forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare.sh
executable file
·120 lines (100 loc) · 3.83 KB
/
prepare.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
stage=-1
stop_stage=100
perturb_speed=true
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/aidatatang_200zh
# You can find "corpus" and "transcript" inside it.
# You can download it at https://openslr.org/62/
# If you download the data by yourself, DON'T FORGET to extract the *.tar.gz files under corpus.
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
if [ ! -f $dl_dir/aidatatang_200zh/transcript/aidatatang_200_zh_transcript.txt ]; then
lhotse download aidatatang-200zh $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare aidatatang_200zh manifest"
# We assume that you have downloaded the aidatatang_200zh corpus
# to $dl_dir/aidatatang_200zh
if [ ! -f data/manifests/aidatatang_200zh/.manifests.done ]; then
mkdir -p data/manifests/aidatatang_200zh
lhotse prepare aidatatang-200zh $dl_dir data/manifests/aidatatang_200zh
touch data/manifests/aidatatang_200zh/.manifests.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
if [ ! -f data/manifests/.manifests.done ]; then
log "It may take 6 minutes"
mkdir -p data/manifests/
lhotse prepare musan $dl_dir/musan data/manifests/
touch data/manifests/.manifests.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for musan"
if [ ! -f data/fbank/.msuan.done ]; then
mkdir -p data/fbank
./local/compute_fbank_musan.py
touch data/fbank/.msuan.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for aidatatang_200zh"
if [ ! -f data/fbank/.aidatatang_200zh.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aidatatang_200zh.py --perturb-speed ${perturb_speed}
touch data/fbank/.aidatatang_200zh.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare char based lang"
lang_char_dir=data/lang_char
mkdir -p $lang_char_dir
# Prepare text.
# Note: in Linux, you can install jq with the following command:
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
# 2. chmod +x ./jq
# 3. cp jq /usr/bin
if [ ! -f $lang_char_dir/text ]; then
gunzip -c data/manifests/aidatatang_200zh/aidatatang_supervisions_train.jsonl.gz \
|jq '.text' |sed -e 's/["text:\t ]*//g' | sed 's/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text
fi
# Prepare words.txt
if [ ! -f $lang_char_dir/text_words ]; then
gunzip -c data/manifests/aidatatang_200zh/aidatatang_supervisions_train.jsonl.gz \
| jq '.text' | sed -e 's/["text:\t]*//g' | sed 's/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text_words
fi
cat $lang_char_dir/text_words | sed 's/ /\n/g' | sort -u | sed '/^$/d' \
| uniq > $lang_char_dir/words_no_ids.txt
if [ ! -f $lang_char_dir/words.txt ]; then
./local/prepare_words.py \
--input-file $lang_char_dir/words_no_ids.txt \
--output-file $lang_char_dir/words.txt
fi
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
./local/prepare_char.py
fi
fi