Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

how to convert the model to ONNX #56

Open
azuryl opened this issue Jan 17, 2022 · 1 comment
Open

how to convert the model to ONNX #56

azuryl opened this issue Jan 17, 2022 · 1 comment

Comments

@azuryl
Copy link

azuryl commented Jan 17, 2022

@shariqfarooq123
import torch
import torch.onnx
from torch2trt import torch2trt
import model_io
from models import UnetAdaptiveBins
import sys

#Function to Convert to ONNX
def Convert_ONNX():

 # Export the model   
torch.onnx.export(model,         # model being run 
     dummy_input,       # model input (or a tuple for multiple inputs) 
     "efficientnet.onnx",       # where to save the model  
     export_params=False,  # store the trained parameter weights inside the model file 
     opset_version=10,    # the ONNX version to export the model to 
     do_constant_folding=True,  # whether to execute constant folding for optimization 
     input_names = ['modelInput'],   # the model's input names 
     output_names = ['modelOutput'], # the model's output names 
     verbose=True,
     dynamic_axes={'modelInput' : {0 : 'batch_size'},    # variable length axes 
                            'modelOutput' : {0 : 'batch_size'}})
print(" ") 
print('Model has been converted to ONNX') 

device='cuda:0'
#pretrained_path = "./pretrained/AdaBins_nyu.pt"

model = UnetAdaptiveBins.build(n_bins=256, min_val=1e-3, max_val=10)
dummy_input = torch.rand((1, 3, 480, 640), requires_grad=True)#.to(device)
model.eval()
Convert_ONNX()
oading base model ()...Done.
Removing last two layers (global_pool & classifier).
Building Encoder-Decoder model..Done.
/home/jliu/.cache/torch/hub/rwightman_gen-efficientnet-pytorch_master/geffnet/conv2d_layers.py:47: UserWarning: floordiv is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
return max((-(i // -s) - 1) * s + (k - 1) * d + 1 - i, 0)
/home/jliu/.cache/torch/hub/rwightman_gen-efficientnet-pytorch_master/geffnet/conv2d_layers.py:47: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
return max((-(i // -s) - 1) * s + (k - 1) * d + 1 - i, 0)
/home/jliu/.cache/torch/hub/rwightman_gen-efficientnet-pytorch_master/geffnet/conv2d_layers.py:55: UserWarning: floordiv is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
return [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]
/home/jliu/data2/torch2trt/models/layers.py:34: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
assert c == ck, "Number of channels in x and Embedding dimension (at dim 2) of K matrix must match"
Traceback (most recent call last):
File "/home/jliu/anaconda3/envs/adabins/lib/python3.9/site-packages/torch/onnx/symbolic_opset9.py", line 1032, in _convert_padding_node
padding = [sym_help._get_const(v, "i", "padding") for v in input_list]
File "/home/jliu/anaconda3/envs/adabins/lib/python3.9/site-packages/torch/onnx/symbolic_opset9.py", line 1032, in
padding = [sym_help._get_const(v, "i", "padding") for v in input_list]
File "/home/jliu/anaconda3/envs/adabins/lib/python3.9/site-packages/torch/onnx/symbolic_helper.py", line 112, in _get_const
raise RuntimeError("ONNX symbolic expected a constant value of the {} argument, got {}".format(arg_name, value))
RuntimeError: ONNX symbolic expected a constant value of the padding argument, got `1050 defined in (%1050 : Long(requires_grad=0, device=cpu) = onnx::Castto=7 # /home/jliu/anaconda3/envs/adabins/lib/python3.9/site-packages/torch/_tensor.py:591:0

@ocularbioengarhku
Copy link

@azuryl can you find out the workaround?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants