-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhandle_data.py
146 lines (113 loc) · 3.24 KB
/
handle_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding: utf-8 -*-
import gzip
import cPickle as p
import numpy
import random
f = open('desktop/训练数据.txt')
list = [] # get the training data,and remove the ENTER in the end of the line.
for i in f:
list.append(i[0:-1])
for i in range(1000):
list[i] = list[i].split('\t')
list_data = [] # sunder the labels from the data
for i in range(1000):
line = list[i][1]+list[i][2]+list[i][3]+list[i][4]
list_data.append(line)
list_label = []
for i in range(1000):
line = list[i][0]
list_label.append(line)
list2 = [] #transform the training data to the apropriate format
train_data = []
for i in range(900):
for j in range(21):
list2.append(list_data[i][j])
train_data.append(list2)
list2 = []
train_data = numpy.array(train_data,dtype = float)
train_data = train_data/10
list2 = []
train_label = []
for i in range(900):
list2.append(list_label[i])
train_label.append(list2)
list2 = []
train_label1 = []
for i in range(900):
if train_label[i][0] != '0' and train_label[i][0] != '1':
train_label[i][0] = '1'
train_label1.append(train_label[i][0])
train_label = numpy.array(train_label1, dtype = int)
train_set = train_data, train_label
valid_data = [] #得到CV数据和标签的合适格式
list2 = []
i = 900
while i < 1000:
for j in range(21):
list2.append(list_data[i][j])
valid_data.append(list2)
list2 = []
i = i+1
valid_data = numpy.array(valid_data,dtype = float)
valid_data = valid_data/10
valid_label = []
list2 = []
i = 900
while i < 1000:
list2.append(list_label[i])
valid_label.append(list2)
list2 = []
i = i+1
valid_label1 = []
for i in range(100):
if valid_label[i][0] != '0' and valid_label[i][0] != '1':
valid_label[i][0] = '1'
valid_label1.append(valid_label[i][0])
valid_label = numpy.array(valid_label1, dtype = int)
valid_set = valid_data, valid_label
f = open('desktop/测试数据.txt')
list = []
for i in f:
list.append(i[0:-1])
for i in range(200):
list[i] = list[i].split('\t')
list_data = []
for i in range(200):
line = list[i][1]+list[i][2]+list[i][3]+list[i][4]
list_data.append(line)
list_label = []
for i in range(200):
line = list[i][0]
list_label.append(line)
list2 = []
test_data = [] #得到测试数据和标签的合适格式
for i in range(200):
for j in range(21):
list2.append(list_data[i][j])
test_data.append(list2)
list2 = []
test_data = numpy.array(test_data,dtype = float)
test_data = test_data/10
list2 = []
test_label = []
for i in range(200):
list2.append(list_label[i])
test_label.append(list2)
list2 = []
test_label1 = []
for i in range(200):
if test_label[i][0] != '0' and test_label[i][0] != '1':
test_label[i][0] = '1'
test_label1.append(test_label[i][0])
test_label = numpy.array(test_label1,dtype = int)
test_set = test_data, test_label
output = open('desktop/data.pkl','wb') #用cPickle将其序列化
p.dump(train_set, output)
p.dump(valid_set, output)
p.dump(test_set, output)
output.close()
f = gzip.open('desktop/data.pkl.gz','wb') #压缩数据
f2 = open('desktop/data.pkl','rb')
f.writelines(f2)
f.close()
f2.close()