-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvmath.py
167 lines (112 loc) · 3.6 KB
/
vmath.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import math
# Definition of a simple vector type
class vec(tuple):
# Definition as extention of tuple to reduce memory
# thrashing, also lets us to upacking directly.
def __new__(cls, x, y):
return tuple.__new__(cls, (x, y))
@property
def x(self): return self[0]
@property
def y(self): return self[1]
def __repr__(self):
return 'vec(%r, %r)' % self
# Simple math operations
def __abs__((x,y)):
return vec(abs(x), abs(y))
def __pos__(v):
return v
def __neg__((ax,ay)):
return vec(-ax, -ay)
def __invert__((ax,ay)):
return vec(-ay, ax)
def __round__((ax,ay), n):
return vec(round(ax, n), round(ay, n))
def __floor__((ax,ay)):
return vec(math.floor(ax), math.floor(ay))
def __ceil__((ax,ay)):
return vec(math.ceil(ax), math.ceil(ay))
def __trunc__((ax,ay)):
return vec(math.trunc(ax), math.trun(ay))
def __add__((ax,ay), b):
if isinstance(b, vec):
return vec(ax+b[0], ay+b[1])
else:
return vec(ax+b, ay+b)
def __sub__((ax,ay), b):
if isinstance(b, vec):
return vec(ax-b[0], ay-b[1])
else:
return vec(ax-b, ay-b)
def __mul__(a, b):
if isinstance(b, vec):
return a.dot(b)
else:
return a.scale(b)
def __truediv__((ax,ay), b):
return vec(ax/b, ay/b)
def __floordiv__((ax,ay), b):
return vec(ax//b, ay//b)
def __mod__((ax,ay), b):
return vec(ax%b, ay%b)
def __divmod__((ax,ay), b):
return vec(divmod(ax,b), divmod(ay,b))
def __pow__((ax,ay), b):
return vec(ax**b, ay**b)
# Relationships
def __lt__(a, b):
if isinstance(b, vec):
return a.lensq() < b.lensq()
else:
return a.lensq() < b**2
def __gt__(a, b):
if isinstance(b, vec):
return a.lensq() > b.lensq()
else:
return a.lensq() > b**2
def __le__(a, b):
return not a > b
def __ge__(a, b):
return not a < b
# Aliases
__div__ = __truediv__
__radd__ = __add__
__rsub__ = __sub__
__rmul__ = __mul__
# Vector properties
def dot((ax,ay), (bx,by)):
return ax*bx + ay*by
def scale((x,y), s):
return vec(s*x, s*y)
def lensq((x,y)):
return x*x + y*y
def len(v):
return math.sqrt(v.lensq())
def norm(v):
return v / v.len()
def rotate((x,y), a):
cos = math.cos(a)
sin = math.sin(a)
return vec(cos*x - sin*y, sin*x + cos*y)
# Vector operations
def distsq(a, b):
return (b-a).lensq()
def dist(a, b):
return (b-a).len()
def angle(a, b):
return -math.atan2(~a * b, a * b)
def projectunit(a, b):
return (a*b)*b
def project(a, b):
return b.scale(a*b / b.lensq())
def lerp(a, b, r):
return a.scale(1-r) + a.scale(r)
def bezier(a, b, c, d, r):
m = lerp(b, c, r)
return lerp(lerp(lerp(a,b,r), m, r),
lerp(m, lerp(c,d,r), r), r)
def hermite(a, b, c, d, t):
return (a.scale(2*t**3 - 3*t**2 + 1) +
b.scale(t**3 - 2*t**2 + t) +
c.scale(-2*t**3 + 3*t**2) +
d.scale(t**3 - t**2))