In the knapsack problem, a set of items with given values and sizes (such as weights or volumes) is packed into a container with a maximum capacity. The goal is to choose the subset of items which maximizes the profit such that the collective weight of selected items does not cross the knapsack capacity.
Knapsack problem has the following two variants-
- Fractional Knapsack Problem
- 0/1 Knapsack Problem
The 0/1 Knapsack Problem is solved using the Dynamic Problem Approach. It has the following characteristics :
- As the name suggests, items are indivisible here.
- We can not take the fraction of any item.
- We have to either take an item completely or leave it completely.
- Knapsack weight capacity = w
- Number of items each having some weight and value = n
The algorithm for Knapsack Problem using Dynamic Programming is as follows:
Input: Set of items X, set of weight W, profit of items V and knapsack capacity M
Output: Array V, which holds the solution of problem
for i ← 1 to n do
V[i, 0] ← 0
end
for i ← 1 to M do
V[0, i] ← 0
end
for V[0, i] ← 0 do
for j ← 0 to M do
if w[i] ≤ j then
V[i, j] ← max{V[i-1, j], v[i] + V[i – 1, j – w[i]]}
else
V[i, j] ← V[i – 1, j] // w[i]>j
end
end
end
// C solution for 0-1 Knapsack problem
#include <stdio.h>
//Function that returns the maximum of two integers
int max(int a, int b)
{
return (a > b) ? a : b;
}
// Returns the maximum value that
// can be put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{
int i, w;
int K[n + 1][W + 1];
for (i = 0; i <= n; i++)
{
for (w = 0; w <= W; w++)
{
if (i == 0 || w == 0)
K[i][w] = 0;
else if (wt[i - 1] <= w)
K[i][w] = max(val[i - 1]
+ K[i - 1][w - wt[i - 1]],
K[i - 1][w]);
else
K[i][w] = K[i - 1][w];
}
}
return K[n][W];
}
// Driver Code
int main()
{
int val[] = { 80, 120, 160 };
int wt[] = { 20, 30, 40 };
int W = 80;
int n = sizeof(val) / sizeof(val[0]);
printf("%d", knapSack(W, wt, val, n));
return 0;
}
// C++ solution for 0-1 Knapsack problem
#include <bits/stdc++.h>
using namespace std;
// Function that returns the maximum of two integers
int max(int a, int b)
{
return (a > b) ? a : b;
}
// Returns the maximum value that can be put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{
int i, w;
vector<vector<int>> K(n + 1, vector<int>(W + 1));
for(i = 0; i <= n; i++)
{
for(w = 0; w <= W; w++)
{
if (i == 0 || w == 0)
K[i][w] = 0;
else if (wt[i - 1] <= w)
K[i][w] = max(val[i - 1] +
K[i - 1][w - wt[i - 1]],
K[i - 1][w]);
else
K[i][w] = K[i - 1][w];
}
}
return K[n][W];
}
// Driver Code
int main()
{
int val[] = { 80, 120, 160 };
int wt[] = { 20, 30, 40 };
int W = 80;
int n = sizeof(val) / sizeof(val[0]);
cout << knapSack(W, wt, val, n);
return 0;
}
//Java solution for 0-1 Knapsack problem
import java.util.*;
class Knapsack {
public static void Knapsack01DP(int no_items,float max_weight,Float arr1[],Float arr2[]) {
float answer= 0;float weight=0;float totalp=0;
String finalstring="";
for(int i=0;i<Math.pow(2, no_items);i++){
weight=0;totalp=0;
String computation = Integer.toBinaryString(i);
String computation_basis = ("0".repeat(no_items-computation.length()))+Integer.toBinaryString(i);
//System.out.println(computation_basis);
for(int j=0;j<computation_basis.length();j++){
weight=weight+(arr1[j]*(Integer.valueOf(Character.toString(computation_basis.charAt(j)))));
totalp=totalp+(arr2[j]*(Integer.valueOf(Character.toString(computation_basis.charAt(j)))));
}//System.out.println(weight+" "+totalp);
if(weight<=max_weight && totalp>=answer){
//System.out.println("values change");
answer=totalp;
finalstring=computation_basis;
}
}
for(int k=0;k<no_items;k++){
if(finalstring.charAt(k)=='1'){
System.out.println("Item "+(k+1)+" of weight "+arr1[k]+" Kgs.");
}
}
System.out.println("Total profit gain -> "+answer+" Rs.");
}
/**
* @param arr1
* @param arr2
* @param arr3
* prints out table of inputs and there ratio
*/
public static void Printtable(Float arr1[],Float arr2[],Float arr3[]) {
System.out.println("Item No. Weight Profit P/W Ratio\n");
for(int j=0;j<arr1.length;j++){
System.out.println("\n"+(j+1)+" ".repeat(15-Integer.toString(j).length())+arr1[j]+" ".repeat(15-String.valueOf(arr1[j]).length())+arr2[j]+" ".repeat(15-String.valueOf(arr2[j]).length())+arr3[j]);
}
}
// Driver code
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.print("Enter max possible weight-> ");
float max=sc.nextFloat();
System.out.print("Enter number of items-> ");
int n=sc.nextInt();
Float wgarr[] = new Float[n];
Float parr[]= new Float[n];
Float ratio[] = new Float[n];
for(int i=0;i<n;i++){
System.out.print("\nFor item "+(i+1)+"->\nWeight (in kg)-> ");
wgarr[i]=sc.nextFloat();
System.out.print("Profit (in Rs.)-> ");
parr[i]=sc.nextFloat();
ratio[i]=parr[i]/wgarr[i];
}sc.close();
System.out.println("\nHence, we have -> \n");
Printtable(wgarr, parr, ratio);
System.out.println("\nThus, Required Composition is -> \n");
Knapsack01DP(n, max, wgarr, parr);
}
}
# Python solution for 0-1 Knapsack problem
# Returns the maximum value that can
# be put in a knapsack of capacity W
def knapSack(W, wt, val, n):
K = [[0 for x in range(W + 1)] for x in range(n + 1)]
for i in range(n + 1):
for w in range(W + 1):
if i == 0 or w == 0:
K[i][w] = 0
elif wt[i-1] <= w:
K[i][w] = max(val[i-1]
+ K[i-1][w-wt[i-1]],
K[i-1][w])
else:
K[i][w] = K[i-1][w]
return K[n][W]
# Driver code
val = [80, 120, 160]
wt = [20, 30, 40]
W = 80
n = len(val)
print(knapSack(W, wt, val, n))
<script>
//Javascript Solution to 0-1 Knapsack Problem
// A function that returns maximum of two integers
function max(a, b)
{
return (a > b) ? a : b;
}
// Returns the maximum value that can be put in a knapsack of capacity W
function knapSack(W, wt, val, n)
{
let i, w;
let K = new Array(n + 1);
for (i = 0; i <= n; i++)
{
K[i] = new Array(W + 1);
for (w = 0; w <= W; w++)
{
if (i == 0 || w == 0)
K[i][w] = 0;
else if (wt[i - 1] <= w)
K[i][w]
= max(val[i - 1]
+ K[i - 1][w - wt[i - 1]],
K[i - 1][w]);
else
K[i][w] = K[i - 1][w];
}
}
return K[n][W];
}
let val = [ 80, 120, 60 ];
let wt = [ 20, 30, 40 ];
let W = 80;
let n = val.length;
document.write(knapSack(W, wt, val, n));
</script>
Output:
280
Time Complexity: O(N*W) - where ‘N’ is the number of weight element and ‘W’ is capacity
Auxiliary Space: O(N*W) - The use of 2-D array of size ‘N*W’
- Machine Scheduling
- Inventory Management System
- Space Allocation
- Asset Optimization