forked from facebookresearch/nougat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
173 lines (149 loc) · 5.09 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""
import os
import sys
from functools import partial
from http import HTTPStatus
from fastapi import FastAPI, File, UploadFile
from PIL import Image
from pathlib import Path
import hashlib
from fastapi.middleware.cors import CORSMiddleware
import pypdfium2
import torch
from nougat import NougatModel
from nougat.postprocessing import markdown_compatible, close_envs
from nougat.utils.dataset import ImageDataset
from nougat.utils.checkpoint import get_checkpoint
from nougat.dataset.rasterize import rasterize_paper
from nougat.utils.device import move_to_device, default_batch_size
from tqdm import tqdm
SAVE_DIR = Path("./pdfs")
BATCHSIZE = int(os.environ.get("NOUGAT_BATCHSIZE", default_batch_size()))
NOUGAT_CHECKPOINT = get_checkpoint()
if NOUGAT_CHECKPOINT is None:
print(
"Set environment variable 'NOUGAT_CHECKPOINT' with a path to the model checkpoint!"
)
sys.exit(1)
app = FastAPI(title="Nougat API")
origins = ["http://localhost", "http://127.0.0.1"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
model = None
@app.on_event("startup")
async def load_model(
checkpoint: str = NOUGAT_CHECKPOINT,
):
global model, BATCHSIZE
if model is None:
model = NougatModel.from_pretrained(checkpoint)
model = move_to_device(model, cuda=BATCHSIZE > 0)
if BATCHSIZE <= 0:
BATCHSIZE = 1
model.eval()
@app.get("/")
def root():
"""Health check."""
response = {
"status-code": HTTPStatus.OK,
"data": {},
}
return response
@app.post("/predict/")
async def predict(
file: UploadFile = File(...), start: int = None, stop: int = None
) -> str:
"""
Perform predictions on a PDF document and return the extracted text in Markdown format.
Args:
file (UploadFile): The uploaded PDF file to process.
start (int, optional): The starting page number for prediction.
stop (int, optional): The ending page number for prediction.
Returns:
str: The extracted text in Markdown format.
"""
pdfbin = file.file.read()
pdf = pypdfium2.PdfDocument(pdfbin)
md5 = hashlib.md5(pdfbin).hexdigest()
save_path = SAVE_DIR / md5
if start is not None and stop is not None:
pages = list(range(start - 1, stop))
else:
pages = list(range(len(pdf)))
predictions = [""] * len(pages)
dellist = []
if save_path.exists():
for computed in (save_path / "pages").glob("*.mmd"):
try:
idx = int(computed.stem) - 1
if idx in pages:
i = pages.index(idx)
print("skip page", idx + 1)
predictions[i] = computed.read_text(encoding="utf-8")
dellist.append(idx)
except Exception as e:
print(e)
compute_pages = pages.copy()
for el in dellist:
compute_pages.remove(el)
images = rasterize_paper(pdf, pages=compute_pages)
global model
dataset = ImageDataset(
images,
partial(model.encoder.prepare_input, random_padding=False),
)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=BATCHSIZE,
pin_memory=True,
shuffle=False,
)
for idx, sample in tqdm(enumerate(dataloader), total=len(dataloader)):
if sample is None:
continue
model_output = model.inference(image_tensors=sample)
for j, output in enumerate(model_output["predictions"]):
if model_output["repeats"][j] is not None:
if model_output["repeats"][j] > 0:
disclaimer = "\n\n+++ ==WARNING: Truncated because of repetitions==\n%s\n+++\n\n"
else:
disclaimer = (
"\n\n+++ ==ERROR: No output for this page==\n%s\n+++\n\n"
)
rest = close_envs(model_output["repetitions"][j]).strip()
if len(rest) > 0:
disclaimer = disclaimer % rest
else:
disclaimer = ""
else:
disclaimer = ""
predictions[pages.index(compute_pages[idx * BATCHSIZE + j])] = (
markdown_compatible(output) + disclaimer
)
(save_path / "pages").mkdir(parents=True, exist_ok=True)
pdf.save(save_path / "doc.pdf")
if len(images) > 0:
thumb = Image.open(images[0])
thumb.thumbnail((400, 400))
thumb.save(save_path / "thumb.jpg")
for idx, page_num in enumerate(pages):
(save_path / "pages" / ("%02d.mmd" % (page_num + 1))).write_text(
predictions[idx], encoding="utf-8"
)
final = "".join(predictions).strip()
(save_path / "doc.mmd").write_text(final, encoding="utf-8")
return final
def main():
import uvicorn
uvicorn.run("app:app", port=8503)
if __name__ == "__main__":
main()