-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
100 lines (90 loc) · 3.97 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import torch
import numpy as np
import pandas as pd
import math
import torch.nn as nn
import ssim
import PIL.Image as pil_image
import torchvision.transforms as transforms
from transforms import *
#======================================================================================
# create directories
#======================================================================================
def create_dir(path):
dir = os.path.join(path)
if not os.path.exists(dir):
os.mkdir(dir)
# else :
# os.remove(dir)
#======================================================================================
# For avging metrics values
#======================================================================================
class MetricsCalculator(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
#======================================================================================
# Calculates psnr batch wise
#======================================================================================
def psnr(original, compressed):
running_psnr = 0
for original_idx, compressed_idx in zip(original, compressed):
# original_idx = 255*original_idx
# compressed_idx = 255*compressed_idx
# original_idx = torch.clamp(original_idx, min=0, max=255)
# compressed_idx = torch.clamp(compressed_idx, min=0, max=255)
original_idx = denormalize(original_idx.detach())*255
compressed_idx = denormalize(compressed_idx.detach())*255
mse = torch.mean((original_idx - compressed_idx) ** 2)
#print(mse)
if(mse == 0): # MSE zero-> No noise is present-> PSNR has no importance.
return 100
max_pixel_val = 255.0
running_psnr += 20 * torch.log10(max_pixel_val / torch.sqrt(mse))
psnr = running_psnr / (original.shape)[0]
return psnr
#======================================================================================
# Copy all output data to CSV files. Can be used for plotting later on..
#======================================================================================
def save_history(loss_data, psnr_data, ssim_data, path_dir):
create_dir(path_dir)
pd.DataFrame.from_dict(data=loss_data, orient='columns').to_csv(os.path.join(path_dir,'loss.csv'), header=['epoch', 'lr', 'train loss','val loss'])
pd.DataFrame.from_dict(data=psnr_data, orient='columns').to_csv(os.path.join(path_dir,'psnr.csv'), header=['epoch','train psnr','val psnr'])
pd.DataFrame.from_dict(data=ssim_data, orient='columns').to_csv(os.path.join(path_dir,'ssim.csv'), header=['epoch','train ssim','val ssim'])
#======================================================================================
# Weighted loss function - SSIM, PSNR, MSE
#======================================================================================
def weighted_loss(original,compressed):
'''
Original and compressed are torch tensors
0.4 = MSE
0.5 = PSNR
0.1 = SSIM
'''
mseLoss = nn.MSELoss()
mse = mseLoss(original, compressed)
psnr_score = psnr(original, compressed)
#PSNR is maximized so 100-PSNR is a loss function (Or -PSNR)
psnr_loss = 100 - psnr_score
ssim_score = ssim.ssim(original,compressed)
ssim_loss = 1 - ssim_score.item()
weighted_loss = (0.4 * mse) + (0.5 * (psnr_loss/100)) + (0.1 * ssim_loss)
return weighted_loss
#======================================================================================
# Fetch gaussian variance which is linearly decresing till 6K iterations from 1-->0
#======================================================================================
def fetch_gauss_variance(iteration):
m = -1/5999
c = 6000/5999
variance = m*(iteration+1) + c
return variance