This repository has been archived by the owner on Mar 18, 2024. It is now read-only.
forked from RangiLyu/nanodet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnanodet-plus-m_416-yolo.yml
134 lines (132 loc) · 3.65 KB
/
nanodet-plus-m_416-yolo.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# nanodet-plus-m_416
# COCO mAP(0.5:0.95) = 0.304
# AP_50 = 0.459
# AP_75 = 0.317
# AP_small = 0.106
# AP_m = 0.322
# AP_l = 0.477
save_dir: workspace/nanodet-plus-m_416
model:
weight_averager:
name: ExpMovingAverager
decay: 0.9998
arch:
name: NanoDetPlus
detach_epoch: 10
backbone:
name: ShuffleNetV2
model_size: 1.0x
out_stages: [2,3,4]
activation: LeakyReLU
fpn:
name: GhostPAN
in_channels: [116, 232, 464]
out_channels: 96
kernel_size: 5
num_extra_level: 1
use_depthwise: True
activation: LeakyReLU
head:
name: NanoDetPlusHead
num_classes: 80
input_channel: 96
feat_channels: 96
stacked_convs: 2
kernel_size: 5
strides: [8, 16, 32, 64]
activation: LeakyReLU
reg_max: 7
norm_cfg:
type: BN
loss:
loss_qfl:
name: QualityFocalLoss
use_sigmoid: True
beta: 2.0
loss_weight: 1.0
loss_dfl:
name: DistributionFocalLoss
loss_weight: 0.25
loss_bbox:
name: GIoULoss
loss_weight: 2.0
# Auxiliary head, only use in training time.
aux_head:
name: SimpleConvHead
num_classes: 80
input_channel: 192
feat_channels: 192
stacked_convs: 4
strides: [8, 16, 32, 64]
activation: LeakyReLU
reg_max: 7
class_names: &class_names ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic_light', 'fire_hydrant',
'stop_sign', 'parking_meter', 'bench', 'bird', 'cat', 'dog',
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports_ball', 'kite', 'baseball_bat',
'baseball_glove', 'skateboard', 'surfboard', 'tennis_racket',
'bottle', 'wine_glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot_dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted_plant', 'bed', 'dining_table', 'toilet', 'tv', 'laptop',
'mouse', 'remote', 'keyboard', 'cell_phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock',
'vase', 'scissors', 'teddy_bear', 'hair_drier', 'toothbrush']
data:
train:
name: YoloDataset
img_path: coco/train2017
ann_path: coco/train2017
class_names: *class_names
input_size: [416,416] #[w,h]
keep_ratio: False
pipeline:
perspective: 0.0
scale: [0.6, 1.4]
stretch: [[0.8, 1.2], [0.8, 1.2]]
rotation: 0
shear: 0
translate: 0.2
flip: 0.5
brightness: 0.2
contrast: [0.6, 1.4]
saturation: [0.5, 1.2]
normalize: [[103.53, 116.28, 123.675], [57.375, 57.12, 58.395]]
val:
name: YoloDataset
img_path: coco/val2017
ann_path: coco/val2017
class_names: *class_names
input_size: [416,416] #[w,h]
keep_ratio: False
pipeline:
normalize: [[103.53, 116.28, 123.675], [57.375, 57.12, 58.395]]
device:
gpu_ids: [0]
workers_per_gpu: 10
batchsize_per_gpu: 96
schedule:
# resume:
# load_model:
optimizer:
name: AdamW
lr: 0.001
weight_decay: 0.05
warmup:
name: linear
steps: 500
ratio: 0.0001
total_epochs: 300
lr_schedule:
name: CosineAnnealingLR
T_max: 300
eta_min: 0.00005
val_intervals: 10
grad_clip: 35
evaluator:
name: CocoDetectionEvaluator
save_key: mAP
log:
interval: 50