forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare.sh
executable file
·391 lines (328 loc) · 12.3 KB
/
prepare.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=15
stage=-1
stop_stage=11
perturb_speed=true
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/aishell
# You can find data_aishell, resource_aishell inside it.
# You can download them from https://www.openslr.org/33
#
# - $dl_dir/lm
# This directory contains the language model downloaded from
# https://huggingface.co/pkufool/aishell_lm
#
# - 3-gram.unpruned.arpa
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bbpe_xxx,
# data/lang_bbpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 2000
# 1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "stage 0: Download data"
# If you have pre-downloaded it to /path/to/aishell,
# you can create a symlink
#
# ln -sfv /path/to/aishell $dl_dir/aishell
#
# The directory structure is
# aishell/
# |-- data_aishell
# | |-- transcript
# | `-- wav
# `-- resource_aishell
# |-- lexicon.txt
# `-- speaker.info
if [ ! -d $dl_dir/aishell/data_aishell/wav/train ]; then
lhotse download aishell $dl_dir
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/musan
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare aishell manifest"
# We assume that you have downloaded the aishell corpus
# to $dl_dir/aishell
if [ ! -f data/manifests/.aishell_manifests.done ]; then
mkdir -p data/manifests
lhotse prepare aishell $dl_dir/aishell data/manifests
touch data/manifests/.aishell_manifests.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
if [ ! -f data/manifests/.musan_manifests.done ]; then
log "It may take 6 minutes"
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan_manifests.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for aishell"
if [ ! -f data/fbank/.aishell.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aishell.py --perturb-speed ${perturb_speed}
touch data/fbank/.aishell.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
if [ ! -f data/fbank/.msuan.done ]; then
mkdir -p data/fbank
./local/compute_fbank_musan.py
touch data/fbank/.msuan.done
fi
fi
lang_phone_dir=data/lang_phone
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare phone based lang"
mkdir -p $lang_phone_dir
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
cat - $dl_dir/aishell/resource_aishell/lexicon.txt |
sort | uniq > $lang_phone_dir/lexicon.txt
./local/generate_unique_lexicon.py --lang-dir $lang_phone_dir
if [ ! -f $lang_phone_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_phone_dir
fi
# Train a bigram P for MMI training
if [ ! -f $lang_phone_dir/transcript_words.txt ]; then
log "Generate data to train phone based bigram P"
aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
aishell_train_uid=$dl_dir/aishell/data_aishell/transcript/aishell_train_uid
find $dl_dir/aishell/data_aishell/wav/train -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_train_uid
awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_train_uid $aishell_text |
cut -d " " -f 2- > $lang_phone_dir/transcript_words.txt
fi
if [ ! -f $lang_phone_dir/transcript_tokens.txt ]; then
./local/convert_transcript_words_to_tokens.py \
--lexicon $lang_phone_dir/uniq_lexicon.txt \
--transcript $lang_phone_dir/transcript_words.txt \
--oov "<UNK>" \
> $lang_phone_dir/transcript_tokens.txt
fi
if [ ! -f $lang_phone_dir/P.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order 2 \
-text $lang_phone_dir/transcript_tokens.txt \
-lm $lang_phone_dir/P.arpa
fi
if [ ! -f $lang_phone_dir/P.fst.txt ]; then
python3 -m kaldilm \
--read-symbol-table="$lang_phone_dir/tokens.txt" \
--disambig-symbol='#0' \
--max-order=2 \
$lang_phone_dir/P.arpa > $lang_phone_dir/P.fst.txt
fi
fi
lang_char_dir=data/lang_char
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare char based lang"
mkdir -p $lang_char_dir
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
# The transcripts in training set, generated in stage 5
cp $lang_phone_dir/transcript_words.txt $lang_char_dir/transcript_words.txt
cat $dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt |
cut -d " " -f 2- > $lang_char_dir/text
(echo '<eps> 0'; echo '!SIL 1'; echo '<SPOKEN_NOISE> 2'; echo '<UNK> 3';) \
> $lang_char_dir/words.txt
cat $lang_char_dir/text | sed 's/ /\n/g' | sort -u | sed '/^$/d' \
| awk '{print $1" "NR+3}' >> $lang_char_dir/words.txt
num_lines=$(< $lang_char_dir/words.txt wc -l)
(echo "#0 $num_lines"; echo "<s> $(($num_lines + 1))"; echo "</s> $(($num_lines + 2))";) \
>> $lang_char_dir/words.txt
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
./local/prepare_char.py --lang-dir $lang_char_dir
fi
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Prepare Byte BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bbpe_${vocab_size}
mkdir -p $lang_dir
cp $lang_char_dir/words.txt $lang_dir
cp $lang_char_dir/text $lang_dir
if [ ! -f $lang_dir/bbpe.model ]; then
./local/train_bbpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/text
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bbpe.py --lang-dir $lang_dir
fi
done
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Prepare G"
mkdir -p data/lm
# Train LM on transcripts
if [ ! -f data/lm/3-gram.unpruned.arpa ]; then
python3 ./shared/make_kn_lm.py \
-ngram-order 3 \
-text $lang_char_dir/transcript_words.txt \
-lm data/lm/3-gram.unpruned.arpa
fi
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
if [ ! -f data/lm/G_3_gram_char.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="$lang_phone_dir/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_phone.fst.txt
python3 -m kaldilm \
--read-symbol-table="$lang_char_dir/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_char.fst.txt
fi
if [ ! -f $lang_char_dir/HLG.fst ]; then
./local/prepare_lang_fst.py \
--lang-dir $lang_char_dir \
--ngram-G ./data/lm/G_3_gram_char.fst.txt
fi
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Compile LG & HLG"
./local/compile_hlg.py --lang-dir $lang_phone_dir --lm G_3_gram_phone
./local/compile_hlg.py --lang-dir $lang_char_dir --lm G_3_gram_char
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bbpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir --lm G_3_gram_char
done
./local/compile_lg.py --lang-dir $lang_phone_dir --lm G_3_gram_phone
./local/compile_lg.py --lang-dir $lang_char_dir --lm G_3_gram_char
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bbpe_${vocab_size}
./local/compile_lg.py --lang-dir $lang_dir --lm G_3_gram_char
done
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Generate LM training data"
log "Processing char based data"
out_dir=data/lm_training_char
mkdir -p $out_dir $dl_dir/lm
if [ ! -f $dl_dir/lm/aishell-train-word.txt ]; then
cp $lang_phone_dir/transcript_words.txt $dl_dir/lm/aishell-train-word.txt
fi
# training words
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/aishell-train-word.txt \
--lm-archive $out_dir/lm_data.pt
# valid words
if [ ! -f $dl_dir/lm/aishell-valid-word.txt ]; then
aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
aishell_valid_uid=$dl_dir/aishell/data_aishell/transcript/aishell_valid_uid
find $dl_dir/aishell/data_aishell/wav/dev -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_valid_uid
awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_valid_uid $aishell_text |
cut -d " " -f 2- > $dl_dir/lm/aishell-valid-word.txt
fi
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/aishell-valid-word.txt \
--lm-archive $out_dir/lm_data_valid.pt
# test words
if [ ! -f $dl_dir/lm/aishell-test-word.txt ]; then
aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
aishell_test_uid=$dl_dir/aishell/data_aishell/transcript/aishell_test_uid
find $dl_dir/aishell/data_aishell/wav/test -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_test_uid
awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_test_uid $aishell_text |
cut -d " " -f 2- > $dl_dir/lm/aishell-test-word.txt
fi
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/aishell-test-word.txt \
--lm-archive $out_dir/lm_data_test.pt
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Sort LM training data"
# Sort LM training data by sentence length in descending order
# for ease of training.
#
# Sentence length equals to the number of tokens
# in a sentence.
out_dir=data/lm_training_char
mkdir -p $out_dir
ln -snf ../../../librispeech/ASR/local/sort_lm_training_data.py local/
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data.pt \
--out-lm-data $out_dir/sorted_lm_data.pt \
--out-statistics $out_dir/statistics.txt
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data_valid.pt \
--out-lm-data $out_dir/sorted_lm_data-valid.pt \
--out-statistics $out_dir/statistics-valid.txt
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data_test.pt \
--out-lm-data $out_dir/sorted_lm_data-test.pt \
--out-statistics $out_dir/statistics-test.txt
fi
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
log "Stage 12: Train RNN LM model"
python ../../../icefall/rnn_lm/train.py \
--start-epoch 0 \
--world-size 1 \
--num-epochs 20 \
--use-fp16 0 \
--embedding-dim 512 \
--hidden-dim 512 \
--num-layers 2 \
--batch-size 400 \
--exp-dir rnnlm_char/exp \
--lm-data $out_dir/sorted_lm_data.pt \
--lm-data-valid $out_dir/sorted_lm_data-valid.pt \
--vocab-size 4336 \
--master-port 12345
fi
# whisper large-v3 using 128 mel bins, others using 80 mel bins
whisper_mel_bins=80
output_dir=data/fbank_whisper
if [ $stage -le 30 ] && [ $stop_stage -ge 30 ]; then
log "Stage 30: Compute ${whisper_mel_bins} dim fbank for whisper model fine-tuning"
if [ ! -f $output_dir/.aishell.whisper.done ]; then
mkdir -p $output_dir
./local/compute_fbank_aishell.py --perturb-speed ${perturb_speed} --num-mel-bins ${whisper_mel_bins} --whisper-fbank true --output-dir $output_dir
./local/compute_fbank_musan.py --num-mel-bins ${whisper_mel_bins} --whisper-fbank true --output-dir $output_dir
touch $output_dir/.aishell.whisper.done
fi
fi