Shell sort is mainly a variation of Insertion Sort. In insertion sort, we move elements only one position ahead. When an element has to be moved far ahead, many movements are involved. The idea of ShellSort is to allow the exchange of far items. In Shell sort, we make the array h-sorted for a large value of h. We keep reducing the value of h until it becomes 1. An array is said to be h-sorted if all sublists of every h’th element are sorted.
Best | Average | Worst | Memory | Stable |
---|---|---|---|---|
No |
- The worst-case time complexity of Shell Sort is
$O(n^2)$ . - The best-case time complexity of Shell Sort is
$Ω(n*log(n))$ . - The average case time complexity of Shell Sort is
$θ(n*log(n)^2)$ . - The space complexity of Shell Sort is
$O(1)$ .
WHILE $gap is greater than 0
FOR each element of the list, that is $gap apart
Extract the current item
Locate the position to insert
Insert the item to the position
END FOR
Calculate gap size ($gap)
END WHILE
# Python3 program for implementation of Shell Sort
# Python3 program for implementation of Shell Sort
def shellSort(arr, n):
# code here
gap=n//2
while gap>0:
j=gap
# Check the array in from left to right
# Till the last possible index of j
while j<n:
i=j-gap # This will keep help in maintain gap value
while i>=0:
# If value on right side is already greater than left side value
# We don't do swap else we swap
if arr[i+gap]>arr[i]:
break
else:
arr[i+gap],arr[i]=arr[i],arr[i+gap]
i=i-gap # To check left side also
# If the element present is greater than current element
j+=1
gap=gap//2
# driver to check the code
arr2 = [12, 34, 54, 2, 3]
print("input array:",arr2)
shellSort(arr2,len(arr2))
print("sorted array",arr2)
// C++ implementation of Shell Sort
#include <iostream>
using namespace std;
/* function to sort arr using shellSort */
int shellSort(int arr[], int n)
{
// Start with a big gap, then reduce the gap
for (int gap = n/2; gap > 0; gap /= 2)
{
// Do a gapped insertion sort for this gap size.
// The first gap elements a[0..gap-1] are already in gapped order
// keep adding one more element until the entire array is
// gap sorted
for (int i = gap; i < n; i += 1)
{
// add a[i] to the elements that have been gap sorted
// save a[i] in temp and make a hole at position i
int temp = arr[i];
// shift earlier gap-sorted elements up until the correct
// location for a[i] is found
int j;
for (j = i; j >= gap && arr[j - gap] > temp; j -= gap)
arr[j] = arr[j - gap];
// put temp (the original a[i]) in its correct location
arr[j] = temp;
}
}
return 0;
}
void printArray(int arr[], int n)
{
for (int i=0; i<n; i++)
cout << arr[i] << " ";
}
int main()
{
int arr[] = {12, 34, 54, 2, 3}, i;
int n = sizeof(arr)/sizeof(arr[0]);
cout << "Array before sorting: \n";
printArray(arr, n);
shellSort(arr, n);
cout << "\nArray after sorting: \n";
printArray(arr, n);
return 0;
}
// Java implementation of ShellSort
class ShellSort
{
/* An utility function to print array of size n*/
static void printArray(int arr[])
{
int n = arr.length;
for (int i=0; i<n; ++i)
System.out.print(arr[i] + " ");
System.out.println();
}
/* function to sort arr using shellSort */
int sort(int arr[])
{
int n = arr.length;
// Start with a big gap, then reduce the gap
for (int gap = n/2; gap > 0; gap /= 2)
{
// Do a gapped insertion sort for this gap size.
// The first gap elements a[0..gap-1] are already
// in gapped order keep adding one more element
// until the entire array is gap sorted
for (int i = gap; i < n; i += 1)
{
// add a[i] to the elements that have been gap
// sorted save a[i] in temp and make a hole at
// position i
int temp = arr[i];
// shift earlier gap-sorted elements up until
// the correct location for a[i] is found
int j;
for (j = i; j >= gap && arr[j - gap] > temp; j -= gap)
arr[j] = arr[j - gap];
// put temp (the original a[i]) in its correct
// location
arr[j] = temp;
}
}
return 0;
}
// Driver method
public static void main(String args[])
{
int arr[] = {12, 34, 54, 2, 3};
System.out.println("Array before sorting");
printArray(arr);
ShellSort ob = new ShellSort();
ob.sort(arr);
System.out.println("Array after sorting");
printArray(arr);
}
}
// JavaScript implementation of ShellSort
/* function to sort arr using shellSort */
function sort(arr) {
let n = arr.length
// Start with a big gap, then reduce the gap
for (let gap = Math.floor(n / 2); gap > 0; gap = Math.floor(gap / 2)) {
// Do a gapped insertion sort for this gap size.
// The first gap elements a[0..gap-1] are already
// in gapped order keep adding one more element
// until the entire array is gap sorted
for (let i = gap; i < n; i += 1) {
// add a[i] to the elements that have been gap
// sorted save a[i] in temp and make a hole at
// position i
let temp = arr[i]
// shift earlier gap-sorted elements up until
// the correct location for a[i] is found
let j
for (j = i; j >= gap && arr[j - gap] > temp; j -= gap)
arr[j] = arr[j - gap]
// put temp (the original a[i]) in its correct
// location
arr[j] = temp
}
}
return 0
}
const arr = [12, 11, 13, 5, 6, 7]
sort(arr)
console.log(arr)
// Go program for implementation of Shell Sort
package main
import (
"fmt"
"math/rand"
"time"
)
func main() {
slice := generateSlice(20)
fmt.Println("\n--- Unsorted --- \n\n", slice)
shellsort(slice)
fmt.Println("\n--- Sorted ---\n\n", slice, "\n")
}
// Generates a slice of size, size filled with random numbers
func generateSlice(size int) []int {
slice := make([]int, size, size)
rand.Seed(time.Now().UnixNano())
for i := 0; i < size; i++ {
slice[i] = rand.Intn(999) - rand.Intn(999)
}
return slice
}
func shellsort(items []int) {
var (
n = len(items)
gaps = []int{1}
k = 1
)
for {
gap := element(2, k) + 1
if gap > n-1 {
break
}
gaps = append([]int{gap}, gaps...)
k++
}
for _, gap := range gaps {
for i := gap; i < n; i += gap {
j := i
for j > 0 {
if items[j-gap] > items[j] {
items[j-gap], items[j] = items[j], items[j-gap]
}
j = j - gap
}
}
}
}
func element(a, b int) int {
e := 1
for b > 0 {
if b&1 != 0 {
e *= a
}
b >>= 1
a *= a
}
return e
}
# Ruby program for implementation of Shell Sort
class ShellSorter
def self.sort(a = [3, 1, 2])
numComp = 0
len = a.length
k = len/2
while(k > 0.0)
# Increment = k. We sort all k-sequences (sequences of elements
# k-apart) using insertion sort over all k-sequences concurrently.
for i in k..len-1 do
t = a[i]
j = i
while( (j >= k) && (a[j-k] > t) ) do
numComp += 1
a[j] = a[j-k]
j -= k
end
++numComp
a[j] = t;
end
k = (k/(k == 2 ? 2 : 2.2)).floor # "divide by 2.2" increment sequence
end
return numComp
end
def self.randomArray(len = 10)
a = []
if(len<0) then len = 0 end
for i in 0..len-1 do
a[i] = (rand*len).floor
end
return a;
end
def self.test(len = 10, show = false)
a = randomArray(len)
if(show) then puts " In: " + a.join(" ") end
c = sort(a)
if(show)
puts " Out: " + a.join(" ")
puts "comp: #{c}"
end
end
end
if __FILE__ == $0
ShellSorter.test(20, true)
end