-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
49 lines (38 loc) · 1.59 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from absl import app
from absl import flags
from absl import logging
from clu import platform
import train
import jax
from ml_collections import config_flags
import tensorflow as tf
FLAGS = flags.FLAGS
flags.DEFINE_string('workdir', None, 'Directory to store model data.')
flags.DEFINE_string('data_dir', '.', 'Directory of tfds data.')
flags.DEFINE_integer('seed', 1, 'Random seed.')
config_flags.DEFINE_config_file(
'config',
None,
'File path to the training hyperparameter configuration.',
lock_config=True)
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
# Hide any GPUs from TensorFlow. Otherwise TF might reserve memory and make
# it unavailable to JAX.
tf.config.experimental.set_visible_devices([], 'GPU')
logging.info('JAX process: %d / %d', jax.process_index(), jax.process_count())
logging.info('JAX local devices: %r', jax.local_devices())
# Add a note so that we can tell which task is which JAX host.
# (Depending on the platform task 0 is not guaranteed to be host 0)
platform.work_unit().set_task_status(f'process_index: {jax.process_index()}, '
f'process_count: {jax.process_count()}')
platform.work_unit().create_artifact(platform.ArtifactType.DIRECTORY,
FLAGS.workdir, 'workdir')
train.train_and_evaluate(FLAGS.config,
FLAGS.workdir,
FLAGS.data_dir,
FLAGS.seed)
if __name__ == '__main__':
flags.mark_flags_as_required(['config', 'workdir'])
app.run(main)