIljGJs1PZhQw/+QnP1mnS1qmFBcQxUD36gwyKZoASIlCSafxYF/Iq3E24nNHNSjGt7tN0bKU\\r\\nOQOp3qMUn3XVK7V6cTfarXXyXyqhXVttRmnXU9580SC0WFva6GDCalhS2NYgvlDWbW0val80qNRM\\r\\nes6zGYpSNYE/tHRQYQ6WtrXhuXag0Qs+ngdqi0z4Gz3TkDB89ERRcBsaVpX5O9/5zjUAoC3z+tOW\\r\\nuVW3Nevv3v3udy+1Vhu9i7X5O/3009fsQiQraKWDOjJAqsxcoNPciDo5CmJ/Ows5dV5do51LLrlk\\r\\nOTriyiuvXDZYAYP4LW2oXtUbARSyr56Hp0Be7ZiImSjXZi/d5XAwfPpRIL8UG+8+XoOMmy9j08bq\\r\\ncTUiZOajnYVAHZm147HiauMuJejeMiHVI1XPg09FTLN3PdsJ/0VNJ7jIZqKztrRT2U4F7NFjbKUH\\r\\nZ4QKb93DHgd6Jh3aJGscLb+tSa/fUqenX0eZ7Ny5c31Z+66xorsC9OqQW3NltqKl7FOAEL3ZRDS2\\r\\nzrOfrcHWtP/Nl3Z7Ybi2Cr4Ye+ApMKmt0q+BMfxMHxqH69YWrEBHkBn6yNqhKxWzq2mdNacOU+bQ\\r\\nWB+91kgqHljfqG54/aDRCAsNGlTIrlxqYcAJfGbYr4iP7/ISY27pw4rRQsOd+j69vCYiJoZ+q8cK\\r\\n3BQZ0181EklD0S+Mm5MZjV33fyBL++0YmGmDBN59AapSAC2i6C886/nqLgKNbc82noSj0GXvX/RM\\r\\nYcoMQYV3BABfKU5/P9+ddi972cuWtMJGJ0G/mGDkubblLfaOGvAi5UcfffQlA2DmOOwitPX7n//8\\r\\n50uGPmkamyykPB588MH/KV3SOwCHw1LV9aj3kj60RqWj0CWyY710BpG/AYccltIi5Hwq3+pQ6B9r\\r\\nx/WcqQpgAypFsjNYnmlNWv/6tjZ7J6J1lJPVfaUftN2aryg+z1h/rnlmFjuXKkmPlgKqyD6wos9A\\r\\nF6OKTrxQ08G5ik5KHpjAz6Ld+j3ttNP2eg+m90s6xDXgo13jdG6fmrxeA2O3nTa/+MUv7mE0pnxz\\r\\nckS4OHgi8nhiPiuzMC5j0r5xGJeo0oGcv3bssccuu0inE1DkSpsiw4AMuVCzunoy/O7o2XLkzU9/\\r\\n+tMN5dxuSJtQvCybA2GtAnD4rA+/lWgAV/6/7rrr9mqHTDc+zoD6MFG1IqE59fjWK44mwPe9OSs9\\r\\nXQRlRoCKqhUJyTEo8jLtYfZPu0Vw3Kfv6pKSP79bAwUcSn+Vqi5q6j5jki61IcDaArA4uE7Hxwcb\\r\\naNTGoaeNYtrTf1G7UnTZ9mxsm8JmJCsQmsyFMTpJIECZ0+F6aUxzZ8ytedd8NkrNGiuemkdtVipk\\r\\njNrOppZx0z+7ip+9tcFmiI7jme91dfbg7iNNFnnShjPnrLXVFPs6wApQFTosejXDgAGfolyFIAtv\\r\\np1y6DrAQYvcFsAI7rhlkii4hSOkEZPL+mghCEQgMiITK3WNyO6yvqFvKDn0xuiI6bUHFhVopQBNT\\r\\nAaM22naNtlkwlxLWf4IdTwhCCNd9+qlgsXv8Lm2h3bwdfyc4LbgOjKN440nbhtvpRaFsdlrzVKJv\\r\\netOb1q699tr91h88V4D0YtyvPswZNS+FzQAbjcd5QTfffLOF+z8FMvvi7U033bTUt7yY7yF87LHH\\r\\n1hRDV/+U0rZpQ7Sk9UN+KS3gwN+9VoL8U7C84hSk9Z5haZ23QSWDUaTBeItqWyf0SDWX1YPUVoYn\\r\\nRzBv1u9SBP5mzFLG2qAL8rIrX5j9F6HWRnUlgTB9WpOUctvcKeaOmcnxEulBV+/Z0w6lH6h0n91w\\r\\nlPNqPZAIj9fMtBNKJMbZTRu9Dsnp9ABtY9IuJ8zp/ieccMIWqS51TsDVbbfdtqnscnK+9rWvLTpP\\r\\njahoosgjGvHBIbvmuPog/PzXv/613p56vfPPP18ac72GL9lVu6dwerNDjkWP0Es27Fa88cYb96LT\\r\\nmVR33323ovr161Lh0t5eKm4dAGDqvNRfSXGSMTreWAAm17xXbn9pUkYVvVKlHAVR3ox7Rebp+Jle\\r\\nKgVFbgNX1d+VHiuFGEgPeAdifI9u7fudU14woIhW2ZLocm/R2IILOfEBHTKYTQKw2A3RRferfxWR\\r\\nKbvx/ve/fynwdw0txu1TyjM7VQ3VjF613qYNz/4XiCgC3RprnLMO0piL+M1dwMaQLQ3otL7DIjlD\\r\\n2khvuLd5KULtWsXsvbwcwLrvvvsWGbz33nuXbEAn33MEOATa6bgVUdfpPCw67NWvfvWyjXvWMk10\\r\\nqeMiRUVtEqYUIOJ9UlLVMk0vcyJG31dL4dmZly5U2g6CGF5qMgZGc+HEaC5ylFAGgrpexCrvGB0W\\r\\nX8CJAIR+SzNWG6ZtvEDT9JQzNuXbQ/IBwIBpKcjAbHVl0HPgqwXnGdfzaKMznvfuqrZlz4VGEdgx\\r\\nBoBB1vOlsRSook3v8HohpzC/GGBqozbe+ta3rqn5mPVo/62+nk+7alPuuusuhvklA7BEJuwC3Lp1\\r\\n64Y07U69Ltc67dt6FDlhlJ944onFiDPeZFiUg8wHjtRtWU+lr8ioD4Ml5VJ0xjOAlbYzABWFp/Rz\\r\\ntKyNUlk5ESniaax8V0Rcn9VDzfXn+3Zv5exYkxkDOqXC81J41n8Hg2qro14CXDlZrd1ZV5LD6Bnj\\r\\nrx6rV3V5Ji/emje+1m+GIHqs70Cg58xJB2ICZcBsLxVup9dGOwk9KyVsPj1nfMbguBjgVxTCtVXH\\r\\n4LLLLgOo9pCb9773vWtql9ARqBXx8TeAZfzoUtOlCHiez3XFFVcsEV7HP1x66aV7yeNnPvOZ5fU2\\r\\nG6UUpV+kLx1U+8wzz2y6vkSygCdyV3TKbzJQhKMUHlmqTq6IBuDIeO7r9TxeJ+X4kqeffnrdcRDR\\r\\nKy1MZqazbl61P6OflacEzqv/NY+er4SktGFR3sBGUdKyRNkV9/UCaPJijJX45EgU9S3yOou4Aybo\\r\\nU3NJPkSwAE87Qq0RYB69P/rRj5aUbVkjctyh3K3p1t5cc32HnoIjOUJoDXAGsAowuL+/3a+vHLQc\\r\\npoJAxlFdWjggvZCeKR2fY1Tq3/+eB6baBYzPtadvkU6yAmDr0wdfKgnwnXVckMj8kCu7YLO5yy7C\\r\\n0GcKbhUQZIiKFAWgQokpVAKf4BU1auIDapjlHgugojjtarOJ125AI2HLWw19lq8t0ua+wNFMsc0U\\r\\nZuNyvXBpr6uIB+7JAy4U2gKpuN8zKe8ZLSva12JLUKKh/lfTDqH+Fgde+Cl87HrCVaSsujB9+I5i\\r\\n8Yw5aFGlDEy8heh/RoBylE6yy2Z/pxg/HxDyQp459NBD14T3NysafCFtvxjPei+a96f9/e9//68C\\r\\nLMbGvIsiAUXSHmql2iW2Y8eOpX/HNEhfiDDwPJ999tlFBiq4JgvSPWSXIqWYASZt+4jAdHAoOSmE\\r\\nn4fab+uVwc1J0G71GK6RaW0XubF2SiXldeeVejYPnbG1boocpzdm/0V2Aw3Wufu71/P6qEA1nZOT\\r\\nNiNZec7aKIqOD9qeka9AUs5QEacUecBPG63zaSTSR/QEPuB/KTV8mxGN9N2M4gcUi4Rr27q1jjcD\\r\\nWNqRpvXKJHoJbzlZZEZ902rNErmSjpcWmu87tHNQjQme6l9beNuZgsYmEmS+7dibxejeV6gQ2A6/\\r\\n1bPXWn8f/ehHF9l2npCIu51/osKcxvPOO2+v56RAk/eN1rAxA48OffR+Tw6HV9vYJOQT6MoJxQ8b\\r\\naRR0d1CqWsGiSuaa4XW8hfRghjwdmn4NHJcKzDFvbpNHc4mX5l3b1me2hRxZO8lT4KPAQuApGa8U\\r\\nhvxXA+WZIjVFZJLf6g5n5DYboi06wbhF/gAsdZw+dAZHnW4AMs1367hIcc5CeGAGYFybNnWmEQM/\\r\\n2cPqG1u32W//4xn6Su1ltyufaQ1nIxt319NXOU6+L9jjWfPczmN9+E4ky2/y7TOzePiOZ9Vz9yLx\\r\\n5tVap4uPO+64pQRny+te97olkRlCM6iZqirPidDVNF6RrQSkiIvQtKgQAewUYQNJaBDTe456HUC7\\r\\nCUrHVfhWjrv6qyJXhRqjO6QaWAnUBMACeHM8xo2mPAttNfkZoEBOirZnoieDEvALrYf4U54TEJZS\\r\\nLc+e4akPbRYpy6iUk/Y7I1EIOO+6KF805bl1vS3h0ZTwUb6d+uxaZ3yhQX6el8MQ/y8iXg4adQ7L\\r\\nRrvMXgyA9ELb8K5EXvzzOQlfKs98AirtmCIX5M/30hzmjCxbL62JgMosxDbHRUApoVJuvaRWe+Zb\\r\\nXym7jLb7fU9W3V/EiDyS67ajl6ZvjWUgAifko+gNejIsyWiOV2vCvWTNb/daW71+Qh/qbvRN2XfO\\r\\nDf74aNMznYnTi+arSUnBFhlKEaOhWpGKYYtu5whNJTz/LqWgf2Ogz1zHlyLtpUHwLgNkLHne0mu+\\r\\n740U7WrMSWvujEt/PGS60//GS4GX2tE3fim+VbPlION9yXNp3s3u6YgP11cBkeMfOsU/4100nVzR\\r\\nC3Y0XnXVVes0HH/88V7UvhhlYMcBopv1DdCIgNHzAL82OQir59+p0UKbIuI777xzv06NtxCUFpT2\\r\\ncrYX/kn12UmbjKozkkoEyDgzZA7frcXepSmtClwYf+8vDFRkZyaYd61AQcA7nZy8zHohvCGv0zko\\r\\nkpo9ySYkA8lsNtT3E3T4O3BQlFY/q6kz91kbwICxSRNKD2rPuibX5tG6azdpG2RyMmZAIcxQ3ddq\\r\\nWjM+zcCLe3OC0glFvKedL4gQLwNrAcUAXjYyABXgK0VahimdoR08sgazpZXiFD1ER6nRAN+MYPmu\\r\\nsoACR9rATwf6LrsI5yJwUwY5IWqyNYQBCUSKOMRJeSAe0u8ZAtNziJnoUTvaC4XGOO2VnmtCAhUJ\\r\\nXHnkvAht+S6GTCCi3xmGD0gFGPMuKdHSFaXiAoX11yQnXPg1Q8AZH3Tgz9y1MFF10bZ4XQizdls0\\r\\njR+PWsABNM8wupSC+wpPB9ASsDyrvHT/91x8Mnd5EuXxC3nrl0HGp1JA0aNvHgAAZm5FWRJ81+Sl\\r\\nU1iOnjBentFm534dccQRaw5F3Llz536V6WbK22njyc+2bdu2XH/99YvSZeTsYgIYjVdUiGwmxxSI\\r\\n8RX2xUeKl5HktfibAWT84rEIAQWkHbIjjUD+834cMdDCZxzbPIG3gQTfmVOygmfV/5kvSr8aHHRV\\r\\nqzEdDmuuAvE83Ba+sQbkW5Pabc3D/icAACAASURBVB3rV2Gna8aSDCWHrZUARIYjsFIEt5RfDto0\\r\\nEOQB3Z7Bn0oKAng5Lfo3FqCitVk9i/bwtB2G2gqslobwTLvycpD0Zb7wugM4jbHUQF52ab/WP5rm\\r\\nGtSXT/ox4Iee1kvRhqISc9yeNUelZhkv86k/31lbxi41VzQ6fai9HD3jIyeiTqJP+3qR877Al+Md\\r\\nHMgJCIlW2Um2WlTueedAOSBUhIgs9c5Eu6umE3T44YcvgIyjRiaMx6vDXsimC++P3LVrl/eSLuDT\\r\\nWqJnVsfs/K4ianhGHynwn++J/eAHP7gcWWKetaHWS4RN3RcZKZIlGqYNcyAKptaGHJSmTc6TL3Nv\\r\\n3lsnOTGteTKQA508peuLYgWStFVggUxog9wFrtKryWhR3ADD7BO9rpPPIrPJb1EczwEP7VIVwSIP\\r\\neNcuU/wge48++ujiAKb3S7EZE3rSMemfMk6+JwsBrGxg31dbFXgv2jwjTq2rHJhZbpB+yI7NQEd4\\r\\nYOokdOdEFa3PFhdxjF/ZXvLc5rfqMrunnZ7hAtdFmiuj2HLwwQcvJ7lrLHQeYMi71ph7pseMqTEl\\r\\nwWGgQtiFQTEltJzSylPOKOQdFIY3oIq5SymmRIu2zchUnkfHHmSw9BMyLnKFvkCe8binHGoItZx4\\r\\nqZaQafTn0VVQ2uIjrD3r3iITvmtMhMPfGeh5YF2RhuYjD7rJS5hXhQndKWNzUm4/zysPvNBnyL1U\\r\\npf8ZHB+KpeeKXJSXRjeA4jnhd0CiqEZgUi4/ecmb0i+QwHDGc89ShPLcpT+ME0Dz2xlMPE6GiJfF\\r\\nAPg+b9c4tYEW24ndx0C7R9Q05ZUMlHKeC6NXL5QC8Vw73cxPjkSLnnypuQEQed/aNh78Mkb80k/8\\r\\nZWxSKKVY8IGSSjaSqelQlILI88poFdlJ+QaA/W/eyFJRI/PSK1Pa/YT+1o8xtbmj77SnliWnpbnK\\r\\nAckDpLS1bS7IM75Xz+R/dGjL/FTzgA/4XeSNDAdS0BEgzXPUnrl0X/qjU+eNMWWL14GxIl3JrXkJ\\r\\ntGYQM5DoDEincPPea8dvNLfOiwS4v+8ygumu2kcTWTYPefw5joG1Xo6tX1FRY8Jb/DDX+ONvslPd\\r\\nTpEIoGM1ggUsOASXgUTf6i5hh3Ma85NPPrmejlPMLLJ60UUXLYdMnn322Rse4bD7pPcNnR6RK6ex\\r\\nVxCvgNzZaSeffPLyapvNjlPYFwBU6yjqdOqpp66/37UT1fGLPgAIyKA5xme8euSRR/ag0btgRaGc\\r\\nXdS6EVl46qmnNnXgpCzJmvojuzjJ4iq4STaTtbI51Qgam3k2DznpyVmOcoDHnKYrywJpz3qlm9Lf\\r\\n6RbrMdur7RztskJllKy9+SaC9EUBh+Rc360F/arFVEdUNJFc3XLLLeuvHTLGGSXyTNHucEQOmvXh\\r\\n3pz97p2RqnRzALExazNbVzto1792JmYJ0E2HqexPWCH7WURdm+YWLcZvnVVflsNVYKc5bJ6bL/SU\\r\\nLixlazwBvy0OdnRTyqXITSg3RWiBFx3KSKVk6iwBSuEzqNpGtOdL43lO8Zjv3DPDhJhS2iI07Dc6\\r\\nCp8mIIGJBFn7FKJ78ywNtHqmDIRJsCADVkWn3BvIyRPJEM5IU4avSJJ7TXoFh4yPMRehC+1XN1VR\\r\\nXQom5awNf5swfaArniV8+vChAHyq16oGJs8gwQiYZqjQFGA0X34ASWOpxqzwbsg/IXJPwMN3gIZU\\r\\nAe9W2sL42lnhmsjPjEAExKtfqxaltCw+dWpw0RrP5ME0pr4r+gL0+K7ojnYDsnkp5tX40Ohahq9I\\r\\nkN+uF472uzlwf2HhPKS5/bf7LD4KPx6jKyPt+YqX83rNXZFX91mg5rxFnHzNd3GVUphRyxRGkSH0\\r\\nkJuAcQ6N62QrPpXG76DDFDkFl0z7bu5kSilbD+jFdwCLTFm37s2QpQC1NT191/EXoE2GU/A5ItrL\\r\\nwchBwXv34UtOStG41kegt/Va7Ub1YkUaoj19V9TJnKTEi5KlG1vHgfacztIi1iYHhNMgolLE1zv7\\r\\nrIVenQXEGl+ePTkBGBRV+9561HeOYgY0PW3MjODxxx+/R5RmAhbR4gCwvjsyo9d9SO89+eST6yBD\\r\\nhIejgkYg60BS9DbM2OVofIrd8YN8zZPfP/7xjy+gzq7AGVFaBVe9LUAB+5133rnwS52UousOJQUQ\\r\\nFbfjDRBJfvG83YDOrPLKHscLPPDAA0sbeNBuVvIvgsr2tDtsM5DnSAnzBGCRY2Uv5FXf1Q1WSmGe\\r\\nsn3mynoM9Gerkjtz1+td9I0m61F6XHvVWZbq1lY78a3noldFZ8pKkN+yJwG4ggqBwxxffdIffhfx\\r\\nTa8Zh++taQ7A4YcfvsgOPhrDn/70p0W2yXzBj8Zq7eQ0GXf2NBugbde1k2MUX7IN1rH+0yFF1ANJ\\r\\n2XP3G7v/ywrk2LWGazu8gt7mJwBFL4RttNnBwgFAINcz6SxtpVvKimUn9dfPegTOKwzywkqRhc41\\r\\nVvqh6JWJCbV7zvUECoE6pzh43YjLi8tLrphVLQYC/R8ynwYY0XmpEZ0h00cGU7shWguuiEJINKSb\\r\\nUW8hTKSd0QhouZaXLNyn35jsWkyeAIjCLiKXctRu/YfwteOnCU5pExJjSplXCByar9+ENHQecs8z\\r\\nyBvyvXvxJG9qKmhzhr/T0CQHAVHjoWS0HRhCb8DRd4BeUcHkxXXCHvCdi8i95q/5bW5TFEU8ixLO\\r\\neZog0ZjMacXWRQVEa9BFucYD9+bZTH4FYGaEYRpcdKoHY/AUu+IV48mISjNIOeAPZT9BPFpcQ4fn\\r\\npTYYL1u9m7+UUdGq1k68bC1OmfddIe5AZy/NTdaaO3LT+NFTiglN+Fjxa8qlM5iqKTL2nkfTVMRT\\r\\nyeUM+c66n8X1eeABwKLbAY9osH6tM/JGv1TrEbDruel8FWUz7klrsp7y9WxgLbDdeidr8TfZygAk\\r\\nl6311iZatY2/fqwNa6yDUwENdT3TcNvi3REMUnMACfko4m8HqA0npTilnBkx/bTW0oXo8Bw67BAm\\r\\ne736ZjOw0PcACBlkzFdrndQ+qp8CkMwhQyNCpBC9dxeSY+taut1PfEUP+bEe8UQEi353/yOPPLLs\\r\\nUHPdDydD//rQlpQogOlZURORPGuKg/aNb3xjn2UCgJRjQ/AEP6U6/V39mihgThN+2Z1oPPNl6Bvx\\r\\nTPG/ndb4D4yRU7T2hgFyqg8ykzOUvOWY4Q1afKZRN8fG7v4pU8CMZ4q4siFkU9/WhN9FqLKTE/D7\\r\\nriBE9krf/s72pgPRnP7RT+msUrvZczSSTbwj3/6WubAjFT9aR9mVHN+Alf/Na458uCF6/B9QmnSW\\r\\n8tRvWCRw1Br2nE/lDa3XAiTTlk4nO1s0+zbO6ivx2tjKMhRdm+CsoEW2LKyAniJ162DyFa94xZoB\\r\\ndfOM1HigdFPAKIFKcbXwi3RVo1EdSsBmMijhy2ssYhKIydCX7sj71UbecIao/0OyRUNKf1EYmFmI\\r\\nPaFHt/4aRzUlGSo8aayTyS2kFHkTjT8JhvtD0SHfoi/aDI1PsFEdUAJgHiYIC6U38U1qXlQTOie5\\r\\nep5oDbQV7nTdXPhNUC1g/TAYgU2Gr/B7OX/C6G8fY6mdIia+L1o3IwvGVpTF9/4vh538aC+Z6QiK\\r\\nFmRtodF9aG4HSMXSlDjeUNxoqN2UXICtecywToUXyLXopRPwhVLBa7wRrVMnRtl4bteuXeuGQL2X\\r\\nOWZcGElKiQFxloz7zbk5nKA3ry+vKTnHG7xtfeQJ5h2mvBubuUwp4dEED0Vdirbk1aaE0VjtV94l\\r\\n3vjevaWy3Y8f8Yh84GkR4U5cZoCqJ8mhMPa8vaLSXSsyl5zn+eeVFllEizGkEI23tZvXiG4/M3qb\\r\\njkvxTkCVAm7tZTCKoBU1M87mzvjwJoeArJoroGT1DQlAFUAuAoIn+AsQKMIGkBlxzwX+RQuKcqGp\\r\\nVK/xGbvnARVnWpF7YwLanKquH6+I2Ve0aDMgJjWmP3LrhzOBFpG1juAQocYf76szBvPP+Dbf5sPa\\r\\nEGFzELJIGtAk0n322Wcvh9Hiw/N9mbtI1+23377IH+e9TQQZdfJDJwB45g0AS1bwxbVrrrlmn8DN\\r\\neV3mxrisd/2ku5y1pTwgoNR6LvK8ag9zOluj5MccJlOeL0IecAp0tDa1qb/sSk6g39nGAJa2ku0J\\r\\nJvwd+AiMpIOSu4IprXE0qskCVI2vd1yav6Jh6a5kimzUv3GS94BdTmF6a4LTHMPsWFHkyi18j76p\\r\\nv7NXlRhVylDgJ/yC9uwvOcmuogsNRQb9nz3Sb3OZbOV8pcOyf+4rmoemiVe2vPnNb15es4AIYCRg\\r\\n4iY/hScLSRpgobEKhBEw86gGUJokz3x6vdNQmqiiOwjOMJjcQBmhKTKTcelaXna56DkJvvOJaTFX\\r\\nf6XWqtEqqhLajnktgO7HkyYmMJpiL2rQadFoLOLnuRl9yivHQ213X+FMk+l5wlNqJ2EjuAHAPGpt\\r\\n55EHfkrhZtg8P9Me2pCaEAa2aGyv7gRni2G+RqDdnAnhNGoZPfQaz/QIUjzxKGCbx5LhnGC+ejBK\\r\\nu8jW9JbilftSfHn1FCL+oC+hT2b6LsDd/KQcZvSiSJEFY320e62IT+vDsxQxo4LvQFRhfHIgyiDc\\r\\nzuPHz2rczFcnBgeoAqV5wcYSQERz8+/vPNDWZcoykFb6qYgUvnsmZZqyw6vqHeNr3l1ynkdbWrKj\\r\\nQPC1CJb6HWcuGb/3yWmX7ihCGjBpDSYHyWh05vDkhTdn+BXw8UzOTBEm1/zt/sB7QCvdkc7Aq+7L\\r\\nActRqj08CGDlrQdYA5SVAZhX9Bub2sGcy/jqeesMbwCWopPGgT/myrg7+ToQ2BpPoRf11Z5z7uah\\r\\nhmqWFGW3e8n4vEPPM+SPo7C/iNBmwGt+b5ce3mx0xtWBPH8g96j5AZyAo16u63fHVPi7HaelUUX9\\r\\nzB0QMHVGUTapQZFnKT/pUanEzWhxNpi5AwptkgGQATPyoNaMbRKV65DoGRUPcLeGchwC+GVbkqkA\\r\\ncw5Q8l+0WttlJ7Kr7inCX+Q+MDYDAAGp9J82s2s5+em89HNrPv2Qnp5OYcEMYy0Kncy633fRHbAM\\r\\nVLXO/F+AIcex+QgYGm+7naMPHyv1AHzpZWsqXV49dE6/PmagInBaAKN0bXa/+rXkJrDU+OKf381x\\r\\ntE3Ht+tbDjnkkCVs7CKPpSLfAAHBKtSXAaAshDQZEIvAs9U+lTJsojBgImLtut/zlEGh5gTEpCEc\\r\\nowJzU1G6LxTrPh99EiyT2bZn1wqrGtP0ZlPaCVdpvKmgq4/RTgVwoV1jC0CWrpyps0DRLLa3YN2T\\r\\n0k55WqQVx7dQ452xBSD1PXO/fT8jNJ5rzEUYEoKMfsLQb3yzPZdyp7gCfAlYSr+IQwu/OZkLxjgq\\r\\nGsQD9Jb2KbKYILeoGkdGJC/O9douupRiSXind2hOK5RuEQa2q91DT3zIAy3SkYc0jW8eFr4YW3JU\\r\\ndNK9jJcFXgE5RY5O82oM1k8F/q2NIhKeK81k/MmldtHXe7e0F8gJPKA30BUYCADkVQZ8S2kZA/ko\\r\\nEhk/tWms5qrIVhHSvFHfUz5F1IqG5skW0WEEjd19gZ70R8AwBysQWxvNfc6a8bcRIWA2PVl8qlYl\\r\\nHvm/6FfGanrO6Y8MXg5TCjSHrzWI1qINOWHVRbqHY4KvGQLziWbtlvb3XBsvOpMpQ1g0Q0oMULex\\r\\ng3xoD905K6WHPI8/2qY/0QbQAevWnKiaVFt1S15Qa+eriA6dKzJjndD1QIwoVHoHaBGd7aNNdM9o\\r\\nv7GQW/1Ia87dwArhyVGv5tkIwNjxZ/euuS3yKyUHlAMt1QPqV+QM/60f42R38CndlTOHfrRWE4o+\\r\\ndUMBgZxV80Q2OQIibNkX/ZjL0pba1VcRIuteTZqCedE4/LajzjsKAzF+tzZnOmmm9QIUAZPpTASe\\r\\nipKi2RqqNCeHYLadsfdsgGsVVLW2VucisKW9HPDpiLieM95ORHxJ/1fDGn3kIschHZLjWHQqpzDQ\\r\\nNkFL+r913j3mpLUddqg+i84lR36nr3K601PZiuyt9qeTmW2xngKD6UX/Fx2bWYJ0SLasCFlBjuzG\\r\\n4hB6NYkQIAKlVyxe/7vZIipEH+LTOYaXVkKs74oyzRqtFJG2CJoJSukasAVvIfmuXREhXe0lLO7N\\r\\nEMbshDklhg6CmzcYkwgA5tRe0QHXAzBFhIyxoljtdP5FYDMAk7eRFzDTgHninq8w2n1FtYoihJTb\\r\\nqRhYDPQZX3VdCUReQWArAS6yEH3TgOb1J9zRrC20Sk0ABTw7xpECZyz9jeYQf4thehstgqKAaKZ8\\r\\niooUZi2yVkQxDyUjps28nkBRbUevewMOM9pYxHVGHpof81b9gnYaQ8qo+oy8lOjyfKAjr6TiU2PD\\r\\nLxEEsltaTUqQIQO49NVC12bzg7eUQbsR9Vvk1RoxBh/04Qf6imKVxip1m/y3HtrJ0nznxZfORbe2\\r\\n8jDjZ6AzI0R2ZtEn+ouGuSf5Rbu1UljeffHXfdGlrTzOIj+t5dZ3TlIAMa8cb6sPiTc5Q4FKclr5\\r\\ngn4DXEUSzEVlDlOHFOlkmJNpNLsnYxZd2p8Rec/iW6CzyLQ5CGDjE1kwdrQqzhZlYbilBI2VY8u4\\r\\nA/BSbj/4wQ+29KJlMpPT6PmAJjrSeUAEHb1t27YFXKgT9CJy9Djn6f777z+go04+9alPrYl24Z/2\\r\\npBmNAxBiC3yAks7ySmaANnojo4v35sPzn/zkJxdQt9lxLOqnOhoh4/+Vr3xlATDGyDbgj/mnU/Da\\r\\nS57bvPTnP//ZTsD1s9zQgN9AZ/pM3SNeJbP6SVfnAPQybeu1GqScqZwcYMx6J8s5mtpWX0YWfFfp\\r\\nQ4AmnTYzHtmxgFPZnXQM2c4RDWCl6wLkrbEAif4CWJ5Nfwagsn8FJQKnXQ9UTZ3cOtA3WtGVrgrc\\r\\noA9N8SP7WlAhW9XL3AOz6dYCEoE7bbWmG4/5Sr/6LkBZMKZooGcrfSh7o7+yJ+m2nNS+b435Pn2h\\r\\nHzzMjocrcqrTQzmHzUsBgRzfxrnFm9gtch8eVMYhL1PHpfAMIq859N2EZvzqKAJ6UWgTQqARIRWl\\r\\njRaP3wZFiAuJprQLoxZVwUSTX1FtQKkIUZPnntprwhtPnuqMhqWAQ+LoqEgvENZzGbJpoLqGnhZd\\r\\nChYf8r5LUTZZ2i7VkzEIAGU0Al7xF+/KzbcwyxnPVFgC1z31mQLwWhqvyuBZ2hbN4EhruU9Kg4An\\r\\nC7UxkXsegu8Ah8K6LQZ0Bh6KhuTtuVZUpahFC7a51k6eXwpkRmoaawonQBWorl6rSF7AIIXSwmlB\\r\\n6qv5yNsBONs1aAzmVCoC6PI/Hrunmq9Sf9qZstv8eAZ9aEkx5YykAOune4vm+b8fY24LebvkAgfx\\r\\nLyWSgkt5GeeM/LrfPfHWXPvb+umw0nimj+j0HaOsH8bY/4xja1mbaGTAfOe+SYNrgd82qOQEBdRS\\r\\nVsnSBKbko0JXcx2wbL0YRwBRvzmK0/nJA51OVyA8ZyGZML6Uvr4Z9VLR8ZQeVbviGIXdp6VvsePu\\r\\nZz/72QKwnGHl0F7vugOI1Pc5QdsRAw69tDMPWDcn7k8nd1ZdwM/3eP2HP/xhHUi9613vWtJr1c9s\\r\\ndLbVajRDgTtwlkH1LsFOYVfzhJcbRaWcU+X9hnS5eZ38d7SKNaEG8UDekem09scee2yZP2BRGs94\\r\\nARk8kN7DD6DLuIFL4ySfOVnol9Y78cQTFz3mnYW9DJmsF6HNcW1NZBtKaaObvibPZF+kDsAS4QMK\\r\\nnbPnbQ4ibum/6nDIWHqDvM+sg/7JsntLreegBJxypgs0BCxmpKw1mlOZLfZ9kZZAb8GBosO175mA\\r\\n1Fxn2mideaajX1qT6PJdmaIyM4EUPNRHdlN7aPCde9JdE0CmV+Z8THtIR2aTuzf7WEaiAEU22P/m\\r\\nvPs937zkPDdnOf7pPGMjI6U/Z/Rr8gcvSp3mpEVH/W3x4t8iFQRAo4XNEoYmMk+8tFjGSGMpcosC\\r\\n4Rits9IgFSxD/BYiUDeL0jrksMMAE6i85pQvJpR+Kn0ZYxq8vtp+idYiLC2GaSBCnAGCIgUh/LzF\\r\\nGJeSnl53k58QzlRCURrjKsIWSs67KcI3jWDAFe8JsfFovzBtNTUJbIBTG+YwwBsQnLRNQTbnDALF\\r\\n1T3axO8AdSCnNgPP7qm4v7B3xfrtLpxeGV4UuSsCkyDmwQQw42FnNZFR/RXKzbvHw0CGceNbYd0M\\r\\nSeDEHLrH72oLySua2iXpXv+LLHbNM0UwjKczr+rLWHjOtUM5l+JAQ0qg6OgEd+Y3BT89t3hlfEXa\\r\\nWpfaw/ein+5Bv3aLxrmHcRBRKK2QYm694mWKsEhR6841H/2Yg5ST/zvvpTA8WjugNZ1QytQ8traT\\r\\n0dZQ96I5WYsH1S8FhLrXb/NSCYH56uy0juvIK5+OV/M+o2z1q63SgOa0aG/3loIIiOXYZDDxrDnU\\r\\nD16gpQNOPScC5B2PpRPxBJ1AggJ1UZ/f/va3C1Di7DiDKb3C+URrO3pbm1KBitEfeuihdYD1gQ98\\r\\nYM1rsGzyUJAtQr3Rq3UAGgDB2KUNtY+vUod//etfDzjypSaJTHS8SjrdXPshKyJPP/7xj/fZ5sc+\\r\\n9rGFnvRu9Zd4VK2b8afj00kBJ3KT7AN1/q/0pQBBO/+SjwCGdZKjo3+ZHDzxN9nHE3MsIqdtYxTx\\r\\nay3gW4BgVd8GLgI/6CqC1RovAmtMObMBtWxbTsgEx+nOAH4pvZys0n/TcSjChm/p7BkZCiik413L\\r\\n2bDWjD2dEb9zgPGIfPsYb1kc64euKtrTGAMuRY/Si/iBTuurEpX0QwECfeQQeC4aowWt5pseiS/4\\r\\n0dqOj42hAEr6ts1jxlHUfNUOooXsJF/ZtMaxyMJb3vKW5ZySivFMfge3WXwaaLINiPBR2hpxjXFm\\r\\nTCx0RhBT81wQxhOrrmd6hRRRxpEQ65NRzsAFhgJ9Ra1qI2aFmA0G7TP6UNF5QpoBaqy+L0eel2wC\\r\\n8rLRHRgiOPru/oS3iB5686QIRYuz8OoU7AyuPlvYCVlAw/8p7qIRpSVmyqOUqHtaWC2ovJgWhX47\\r\\n1NE4jBXPe4npTLXk1ZQ+Li1i7guHUzy8Ooqsgk+0lc4IQOpn1kfNKFoRnsB8hpBsBbICVubCs6W9\\r\\njKFXjLTNX19oMVY/nWNS2B9v6sOzyQJjJSqFTvKstlCNhT7RaG45C5Qsg8GASlO4TzvWAdmtlg2/\\r\\npH6K0uFtyqcX0/o/AO2+jEspVTwpyhR49Exy4359Bv6KAuY0BJjzSN0fSMAbY6qGqPVUSN+Yq0mp\\r\\nFky/hc5d009p9WQtx0OfGe0AfSA2YJb3a460TQ6TFe128r35BkhS7PGsHXmiC9aK+UgHVLLQrsRA\\r\\npX60Y7yu0XHGR94AteZGn63Btuijz5j8j87Gilfmeqa3U8oZAW3nFOU0ei4ALOJz2mmnrb8k9swz\\r\\nz1yOTeissgyeaJGPCJldcYE4cqqeFbDyouS77rrL+/uWPv/2t7+tgxtHNTiZXdQseeAcoBe/5wnt\\r\\nl1566bLD/Oqrr94LHO1+SfQSXUoflW5N37SBAG+sGy+B3uzk+Ysvvng5uwp/43uG3wYSbdolac6t\\r\\nNfNLdoHPZKN04qGHHrqsW4eLui8d2zllTpgncxly4BZf1YFlJOkQ/ZQGw5tqTMmYeVEWYF6TtaLh\\r\\n6b2yF2VJ0tHZsMBM68p9HdornVxE1PWig/72Sc9qs/taD2SlKE3O+QwcWCvZ1QCHdiotKervf21r\\r\\n16cjWIoCk5kibEUeu7dsWHpTQKX6w4IV1pHn3OM7v/0U7UYjnugjHlq7Oa1FIo23HcvVhuFTuwyL\\r\\nMuWgZnPCGHiQAxnIRY/5a878n81Pr6Kl46AmwEvHLuN6/etfvwCsiVwx0IOIRMw0UpgETPkQMkqH\\r\\noKUkTU7otectvJBhqZBAW4BqerWFE/OGCmvOEKP+DbTUSAh/MgtTZm68CEzRD22gKzAR8ka3H216\\r\\nnqDl0Xu256I9r6UUEAFBs2dm9CSPI4Oj3wrii0BUQ1JIV1/6z1s2N9UVBDhmFCjEnQFIcLSrD0qm\\r\\nyFOCLSRvXO3EKwIW6Kv9FrDIYUCTYeg1FRnpgHJeQgBA/2jWfoA1QK9/Y0zBZvyqw2lOUih4V21P\\r\\ngDiPlOwCSwEwPOMdG6ezcIBGhsj31QG6FlhOziryRVuG2hhbmJ7vrKcWXzzC5zzlinRThAH3DIj+\\r\\nUj6uFQ1p52ZRyuSsyMrkJX60sLVn/luLKZhkCI31oc1krzaKOvq/tWGsyXLOgnbdq12/q6MrfaCf\\r\\nDFPrcspWa8t3HUpLMQcqta/P3hgA4ObZeoa86jvgwtihl14K7Ba9nmC/9KGxW6uMGiOrTbKR4SUP\\r\\nHfqb8WOIjau5KZqENnMH7Nmx53+AwBzpz/jwBb3a6OwowI7+NAZnNN19990LmPHKKM9XB6pdtVui\\r\\nXb2829h8V7RIms/HTkbjUjDvHLZnn312HSCdeuqpyytyyEpHSwA+Z5xxxh4gqpeI6+vqq68+6Mor\\r\\nr9zjupc6qytD9/bt25ddhUAd+jgdAJwPMGP8aLvwwgv3eTyDyJ2dzICyMoWOjrG+9WMO/eS8Sgfi\\r\\nM2AZsKYTvMSZnGgLH1qH9JYf68dc0V3+byeamrM2a+mn1PjU06WV9KPvMiuticBDOmLq/9ax70pf\\r\\nFWhApzVEDtFDP7Ue0/kZceOZUSPX3VtbgZIcAO3OrFO0kWPteDY7kcMW6GvTUjzMTmf7sl/4QocG\\r\\nNrXrb/zVNyAuigtsV0LhtzKUeYrBHuBk9yY29FbLmXNtftCvfc9UCpPNnnYjfRZgNBbP0BPaWcUM\\r\\n+ktXx9ecWfOb/ij9m23KrhfBWhxdAIsnEOr1uwmroYhu8EUbZkgs0NEuF88avMGZBAu1SEBRiAxa\\r\\nqBzz3N9JxrXVoAIdCZrvfZeBKNqkjcJ2GboUrL6KCBUJKFQbEDBxIWrjCpwUUQr06AfNRQy0o03C\\r\\ngIeuZzgDbC1Av92PTvfpiaPycwAAIABJREFUO4OZ0Ddx+icMIXX9+fFs4DOEb67wOWPa+UXxsH7y\\r\\n6krppSgmyPA34dOHvixgtIpczTRN0Qpjbs7RwVhZdPHHGDynrxajiEEG0ffasJPJd7w4YzYWMmEs\\r\\nGd28STwr0uG5PD3fUbwiTe5lxIwhUGZM2tRPaU7jQze+U9j+LprLCBchNIYUSY5IUTO0Nq/GnWKK\\r\\nB80pGQrk6CevsQim+7XlnhwOvMmjDjgEgNxThFPb6G/9BI4C/IXMU6baSvlnKAJ9ZMBY8cbzgdk8\\r\\nu1I0E+AVgdBP6yD5KUVcpLjoduC+yFFRWH3P9dHayttGZ5Fzz7R2ZkqhPj2DjgkUi7YUITI/eEEW\\r\\nZzTFfeYaUKqYPaBavQZavIQZSHrwwQeXk9SN34cR4Yxqg1wzLMCkfp0tBQx5+fApp5yyvLvzhBNO\\r\\nWOqi9JWh4gz0+iggTs2WXYIO2LQb0Pqg74oyew/oPffcs1f0yYuctWN8okNqMHOG/HYe1uc+97n1\\r\\n+pXLL798efXNvOewww5bk/LU3z/+8Y+9+vCanCeeeGLZofzzn/98C8BmLX7ve9/b415F/ffee+8e\\r\\n3334wx9eM3/45HfRCbxLdoEjETxF8Wrb8DFnGcAyf4CaOZhrKh1F/5Q5MbeeBWqq58t5p8/IV06j\\r\\nNVDWoIhdDmjy129yFigM1OSgl5LK2coGWjsBwHbgFwVN3/tfnzk3RY3Ibc6U9Vn03VgCZQEpfaRb\\r\\nojd7GkCbfMv2xn9tpoOyacaULtV2zpRnP/3pT+9xev5111231LHheeNK1nNiW9eu4xO7Q4bYlexa\\r\\nvM9ZTceXVjdHRazQXlQVz0ph4pP/060FZcI5not/RbLiR/YyLDTB86JL3/a2t60xPhjmUwoiYxPS\\r\\nLuWSAjPQQrOu8R4tCIJbmB+hbTcOYCEIoGvXk/Yy7tVnYSYjNg3U9DoDK6H4woIGWZjR3yl1fcYA\\r\\n32XQJsgJ7Yfc9W0Cqp2aEST3xo8MwFxktWv8M4LWIkqJT7ClvYl8A2rataAIzMyZp+xaxNMTyeiW\\r\\nMmq8E1xVc2IeS8e4Xm2SZ42tEPAE22ghkIGd3gHofinDUo6UfunSoolFOhkL/QZUaj8w639yQsng\\r\\nRacyF4b3XDt//I32UjjuxQ889aw+C28XlSD8xuCnnUBkQ3/Nm3socPJYujlgpN0UekXPvtOWMZBv\\r\\nY6TgpVDR1sGNQKVnGFjRP2PSZ5Hk6u0CGUWGzKNPvEJvkcDATGnVAFbh9Z6ZUbPWe+0GAgMF6I9H\\r\\nRRiToVIOearGnvHxfGlY/ea4mKcUX44FuqfDVYrSfKHL84GqDKx2Sg+gozVYis419FSjmRPSuNAz\\r\\nnTrKOoOFnimTKdLuJ3MdyupvfRZV0YbxSYdVgxhPyYNozmWXXbYXGDn33HOXtB1w9vDDDy/Xt23b\\r\\nthxnUFq0ukLtaVv0xkGjm+3Sm2DoQP72Shu8ll50PwPI+B1yyCEHnXPOOXvRfMMNN6zdeuuti+Ps\\r\\npdNHHHHEHlGwo48+ek2Kbvep8Qd95zvfWaJY//nPf9bb2r59+9oNN9ywvEZnvtz9scceW9pml8x5\\r\\nhezmE8/N4zR6yRK6yayoHt1DD5CnnKWcTOuQM6Y96xsgtSaTKXq/qIi28Fu/RSNzOoviJ6elzNBH\\r\\nxor+FDkpyptz4J5oz2aab/Pg3tZKY43+HK6AUPJnLQagsnf99r3ns5056dMG9R0+dp8xorMoV/Yg\\r\\ne1dkJ12FFnqgNRueAPYff/zx9bm/5ZZblgNjzVFlHUWLtUneC1iUsUFXesc9/sangkMz09W4sgNF\\r\\n3op4FyxKtwfQc8CKVMZPfceffmu7QMfkvb9zTLe8/e1vX9655EtEtM2ekOhcAwS0iFAIG6EMq/so\\r\\nHITYspv3P9MX2jBR6rf0A4iF9BpYobrqVPIK8xam4GRkErBCfPqOgTE4g5OglWKakxlYyBjkzfpN\\r\\nACxy40d7Ydhqf/LsE8CiXCnz6EF/kbc8kAQX3Z4LYDUX6Cq60Bgzhn7jjX4tSm0ErALL1cuE6tum\\r\\nb4G7p2hOyoQgZ7DzbigW9xqvH5EG/QEtaMAb3+cFZvCMzTgDWEU40OSa+1NMHWFRyjKDV+TKs56r\\r\\n9gIvkrlCw+hxvXcikunqDMhp0TMK2OtM9E2+f/WrXy1yaaHidwDxhBNOWKIQTsT2klneMHlDix/F\\r\\nrsL5+tcWJY0v+jfmTnAX8WiXlXFS/HgU4LNmrLl22lXfgz+loYpM1TdeFGXOswpM5olVcJ8SSAGk\\r\\nGAP5re2invFMH6U284rxPTnMUUETHrgnWXCtgxT1W3q92ryiVp0dVXQAfyteN/50ifuKJEsxoM2n\\r\\nlHLgMaCFjtZp844/pZFyzAKLRaxbD+2GLcKn/fRGgDXA43dF/NZvUd6MbalM9Hbi+bHHHrucch7w\\r\\ncXjnfffdt1z//e9/v3x/5JFHrpkr6y2HEx3G4Dv0AAhSLw55/epXv3pAhekbga2TTjppKarHB+8B\\r\\nPPPMMw+orTvvvHPtrrvuOuiPf/zjkpJvN6l6m+pTrAUgza4/qcvGFx0f+chHllPupe4vuOCC9X6d\\r\\npq4GzcecF42xlnLaReHMkfluU0WGs+yBIxbsArQb0S5pc0yG/Ra9y3Eim/iavSBbbQKZAHw6gsZY\\r\\n3W1G1fOtza6hMZ1etCYbFkggu3SW9ungABEaAgelmIsO1Vdru0hUgGymIVuvBQbif+Ck/lYzLNmb\\r\\nshjTcU2X178+cvoCn54zP94ryckks6KhdmKqcVWjTXc2l8ZkPaGdXuZkkx1rtUCKuTMnHXeDxoAg\\r\\nXdqaoevLcFS7hdbaqfTJd9qnK3KwrTl0FWiakaucrQJArplr/09n2DwsKcK+9EUpjlClicAUhFKE\\r\\nKakAFIaapAxEhh/BmGMxaN8Pz87geg3EBAuhcs8FKjBbu01gKZKQvH7d6/pcWKFpAyZQefeBIL8L\\r\\nPWNWYCivf6YYY6yxJ+xFVvSTAMW3QobVcWQUQ9dFYEoPhcqjubBstLrfp3bzQtBM0Iqe9Jz7A1o9\\r\\nU0SpV3UQ+F7Qa1zNJd7jWYAtpYZ/+vIMwQ6Q4pOIpTaMBw88P1PORfACXKXMMlhoLYVV+N4CMa4O\\r\\nFjQO3rS+0eTkea/aUPPhGWMWKSIrXlPiwEMLpMMW8c+97uvFsKuGxis8KGF8NE4/yZfiWxFa35Fn\\r\\n7XTGEQXey3QpabUypZEsYAYGXXjD8FSYa0yu40OAMyWWrORsBIoKnXeSOh5NUG5M6PdJDsj0jNyY\\r\\nnyJMeNnayluenmkAJiCcgUcvGSDjnSflb+3ij/vMle96wbUxFRFNrqIt5a+fnI68cvQG4I2f0jPX\\r\\n8aC17D68xjN1R9qSIq6mLeOf4xht7jMPOUqBL+35tObnmigyDkQDD2gVnXEvvlgPaJ6AD+2lr6X3\\r\\nZsoNwHFcg3Xp/Cg8Ff2x5vAPqNBWkXi06ltEzLroVSaA1m233XZA4GjKv8OmHZy5+/y75/z8iSee\\r\\nuOYlwO34ij85PYrojf2zn/3spuDtqKOOWmtTVS+hPuuss5YoGD5UL6UQPadK9Je8xBtrr7P8jj76\\r\\n6CXK5ziM1v9VV121rIucSDKf89zrX8xTdoau8n/R/mxTDp/vcx6KrJS9mJGP6oT04fv0JFnLMJd6\\r\\nM9/p2FJmlUaU3goEFRHLDuXEFz12n7Fqu4xOYMK9AbJoDzg0hiJIjcUaLjCSzcjJz2HLDpQNEC00\\r\\n/96ZCYgDuYBtkX60Gp+5LEromA08w1861XXYobQgOYch7GAFzCotoZOBsjarkBljEQklF+lzc2Yu\\r\\nO0PPGNJjBZKMbzVah99FrIyz9orikbOZQl3A+Kte9aq1GiVsCKIgEjyM01i7yPxfRMTATELbuIu4\\r\\nYIqPBdtb4jt+oT5C3xneJg9RheW1of2MRVGVgFlebB5mg85bcL30RIJde76npFNafpdiQFv1GgCE\\r\\nj0krrVleFy88k7eacUtQ0ZVRTAngVZEwfeZtoKeamwwimmeKdsnpjtot7STgCUPALKTufwKNZpFD\\r\\nBodiIcDGVIpGn/pf9dYJo2fNrfE39xnCIhXo0EaGj/cQH5onvMjQ+m1s7RYMKAMs6lM862/G1K49\\r\\n5/Ds3LlzzaJyJg6Addttt62de+65C9Di5Woffy06C7DdR8ac8mmrOxnr3YDNk3RBi5jiQ1O7hVJq\\r\\n1THht3uNu7+1SaG1o7JIk+vaKvrbXKVcC0tXU+E6mgt/F+Fsbq079/h/1pS1LgLK2jVnOS/aSxnP\\r\\nyK756c0M9es5P6Us9JUDVu2K8fvbmiYfgUn3+tv9gbFktXWO1gBI6RR05BShoxSsfvCALhHtcM18\\r\\nm+eiavpsvO973/sW/thqbw7SS0UC429pgOZWW+53ne6yHnjYk9++J1eiTcAVEH/77bcv9UaOREDz\\r\\n7373uz3SuGqFtCXKQ594efIEOB/60IcWbx4ItDaL3mmLgSpdn1NCl0pdHXbYYes7/KRcFJbjAb4w\\r\\nNCJG1rm5/fznP78pcLKzUDqSETuQM6s2ioKtficCBXSSjwN9Rc8xxxyzvLz5L3/5y0KrNKOi+cCV\\r\\n+RLxLUVjnYkYky27Kjd6x6B0IwD6y1/+cv0VTmULcia1G5jSVqUPRZkaW7oru5L+D1ykr3OiK9Hg\\r\\n4JJBQJmc0iHWYptBAvei5+at2i7zRkcDlb0OJmNe6jOHINtQpKbNQznord/sYBmdmTkpLTi/KyKb\\r\\n3jD2gIa/u55sZgPdY716jtwDv/StuquZaqs8QzsAD7pthgC4gGuyjH+cEnLPoWiHovkHWv1GO32F\\r\\np+7zYx21QaK6WXyYtrbgEnqLaDe/2cIwUHaiYE5RNfJSpCs7g+8LIH7ta1+7ePsuMGgeslANCoEd\\r\\nQmrxdb4PAZm7xyBUwuNZ4VjPS6l4Ru7VQusQwgBHYfmQZLlbhDWAojoV15Z+C2ilrMuxFxXKkGdY\\r\\nCmvqK2NWhK66nQwOOpbQ3gj7aa+zcDyH9hai9hLiiWQDcqUUSmtU9F7kb7ZHCWsjj8PEEsBoThiM\\r\\nw315ERkDbVWEjGaIHmgg0AyS9vVfBKExBZo9U4SsMRG20rWF0wNTnmcwGlvRPIrBPZQh2kv1oNPY\\r\\nKAftl1Y0xhTCUUcdtSxEihYt7k3BEnDh4kL30m0Mrk/RH31Fj4VItikpNJWCcn81foEBtKUk8uzw\\r\\nqzPicgSSG+Nqi26AufN0AvU5CEVDSqUl12Su+oKU/OL17D5XybWiTUWlUn55S0WcikSl9PU5UwWB\\r\\ns1L+AVpz2KYDPMk50ne1FKVV2jFkzegnB6uIle86OLgUGnqNu+gw41H6E+0BIEDAvWgoVYyW6mLM\\r\\nTWlI86INCjm+pAtKgVQ7GW36IguBOde1h17rIc87Y1p0Tf/Vg3gW4BFBJfennHLKAgTOOeecNalm\\r\\nR33gGScgsO0Z9Ule9u27O+64Y3mm9LMi9WuvvXahrQgFWfWxLirZyEAnE3hj/KJYgJnDSzsclMMh\\r\\nWsChEplitB0oLLJKD5N1a8r3X/jCF7Y4E0v7N95443OOXh0I2DrQexzGqmDfpyMQ0CoSZY7IiMgd\\r\\np8o90kyrux/rS40YZ0oBfDKN/zkc7iOX1QhVJ1W0ZtqKHH7XrEdrLV049U7BgYCKPvxtPks55RBr\\r\\nH//pKDaWLmF/gfZ5qCug6sR48krXVe+KTxXkWzM+FZlrC6+Mv/R+NrEIXps4WqczWlVUPH2I1tax\\r\\n9nJk8RLwS0b9D+wAR9o1tjJF5KtUaTo33vteX9YcUKYg/sknn1zWkbHgtXWnbfJbBDFQ5fv0Gzpn\\r\\nWtV8AeFkAEbRZ3Nb9qO514bvzHOYA91oK+1bLbZ72jxThgxfctLMxxJMeuMb37ikCN1kaywFSLid\\r\\nLGzhyoMj2uTrhOHLODIyOidAvaOJkiFMQJV2AyAGAaAVHtWG+0xs3icCEeU+nxZEKB1z8iIwqXqV\\r\\nIkh+t0C0n/AXmQloeQ5zqp+xeI21dKH7imSUgkNPEQfPhVjbNWcsId8iCe7JoCWY6C79UWSiCEde\\r\\nRuArodGve6u9sEgLZesr4FLEQb/SJO6naDvTpd0UricI5aPjYcqhXDYelqrCEz/oMk+Fm8lMY0c7\\r\\nnjAOBNr/7sMHz1WHkyL0Pflqo4OxtVOkYlDXi9b0ZoBy/BOY1E9RuTytQGPeBfoYJzyIJ8bZgYL6\\r\\nQKcIgGdFMSgS19FBcXiesjN3gFXpkGqIijD1fakLcmI+OjSxhew+6wjfq5HrjB3tu0/fRYsZy5Sj\\r\\ncezezbXIv+fx0Zh88LbolXmjqHMaRHn87fnWBdr1Rxb0U6pKW/4u2qv9PFi09Vxyam5ax8lyzkM1\\r\\nYv6nb/CSLJSKL/1R/Yt24jce8orxAoDIs3RP+qE5Sb5KjSZHOVKzFjOZLMKYE6UffaJF5Ei6o/pT\\r\\ncuEIkF6lhNdlABgLban5w0tyRabwhzwAC5579NFHl2utazLZoZjWj7kIIGbsA7s5XcYhUgZwnX76\\r\\n6etAycnwdiUaG+CFNj/o4awEYI1PsTnQ6D7to+G0007b4jR364HMWgOz/drdX93Wt7/97TVzc/75\\r\\n5y+0eK+fvr3jbwKwrVu3Lu/Grdj+QMGZ+84777ylVhLtQEt6g91qN3m6tehowDqnKEBSZiOAkG4p\\r\\ntZz8kGNteL4jIXJA0/WeJRcAlWAEmcFP8pFN6V2U7qmMwauDPEdfuX722Wev88o5ZGjQNiBiTs2N\\r\\ndo1VGo3e0p7f7AC6/AAc5rKgB161jo2XvJNv95BL0SPtkRE7XjnAIoYyC6K1xin6Zseovn74wx8u\\r\\nckVW/c5ZKUpoDU4wU4oSkHYWHJ2za9euZR7RYy3jAV1VOUHOMt3XnHUEhz7NuXYr9Sh6WJ2VeSwq\\r\\niBY2zvj86NMnu6ytmW1IJvE+GxW4KoIX1lgOGjUQwkFp9Xf1HRrTaWeCmIiEsUiBQSJCJ0UlElz3\\r\\nhNopljzreW/thRwzwnnz/SY4BoDWIgqltiwIbZtEP6Vy0IHhmB/gS+lOIFStV8YDHzC4yIp+85zd\\r\\nU7qh9zKWWsCvULC+42OpNO0ZT8q70CtaErxADh6lEIpsab+0YSmRIpDa9l3F3oFcz5ZKKnqSdxXa\\r\\nn2nZ6GYE3M8o6IMhXE37aYeAz90YM5KXXJRfR4c2ox1fSlF7rtQU3ncUg4XuvoADml0jD+0qwn/P\\r\\nAirC0RYUmigdqRu86VBHICMlWPQM70ujOGCxiEnvi9OPPkRvvMYDj8092Qoob926dT064bl2UTLI\\r\\nRffcyyD3wlx/l/6SevI3fqJVXUsF3gEmUWGGr3QmBUwuU4j6QWtAFa+tpxSTsVPWAXbKEqA1HmOx\\r\\nRq2tImsV76MDAPS89vAioB6ANdfmxfcp09InGbvmPgWYU2Auq48qglW0LvCBRm2XgnUfOqUN3Fvo\\r\\nvwh0StLYiwoG+PTVOk4Z5sjpIz1QOmNGh9tJKNqAF70zz1jwEGjynHkKOJND/+N17/gDiPD3mWee\\r\\nWX6bR/20Xpu7lLfvG0eOFbmtVsXz7u1dmcZhzqzfWY+4Cloc20AmyO+uXbuWs6iMQQQ6x0s/xpLT\\r\\nwkiTRTJqzMACmatw2LxYW06Vd7ioQn6yUfRp0jBB4GaAar678JprrlmLrwIA/o7veFZ9D/nwwQfr\\r\\ng4zhm3vbpJMcVNSOv0Xs08cZ0nYFtj46csacdWgxnaON7EVR5Na/uSmSgx589nz2qWfdYxzORqOX\\r\\ngFy061NksqOM3EeHBAZ6dyRgZa1aM+aRjGoPPeah9YfOHORsoOf8rT988jdemm+yplbVNXST52xx\\r\\nToS2q6Eq4udau6OtmWxrQRByRccI8ljvxpSddE+RaPNkPv1fyp0urC54lr8ki9k+49JWEekyIaVr\\r\\nA0dFOY1Vu0WNyUG8C3QVqHBPTg87VU3rloMPPngtI99vjbT7KwMcgEBsueu8K5NWest9nqlA1r15\\r\\n5AZX8WfnBhUNS9mZyIxxk4OZJtFk6jNDmQJNIeurcH8eu4VvwkK6JjpvFt0BqFArHuS16Kv0Y6mY\\r\\nlJz7inQVBUoZlxZDS1G1iWxLzxA0fbWoigIVoi2dGsIPHPnfD1oCYeXzKRJCSmECRM6qwevGYX7M\\r\\nhwXAoFc8Hugs8oeWztNxQFzhYLwMEPV+RTS0nTxDpA+8Fi1pd477MghkBK2Uv3Y6wJEh8j36L774\\r\\n4i3XX3/9cowIWSAD6q8SfPwAEIypsDgFJ9oKXPLQzf+uXbueV+pDDQhjWIRH6Nt4pMF5W4xW6RUg\\r\\nLs/TO+bcq67GHEuTW3wpHjSnsHiAlKxx+66dSZQexdEmEesusB7A8Ew1ZdYVD6/Ik3soRHKi36I7\\r\\n5pnMJUO+D8hSJp09Zp7y2lIy5kU/aEMn+TMHRV4L1ZNf9Go3OQjYJOsp+ML0KTt0FZVMp+BD408P\\r\\n6dt180B2yFresjGSg6JqGbvWU+A5uUWTv1tLFVFrv0g3+hko9Jlbz0izlWb3bOCnSIY1Y/eUeSmq\\r\\nRx7pHXxm/ABt8l1qo/nLYfQc+rVfhB39rqPHWNODpcfdm0ORg8MYkQc6lLz539ozRjrALj50iIZU\\r\\nm6rUAw8zpPrVB5rTdQGuDpRMVsxhkQ1jJsfkFW+L4KXPRCw8l9Ptb5EQekG7QEOROv0mA8ZIJnOy\\r\\ntFed7Ixwo1s7xux5a6bocDbPuMgYfpQ+8z95p4vwwdo3duUWgBIZVCOmDe0ng363KQKtrmvL/UW2\\r\\n29lMdovu0xF4ZL4BIn87G40eBLDSCbfccstCV6mrgPmUlQBX/aPfJ4c9+5g9c518kOcO/kRX9U7m\\r\\nQPSNzJsbvDCmX//61+s2twBH8mcOCp6gR/S3InTjc50co7EsiTaMq5RhUfiyH9ozdkea0PMOuH3g\\r\\ngQeWqCewb/7Nl0N60z3GQ4ewd3S3vuj13/zmN+unDgBEgfFAX8ED47FmybBn23Tif9eMI11ofJ0x\\r\\nt2REXvOa16x1E8Ew8SIACEyREx5/B4rmQscQg8JsC8KCNimBDkKT50PQTCJmlR+2OAiIaxht0fhd\\r\\nCDavzDOMqIkKgWIAxuQVFzkJfLjeVvC2wJqgomqh0BAxxiaYpT8Lq5ayKK2YQg5dew4deaClGTJk\\r\\ngYuUt3sLRwayVmtm8Dl68xj8Rm8GxoRSjBkDnqWUhAWO7xaAEHDCweDrm3BKA5tnP9XfZITQUrqP\\r\\n8i3dIUVMgPSfos/4ZFgtRALNEFFqBI1MuJ+SsLurF7rqL8McP8hgdQgWDw8sEGL3FS+bUkYfWvSl\\r\\nBqWQOwXAOBRN4UWbFy9qpajUw0ilOIIhj1mtAxlDo7oUL7J9/PHHl1rCdrGhveJ9IXJ0WtTmiKfJ\\r\\nO9e+8ZgjyhfvtCtEj16KodB5B0SSEfypLgOt7i9NnZLqtHnt47G5NHaheQrvF7/4xfpuOLQywDkW\\r\\nU8EGODISgRyKgiItfRJYDjz4HgCYER78skZSTvGztF3rIwCf8nQfean+IXCT4xKgdj0vOgUeSNfW\\r\\njPb4vtQdJZiXHEDJccnQlcJxXb85agFS49e/dvRdNCcDrz3rD8gzJ+S0tI17zZd6rd50AFShj+yQ\\r\\nX4rfPOPpTHUHAItq57zEu0CV/tEdQCzKHa1F++kG7cfrwGfPuU+KxxpzLWDtuZzFjEyglG7SXg74\\r\\nTKvgFx4FvqpfKUqafi+tliM7o4baAAbdG01kps1C5iYAXaRTe75zT30GCl1jK6K/nWfRSPYnHcZX\\r\\nRqD0vDWnbWsum6k/dq8IrWesu8B2NY5sV6CztvGM7vaM8WR/s3EAsB/ziRfuZ8ecmaa9zvACHMwd\\r\\neQqgG0uOJ15ks8mLsdJpZFebgWbgyboJ8KOJDNMt+Ei/itoCM8ZCxyharyQjGwgPtHbMnb7IZuNv\\r\\nN3sOVLWRM5rVWi1TlMPHYXHMybZt2/ZwmqWgrcErrrhi+f6MM85YNkjQcT5sAhrMYSUoygtaC+nH\\r\\nHAfzXMmE8RlPZTHJl3bxzrOtB3Rb48aIH1te+cpXLtvXW8QuYjRlkJdpYTDApblClRoolJjwFz4t\\r\\nZJfnVZiOAKx6e4ViPYOWhbDdh4Pqy/2Bp1JZCXBAx/8+3Yv2IloEvrRJqRF0EDb/E8aUt3aa+JRL\\r\\nzI+uUnR5PSmU+nR/kQL3MoTRmeePT01QHohrFkU7KwK0GbSiUCbc8+7zMS9Alft4y4FbdBTGzoNK\\r\\n8QEKdlsBXkK+FgvvLLoCYtrIs7O4LBaC6d6UKj5Q0HhnMRJiu3bK7aPRsxZ0Y+mlqV5Iq48Ag3uB\\r\\nn9Jt/r/kkkvWtGex6Ieg40VeI77pF/hDE6MFxJFNRfPkmQJyyCMgBdgA+jwqNSZOrjZfeNDCUGuQ\\r\\nR1ja2280WGB4Z3z68R1gC7Qan2JjwNA1z7R92FjQwbii35j0Z75KqQBk1sHTTz+9ngoPzFIMPsYv\\r\\nvUQZUrYUrO8yHhQk3rQTmJL30WeOAlmtqDpZpbzJsrknW+aldefvHJMiDa7hWU5FqbaiDCn2DLz7\\r\\nfZdeQRMaqusLZGQMiggUNccXH+0VCcE3hpOizCAxABRqwCrHJ2U9nZTSARlI48/4Bro8hx/utZ5K\\r\\nA2mHM2ru2+3Vtbx/cmK9Fq3K4Jg7fEZnO7RnzWHR7+iZjltrNIOGznhXVBvv/PgEuMhzjpr5DLiY\\r\\nQ3NKF6Rz3Ff0zvOlgeJdOlHf+JXe1E41qvhlrshfsuO50jzacq/7ArJkdsqTMZQ+NdcZt/iTk1w0\\r\\nzP05CNGczGU8A+bTPpAV/NB3tsDfge8cZPyM79qNp+gukusefZPbom/0JjnlbOq/ue66Pqu7w0v6\\r\\nXO0TvnXcSNFj161vJQgFHnpPY7VE5pJewjs05gRVA2oO0M8BEJGjz91DN7nHtbIi5od844UMQgEM\\r\\n66w1nTzgf3OBzsBkkXl0hSWSqxwHv9NF6Y7mCtBjQz7xiU8c9OUvf3kx9naRsx/umUDWvNGr9Iox\\r\\nNLcFLFrX5shzgVt9tn7CKGg1Nu20QzMsgwZ946XfbJryEfN8zz33LM7/EsFKkeURWVgWP4FOoRU1\\r\\nyUtCXAsBYUWhCE5yOsP2AAAJDElEQVSM6nqCGhL0G5EGXmjNJNZHAymaUmSh6FIpNnSnCNyjvYBW\\r\\nhqhwZxGfGJi3hN4WUenKDE/1NfppoosUBfACpoU29RsfLTrPWkSu42uRrcLCxuyeUnN42WFnhDrP\\r\\nsXlogaODYs4btHAzePpJwFJY+s1DqyjwyCOPXJSbKAxhNMby9Iyt9lLU+mNIfIqIWeTmMcNdEa+x\\r\\nObiwQnLtWuw8IN6+BfL9739/AU0iRL4zTsBNxAtg8JF2s0vIuVZoBFTwslRQC77izwsuuGAt0AlE\\r\\n4c1JJ5200Gd8LUxpRzS2c42iAl6MK7n0vDWQ52QM1oO2GFWhZt4bvmpHxIzyANq+9a1vbZEm1K42\\r\\nPWPzR69AMZZC5fhalNYixif98r702a4XfZI1i9YCtpBdu/vuu9driU4++eRlzp566ql1wIoH5rK6\\r\\nB/36oXRFVsgH/utL6tKHgqXQ0NWZU4HsojxkPMOcUzMBWQoyZZYclyoN0JB77ZDDdmGmP9COziJt\\r\\nOXgZMvKm+NacF7FEd5EY8mF+8Kn6iwyAMVr7RQ9mFL1oBl6Y29JeaEzHkB/ryDiraSuCn0E3NnrS\\r\\nnIhaAYA+lDYZYKDiWbsnoyOl3mGH2sEzbRe1ck9pGNdK/+jXfelZ91T7aMwZ9+hzr2fJlfWVYfW8\\r\\nceY45pAGKgId6cYiSOk06yVwlBOd/iSPFVDTC+RdRIaR4mwxfNKV5mc6wuavyHQO73T00o8BS3wp\\r\\nqoi+oselEKtJcn+Ry55tLvxPxtKRaDK2Np+YR8BEX+RMH4HMQCzHEL2eq8YrMFGNZDud6UC6NqBg\\r\\nXgJA0rnWs3bxglNHRjlVQFbRJNfQYi784Kn2eiE6mUUzB8CcKytBvzno/Y7Z4Rx2MqqvAElnSwVc\\r\\nikJnx92n/XaEcnStAfQr3+hczaKryVlRNd8bg5d307erGykuvPDCtZ07d64Dn+Q+gBveCJ9YA8aY\\r\\nQzAdN3/3Xk+OumfonbJLnmvzXZFxTi4eGj9b9d3vfnc9qnbRRRctGZD1c7AypB4O3RLsAEEgIMWS\\r\\nV2hxEbi8w7xV3xMkQlhoE3Box6HnUxbuZeAsQt9XWKsv/wde0FJ0KIBUzt21agcwWp+EiDEhlJ2t\\r\\n5HnP+GjbJATyCEiLx3ULKq95eWB4g2jyScFZOKUeUrBFydoyXmRsRs20Ueg+fgdYtJ2Cm56nseeV\\r\\nEn73WXBFS4zbIqmA0hhTeoE8Y/WKC89KbRRVMUcEaYbxzY/vLdKMNSVgwUlPuVYKGdDTHoUZX/G8\\r\\nFJ657UXMdk+p7+IVeV7kSR/4wGAec8wxe2xZxqsdO3asUQLm1UKgkDuOQd8WpLGrf6J8Lrnkki2r\\r\\nRbR2SZWKcl9FnmSQEqCERAIpVW3liZVaO+6445YImDx+dQUPP/zwojQYUmnAUmeUo/aMmdwpaEa/\\r\\n6xk2c2KduG5ezRvwU/QXuNKmaIcxm3NGiedZtEp7vF6/4482qm/JCFZ7Q+aANeOgvHafP7S+I6pT\\r\\nx81DCjSwkjOgbXxET0AxAGVsRSvc70OmqotoHefcAc/mTmSn6BpF6H5tB2a041m8cR+Fbd4YF7KV\\r\\nE1Zah7xS1FOnWSd5zXjdpokcOn3kqFkfAeAi9zktaLIGSjOhy3PGWeSd/PiIsAKDxmvOZAg6MsEY\\r\\njdU40B8gQKf/tTWdzABt6Z7Gk+OUbkNL6T5ylV5NvzTeIobdq790rT7mhh90VKOUTsoBzWnM8Y2H\\r\\n6Rz343X1dnhDjskPWcpZSSe2uSGg7Hu0ZUhz4H1fnwHWSjm0GSirjk97+s6BLPpSP9kWdHu2yJZ+\\r\\n0Dqfoy/Qaa1Vi4xn+jKf9Br5A5jYAf9XozcjIvHI+OhAH3bLhyFvUw3ZcT4Ue9bBx4x7mxLIq/6N\\r\\nCe0FAOgGjpRsBfnUnnnQHvr10WvTjJduEDkz9+bVtSJbRUvjV/VL7o3XeGisbJHnSksGugM9aClV\\r\\nb+yBomwt22Bn4WabNJRkVMfImSVHlbAAd3Sy/wOJRShbK+lR/ALk2oRC1+Kj62WWwgJoNi4H51Y7\\r\\nSyZkQ9B9/PHHLy9CX/TBy1/+8jVGqi3DFFXGoUhWixwjErB2dZk0aQ3CoLYFY8tBY6JnKqzUB1So\\r\\nuKy0HILaWloYPmPdAvU78OL+QF+h5cm0/naPiQciTICdMT6BQcxLEabsW6gtOIKhncBMihQ90VY4\\r\\nNE/V956xwC0yPNBPnn9CWfqiMHwChfeBWf1lCIrAaTMFqx88mOcF6YvRBGTNkQXUwm98+KwPc0fx\\r\\nE0CAAlBqh5p7KQJzkbdm/rRPmaCbwBFAzxi363LjX/rSl5a0M9AAwLjPQvGDFkWb2v/617++pkhx\\r\\nmZiDDjrIoYD44sdiufLKK/cqTgewGCahbW27j7LAC2BPxOv+++9fM57Vl9jqQ2SJovPD8zR/5Bf9\\r\\neEs2q7tCR0Y+o2u8gB9Z17c6Nq89sbNJDRS+mxNK76KLLlrodyaPOWOYq21snQV89c+QB5j1S4FS\\r\\nnKVd8d3Cx88KOfHUPNdOzoN5Cxi0mSKDlIFFm7D7zTffvIVSsIZLZ7kHGBOFI0/kmFLHI/JDLq2r\\r\\nImzGpz/9zghOBo68GWNRBPcYY/Tqy7qjEK27olnoMLbSYOmBojhFl/pf//5GT9HYAEfgDg2tMzKO\\r\\nLzP6Vnqge8h3qdXKBrTpu4CIsRXRSa+g3Rg7r0uUwDV8zsDkmOIPOW4ui/QUnUFLDmR1cEWi0NAO\\r\\nJvOhLR9j0r7xlT5uHozDvVO/9RqadKg+i9RrJztgDgK56boMefKQUxxAnaCrZ3PiAk2deB4oboMH\\r\\neTCnpRb1kYyVkiz65J6CAM1HcxRwL3XXHCQ76Z7kJ7mJXmPwdwDJWjHH5Ck+9jfaga8cFDuJPccp\\r\\niifWJV4XYfU/mtq8gqf6szacTH/WWWctesbGGDzyrMgYXcDZq45WHwAVXWX90iP6YIfbYIPXnEF0\\r\\na69apN54wE47dd3ckC3rFN39XTQ1IId3yU2ZqdZ+Eansag6DNgou4HXzWyDCNR8A6/bbbz/gjUp0\\r\\nGXC4ffv2g+69994lEmoNF3kjd8lCu7StUXJNNgqAlCkp+lpkjnwUWOLgsXuyL76ztisJ0t//ATmP\\r\\naAQtekwAAAAAAElFTkSuQmCC\\r\\n\\r\\n--===============7298002500338024684==--\\r\\n.\\r\\n'\n", + "reply: b'250 Mail OK queued as smtp2,GtxpCgCXW+5p1XxjPhgNuA--.30750S2 1669125487\\r\\n'\n", + "reply: retcode (250); Msg: b'Mail OK queued as smtp2,GtxpCgCXW+5p1XxjPhgNuA--.30750S2 1669125487'\n", + "data: (250, b'Mail OK queued as smtp2,GtxpCgCXW+5p1XxjPhgNuA--.30750S2 1669125487')\n", + "send: 'quit\\r\\n'\n", + "reply: b'221 Bye\\r\\n'\n", + "reply: retcode (221); Msg: b'Bye'\n" + ] + }, + { + "data": { + "text/plain": [ + "(221, b'Bye')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from email import encoders\n", + "from email.header import Header\n", + "from email.mime.text import MIMEText\n", + "from email.utils import parseaddr, formataddr\n", + "from email.mime.multipart import MIMEMultipart\n", + "from email.mime.base import MIMEBase\n", + "\n", + "import smtplib\n", + " \n", + "def _format_addr(s):\n", + " name, addr = parseaddr(s)\n", + " return formataddr((Header(name, 'utf-8').encode(), addr))\n", + "\n", + "# 输入Email地址和口令:\n", + "from_addr = 'hoolich@163.com'#input('From: ')\n", + "password = 'FYIRMDFDJGHFIOIA'#input('Password: ')授权码不是邮箱密码\n", + "# 输入收件人地址:\n", + "to_addr = 'hoolich@163.com'#input('To: ')\n", + "# 输入SMTP服务器地址:\n", + "smtp_server = 'smtp.163.com'#input('SMTP server: ')\n", + "msg = MIMEMultipart()#创建一个可以带附件的正文\n", + "# msg = MIMEText('hello, send by Python...', 'plain', 'utf-8')#内容\n", + "msg['From'] = _format_addr('Python爱好者 <%s>' % from_addr)#发件人\n", + "msg['To'] = _format_addr('管理员 <%s>' % to_addr)#收件人\n", + "msg['Subject'] = Header('来自SMTP的问候……', 'utf-8').encode()#邮件标题\n", + "\n", + "# 邮件正文是MIMEText:\n", + "msg.attach(MIMEText('send with file...', 'plain', 'utf-8'))\n", + "\n", + "# 添加附件就是加上一个MIMEBase,从本地读取一个图片:\n", + "with open('/Users/chenqiang/Documents/the-craft-of-selfteaching/images/archimedes-eureka.png', 'rb') as f:\n", + " # 设置附件的MIME和文件名,这里是png类型:\n", + " mime = MIMEBase('image', 'png', filename='archimedes-eureka.png')\n", + " # 加上必要的头信息:\n", + " mime.add_header('Content-Disposition', 'attachment', filename='archimedes-eureka.png')\n", + " mime.add_header('Content-ID', '<0>')\n", + " mime.add_header('X-Attachment-Id', '0')\n", + " # 把附件的内容读进来:\n", + " mime.set_payload(f.read())\n", + " # 用Base64编码:\n", + " encoders.encode_base64(mime)\n", + " # 添加到MIMEMultipart:\n", + " msg.attach(mime)\n", + " \n", + "server = smtplib.SMTP(smtp_server, 25)\n", + "server.set_debuglevel(1)\n", + "server.login(from_addr, password)\n", + "server.sendmail(from_addr, [to_addr], msg.as_string())\n", + "server.quit()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 收取邮件\n", + "SMTP用于发送邮件,如果要收取邮件呢?\n", + "\n", + "收取邮件就是编写一个MUA作为客户端,从MDA把邮件获取到用户的电脑或者手机上。收取邮件最常用的协议是POP协议,目前版本号是3,俗称POP3。\n", + "\n", + "Python内置一个poplib模块,实现了POP3协议,可以直接用来收邮件。\n", + "\n", + "注意到POP3协议收取的不是一个已经可以阅读的邮件本身,而是邮件的原始文本,这和SMTP协议很像,SMTP发送的也是经过编码后的一大段文本。\n", + "\n", + "要把POP3收取的文本变成可以阅读的邮件,还需要用email模块提供的各种类来解析原始文本,变成可阅读的邮件对象。\n", + "\n", + "所以,收取邮件分两步:\n", + "\n", + ">第一步:用poplib把邮件的原始文本下载到本地;\n", + "\n", + ">第二部:用email解析原始文本,还原为邮件对象。\n", + "\n", + "通过POP3下载邮件\n", + "POP3协议本身很简单,以下面的代码为例,我们来获取最新的一封邮件内容:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+OK Welcome to coremail Mail Pop3 Server (163coms[10774b260cc7a37d26d71b52404dcf5cs])\n", + "*cmd* 'USER hoolich@163.com'\n", + "*cmd* 'PASS FYIRMDFDJGHFIOIA'\n", + "*cmd* 'STAT'\n", + "*stat* [b'+OK', b'11', b'447684']\n", + "Messages: 11. Size: 447684\n", + "*cmd* 'LIST'\n", + "[b'1 15154', b'2 709', b'3 851', b'4 22603', b'5 14917', b'6 867', b'7 865', b'8 860', b'9 860', b'10 375022', b'11 14976']\n", + "*cmd* 'RETR 11'\n", + "From: Longbridge 长桥 \n", + "To: \n", + "Subject: LongBridge V4.19.0 更新来袭,抢先了解功能\n", + "Text: \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " \n", + "
\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

=8x6NDwLS#1-72YPdD6Q{26IoM%A~DE7O~>>f#(6P zXoc?NiQNKDC~*pP$*-!UDW4vD*ZniCW-eaK+Uf-re^)lIF9#tsKD~E6wGvA*Hh@~{ z#r0u!0EL{56u0W*T@20idU_o{yeVp+Ufj=6X;LxyJ8MN1_MOePs&+@3PLUpe7@dko zTn2wZkzQ<04{pVF${zOh)MhlFA8X=dar0Hvty>G=b#iXzTu6AjL_ZGf3s2nZ$%@f1 zQ&9gCKhcS?>Dbw{GFsxE9^$e9t z!h})sogTWd=T>#t+;q+o*3eyShpw6hb*JZ@umUF((OrP}>P62m2xc@WjQi`nEU3dQtSM=iZYd5Eg8d&Y2-!%hUK!~mxVi%X%T zgdUQQP&iZYO^5;qObGtc+ICc#aiv*EHEt?`I<_pE4ghNVKQ+3Zh* z&hjr-bZ5WgrsJ0L-N5!AoaXpr`;ma@hHd4z@2jsCi|y)WnT6lrK9n6gzMK<3#f7(5 zS!c9dhvgPkkgVbE&Z;%}2dCao1hYDFoU>ubFlJ$GQ)J3+EfHFRR^ zM9gwWtYF1zWS$baywqgNZ#E@r<{9Cz6JZg!7t_#MLRU*jYR7LN^5k6Q_Fvf2#-{KF ze22x~YBER$gUF;&=^_Ur3#U=o@>_jA9Z1D(@-BJ8l^6Z{PwULeu>L+!gDEyT_vJbv zyhf+b*UYY5o&2G~jqr?l{=2hL`hGv(-4pv6{qwcJT#-dpmSX4fAVdVD(RfikswzAZ zKy4#1^ok8)p4Ha-Dcb~NCPzNbY@h;c!Urq_E55>5%wf+Zk z#Z-ey7@Q`HdteGpn8Z@7CJOJH|+uah+v_#bf$;&6|*1QvX z)Z#v`t{^;z@PSYxi(#gMb9=sUn~7z8=)Wf)_Bp=Ytb4Gl&7mH+{}yX@?cdjQP*vBZ zm%G>aSUHU9J8{d6YC&;cet#_gl2r$kA=W>_f&I4BEXa<*ulj9blX}WLyC>B}bP1W~ zjd%p3yEfBV8e=~_oN2szU}+SRpRBT_;{!*ua>-+p3z5HF<0PZCIIo#eno-sE-2JVNI;%2bh@`MAbUu(Ku6+1L9x)WWh3unZRq|~SNPWc?W94x5jx&;y$ z6KKW*wI zU@zKy`PNg@g_@?;e5OA3<-Or>qh!_LQ2uysV*ceht2p}1nr!WzuNuIon)tE~BLJK) zpV4@p=AYemv^~%a%+N!^Me^B09_5J- z;lKRk2@oeyiWq4*F_}zoPK2akK+IfHIuQOKBeYrC_J%@MuO2>#G!PcIlLSt10#NWx zXKu3vENqCs3ZDGiZ|Of;_-G|v!_9VRg-vJ7R2-XfQS*V>Y9eYwOkEr`e0=gzvS2Ck zcLKK$qu7S0%ggOQZ@=Lba3Awk?7jX-dEsieyO_yRk_@7WoE!fB#$er;6L$R}aclxA zFbeEKa{43B<5HPbltBq}1)@GfJ#?Y(?I&wt!8ZY9G&PQZAQDKjl$WU*-M4?iVTkes zD%2@M9|8UjIZEj`@hsK~6974lnYTAZce>b90G_bL%T85&Yjse*ij*G{o)XL=GU$_% zerqi9UP=Pm6vHI41fsuRk_kt=yYG-S_wm7XXt5p}mLy(T1||uNP#(rdv`8YC%fapp zx;wf@(9y%qZ0E=I@LcTaQ4aDZopT5i*p~33B4S|(cp9j;qtGt(uDRBW?4KzNe?2Q2 zLjxwYBTXoP_F-&=VfEd>I#ydCG4OiJ>#}R8H35!XThIRTm zd9Kg}|FJEJ7uV8CTh#@U-Gl4pazI})Pp|#9S!Vt4WLQ^ z0*tMg$~Pm)*1Kc2i);CWZD?O|PW@GIJw(?8324gZ+<%J@sK0cV82Q&v#181g>tSIPg#S2c|cANRL zT4%j(b|deC;(Gc}Ax5oNC!bR4@s>e9HSqoKV+AVOR!H~c*GYBehWOU31CizxMgBZL zU4TgE%kbB`|KH+3})H~TaoGWo|;^@5~?q2pnhM_sT^p>>pp^@-#-o*TL z7$5{4vE96E!pIvsi|kjZK=@{?jVc-PuDGjYy!m-w8g>vNfxPHf0H_b*V}z zA;NC%J$OTE{-qwi3FEb2fo`6KoWkaG@|GX#wy`7MW?y&oow6}1xrOj9OS3+3kQ68X z7U{3NGGEx~EMq4~&9E9LR*<8INR`G*nUZFRkSAtcgeCqdT!?HXgEh7`as7X%oK9zS z`3$scHdp6IW;|7HV`Gno^=iXTr~m5Kw+cIN&aBsIYUoos$v_&~c8GlhC^>!x)JHbP zvZxx2B!GJzQ6o)|AyC+Kd!hdon!0BJcz-^$SqblW))_k#Y z!#h2(|MvS>Mnpy+N8;;T)pPj=LxwyJFJ6E@096!9!c3E48yK|VFO)S*AF{Bh$QAbP ztAP_fCmxndktlsuC|2^=ETmNX!0TOG)iQDCwXup{8O7huv9X!k+U?d#*bMQfz-E?MSGKH7IL!XHJnwwf7-yFd0b`XY48kQ4G`~q=k*LRt&V|4GaS$MF_^b3o?k(-jt(hQzN@hy4` zXp=khk!0{AStvP0RDb3HOF}<+x5$Lc^*TL|UeP%Q4uq39%r_++ZNCIP>OO2zq0YdG z>Y|*^2Ts}+Dl7osp1~28#n~%X%hc%;Grdz?V7sZdhf3{9GQ{E)N{@yo4pZlg+L~*$ zrHTKgDpI4-NSzU`Mm>mNwLLP#A*9t_bLs`_&DP1){TD~6DOqyWsF9d_q(FG( z5qs9c0Q{ebMmH8cV^I$ma}E#V7qoaUC^hoyO+rO|S*rSD$keZ+BbgU?#yoOOElPpb`FS0x?_rGYOo`$!4?spG$%^tA#ny!hh$E#CHGXqsxTgu- z`Nz2=a(qe37eCQW|2EY)5h2B(*&55w`}ia}br-+YvAK$?6I)B+@YPJs zLt3XWOgtXCL18&*X7V)CY}j^3d@Q}iv_IIuqNQbm8D(A$_$&HkApp_E;PrCkNhHIc zIG|X|thDv-V=qVtMMoaHbaSGOzqgX;C|`6QBFFN=jB8NbK}&3Vh->Owi6$Z#NlU{M zQRujGF(XlvwCrn-=M&icevJJJ*VCiAE@xCe?2sh`Oal`% zBrh$wtA#q=UD6^oZpPiQ$kzHoJ*P^1UL~J8f;9cHwFC;8VsxA-xt>%BenOo6cXCyn zy529xeg9mI&Whex=@X6UiZ;&WPYMMj*`h$zuxVvm^^Z6X{KTfc3w(8sa9ilnJzsz_ zq8Ee>F$9%dLw11&)_=vmYA<7UgEvOdbC*el`pHqFo3o@?EBIrxD`;uV@O6=4$x2le zAt*KzbNq{@l$NE$?{5Xk<2R0`A)Y&~lA)Y%HTO713JvOL9;}ryXv+kkkBBT2Q4cug zqkn7p?}w^yGP=yY$@msLpGY9Ctxt*%V4h_Yf34R?xUov{_&6;_VK80f8A}qD94A+4~i+}Bz9{95-i`Pms1#l3< z*EKyke0SCq6%WcVM13lZ=YD@3mxee@YXx}Ln=>3rb#ll#!;`1Y}6S{LvB%;tIiFocG>rs((=LdGg^o-%P~{nn0@21h(? zH5Vy=a)-gw2-oB&TTyh@>!Pw!&gFXdu{wI4n*rAGMeC!uvDzYhX90oCKOWUt-^W1- zu%6b#iP%TLeUN4H4T&9o+t|!MsPVsUArC=!Res;^6{1{_MXZx|+8u$asK*RskO|1q22HNs9@q zEjsp{1BJPb!c@IGi=Fjkii(c0hzUKSE$80_$*8<8ENFe>HV5N2vxpc&>~+`gKRi#H zo;yt`Oy0UWcikv2j?!+b6O^sPkFVyB@dfo47U?=YBbcce9w_cJ#HY(@f$nP3 zAfx;{CmcVzKi{bs+x;V$AQ+)Q;>Sd=6}X`9fjPwgD(I`IX+3B)Fp-2uYG6Z$fdqC$ zfE@?Mk681zxxNwxDF7@P|B;fDd)7pp^uh4j6u*&hlY`w_e}Ho8_c|dJVQbacQ8hj8 z#w%z=jY88al$&XOrp}GUV#V-LP@*~VJeFDq#n%pT_->wcDpGPNMi|gstmv`%()?GOLvR}PUo19J99pD*kg`2c?eqYHu{ac>6l@WclTty=f{=sw!RvXYa zwBGq@9MZbY$P|gO&KA*u%)t$Jp> zOetTmWL*|~bgYX<40FA>G_$FS5d>dOS};Zc88FQlgIx@aYXi;_>JV=*L3lib@?zc1 z+jkIwBN(HP!7WK^b*wZ_x9Co;Zm<6DXFQE8Q;1=v?&c=8v-MGYSEYLqAtlH`M?{eG zKm|67hq|UpO6#4A6!YwRXG2EcKm@WZyPyLFS(les)R#%8W?3`N2zH`U>Omr~{IbDx zWJ-wc0(WFKL`Rdhsn~27kZCgCkiD8skw%zmobN1*1Ti+-QAh<7)KPwaoIi=6N1M|b zcUgRyO=Ri)HxV?vAY&s7f|*&Dk?1K)2Juv&(_^~u`6sk=FxzLeFncV=?}cH@$rA93 z>sJANA{N`QjNt`s04a4!FDlKGnW1BQLuAvgf8ON3Y|5vtqRr;K{X3rY-u>1yoyFY6 zA)m=|K$xZm9wg7QGd5QIPmY=cggWk1lg;hQPPDpVI-@&92C^(Anj=0B%mh`2)u(=6 z69lD!=PS8+sc~=Zz)xKZvN&Of7b7egl&e4`%8@Q^-E><$>SKFjXbuyR?&ls5=)51A zh6(Cv`5N+7CiX>>^*5v_cLo1OWmmL$tpu0L5cB!sggy4WX~3)LO5tJ5Q+xGdvXfQ8 zPQ>2lo=%|2$M~c0ZFwy}*W>LAYlwEcrcf9W zJR7vx#9QuaTK4muF)5Js1nvF+3~AzMo>^iw&4*N5lG(%(10N054#THDJr zy%|UyvS=jH#9E+5gT0C-^oCR^KR371I^Ewn&$UH~Srwqsptf4Xr8oyk1R~D7rPoL0 z>~jxrV^F0K7!$-WaAvB!I|klhT5mspqZSxXD&Q7(ypVYA5dLv%ny|!O3}w)`_Y+^r z493=Kd%qCL8Y0zahzjG2fkBrbNx-^CCPw&=!%ASI7K*BuIF@&XZ+b|r?ZcnN#b_qZ zBM5G?yQ%5AU_6}oIjDJ5%hhVN?Z14)m{edU+W&eLTT}LTMsb$c^8O;4WrU65jvy~% z%+<{48G?xsmX3TkYoq^xT<+Pd&P`*Hga|ypV?BdfZG=4fI1Zv7R`6fXn|#mN!{I54 z_N0+_vrb>_r2j#K8geYq1qcU|ZY{*$z(GB&$#IG5_G&vl1M78>hMHgTlnO7t%xp`F z#wpt|o_i-}ByT!>?+xc(xA`AM=fE9lw?yGiCNsgrwr$(C?Ju^?K{&B(+vdb}ChFL> zb>F+z`32o)y;Y}b?`NONRf(zfPnlb~&cWg3A2^WdPU;B73%`jRy1)>l;cJFq8YUT& z2L4vGQ0JqetX3tiFF3vu?!R!+FP37}^p7@Ay>oDA^YtvNG!DF}&ui}Ssn_%0`2t5n zS*)I;T`U}bU%7<}NGM0s?gE37!9baV$OVdHa)^L5wT?H7s(dEB*XFd1$&aiCUQ=;_HW3K1V5WIHX@=zrcL+1^C9yAK!j`OxdK@0;JN*!?no&p2``PjC$m% z8neX7=`&}mEW@xucBvS2RjC^R;-Gg`;MZh%#?gdwMCY@zhNj50u<@XZTf#Okdvz? zko>f{g+E&SM~}mXiK?GyP`v!p3}*)9T0#w>bVhsth++D1gu^TT0S-$l7T#gk%c&WteOsOF#)QYp!?GUTZ@Tr1cLqb zM{%oF%74O<3g3bu%l+)@g@R*1!tKlfQhhteQ-M13nG00lG2$f?>y7ONcUJk6p&KG& z4hba&cRHmZ6^-aGQwd4@Or6)AS0OBe`31+s2=|P5FwUJ%Bk?V96pjis#Q`tf3WuY* zb7K>K#DkVM%N?;A6x|@ZMjylyf3U6?QN^`tlPCRY67o04W9}Y1r$*N%+Y9(SP}U=G zNK-e2cJFii4s-?2@1H3dhESmJSsdUDbFLq8<}c3VbfoIyaZcJYPHexuuE|ts$&sT5 ztgzRQ&k(O?uPJAEQ=;3NM2Vuq={K`E|5W{sD4~qxp$v4>@cDuuVvrl8T+^z& zFwF1DLunS4*ZIeHvd5zKxPa(W50Et4z)^xcbq>Q|4^20L&W-Rr+kjgt!}{*+DM{X5 zdxM8Qr0~~Xka8jqQJy+VM#Nmm4|aI8Gm4}40j^11!TWm5xe%k%WdxA3xb?ngt&$5$MPZ)TxS<$SEqD5U4J16c{pMj|Ffcfmruzs|Lr$f)m7qm3Lc%l zy&5_2e6V?W;Ag~V%NXRYk=9glrJIAb)ltG-QlPv?CbHc^d-$W6obPUz(#I2RiD2!+ z*b0GXli_)Ii*3)?FJBwGsmLi?cQQQzXNSXgz|6|!c=)d~E5is+Ye*|ygA;#`b#N@) zH?gwoO^+tdfbZ=N02Kq01gW>V^%40R83VTH?TiEbZ7qy*O`;i{1#{mL_A+!iqwkR3 z$9z)>m>~x04m;`OTCxXH73i5P_z^VzagELg|5TK$M%~L-Na&wi3oIiaVKQJI|D#d z0JQx(As;tPRVh&rF|&>ER=PcxZRyoPe`?yUXm?DI>}oKC&MRq?!9)m&MSoJ@=BPj# zgRI8+i9Jj88H4h?q#5eHj<`QM3A)Vq4oy)iclM*E#t%9=&5t;$snVy7<_k-X=TlB& z2Mv~71qgP?s2{n_ZXLzbtL`&-Wk2nOr)8&r)8p|(BP(p+XP?pHYP+#9$<`YuP3i~D z<>hpq^weUl;p)@2v$|aZd^vErIn0ix4UXw;(Ao}6KRcco*+n|s)7NmTxY;MCCiBB5 zN8K3Osu|2KnimR0h(QJU*yu0n`y8`G-c^V25N9i% z{5{GC3uK6AdIbbVQR#pmw-C>J(jhY{|1MLHNXJsktIz`1oG}1TFrb4?((Xvey1wX< ziXxhWt14IWbl4p-`N!Vs^t{u$$G^T*>YO`^S5bVnGV8XboS_3ug)1(JY#;U72w)PZ zZ^g_b)E36wSn+Na9h;R^7tDyDvU;s7=OmX%fM2B9xQyY%1dg7O^?u>sT11E)!9kPN zVqq6RW}BX-efGG#02IJXHZ-#0b832*^6-Y6!YXL*0xtl^<^}b>u#+tb%taTeYcb=AWWwl z-BW)nrn)Uqr%gzo@&E~?zbs{e$^QKD#%mh0wu0&}*snBbi(17Xv1ap~;IeZ*bPDdN zYP({o1OJgBMHxbH;P6mJuJf5?WDQ>~_7g%9o8*Mr$nLN+03+-Y)Qv@ac~R6(xMTcsuLvLf}@) za918aiw;Z9z^y=F?h_ghCI(IhTuK6{FL?*Rm4VENRy&X+#^vfnFJmTS@!t9e!_L zlYr_|!%uwkx5=}HXn0O2jZ!Y+D{9@ufIgB)+z3`U+}Gy+W>A z>FMp*vVrt3p~%9D#Z^jJLz-<|l~2+535d-!u4i|Pj+P3ZJlX9YzJ2;c@67}Xp?GSQ zi4%N!lQxRNFn=ZeIqZT=tgE$ENZdyo`s83crSaM;dPJ}Se@~@L*Gaf$58d|ddT*!o z1*v#MG$r$Epb07=&Y*ZoPtxn&Jq}iaT`1APeb*^6S(WS~hX2Zc%`_4P|ziCB_f(`U_O{QJPnP7=I_Ie(bNfOO)l;-cBQ8`H@k<-XS zp($WI%TMSi<%EeiNG74H!_D>-Lhc(_0TFpNgvJ zK>bL_8l5&>gXZv@snuoD`VMIRSV~rFF)E5vI$CLR+o@wizG+ssLb;L3J%7_AzJQsH zw5cGySjkUR)rlKZR1%k-yj$Z4{)SE+r0}qf*npFNy3Ko}49#q_yUef`o}(Y-<-+kx zSiI|Zrk>}c{rY-|HCzLE*K}v=rOJA=zcU~0*>>pPdA^vpBEGa$uQCnjzcU<;)#F#w5kMW-gEG`uy2Za#m-zVRzMVe30fP{^5EbA*j$~CAw*8 zXzI+)+~_|WaphYMZqF@i85AOr{KWko{McbKIV;NWbv}P}M2dM;^<<)n+IscDw=8;V z#UxHu*t@!iam6CX$o=jB6*qzQyEb&R6r*pl$4@k!3TVKGoX(!4K%Jf26^)OsjgjMjmXM;1ZKrqiJ#f^4m%P z)BPp&p9w5|%ZcHdxp-$(wB_1hAZg&2_ zXdw%1+e;n=+WZC20QNTpUTDjia`1qHtlvdhSIj8-&fQ>FMw5$=8`;=Mko~32Hydje z<;K5a_^>d}LFavF)`7#fea|`d8FaIYe)JJmxirwd=A*x8VKQ(QyEDg03v&!OQcqXMHC`2Oc_oqb&HhK@AjoMZ`!$*&X(UBaNZeBO-(^jT`Vc_T zBSLj~$U*eSNKFO&Ltu~?ougeCebVxZDvtSDf ziXEYbm4Jcym8;CTiB3lj3@jjf*-Kn1dM^t7LChNg^hwHst);RjxxWzsSLKqPEX9Yt z?%P`9d!T{Kb(8f{iTCZph4`FSb6Hp0r(iWMMVc-NQ-Rn1fIwBp>(raC_HS9qp&o^` z_N&BZ8{4&xm70v<8SF$!2M-dX`rR5jZ=HR7F0vwi^F44}hk9Vg>nf->M~LXz_VMXQ zGsX^I8~%1V&+t7w4qbDU^L0HW2ofbr(5WJ@_I3xMAMZID2Ijxk^Iz|yxI zIhvAP>^0$vlF=Q5*;c2D* z*(=wwxsTx@kU1Iph;W2{rb*nqx{@OW)#@}4Nj=f-Y z;bpzIkQUQHyiVDkK8KwQ9aLM)NA`nSuDrnm$>RslVlz!6AqvSub1CmUq0*GroU=QJ zB!x2)JG?PUT29J>2sA-Dj54GwIm#X@!;w0(idq{u)5qn%iyM`Wf1U68!k?% zNqQmi3~u_aNQ1uolfknyeXXoG(9wv(NI>Jj*u~_r|8DPX^B-c-!f0HjO1LjzYRg7b zx)h43B6(peOtLNEbkNU!0)$tvG|%RK!Au+eZ!{ozTugpzuUbt;i)Zi#U5mb!vnN1G z&UfrB-2NLjwQ7iPa<-dIrYMm8Ap{jmcu=sKw&1XUTtPvtsp51WWtIpBLQk}iY#Obi z77PZ>X-q~i{(PJY-hb>8%xcMOVSs;g?^1^*z$HS*)nT09&#i)m%(epH(|IlV2k(xJ zd1aig2>|a)BjEvaKj~i&?H9F&oli=@82C)9&}jZVxbOt0x)AKGUz8*NpP=W)(RvcB zhGd-RPl(>Uz)QI2c$pp#CI*yhBQMD|&&e7ph#%sV?LIosP`qAGE8?L=l3mYmsz)(5 z(}l2trH&|LZK0}~@^1Rp60RRE({U*Qd)<&fIETJuW9ln!7D=(G0)&1a0s~b@=T_e5&kAwnX*h?79SjV)0WNEdG{h@D1ft(P?TnK;tQ z&yvD)06UIC%n0JQGCvwSHoW| zg*F-g1`Vq&$$M^;O1=ELQ?}a1_{#V=_x)kkQ7^pp%MYrKB&rULD#l}A@pF6^_3m}g0%q{zrm#e^?#1;!Ii0#B#lz2dW*ZYYm=h=DT2&XCyu}IBBf9}yry9Fe#R{=i5LV{ zg?@p%)_LT5g~-Yx2M^)BW^Sr6aX-zF_W1GpMX z3YcH;Su5smeS*~6w#9{J71ljr5_45_j9-4F^sFCNX6ccFTleq*C^vtN?t@PM<*rmao93D6yJ8#4O@Nb3Uf{ zqeymfAjNgc+%E0xNeh7kW*@92(Gp3M3_QXsY!w%9OoFd`9t=TY)NMIbig@;)9S1D+ zv}f9`66;Lg`)iwSl|Fo3LXxtajrEoS$n@6vi6|42C3Xx1p68}U8>g>w|4Ud!N}G9j z?m`M}-k5wTtWQr*ZLxdFQwR+NdQt_TdmunZ&q#dT(`cdzdv$xj5o-NoJwM@0V8$vz z(c!!DI*rxio$_#Cpj&X?7hvEI$Uo&tIiIkjxZ2}8;Zx4#b#+I7R-&Fz&SdxcYFWzx zQ$@v#Q4&rzp^RTz%sLW@{QszMUXPpF=me|CkDlWv@SSbSi8({`s>RKOIaRu1F?={h zHH)-*Ap+IjjBD>BFVE1zzI>EFxr;5lb+Z?%4=s|_0Y%X52^9ty^usj0^k%L4Q1LZg zwN&k%BrG1i#Fbcnc4$pUurQl5Ewet*SwxnjW_)(0rf5KdSWv9lzByFv!B#07b4LSI zkn=!;?OSoO063L%RqOVOmqONtIU%`eUyhbj7V_L#2NJzRKYI5lR^rLXAL+tcK96eonTGAHno z&&qGDE5kvs2de-kdQt?U;JFl>tv}lJN*NRe9g@99^H>w+9i{i;SpV=+$v3i{v9U?p6LS$F1b z`;%dX#mN)Fi*|N&yBo45GgEF?6+3z-G8p}`7n)Mw z1__xu@X{`U=21e0e_(?+EEZc!;I+>K6;p+aZ&~G)`b&ro-X>$?p0^ z2E3ubl{6+K`f_~@oW!$!ntJzt*DF<2meeI>P>`#ZUdk27 zkAcZqG5-&maLgXc;(KyCDtu6gX#E0;lGSbT+DeodmZf`vOvi2bM}H($IcvgVX(IJ4 z%J1qdqUN6Txm9N>9eJ+QsO03q7{NTU#ZukYr8TyRPbm`-1j+LVtlFu*YKh82L*d7Nr?gIv)#UUL3At46%C9r$U9(Hh}I-6LN{1&%}qxL5K zD5xwnb&jJzovpfi(gTF2)pBk>h`LD*-4YYR&B~Nwr3jPK-Hvx8V=+8kADF)^A<4v^C6jRR9`$4zTsY@(q zroKxL2#e8D>gI30g~*|6_a~vxjgsqd*eLJnV0yoqo^xd)43Li==jlHE`?Ru;X=BRP z)#OV_xcR)bJOvGM@>=UkK3_l2fIz3mjH*uScgqcv&z>qd1EMP25;*S9}>#y*ow0NlRCgF*@RbuyKW@Y z6+BMaqE%nbG5^?5tRdhsm>6KyYCD2yei{~xr~p@jwt4=le1Vrd%G6|$obm0BMqNp) zK@HZ?Q@n>7HHB|#&=n2@>c3w6?-6M@#FTrAI9}_kJHgrBe4-Q8Y8w>f-5hu&(o1X$*(mL_tWxkSn z*`0mRT$l4Lc>Q%9-cmUj`m6=39$YzFedVJ1Yg#?Od7Zh4H54==$XC8pTCxg_r>j46 zKn#RjykKl1LP8KQQ??p#T>>q+|0}Kcno){BB>o-3cx8}0ru*|h7Ag-R{`&Wg=l*FQ zL|FEw8LhzK;WzNg#F+8;O@vFE$zglN>4SA*YFV8-IKy{^{-x~|SVtrYNg-JspBGzi ztOEtx0AGIT-LpbAFe5~aE)d$YL~@djMoV3eWgmf4t{OE@f~&@yi1v~ZhGx0d5<1~$ zPDfTQ%xYh50p9qh*J?5PUnxLLsvVAM(G9JiHVq#IaK z#tylwFzOGQA;WQJV@hb|AkXk%#)+knZ7y7a#&Pd=_Osk!ouXRe!YVeBD_|U+A4|Y4 z`M#S}NdWpo?rj8b>P*ODDg3)1yv$; z0NGW`B{W??-WA_FL06bG+Py+aL+SSqg0=PzN43_}vxUA8vWsSiCbj)>`7tA27pW`` zKV)>AJGBxZKVl)uZ@KB0;Zn;V2W3m`yd^qF9&)%pX;c$s`kPpA zl+9V@i{pMsh+(JIe{QfH-+c^Ad4f0V4#wsJB_To4+bK$&*vyn(3ysl~2R@&#w|#k4 zo>(6OjdOJdudie<_14F2Ej96*{1HfYulwF3TGG7>Yy%awsXebxY5?mQP_izaXaiK+ zcf4VOp1YTc#Vb`qvQbBO+ryO+g~HN}N=7YX?C651`u4}ht+D$|vT|>Gw%;D>6O!e> zL@J;XO1Vb=TiMu4qHTu<0qsB-jC1K^B`zX6c}8@TULzn#fJ^~e0PoYU<`Jp|JWOFQ z){*OuC)tkz3`5kP(r7~j3hTWoDUhH)$fEM!+*t6UNv-%2x|P0HYhG_3O7XCE;r8?g z&UVP`Us0)sVT*qQF^5lla;){1Z_p6+vqUGNnXG0<#>>DQs}cTdzk|acX6a?dPcUJ{ zVNCds6_zrNn!MQ!4{+*H{ziAG^YI%`3!)Ae6?}UL2M~K-(=?ujPSr}g&cPZ3>ze~7 zI*KQGK)N1mnP_z{v&sB-S_)LytZ&fKnQQ&ve@7jG#UaIK+YRkDhJr#3UZYp`nWBd4 zik3h^fblqXO|rY?5LZm71;rr~ZhaGgluP);?&X|Gf2D|0%9x22$qk^f%z&77^kzZWD_-2@_BoTBJvy_?c4{Ag2#D4*6kT|c5M9FaH_H8HTi zz2=7tKR{wKfAGfZG6@)cenTRAc`9AGOvcA+0k5$w+h7LRx;nPr=V3n zAb=i1gk$A2Th+r;u@O3@K%Ke%trvBM<@9KMw&<%uwBuSEa%U}!Y_&2`9k(W>YlO3rIi$`A$ry zt4q6Qg;7S6TG})VeowL{qsZFyUsts~wEGlfiCCkzRaKaQVvh`Q(*Hhhg%qj~0)s4V zOss2PmfO#01- zxDc)QUDcn`Ytq2nAq%O)mnMHMO0AUKR%#c;fLD7(>*M3VBH4iMTu2m#No1~|5~En`|2rHWpw)NiqXc!(fQzWe0N!Oa~i8g-~xrtzY~9pbo}04<$*Cqu{0PW*HXI6 zF2@YD&XekLBdb%wL`PLuL{d@45Td0vXqpBi=|YpE41*ZBRV)oF zOn)3I91q9-0B)k!6I)!h7;75DrwB~XI8iI9miHC!c9ubH>*eL_CnGPJXXNMlBX{x9 zH6wisow>2(BqOZQMdZfv--w$y$vy3^Km58 zfs%NsR%5H*>*X*JR?^j|m~;SddK;dUPm4?SA;%{FgZ{gvHA-NAWk1qXPul&X6C2*S zP!lhVO5^cP895MVaF0;yIKN2OnqXN(t^h*D%JRPGo!@KC>{PPwRcPF5PmPjA8z>bg zZcmF*tM>pg1NvbnZD;0vr8-e+O_9=3W5FuFe0|gd5c9 zga0~Bgmq9u$Zo&&Zw;$IgVA{j(@H(QCBu9&`UcLtnj%e{LG-HO^hQB>w3Dzm`369&+$Xf>d0 z_*9Kp5m>@ZBCLjDu1}y-(gw1I(bJ_%eov&&|5)#w=gDv6sm`E9@sAU|V*Y%)?Zbm7 z?TB)|1obOoE|g=5DMOt*axA7D`%=8-wm;d{vDaL0z5$V~fRHHAhk+tM7p^tK()JZ_txPZGJrh$AGBaM#1GZ*<)8MceGHmOu;bHb zzV9=6Q~ej_lt5~!e3QS9aLL;7HF;ufv&JLIRJW`T>2O`)9I2E5Sr(@JZvVoV@l8F% z`RgKSu%)5o_0E5K05#vnmof1NV)j4liC>0hvi=OMV3UtqJV&8T!iTGV0NOXibT%L8 zB8{MV%Pag~z1{Uq3&(qK@cBn`_0MyCJY{U7r48rsTV`1q8tL1$0s{;RPVUZNBSH^{bz=14`t+_2NU!wpnd=8uJ4^~+C>$b+sEE|O>3z$DjYWA6*2u^ndZ+t9_!$U zP>0Fsa`!$sETJ`?Qz`COD=N*yi!`kp8+~mcBjy4Fi_j=M^>NxtPpj%!Tbja!G;Zt6 zylr0`qnfn=NFYa%5qPIdtqvpaJ2BYhD9aS5jLyVFy{8NwEq;dP`@GXrQi#5pwH;?+ z^2!XX&e6bFfuAgUXwYxgAKySzd&x%>=b5R^phfcGFxu0VK9OMwe^L6%xMaem_>$^x zrl)hjq!F^<0!Nt5>n<`a)DrpOxnDGg`cuDpx%q`Pde<+T`^{Sibq-h<4T_e%)B&9h zMDAm4@?i|WT==wmC5u%D=H+zg*_(AJ)5Dc>79pzHK;ai*2b$@`$x3wUXL=HZ;cJiT zhbH?7ITV&*Lvg}D9Go*dt}+8*TdFl854Q}#cKST+TVuVbRUy{ad z>;#4Dyiqim4Vg=e52eHf)r)mbOkKIF|0G36|4IrZS*JECwsHhPRt!3!X`)W0+*Sl= zq2%|7xU$NA115=aKeoM;_*$B(e6W?R(%$A8!d1r3Cl%;3GPD&R9XM{Ui@X#`KmchB zQ8PNQ=_KTf7hYPKc87YN_RY;fL#8^YH4&d}v7sm>FReNl4}s(hq|M+ez{5z1TvkaO zFI&{Xwp$Gv^!JUiuaH1{n%vFfzzU0!&RVfwA88W^nLd#uw)xx2=_5Jp+`wC~xP084 z_1uF#aEFntBhr0!k~Lnm4B0< zz5M&p_h=B3;(E=bdr|lYZim7}zI@Q3(|0!t7hN2fcY%<>EAtDgf&Xd=TBd@{i#0v2 z#}t`ZIZeNS(nQbZTD->}9Dp2-B()k5(>3wX5*t~tD|e^K&sh1&haz3~{QwjrueZUq zh;5dJ4yYIehwkfxc`O<0s;o0!A8rpPS7Q~LBGT(OwIy#887ZU^p;vcSQ`>Tph+QY1 zn}VB|Ls;u+v^m{nJ%-b@(Mj+VH2yj=lpmO0ge^}#TU=CFg*UwLBdZ?*rahDRzVN&5 zjdRMltq54iGoI%2Agy_+&VwL8cn`))zYL#{J`(7W70rF1YjnrdYwX6k!wdhvs^}ALYU7if z-|UasOHe9IWBsbOxF_a+3h-(|H~bz?4_KnJHShVYzmyFw5gARGnTgiHu@GpsIXk7{ zC(t;hL8j0-wLxkb=PL6SlER2eQgakaX#m#|H+B*RMkU8=r|25j8XYm8Tfa0OlSYI)do%O=L z)^II3dB|{yW76jL*4=R6Ltpf@D~yRAC0RiS{)nB7vP+#@^8;Ph{Pc5rLt|LVxp8~N zwWqbCBMuo7Hh$~kLN&LjQCg2$Gq(|4uoB(V(-R?9SURku!Q?ytR;$lbho1@(hKF}AOKf`!S$fBgur zYpEMSm>8_5tf%F)+zi^rCK_cg59O4kh7|8jca8Eo$(5N3$&MKd_rwd$UVb7W$^dYq zFGun$yV>O^GAD#?;O@g6^yNR6BgQs5JY;&!HKL^YEA3r#)2I}hV_lCdLwu|_AmvJJ z_@bJS^jDVUg*LL1o$GFJc$ zbkGdD^r{cLb$CZnw8h9vk+^<;*7_s=-N2gC&UwYSWvb0AQ}E!07dBWJ6HDpX-WoM+ zEwSQZz5SAXR2(JpZX+O!2^|82jek+Yl^w8LD~~&S-H@j;`DuW?)#c&UtF@W*Op1aS zm0Y}+^z^hm7Z04ulas&@MBC0HQmD4H!~qnzHpu@9{INradSO(RwJa;D4E~xZw0TU1 z$qKMqRAR=J5(*YV!_$Sea%F%PU{5|2*B6b31Ai7lDGjJP;K+?2&Kz?Mx}g%tX$e7c zEPz0TOPXQGh0)XJt=dcmyU)=ZklKwjZ_lA~ooqC55t+Dm#hv%^z`+FdqF)8PU+rC6 z){Q_~Q~`erakkOx(`Aj8xN41t&5`oqJFm|&ywG4s=pPk>saWjf)w;TaxecmqCe$Uu zR8vON5E_ndnAXQ;o6C|Tq%^$b>|kPQtH@BV7?q4nc)AjzgWF&hBE2Bi9oXd`d5i@m z&pr=z$;rUT99M@Al-G}NXu@p6omus_1}PH1C}6WNR9d8(^_K~ppv{({ zvzLynR4TEa2ULndZYJL_b1s(JcL+yw!}F0u~2aOBMVm7lHr8-mo#02+d{I&QQR zE6VB*W5DK!?Ih6!nG_)v1O?tVtYee_#iJy9Lrp4viy zu;xvo5i+?aCZ;6Tw)|zPTU~(Pk>HB^O+d&9-W!`NDIDS}Li(1#W6JE-tqnxb5Tgvn2Y;6Pq>Z?Y2VdWvr)9L4-A=!Ye7 zS6yL7vxu9-EYjsgxK0Ol&G&|ov=xq_HaO$B7sLvfa#`EY)Iffq4yX5R{LaL5z_vZM zsyx#a=y>}%xaC$CA5=SW34Qr?on!rF=w4OmsD{vreXLJ2N0utSY~Yb8!AyXkg0W|w zHA@dXOD&DRw5#5T`vBs*^B4cB^r;gE4P zA?DV94+w2x*Fk*=Dk?j#J@qk0(1ceejyNRnr*Wh24D@f46Q`}AuMX-V1oB%dz@rtCtjzqnOCX|!BS-Qk%98(C56JhyFWJ4;R{FL^9V)t z6gFOl;}c6Z%Smc2p$rEr4EkS}***oa<=Xd|S(`ag@QTmdHDyrovJt;2G?OVblcJhk za*Y>BEpCht%OtA1=s}>bJQ(LFk0r2tAQ02#u-EHa9L-Z^WPKGKlV%cN;&tc9;*)A5 zzJN!>`bCWY4FQB4;BhthA2WX*GN|`*0t8DY?I!{YGQMXHq%kmH^pBKbCni@!$CgFKLVR+uapy%?uLV;8SaJodcIuS;RlE9E=yH$C=-1Uycojl6w z?l7vSj>APvqM<$FicDfTpMO0Qb%$0iphLb2#-`VmNy3Y_?s$m?6WlgOP687%Y`^S* zwBO5d0=+XPoko&O?I(ysG+-n?s=Y#Q0k_V%~jVEVzt(QZE zGF^dPY8Ms5kG0vxD^mFb9OV)O=k^uHYRcaq2Z3N!sGkIAp@?o)HW$^yj(B2Uj7rS> zM<&+TIh}r`+%BzSsM69RN(FJHVcy*b`hU=O)w_g6O~Pw&(M@7P{H2B&t1e6P-j&Qv zO41$>C@H2aDISWIeV=WaP7io@Ag9o%)z;5LmPDqj-qpCBY~mn+ISc&wcv^!2{ivfnA6%6H z{g@|-`}D<~gK&1bxy9#)u)jksw9I9LIzKdQYgn>$+W!kWM~A9B)cqpYD>wmmeQdE@!FJDkoIK zQCN=r@^W85P&ztTEZB?qQ%GI@p)1SmFRc|Md~2H6&X)DhAW(8_aL5cdI$~&_C^Fnv zV)TXEY&qs%pdVq#aWFq6!orYl#bMwfn&gsjX%)Z_pw#J_7z6_s$y5kQ&317YhM4g! z*U3^`1O%}y@JmQA6R#l)%CgM{BeaX^9}jvSjl}utN8+GgFNmHQH~q-I0FuSg&`(=3 z1bt)3<;OI}+hxgjYZh<07DZKpJWrHgmHv-~&Ma^sCkBE4(tIz6u%x06yqxyQK)LPt z-R=2?om6~PBtNQ%OLiuH9+H(jv10~2@}q!yOaEgN?D#9*J?-_#P6$#qRDGRpKV3tb zESi(~Ss+kI@S^+fc&&37H;EO-RSE?=p_G3jC$9LjCdr!Vd)bb}$0Iv=UM+gmFU}~0 z^poAy)|^Q!yROf2@6o3IFPPuF0@t&CFd);n1u~TsTf`?MFs8ZOsfq6@okG4~EwE&p z73M@oA4G_+LH_2ghKrGO4epztodtouzzuGK-@MGsjM&()1O)EKDc8hQatE^pzkp_H z8|MXwH9q^EnS17g=4?u5ah$Opyztz@%|N}Al~1NJ+Xo9FN_sRM-LWgNXVYQwYVgjX z|J|ddm}mb63p^i87(EUak2Uvh*ZoZJr)2uh+I&(s{qMY>CQ0}6cf;k)yc}n?zIYVCyPSHtxf z8m2OP;_JNQL!_Sc=2D@b)K#Xc9Ts-cxj$QNW5evD;H+fw3o&`qQ~FGZhD)N{8ZP&e z!en_L1=Ayk&(k>THEb3G340jI|MOF;>;g)^+oglN^L5R~$GD%*xvK<4N&D?`#=d$r5Esw%Hv=$vQ$*y+KfQO<-S7caf?ELw)AZh zNz&jzVO8{HyRJ$lemDQv+~+x^%V=u0YH7JEo1uAakAYW2g~G*LetxUP^fcD)Mu}Xu zEsk|``l*nKhfq3Y8#G>8k~a1=t;~vL_-kyP54c;1$-l<3a-{)@qNv?ODKY4*wuLQz z=^6g1n4Li!rVkC)o0LR}8kMA0FnsReM$C|06glW`ejT@)D;ZWKF=Vzfe$`)#>mzP> z5HUlZuvo+|DwDwj2PjE#(&d%;{7vJMVJ<<5ph6O6m-{C?ETvn+_rj=6tDM%r=2lxy z)JKbxb1NC7n?sU!ZT^o{+ZeX7@&Meq>VA1E$&G)$HIeLAp$Cx-Tr<`m^QVcGcsZ!J zp9UNYpB0wp-c3z%7wdz0vs@+9PF&2f+Cx7??>SlFnCOF03d8=^E;`gP`k9ZZUxzGq zcU2+ES5@l2-@$@<$497(Iz<)0=42OtT$A!t!d#+=uS!moYQ}!Eov@+Ew4vc!Jwz~I zo$R$@y(#vL$9+Mlo$>=%m2TApA!rgfszjC_3s3!wU^K6ORaU+tNL>$?L(v+mP5e@cAk7|%vV zcQIZ1VaNWduRLV8YFLN({(bBYJ_uBvW&!!OVyN3^(uv;^^kWEl278}kF9aj`7J_E9 z;tg}d1peE)ZSL+?S+{>kn+da3lFiz)0aC|vWRZ80Z$NkJ`_9cp&+^q=-!5#25l3u@@= ztPFsqNqs;3ZhHa(1uEcj_Dv#!oUY85k7K2QcCX3S85;DorW?lfAo!i&$k@EPisa)_ z!Nw!N{rvvYa)-RDNa}Y#nG4)tk|Qn}_xh4ROTA=_B*}KIk*#Cy&UIImIrD(W?DScH zO}P|bHMfm)fbaq%jpC7wniP^p7VBz+Y+Mx~Hp(PRPFchfMV<^jN=K$1p$6J}_l;Op zuA<5F(JJ2b%p@kpRLmJ_+W@Ov-`JDv8Jt`hoh zb5|osJQd0g!M0(I>Pds|l~52uF`Fp?s9oSg?)O!gUS5(Bel<(@^jRqtP1=*uU6|K)H%z|S;6*>^Yf_sUWk4QZ?!nR%z&_kH3b~mb1HkRQ zMbglD#LF*5d~;(TUP$l^sf8AETg(Cf&AN3Gr0~hE*iGJ+K2*xy$p*f5f@B?M(kBuS zC`kM~jng?Q6!;n2N6YUtrmSJDPJl>JXeWs*Hkw+NtWwM=mEvylla-fGUg6T%Y7`xY zrLrQ%I|90);l%W3RSIl8iZNuzAlXPtD0H;=iq^4LNBXmePTMl>nECb`1?$&wB_=fL zkRNjOICi`bzSjd3WK+SC*8HTx^OkE1id>XbocHpsC?LXuDnc-{utz+(m*qRYAjKMP zNMl;OQq2w}2Y24~9dM056&*RqpH+k;J>9>4kv!pQS6xFhs>T(;fdqR|D{@;|pDtp< z_b?Gv_c3y|?#oI`SWT$wGZos8-^Yl_MKnoz}dJSise4!JD zU;(}||0-@L035=o30hwpzK2_c2>TWrAO7g4cvPh$j>K^G zbw8VMU_{}KQELV~6C*MU@J`yY%eKP}P0kkpC%O{;Y)9uwcQ28RgB}!zWfG_1DLxMp zQa%n=61S#~y^{KXYGLgj{yaj-Owop=W6~jA!a#V+c_VgqkiWjT_?WkMOV_uY)17h| za&QnkBA)Y^iYRvE*8#>akz_{o84v|MZCY{3$uICp;T?#$N2=QT8k)*uKW>pA4C^gu zG33bh*p5lzxx@W0)ivmGBkl<%GZpr;yzH&?#EakHhbzMk(ioS>^X6Gdp~rO+SPtq82B_o6&^GKtJ~@?<;nc4vcT6Tq_lU7 z($121-wv&u`R}Q#)%FkcmNzyITy4Oky9YMJC+<0ZbDT}yrZj5xgz{^+NggBX##M7i z$IGq@?6bQ=%RbmjN2?C+_>y0s#7NUpgG2wVuHbrWx7<-qU5)1xp$z0$_r*_1zWiC` z=RV099um%Z7LZ;@@!=NUx5FPM7e2wT!sAoaSPyZ%A>-hHsH}2NiRJ?%7Awo1rwCW3 z3e@ZV!hHoZ28y3g3j*63pZ@ZZD^}KinhizQTlEMC#^3R9KC|}^*vBT$PrW=0A(Zrk zwY(UCT}nsg5kDg_6^j#e}4-&e?m1M zy3$Hm2(~#|{k$ho7~Zku1p5-ymp`qEhVxa3H$DszHXY2DD^qL8sANI)k47@7Mk?Q= zjOkUId0>g5k_8H6#|TeY-{HpJD9oirUGf4M6*MBaN}u&&5jCmo(H6Ql(;to|@{d_# z{eAY^?w6ZE*>vBdz5e}J3gNHZcUbtY?1?tNv_HR~Ih$PEO7O-hKP5P@B12u+ZL<48 zPlpNGwl+O6wViKeDKC@l6zY}cJn@ws9jsdva`a_CCl8aNrF}hBvj6EjqKLVcofs-p zr2RrAYn7y??1a+ek|1JsBm$EAzhhsu`4-Y(xm9I zMfJrB|`n18;^kjQtuH96`*vHpc^#24!| z#TwQKyvU`+OKpdIxin?eDx~1Q6ypNQUA=l1RT*1hq^*>6)M_&})F{!i*Ii3-Ma13{* zYlsZj`cWfJC{hrpt!!J}PHc?S+Zv{rJv^oZ?~T3K2UOu>8_)Nw??a^!f>SXjofUga z56|aoa4yIl>Xyb%m}-2+&U)T#LfecUB^w zr9`)47do>M1UkN%%#wr`?jO4`LWSb(E1$eY22SZ2;?rU7OaS+F6;klq@|<3NhY8Ev zm`}lpM1iF+Dw{@)WhdU3+J@Yfu13spx6c}K~CvMwG> z;5r-}q^9QG?>c)H#wYO-qxA7AUG+`FcR@AVBE=ccO>NI6wpa7Vzs*@6r`^n9uN8ca z(`oomDTgH~l(DU_rgsjpzDs$1=C-Ah3)=9!JA%E-6dsneUvi^t!eW(w!nk3Ge4&R@ zg`aIo9w7JSD0}VbQ|K^vo(hK>Z#w*7*Zw+O)=qtp?4ywElhW1`lXE>+hu^cjktxkmJJq819xEM)0r zXD(DyQ#$bIp;dk5^+c8+5OBNLl~i91MKNj=n1eOO&^^{;!L4p=*-k@T`p@KW23C;M z9XDV@1PLLgZ<^2iaxlrD_AJZUc=lJT)ure09U)XRJlASo(3sl|z`4=l1~!8T3mKP$ zskb`q4Akqzy5ePTRT@zA`#?t#f@awA6mkd{U4LzLPy7xd7-sv(Kucu6bvT3x1|(Pp zyuF8qL~>jOaBOAr;x98EVjvJM-?_jLV#~skt%=M8BFB7Q%&qgu-R?P@bMxOnR_X&@ zfq{fNJ~m7$kE|Tb3ki5%CHwa9;O|icURQKZS{_(`TzC8nHm@!g1H_d)ApgKrBEv{J zq(7-CL#ZhdpTJ@nAh_@26T>{*t5()Dg&xi8lhHbAKOgS@{5cH|C#7}GE8d6Z=>T{! z(FLP~PFG`%0oxS>Vkw{NtCUpjZ$h**0>M_+1Le2*RQQ z33*`@24;aopgf6f0v20{vHpZXq+)MnYZbn1xi&rtdYMfb`?u}wIh1kne%1-ab&vCJ z`Tb<00gT}?3QSn2#n$XyycJ6BVTOHLaiVfep4!`$O}4!B3isk+fhb1q#L`%86?g z_f(59z#40yf>X^E%Af7il3xHgno6h6>m^Hv;Ci;ROKdDbZPb*Qq`tnpP@kx|IgQ)| zLxHt&2cs8qpS`e_max`JeOQ=SmuEErqhP%aYCmHT%|HdK4xxKi&Ic!7c32;TmQJjb zGoGPQfOvTpqzpaHrTC8A^~3&~b?R+xGhJcy+{^Ge11$_JurJk-_Efa1t}o!+$8`Bs z`m4A5G}5ZdfKSE>8ebQlY2KFx_#%j z`IRkl5TLx7GNQfC$&XjzHx(Dt!!PS{f8K4KZxX)ntGA;lgE(+pX6Y_IL8?w0r9o7-9}sHTzUQ^v(bh`}E*B_0G>O{irxWBiC z@HfuomveK`+qkW4JEWQLGZo^ZM2)TpgYR0X=cVVcAa^y4tZ_*taT#Lk0+zINoh%N^J+u^< z;7am~Em9Nd-n-*_^WDw#47Mo3C6>L?wRVo&DF%dYbS3p(lq;{`Rvr%>c>^w5iZ*Cr zAx*qrqGXI#nnntHUqHSC>t?mzS0+5p&|{2P-U_x#iUtpwiCf)?<(DJ}dUc2Y3NOuz zZ;em(_HQcQr+YeedLd;$F{yams~i>4m8K#|Ry3s93Fj}As}XkGaG^?R3VuA1v$5-% zCFi8Y%7wPxHCU{hNyiseg|{jIuj*;|Cx?v*$5wL-b)4KEJ=e&N)cBd>Z>VMNoy-|8 z%rr9NtAhlYW7pSHEG(bUaCk=MrMr5GfddQn?fZ@^j2%@ip9|Pf{y0fyHaq3dBIC;N z4xH?}xT3IMc4_fq6bZ~a#QM6Dkr=3tK%e#wH}M$(6GKU3p)X!vz?2OZB0gb_?bK#> zPj)T7-1r2L-GE1q#Kiq2+cfeEbI`$k6x$=8CJ9=Y6*U%b3<#r-6D*}fid^ZNf#)z! z^Lx$BNvPs<`@k(cT2Vp~QWie9rQQ)s@+jGz>6h4)Z6~k8elM;HD_bp&Ml0?4T_+wl z=0DzS9I6PB9g*GL37TF)dK;^y3i0e!4ub=s#&~!wP+zHzJNe|-!?DI44Ys}lZ(f*k zwP7Rrf|_e+ux<`_^ROM8NN=mgo8V}_d?{@k=_9lx&TMW;kdCynKaN8#xm-x?_ zsX;r6l<+`CZ!0xRt_Dr>{;sEOa%W;FFlkV&(tCjMY) zUTo^kr>C<_+~b}>lcQuwP$IeA1e|&QtWN4O!toQvFHu=9AHT#Tgi1{q>7YM1^!u_W z2Tyg;lpxfe8HuKrgPgPGL6{W(1gwP5-`*X@n#~kXaXAuFxuDvP0?K;D=Sr{nH*#i&&;wil(2PaS~DCRb8^`_#S9L=CAy1f zph{8<(RpwESAIv^sjq1;QW;Tsjv(hBtA-2%fYd5&>U)ty9#~C{wM`$1$PB2NVPdbA z{2?AbPW~v+*YnZqwYD#EoO3rjFHG8+hpeRfb)@d9wO2=l5(zAAMnZghqWu&hs$W6S3{>7piHnRCd5W2@&T0&7 zjV&+Uj&q%!HVl3l&g!agFg8+iO*3(ff-4;vcO?)Y=U# zVrGyB81y017R{(2LE^nXfAli!!)k+Doq~mtX`N;*$&epeW@h5WzHRT&uVomre?wk=Ya`4;PP;}?%zT?V5PW7JlBOAf!Pi~g6TIzN2Lf) zF316bG)Brk3oSy1^cdLQ?sLiG<{pUr&))s1w7);7P~tRUgxZB=-yX4e_qvo^R?+p3 zxfEs?&zGQQHbTRaOkDM^H$CkAAs1-s==1}RkQfN_=XTPpTq!;cQ96*IqtZD{tJHm# z!2=I~o5HAJi$oz}#5}-gh@^H$!H|_{Erw|m)P%Tgv*P+|2hGXry7S9n4@0VwGC5IM zRcU>@X1YFiT-n?Jp4Z6ju0xu>vMoBxf2isK8VU6=dS}WAd*R~3gn}xr6{!A6B@QG# zc0Q{+Tu-Jtf+${Naxe|e%=0dIH+}(9Dm0T6s&Yp)SjqFJ#;2~1OIfJL?A%R#DYes% zM^g7(fh11d!=^VHqKg};QOclJJCFAak|g!sCl#fcv`EZPT)x#c%@7l)e}ornL4j4x zO-UP!ZQ(qSA>2&9-T<+wcKTbUI(1pe#tw6{8k7AWioRt>fm(X38UaZK$p+i{uOp}x z#i}o$MYPK3m{Z>{d3^tsw+?0iYe?AOB=BL)Z92x0f>UJFQS5ju0*c z^v~+!z7+7FKR5q|zL)%`LL+lc4O6o-aM!71OL(uPTZ+Q?FDvfj zrl(oZ1%3yk$xHP3lYs!Qt=cx`)Q6X`2=LVx+X*_0#e-e;CPwBnCm%9;AWn9B**|3e zf6fWP?J^#(y*l(O7ILkjG2>Bf?V33S`X=vSVKL`Fw zPQ~MFT)`fUUHXn79-P2CN*Dwb&z$sUb_$6S5o*nN z1cZ%gAb79J1O(_N=O7TYV1Q@P%kiC${>zQojtxkVL2gRj)KRMq1k&q_q1h;2VX=BY zh(MYN>6Edf5jKQa>^mK2%si+*-Y;CCDZ24N?|GR@%C0C2o$!YOccjwfDioO>-4v=HB(I>TG7k0e`)&SGJ|g5J(95czp- zgg~;*4%Ra3p_wZkr&!M$yh%K6-$A{*Z9XP8mckxay(P`(k0SnR!3NtCpgwPIw#6UMGOT~k-=A+3#p>QrfoR%tBmps zV9E=M(h?|r7ES#J%PYrZ(QD4tlX{HZD7*R;9hFh|AqC56q&139hnXBVcOa~f+lkEJ zhK8O{xV}okK!qsUNm4*BaUc}bUTSoM?8Y5XH$Na#G}^ zO+WYtM(yo2l4$aASm|K&GLKAtY)ZGS^KI3XrUio%+VbV!pEMRaHRbBLd;u~;X(Hb@# zwu*rRm2`V8i$wyddhJ`Fk>!_;gXZ}DE9gHnqmo--yE#JIhr1u?5~^ESKw4Q zVmrsBX;qc?Nz5KIn`kBZ>b&oveeoV|e8>Mif1$%7)QQVf63=JT5^0!~hTt`F>T(4M zx^M+e{A1tJ(wXS=W^KJT&;xJJX#EWvB2khP5kdWf@gM)2zO=Nh+{BE--ks;_zFx`p z{KET-B}xa$u@qM%Sr?+R(>OqO@7WtXaw<>M`sy$KxW*LUKFU}QC*NbU$7z1k27w3; zK2tqRigvD~$Wf;iVJ~Ec;;67j0pQvB8b*J|l%{W2eyIeE4Gm(8h<>WpH)&6>0+PzG z$$a|Xrk;|7$0sSiKJc;`Pm_0+R# zjfpS}=RO5Rqh9dNZ$`ta_i;CLgb&8*^RH25kJWS2`rI$=Haqt+^1nB*Z+PpwMl-G3 zY5ZGZMTwCEkr*rf-eWhsw$d#2b!825;~>urO7BX`Q0RAiJHEL?>22V5rc;(<5}&y^ zmvpqbC{zNl#XnA%Q1PkTySJ0!_{U@;;-coKN=SKdu(;G;ho?8cR(QeUB*+vJutsQX zG+3viVZK;Y%~*sqx`IG5-!R;U^-~1lzZyMc#K+erR*n__7(#++aAv%Lt9!&g+g)F) zI7OJgBp7Tts^?}6AEa)j9n^1T58&J!)v9+P_Zyv*rBwWxZOH_PTm*~_OZfHVnP5i=K8US)bM8lXhO*$`v0mJ~%U(*^4-Yy7>)5HO}Li%OgrKjcbQVaL`%pD8#@T)jr!(+W&ER>!*$0Wx$)&b zsd6oUs}|ENnWoT;j&HREcC7o3x4}v>c9i*7f>lcsi~a5KIx`vgIr*Nw!1J?>?|sC` zCyrwp=KR8l`5!g*H1Cgo9=A!kjCmDh7G+mS{}o(>FVU zk&Ij1|0R&$s3~kiIS<=>Rn(Q%&7OJoMT7r7c+I9ZUn`?&le+Ow56r!u_Fq014ZNH< zq?KGS%#sNK83nWkv zB!shhrK8EE3wU+a&!%Rz^PNSQ6I+bUm|8i*Z(8D_14fV{`*HS`N!D=X?w5j%m_!9s zo^JEE3MNHy_p+`_gd5d=Mia~v&CnG;YV&&MECVX_0VtUb068Wb=ToF zL`#tUcv!baN1n#F5RpWU!XrjuD%`3$AD@JeGTxow#@j9J=_ji>TR$q8t;CHLPZ1dE zTv*h4Cb!Tg`CdaL`}3J7Sz#8AdRv_P16Ia@v`yvT-CnzHr+h7a&${W{NX_JvzcnDc zvBKQze15>(F)9^qe2E#6rDwQAF7z_?>_=dnotzXi=;6^xR@0+9C6ZB{TAxH>Y$1Es z8nkOo@pkP4u#V=yRnT{AUNt2DtWhqS&2A<4NPluerRCq~L_oblnqm%<4g#?Td+0qJ zxU6I@Ix#{U62c*bEDfG=&fvWsKkX>OMD8!lmb!JJ=(si3!@eM9ZNIBkNc$D;=?J+f zi@Kglkqdo^No9ax27y>|4Uk_K;98xUu1gQrejrURHwKly9Hl$&NAV(jjto9-IBiu( zceo_Gk0Oe|jk^G%&p=M>j)FL>ocs6fo>ZG$UgwP2jm==NnaO=~PT8D(>tBQx3prZd zBD(Xnx4$9btMMOtl0EY9e%frT{UI%=Q+&Tlf}q8zmLZ03Y`$k?J&T8Qrrr$vm6!Vp zED%s1v2t)*Si0=v40y2T`qU<|w)>Oa?`7+Z4L5=qK~T)7Jh-NdoJz9`1{(F)&z{7_ z$|ITT#8a0Sy)Rwb?>oiwB{D{1VZ6uQtuQWA(o&`wt{+Ni_mS{~kiV<9XH-RmHNe*2 z`j}sgp$UDHT;nZIoiqLd`fHxra}eWalMT`m{wQ2eqDOfIuCY_=l?@?G=Q3Ddg0%?+ zYQv_|5(F1uIy*uxVBF~Xp}IRMTlHxpC7iMe#h6>+yfqcsATKHdctO!v+kU_3sqeuO zUV!}X-(M9vy|qGRb53?q42_H`tK|mvl=yHMFFddEs_OHR$5Jd4B~S1PjU>;{Ea0aQ=F#WVzM=WT~rs=COH>cWSCG8(1Sxmeyt(!1fBwe%981PAhFepVvDlyK&w(BN{3bOoxbvV5Xp@LJP5o{ z0!mv8SxrRw7ah{y(Gy0>q?C;2-{7{P7;dyU@5Z?oDffSqW)y~k#c^%Tmj)9z<)p&t zsE$odSl1UZBGr4{$ZFVYJOXDid^AaIkPbuEWo(iO&?6s{3Cz;u$O_O&rtE%H|GwyAEaD8GdsXDeViKP zSYT^Lz{-6-sKQ*vs&zO-}r^6gfJeEp=zpD zJebl*g4Vu9tn9CO#Gdc-Zj=!M3xk7ci(DNjM1O|^!Qdb~GSi&(n3<~^luK@4z3xwT zr8v61J;?a+LH0!K>anu=Go@3`8XBw>GPx;mX6jx7mODk-eMrRpVDbSCJpM??8f@(Ki!AjiSsGvg$fmHWmHEo84o}5@-e)a-0yQp12qZ|+;ptNErITjz z!p_80egOok3kf7d#WnCzVGXvzE#AOm6cl9~NB`DF`~@<>PdfrZ7=s}MVjBZz@!n?W;36KV(!xH0l-R zSIiR?$`fDmbh|!#s4+}V))y#)EqNNMAB-vMT{LEEL#(UH1i6+qHG0@`$~4qP46+nR zC9Td>hDRoL^WiQTl@tLDj2VUjw>v$aW#V%6P$h zpPFaC&aqu`{Zr3pXJG+RRgPILv7lVS>AEqy(KqW)!k(P3Ad+ASvLq|9TF}{nU5|Yv zSa)Q-oeDxtmu8k;jIfXi&d9QM&!gf}{npobOVNAl&7i+wW3gVj^w$(QXc%tL{y-xF z25J%I?McG`2lW;*QGip3fJ_$Dq8Wc*PFg=d@e*+~YbrGx)g5tJOUP+s6g7BwAH1`Z zQxVf}F-z>QZSg;>E=&!%)%^hD3lW~lm61=uRHy08{wU;CKTj`Kr5mFlLv}}7{AKl1 zdOrDBR2WPD{$XY>>yH0diFv3T%9P#05x#0N3yc%>ZR6-#iKrg4tKZtq)TKCpC0yq4 z8@BRtTW(Q0aKv%gSgAT(zb7S0v#*Kk@cbPeo#@@BIraN~n3sKVuy~vmI(RtM<5H=_ z(iGOW{C2W%d~^idbcii2DYa_MTI=R*9d2UcEY%G+e);(}kLGF`Q=JaR1&MRN0>Igz zZ~m=X;HN~0>>&N8iO1J>3mD`D(_V!+FKhAZ_;}8Hni)tK2KjH{EfxrNGOU+wFt=E5~Psouq< zx+h&BX4R-$i^M+6l2*pex*Jd8|K33NzU^T8ebb3v2$|zkA$G=_>Cp;M@Xp5LEISf7{16@rxkbMn~9dVmp6r&U%UkMXeqGsp z43?{Qg^8;nhqOx;>o4pPf%=*E+(Sx@46?u7Zfsn$n|g5>zgsBeb}cHWu3lh|TQ3YV zd0XEauEp&sbx;rzx73xiy3DsdVUUX@q+`E)-)nvFtuBwN@>HEV++SR3wc^l{!apcs z^`uX%Z@pHZ?7DB)5vD$~^j0tUF~9I8;Ze28qZ6QInGB^zGJ#DKn*AYjeSHn6aUbQo z({Bdi=og)UR9BiRK-uX5jIzDlZ?7ZZT??p^TW(XzvwmwFcDbe?0;#Xcu@buy>lq9h zhiUOZZep-k2kT14D4{-H{CU+Fal}(g)1cZqZVzfr zonK;T^ZH$zu4TZ|xJgb9bJ%*Lxo+x~?2(qz@+oqg+2t33aqu$cW;1OAzUid*{{eTT)U)Iguv zR;W~|jx8z8n~t3MI6VH@8I*Nsmr;fgr-p(A!PT%M4%HX9OP1QwnugyfK<}L3l1LzC zuhi0*(v2<`8QhnzG`(?F)UhJf&;kXYpVIb(lX!fiH#W!@+u^G~2%XX8`fofpbj&ODcU2$*L~m8kIQZm__zx0#Ep;(Un%RW`8JbO zbSP@qxAC=(v49#KSb*UDh!aXB0*BKONeDtFvadvnTweWkbn@X@qn=dKd+Pb+)$rwe zNgS$PcKwFU7jzOM-Z#xzw2vfp6>K&2d6_LuzB6ZVK(~!8B}Rz`qtGjv_=xt)2wwww zfH9e#!uSkfH)hxnm>L6)yqK7gA|;~8z!wY*5gQwurY1Dy9y|;;EuVF3&Mdmx)rGf; z!)t`l(A?;loc)V#0E1I8JpwRwqibLm2{}*{9a91w^AhG8Q}JBr@^VyD<1Hg=a8b_J z9j3J6+4MD@kD{yK{;ta{0ZF-c^JPZ2W4vgT(V_+GAdu$#S9D2axJwTP8{%YhY;5F^ z5CE?hm$dQxov(>Fs}d2I2EsT~5YSv3|7q}t%2)NqBx0mUUt9n1hQ1#f4&<(UBMX8x z%bW@pjHFN)nAQ|dA(wZ`n!%#T2%^`={3^v$9Vo^a*+--l4&yw|*RyA9+@GqzfT9ln z?loMU>k>_dh{*}&`gk*UfFO<`kFpNOdVd5?{^0Ay1FW<+FKD(nHDT#kthgHIet2jL zt(3OP(S!5(WPEw`GlP^r2cK7D)z?K-h@3e6`;kPpB1BWg8cTr^@pU!R%#BuDc_|6+ z3&@?-tk5kF530KjH#u8(ez0-xYWY7&5Wy+gX+RzHMc-jqUjgPDzw5ADDVn~Mn1h_G zMTW*}rPFs3p7N{OOL>~N0|@yWtwuZ7(gF@FG{8W#mtJ80RDu_0$tvQhfHeXUb|lS= zJ|6ms>_M}VN>kj22$=EAw|cJ1Ekxw_9Lbn9402b&;2B!3U0A{P))$w9y*=++js+67 zG9u3g2q0$(Ju9mcN_cBPbhQb}Zb)vzEDMrEa1t2kVi@S>9-o`qGS+3$6NoDKcvjEiIvBdEomugxN%dTIIAWhCv(qE+C~M5 z+~Sp~ov)7{*VJUcV16|>m%x-kuSix>W7{817Tesce0?}qwPea~Qq}GVOIFh`3vyFd zzOk}4&6uoqf3nXi+*|Aww8Vd`MX=UpG7}?eeY07EkWKEC27%B;nv0i<7C3^zyJ@{9 zFdQ*-=ma?$?+lf&=&}|8R8pJkN|H@WSg1!~J#&VL2pj~rl*F#!wU+Q~Ie1EO#)sUk zSCDI=E*ucYpu2b(D{oEDQ1#(8bKQga{W1@(F{R7;cmy%_hx+%dS_ES?LSQUe!KP=; zAwA0#jBn1GCV9T%KXv?H*>#{^3fYKlcej$`TTNlvTJie3m&$+^=J{axfV*RBSW*r5 zeS8^-E8I&-e(+a%sMbB+V2k-*)h#tIvymof!NC^&U+8N>gwQ9Id+V%@!qfaympX8Y z>ls=`e&C>z40uf|KJAuQb*0%+6AazB_wuIc;a*X`CrVs^9{Y{eO`bNDUD2^9TaPG+=<%Ez1(|4A=}}pkI5OfP25ZM=eWbl;`B;}2XLudQH=11j z;Ggp+BXk!u8j1~erY?@moAydJ8j z%;V^sa%}n8T<)c6WNNz*?@m2fX|nvFDAZCd_>(|NEktbX=k=pUa`y}k&R^C8)@G$ick73dgl@AG*q$RI$FAt)^bj+ttDUAG$@8~OP`v~-7_o)0W6iP5bzE4v>((~6qn zx&7SqZf+Jw&&$iXZ*L{7t#_*0T2yn8rs`_%s3;9QtnuqxElLk8_l*2{Gdc=D~nMh)|Se9q@e`5bd2v7*wKYHROqU-K0Ro^$R>Pb9C0 z?5=UEsMJZ}zJcc}fuesYdYplQ1Yt<-ohP}VLC}GUpoQh{2B|$5ME3YJTVWQE*=n%*NJ><7J1^;7L&(NG-1gh063XZ2wkQ~6WB_3ZttJr& zxxWr6;A@>E#Ml|FzQI^`({Gv0bDv-BA3%{zto1>r#h$pfH|4zS+~f4g`_JJiqPnF@ z&{MSTqbwG)SXH+8z-?~2)ny!4gm>`v=Fjv`HaUtizA@9BnyRNnc7Fgp&B-a8bzN{i!}e& zfJb_Aaglh#*FXXSeq9d3-d+7J(oH`=PW}-|DjerSz)zZ-dWp>>ym)2(g|^k;?dq0s zLdL8}G7Z;0B9apY?;HJro+V*MR>BYYxtlI>`MJQKwleh&1zehObWQdd(X*G@oYmn& zdv7kUY#8{aoM7-iQd~U2-a9GjP=)$zgCxpDVK*L5G`oExh9FRge1j{C(@irrcV%vV z2z_COR)WeG5HRA}O|mX$0}oBgTN!h{ZM?yks-mX8PnO=%kWZAv3lt3xjc4Vq7=Mm)G_YwM#+dMXN*BAYfD)JyEYjET#(6gL1H5YrjgfvJkeKT?g$PQ(U$+D9QTm#@Tt-|F1E=gN_R!RPMyXV{s%mg9$ zFWZ;D?Wj1{otG9fN|d=LDxq`C&FH(G4#)q5yKCtd2~&$;gZ=uUqdZVszO(da{tp<) z`D&F>5CnRG=!%CNcz1bic3gER?(k=T$<-$ZtoT8oCEo`S2qUP`>v-fYO_zj*&)gvM zOQNSv8>?KJSZ?8Bn#);h+?=L@SQS8w?6M8`c3lO z>?q0p&>U)hS9poK(!9UqZAU-{5n5r-9(P1>3$Fs+*R4kZ}2>3vy8X)x-JW?cp9%1&_gr(DteYNjTC! z6{W)rYd{O!6@^Z&=|#d6PjjaHl23DeUHS5mtc=cD&EJ)#GRx=2nI4}oE;-Y88pVva zX~2;eWT+J);;DvhxxH<}W;{`5{hHfLoK_;HK&%2 z$0c9F^X@_x7SeT%3^A(}g3o0_#eG+Tg?ccY`h21d7&}0fG*IBzfDi}lAAsdDua0%? zJQRV&L>E6YAuvKNs?Aq*rtZ|$`vG6BpZTCrajz3Bs=WgIEFX$ohb6$UT$vKrhj+}w-9$3KQzM4J4Xv%O=d-hKIIry!U*JN*X)eo5-me2G_V*#> z7E=`~+hY{gjFohvs=E5ro(nexFQaD@FkDbzySjIGM~~u$C1lmAOBL=Vx&LZ=5uDsP z>ePmLi7t@!gSk96CN}|%T1N;7I~9}NUhoJ_s0PLomi9@DbfP@rPH7dMuZdpJqo0|s zzJqI9eKddWT3~DDGON3AtUjycXkvk)bejeq#^wFF0*U$KE4O%CXH&wbZ%+;&F6|x| z$Qc|CF7kj}9&?^2wO#^Do`A{V794I!(u#hDii#>=DksztkJEO>pDdGtnsMw)AmQ^d z8TCz-jjkNJ%zCvRw?Wc2qetf9_vDTsso+bb)UA)qt>k~ru(Y9cO?bZ4uOn``4*-~f zRdpF6l&^yQ9C9|g&u%P<^^NA6-RPb)*TQR8_psoRw`<#aseH}Jn3TdZV7nhGB`*oq%m>IBCI1s9OfXMmiuM1ljytoxJFWf#D{g@9ISRyNW)$ zpz(N4W10w2N7%q!acmRJsELLV+W$jIlQy^-dEQY>7vzs2KbB+?2!;eBEQAC@2v~Di zP7fnRAjKmg-x%>D9yo~cro;^fd1U9brxXf&iDBqrv?CRp(;GeQ-V^4fy?`Jq`5|a`w_o` z#d|Y&tY5sEr9`M80;95eS?`P-#|rbW;N9@nT-PZq);^tjx)B+g{W^E*n?E)i ziiROM?>y;sOsC7Z=J@g|Wd^VR_Jv^m2$lxJjC=yk*c<zC49|{|||^HHL?W6#l3$U-MntKf=*jT+mwDt~(+Oy7+wy-F09~+g2|q zj&+DdgW-gH;Co6U4D?3n=u9w88CfcyQU1*WvRR#kmI?M;Cc($bn|k(UmOJdTmt#{f zv7n}dX<@K$h#(7kNU(fDRGsu@2}KK2Y(lJs@vcgGTi$xjfRdF9QDM!4y~unbL}Qa1 z3p+$HF7!3b+_&4C#|Cl|Rg}$*SOgz5nmHnIjCNcF`UYoJ@5yJtg1+K*-DYC~O%pd= z{0@IUp1{?{^!;)UalZ(S>Lf}N@1S&p1&x@HL{#*%NLLIgIBdwyDf_T`fe{?rW*!Pu zM{z$CIa^k42HxF>LslZfi8ka>NIddbwn#7BRly&=nAkYMtV93wm zXsX>*T-@SE&^@B`g+7-$O(r{zm88o*qZrU5L}I?OhY0o`V_9QsAN{DaaG2Wi-79S$ z^~}I1o{3Xe*+iQ)x0qS&6Ca)GyrKWMcN+}Ylxa4*r6^AoX#Oin3FeLR@M5T-?9i=e z1Jun10{7dO!x)w)%3cpRG%{9*H67%0ME{RL5G$b87lFg*o2m&emxrozU=lJ`gh{Xd z0urCRzRbJTNM5YTeJ~I*OE16yoI0Lg>q8!LFks5hH4g^vUWDcFTuNVm@K{B97Z*mq z1gnwzmC3eeV2)#c^KHt^>y?Pp(;%_VN$*G>Nyb~e?%Nw#uBE6Ems|JB5ds6TLI>L} z8Y-dSPo^8^mrI?6qg61s?Ym>);N!4}yIiadzj^D2b{_ykxqI23{Id8#;-C3PEAsq2 z0-Yx+w|wS~Q|XBlcUPXw3#e+SKD@80I*anciL4Gd6CpbUsl4b!1?gsUJ*|(Cl0zhn zod9T%;Ru-%=7eaE)#x5Kg`@$Pt!Z)Q#WDQ6kh0q+j_rmD2va+0hS&-pm#5e6a!bh$ zZ5!RR#|TQq%0a&;-&e7Bw9G*%Bn3cyb-0Z-tIMjG>N@GKfrOv0$6$@}+B>drkX;sY zPuG!9)a85(HK8^s{(7LKgP1(4VXKA)aDajbK83H0o0%}va^Q~AB^btNawLzZ!aYGU;rd9Q$ zTT=6{rG1c4v+?J6Rq|m@Fvh-|r~Urh)rco4v!aOHIvI=P3S#}zi~}$R2V+}bSaX3n zBd-Qa=$o0j)>o^^`f^Dmk~H%}OV2dPVe0~ILqa>_LreG};O>*1%Z4zo7(O?mCY&qH z0V}>KxHqH?7#%QSWC7x8GyZs2b@%nV41p=9Ft&n9eFby%v|CeZeRN+%zF*@h7xL5| zNzO20=6TP__S=E!=uKsYfR;6fN6OP6J%_ZIzV-;` z=PT!MHuL#Wu5_t#dIGo4-H@F`8`dUZ)U5t1mXrc@gBx4?2NFW2fs!`h`Z-e={}2Ax zP?=p9PDS`O0_x(&a%pUIi}L^RbdJ$^bzK*}gQl@<+qTu%wr#UbV>Y%M+fJIsw$<3S zzw^95zA^U5|Lpsmeb!!U&TEF^Y12gfEsUY_PIhiWoy|aZiBveqGB9q?%a8%24MX*c z#OHbl(SPJf=8`XVWIQ9PVmcB6tC9d6bgQz{ShQJrw4WTTX0r7c*RO@v6_Qyi9v#N0 zE-Y?;`ZowH#*4VVLl29T=??_2LZ!d2K;Eb%6obHJNe4{=&HN^ zZsAdgumQS>8v2O}+R2LXZ;Ycd^z_5@>Pbw&S+~n*y=`R!nFzZ=UYZOcu?_E&f0x#lt8~@tFCXkOx$D`{)(HbvVhW% zlIi|@I@aA31t z>dFw-O%rDdy%MmhU}E^(JY1O^h*6L>lIHX|8$p70WyP)}=AkEWeQLp#VF?aPNZKMPzS|znQ{J73GCZDQUv!7#z;I#aFlK1^tuV!r!W6 zCrs28CaAK*0m=_9zqg(6W$FX-5e*J&mwFpt8p$PH?Ckw;TCB|hkJR37LJ1i{n5R$5 z9M55EfkzS56}4ZXV^>&c2i?ZL^T-^Z#G`olk@&-Lk6w#1Gy1@$I**#U5z5=sneJ!Z zChn{^4^qxdOFY0Ptw+1bM0>1!Di*ec{=)Mj{R=Qu3X%)5+pkO>vonmODlQx?nwvvP z)}z8Tpu%Og=!u1uS1B$nme}GuKkui=L@CMG_pE3Y~z3;gxgidH3HL;$NU; zqy72j!Ej)zQK894!T9-DWEt@8JDL|?zYz#jpJEu-^kjwlIbTIS;R(t+u?@9Gs#!1T zgw|==hme^MbjBTO;K5=%mz-ReoHDIByP|aowb3vPFye=RV6AofPIIxkW+1l7DROzW z6K(x{ zrS0KVZ$WoWxNmlaoT}`{!L05<$G2E3760aYW-4V}T}fFNI>b+pkg0vD&?3jSx5B31 zZQq1+^RvMbKCd2v5Ita94A z{z9r7qv)w?XlCiAr|M+kCgNdb80b$bT}!d~o)7=}%A#(5v*+66#JnDG{n`wEf=_u_ zvtL4HNGB;8CP%@z!D&4_U!(N5Gq1bC+U-m2k(^3nhWl{j+-uIYwJ}lZjO7ZjN z5go!5Cem+zps9zRTU$eKZu8g2WwUSB%j&EdOp6klCx;r!6x*77^>ub!9AM14QDCTu z>!_?|l~^|c{i(S5CoWkJGlL!X*HjrBJy;Y>%{5mRT6ibV0a}>)yGt?OOl@O-J2?tC z(Fm{Lx)C)lAYsP_U|CV!yE9&ZKUEkl+-m22CkzB4E69&4Zs8b^!K#rJMl%xc5Ah}y z{~fkOQ9wa|q?^Fd%wIOZ?iHvXXsM$J^^tO*Zm{tR4N}ro?g{w2nfsZ|<>j-b z5Qp2qeYK^22nGsGX%8UFOxV2TehYq-SMA*tTVEx7-O7mCftTM8S+EVgTzB$F=lGM7DpK1FInF9mGTC?f5dsAKwFqxRi33;08vPw%9 zZog{b&Yd6OU}U5y^yuMF{9s`trYzj<3*+sy7Fg<69Ykid*Kw}0f$6P=8j6I6n~Rx> zOxCvGOcOP$?f- zuP(EQf(EB9*8C9C0o`Z!ot$rFmvQXqPM2>Avrh(mgUo+##r`i1?Q~^|6~`$+zH!*? zpX}pd-Z46Vg}1rQ>Y(k)g?+3%QPZ6j*o3A5M$DQqj?7BymAvX@&yc0I`o>OgpWVmw zX@TGV%hx;Xl#_jaq=4Essd&g&#GG|Mu|Kv~D#)8biHu-(KFleN%3YWebD$7aQ6q=G{)c@OOCn5Fv%&$0Me9SJt>qD-LDRkFY zL_N6H#UP1s#>e3;`u+kn5^((7FCAMdHl02RxJ*_Y03?vp+=jvD4|ay4n`n|1`a&(wp_4NflzRyqp_A!sH3yJfDi=OADTTjBYu!= zVAc@kYX(GfZAiIM*T`K}xabYkE5YKu*Y$7R-t z9I!Ue8+D+A0#=1uD)UB{b?R?bM0_H0A}|e5Xd|hiXW15@KzS^sF^4@=$}p=?D(<0D zmYeu`{&m+|$*%{oX?Vn*KCVC?r|EG#3*a!-q?P#gc~sRfww%^%|BRj+B_!X2_h5nOVB}` z-5)4F2dqwJ08y};e52W{+J$goF^0`3j%73Fw+ZgYx~{9oF0{<*HE$g+M7J}6dHF>- zxs=#Jz-PU1X^kZMtuh;6m9l(#eFZCfAM$yxHI?y=6w3~h?u|>^aO^(|kXYGQWc2rP z7RXYbc%voy716Z$=5G3ZIXSl1c(KkH8{p{uDm%9^@9rS-|F=YU=Hq~+h>)MB?D}?C zLp0ah)=lYkf|E_i8y`IoU&qagDLc4Bt%Z*nB3Y<}DkKMBVg8Vkz_WdM<0WiK8LHZK zJ@r~oI*FW%P(GR=zOySR=H#}m4Q;U0!;el?Wi{D>YKJgc`>*NjW#fu}`0-D8GL_JB>tLNTHNz>-JHS62J=k_xs; zd`b-Zi!z5afnwv6UT+;k3!$Ok*8SW{YXQao@J?OcWK zQEpVF-IxI2NeogHcu;uMFlOSthQQY7=5)DO9Ss{@SN;tnEYOR^r49BWy!_^K${(U5 zzEkJC8=iJ?R6(kBfX!MN-Ji{ru%!<5U&}9_q){sb>PtQ`NCX)Y3`7PEZ-fm@35CO< zi^>@4DS5Ng+ty$Bs4{j^S!YdME_1y$o*X5V?>|#=16&?9QpV`|Ic4!YZ*w1}vY*F} zcJZo1)}v%%#uZ}5yFK49prS4?j`+7<^9kPx+LuGw)*OdAt$!uXam}qb-&)og-b4yC zFl5OiR&@mvO9%Lj%-n0%Tn5&AttI^_^XILaYir>M4r*s`FU76;$2P2uqj!6Bkco<= zLJW<|QgK-jv-?f$%i-qV9p;~uUP$;`bZ6FY0|JUJDv>^W0SRTngnk)-tM7Hm0Pq?d znFwUG&$snN6LR(`I$&{g%>Tl0%-}sdgN^!Gi;a#6VO&cM5A`=ZnP>*NeQwXsgc!6P*-B56Nnx@8b7J%Cj?o$E zV&DzdQJbVoE1E$`1rKJbd6Gj@oG6JCtMt#llCk2|^2 z)m=B;!??{U3>tTnVt`JB7K1@_$)VUV`%c2SDql6fQBqh&>m#(@%d(fdH$gE5VKx#^ z@mHeik(oa&WB|C zV$4O(E17t3@4jPh5`WcBORFqB3Elq&TrgFBpAF|S;O%5%XoMl2#XLN7S;d+1F=Y|{ z$`7>Z@!%jY<%dWH6Q(+yd5Me3-7C*=z6_kyr7R+*S6kkyhOEL^!NtJMx91j?PuuE* zoMa`Z*Q==G3aM{fz~J`wvi#Q3F%TT|%eo(^1`yMZ<_xx1P6q?L&=YeP*=05bUR>5a zMNFPE9+0`)9-sB&GRDkHXApp4D&1##^)fHu*TP?QDqNT}fFKBbvMtYVQ{Xbpt1G(b z{%ZS?=E=^(TC%2KvuiS&y);~EOt9v1dS9iepZ)h)he=CFV|3ux^3$7r;8qy1k#Y6f z(h_f8Zgy9d@lfv--y?s(En~6*)v=YTn|mn~l$)!ny{D$CDq598t1OctRbb@kGkS7i zl>`posOgzBlKhvD_tJc7@vf=qY0_P2Ex@w0$(1;Eu%yOv56|&?#5L#-06waP27bBU zY^nPH)vxMK%|&h53dC=MMt>6T?f|-hWkF$?mtS7;f|KqVpbdsBdhUQTe{|MtuI|K+ z=KwrpHR}Hna})nccd5JirmVnQ(*}d~ijI$qj?*=A19(1d07#C%IX0L?nk|d&g`@`N zl3ltpGhKHtuKljV$40K|#&2nrx#11Xv-B=c3AohW(xs7Ev`65`_^N4GN?-kh*y<{} z8?Hree*TpD4)dqPe>&i;s925*6qxPC(yZ8sj%Gmtr~0Ye3ZjKeJI|e0p^~&!YF2X> zJFC@djKhpDI;+#Uo;BXOPwbkUcFA%m>#>z0A;hf(zh0R#z}Iz}gGK^<^RifyxOOR% zo?o^B)sZ>z>h4zagEe^H%q#^A;2-Y+aR7T7dhHL&hH;$a)82c`T!kL9Wjoi{Ka|w8 z)eW`Pb2B!7{lN(O^P$hSp`T2c^RXxK^VC(H<90k`I!d!I6pD8$VQAOyjQ=GyEs(rrmZuaY}onKu1PvMLw!@MWtWjM$*twl7f(cb3t