forked from X-PLUG/mPLUG-DocOwl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
443 lines (364 loc) · 17.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import argparse
import datetime
import json
import os
import time
import gradio as gr
import requests
from mplug_docowl.conversation import (default_conversation, conv_templates,
SeparatorStyle)
from mplug_docowl.constants import LOGDIR
from mplug_docowl.utils import (build_logger, server_error_msg,
violates_moderation, moderation_msg)
from model_worker import ModelWorker
import hashlib
from icecream import ic
logger = build_logger("gradio_web_server_local", "gradio_web_server_local.log")
headers = {"User-Agent": "mPLUG-DocOwl1.5 Client"}
no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=False)
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def load_demo(url_params, request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
state = default_conversation.copy()
return state
def vote_last_response(state, vote_type, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"state": state.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
def upvote_last_response(state, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, "upvote", request)
return ("",) + (disable_btn,) * 3
def downvote_last_response(state, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, "downvote", request)
return ("",) + (disable_btn,) * 3
def flag_last_response(state, request: gr.Request):
logger.info(f"flag. ip: {request.client.host}")
vote_last_response(state, "flag", request)
return ("",) + (disable_btn,) * 3
def regenerate(state, image_process_mode, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def add_text(state, text, image, image_process_mode, request: gr.Request):
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
if len(text) <= 0 and image is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (
no_change_btn,) * 5
text = text[:3584] # Hard cut-off
if image is not None:
text = text[:3500] # Hard cut-off for images
if '<|image|>' not in text:
text = '<|image|>' + text
text = (text, image, image_process_mode)
if len(state.get_images(return_pil=True)) > 0:
state = default_conversation.copy()
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def http_bot(state, temperature, top_p, max_new_tokens, request: gr.Request):
logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
if len(state.messages) == state.offset + 2:
# First round of conversation
template_name = "mplug_owl2"
new_state = conv_templates[template_name].copy()
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
state = new_state
# Construct prompt
prompt = state.get_prompt()
all_images = state.get_images(return_pil=True)
# debug
"""for image in all_images:
ic(image.size)"""
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
for image, hash in zip(all_images, all_image_hash):
t = datetime.datetime.now()
filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
image.save(filename)
# Make requests
pload = {
"prompt": prompt,
"temperature": float(temperature),
"top_p": float(top_p),
"max_new_tokens": min(int(max_new_tokens), 2048),
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
"images": f'List of {len(state.get_images())} images: {all_image_hash}',
}
logger.info(f"==== request ====\n{pload}")
pload['images'] = state.get_images()
state.messages[-1][-1] = "▌"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
try:
# Stream output
# response = requests.post(worker_addr + "/worker_generate_stream",
# headers=headers, json=pload, stream=True, timeout=10)
# for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
response = model.generate_stream_gate(pload)
# print('response:', response)
for chunk in response:
if chunk:
print('chunk:', chunk.decode())
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][len(prompt):].strip()
state.messages[-1][-1] = output + "▌"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
else:
output = data["text"] + f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
time.sleep(0.03)
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
finish_tstamp = time.time()
logger.info(f"{output}")
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(),
"images": all_image_hash,
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
title_markdown = ("""
<h1 align="center"><a href="https://github.com/X-PLUG/mPLUG-DocOwl"><img src="https://github.com/X-PLUG/mPLUG-DocOwl/raw/main/assets/mPLUG_new1.png", alt="mPLUG-DocOwl" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>
<h2 align="center"> mPLUG-DocOwl1.5: Unified Stucture Learning for OCR-free Document Understanding</h2>
<h5 align="center"> If you like our project, please give us a star ✨ on Github for latest update. </h2>
<h5 align="center"> Note: This demo is temporarily only supported for English Document Understanding. The Chinese-and-English model is under development.</h2>
<h5 align="center"> 注意: 当前Demo只支持英文文档理解, 中英模型正在全力开发中。</h2>
<h5 align="center"> Note: If you want a detailed explanation, please remember to add a prompot "Give a detailed explanation." after the question.</h2>
<h5 align="center"> 注意: 如果你想要详细的推理解释, 请在问题后面加上“Give a detailed explanation.”。</h2>
<div align="center">
<div style="display:flex; gap: 0.25rem;" align="center">
<a href='https://github.com/X-PLUG/mPLUG-DocOwl'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
<a href="https://arxiv.org/abs/2403.12895"><img src="https://img.shields.io/badge/Arxiv-2403.12895-red"></a>
<a href='https://github.com/X-PLUG/mPLUG-DocOwl/stargazers'><img src='https://img.shields.io/github/stars/X-PLUG/mPLUG-DocOwl.svg?style=social'></a>
</div>
</div>
""")
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
.bot {
white-space: break-spaces;
}
"""
def build_demo(embed_mode):
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
with gr.Blocks(title="mPLUG-DocOwl1.5", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
if not embed_mode:
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(type="pil")
image_process_mode = gr.Radio(
# ["Crop", "Resize", "Pad", "Default"],
[],
value="Default",
label="Preprocess for non-square image", visible=False)
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(examples=[
[f"{cur_dir}/examples/cvpr.png", "what is this schedule for? Give detailed explanation."],
[f"{cur_dir}/examples/fflw0023_1.png", "Parse texts in the image."],
[f"{cur_dir}/examples/col_type_46452.jpg", "Convert the table into Markdown format."],
[f"{cur_dir}/examples/col_type_177029.jpg", "What is unusual about this image? Provide detailed explanation."],
[f"{cur_dir}/examples/multi_col_60204.png", "Convert the illustration into Markdown language."],
[f"{cur_dir}/examples/Rebecca_(1939_poster)_Small.jpeg", "What is the name of the movie in the poster? Provide detailed explanation."],
[f"{cur_dir}/examples/extreme_ironing.jpg", "What is unusual about this image? Provide detailed explanation."],
], inputs=[imagebox, textbox])
with gr.Accordion("Parameters", open=True) as parameter_row:
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Column(scale=8):
chatbot = gr.Chatbot(elem_id="Chatbot", label="mPLUG-DocOwl1.5 Chatbot", height=600)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
#stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
if not embed_mode:
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
state,
[textbox, upvote_btn, downvote_btn, flag_btn],
queue=False
)
downvote_btn.click(
downvote_last_response,
state,
[textbox, upvote_btn, downvote_btn, flag_btn],
queue=False
)
flag_btn.click(
flag_last_response,
state,
[textbox, upvote_btn, downvote_btn, flag_btn],
queue=False
)
regenerate_btn.click(
regenerate,
[state, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
).then(
http_bot,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list
)
clear_btn.click(
clear_history,
None,
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
)
textbox.submit(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
).then(
http_bot,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list
)
submit_btn.click(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
).then(
http_bot,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list
)
demo.load(
load_demo,
[url_params],
state,
_js=get_window_url_params,
queue=False
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument("--concurrency-count", type=int, default=10)
parser.add_argument("--model-list-mode", type=str, default="once",
choices=["once", "reload"])
parser.add_argument("--model-source", type=str, default="modelscope",
choices=["local", "modelscope", "huggingface"])
parser.add_argument("--model-version", type=str, default="Omni",
choices=['stage1', 'Chat','Omni'])
parser.add_argument("--model-path", type=str, default="iic/DocOwl1___5-Omni")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
if args.model_source == 'modelscope':
# download model from modelscope
from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('iic/DocOwl1.5-'+args.model_version, cache_dir='./')
args.model_path = 'iic/DocOwl1___5-'+args.model_version
elif args.model_source == 'huggingface':
# download model from huggingface
from huggingface_hub import snapshot_download
model_dir = snapshot_download('mPLUG/DocOwl1.5-'+args.model_version, cache_dir='./')
args.model_path = 'mPLUG/DocOwl1.5-'+args.model_version
print(os.listdir('./'))
model = ModelWorker(args.model_path, None, None,
resolution=448,
anchors='grid_9',
add_global_img=True,
load_8bit=args.load_8bit,
load_4bit=args.load_4bit,
device=args.device)
logger.info(args)
demo = build_demo(args.embed)
demo.queue(
concurrency_count=args.concurrency_count,
api_open=False
).launch(
server_name=args.host,
server_port=args.port,
share=False
)