Counting sort is a sorting algorithm that sorts the elements of an array by counting the number of occurrences of each unique element in the array. The count is stored in an auxiliary array and the sorting is done by mapping the count as an index of the auxiliary array.
Best | Average | Worst | Memory | Stable |
---|---|---|---|---|
Yes |
- The worst-case time complexity of Counting Sort is
$O(n+k)$ . - The best-case time complexity of Counting Sort is
$O(n+k)$ . - The average case time complexity of Counting Sort is
$O(n+k)$ . - The space complexity of Counting Sort is
$O(n+k)$ .
procedure countingSort(array, size)
max <- find largest element in array
initialize count array with all zeros
for j <- 0 to size
find the total count of each unique element and
store the count at jth index in count array
for i <- 1 to max
find the cumulative sum and store it in count array itself
for j <- size down to 1
restore the elements to array
decrease count of each element restored by 1
end procedure
# Counting sort in Python programming
def countingSort(array):
size = len(array)
output = [0] * size
# Initialize count array
count = [0] * 10
# Store the count of each elements in count array
for i in range(0, size):
count[array[i]] += 1
# Store the cummulative count
for i in range(1, 10):
count[i] += count[i - 1]
# Find the index of each element of the original array in count array
# place the elements in output array
i = size - 1
while i >= 0:
output[count[array[i]] - 1] = array[i]
count[array[i]] -= 1
i -= 1
# Copy the sorted elements into original array
for i in range(0, size):
array[i] = output[i]
data = [4, 2, 2, 8, 3, 3, 1]
countingSort(data)
print("Sorted Array in Ascending Order: ")
print(data)
// Counting sort in C++ programming
#include <iostream>
using namespace std;
void countSort(int array[], int size) {
// The size of count must be at least the (max+1) but
// we cannot assign declare it as int count(max+1) in C++ as
// it does not support dynamic memory allocation.
// So, its size is provided statically.
int output[10];
int count[10];
int max = array[0];
// Find the largest element of the array
for (int i = 1; i < size; i++) {
if (array[i] > max)
max = array[i];
}
// Initialize count array with all zeros.
for (int i = 0; i <= max; ++i) {
count[i] = 0;
}
// Store the count of each element
for (int i = 0; i < size; i++) {
count[array[i]]++;
}
// Store the cummulative count of each array
for (int i = 1; i <= max; i++) {
count[i] += count[i - 1];
}
// Find the index of each element of the original array in count array, and
// place the elements in output array
for (int i = size - 1; i >= 0; i--) {
output[count[array[i]] - 1] = array[i];
count[array[i]]--;
}
// Copy the sorted elements into original array
for (int i = 0; i < size; i++) {
array[i] = output[i];
}
}
// Function to print an array
void printArray(int array[], int size) {
for (int i = 0; i < size; i++)
cout << array[i] << " ";
cout << endl;
}
int main() {
int array[] = {4, 2, 2, 8, 3, 3, 1};
int n = sizeof(array) / sizeof(array[0]);
countSort(array, n);
printArray(array, n);
}
// Counting sort in C programming
#include <stdio.h>
void countingSort(int array[], int size) {
int output[10];
// Find the largest element of the array
int max = array[0];
for (int i = 1; i < size; i++) {
if (array[i] > max)
max = array[i];
}
// The size of count must be at least (max+1) but
// we cannot declare it as int count(max+1) in C as
// it does not support dynamic memory allocation.
// So, its size is provided statically.
int count[10];
// Initialize count array with all zeros.
for (int i = 0; i <= max; ++i) {
count[i] = 0;
}
// Store the count of each element
for (int i = 0; i < size; i++) {
count[array[i]]++;
}
// Store the cummulative count of each array
for (int i = 1; i <= max; i++) {
count[i] += count[i - 1];
}
// Find the index of each element of the original array in count array, and
// place the elements in output array
for (int i = size - 1; i >= 0; i--) {
output[count[array[i]] - 1] = array[i];
count[array[i]]--;
}
// Copy the sorted elements into original array
for (int i = 0; i < size; i++) {
array[i] = output[i];
}
}
// Function to print an array
void printArray(int array[], int size) {
for (int i = 0; i < size; ++i) {
printf("%d ", array[i]);
}
printf("\n");
}
int main() {
int array[] = {4, 2, 2, 8, 3, 3, 1};
int n = sizeof(array) / sizeof(array[0]);
countingSort(array, n);
printArray(array, n);
}
// Counting sort in Javascript programming
function countingSort(arr) {
let max = -Infinity;
// max <- find largest element in array
for (let i = 0; i < arr.length; i++) {
if (arr[i] > max) {
max = arr[i];
}
}
// initialize count array with all zeros
let count = new Array(max + 1).fill(0);
// for j <- 0 to size
// find the total count of each unique element and
// store the count at jth index in count array
for (let j = 0; j < arr.length; j++) {
count[arr[j]]++;
}
// for i <- 1 to max
// find the cumulative sum and store it in count array itself
for (let i = 1; i < count.length; i++) {
count[i] += count[i - 1];
}
let output = new Array(arr.length);
// for j <- size down to 1
// restore the elements to array
// decrease count of each element restored by 1
for (let j = arr.length - 1; j >= 0; j--) {
output[count[arr[j]] - 1] = arr[j];
count[arr[j]]--;
}
return output;
}
console.log(countingSort([6,4,5,1,2,3,9,8,7])); // [1,2,3,4,5,6,7,8,9]
// Counting sort in Javascript programming
function countingSort($arr) {
$count = array();
foreach ($arr as $v) {
$count[$v] = isset($count[$v]) ? $count[$v] + 1 : 1;
}
$sorted = array();
$min = min($arr);
$max = max($arr);
for ($i=$min; $i<=$max; $i++) {
if (isset($count[$i])) {
for ($j=0; $j<$count[$i]; $j++) {
$sorted[] = $i;
}
}
}
return $sorted;
}
$arr = array(6,4,5,1,2,3,9,8,7);
var_dump(countingSort($arr));
import java.util.Arrays;
class CountingSort {
int[] countingSort(int a[]){
// Find the largest element of the array
int max = a[0];
for(int i =0 ; i<a.length ; i++){
if(a[i]>max){
max = a[i];
}
}
// initialize count array with all zeros
int countArray[] = new int[max + 1];
Arrays.fill(countArray,0);
// Store the count of each element
for (int i = 0; i < a.length; i++)
{
countArray[a[i]]++;
}
// Store the cummulative count of each array
for(int i = 1; i<countArray.length; i++)
countArray[i] += countArray[i-1];
int outputArray[] = new int[a.length];
// Find the index of each element of the original array in count array, and
// place the elements in output array
for(int j = a.length -1 ; j>=0;j--){
outputArray[countArray[a[j]] - 1] = a[j];
countArray[a[j]]--;
}
// returining output array
return outputArray;
}
public static void main(String[] args) {
CountingSort obj = new CountingSort();
int a[] = { 3,4,6,2,7,8,9,1,1,1,0 ,10 };
//priniting sorted array
System.out.println("Sorted array:" + Arrays.toString(obj.countingSort(a)) );
}
}