-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsac_main.py
217 lines (161 loc) · 7.08 KB
/
sac_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gym
import torch
import argparse
import datetime
# Suppress DeprecationWarning before importing highway_env
import warnings
warnings.simplefilter("ignore")
import highway_env
import itertools
import numpy as np
from agent import SAC
from collections import deque
from replay import ReplayBuffer
from envs.pomdp_wrapper import POMDPWrapper
from torch.utils.tensorboard import SummaryWriter
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.set_default_tensor_type('torch.cuda.FloatTensor')
updates_per_step = 1
eval = True
seed = 0
his_len = 5
batch_size = 256
num_steps = 10000001
start_steps = 1000
replay_size = 100000
# Environment
env_name = "racetrack-v0"
env = POMDPWrapper(env_name, 'nothing')
env.action_space.seed(1)
obs_dim = np.prod(env.observation_space.shape)
act_dim = env.action_space
torch.manual_seed(1)
np.random.seed(1)
# Agent
agent = SAC(np.prod(env.observation_space.shape), env.action_space, model="GTrXL")
#Tesnorboard
current_time = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
writer = SummaryWriter('runs/{}_SAC_{}_{}_{}'.format(current_time, env_name,
"Gaussian", "autotune"))
# Memory
memory = ReplayBuffer(np.prod(env.observation_space.shape), np.prod(env.action_space.shape), replay_size)
# Training Loop
total_numsteps = 0
updates = 0
for i_episode in itertools.count(1):
episode_reward = 0
episode_steps = 0
done = False
state = env.reset()
buffer = np.zeros([1, obs_dim])
obs_buffer = deque([np.zeros(buffer.shape)]*his_len, maxlen=his_len)
while not done:
obs_buffer.append([state])
assert np.array(obs_buffer).shape == (his_len, 1, obs_dim)
buffer = np.array(obs_buffer).reshape(1,his_len, obs_dim)
if start_steps > total_numsteps:
action = env.action_space.sample() # Sample random action
else:
print("Triggered")
action = agent.select_action(buffer) # Sample action from policy
if len(memory) > batch_size:
# Number of updates per step in environment
for i in range(updates_per_step):
# Update parameters of all the networks
critic_1_loss, critic_2_loss, policy_loss, ent_loss, alpha = agent.update_parameters(memory, batch_size, his_len, updates)
writer.add_scalar('loss/critic_1', critic_1_loss, updates)
writer.add_scalar('loss/critic_2', critic_2_loss, updates)
writer.add_scalar('loss/policy', policy_loss, updates)
writer.add_scalar('loss/entropy_loss', ent_loss, updates)
writer.add_scalar('entropy_temprature/alpha', alpha, updates)
updates += 1
next_state, reward, done, _ = env.step(action) # Step
episode_steps += 1
total_numsteps += 1
episode_reward += reward
mask = 1 if episode_steps == 5000 else float(done) # ******COME BACK TO THIS********
memory.push(state, action, next_state, reward, mask) # Append transition to memory
state = next_state
if total_numsteps > num_steps:
break
writer.add_scalar('reward/train', episode_reward, i_episode)
print("Episode: {}, total numsteps: {}, episode steps: {}, reward: {}".format(i_episode, total_numsteps, episode_steps, round(episode_reward, 2)))
if i_episode % 10 == 0 and eval is True:
avg_reward = 0.
episodes = 10
if i_episode % 10 == 0:
agent.save_checkpoint(f'{env_name}_{current_time}', str(i_episode))
for _ in range(episodes):
state = env.reset()
episode_reward = 0
done = False
while not done:
action = agent.select_action(state, evaluate=True)
next_state, reward, done, _ = env.step(action)
episode_reward += reward
state = next_state
avg_reward += episode_reward
avg_reward /= episodes
writer.add_scalar('avg_reward/test', avg_reward, i_episode)
print("----------------------------------------")
print("Test Episodes: {}, Avg. Reward: {}".format(episodes, round(avg_reward, 2)))
print("----------------------------------------")
env.close()
_steps = 0
done = False
state = env.reset()
buffer = np.zeros([1, obs_dim])
obs_buffer = deque([np.zeros(buffer.shape)]*his_len, maxlen=his_len)
while not done:
obs_buffer.append([state])
assert np.array(obs_buffer).shape == (his_len, 1, obs_dim)
buffer = np.array(obs_buffer).reshape(1,his_len, obs_dim)
if start_steps > total_numsteps:
action = env.action_space.sample() # Sample random action
else:
print("Triggered")
action = agent.select_action(buffer) # Sample action from policy
if len(memory) > batch_size:
# Number of updates per step in environment
for i in range(updates_per_step):
# Update parameters of all the networks
critic_1_loss, critic_2_loss, policy_loss, ent_loss, alpha = agent.update_parameters(memory, batch_size, his_len, updates)
writer.add_scalar('loss/critic_1', critic_1_loss, updates)
writer.add_scalar('loss/critic_2', critic_2_loss, updates)
writer.add_scalar('loss/policy', policy_loss, updates)
writer.add_scalar('loss/entropy_loss', ent_loss, updates)
writer.add_scalar('entropy_temprature/alpha', alpha, updates)
updates += 1
next_state, reward, done, _ = env.step(action) # Step
episode_steps += 1
total_numsteps += 1
episode_reward += reward
mask = 1 if episode_steps == 5000 else float(done) # ******COME BACK TO THIS********
memory.push(state, action, next_state, reward, mask) # Append transition to memory
state = next_state
if total_numsteps > num_steps:
break
writer.add_scalar('reward/train', episode_reward, i_episode)
print("Episode: {}, total numsteps: {}, episode steps: {}, reward: {}".format(i_episode, total_numsteps, episode_steps, round(episode_reward, 2)))
if i_episode % 10 == 0 and eval is True:
avg_reward = 0.
episodes = 10
if i_episode % 10 == 0:
agent.save_checkpoint(f'{env_name}_{current_time}', str(i_episode))
for _ in range(episodes):
state = env.reset()
episode_reward = 0
done = False
while not done:
action = agent.select_action(state, evaluate=True)
next_state, reward, done, _ = env.step(action)
episode_reward += reward
state = next_state
avg_reward += episode_reward
avg_reward /= episodes
writer.add_scalar('avg_reward/test', avg_reward, i_episode)
print("----------------------------------------")
print("Test Episodes: {}, Avg. Reward: {}".format(episodes, round(avg_reward, 2)))
print("----------------------------------------")
env.close()