You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
1. I have searched related issues but cannot get the expected help.
2. The bug has not been fixed in the latest version.
3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
5. Please use English, otherwise it will be closed.
Describe the bug
I'm running some benchmarks to test using the offline engine for batch processing Llama 405B ( sglang.Engine.generate() ) vs. spinning up a server and running the same batch of requests locally against that live SGLang server.
Reproduction
Local server batch benchmark:
First, boot up a local server with CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8 --mem-fraction-static 0.8 --port 8001
Next, I ran the following script
import json
import time
import requests
from typing import Dict, Any, List
import torch
from tqdm import tqdm
from multiprocessing import Pool, cpu_count
def process_single_request(request: Dict[str, Any]) -> Dict[str, Any]:
try:
response = requests.post(
"http://localhost:8001/v1/chat/completions",
json=request['body']
)
response.raise_for_status()
response_data = response.json()
# Format result
processed_result = {
"id": f"cmpl-{response_data['id']}",
"custom_id": request['custom_id'],
"response": {
"choices": [{
"message": {
"role": "assistant",
"content": response_data["choices"][0]["message"]["content"]
}
}],
"usage": {
"prompt_tokens": response_data["usage"]["prompt_tokens"],
"completion_tokens": response_data["usage"]["completion_tokens"],
"total_tokens": response_data["usage"]["total_tokens"]
}
}
}
return processed_result
except Exception as e:
print(f"Error processing request: {e}")
return None
def process_with_progress(prepared_requests: List[Dict[str, Any]]):
with Pool(processes=cpu_count()) as pool:
results = list(
tqdm(
pool.imap(process_single_request, prepared_requests),
total=len(prepared_requests),
desc="Processing requests"
)
)
return [r for r in results if r is not None] # Filter out any failed requests
def main():
# Load requests
print("Loading requests...")
with open('mmlu_batch_requests.jsonl', 'r') as f:
requests_data = [json.loads(line) for line in f if line.strip()]
# Process batch with timing
print(f"Starting batch processing of {len(requests_data)} requests...")
start_time = time.time()
# Process all requests using multiprocessing
results = process_with_progress(requests_data)
# Calculate totals
total_input_tokens = sum(r["response"]["usage"]["prompt_tokens"] for r in results)
total_completion_tokens = sum(r["response"]["usage"]["completion_tokens"] for r in results)
end_time = time.time()
total_time = end_time - start_time
# Calculate and print statistics
tokens_per_second = total_completion_tokens / total_time if total_time > 0 else 0
print(f"\nBatch Processing Statistics:")
print(f"Total time: {total_time:.2f} seconds")
print(f"Total input tokens: {total_input_tokens}")
print(f"Total completion tokens: {total_completion_tokens}")
print(f"Tokens per second: {tokens_per_second:.2f}")
print(f"Number of requests processed: {len(results)}")
if torch.cuda.is_available():
print(f"GPU type: {torch.cuda.get_device_name()}")
# Save results
print("\nSaving results...")
with open('mmlu_outputs.jsonl', 'w') as f:
for result in results:
f.write(json.dumps(result) + '\n')
if __name__ == "__main__":
main()
Batch inference benchmark:
Run the following script
import json
import time
import sglang
from typing import Dict, Any, List
import torch
def prepare_prompts(requests_data: List[Dict[str, Any]], llm: sglang.Engine) -> tuple[List[str], List[Dict[str, Any]]]:
prompts = []
sampling_params_list = []
for request in requests_data:
messages = request['body']['messages']
conversation = [{"role": msg["role"], "content": msg["content"]} for msg in messages]
prompt = llm.get_tokenizer().apply_chat_template(
conversation=conversation, tokenize=False, add_generation_prompt=True
)
prompts.append(str(prompt))
sampling_params = {
"max_new_tokens": request['body'].get('max_tokens', 2048),
"temperature": request['body'].get('temperature', 0.7)
}
sampling_params_list.append(sampling_params)
return prompts, sampling_params_list
def main():
# Initialize model
print("Initializing model...")
llm = sglang.Engine(
model_path="meta-llama/Meta-Llama-3.1-405B-Instruct-FP8",
mem_fraction_static=0.8,
tp_size=8
)
# Load requests
print("Loading requests...")
with open('mmlu_batch_requests.jsonl', 'r') as f:
requests_data = [json.loads(line) for line in f if line.strip()]
# Prepare inputs
print("Preparing prompts...")
st = time.time()
prompts, sampling_params_list = prepare_prompts(requests_data, llm)
print(f"Time to prepare prompts: {time.time() - st:.2f} seconds")
print(prompts[10])
print(sampling_params_list[10])
# Time the generation
print("Starting generation...")
start_time = time.time()
outputs = llm.generate(prompts, sampling_params_list)
end_time = time.time()
# Calculate statistics
total_time = end_time - start_time
total_input_tokens = sum(output['meta_info']['prompt_tokens'] for output in outputs)
total_completion_tokens = sum(output['meta_info']['completion_tokens'] for output in outputs)
tokens_per_second = total_completion_tokens / total_time if total_time > 0 else 0
# Print statistics
print(f"\nBatch Processing Statistics:")
print(f"Total time: {total_time:.2f} seconds")
print(f"Total input tokens: {total_input_tokens}")
print(f"Total completion tokens: {total_completion_tokens}")
print(f"Tokens per second: {tokens_per_second:.2f}")
print(f"Number of requests processed: {len(requests_data)}")
print(f"GPU type: {torch.cuda.get_device_name()}")
# Save results
print("\nSaving results...")
results = []
for output, request in zip(outputs, requests_data):
result = {
"id": f"cmpl-{output['meta_info']['id']}",
"custom_id": request['custom_id'],
"response": {
"choices": [{
"message": {
"role": "assistant",
"content": output['text']
}
}],
"usage": {
"prompt_tokens": output['meta_info']['prompt_tokens'],
"completion_tokens": output['meta_info']['completion_tokens'],
"total_tokens": output['meta_info']['completion_tokens'] + output['meta_info']['prompt_tokens']
}
}
}
results.append(result)
with open('mmlu_outputs.jsonl', 'w') as f:
for result in results:
f.write(json.dumps(result) + '\n')
if __name__ == "__main__":
main()
Starting batch processing of 500 requests...
Processing requests: 100%|██████████████████████████████████████████████████████████████████████████████| 500/500 [02:56<00:00, 2.84it/s]
Batch Processing Statistics:
Total time: 176.35 seconds
Total input tokens: 89474
Total completion tokens: 49230
Tokens per second: 279.16
Number of requests processed: 500
GPU type: NVIDIA A100-SXM4-80GB
Offline mode batch
Batch Processing Statistics:
Total time: 177.41 seconds
Total input tokens: 89974
Total completion tokens: 49971
Tokens per second: 281.67
Number of requests processed: 500
GPU type: NVIDIA A100-SXM4-80GB
Environment
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35
Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-113-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB
Nvidia driver version: 535.183.01
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 96
On-line CPU(s) list: 0-95
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz
CPU family: 6
Model: 106
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 2
Stepping: 6
BogoMIPS: 4000.03
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid fsrm md_clear arch_capabilities
Virtualization: VT-x
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 3 MiB (96 instances)
L1i cache: 3 MiB (96 instances)
L2 cache: 192 MiB (48 instances)
L3 cache: 32 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-47
NUMA node1 CPU(s): 48-95
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled
Versions of relevant libraries:
[pip3] flashinfer==0.1.6+cu121torch2.4
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.6.77
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchao==0.6.1
[pip3] torchvision==0.19.0
[pip3] transformers==4.45.2
[pip3] triton==3.0.0
[pip3] zmq==0.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.3.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A
GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A
GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A
GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A
GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A
GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A
GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A
NIC0 SYS SYS SYS SYS PHB PHB PHB PHB X PHB PHB PHB SYS SYS SYS SYS SYS
NIC1 SYS SYS SYS SYS PHB PHB PHB PHB PHB X PHB PHB SYS SYS SYS SYS SYS
NIC2 SYS SYS SYS SYS PHB PHB PHB PHB PHB PHB X PHB SYS SYS SYS SYS SYS
NIC3 SYS SYS SYS SYS PHB PHB PHB PHB PHB PHB PHB X SYS SYS SYS SYS SYS
NIC4 NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS X NODE NODE NODE NODE
NIC5 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE X PHB PHB PH
GPU type: NVIDIA A100-SXM4-80GB
Saving results...
ubuntu@avior-a100-b-1:~/batch-worker$ python3 live_sg_2.py
Loading requests...
Starting batch processing of 500 requests...
Processing requests: 100%|██████████████████████████████████████████████████████████████████████████████| 500/500 [02:23<00:00, 3.50it/s]
Batch Processing Statistics:
Total time: 143.36 seconds
Total input tokens: 89474
Total completion tokens: 48855
Tokens per second: 340.79
Number of requests processed: 500
GPU type: NVIDIA A100-SXM4-80GB
Saving results...
ubuntu@avior-a100-b-1:~/batch-worker$ python3 live_sg_2.py
Loading requests...
Starting batch processing of 500 requests...
Processing requests: 100%|██████████████████████████████████████████████████████████████████████████████| 500/500 [02:56<00:00, 2.84it/s]
Batch Processing Statistics:
Total time: 176.35 seconds
Total input tokens: 89474
Total completion tokens: 49230
Tokens per second: 279.16
Number of requests processed: 500
GPU type: NVIDIA A100-SXM4-80GB
Saving results...
ubuntu@avior-a100-b-1:~/batch-worker$
[2] 0:bash* "avior-a100-b-1" 16:36 01-Nov-24
B
NIC6 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB X PHB PHB
NIC7 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB PHB X PHB
NIC8 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB PHB PHB X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
(reverse-i-search)`python3 ': CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ^Cthon3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8 --mem-fraction-static 0.8 --port 8001
(env) ubuntu@avior-a100-b-1:~/batch-worker$ tmux attach -t 2
[detached (from session 2)]
(env) ubuntu@avior-a100-b-1:~/batch-worker$ python3 -m sglang.check_env
Python: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB
GPU 0,1,2,3,4,5,6,7 Compute Capability: 8.0
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 12.2, V12.2.140
CUDA Driver Version: 535.183.01
PyTorch: 2.4.0+cu121
sglang: 0.3.4.post1
flashinfer: 0.1.6+cu121torch2.4
triton: 3.0.0
transformers: 4.45.2
requests: 2.32.3
tqdm: 4.66.5
numpy: 1.26.4
aiohttp: 3.10.10
fastapi: 0.115.3
hf_transfer: 0.1.8
huggingface_hub: 0.26.1
interegular: 0.3.3
packaging: 24.1
PIL: 10.4.0
psutil: 6.1.0
pydantic: 2.9.2
uvicorn: 0.32.0
uvloop: 0.21.0
zmq: 26.2.0
vllm: 0.6.3.post1
multipart: 0.0.12
openai: 1.52.1
anthropic: 0.37.1
NVIDIA Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A
GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A
GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A
GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 SYS SYS SYS SYS NODE PHB PHB PHB PHB 0-47 0 N/A
GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A
GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A
GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X PHB PHB PHB PHB SYS SYS SYS SYS SYS 48-95 1 N/A
NIC0 SYS SYS SYS SYS PHB PHB PHB PHB X PHB PHB PHB SYS SYS SYS SYS SYS
NIC1 SYS SYS SYS SYS PHB PHB PHB PHB PHB X PHB PHB SYS SYS SYS SYS SYS
NIC2 SYS SYS SYS SYS PHB PHB PHB PHB PHB PHB X PHB SYS SYS SYS SYS SYS
NIC3 SYS SYS SYS SYS PHB PHB PHB PHB PHB PHB PHB X SYS SYS SYS SYS SYS
NIC4 NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS X NODE NODE NODE NODE
NIC5 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE X PHB PHB PHB
NIC6 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB X PHB PHB
NIC7 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB PHB X PHB
NIC8 PHB PHB PHB PHB SYS SYS SYS SYS SYS SYS SYS SYS NODE PHB PHB PHB X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
Hypervisor vendor: KVM
ulimit soft: 1048576
The text was updated successfully, but these errors were encountered:
jischein
changed the title
[Bug]
[Bug] Offline engine performance is not better than local server for running batch
Nov 1, 2024
jischein
changed the title
[Bug] Offline engine performance is not better than local server for running batch
[Bug] Offline engine performance is not better than local server when running batch
Nov 1, 2024
Checklist
Describe the bug
I'm running some benchmarks to test using the offline engine for batch processing Llama 405B (
sglang.Engine.generate()
) vs. spinning up a server and running the same batch of requests locally against that live SGLang server.Reproduction
Local server batch benchmark:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8 --mem-fraction-static 0.8 --port 8001
Batch inference benchmark:
Run the following script
Test data set
Results
Local server batch
Offline mode batch
Environment
The text was updated successfully, but these errors were encountered: