-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathui.R
212 lines (198 loc) · 9.51 KB
/
ui.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#Upgraded Shiny-Server
#sudo su - -c "R -e \"install.packages('devtools', repos=c(RStudio='http://rstudio.org/_packages', CRAN='http://cran.rstudio.com'))\""
#sudo su - -c "R -e \"devtools::install_github('shiny', 'rstudio')\""
#restart shiny-server
library(shiny)
# Define UI for miles per gallon application
shinyUI(pageWithSidebar(
# Application title
headerPanel("Melanoma Rapid Learning Utility")
# Sidebar Panel
,sidebarPanel(
conditionalPanel(condition="input.conditionedPanels == 'Cohort Summary'",
helpText("Use the filters below to adjust the inclusion criteria for the cohort.
(No filter is required, however.) As you apply filters, be sure to confirm that the distributions
across the variables both reflect your judgement as well as the characteristics of your patient."),
helpText("When satistified, click on the 'Outcomes Analysis' tab to analyze."),
helpText("Please be sure to only run one analysis at a time.
Rapid and repeated adjustment of filters in search of significant findings may yield false-positive results.")
)
,conditionalPanel(condition="input.conditionedPanels == 'Outcomes Analysis'",
# Group Plot
helpText("Please be sure to only run one analysis at a time.
Rapid and repeated adjustment of filters in search of significant findings may yield false-positive results.")
,selectInput("groupBy", "Stratification Variable:",
list("Drug Class" = "DRUG_CLASS",
"Drug Name" = "MEDICATION",
"Mutation Type" = "MUTATION",
"BRAF Status" = "BRAF",
"NRAS Status" = "NRAS",
"Sex" = "SEX"
)),
# Group Plot
selectInput("outcomeVar", "Outcome Variable:",
list("Survival" = "SURVIVAL",
"Time to Next Treatment" = "TTNT"
))
# Minimum Patients
,checkboxInput("includeMinGroupSize", "Minimum Patients Per Outcome Group", FALSE),
conditionalPanel(
condition = "input.includeMinGroupSize == true",
numericInput("minGroupSize", "Require n >=", 12)
)
,br()
)
# INSTITUTION
,checkboxInput("includeSource", "Filter By Institution of Origin", FALSE),
conditionalPanel(
condition = "input.includeSource == true",
selectInput("selectSource", "Include Patients From:",
list("Stanford" = "STANFORD",
"Vanderbilt" = "VANDERBILT"))
)
# SEX
,conditionalPanel(
condition = "input.groupBy != 'SEX'",
checkboxInput("includeSex", "Filter By Sex", FALSE),
conditionalPanel(
condition = "input.includeSex == true",
uiOutput("selectSex")
)
)
,
# AGE
conditionalPanel(
condition = "input.groupBy != 'AGE'",
checkboxInput("includeAge", "Filter By Age", FALSE),
conditionalPanel(
condition = "input.includeAge == true",
uiOutput('selectAge'),
uiOutput("age_range_slider")
)
),
# BRAF
conditionalPanel(
condition = "input.groupBy != 'BRAF'",
checkboxInput("includeBRAF", "Filter By BRAF Status", FALSE),
conditionalPanel(
condition = "input.includeBRAF == true",
uiOutput('selectBRAF')
)
),
# NRAF
conditionalPanel(
condition = "input.groupBy != 'NRAS'",
checkboxInput("includeNRAS", "Filter By NRAS Status", FALSE),
conditionalPanel(
condition = "input.includeNRAS == true",
uiOutput('selectNRAS')
)
),
# Filter Drug Class
checkboxInput("includeClasses", "Filter By Drug Class", FALSE),
conditionalPanel(
checkboxInput("twoClass", "Compare First Two Treatments", FALSE),
condition = "input.includeClasses == true",
uiOutput("drug_classes")
# ,conditionalPanel(
# condition = "input.twoClass == true"
,radioButtons("selectAllNoneClasses", "Quick Check/Uncheck All Classes: ",
list("Check All" = 'all',
"Uncheck All" = "none"
)
# )
)
),
# Filter Drug Name
checkboxInput("includeDrug", "Filter By Drug Name", FALSE),
conditionalPanel(
checkboxInput("twoDrug", "Compare First Two Treatments", FALSE),
condition = "input.includeDrug == true",
uiOutput("drug_names"),
radioButtons("selectAllNoneDrugs", "Quick Check/Uncheck All Drugs: ",
list("Check All" = 'all',
"Uncheck All" = "none"
)),
br()
)
)
,mainPanel(
tabsetPanel(
tabPanel("Cohort Summary"
,plotOutput("cohortAgeSex", height="auto")
,plotOutput("cohortGen", height="auto")
,plotOutput("cohortDrugs", height="auto")),
tabPanel("Outcomes Analysis"
,tabsetPanel(
tabPanel("Kaplan Meier",
plotOutput("survCurv", height="auto")
,h5("R Call Used to Construct Model:")
,verbatimTextOutput("survCall")
,h5("Model Summary")
,tableOutput("survSummary")
,h5("Difference Statistics")
,tableOutput("survDiffSummary")
)
# ,tabPanel("Time to Next Treatment",
# conditionalPanel(
# condition = "input.groupBy == 'MEDICATION'",
# HTML("<center>"),
# plotOutput("boxResponseMed", height="auto",width="100%"),
# HTML("</center>")
# )
# ,conditionalPanel(
# condition = "input.groupBy != 'MEDICATION'",
# HTML("<center>"),
# plotOutput("boxResponse", height="auto",width="80%"),
# HTML("</center>")
# )
# ,h5("Summary Statistics")
# ,tableOutput("boxSummary")
# ,h5("ANOVA")
# ,verbatimTextOutput("t2ntANOVA")
# ,h5("Pair-wise T-Test")
# ,tableOutput("t2ntPairwiseTT")
# )
,tabPanel("Tumor Response",
plotOutput("barResponse", height="auto")
,h5("Summary Statistics")
,verbatimTextOutput("tumorBurdenSummary")
,h5("ANOVA")
,verbatimTextOutput("tumorBurdenANOVA")
,h5("Pair-wise T-Test")
,verbatimTextOutput("tumorBurdenPairwiseTT")
)
)
),
tabPanel("Raw Data (Cohort Specific)",
tabsetPanel(
tabPanel("Clinical", helpText('All MRNS are de-identified.\n
"Days to Second Treatment" only
relevant to patients who received more than one drug regimine, and represents
the duration (in days) of the first treatment protocol used for the patient
before a new drug was used.\n
Days to Death measured from date of administration of first drug,
and is calculated to the date of data collection for
those patients alive at the end of the study.
These patients are marked as "Alive at End of Treatment"\n
IMPORTANT: Tumor Change is randomly generated'),
downloadButton("downloadDataClinical","Download as .csv"), br(),br(),
dataTableOutput("cohortTableClinical")
),
tabPanel("Drugs (Distinct)",helpText('All MRNS are de-identified, and all dates are shifted.
Lists includes only the first date in which each distinct cancer drug was used
on each patient.'),
downloadButton("downloadDataDrug","Download as .csv"), br(),br(),
dataTableOutput("cohortTableDrugs")
),
tabPanel("Drugs (Full Data)",helpText('All MRNS are de-identified, and all dates are shifted.
Lists includes only the first date in which each distinct cancer drug was used
on each patient.'),
dataTableOutput("cohortTableDrugsFull")
)
)
)
,id = "conditionedPanels")
)
)
)