See k2-fsa#1261 for more details.
You can find a pretrained model, training logs at: https://www.modelscope.cn/models/pkufool/icefall-asr-zipformer-libriheavy-20230926/summary
Note: The repository above contains three models trained on different subset of libriheavy exp(large set), exp_medium_subset(medium set), exp_small_subset(small set).
Results of models:
training set | decoding method | librispeech clean | librispeech other | libriheavy clean | libriheavy other | comment |
---|---|---|---|---|---|---|
small | greedy search | 4.19 | 9.99 | 4.75 | 10.25 | --epoch 90 --avg 20 |
small | modified beam search | 4.05 | 9.89 | 4.68 | 10.01 | --epoch 90 --avg 20 |
medium | greedy search | 2.39 | 4.85 | 2.90 | 6.6 | --epoch 60 --avg 20 |
medium | modified beam search | 2.35 | 4.82 | 2.90 | 6.57 | --epoch 60 --avg 20 |
large | greedy search | 1.67 | 3.32 | 2.24 | 5.61 | --epoch 16 --avg 3 |
large | modified beam search | 1.62 | 3.36 | 2.20 | 5.57 | --epoch 16 --avg 3 |
The training command is:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
python ./zipformer/train.py \
--world-size 4 \
--master-port 12365 \
--exp-dir zipformer/exp \
--num-epochs 60 \ # 16 for large; 90 for small
--lr-hours 15000 \ # 20000 for large; 5000 for small
--use-fp16 1 \
--start-epoch 1 \
--bpe-model data/lang_bpe_500/bpe.model \
--max-duration 1000 \
--subset medium
The decoding command is:
export CUDA_VISIBLE_DEVICES="0"
for m in greedy_search modified_beam_search; do
./zipformer/decode.py \
--epoch 16 \
--avg 3 \
--exp-dir zipformer/exp \
--max-duration 1000 \
--causal 0 \
--decoding-method $m
done
You can find a pretrained model, training logs at: https://www.modelscope.cn/models/pkufool/icefall-asr-zipformer-libriheavy-punc-20230830/summary
Note: The repository above contains three models trained on different subset of libriheavy exp(large set), exp_medium_subset(medium set), exp_small_subset(small set).
Results of models:
training set | decoding method | libriheavy clean (WER) | libriheavy other (WER) | libriheavy clean (CER) | libriheavy other (CER) | comment |
---|---|---|---|---|---|---|
small | modified beam search | 13.04 | 19.54 | 4.51 | 7.90 | --epoch 88 --avg 41 |
medium | modified beam search | 9.84 | 13.39 | 3.02 | 5.10 | --epoch 50 --avg 15 |
large | modified beam search | 7.76 | 11.32 | 2.41 | 4.22 | --epoch 16 --avg 2 |
The training command is:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
python ./zipformer/train.py \
--world-size 4 \
--master-port 12365 \
--exp-dir zipformer/exp \
--num-epochs 60 \ # 16 for large; 90 for small
--lr-hours 15000 \ # 20000 for large; 10000 for small
--use-fp16 1 \
--train-with-punctuation 1 \
--start-epoch 1 \
--bpe-model data/lang_punc_bpe_756/bpe.model \
--max-duration 1000 \
--subset medium
The decoding command is:
export CUDA_VISIBLE_DEVICES="0"
for m in greedy_search modified_beam_search; do
./zipformer/decode.py \
--epoch 16 \
--avg 3 \
--exp-dir zipformer/exp \
--max-duration 1000 \
--causal 0 \
--decoding-method $m
done
See k2-fsa#1250 for commit history and our paper https://arxiv.org/abs/2309.07414 for more details.
You can find a pre-trained model, training logs, decoding logs, and decoding results at: https://huggingface.co/marcoyang/icefall-promptasr-libriheavy-zipformer-BERT-2023-10-10
The training command is:
causal=0
subset=medium
memory_dropout_rate=0.05
text_encoder_type=BERT
python ./zipformer_prompt_asr/train_bert_encoder.py \
--world-size 4 \
--start-epoch 1 \
--num-epochs 60 \
--exp-dir ./zipformer_prompt_asr/exp \
--use-fp16 True \
--memory-dropout-rate $memory_dropout_rate \
--causal $causal \
--subset $subset \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--text-encoder-type $text_encoder_type \
--text-encoder-dim 768 \
--use-context-list 0 \
--top-k $top_k \
--use-style-prompt 1
The decoding results using utterance-level context (epoch-60-avg-10):
decoding method | lh-test-clean | lh-test-other | comment |
---|---|---|---|
modified_beam_search | 3.13 | 6.78 | --use-pre-text False --use-style-prompt False |
modified_beam_search | 2.86 | 5.93 | --pre-text-transform upper-no-punc --style-text-transform upper-no-punc |
modified_beam_search | 2.6 | 5.5 | --pre-text-transform mixed-punc --style-text-transform mixed-punc |
The decoding command is:
for style in mixed-punc upper-no-punc; do
python ./zipformer_prompt_asr/decode_bert.py \
--epoch 60 \
--avg 10 \
--use-averaged-model True \
--post-normalization True \
--causal False \
--exp-dir ./zipformer_prompt_asr/exp \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--decoding-method modified_beam_search \
--beam-size 4 \
--text-encoder-type BERT \
--text-encoder-dim 768 \
--memory-layer 0 \
--use-ls-test-set False \
--use-ls-context-list False \
--max-prompt-lens 1000 \
--use-pre-text True \
--use-style-prompt True \
--style-text-transform $style \
--pre-text-transform $style \
--compute-CER 0
done
You can find a pre-trained model, training logs, decoding logs, and decoding results at: https://huggingface.co/marcoyang/icefall-promptasr-with-context-libriheavy-zipformer-BERT-2023-10-10
This model is trained with an extra type of content prompt (context words), thus it does better
on word-level context biasing. Note that to train this model, please first run prepare_prompt_asr.sh
to prepare a manifest containing context words.
The training command is:
causal=0
subset=medium
memory_dropout_rate=0.05
text_encoder_type=BERT
use_context_list=True
# prepare the required data for context biasing
./prepare_prompt_asr.sh --stage 0 --stop_stage 1
python ./zipformer_prompt_asr/train_bert_encoder.py \
--world-size 4 \
--start-epoch 1 \
--num-epochs 50 \
--exp-dir ./zipformer_prompt_asr/exp \
--use-fp16 True \
--memory-dropout-rate $memory_dropout_rate \
--causal $causal \
--subset $subset \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--text-encoder-type $text_encoder_type \
--text-encoder-dim 768 \
--use-context-list $use_context_list \
--top-k 10000 \
--use-style-prompt 1
Utterance-level biasing:
decoding method | lh-test-clean | lh-test-other | comment |
---|---|---|---|
modified_beam_search | 3.17 | 6.72 | --use-pre-text 0 --use-style-prompt 0 |
modified_beam_search | 2.91 | 6.24 | --pre-text-transform upper-no-punc --style-text-transform upper-no-punc |
modified_beam_search | 2.72 | 5.72 | --pre-text-transform mixed-punc --style-text-transform mixed-punc |
The decoding command for the table above is:
for style in mixed-punc upper-no-punc; do
python ./zipformer_prompt_asr/decode_bert.py \
--epoch 50 \
--avg 10 \
--use-averaged-model True \
--post-normalization True \
--causal False \
--exp-dir ./zipformer_prompt_asr/exp \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--decoding-method modified_beam_search \
--beam-size 4 \
--text-encoder-type BERT \
--text-encoder-dim 768 \
--memory-layer 0 \
--use-ls-test-set False \
--use-ls-context-list False \
--max-prompt-lens 1000 \
--use-pre-text True \
--use-style-prompt True \
--style-text-transform $style \
--pre-text-transform $style \
--compute-CER 0
done
Word-level biasing:
The results are reported on LibriSpeech test-sets using the biasing list provided from https://arxiv.org/abs/2104.02194.
You need to set --use-ls-test-set True
so that the LibriSpeech test sets are used.
decoding method | ls-test-clean | ls-test-other | comment |
---|---|---|---|
modified_beam_search | 2.4 | 5.08 | --use-pre-text 0 --use-style-prompt 0 |
modified_beam_search | 2.14 | 4.62 | --use-ls-context-list 1 --pre-text-transform mixed-punc --style-text-transform mixed-punc --ls-distractors 0 |
modified_beam_search | 2.14 | 4.64 | --use-ls-context-list 1 --pre-text-transform mixed-punc --style-text-transform mixed-punc --ls-distractors 100 |
The decoding command is for the table above is:
use_ls_test_set=1
use_ls_context_list=1
for ls_distractors in 0 100; do
python ./zipformer_prompt_asr/decode_bert.py \
--epoch 50 \
--avg 10 \
--use-averaged-model True \
--post-normalization True \
--causal False \
--exp-dir ./zipformer_prompt_asr/exp \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--decoding-method modified_beam_search \
--beam-size 4 \
--text-encoder-type BERT \
--text-encoder-dim 768 \
--memory-layer 0 \
--use-ls-test-set $use_ls_test_setse \
--use-ls-context-list $use_ls_context_list \
--ls-distractors $ls_distractors \
--max-prompt-lens 1000 \
--use-pre-text True \
--use-style-prompt True \
--style-text-transform mixed-punc \
--pre-text-transform mixed-punc \
--compute-CER 0
done