-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathMotionDirector_inference.py
282 lines (236 loc) · 10.9 KB
/
MotionDirector_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import argparse
import os
import platform
import re
import warnings
from typing import Optional
import torch
from diffusers import DDIMScheduler, TextToVideoSDPipeline
from einops import rearrange
from torch import Tensor
from torch.nn.functional import interpolate
from tqdm import trange
import random
from MotionDirector_train import export_to_video, handle_memory_attention, load_primary_models, unet_and_text_g_c, freeze_models
from utils.lora_handler import LoraHandler
from utils.ddim_utils import ddim_inversion
import imageio
def initialize_pipeline(
model: str,
device: str = "cuda",
xformers: bool = False,
sdp: bool = False,
lora_path: str = "",
lora_rank: int = 64,
lora_scale: float = 1.0,
):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
scheduler, tokenizer, text_encoder, vae, unet = load_primary_models(model)
# Freeze any necessary models
freeze_models([vae, text_encoder, unet])
# Enable xformers if available
handle_memory_attention(xformers, sdp, unet)
lora_manager_temporal = LoraHandler(
version="cloneofsimo",
use_unet_lora=True,
use_text_lora=False,
save_for_webui=False,
only_for_webui=False,
unet_replace_modules=["TransformerTemporalModel"],
text_encoder_replace_modules=None,
lora_bias=None
)
unet_lora_params, unet_negation = lora_manager_temporal.add_lora_to_model(
True, unet, lora_manager_temporal.unet_replace_modules, 0, lora_path, r=lora_rank, scale=lora_scale)
unet.eval()
text_encoder.eval()
unet_and_text_g_c(unet, text_encoder, False, False)
pipe = TextToVideoSDPipeline.from_pretrained(
pretrained_model_name_or_path=model,
scheduler=scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder.to(device=device, dtype=torch.half),
vae=vae.to(device=device, dtype=torch.half),
unet=unet.to(device=device, dtype=torch.half),
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
return pipe
def inverse_video(pipe, latents, num_steps):
ddim_inv_scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
ddim_inv_scheduler.set_timesteps(num_steps)
ddim_inv_latent = ddim_inversion(
pipe, ddim_inv_scheduler, video_latent=latents.to(pipe.device),
num_inv_steps=num_steps, prompt="")[-1]
return ddim_inv_latent
def prepare_input_latents(
pipe: TextToVideoSDPipeline,
batch_size: int,
num_frames: int,
height: int,
width: int,
latents_path:str,
noise_prior: float
):
# initialize with random gaussian noise
scale = pipe.vae_scale_factor
shape = (batch_size, pipe.unet.config.in_channels, num_frames, height // scale, width // scale)
if noise_prior > 0.:
cached_latents = torch.load(latents_path)
if 'inversion_noise' not in cached_latents:
latents = inverse_video(pipe, cached_latents['latents'].unsqueeze(0), 50).squeeze(0)
else:
latents = torch.load(latents_path)['inversion_noise'].unsqueeze(0)
if latents.shape[0] != batch_size:
latents = latents.repeat(batch_size, 1, 1, 1, 1)
if latents.shape != shape:
latents = interpolate(rearrange(latents, "b c f h w -> (b f) c h w", b=batch_size), (height // scale, width // scale), mode='bilinear')
latents = rearrange(latents, "(b f) c h w -> b c f h w", b=batch_size)
noise = torch.randn_like(latents, dtype=torch.half)
latents = (noise_prior) ** 0.5 * latents + (1 - noise_prior) ** 0.5 * noise
else:
latents = torch.randn(shape, dtype=torch.half)
return latents
def encode(pipe: TextToVideoSDPipeline, pixels: Tensor, batch_size: int = 8):
nf = pixels.shape[2]
pixels = rearrange(pixels, "b c f h w -> (b f) c h w")
latents = []
for idx in trange(
0, pixels.shape[0], batch_size, desc="Encoding to latents...", unit_scale=batch_size, unit="frame"
):
pixels_batch = pixels[idx : idx + batch_size].to(pipe.device, dtype=torch.half)
latents_batch = pipe.vae.encode(pixels_batch).latent_dist.sample()
latents_batch = latents_batch.mul(pipe.vae.config.scaling_factor).cpu()
latents.append(latents_batch)
latents = torch.cat(latents)
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=nf)
return latents
@torch.inference_mode()
def inference(
model: str,
prompt: str,
negative_prompt: Optional[str] = None,
width: int = 256,
height: int = 256,
num_frames: int = 24,
num_steps: int = 50,
guidance_scale: float = 15,
device: str = "cuda",
xformers: bool = False,
sdp: bool = False,
lora_path: str = "",
lora_rank: int = 64,
lora_scale: float = 1.0,
seed: Optional[int] = None,
latents_path: str="",
noise_prior: float = 0.,
repeat_num: int = 1,
):
if seed is not None:
random_seed = seed
torch.manual_seed(seed)
with torch.autocast(device, dtype=torch.half):
# prepare models
pipe = initialize_pipeline(model, device, xformers, sdp, lora_path, lora_rank, lora_scale)
for i in range(repeat_num):
if seed is None:
random_seed = random.randint(100, 10000000)
torch.manual_seed(random_seed)
# prepare input latents
init_latents = prepare_input_latents(
pipe=pipe,
batch_size=len(prompt),
num_frames=num_frames,
height=height,
width=width,
latents_path=latents_path,
noise_prior=noise_prior
)
with torch.no_grad():
video_frames = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
num_frames=num_frames,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
latents=init_latents
).frames
# =========================================
# ========= write outputs to file =========
# =========================================
os.makedirs(args.output_dir, exist_ok=True)
# save to mp4
export_to_video(video_frames, f"{out_name}_{random_seed}.mp4", args.fps)
# # save to gif
# file_name = f"{out_name}_{random_seed}.gif"
# imageio.mimsave(file_name, video_frames, 'GIF', duration=1000 * 1 / args.fps, loop=0)
return video_frames
if __name__ == "__main__":
import decord
decord.bridge.set_bridge("torch")
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str, required=True,
help="HuggingFace repository or path to model checkpoint directory")
parser.add_argument("-p", "--prompt", type=str, required=True, help="Text prompt to condition on")
parser.add_argument("-n", "--negative-prompt", type=str, default=None, help="Text prompt to condition against")
parser.add_argument("-o", "--output_dir", type=str, default="./outputs/inference", help="Directory to save output video to")
parser.add_argument("-B", "--batch-size", type=int, default=1, help="Batch size for inference")
parser.add_argument("-W", "--width", type=int, default=384, help="Width of output video")
parser.add_argument("-H", "--height", type=int, default=384, help="Height of output video")
parser.add_argument("-T", "--num-frames", type=int, default=16, help="Total number of frames to generate")
parser.add_argument("-s", "--num-steps", type=int, default=30, help="Number of diffusion steps to run per frame.")
parser.add_argument("-g", "--guidance-scale", type=float, default=12, help="Scale for guidance loss (higher values = more guidance, but possibly more artifacts).")
parser.add_argument("-f", "--fps", type=int, default=8, help="FPS of output video")
parser.add_argument("-d", "--device", type=str, default="cuda", help="Device to run inference on (defaults to cuda).")
parser.add_argument("-x", "--xformers", action="store_true", help="Use XFormers attnetion, a memory-efficient attention implementation (requires `pip install xformers`).")
parser.add_argument("-S", "--sdp", action="store_true", help="Use SDP attention, PyTorch's built-in memory-efficient attention implementation.")
parser.add_argument("-cf", "--checkpoint_folder", type=str, required=True, help="Path to Low Rank Adaptation checkpoint file (defaults to empty string, which uses no LoRA).")
parser.add_argument("-lr", "--lora_rank", type=int, default=32, help="Size of the LoRA checkpoint's projection matrix (defaults to 32).")
parser.add_argument("-ls", "--lora_scale", type=float, default=1.0, help="Scale of LoRAs.")
parser.add_argument("-r", "--seed", type=int, default=None, help="Random seed to make generations reproducible.")
parser.add_argument("-np", "--noise_prior", type=float, default=0., help="Scale of the influence of inversion noise.")
parser.add_argument("-ci", "--checkpoint_index", type=int, required=True,
help="The index of checkpoint, such as 300.")
parser.add_argument("-rn", "--repeat_num", type=int, default=1,
help="How many results to generate with the same prompt.")
args = parser.parse_args()
# fmt: on
# =========================================
# ====== validate and prepare inputs ======
# =========================================
out_name = f"{args.output_dir}/"
prompt = re.sub(r'[<>:"/\\|?*\x00-\x1F]', "_", args.prompt) if platform.system() == "Windows" else args.prompt
out_name += f"{prompt}".replace(' ','_').replace(',', '').replace('.', '')
args.prompt = [prompt] * args.batch_size
if args.negative_prompt is not None:
args.negative_prompt = [args.negative_prompt] * args.batch_size
# =========================================
# ============= sample videos =============
# =========================================
lora_path = f"{args.checkpoint_folder}/checkpoint-{args.checkpoint_index}/temporal/lora"
latents_folder = f"{args.checkpoint_folder}/cached_latents"
latents_path = f"{latents_folder}/{random.choice(os.listdir(latents_folder))}"
assert os.path.exists(lora_path)
video_frames = inference(
model=args.model,
prompt=args.prompt,
negative_prompt=args.negative_prompt,
width=args.width,
height=args.height,
num_frames=args.num_frames,
num_steps=args.num_steps,
guidance_scale=args.guidance_scale,
device=args.device,
xformers=args.xformers,
sdp=args.sdp,
lora_path=lora_path,
lora_rank=args.lora_rank,
lora_scale = args.lora_scale,
seed=args.seed,
latents_path=latents_path,
noise_prior=args.noise_prior,
repeat_num=args.repeat_num
)